1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
|
/** @file
* @brief Unit tests for PathVector::intersectSelf()
*/
/*
* Authors:
* Rafał Siejakowski <rs@rs-math.net>
*
* Copyright 2022 Authors
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*/
#include <gtest/gtest.h>
#include <2geom/pathvector.h>
#include <2geom/svg-path-parser.h>
using namespace Geom;
#define PV(d) (parse_svg_path(d))
#define PTH(d) (PV(d)[0])
class PVSelfIntersections : public testing::Test
{
protected:
PathVector const _rectangle, _bowtie, _bowtie_curved, _bowtie_node, _openpath,
_open_closed_nonintersecting, _open_closed_intersecting, _tangential, _degenerate_segments,
_degenerate_closing, _degenerate_multiple;
PVSelfIntersections()
// A simple rectangle.
: _rectangle{PV("M 0,0 L 5,0 5,8 0,8 Z")}
// A polyline path with a self-intersection @(2,1).
, _bowtie{PV("M 0,0 L 4,2 V 0 L 0,2 Z")}
// A curved bow-tie path with a self-intersection @(10,5) between cubic Béziers.
, _bowtie_curved{PV("M 0,0 V 10 C 10,10 10,0 20,0 V 10 C 10,10 10,0 0,0 Z")}
// As above, but twice as large and the self-intersection @(20,10) happens at a node.
, _bowtie_node{PV("M 0,0 V 20 C 0,20 10,20 20,10 25,5 30,0 40,0 V 20 "
"C 30,20 25,15 20,10 10,0 0,0 0,0 Z")}
// An open path with no self-intersections ◠―◡
, _openpath{PV("M 0,0 A 10,10 0,0,1 20,0 L 40,0 Q 50,10 60,0")}
// A line and a square with no intersections | □
, _open_closed_nonintersecting{PV("M 0,0 V 20 M 10,0 V 20 H 30 V 0 Z")}
// A line slicing through a square; two self-intersections ⎅
, _open_closed_intersecting{PV("M 10,0 V 40 M 0,10 V 30 H 20 V 10 Z")}
// A circle whose diameter precisely coincides with the top side of a rectangle.
, _tangential{PV("M 0,0 A 10,10 0,0,1 20,0 A 10,10, 0,0,1 0,0 Z M 0,0 H 20 V 30 H 0 Z")}
// A rectangle containing degenerate segments.
, _degenerate_segments{PV("M 0,0 H 5 V 4 L 5,4 V 8 H 5 L 5,8 H 0 Z")}
// A rectangle with a degenerate closing segment.
, _degenerate_closing{PV("M 0,0 H 5 V 8 H 0 L 0,0 Z")}
// Multiple consecutive degenerate segments, with a degenerate closing segment in the middle.
, _degenerate_multiple{PV("M 0,0 L 0,0 V 0 H 0 L 5,0 V 8 H 0 L 0,0 V 0 H 0 Z")}
{
}
};
/* Ensure that no spurious intersections are returned. */
TEST_F(PVSelfIntersections, NoSpurious)
{
auto empty = PathVector();
EXPECT_EQ(empty.intersectSelf().size(), 0u);
auto r = _rectangle.intersectSelf();
EXPECT_EQ(r.size(), 0u);
auto o = _openpath.intersectSelf();
EXPECT_EQ(o.size(), 0u);
auto n = _open_closed_nonintersecting.intersectSelf();
EXPECT_EQ(n.size(), 0u);
auto d = _degenerate_segments.intersectSelf();
EXPECT_EQ(d.size(), 0u);
auto dc = _degenerate_closing.intersectSelf();
EXPECT_EQ(dc.size(), 0u);
auto dm = _degenerate_multiple.intersectSelf();
EXPECT_EQ(dm.size(), 0u);
auto cusp_node = PTH("M 1 3 C 12 8 42 101 86 133 C 78 168 136 83 80 64");
EXPECT_EQ(cusp_node.intersectSelf().size(), 0u);
}
/* Test figure-eight shaped paths */
TEST_F(PVSelfIntersections, Bowties)
{
// Simple triangular bowtie: intersection between straight lines
auto triangular = _bowtie.intersectSelf();
EXPECT_EQ(triangular.size(), 1u);
ASSERT_GT(triangular.size(), 0u); // To ensure access to [0]
EXPECT_TRUE(are_near(triangular[0].point(), Point(2, 1)));
// Curved bowtie: intersection between cubic Bézier curves
auto curved_intersections = _bowtie_curved.intersectSelf();
EXPECT_EQ(curved_intersections.size(), 1u);
ASSERT_GT(curved_intersections.size(), 0u);
EXPECT_TRUE(are_near(curved_intersections[0].point(), Point(10, 5)));
// Curved bowtie but the intersection point is a node on both paths
auto node_case_intersections = _bowtie_node.intersectSelf();
EXPECT_EQ(node_case_intersections.size(), 1u);
ASSERT_GT(node_case_intersections.size(), 0u);
EXPECT_TRUE(are_near(node_case_intersections[0].point(), Point(20, 10)));
}
/* Test intersecting an open path with a closed one */
TEST_F(PVSelfIntersections, OpenClosed)
{
// Square cut by a vertical line
auto open_closed = _open_closed_intersecting.intersectSelf();
auto const P1 = Point(10, 10);
auto const P2 = Point(10, 30);
ASSERT_EQ(open_closed.size(), 2u); // Prevent crash on out-of-bounds access
// This test doesn't care about how the intersections are ordered.
bool points_as_expected = (are_near(open_closed[0].point(), P1) && are_near(open_closed[1].point(), P2))
|| (are_near(open_closed[0].point(), P2) && are_near(open_closed[1].point(), P1));
EXPECT_TRUE(points_as_expected);
}
/* Test some nasty, tangential crossings: a circle with a rectangle built on its diameter. */
TEST_F(PVSelfIntersections, Tangential)
{
auto circle_x_rect = _tangential.intersectSelf();
auto const P1 = Point(0, 0);
auto const P2 = Point(20, 0);
ASSERT_EQ(circle_x_rect.size(), 2u); // Prevent crash on out-of-bounds access
// This test doesn't care how the intersections are ordered.
bool points_as_expected = (are_near(circle_x_rect[0].point(), P1) && are_near(circle_x_rect[1].point(), P2))
|| (are_near(circle_x_rect[0].point(), P2) && are_near(circle_x_rect[1].point(), P1));
EXPECT_TRUE(points_as_expected);
}
/* Regression test for issue https://gitlab.com/inkscape/lib2geom/-/issues/33 */
TEST_F(PVSelfIntersections, Regression33)
{
// Test case provided by Pascal Bies in the issue description.
auto const line = LineSegment(Point(486, 597), Point(313, 285));
Point const c{580.1377046525328, 325.5830744834947};
Point const d{289.35338528516013, 450.62476639303753};
auto const curve = CubicBezier(c, c, d, d);
EXPECT_EQ(curve.intersect(line).size(), 1);
}
/* Regression test for issue https://gitlab.com/inkscape/lib2geom/-/issues/46 */
TEST_F(PVSelfIntersections, NumericalInstability)
{
// Test examples provided by M.B. Fraga in the issue report.
auto missing_intersection = PTH("M 138 237 C 293 207 129 12 167 106 Q 205 200 309 198 z");
auto missing_xings = missing_intersection.intersectSelf();
EXPECT_EQ(missing_xings.size(), 2);
auto duplicate_intersection = PTH("M 60 280 C 60 213 236 227 158 178 S 174 306 127 310 Q 80 314 60 280 z");
auto const only_expected = Point(130.9693916417836, 224.587385497877);
auto duplicate_xings = duplicate_intersection.intersectSelf();
ASSERT_EQ(duplicate_xings.size(), 1);
EXPECT_TRUE(are_near(duplicate_xings[0].point(), only_expected));
}
/* Check various numerically challenging paths consisting of 2 cubic Béziers. */
TEST_F(PVSelfIntersections, NumericallyChallenging)
{
auto two_kinks = PTH("M 85 88 C 4 425 19 6 72 426 C 128 6 122 456 68 96");
EXPECT_EQ(two_kinks.intersectSelf().size(), 3);
auto omega = PTH("M 47 132 C 179 343 0 78 106 74 C 187 74 0 358 174 106");
EXPECT_EQ(omega.intersectSelf().size(), 0);
auto spider = PTH("M 47 132 C 203 339 0 78 106 74 C 187 74 0 358 174 106");
EXPECT_EQ(spider.intersectSelf().size(), 4);
auto egret = PTH("M 38 340 C 183 141 16 76 255 311 C 10 79 116 228 261 398");
EXPECT_EQ(egret.intersectSelf().size(), 0);
}
/* Test a regression from 88040ea2aeab8ccec2b0e96c7bda2fc7d500d5ec */
TEST_F(PVSelfIntersections, BigonFiltering)
{
auto const lens = PTH("M 0,0 C 2,1 3,1 5,0 A 2.5,1 0 1 0 0,0 Z");
auto const xings = lens.intersectSelf();
// This is a simple closed path, so we expect that no self-intersections are reported.
EXPECT_EQ(xings.size(), 0);
}
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :
|