/* * Generate a noise texture for dithering images. * Copyright © 2013 Wessel Dankers * * This file is part of libplacebo. * * libplacebo is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * libplacebo is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with libplacebo. If not, see . * * The original code is taken from mpv, under the same license. */ #include #include #include #include #include #include #include #include "common.h" #include void pl_generate_bayer_matrix(float *data, int size) { pl_assert(size >= 0); // Start with a single entry of 0 data[0] = 0; for (int sz = 1; sz < size; sz *= 2) { // Make three copies of the current, appropriately shifted and scaled for (int y = 0; y < sz; y ++) { for (int x = 0; x < sz; x++) { int offsets[] = {0, sz * size + sz, sz, sz * size}; int pos = y * size + x; for (int i = 1; i < 4; i++) data[pos + offsets[i]] = data[pos] + i / (4.0 * sz * sz); } } } } #define MAX_SIZEB 8 #define MAX_SIZE (1 << MAX_SIZEB) #define MAX_SIZE2 (MAX_SIZE * MAX_SIZE) typedef uint_fast32_t index_t; #define WRAP_SIZE2(k, x) ((index_t)((index_t)(x) & ((k)->size2 - 1))) #define XY(k, x, y) ((index_t)(((x) | ((y) << (k)->sizeb)))) struct ctx { unsigned int sizeb, size, size2; unsigned int gauss_radius; unsigned int gauss_middle; uint64_t gauss[MAX_SIZE2]; index_t randomat[MAX_SIZE2]; bool calcmat[MAX_SIZE2]; uint64_t gaussmat[MAX_SIZE2]; index_t unimat[MAX_SIZE2]; }; static void makegauss(struct ctx *k, unsigned int sizeb) { pl_assert(sizeb >= 1 && sizeb <= MAX_SIZEB); k->sizeb = sizeb; k->size = 1 << k->sizeb; k->size2 = k->size * k->size; k->gauss_radius = k->size / 2 - 1; k->gauss_middle = XY(k, k->gauss_radius, k->gauss_radius); unsigned int gauss_size = k->gauss_radius * 2 + 1; unsigned int gauss_size2 = gauss_size * gauss_size; for (index_t c = 0; c < k->size2; c++) k->gauss[c] = 0; double sigma = -log(1.5 / (double) UINT64_MAX * gauss_size2) / k->gauss_radius; for (index_t gy = 0; gy <= k->gauss_radius; gy++) { for (index_t gx = 0; gx <= gy; gx++) { int cx = (int)gx - k->gauss_radius; int cy = (int)gy - k->gauss_radius; int sq = cx * cx + cy * cy; double e = exp(-sqrt(sq) * sigma); uint64_t v = e / gauss_size2 * (double) UINT64_MAX; k->gauss[XY(k, gx, gy)] = k->gauss[XY(k, gy, gx)] = k->gauss[XY(k, gx, gauss_size - 1 - gy)] = k->gauss[XY(k, gy, gauss_size - 1 - gx)] = k->gauss[XY(k, gauss_size - 1 - gx, gy)] = k->gauss[XY(k, gauss_size - 1 - gy, gx)] = k->gauss[XY(k, gauss_size - 1 - gx, gauss_size - 1 - gy)] = k->gauss[XY(k, gauss_size - 1 - gy, gauss_size - 1 - gx)] = v; } } #ifndef NDEBUG uint64_t total = 0; for (index_t c = 0; c < k->size2; c++) { uint64_t oldtotal = total; total += k->gauss[c]; assert(total >= oldtotal); } #endif } static void setbit(struct ctx *k, index_t c) { if (k->calcmat[c]) return; k->calcmat[c] = true; uint64_t *m = k->gaussmat; uint64_t *me = k->gaussmat + k->size2; uint64_t *g = k->gauss + WRAP_SIZE2(k, k->gauss_middle + k->size2 - c); uint64_t *ge = k->gauss + k->size2; while (g < ge) *m++ += *g++; g = k->gauss; while (m < me) *m++ += *g++; } static index_t getmin(struct ctx *k) { uint64_t min = UINT64_MAX; index_t resnum = 0; unsigned int size2 = k->size2; for (index_t c = 0; c < size2; c++) { if (k->calcmat[c]) continue; uint64_t total = k->gaussmat[c]; if (total <= min) { if (total != min) { min = total; resnum = 0; } k->randomat[resnum++] = c; } } assert(resnum > 0); if (resnum == 1) return k->randomat[0]; if (resnum == size2) return size2 / 2; return k->randomat[rand() % resnum]; } static void makeuniform(struct ctx *k) { unsigned int size2 = k->size2; for (index_t c = 0; c < size2; c++) { index_t r = getmin(k); setbit(k, r); k->unimat[r] = c; } } void pl_generate_blue_noise(float *data, int size) { pl_assert(size > 0); int shift = PL_LOG2(size); pl_assert((1 << shift) == size); struct ctx *k = pl_zalloc_ptr(NULL, k); makegauss(k, shift); makeuniform(k); float invscale = k->size2; for(index_t y = 0; y < k->size; y++) { for(index_t x = 0; x < k->size; x++) data[x + y * k->size] = k->unimat[XY(k, x, y)] / invscale; } pl_free(k); } const struct pl_error_diffusion_kernel pl_error_diffusion_simple = { .name = "simple", .description = "Simple error diffusion", .shift = 1, .pattern = {{0, 0, 0, 1, 0}, {0, 0, 1, 0, 0}, {0, 0, 0, 0, 0}}, .divisor = 2, }; const struct pl_error_diffusion_kernel pl_error_diffusion_false_fs = { .name = "false-fs", .description = "False Floyd-Steinberg kernel", .shift = 1, .pattern = {{0, 0, 0, 3, 0}, {0, 0, 3, 2, 0}, {0, 0, 0, 0, 0}}, .divisor = 8, }; const struct pl_error_diffusion_kernel pl_error_diffusion_sierra_lite = { .name = "sierra-lite", .description = "Sierra Lite kernel", .shift = 2, .pattern = {{0, 0, 0, 2, 0}, {0, 1, 1, 0, 0}, {0, 0, 0, 0, 0}}, .divisor = 4, }; const struct pl_error_diffusion_kernel pl_error_diffusion_floyd_steinberg = { .name = "floyd-steinberg", .description = "Floyd Steinberg kernel", .shift = 2, .pattern = {{0, 0, 0, 7, 0}, {0, 3, 5, 1, 0}, {0, 0, 0, 0, 0}}, .divisor = 16, }; const struct pl_error_diffusion_kernel pl_error_diffusion_atkinson = { .name = "atkinson", .description = "Atkinson kernel", .shift = 2, .pattern = {{0, 0, 0, 1, 1}, {0, 1, 1, 1, 0}, {0, 0, 1, 0, 0}}, .divisor = 8, }; const struct pl_error_diffusion_kernel pl_error_diffusion_jarvis_judice_ninke = { .name = "jarvis-judice-ninke", .description = "Jarvis, Judice & Ninke kernel", .shift = 3, .pattern = {{0, 0, 0, 7, 5}, {3, 5, 7, 5, 3}, {1, 3, 5, 3, 1}}, .divisor = 48, }; const struct pl_error_diffusion_kernel pl_error_diffusion_stucki = { .name = "stucki", .description = "Stucki kernel", .shift = 3, .pattern = {{0, 0, 0, 8, 4}, {2, 4, 8, 4, 2}, {1, 2, 4, 2, 1}}, .divisor = 42, }; const struct pl_error_diffusion_kernel pl_error_diffusion_burkes = { .name = "burkes", .description = "Burkes kernel", .shift = 3, .pattern = {{0, 0, 0, 8, 4}, {2, 4, 8, 4, 2}, {0, 0, 0, 0, 0}}, .divisor = 32, }; const struct pl_error_diffusion_kernel pl_error_diffusion_sierra2 = { .name = "sierra-2", .description = "Two-row Sierra", .shift = 3, .pattern = {{0, 0, 0, 4, 3}, {1, 2, 3, 2, 1}, {0, 0, 0, 0, 0}}, .divisor = 16, }; const struct pl_error_diffusion_kernel pl_error_diffusion_sierra3 = { .name = "sierra-3", .description = "Three-row Sierra", .shift = 3, .pattern = {{0, 0, 0, 5, 3}, {2, 4, 5, 4, 2}, {0, 2, 3, 2, 0}}, .divisor = 32, }; const struct pl_error_diffusion_kernel * const pl_error_diffusion_kernels[] = { &pl_error_diffusion_simple, &pl_error_diffusion_false_fs, &pl_error_diffusion_sierra_lite, &pl_error_diffusion_floyd_steinberg, &pl_error_diffusion_atkinson, &pl_error_diffusion_jarvis_judice_ninke, &pl_error_diffusion_stucki, &pl_error_diffusion_burkes, &pl_error_diffusion_sierra2, &pl_error_diffusion_sierra3, NULL }; const int pl_num_error_diffusion_kernels = PL_ARRAY_SIZE(pl_error_diffusion_kernels) - 1; // Find the error diffusion kernel with the given name, or NULL on failure. const struct pl_error_diffusion_kernel *pl_find_error_diffusion_kernel(const char *name) { for (int i = 0; i < pl_num_error_diffusion_kernels; i++) { if (strcmp(name, pl_error_diffusion_kernels[i]->name) == 0) return pl_error_diffusion_kernels[i]; } return NULL; }