/* * This file is part of libplacebo. * * libplacebo is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * libplacebo is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with libplacebo. If not, see . */ #pragma once #include #include #include #include #include // Unlike standard malloc, `size` may be 0, in which case this returns an empty // allocation which can still be used as a parent for other allocations. void *pl_alloc(void *parent, size_t size); void *pl_zalloc(void *parent, size_t size); void *pl_realloc(void *parent, void *ptr, size_t size); static inline void *pl_calloc(void *parent, size_t count, size_t size) { return pl_zalloc(parent, count * size); } #define pl_tmp(parent) pl_alloc(parent, 0) // Variants of the above which resolve to sizeof(*ptr) #define pl_alloc_ptr(parent, ptr) \ (__typeof__(ptr)) pl_alloc(parent, sizeof(*(ptr))) #define pl_zalloc_ptr(parent, ptr) \ (__typeof__(ptr)) pl_zalloc(parent, sizeof(*(ptr))) #define pl_calloc_ptr(parent, num, ptr) \ (__typeof__(ptr)) pl_calloc(parent, num, sizeof(*(ptr))) // Helper function to allocate a struct and immediately assign it #define pl_alloc_struct(parent, type, ...) \ (type *) pl_memdup(parent, &(type) __VA_ARGS__, sizeof(type)) // Free an allocation and its children (recursively) void pl_free(void *ptr); void pl_free_children(void *ptr); #define pl_free_ptr(ptr) \ do { \ pl_free(*(ptr)); \ *(ptr) = NULL; \ } while (0) // Get the current size of an allocation. size_t pl_get_size(const void *ptr); #define pl_grow(parent, ptr, size) \ do { \ size_t _size = (size); \ if (_size > pl_get_size(*(ptr))) \ *(ptr) = pl_realloc(parent, *(ptr), _size); \ } while (0) // Reparent an allocation onto a new parent void *pl_steal(void *parent, void *ptr); // Wrapper functions around common string utilities void *pl_memdup(void *parent, const void *ptr, size_t size); char *pl_str0dup0(void *parent, const char *str); char *pl_strndup0(void *parent, const char *str, size_t size); #define pl_memdup_ptr(parent, ptr) \ (__typeof__(ptr)) pl_memdup(parent, ptr, sizeof(*(ptr))) // Helper functions for allocating public/private pairs, done by allocating // `priv` at the address of `pub` + sizeof(pub), rounded up to the maximum // alignment requirements. #define PL_ALIGN_MEM(size) PL_ALIGN2(size, alignof(max_align_t)) #define PL_PRIV(pub) \ (void *) ((uintptr_t) (pub) + PL_ALIGN_MEM(sizeof(*(pub)))) #define pl_alloc_obj(parent, ptr, priv) \ (__typeof__(ptr)) pl_alloc(parent, PL_ALIGN_MEM(sizeof(*(ptr))) + sizeof(priv)) #define pl_zalloc_obj(parent, ptr, priv) \ (__typeof__(ptr)) pl_zalloc(parent, PL_ALIGN_MEM(sizeof(*(ptr))) + sizeof(priv)) // Helper functions for dealing with arrays #define PL_ARRAY(type) struct { type *elem; int num; } #define PL_ARRAY_REALLOC(parent, arr, len) \ do { \ size_t _new_size = (len) * sizeof((arr).elem[0]); \ (arr).elem = pl_realloc((void *) parent, (arr).elem, _new_size); \ } while (0) #define PL_ARRAY_RESIZE(parent, arr, len) \ do { \ size_t _avail = pl_get_size((arr).elem) / sizeof((arr).elem[0]); \ size_t _min_len = (len); \ if (_avail < _min_len) \ PL_ARRAY_REALLOC(parent, arr, _min_len); \ } while (0) #define PL_ARRAY_MEMDUP(parent, arr, ptr, len) \ do { \ size_t _len = (len); \ PL_ARRAY_RESIZE(parent, arr, _len); \ memcpy((arr).elem, ptr, _len * sizeof((arr).elem[0])); \ (arr).num = _len; \ } while (0) #define PL_ARRAY_GROW(parent, arr) \ do { \ size_t _avail = pl_get_size((arr).elem) / sizeof((arr).elem[0]); \ if (_avail < 10) { \ PL_ARRAY_REALLOC(parent, arr, 10); \ } else if ((arr).num == _avail) { \ PL_ARRAY_REALLOC(parent, arr, (arr).num * 1.5); \ } else { \ assert((arr).elem); \ } \ } while (0) #define PL_ARRAY_APPEND(parent, arr, ...) \ do { \ PL_ARRAY_GROW(parent, arr); \ (arr).elem[(arr).num++] = __VA_ARGS__; \ } while (0) #define PL_ARRAY_CONCAT(parent, to, from) \ do { \ if ((from).num) { \ PL_ARRAY_RESIZE(parent, to, (to).num + (from).num); \ memmove(&(to).elem[(to).num], (from).elem, \ (from).num * sizeof((from).elem[0])); \ (to).num += (from).num; \ } \ } while (0) #define PL_ARRAY_REMOVE_RANGE(arr, idx, count) \ do { \ ptrdiff_t _idx = (idx); \ if (_idx < 0) \ _idx += (arr).num; \ size_t _count = (count); \ assert(_idx >= 0 && _idx + _count <= (arr).num); \ memmove(&(arr).elem[_idx], &(arr).elem[_idx + _count], \ ((arr).num - _idx - _count) * sizeof((arr).elem[0])); \ (arr).num -= _count; \ } while (0) #define PL_ARRAY_REMOVE_AT(arr, idx) PL_ARRAY_REMOVE_RANGE(arr, idx, 1) #define PL_ARRAY_INSERT_AT(parent, arr, idx, ...) \ do { \ ptrdiff_t _idx = (idx); \ if (_idx < 0) \ _idx += (arr).num + 1; \ assert(_idx >= 0 && _idx <= (arr).num); \ PL_ARRAY_GROW(parent, arr); \ memmove(&(arr).elem[_idx + 1], &(arr).elem[_idx], \ ((arr).num++ - _idx) * sizeof((arr).elem[0])); \ (arr).elem[_idx] = __VA_ARGS__; \ } while (0) // Returns whether or not there was any element to pop #define PL_ARRAY_POP(arr, out) \ ((arr).num > 0 \ ? (*(out) = (arr).elem[--(arr).num], true) \ : false \ ) // Wrapper for dealing with non-PL_ARRAY arrays #define PL_ARRAY_APPEND_RAW(parent, arr, idxvar, ...) \ do { \ PL_ARRAY(__typeof__((arr)[0])) _arr = { (arr), (idxvar) }; \ PL_ARRAY_APPEND(parent, _arr, __VA_ARGS__); \ (arr) = _arr.elem; \ (idxvar) = _arr.num; \ } while (0)