1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
|
/*
* This file is part of libplacebo.
*
* libplacebo is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* libplacebo is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with libplacebo. If not, see <http://www.gnu.org/licenses/>.
*/
#include <math.h>
#include "common.h"
#include "version.h"
#include <libplacebo/common.h>
int pl_fix_ver(void)
{
return BUILD_FIX_VER;
}
const char *pl_version(void)
{
return BUILD_VERSION;
}
void pl_rect2d_normalize(pl_rect2d *rc)
{
*rc = (pl_rect2d) {
.x0 = PL_MIN(rc->x0, rc->x1),
.x1 = PL_MAX(rc->x0, rc->x1),
.y0 = PL_MIN(rc->y0, rc->y1),
.y1 = PL_MAX(rc->y0, rc->y1),
};
}
void pl_rect3d_normalize(pl_rect3d *rc)
{
*rc = (pl_rect3d) {
.x0 = PL_MIN(rc->x0, rc->x1),
.x1 = PL_MAX(rc->x0, rc->x1),
.y0 = PL_MIN(rc->y0, rc->y1),
.y1 = PL_MAX(rc->y0, rc->y1),
.z0 = PL_MIN(rc->z0, rc->z1),
.z1 = PL_MAX(rc->z0, rc->z1),
};
}
void pl_rect2df_normalize(pl_rect2df *rc)
{
*rc = (pl_rect2df) {
.x0 = PL_MIN(rc->x0, rc->x1),
.x1 = PL_MAX(rc->x0, rc->x1),
.y0 = PL_MIN(rc->y0, rc->y1),
.y1 = PL_MAX(rc->y0, rc->y1),
};
}
void pl_rect3df_normalize(pl_rect3df *rc)
{
*rc = (pl_rect3df) {
.x0 = PL_MIN(rc->x0, rc->x1),
.x1 = PL_MAX(rc->x0, rc->x1),
.y0 = PL_MIN(rc->y0, rc->y1),
.y1 = PL_MAX(rc->y0, rc->y1),
.z0 = PL_MIN(rc->z0, rc->z1),
.z1 = PL_MAX(rc->z0, rc->z1),
};
}
pl_rect2d pl_rect2df_round(const pl_rect2df *rc)
{
return (pl_rect2d) {
.x0 = roundf(rc->x0),
.x1 = roundf(rc->x1),
.y0 = roundf(rc->y0),
.y1 = roundf(rc->y1),
};
}
pl_rect3d pl_rect3df_round(const pl_rect3df *rc)
{
return (pl_rect3d) {
.x0 = roundf(rc->x0),
.x1 = roundf(rc->x1),
.y0 = roundf(rc->y0),
.y1 = roundf(rc->y1),
.z0 = roundf(rc->z0),
.z1 = roundf(rc->z1),
};
}
const pl_matrix3x3 pl_matrix3x3_identity = {{
{ 1, 0, 0 },
{ 0, 1, 0 },
{ 0, 0, 1 },
}};
void pl_matrix3x3_apply(const pl_matrix3x3 *mat, float vec[3])
{
float x = vec[0], y = vec[1], z = vec[2];
for (int i = 0; i < 3; i++)
vec[i] = mat->m[i][0] * x + mat->m[i][1] * y + mat->m[i][2] * z;
}
void pl_matrix3x3_apply_rc(const pl_matrix3x3 *mat, pl_rect3df *rc)
{
float x0 = rc->x0, x1 = rc->x1,
y0 = rc->y0, y1 = rc->y1,
z0 = rc->z0, z1 = rc->z1;
rc->x0 = mat->m[0][0] * x0 + mat->m[0][1] * y0 + mat->m[0][2] * z0;
rc->y0 = mat->m[1][0] * x0 + mat->m[1][1] * y0 + mat->m[1][2] * z0;
rc->z0 = mat->m[2][0] * x0 + mat->m[2][1] * y0 + mat->m[2][2] * z0;
rc->x1 = mat->m[0][0] * x1 + mat->m[0][1] * y1 + mat->m[0][2] * z1;
rc->y1 = mat->m[1][0] * x1 + mat->m[1][1] * y1 + mat->m[1][2] * z1;
rc->z1 = mat->m[2][0] * x1 + mat->m[2][1] * y1 + mat->m[2][2] * z1;
}
void pl_matrix3x3_scale(pl_matrix3x3 *mat, float scale)
{
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++)
mat->m[i][j] *= scale;
}
}
void pl_matrix3x3_invert(pl_matrix3x3 *mat)
{
double m00 = mat->m[0][0], m01 = mat->m[0][1], m02 = mat->m[0][2],
m10 = mat->m[1][0], m11 = mat->m[1][1], m12 = mat->m[1][2],
m20 = mat->m[2][0], m21 = mat->m[2][1], m22 = mat->m[2][2];
// calculate the adjoint
double a00 = (m11 * m22 - m21 * m12);
double a01 = -(m01 * m22 - m21 * m02);
double a02 = (m01 * m12 - m11 * m02);
double a10 = -(m10 * m22 - m20 * m12);
double a11 = (m00 * m22 - m20 * m02);
double a12 = -(m00 * m12 - m10 * m02);
double a20 = (m10 * m21 - m20 * m11);
double a21 = -(m00 * m21 - m20 * m01);
double a22 = (m00 * m11 - m10 * m01);
// calculate the determinant (as inverse == 1/det * adjoint,
// adjoint * m == identity * det, so this calculates the det)
double det = m00 * a00 + m10 * a01 + m20 * a02;
det = 1.0 / det;
mat->m[0][0] = det * a00;
mat->m[0][1] = det * a01;
mat->m[0][2] = det * a02;
mat->m[1][0] = det * a10;
mat->m[1][1] = det * a11;
mat->m[1][2] = det * a12;
mat->m[2][0] = det * a20;
mat->m[2][1] = det * a21;
mat->m[2][2] = det * a22;
}
void pl_matrix3x3_mul(pl_matrix3x3 *a, const pl_matrix3x3 *b)
{
float a00 = a->m[0][0], a01 = a->m[0][1], a02 = a->m[0][2],
a10 = a->m[1][0], a11 = a->m[1][1], a12 = a->m[1][2],
a20 = a->m[2][0], a21 = a->m[2][1], a22 = a->m[2][2];
for (int i = 0; i < 3; i++) {
a->m[0][i] = a00 * b->m[0][i] + a01 * b->m[1][i] + a02 * b->m[2][i];
a->m[1][i] = a10 * b->m[0][i] + a11 * b->m[1][i] + a12 * b->m[2][i];
a->m[2][i] = a20 * b->m[0][i] + a21 * b->m[1][i] + a22 * b->m[2][i];
}
}
void pl_matrix3x3_rmul(const pl_matrix3x3 *a, pl_matrix3x3 *b)
{
pl_matrix3x3 m = *a;
pl_matrix3x3_mul(&m, b);
*b = m;
}
const pl_transform3x3 pl_transform3x3_identity = {
.mat = {{
{ 1, 0, 0 },
{ 0, 1, 0 },
{ 0, 0, 1 },
}},
};
void pl_transform3x3_apply(const pl_transform3x3 *t, float vec[3])
{
pl_matrix3x3_apply(&t->mat, vec);
for (int i = 0; i < 3; i++)
vec[i] += t->c[i];
}
void pl_transform3x3_apply_rc(const pl_transform3x3 *t, pl_rect3df *rc)
{
pl_matrix3x3_apply_rc(&t->mat, rc);
rc->x0 += t->c[0];
rc->x1 += t->c[0];
rc->y0 += t->c[1];
rc->y1 += t->c[1];
rc->z0 += t->c[2];
rc->z1 += t->c[2];
}
void pl_transform3x3_scale(pl_transform3x3 *t, float scale)
{
pl_matrix3x3_scale(&t->mat, scale);
for (int i = 0; i < 3; i++)
t->c[i] *= scale;
}
// based on DarkPlaces engine (relicensed from GPL to LGPL)
void pl_transform3x3_invert(pl_transform3x3 *t)
{
pl_matrix3x3_invert(&t->mat);
float m00 = t->mat.m[0][0], m01 = t->mat.m[0][1], m02 = t->mat.m[0][2],
m10 = t->mat.m[1][0], m11 = t->mat.m[1][1], m12 = t->mat.m[1][2],
m20 = t->mat.m[2][0], m21 = t->mat.m[2][1], m22 = t->mat.m[2][2];
// fix the constant coefficient
// rgb = M * yuv + C
// M^-1 * rgb = yuv + M^-1 * C
// yuv = M^-1 * rgb - M^-1 * C
// ^^^^^^^^^^
float c0 = t->c[0], c1 = t->c[1], c2 = t->c[2];
t->c[0] = -(m00 * c0 + m01 * c1 + m02 * c2);
t->c[1] = -(m10 * c0 + m11 * c1 + m12 * c2);
t->c[2] = -(m20 * c0 + m21 * c1 + m22 * c2);
}
const pl_matrix2x2 pl_matrix2x2_identity = {{
{ 1, 0 },
{ 0, 1 },
}};
pl_matrix2x2 pl_matrix2x2_rotation(float a)
{
return (pl_matrix2x2) {{
{ cosf(a), -sinf(a) },
{ sinf(a), cosf(a) },
}};
}
void pl_matrix2x2_apply(const pl_matrix2x2 *mat, float vec[2])
{
float x = vec[0], y = vec[1];
for (int i = 0; i < 2; i++)
vec[i] = mat->m[i][0] * x + mat->m[i][1] * y;
}
void pl_matrix2x2_apply_rc(const pl_matrix2x2 *mat, pl_rect2df *rc)
{
float x0 = rc->x0, x1 = rc->x1,
y0 = rc->y0, y1 = rc->y1;
rc->x0 = mat->m[0][0] * x0 + mat->m[0][1] * y0;
rc->y0 = mat->m[1][0] * x0 + mat->m[1][1] * y0;
rc->x1 = mat->m[0][0] * x1 + mat->m[0][1] * y1;
rc->y1 = mat->m[1][0] * x1 + mat->m[1][1] * y1;
}
void pl_matrix2x2_mul(pl_matrix2x2 *a, const pl_matrix2x2 *b)
{
float a00 = a->m[0][0], a01 = a->m[0][1],
a10 = a->m[1][0], a11 = a->m[1][1];
for (int i = 0; i < 2; i++) {
a->m[0][i] = a00 * b->m[0][i] + a01 * b->m[1][i];
a->m[1][i] = a10 * b->m[0][i] + a11 * b->m[1][i];
}
}
void pl_matrix2x2_rmul(const pl_matrix2x2 *a, pl_matrix2x2 *b)
{
pl_matrix2x2 m = *a;
pl_matrix2x2_mul(&m, b);
*b = m;
}
void pl_matrix2x2_scale(pl_matrix2x2 *mat, float scale)
{
for (int i = 0; i < 2; i++) {
for (int j = 0; j < 2; j++)
mat->m[i][j] *= scale;
}
}
void pl_matrix2x2_invert(pl_matrix2x2 *mat)
{
float m00 = mat->m[0][0], m01 = mat->m[0][1],
m10 = mat->m[1][0], m11 = mat->m[1][1];
float invdet = 1.0f / (m11 * m00 - m10 * m01);
mat->m[0][0] = m11 * invdet;
mat->m[0][1] = -m01 * invdet;
mat->m[1][0] = -m10 * invdet;
mat->m[1][1] = m00 * invdet;
}
const pl_transform2x2 pl_transform2x2_identity = {
.mat = {{
{ 1, 0 },
{ 0, 1 },
}},
};
void pl_transform2x2_apply(const pl_transform2x2 *t, float vec[2])
{
pl_matrix2x2_apply(&t->mat, vec);
for (int i = 0; i < 2; i++)
vec[i] += t->c[i];
}
void pl_transform2x2_apply_rc(const pl_transform2x2 *t, pl_rect2df *rc)
{
pl_matrix2x2_apply_rc(&t->mat, rc);
rc->x0 += t->c[0];
rc->x1 += t->c[0];
rc->y0 += t->c[1];
rc->y1 += t->c[1];
}
void pl_transform2x2_mul(pl_transform2x2 *a, const pl_transform2x2 *b)
{
float c[2] = { b->c[0], b->c[1] };
pl_transform2x2_apply(a, c);
memcpy(a->c, c, sizeof(c));
pl_matrix2x2_mul(&a->mat, &b->mat);
}
void pl_transform2x2_rmul(const pl_transform2x2 *a, pl_transform2x2 *b)
{
pl_transform2x2_apply(a, b->c);
pl_matrix2x2_rmul(&a->mat, &b->mat);
}
void pl_transform2x2_scale(pl_transform2x2 *t, float scale)
{
pl_matrix2x2_scale(&t->mat, scale);
for (int i = 0; i < 2; i++)
t->c[i] *= scale;
}
void pl_transform2x2_invert(pl_transform2x2 *t)
{
pl_matrix2x2_invert(&t->mat);
float m00 = t->mat.m[0][0], m01 = t->mat.m[0][1],
m10 = t->mat.m[1][0], m11 = t->mat.m[1][1];
float c0 = t->c[0], c1 = t->c[1];
t->c[0] = -(m00 * c0 + m01 * c1);
t->c[1] = -(m10 * c0 + m11 * c1);
}
pl_rect2df pl_transform2x2_bounds(const pl_transform2x2 *t, const pl_rect2df *rc)
{
float p[4][2] = {
{ rc->x0, rc->y0 },
{ rc->x0, rc->y1 },
{ rc->x1, rc->y0 },
{ rc->x1, rc->y1 },
};
for (int i = 0; i < PL_ARRAY_SIZE(p); i++)
pl_transform2x2_apply(t, p[i]);
return (pl_rect2df) {
.x0 = fminf(fminf(p[0][0], p[1][0]), fminf(p[2][0], p[3][0])),
.x1 = fmaxf(fmaxf(p[0][0], p[1][0]), fmaxf(p[2][0], p[3][0])),
.y0 = fminf(fminf(p[0][1], p[1][1]), fminf(p[2][1], p[3][1])),
.y1 = fmaxf(fmaxf(p[0][1], p[1][1]), fmaxf(p[2][1], p[3][1])),
};
}
float pl_rect2df_aspect(const pl_rect2df *rc)
{
float w = fabsf(pl_rect_w(*rc)), h = fabsf(pl_rect_h(*rc));
return h ? (w / h) : 0.0;
}
void pl_rect2df_aspect_set(pl_rect2df *rc, float aspect, float panscan)
{
pl_assert(aspect >= 0);
float orig_aspect = pl_rect2df_aspect(rc);
if (!aspect || !orig_aspect)
return;
float scale_x, scale_y;
if (aspect > orig_aspect) {
// New aspect is wider than the original, so we need to either grow in
// scale_x (panscan=1) or shrink in scale_y (panscan=0)
scale_x = powf(aspect / orig_aspect, panscan);
scale_y = powf(aspect / orig_aspect, panscan - 1.0);
} else if (aspect < orig_aspect) {
// New aspect is taller, so either grow in scale_y (panscan=1) or
// shrink in scale_x (panscan=0)
scale_x = powf(orig_aspect / aspect, panscan - 1.0);
scale_y = powf(orig_aspect / aspect, panscan);
} else {
return; // No change in aspect
}
pl_rect2df_stretch(rc, scale_x, scale_y);
}
void pl_rect2df_aspect_fit(pl_rect2df *rc, const pl_rect2df *src, float panscan)
{
float orig_w = fabs(pl_rect_w(*rc)),
orig_h = fabs(pl_rect_h(*rc));
if (!orig_w || !orig_h)
return;
// If either one of these is larger than 1, then we need to shrink to fit,
// otherwise we can just directly stretch the rect.
float scale_x = fabs(pl_rect_w(*src)) / orig_w,
scale_y = fabs(pl_rect_h(*src)) / orig_h;
if (scale_x > 1.0 || scale_y > 1.0) {
pl_rect2df_aspect_copy(rc, src, panscan);
} else {
pl_rect2df_stretch(rc, scale_x, scale_y);
}
}
void pl_rect2df_stretch(pl_rect2df *rc, float stretch_x, float stretch_y)
{
float midx = (rc->x0 + rc->x1) / 2.0,
midy = (rc->y0 + rc->y1) / 2.0;
rc->x0 = rc->x0 * stretch_x + midx * (1.0 - stretch_x);
rc->x1 = rc->x1 * stretch_x + midx * (1.0 - stretch_x);
rc->y0 = rc->y0 * stretch_y + midy * (1.0 - stretch_y);
rc->y1 = rc->y1 * stretch_y + midy * (1.0 - stretch_y);
}
void pl_rect2df_offset(pl_rect2df *rc, float offset_x, float offset_y)
{
if (rc->x1 < rc->x0)
offset_x = -offset_x;
if (rc->y1 < rc->y0)
offset_y = -offset_y;
rc->x0 += offset_x;
rc->x1 += offset_x;
rc->y0 += offset_y;
rc->y1 += offset_y;
}
void pl_rect2df_rotate(pl_rect2df *rc, pl_rotation rot)
{
if (!(rot = pl_rotation_normalize(rot)))
return;
float x0 = rc->x0, y0 = rc->y0, x1 = rc->x1, y1 = rc->y1;
if (rot >= PL_ROTATION_180) {
rot -= PL_ROTATION_180;
PL_SWAP(x0, x1);
PL_SWAP(y0, y1);
}
switch (rot) {
case PL_ROTATION_0:
*rc = (pl_rect2df) {
.x0 = x0,
.y0 = y0,
.x1 = x1,
.y1 = y1,
};
return;
case PL_ROTATION_90:
*rc = (pl_rect2df) {
.x0 = y1,
.y0 = x0,
.x1 = y0,
.y1 = x1,
};
return;
default: pl_unreachable();
}
}
|