1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
|
/*
* This file is part of libplacebo.
*
* libplacebo is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* libplacebo is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with libplacebo. If not, see <http://www.gnu.org/licenses/>.
*/
#include <math.h>
#include "shaders.h"
#include <libplacebo/colorspace.h>
#include <libplacebo/shaders/sampling.h>
const struct pl_deband_params pl_deband_default_params = { PL_DEBAND_DEFAULTS };
static inline struct pl_tex_params src_params(const struct pl_sample_src *src)
{
if (src->tex)
return src->tex->params;
return (struct pl_tex_params) {
.w = src->tex_w,
.h = src->tex_h,
};
}
enum filter {
NEAREST = PL_TEX_SAMPLE_NEAREST,
LINEAR = PL_TEX_SAMPLE_LINEAR,
BEST,
FASTEST,
};
// Helper function to compute the src/dst sizes and upscaling ratios
static bool setup_src(pl_shader sh, const struct pl_sample_src *src,
ident_t *src_tex, ident_t *pos, ident_t *pt,
float *ratio_x, float *ratio_y, uint8_t *comp_mask,
float *scale, bool resizeable,
enum filter filter)
{
enum pl_shader_sig sig;
float src_w, src_h;
enum pl_tex_sample_mode sample_mode;
if (src->tex) {
pl_fmt fmt = src->tex->params.format;
bool can_linear = fmt->caps & PL_FMT_CAP_LINEAR;
pl_assert(pl_tex_params_dimension(src->tex->params) == 2);
sig = PL_SHADER_SIG_NONE;
src_w = pl_rect_w(src->rect);
src_h = pl_rect_h(src->rect);
switch (filter) {
case FASTEST:
case NEAREST:
sample_mode = PL_TEX_SAMPLE_NEAREST;
break;
case LINEAR:
if (!can_linear) {
SH_FAIL(sh, "Trying to use a shader that requires linear "
"sampling with a texture whose format (%s) does not "
"support PL_FMT_CAP_LINEAR", fmt->name);
return false;
}
sample_mode = PL_TEX_SAMPLE_LINEAR;
break;
case BEST:
sample_mode = can_linear ? PL_TEX_SAMPLE_LINEAR : PL_TEX_SAMPLE_NEAREST;
break;
}
} else {
pl_assert(src->tex_w && src->tex_h);
sig = PL_SHADER_SIG_SAMPLER;
src_w = src->sampled_w;
src_h = src->sampled_h;
if (filter == BEST || filter == FASTEST) {
sample_mode = src->mode;
} else {
sample_mode = (enum pl_tex_sample_mode) filter;
if (sample_mode != src->mode) {
SH_FAIL(sh, "Trying to use a shader that requires a different "
"filter mode than the external sampler.");
return false;
}
}
}
src_w = PL_DEF(src_w, src_params(src).w);
src_h = PL_DEF(src_h, src_params(src).h);
pl_assert(src_w && src_h);
int out_w = PL_DEF(src->new_w, roundf(fabs(src_w)));
int out_h = PL_DEF(src->new_h, roundf(fabs(src_h)));
pl_assert(out_w && out_h);
if (ratio_x)
*ratio_x = out_w / fabs(src_w);
if (ratio_y)
*ratio_y = out_h / fabs(src_h);
if (scale)
*scale = PL_DEF(src->scale, 1.0);
if (comp_mask) {
uint8_t tex_mask = 0x0Fu;
if (src->tex) {
// Mask containing only the number of components in the texture
tex_mask = (1 << src->tex->params.format->num_components) - 1;
}
uint8_t src_mask = src->component_mask;
if (!src_mask)
src_mask = (1 << PL_DEF(src->components, 4)) - 1;
// Only actually sample components that are both requested and
// available in the texture being sampled
*comp_mask = tex_mask & src_mask;
}
if (resizeable)
out_w = out_h = 0;
if (!sh_require(sh, sig, out_w, out_h))
return false;
if (src->tex) {
pl_rect2df rect = {
.x0 = src->rect.x0,
.y0 = src->rect.y0,
.x1 = src->rect.x0 + src_w,
.y1 = src->rect.y0 + src_h,
};
*src_tex = sh_bind(sh, src->tex, src->address_mode, sample_mode,
"src_tex", &rect, pos, pt);
} else {
if (pt) {
float sx = 1.0 / src->tex_w, sy = 1.0 / src->tex_h;
if (src->sampler == PL_SAMPLER_RECT)
sx = sy = 1.0;
*pt = sh_var(sh, (struct pl_shader_var) {
.var = pl_var_vec2("tex_pt"),
.data = &(float[2]) { sx, sy },
});
}
sh->sampler_type = src->sampler;
pl_assert(src->format);
switch (src->format) {
case PL_FMT_UNKNOWN:
case PL_FMT_FLOAT:
case PL_FMT_UNORM:
case PL_FMT_SNORM: sh->sampler_prefix = ' '; break;
case PL_FMT_UINT: sh->sampler_prefix = 'u'; break;
case PL_FMT_SINT: sh->sampler_prefix = 's'; break;
case PL_FMT_TYPE_COUNT:
pl_unreachable();
}
*src_tex = sh_fresh(sh, "src_tex");
*pos = sh_fresh(sh, "pos");
GLSLH("#define "$" src_tex \n"
"#define "$" pos \n",
*src_tex, *pos);
}
return true;
}
void pl_shader_deband(pl_shader sh, const struct pl_sample_src *src,
const struct pl_deband_params *params)
{
float scale;
ident_t tex, pos, pt;
uint8_t mask;
if (!setup_src(sh, src, &tex, &pos, &pt, NULL, NULL, &mask, &scale, false, LINEAR))
return;
params = PL_DEF(params, &pl_deband_default_params);
sh_describe(sh, "debanding");
GLSL("vec4 color; \n"
"// pl_shader_deband \n"
"{ \n"
"vec2 pos = "$", pt = "$"; \n"
"color = textureLod("$", pos, 0.0);\n",
pos, pt, tex);
mask &= ~0x8u; // ignore alpha channel
uint8_t num_comps = sh_num_comps(mask);
const char *swiz = sh_swizzle(mask);
pl_assert(num_comps <= 3);
if (!num_comps) {
GLSL("color *= "$"; \n"
"} \n",
SH_FLOAT(scale));
return;
}
GLSL("#define GET(X, Y) \\\n"
" (textureLod("$", pos + pt * vec2(X, Y), 0.0).%s) \n"
"#define T %s \n",
tex, swiz, sh_float_type(mask));
ident_t prng = sh_prng(sh, true, NULL);
GLSL("T avg, diff, bound; \n"
"T res = color.%s; \n"
"vec2 d; \n",
swiz);
if (params->iterations > 0) {
ident_t radius = sh_const_float(sh, "radius", params->radius);
ident_t threshold = sh_const_float(sh, "threshold",
params->threshold / (1000 * scale));
// For each iteration, compute the average at a given distance and
// pick it instead of the color if the difference is below the threshold.
for (int i = 1; i <= params->iterations; i++) {
GLSL(// Compute a random angle and distance
"d = "$".xy * vec2(%d.0 * "$", %f); \n"
"d = d.x * vec2(cos(d.y), sin(d.y)); \n"
// Sample at quarter-turn intervals around the source pixel
"avg = T(0.0); \n"
"avg += GET(+d.x, +d.y); \n"
"avg += GET(-d.x, +d.y); \n"
"avg += GET(-d.x, -d.y); \n"
"avg += GET(+d.x, -d.y); \n"
"avg *= 0.25; \n"
// Compare the (normalized) average against the pixel
"diff = abs(res - avg); \n"
"bound = T("$" / %d.0); \n",
prng, i, radius, M_PI * 2,
threshold, i);
if (num_comps > 1) {
GLSL("res = mix(avg, res, greaterThan(diff, bound)); \n");
} else {
GLSL("res = mix(avg, res, diff > bound); \n");
}
}
}
// Add some random noise to smooth out residual differences
if (params->grain > 0) {
// Avoid adding grain near true black
GLSL("bound = T(\n");
for (int c = 0; c < num_comps; c++) {
GLSL("%c"$, c > 0 ? ',' : ' ',
SH_FLOAT(params->grain_neutral[c] / scale));
}
GLSL("); \n"
"T strength = min(abs(res - bound), "$"); \n"
"res += strength * (T("$") - T(0.5)); \n",
SH_FLOAT(params->grain / (1000.0 * scale)), prng);
}
GLSL("color.%s = res; \n"
"color *= "$"; \n"
"#undef T \n"
"#undef GET \n"
"} \n",
swiz, SH_FLOAT(scale));
}
bool pl_shader_sample_direct(pl_shader sh, const struct pl_sample_src *src)
{
float scale;
ident_t tex, pos;
if (!setup_src(sh, src, &tex, &pos, NULL, NULL, NULL, NULL, &scale, true, BEST))
return false;
GLSL("// pl_shader_sample_direct \n"
"vec4 color = vec4("$") * textureLod("$", "$", 0.0); \n",
SH_FLOAT(scale), tex, pos);
return true;
}
bool pl_shader_sample_nearest(pl_shader sh, const struct pl_sample_src *src)
{
float scale;
ident_t tex, pos;
if (!setup_src(sh, src, &tex, &pos, NULL, NULL, NULL, NULL, &scale, true, NEAREST))
return false;
sh_describe(sh, "nearest");
GLSL("// pl_shader_sample_nearest \n"
"vec4 color = vec4("$") * textureLod("$", "$", 0.0); \n",
SH_FLOAT(scale), tex, pos);
return true;
}
bool pl_shader_sample_bilinear(pl_shader sh, const struct pl_sample_src *src)
{
float scale;
ident_t tex, pos;
if (!setup_src(sh, src, &tex, &pos, NULL, NULL, NULL, NULL, &scale, true, LINEAR))
return false;
sh_describe(sh, "bilinear");
GLSL("// pl_shader_sample_bilinear \n"
"vec4 color = vec4("$") * textureLod("$", "$", 0.0); \n",
SH_FLOAT(scale), tex, pos);
return true;
}
bool pl_shader_sample_bicubic(pl_shader sh, const struct pl_sample_src *src)
{
ident_t tex, pos, pt;
float rx, ry, scale;
if (!setup_src(sh, src, &tex, &pos, &pt, &rx, &ry, NULL, &scale, true, LINEAR))
return false;
if (rx < 1 || ry < 1) {
PL_TRACE(sh, "Using fast bicubic sampling when downscaling. This "
"will most likely result in nasty aliasing!");
}
// Explanation of how bicubic scaling with only 4 texel fetches is done:
// http://www.mate.tue.nl/mate/pdfs/10318.pdf
// 'Efficient GPU-Based Texture Interpolation using Uniform B-Splines'
sh_describe(sh, "bicubic");
#pragma GLSL /* pl_shader_sample_bicubic */ \
vec4 color; \
{ \
vec2 pos = $pos; \
vec2 size = vec2(textureSize($tex, 0)); \
vec2 frac = fract(pos * size + vec2(0.5)); \
vec2 frac2 = frac * frac; \
vec2 inv = vec2(1.0) - frac; \
vec2 inv2 = inv * inv; \
/* compute filter weights directly */ \
vec2 w0 = 1.0/6.0 * inv2 * inv; \
vec2 w1 = 2.0/3.0 - 0.5 * frac2 * (2.0 - frac); \
vec2 w2 = 2.0/3.0 - 0.5 * inv2 * (2.0 - inv); \
vec2 w3 = 1.0/6.0 * frac2 * frac; \
vec4 g = vec4(w0 + w1, w2 + w3); \
vec4 h = vec4(w1, w3) / g + inv.xyxy; \
h.xy -= vec2(2.0); \
/* sample four corners, then interpolate */ \
vec4 p = pos.xyxy + $pt.xyxy * h; \
vec4 c00 = textureLod($tex, p.xy, 0.0); \
vec4 c01 = textureLod($tex, p.xw, 0.0); \
vec4 c0 = mix(c01, c00, g.y); \
vec4 c10 = textureLod($tex, p.zy, 0.0); \
vec4 c11 = textureLod($tex, p.zw, 0.0); \
vec4 c1 = mix(c11, c10, g.y); \
color = ${float:scale} * mix(c1, c0, g.x); \
}
return true;
}
bool pl_shader_sample_hermite(pl_shader sh, const struct pl_sample_src *src)
{
ident_t tex, pos, pt;
float rx, ry, scale;
if (!setup_src(sh, src, &tex, &pos, &pt, &rx, &ry, NULL, &scale, true, LINEAR))
return false;
if (rx < 1 || ry < 1) {
PL_TRACE(sh, "Using fast hermite sampling when downscaling. This "
"will most likely result in nasty aliasing!");
}
sh_describe(sh, "hermite");
#pragma GLSL /* pl_shader_sample_hermite */ \
vec4 color; \
{ \
vec2 pos = $pos; \
vec2 size = vec2(textureSize($tex, 0)); \
vec2 frac = fract(pos * size + vec2(0.5)); \
pos += $pt * (smoothstep(0.0, 1.0, frac) - frac); \
color = ${float:scale} * textureLod($tex, pos, 0.0); \
}
return true;
}
bool pl_shader_sample_gaussian(pl_shader sh, const struct pl_sample_src *src)
{
ident_t tex, pos, pt;
float rx, ry, scale;
if (!setup_src(sh, src, &tex, &pos, &pt, &rx, &ry, NULL, &scale, true, LINEAR))
return false;
if (rx < 1 || ry < 1) {
PL_TRACE(sh, "Using fast gaussian sampling when downscaling. This "
"will most likely result in nasty aliasing!");
}
sh_describe(sh, "gaussian");
#pragma GLSL /* pl_shader_sample_gaussian */ \
vec4 color; \
{ \
vec2 pos = $pos; \
vec2 size = vec2(textureSize($tex, 0)); \
vec2 off = -fract(pos * size + vec2(0.5)); \
vec2 off2 = -2.0 * off * off; \
/* compute gaussian weights */ \
vec2 w0 = exp(off2 + 4.0 * off - vec2(2.0)); \
vec2 w1 = exp(off2); \
vec2 w2 = exp(off2 - 4.0 * off - vec2(2.0)); \
vec2 w3 = exp(off2 - 8.0 * off - vec2(8.0)); \
vec4 g = vec4(w0 + w1, w2 + w3); \
vec4 h = vec4(w1, w3) / g; \
h.xy -= vec2(1.0); \
h.zw += vec2(1.0); \
g.xy /= g.xy + g.zw; /* explicitly normalize */ \
/* sample four corners, then interpolate */ \
vec4 p = pos.xyxy + $pt.xyxy * (h + off.xyxy); \
vec4 c00 = textureLod($tex, p.xy, 0.0); \
vec4 c01 = textureLod($tex, p.xw, 0.0); \
vec4 c0 = mix(c01, c00, g.y); \
vec4 c10 = textureLod($tex, p.zy, 0.0); \
vec4 c11 = textureLod($tex, p.zw, 0.0); \
vec4 c1 = mix(c11, c10, g.y); \
color = ${float:scale} * mix(c1, c0, g.x); \
}
return true;
}
bool pl_shader_sample_oversample(pl_shader sh, const struct pl_sample_src *src,
float threshold)
{
ident_t tex, pos, pt;
float rx, ry, scale;
if (!setup_src(sh, src, &tex, &pos, &pt, &rx, &ry, NULL, &scale, true, LINEAR))
return false;
threshold = PL_CLAMP(threshold, 0.0f, 0.5f);
sh_describe(sh, "oversample");
#pragma GLSL /* pl_shader_sample_oversample */ \
vec4 color; \
{ \
vec2 pos = $pos; \
vec2 size = vec2(textureSize($tex, 0)); \
/* Round the position to the nearest pixel */ \
vec2 fcoord = fract(pos * size - vec2(0.5)); \
float rx = ${dynamic float:rx}; \
float ry = ${dynamic float:ry}; \
vec2 coeff = (fcoord - vec2(0.5)) * vec2(rx, ry); \
coeff = clamp(coeff + vec2(0.5), 0.0, 1.0); \
@if (threshold > 0) { \
float thresh = ${float:threshold}; \
coeff = mix(coeff, vec2(0.0), \
lessThan(coeff, vec2(thresh))); \
coeff = mix(coeff, vec2(1.0), \
greaterThan(coeff, vec2(1.0 - thresh))); \
@} \
\
/* Compute the right output blend of colors */ \
pos += (coeff - fcoord) * $pt; \
color = ${float:scale} * textureLod($tex, pos, 0.0); \
}
return true;
}
static void describe_filter(pl_shader sh, const struct pl_filter_config *cfg,
const char *stage, float rx, float ry)
{
const char *dir;
if (rx > 1 && ry > 1) {
dir = "up";
} else if (rx < 1 && ry < 1) {
dir = "down";
} else if (rx == 1 && ry == 1) {
dir = "noop";
} else {
dir = "ana";
}
if (cfg->name) {
sh_describef(sh, "%s %sscaling (%s)", stage, dir, cfg->name);
} else if (cfg->window) {
sh_describef(sh, "%s %sscaling (%s+%s)", stage, dir,
PL_DEF(cfg->kernel->name, "unknown"),
PL_DEF(cfg->window->name, "unknown"));
} else {
sh_describef(sh, "%s %sscaling (%s)", stage, dir,
PL_DEF(cfg->kernel->name, "unknown"));
}
}
// Subroutine for computing and adding an individual texel contribution
// If `in` is NULL, samples directly
// If `in` is set, takes the pixel from inX[idx] where X is the component,
// `in` is the given identifier, and `idx` must be defined by the caller
static void polar_sample(pl_shader sh, pl_filter filter,
ident_t tex, ident_t lut, ident_t radius,
int x, int y, uint8_t comp_mask, ident_t in,
bool use_ar, ident_t scale)
{
// Since we can't know the subpixel position in advance, assume a
// worst case scenario
int yy = y > 0 ? y-1 : y;
int xx = x > 0 ? x-1 : x;
float dmin = sqrt(xx*xx + yy*yy);
// Skip samples definitely outside the radius
if (dmin >= filter->radius)
return;
// Check for samples that might be skippable
bool maybe_skippable = dmin >= filter->radius - M_SQRT2;
// Check for samples that definitely won't contribute to anti-ringing
const float ar_radius = filter->radius_zero;
use_ar &= dmin < ar_radius;
#pragma GLSL \
offset = ivec2(${const int: x}, ${const int: y}); \
d = length(vec2(offset) - fcoord); \
@if (maybe_skippable) \
if (d < $radius) { \
w = $lut(d * 1.0 / $radius); \
wsum += w; \
@if (in != NULL_IDENT) { \
@for (c : comp_mask) \
c[@c] = ${in}_@c[idx]; \
@} else { \
c = textureLod($tex, base + pt * vec2(offset), 0.0); \
@} \
@for (c : comp_mask) \
color[@c] += w * c[@c]; \
@if (use_ar) { \
if (d <= ${const float: ar_radius}) { \
@for (c : comp_mask) { \
cc = vec2($scale * c[@c]); \
cc.x = 1.0 - cc.x; \
ww = cc + vec2(0.10); \
ww = ww * ww; \
ww = ww * ww; \
ww = ww * ww; \
ww = ww * ww; \
ww = ww * ww; \
ww = w * ww; \
ar@c += ww * cc; \
wwsum@c += ww; \
@} \
} \
@} \
@if (maybe_skippable) \
}
}
struct sh_sampler_obj {
pl_filter filter;
pl_shader_obj lut;
pl_shader_obj pass2; // for pl_shader_sample_ortho
};
#define SCALER_LUT_SIZE 256
#define SCALER_LUT_CUTOFF 1e-3f
static void sh_sampler_uninit(pl_gpu gpu, void *ptr)
{
struct sh_sampler_obj *obj = ptr;
pl_shader_obj_destroy(&obj->lut);
pl_shader_obj_destroy(&obj->pass2);
pl_filter_free(&obj->filter);
*obj = (struct sh_sampler_obj) {0};
}
static void fill_polar_lut(void *data, const struct sh_lut_params *params)
{
const struct sh_sampler_obj *obj = params->priv;
pl_filter filt = obj->filter;
pl_assert(params->width == filt->params.lut_entries && params->comps == 1);
memcpy(data, filt->weights, params->width * sizeof(float));
}
bool pl_shader_sample_polar(pl_shader sh, const struct pl_sample_src *src,
const struct pl_sample_filter_params *params)
{
pl_assert(params);
if (!params->filter.polar) {
SH_FAIL(sh, "Trying to use polar sampling with a non-polar filter?");
return false;
}
uint8_t cmask;
float rx, ry, scalef;
ident_t src_tex, pos, pt, scale;
if (!setup_src(sh, src, &src_tex, &pos, &pt, &rx, &ry, &cmask, &scalef, false, FASTEST))
return false;
struct sh_sampler_obj *obj;
obj = SH_OBJ(sh, params->lut, PL_SHADER_OBJ_SAMPLER, struct sh_sampler_obj,
sh_sampler_uninit);
if (!obj)
return false;
float inv_scale = 1.0 / PL_MIN(rx, ry);
inv_scale = PL_MAX(inv_scale, 1.0);
if (params->no_widening)
inv_scale = 1.0;
scale = sh_const_float(sh, "scale", scalef);
struct pl_filter_config cfg = params->filter;
cfg.antiring = PL_DEF(cfg.antiring, params->antiring);
cfg.blur = PL_DEF(cfg.blur, 1.0f) * inv_scale;
bool update = !obj->filter || !pl_filter_config_eq(&obj->filter->params.config, &cfg);
if (update) {
pl_filter_free(&obj->filter);
obj->filter = pl_filter_generate(sh->log, pl_filter_params(
.config = cfg,
.lut_entries = SCALER_LUT_SIZE,
.cutoff = SCALER_LUT_CUTOFF,
));
if (!obj->filter) {
// This should never happen, but just in case ..
SH_FAIL(sh, "Failed initializing polar filter!");
return false;
}
}
describe_filter(sh, &cfg, "polar", rx, ry);
GLSL("// pl_shader_sample_polar \n"
"vec4 color = vec4(0.0); \n"
"{ \n"
"vec2 pos = "$", pt = "$"; \n"
"vec2 size = vec2(textureSize("$", 0)); \n"
"vec2 fcoord = fract(pos * size - vec2(0.5)); \n"
"vec2 base = pos - pt * fcoord; \n"
"vec2 center = base + pt * vec2(0.5); \n"
"ivec2 offset; \n"
"float w, d, wsum = 0.0; \n"
"int idx; \n"
"vec4 c; \n",
pos, pt, src_tex);
bool use_ar = cfg.antiring > 0;
if (use_ar) {
#pragma GLSL \
vec2 ww, cc; \
@for (c : cmask) \
vec2 ar@c = vec2(0.0), wwsum@c = vec2(0.0);
}
int bound = ceil(obj->filter->radius);
int offset = bound - 1; // padding top/left
int padding = offset + bound; // total padding
// Determined experimentally on modern AMD and Nvidia hardware. 32 is a
// good tradeoff for the horizontal work group size. Apart from that,
// just use as many threads as possible.
const int bw = 32, bh = sh_glsl(sh).max_group_threads / bw;
// We need to sample everything from base_min to base_max, so make sure we
// have enough room in shmem. The extra margin on the ceilf guards against
// floating point inaccuracy on near-integer scaling ratios.
const float margin = 1e-5;
int iw = (int) ceilf(bw / rx - margin) + padding + 1,
ih = (int) ceilf(bh / ry - margin) + padding + 1;
int sizew = iw, sizeh = ih;
pl_gpu gpu = SH_GPU(sh);
bool dynamic_size = SH_PARAMS(sh).dynamic_constants ||
!gpu || !gpu->limits.array_size_constants;
if (dynamic_size) {
// Overallocate the array slightly to reduce recompilation overhead
sizew = PL_ALIGN2(sizew, 8);
sizeh = PL_ALIGN2(sizeh, 8);
}
int num_comps = __builtin_popcount(cmask);
int shmem_req = (sizew * sizeh * num_comps + 2) * sizeof(float);
bool is_compute = !params->no_compute && sh_glsl(sh).compute &&
sh_try_compute(sh, bw, bh, false, shmem_req);
// Note: SH_LUT_LITERAL might be faster in some specific cases, but not by
// much, and it's catastrophically slow on other platforms.
ident_t lut = sh_lut(sh, sh_lut_params(
.object = &obj->lut,
.lut_type = SH_LUT_TEXTURE,
.var_type = PL_VAR_FLOAT,
.method = SH_LUT_LINEAR,
.width = SCALER_LUT_SIZE,
.comps = 1,
.update = update,
.fill = fill_polar_lut,
.priv = obj,
));
if (!lut) {
SH_FAIL(sh, "Failed initializing polar LUT!");
return false;
}
ident_t radius_c = sh_const_float(sh, "radius", obj->filter->radius);
ident_t in = sh_fresh(sh, "in");
if (is_compute) {
// Compute shader kernel
GLSL("uvec2 base_id = uvec2(0u); \n");
if (src->rect.x0 > src->rect.x1)
GLSL("base_id.x = gl_WorkGroupSize.x - 1u; \n");
if (src->rect.y0 > src->rect.y1)
GLSL("base_id.y = gl_WorkGroupSize.y - 1u; \n");
GLSLH("shared vec2 "$"_base; \n", in);
GLSL("if (gl_LocalInvocationID.xy == base_id) \n"
" "$"_base = base; \n"
"barrier(); \n"
"ivec2 rel = ivec2(round((base - "$"_base) * size)); \n",
in, in);
ident_t sizew_c = sh_const(sh, (struct pl_shader_const) {
.type = PL_VAR_SINT,
.compile_time = true,
.name = "sizew",
.data = &sizew,
});
ident_t sizeh_c = sh_const(sh, (struct pl_shader_const) {
.type = PL_VAR_SINT,
.compile_time = true,
.name = "sizeh",
.data = &sizeh,
});
ident_t iw_c = sizew_c, ih_c = sizeh_c;
if (dynamic_size) {
iw_c = sh_const_int(sh, "iw", iw);
ih_c = sh_const_int(sh, "ih", ih);
}
// Load all relevant texels into shmem
GLSL("for (int y = int(gl_LocalInvocationID.y); y < "$"; y += %d) { \n"
"for (int x = int(gl_LocalInvocationID.x); x < "$"; x += %d) { \n"
"c = textureLod("$", "$"_base + pt * vec2(x - %d, y - %d), 0.0); \n",
ih_c, bh, iw_c, bw, src_tex, in, offset, offset);
for (uint8_t comps = cmask; comps;) {
uint8_t c = __builtin_ctz(comps);
GLSLH("shared float "$"_%d["$" * "$"]; \n", in, c, sizeh_c, sizew_c);
GLSL(""$"_%d["$" * y + x] = c[%d]; \n", in, c, sizew_c, c);
comps &= ~(1 << c);
}
GLSL("}} \n"
"barrier(); \n");
// Dispatch the actual samples
for (int y = 1 - bound; y <= bound; y++) {
for (int x = 1 - bound; x <= bound; x++) {
GLSL("idx = "$" * rel.y + rel.x + "$" * %d + %d; \n",
sizew_c, sizew_c, y + offset, x + offset);
polar_sample(sh, obj->filter, src_tex, lut, radius_c,
x, y, cmask, in, use_ar, scale);
}
}
} else {
// Fragment shader sampling
for (uint8_t comps = cmask; comps;) {
uint8_t c = __builtin_ctz(comps);
GLSL("vec4 "$"_%d; \n", in, c);
comps &= ~(1 << c);
}
// For maximum efficiency, we want to use textureGather() if
// possible, rather than direct sampling. Since this is not
// always possible/sensible, we need to possibly intermix gathering
// with regular sampling. This requires keeping track of which
// pixels in the next row were already gathered by the previous
// row.
uint32_t gathered_cur = 0x0, gathered_next = 0x0;
const float radius2 = PL_SQUARE(obj->filter->radius);
const int base = bound - 1;
if (base + bound >= 8 * sizeof(gathered_cur)) {
SH_FAIL(sh, "Polar radius %f exceeds implementation capacity!",
obj->filter->radius);
return false;
}
for (int y = 1 - bound; y <= bound; y++) {
for (int x = 1 - bound; x <= bound; x++) {
// Skip already gathered texels
uint32_t bit = 1llu << (base + x);
if (gathered_cur & bit)
continue;
// Using texture gathering is only more efficient than direct
// sampling in the case where we expect to be able to use all
// four gathered texels, without having to discard any. So
// only do it if we suspect it will be a win rather than a
// loss.
int xx = x*x, xx1 = (x+1)*(x+1);
int yy = y*y, yy1 = (y+1)*(y+1);
bool use_gather = PL_MAX(xx, xx1) + PL_MAX(yy, yy1) < radius2;
use_gather &= PL_MAX(x, y) <= sh_glsl(sh).max_gather_offset;
use_gather &= PL_MIN(x, y) >= sh_glsl(sh).min_gather_offset;
use_gather &= !src->tex || src->tex->params.format->gatherable;
// Gathering from components other than the R channel requires
// support for GLSL 400, which introduces the overload of
// textureGather* that allows specifying the component.
//
// This is also the minimum requirement if we don't know the
// texture format capabilities, for the sampler2D interface
if (cmask != 0x1 || !src->tex)
use_gather &= sh_glsl(sh).version >= 400;
if (!use_gather) {
// Switch to direct sampling instead
polar_sample(sh, obj->filter, src_tex, lut, radius_c,
x, y, cmask, NULL_IDENT, use_ar, scale);
continue;
}
// Gather the four surrounding texels simultaneously
for (uint8_t comps = cmask; comps;) {
uint8_t c = __builtin_ctz(comps);
if (x || y) {
if (c) {
GLSL($"_%d = textureGatherOffset("$", "
"center, ivec2(%d, %d), %d); \n",
in, c, src_tex, x, y, c);
} else {
GLSL($"_0 = textureGatherOffset("$", "
"center, ivec2(%d, %d)); \n",
in, src_tex, x, y);
}
} else {
if (c) {
GLSL($"_%d = textureGather("$", center, %d); \n",
in, c, src_tex, c);
} else {
GLSL($"_0 = textureGather("$", center); \n",
in, src_tex);
}
}
comps &= ~(1 << c);
}
// Mix in all of the points with their weights
for (int p = 0; p < 4; p++) {
// The four texels are gathered counterclockwise starting
// from the bottom left
static const int xo[4] = {0, 1, 1, 0};
static const int yo[4] = {1, 1, 0, 0};
if (x+xo[p] > bound || y+yo[p] > bound)
continue; // next subpixel
GLSL("idx = %d;\n", p);
polar_sample(sh, obj->filter, src_tex, lut, radius_c,
x+xo[p], y+yo[p], cmask, in, use_ar, scale);
}
// Mark the other next row's pixels as already gathered
gathered_next |= bit | (bit << 1);
x++; // skip adjacent pixel
}
// Prepare for new row
gathered_cur = gathered_next;
gathered_next = 0;
}
}
#pragma GLSL \
color = $scale / wsum * color; \
@if (use_ar) { \
@for (c : cmask) { \
ww = ar@c / wwsum@c; \
ww.x = 1.0 - ww.x; \
w = clamp(color[@c], ww.x, ww.y); \
w = mix(w, dot(ww, vec2(0.5)), ww.x > ww.y); \
color[@c] = mix(color[@c], w, ${float:cfg.antiring}); \
@} \
@} \
@if (!(cmask & (1 << PL_CHANNEL_A))) \
color.a = 1.0; \
}
return true;
}
static void fill_ortho_lut(void *data, const struct sh_lut_params *params)
{
const struct sh_sampler_obj *obj = params->priv;
pl_filter filt = obj->filter;
if (filt->radius == filt->radius_zero) {
// Main lobe covers entire radius, so all weights are positive, meaning
// we can use the linear resampling trick
for (int n = 0; n < SCALER_LUT_SIZE; n++) {
const float *weights = filt->weights + n * filt->row_stride;
float *row = (float *) data + n * filt->row_stride;
pl_assert(filt->row_size % 2 == 0);
for (int i = 0; i < filt->row_size; i += 2) {
const float w0 = weights[i], w1 = weights[i+1];
assert(w0 + w1 >= 0.0f);
row[i] = w0 + w1;
row[i+1] = w1 / (w0 + w1);
}
}
} else {
size_t entries = SCALER_LUT_SIZE * filt->row_stride;
pl_assert(params->width * params->height * params->comps == entries);
memcpy(data, filt->weights, entries * sizeof(float));
}
}
enum {
SEP_VERT = 0,
SEP_HORIZ,
SEP_PASSES
};
bool pl_shader_sample_ortho2(pl_shader sh, const struct pl_sample_src *src,
const struct pl_sample_filter_params *params)
{
pl_assert(params);
if (params->filter.polar) {
SH_FAIL(sh, "Trying to use separated sampling with a polar filter?");
return false;
}
pl_gpu gpu = SH_GPU(sh);
pl_assert(gpu);
uint8_t comps;
float ratio[SEP_PASSES], scale;
ident_t src_tex, pos, pt;
if (!setup_src(sh, src, &src_tex, &pos, &pt,
&ratio[SEP_HORIZ], &ratio[SEP_VERT],
&comps, &scale, false, LINEAR))
return false;
int pass;
if (fabs(ratio[SEP_HORIZ] - 1.0f) < 1e-6f) {
pass = SEP_VERT;
} else if (fabs(ratio[SEP_VERT] - 1.0f) < 1e-6f) {
pass = SEP_HORIZ;
} else {
SH_FAIL(sh, "Trying to use pl_shader_sample_ortho with a "
"pl_sample_src that requires scaling in multiple directions "
"(rx=%f, ry=%f), this is not possible!",
ratio[SEP_HORIZ], ratio[SEP_VERT]);
return false;
}
// We can store a separate sampler object per dimension, so dispatch the
// right one. This is needed for two reasons:
// 1. Anamorphic content can have a different scaling ratio for each
// dimension. In particular, you could be upscaling in one and
// downscaling in the other.
// 2. After fixing the source for `setup_src`, we lose information about
// the scaling ratio of the other component. (Although this is only a
// minor reason and could easily be changed with some boilerplate)
struct sh_sampler_obj *obj;
obj = SH_OBJ(sh, params->lut, PL_SHADER_OBJ_SAMPLER,
struct sh_sampler_obj, sh_sampler_uninit);
if (!obj)
return false;
if (pass != 0) {
obj = SH_OBJ(sh, &obj->pass2, PL_SHADER_OBJ_SAMPLER,
struct sh_sampler_obj, sh_sampler_uninit);
assert(obj);
}
float inv_scale = 1.0 / ratio[pass];
inv_scale = PL_MAX(inv_scale, 1.0);
if (params->no_widening)
inv_scale = 1.0;
struct pl_filter_config cfg = params->filter;
cfg.antiring = PL_DEF(cfg.antiring, params->antiring);
cfg.blur = PL_DEF(cfg.blur, 1.0f) * inv_scale;
bool update = !obj->filter || !pl_filter_config_eq(&obj->filter->params.config, &cfg);
if (update) {
pl_filter_free(&obj->filter);
obj->filter = pl_filter_generate(sh->log, pl_filter_params(
.config = cfg,
.lut_entries = SCALER_LUT_SIZE,
.max_row_size = gpu->limits.max_tex_2d_dim / 4,
.row_stride_align = 4,
));
if (!obj->filter) {
// This should never happen, but just in case ..
SH_FAIL(sh, "Failed initializing separated filter!");
return false;
}
}
int N = obj->filter->row_size; // number of samples to convolve
int width = obj->filter->row_stride / 4; // width of the LUT texture
ident_t lut = sh_lut(sh, sh_lut_params(
.object = &obj->lut,
.var_type = PL_VAR_FLOAT,
.method = SH_LUT_LINEAR,
.width = width,
.height = SCALER_LUT_SIZE,
.comps = 4,
.update = update,
.fill = fill_ortho_lut,
.priv = obj,
));
if (!lut) {
SH_FAIL(sh, "Failed initializing separated LUT!");
return false;
}
const int dir[SEP_PASSES][2] = {
[SEP_HORIZ] = {1, 0},
[SEP_VERT] = {0, 1},
};
static const char *names[SEP_PASSES] = {
[SEP_HORIZ] = "ortho (horiz)",
[SEP_VERT] = "ortho (vert)",
};
describe_filter(sh, &cfg, names[pass], ratio[pass], ratio[pass]);
float denom = PL_MAX(1, width - 1); // avoid division by zero
bool use_ar = cfg.antiring > 0 && ratio[pass] > 1.0;
bool use_linear = obj->filter->radius == obj->filter->radius_zero;
use_ar &= !use_linear; // filter has no negative weights
#pragma GLSL /* pl_shader_sample_ortho */ \
vec4 color = vec4(0.0, 0.0, 0.0, 1.0); \
{ \
vec2 pos = $pos, pt = $pt; \
vec2 size = vec2(textureSize($src_tex, 0)); \
vec2 dir = vec2(${const float:dir[pass][0]}, ${const float: dir[pass][1]}); \
pt *= dir; \
vec2 fcoord2 = fract(pos * size - vec2(0.5)); \
float fcoord = dot(fcoord2, dir); \
vec2 base = pos - fcoord * pt - pt * vec2(${const float: N / 2 - 1}); \
vec4 ws; \
float off; \
${vecType: comps} c, ca = ${vecType: comps}(0.0); \
@if (use_ar) { \
${vecType: comps} hi = ${vecType: comps}(0.0); \
${vecType: comps} lo = ${vecType: comps}(1e9); \
@} \
@for (n < N) { \
@if @(n % 4 == 0) \
ws = $lut(vec2(float(@n / 4) / ${const float: denom}, fcoord)); \
@if @(vars.use_ar && (n == vars.n / 2 - 1 || n == vars.n / 2)) { \
c = textureLod($src_tex, base + pt * @n.0, 0.0).${swizzle: comps}; \
ca += ws[@n % 4] * c; \
lo = min(lo, c); \
hi = max(hi, c); \
@} else { \
@if (use_linear) { \
@if @(n % 2 == 0) { \
off = @n.0 + ws[@n % 4 + 1]; \
ca += ws[@n % 4] * textureLod($src_tex, base + pt * off, \
0.0).${swizzle: comps}; \
@} \
@} else { \
ca += ws[@n % 4] * textureLod($src_tex, base + pt * @n.0, \
0.0).${swizzle: comps}; \
@} \
@} \
@} \
@if (use_ar) \
ca = mix(ca, clamp(ca, lo, hi), ${float: cfg.antiring}); \
color.${swizzle: comps} = ${float: scale} * ca; \
}
return true;
}
const struct pl_distort_params pl_distort_default_params = { PL_DISTORT_DEFAULTS };
void pl_shader_distort(pl_shader sh, pl_tex src_tex, int out_w, int out_h,
const struct pl_distort_params *params)
{
pl_assert(params);
if (!sh_require(sh, PL_SHADER_SIG_NONE, out_w, out_h))
return;
const int src_w = src_tex->params.w, src_h = src_tex->params.h;
float rx = 1.0f, ry = 1.0f;
if (src_w > src_h) {
ry = (float) src_h / src_w;
} else {
rx = (float) src_w / src_h;
}
// Map from texel coordinates [0,1]² to aspect-normalized representation
const pl_transform2x2 tex2norm = {
.mat.m = {
{ 2 * rx, 0 },
{ 0, -2 * ry },
},
.c = { -rx, ry },
};
// Map from aspect-normalized representation to canvas coords [-1,1]²
const float sx = params->unscaled ? (float) src_w / out_w : 1.0f;
const float sy = params->unscaled ? (float) src_h / out_h : 1.0f;
const pl_transform2x2 norm2canvas = {
.mat.m = {
{ sx / rx, 0 },
{ 0, sy / ry },
},
};
struct pl_transform2x2 transform = params->transform;
pl_transform2x2_mul(&transform, &tex2norm);
pl_transform2x2_rmul(&norm2canvas, &transform);
if (params->constrain) {
pl_rect2df bb = pl_transform2x2_bounds(&transform, &(pl_rect2df) {
.x1 = 1, .y1 = 1,
});
const float k = fmaxf(fmaxf(pl_rect_w(bb), pl_rect_h(bb)), 2.0f);
pl_transform2x2_scale(&transform, 2.0f / k);
};
// Bind the canvas coordinates as [-1,1]², flipped vertically to correspond
// to normal mathematical axis conventions
static const pl_rect2df canvas = {
.x0 = -1.0f, .x1 = 1.0f,
.y0 = 1.0f, .y1 = -1.0f,
};
ident_t pos = sh_attr_vec2(sh, "pos", &canvas);
ident_t pt, tex = sh_bind(sh, src_tex, params->address_mode,
PL_TEX_SAMPLE_LINEAR, "tex", NULL, NULL, &pt);
// Bind the inverse of the tex2canvas transform (i.e. canvas2tex)
pl_transform2x2_invert(&transform);
ident_t tf = sh_var(sh, (struct pl_shader_var) {
.var = pl_var_mat2("tf"),
.data = PL_TRANSPOSE_2X2(transform.mat.m),
});
ident_t tf_c = sh_var(sh, (struct pl_shader_var) {
.var = pl_var_vec2("tf_c"),
.data = transform.c,
});
// See pl_shader_sample_bicubic
sh_describe(sh, "distortion");
#pragma GLSL /* pl_shader_sample_distort */ \
vec4 color; \
{ \
vec2 pos = $tf * $pos + $tf_c; \
vec2 pt = $pt; \
@if (params->bicubic) { \
vec2 size = vec2(textureSize($tex, 0)); \
vec2 frac = fract(pos * size + vec2(0.5)); \
vec2 frac2 = frac * frac; \
vec2 inv = vec2(1.0) - frac; \
vec2 inv2 = inv * inv; \
vec2 w0 = 1.0/6.0 * inv2 * inv; \
vec2 w1 = 2.0/3.0 - 0.5 * frac2 * (2.0 - frac); \
vec2 w2 = 2.0/3.0 - 0.5 * inv2 * (2.0 - inv); \
vec2 w3 = 1.0/6.0 * frac2 * frac; \
vec4 g = vec4(w0 + w1, w2 + w3); \
vec4 h = vec4(w1, w3) / g + inv.xyxy; \
h.xy -= vec2(2.0); \
vec4 p = pos.xyxy + pt.xyxy * h; \
vec4 c00 = textureLod($tex, p.xy, 0.0); \
vec4 c01 = textureLod($tex, p.xw, 0.0); \
vec4 c0 = mix(c01, c00, g.y); \
vec4 c10 = textureLod($tex, p.zy, 0.0); \
vec4 c11 = textureLod($tex, p.zw, 0.0); \
vec4 c1 = mix(c11, c10, g.y); \
color = mix(c1, c0, g.x); \
@} else { \
color = texture($tex, pos); \
@} \
@if (params->alpha_mode) { \
vec2 border = min(pos, vec2(1.0) - pos); \
border = smoothstep(vec2(0.0), pt, border); \
@if (params->alpha_mode == PL_ALPHA_PREMULTIPLIED) \
color.rgba *= border.x * border.y; \
@else \
color.a *= border.x * border.y; \
@} \
}
}
|