1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
|
/*
* This file is part of libplacebo.
*
* libplacebo is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* libplacebo is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with libplacebo. If not, see <http://www.gnu.org/licenses/>.
*/
#include <math.h>
#include "common.h"
#include <libplacebo/tone_mapping.h>
#define fclampf(x, lo, hi) fminf(fmaxf(x, lo), hi)
static void fix_constants(struct pl_tone_map_constants *c)
{
const float eps = 1e-6f;
c->knee_adaptation = fclampf(c->knee_adaptation, 0.0f, 1.0f);
c->knee_minimum = fclampf(c->knee_minimum, eps, 0.5f - eps);
c->knee_maximum = fclampf(c->knee_maximum, 0.5f + eps, 1.0f - eps);
c->knee_default = fclampf(c->knee_default, c->knee_minimum, c->knee_maximum);
c->knee_offset = fclampf(c->knee_offset, 0.5f, 2.0f);
c->slope_tuning = fclampf(c->slope_tuning, 0.0f, 10.0f);
c->slope_offset = fclampf(c->slope_offset, 0.0f, 1.0f);
c->spline_contrast = fclampf(c->spline_contrast, 0.0f, 1.5f);
c->reinhard_contrast = fclampf(c->reinhard_contrast, eps, 1.0f - eps);
c->linear_knee = fclampf(c->linear_knee, eps, 1.0f - eps);
c->exposure = fclampf(c->exposure, eps, 10.0f);
}
static inline bool constants_equal(const struct pl_tone_map_constants *a,
const struct pl_tone_map_constants *b)
{
pl_static_assert(sizeof(*a) % sizeof(float) == 0);
return !memcmp(a, b, sizeof(*a));
}
bool pl_tone_map_params_equal(const struct pl_tone_map_params *a,
const struct pl_tone_map_params *b)
{
return a->function == b->function &&
a->param == b->param &&
a->input_scaling == b->input_scaling &&
a->output_scaling == b->output_scaling &&
a->lut_size == b->lut_size &&
a->input_min == b->input_min &&
a->input_max == b->input_max &&
a->input_avg == b->input_avg &&
a->output_min == b->output_min &&
a->output_max == b->output_max &&
constants_equal(&a->constants, &b->constants) &&
pl_hdr_metadata_equal(&a->hdr, &b->hdr);
}
bool pl_tone_map_params_noop(const struct pl_tone_map_params *p)
{
float in_min = pl_hdr_rescale(p->input_scaling, PL_HDR_NITS, p->input_min);
float in_max = pl_hdr_rescale(p->input_scaling, PL_HDR_NITS, p->input_max);
float out_min = pl_hdr_rescale(p->output_scaling, PL_HDR_NITS, p->output_min);
float out_max = pl_hdr_rescale(p->output_scaling, PL_HDR_NITS, p->output_max);
bool can_inverse = p->function->map_inverse;
return fabs(in_min - out_min) < 1e-4 && // no BPC
in_max < out_max + 1e-2 && // no range reduction
(out_max < in_max + 1e-2 || !can_inverse); // no inverse tone-mapping
}
void pl_tone_map_params_infer(struct pl_tone_map_params *par)
{
if (!par->function)
par->function = &pl_tone_map_clip;
if (par->param) {
// Backwards compatibility for older API
if (par->function == &pl_tone_map_st2094_40 || par->function == &pl_tone_map_st2094_10)
par->constants.knee_adaptation = par->param;
if (par->function == &pl_tone_map_bt2390)
par->constants.knee_offset = par->param;
if (par->function == &pl_tone_map_spline)
par->constants.spline_contrast = par->param;
if (par->function == &pl_tone_map_reinhard)
par->constants.reinhard_contrast = par->param;
if (par->function == &pl_tone_map_mobius || par->function == &pl_tone_map_gamma)
par->constants.linear_knee = par->param;
if (par->function == &pl_tone_map_linear || par->function == &pl_tone_map_linear_light)
par->constants.exposure = par->param;
}
fix_constants(&par->constants);
// Constrain the input peak to be no less than target SDR white
float sdr = pl_hdr_rescale(par->output_scaling, par->input_scaling, par->output_max);
sdr = fminf(sdr, pl_hdr_rescale(PL_HDR_NITS, par->input_scaling, PL_COLOR_SDR_WHITE));
par->input_max = fmaxf(par->input_max, sdr);
// Constrain the output peak if function does not support inverse mapping
if (!par->function->map_inverse)
par->output_max = fminf(par->output_max, par->input_max);
}
// Infer params and rescale to function scaling
static struct pl_tone_map_params fix_params(const struct pl_tone_map_params *params)
{
struct pl_tone_map_params fixed = *params;
pl_tone_map_params_infer(&fixed);
const struct pl_tone_map_function *fun = params->function;
fixed.input_scaling = fun->scaling;
fixed.output_scaling = fun->scaling;
fixed.input_min = pl_hdr_rescale(params->input_scaling, fun->scaling, fixed.input_min);
fixed.input_max = pl_hdr_rescale(params->input_scaling, fun->scaling, fixed.input_max);
fixed.input_avg = pl_hdr_rescale(params->input_scaling, fun->scaling, fixed.input_avg);
fixed.output_min = pl_hdr_rescale(params->output_scaling, fun->scaling, fixed.output_min);
fixed.output_max = pl_hdr_rescale(params->output_scaling, fun->scaling, fixed.output_max);
return fixed;
}
#define FOREACH_LUT(lut, V) \
for (float *_iter = lut, *_end = lut + params->lut_size, V; \
_iter < _end && ( V = *_iter, 1 ); *_iter++ = V)
static void map_lut(float *lut, const struct pl_tone_map_params *params)
{
if (params->output_max > params->input_max + 1e-4) {
// Inverse tone-mapping
pl_assert(params->function->map_inverse);
params->function->map_inverse(lut, params);
} else {
// Forward tone-mapping
params->function->map(lut, params);
}
}
void pl_tone_map_generate(float *out, const struct pl_tone_map_params *params)
{
struct pl_tone_map_params fixed = fix_params(params);
// Generate input values evenly spaced in `params->input_scaling`
for (size_t i = 0; i < params->lut_size; i++) {
float x = (float) i / (params->lut_size - 1);
x = PL_MIX(params->input_min, params->input_max, x);
out[i] = pl_hdr_rescale(params->input_scaling, fixed.function->scaling, x);
}
map_lut(out, &fixed);
// Sanitize outputs and adapt back to `params->scaling`
for (size_t i = 0; i < params->lut_size; i++) {
float x = PL_CLAMP(out[i], fixed.output_min, fixed.output_max);
out[i] = pl_hdr_rescale(fixed.function->scaling, params->output_scaling, x);
}
}
float pl_tone_map_sample(float x, const struct pl_tone_map_params *params)
{
struct pl_tone_map_params fixed = fix_params(params);
fixed.lut_size = 1;
x = PL_CLAMP(x, params->input_min, params->input_max);
x = pl_hdr_rescale(params->input_scaling, fixed.function->scaling, x);
map_lut(&x, &fixed);
x = PL_CLAMP(x, fixed.output_min, fixed.output_max);
x = pl_hdr_rescale(fixed.function->scaling, params->output_scaling, x);
return x;
}
// Rescale from input-absolute to input-relative
static inline float rescale_in(float x, const struct pl_tone_map_params *params)
{
return (x - params->input_min) / (params->input_max - params->input_min);
}
// Rescale from input-absolute to output-relative
static inline float rescale(float x, const struct pl_tone_map_params *params)
{
return (x - params->input_min) / (params->output_max - params->output_min);
}
// Rescale from output-relative to output-absolute
static inline float rescale_out(float x, const struct pl_tone_map_params *params)
{
return x * (params->output_max - params->output_min) + params->output_min;
}
static inline float bt1886_eotf(float x, float min, float max)
{
const float lb = powf(min, 1/2.4f);
const float lw = powf(max, 1/2.4f);
return powf((lw - lb) * x + lb, 2.4f);
}
static inline float bt1886_oetf(float x, float min, float max)
{
const float lb = powf(min, 1/2.4f);
const float lw = powf(max, 1/2.4f);
return (powf(x, 1/2.4f) - lb) / (lw - lb);
}
static void noop(float *lut, const struct pl_tone_map_params *params)
{
return;
}
const struct pl_tone_map_function pl_tone_map_clip = {
.name = "clip",
.description = "No tone mapping (clip)",
.map = noop,
.map_inverse = noop,
};
// Helper function to pick a knee point (for suitable methods) based on the
// HDR10+ brightness metadata and scene brightness average matching.
//
// Inspired by SMPTE ST2094-10, with some modifications
static void st2094_pick_knee(float *out_src_knee, float *out_dst_knee,
const struct pl_tone_map_params *params)
{
const float src_min = pl_hdr_rescale(params->input_scaling, PL_HDR_PQ, params->input_min);
const float src_max = pl_hdr_rescale(params->input_scaling, PL_HDR_PQ, params->input_max);
const float src_avg = pl_hdr_rescale(params->input_scaling, PL_HDR_PQ, params->input_avg);
const float dst_min = pl_hdr_rescale(params->output_scaling, PL_HDR_PQ, params->output_min);
const float dst_max = pl_hdr_rescale(params->output_scaling, PL_HDR_PQ, params->output_max);
const float min_knee = params->constants.knee_minimum;
const float max_knee = params->constants.knee_maximum;
const float def_knee = params->constants.knee_default;
const float src_knee_min = PL_MIX(src_min, src_max, min_knee);
const float src_knee_max = PL_MIX(src_min, src_max, max_knee);
const float dst_knee_min = PL_MIX(dst_min, dst_max, min_knee);
const float dst_knee_max = PL_MIX(dst_min, dst_max, max_knee);
// Choose source knee based on source scene brightness
float src_knee = PL_DEF(src_avg, PL_MIX(src_min, src_max, def_knee));
src_knee = fclampf(src_knee, src_knee_min, src_knee_max);
// Choose target adaptation point based on linearly re-scaling source knee
float target = (src_knee - src_min) / (src_max - src_min);
float adapted = PL_MIX(dst_min, dst_max, target);
// Choose the destnation knee by picking the perceptual adaptation point
// between the source knee and the desired target. This moves the knee
// point, on the vertical axis, closer to the 1:1 (neutral) line.
//
// Adjust the adaptation strength towards 1 based on how close the knee
// point is to its extreme values (min/max knee)
float tuning = 1.0f - pl_smoothstep(max_knee, def_knee, target) *
pl_smoothstep(min_knee, def_knee, target);
float adaptation = PL_MIX(params->constants.knee_adaptation, 1.0f, tuning);
float dst_knee = PL_MIX(src_knee, adapted, adaptation);
dst_knee = fclampf(dst_knee, dst_knee_min, dst_knee_max);
*out_src_knee = pl_hdr_rescale(PL_HDR_PQ, params->input_scaling, src_knee);
*out_dst_knee = pl_hdr_rescale(PL_HDR_PQ, params->output_scaling, dst_knee);
}
// Pascal's triangle
static const uint16_t binom[17][17] = {
{1},
{1,1},
{1,2,1},
{1,3,3,1},
{1,4,6,4,1},
{1,5,10,10,5,1},
{1,6,15,20,15,6,1},
{1,7,21,35,35,21,7,1},
{1,8,28,56,70,56,28,8,1},
{1,9,36,84,126,126,84,36,9,1},
{1,10,45,120,210,252,210,120,45,10,1},
{1,11,55,165,330,462,462,330,165,55,11,1},
{1,12,66,220,495,792,924,792,495,220,66,12,1},
{1,13,78,286,715,1287,1716,1716,1287,715,286,78,13,1},
{1,14,91,364,1001,2002,3003,3432,3003,2002,1001,364,91,14,1},
{1,15,105,455,1365,3003,5005,6435,6435,5005,3003,1365,455,105,15,1},
{1,16,120,560,1820,4368,8008,11440,12870,11440,8008,4368,1820,560,120,16,1},
};
static inline float st2094_intercept(uint8_t N, float Kx, float Ky)
{
if (Kx <= 0 || Ky >= 1)
return 1.0f / N;
const float slope = Ky / Kx * (1 - Kx) / (1 - Ky);
return fminf(slope / N, 1.0f);
}
static void st2094_40(float *lut, const struct pl_tone_map_params *params)
{
const float D = params->output_max;
// Allocate space for the adjusted bezier control points, plus endpoints
float P[17], Kx, Ky, T;
uint8_t N;
if (params->hdr.ootf.num_anchors) {
// Use bezier curve from metadata
Kx = PL_CLAMP(params->hdr.ootf.knee_x, 0, 1);
Ky = PL_CLAMP(params->hdr.ootf.knee_y, 0, 1);
T = PL_CLAMP(params->hdr.ootf.target_luma, params->input_min, params->input_max);
N = params->hdr.ootf.num_anchors + 1;
pl_assert(N < PL_ARRAY_SIZE(P));
memcpy(P + 1, params->hdr.ootf.anchors, (N - 1) * sizeof(*P));
P[0] = 0.0f;
P[N] = 1.0f;
} else {
// Missing metadata, default to simple brightness matching
float src_knee, dst_knee;
st2094_pick_knee(&src_knee, &dst_knee, params);
Kx = src_knee / params->input_max;
Ky = dst_knee / params->output_max;
// Solve spline to match slope at knee intercept
const float slope = Ky / Kx * (1 - Kx) / (1 - Ky);
N = PL_CLAMP((int) ceilf(slope), 2, PL_ARRAY_SIZE(P) - 1);
P[0] = 0.0f;
P[1] = st2094_intercept(N, Kx, Ky);
for (int i = 2; i <= N; i++)
P[i] = 1.0f;
T = D;
}
if (D < T) {
// Output display darker than OOTF target, make brighter
const float Dmin = 0.0f, u = fmaxf(0.0f, (D - Dmin) / (T - Dmin));
// Scale down the knee point to make more room for the OOTF
Kx *= u;
Ky *= u;
// Make the slope of the knee more closely approximate a clip(),
// constrained to avoid exploding P[1]
const float beta = N * Kx / (1 - Kx);
const float Kxy = fminf(Kx * params->input_max / D, beta / (beta + 1));
Ky = PL_MIX(Kxy, Ky, u);
for (int p = 2; p <= N; p++)
P[p] = PL_MIX(1.0f, P[p], u);
// Make the OOTF intercept linear as D -> Dmin
P[1] = PL_MIX(st2094_intercept(N, Kx, Ky), P[1], u);
} else if (D > T) {
// Output display brighter than OOTF target, make more linear
pl_assert(params->input_max > T);
const float w = powf(1 - (D - T) / (params->input_max - T), 1.4f);
// Constrain the slope of the input knee to prevent it from
// exploding and making the picture way too bright
Ky *= T / D;
// Make the slope of the knee more linear by solving for f(Kx) = Kx
float Kxy = Kx * D / params->input_max;
Ky = PL_MIX(Kxy, Ky, w);
for (int p = 2; p < N; p++) {
float anchor_lin = (float) p / N;
P[p] = PL_MIX(anchor_lin, P[p], w);
}
// Make the OOTF intercept linear as D -> input_max
P[1] = PL_MIX(st2094_intercept(N, Kx, Ky), P[1], w);
}
pl_assert(Kx >= 0 && Kx <= 1);
pl_assert(Ky >= 0 && Ky <= 1);
FOREACH_LUT(lut, x) {
x = bt1886_oetf(x, params->input_min, params->input_max);
x = bt1886_eotf(x, 0.0f, 1.0f);
if (x <= Kx && Kx) {
// Linear section
x *= Ky / Kx;
} else {
// Bezier section
const float t = (x - Kx) / (1 - Kx);
x = 0; // Bn
for (uint8_t p = 0; p <= N; p++)
x += binom[N][p] * powf(t, p) * powf(1 - t, N - p) * P[p];
x = Ky + (1 - Ky) * x;
}
x = bt1886_oetf(x, 0.0f, 1.0f);
x = bt1886_eotf(x, params->output_min, params->output_max);
}
}
const struct pl_tone_map_function pl_tone_map_st2094_40 = {
.name = "st2094-40",
.description = "SMPTE ST 2094-40 Annex B",
.param_desc = "Knee point target",
.param_min = 0.00f,
.param_def = 0.70f,
.param_max = 1.00f,
.scaling = PL_HDR_NITS,
.map = st2094_40,
};
static void st2094_10(float *lut, const struct pl_tone_map_params *params)
{
float src_knee, dst_knee;
st2094_pick_knee(&src_knee, &dst_knee, params);
const float x1 = params->input_min;
const float x3 = params->input_max;
const float x2 = src_knee;
const float y1 = params->output_min;
const float y3 = params->output_max;
const float y2 = dst_knee;
const pl_matrix3x3 cmat = {{
{ x2*x3*(y2 - y3), x1*x3*(y3 - y1), x1*x2*(y1 - y2) },
{ x3*y3 - x2*y2, x1*y1 - x3*y3, x2*y2 - x1*y1 },
{ x3 - x2, x1 - x3, x2 - x1 },
}};
float coeffs[3] = { y1, y2, y3 };
pl_matrix3x3_apply(&cmat, coeffs);
const float k = 1.0 / (x3*y3*(x1 - x2) + x2*y2*(x3 - x1) + x1*y1*(x2 - x3));
const float c1 = k * coeffs[0];
const float c2 = k * coeffs[1];
const float c3 = k * coeffs[2];
FOREACH_LUT(lut, x)
x = (c1 + c2 * x) / (1 + c3 * x);
}
const struct pl_tone_map_function pl_tone_map_st2094_10 = {
.name = "st2094-10",
.description = "SMPTE ST 2094-10 Annex B.2",
.param_desc = "Knee point target",
.param_min = 0.00f,
.param_def = 0.70f,
.param_max = 1.00f,
.scaling = PL_HDR_NITS,
.map = st2094_10,
};
static void bt2390(float *lut, const struct pl_tone_map_params *params)
{
const float minLum = rescale_in(params->output_min, params);
const float maxLum = rescale_in(params->output_max, params);
const float offset = params->constants.knee_offset;
const float ks = (1 + offset) * maxLum - offset;
const float bp = minLum > 0 ? fminf(1 / minLum, 4) : 4;
const float gain_inv = 1 + minLum / maxLum * powf(1 - maxLum, bp);
const float gain = maxLum < 1 ? 1 / gain_inv : 1;
FOREACH_LUT(lut, x) {
x = rescale_in(x, params);
// Piece-wise hermite spline
if (ks < 1) {
float tb = (x - ks) / (1 - ks);
float tb2 = tb * tb;
float tb3 = tb2 * tb;
float pb = (2 * tb3 - 3 * tb2 + 1) * ks +
(tb3 - 2 * tb2 + tb) * (1 - ks) +
(-2 * tb3 + 3 * tb2) * maxLum;
x = x < ks ? x : pb;
}
// Black point adaptation
if (x < 1) {
x += minLum * powf(1 - x, bp);
x = gain * (x - minLum) + minLum;
}
x = x * (params->input_max - params->input_min) + params->input_min;
}
}
const struct pl_tone_map_function pl_tone_map_bt2390 = {
.name = "bt2390",
.description = "ITU-R BT.2390 EETF",
.scaling = PL_HDR_PQ,
.param_desc = "Knee offset",
.param_min = 0.50,
.param_def = 1.00,
.param_max = 2.00,
.map = bt2390,
};
static void bt2446a(float *lut, const struct pl_tone_map_params *params)
{
const float phdr = 1 + 32 * powf(params->input_max / 10000, 1/2.4f);
const float psdr = 1 + 32 * powf(params->output_max / 10000, 1/2.4f);
FOREACH_LUT(lut, x) {
x = powf(rescale_in(x, params), 1/2.4f);
x = logf(1 + (phdr - 1) * x) / logf(phdr);
if (x <= 0.7399f) {
x = 1.0770f * x;
} else if (x < 0.9909f) {
x = (-1.1510f * x + 2.7811f) * x - 0.6302f;
} else {
x = 0.5f * x + 0.5f;
}
x = (powf(psdr, x) - 1) / (psdr - 1);
x = bt1886_eotf(x, params->output_min, params->output_max);
}
}
static void bt2446a_inv(float *lut, const struct pl_tone_map_params *params)
{
FOREACH_LUT(lut, x) {
x = bt1886_oetf(x, params->input_min, params->input_max);
x *= 255.0;
if (x > 70) {
x = powf(x, (2.8305e-6f * x - 7.4622e-4f) * x + 1.2528f);
} else {
x = powf(x, (1.8712e-5f * x - 2.7334e-3f) * x + 1.3141f);
}
x = powf(x / 1000, 2.4f);
x = rescale_out(x, params);
}
}
const struct pl_tone_map_function pl_tone_map_bt2446a = {
.name = "bt2446a",
.description = "ITU-R BT.2446 Method A",
.scaling = PL_HDR_NITS,
.map = bt2446a,
.map_inverse = bt2446a_inv,
};
static void spline(float *lut, const struct pl_tone_map_params *params)
{
float src_pivot, dst_pivot;
st2094_pick_knee(&src_pivot, &dst_pivot, params);
// Solve for linear knee (Pa = 0)
float slope = (dst_pivot - params->output_min) /
(src_pivot - params->input_min);
// Tune the slope at the knee point slightly: raise it to a user-provided
// gamma exponent, multiplied by an extra tuning coefficient designed to
// make the slope closer to 1.0 when the difference in peaks is low, and
// closer to linear when the difference between peaks is high.
float ratio = params->input_max / params->output_max - 1.0f;
ratio = fclampf(params->constants.slope_tuning * ratio,
params->constants.slope_offset,
1.0f + params->constants.slope_offset);
slope = powf(slope, (1.0f - params->constants.spline_contrast) * ratio);
// Normalize everything the pivot to make the math easier
const float in_min = params->input_min - src_pivot;
const float in_max = params->input_max - src_pivot;
const float out_min = params->output_min - dst_pivot;
const float out_max = params->output_max - dst_pivot;
// Solve P of order 2 for:
// P(in_min) = out_min
// P'(0.0) = slope
// P(0.0) = 0.0
const float Pa = (out_min - slope * in_min) / (in_min * in_min);
const float Pb = slope;
// Solve Q of order 3 for:
// Q(in_max) = out_max
// Q''(in_max) = 0.0
// Q(0.0) = 0.0
// Q'(0.0) = slope
const float t = 2 * in_max * in_max;
const float Qa = (slope * in_max - out_max) / (in_max * t);
const float Qb = -3 * (slope * in_max - out_max) / t;
const float Qc = slope;
FOREACH_LUT(lut, x) {
x -= src_pivot;
x = x > 0 ? ((Qa * x + Qb) * x + Qc) * x : (Pa * x + Pb) * x;
x += dst_pivot;
}
}
const struct pl_tone_map_function pl_tone_map_spline = {
.name = "spline",
.description = "Single-pivot polynomial spline",
.param_desc = "Contrast",
.param_min = 0.00f,
.param_def = 0.50f,
.param_max = 1.50f,
.scaling = PL_HDR_PQ,
.map = spline,
.map_inverse = spline,
};
static void reinhard(float *lut, const struct pl_tone_map_params *params)
{
const float peak = rescale(params->input_max, params),
contrast = params->constants.reinhard_contrast,
offset = (1.0 - contrast) / contrast,
scale = (peak + offset) / peak;
FOREACH_LUT(lut, x) {
x = rescale(x, params);
x = x / (x + offset);
x *= scale;
x = rescale_out(x, params);
}
}
const struct pl_tone_map_function pl_tone_map_reinhard = {
.name = "reinhard",
.description = "Reinhard",
.param_desc = "Contrast",
.param_min = 0.001,
.param_def = 0.50,
.param_max = 0.99,
.map = reinhard,
};
static void mobius(float *lut, const struct pl_tone_map_params *params)
{
const float peak = rescale(params->input_max, params),
j = params->constants.linear_knee;
// Solve for M(j) = j; M(peak) = 1.0; M'(j) = 1.0
// where M(x) = scale * (x+a)/(x+b)
const float a = -j*j * (peak - 1.0f) / (j*j - 2.0f * j + peak);
const float b = (j*j - 2.0f * j * peak + peak) /
fmaxf(1e-6f, peak - 1.0f);
const float scale = (b*b + 2.0f * b*j + j*j) / (b - a);
FOREACH_LUT(lut, x) {
x = rescale(x, params);
x = x <= j ? x : scale * (x + a) / (x + b);
x = rescale_out(x, params);
}
}
const struct pl_tone_map_function pl_tone_map_mobius = {
.name = "mobius",
.description = "Mobius",
.param_desc = "Knee point",
.param_min = 0.00,
.param_def = 0.30,
.param_max = 0.99,
.map = mobius,
};
static inline float hable(float x)
{
const float A = 0.15, B = 0.50, C = 0.10, D = 0.20, E = 0.02, F = 0.30;
return ((x * (A*x + C*B) + D*E) / (x * (A*x + B) + D*F)) - E/F;
}
static void hable_map(float *lut, const struct pl_tone_map_params *params)
{
const float peak = params->input_max / params->output_max,
scale = 1.0f / hable(peak);
FOREACH_LUT(lut, x) {
x = bt1886_oetf(x, params->input_min, params->input_max);
x = bt1886_eotf(x, 0, peak);
x = scale * hable(x);
x = bt1886_oetf(x, 0, 1);
x = bt1886_eotf(x, params->output_min, params->output_max);
}
}
const struct pl_tone_map_function pl_tone_map_hable = {
.name = "hable",
.description = "Filmic tone-mapping (Hable)",
.map = hable_map,
};
static void gamma_map(float *lut, const struct pl_tone_map_params *params)
{
const float peak = rescale(params->input_max, params),
cutoff = params->constants.linear_knee,
gamma = logf(cutoff) / logf(cutoff / peak);
FOREACH_LUT(lut, x) {
x = rescale(x, params);
x = x > cutoff ? powf(x / peak, gamma) : x;
x = rescale_out(x, params);
}
}
const struct pl_tone_map_function pl_tone_map_gamma = {
.name = "gamma",
.description = "Gamma function with knee",
.param_desc = "Knee point",
.param_min = 0.001,
.param_def = 0.30,
.param_max = 1.00,
.map = gamma_map,
};
static void linear(float *lut, const struct pl_tone_map_params *params)
{
const float gain = params->constants.exposure;
FOREACH_LUT(lut, x) {
x = rescale_in(x, params);
x *= gain;
x = rescale_out(x, params);
}
}
const struct pl_tone_map_function pl_tone_map_linear = {
.name = "linear",
.description = "Perceptually linear stretch",
.param_desc = "Exposure",
.param_min = 0.001,
.param_def = 1.00,
.param_max = 10.0,
.scaling = PL_HDR_PQ,
.map = linear,
.map_inverse = linear,
};
const struct pl_tone_map_function pl_tone_map_linear_light = {
.name = "linearlight",
.description = "Linear light stretch",
.param_desc = "Exposure",
.param_min = 0.001,
.param_def = 1.00,
.param_max = 10.0,
.scaling = PL_HDR_NORM,
.map = linear,
.map_inverse = linear,
};
const struct pl_tone_map_function * const pl_tone_map_functions[] = {
&pl_tone_map_clip,
&pl_tone_map_st2094_40,
&pl_tone_map_st2094_10,
&pl_tone_map_bt2390,
&pl_tone_map_bt2446a,
&pl_tone_map_spline,
&pl_tone_map_reinhard,
&pl_tone_map_mobius,
&pl_tone_map_hable,
&pl_tone_map_gamma,
&pl_tone_map_linear,
&pl_tone_map_linear_light,
NULL
};
const int pl_num_tone_map_functions = PL_ARRAY_SIZE(pl_tone_map_functions) - 1;
const struct pl_tone_map_function *pl_find_tone_map_function(const char *name)
{
for (int i = 0; i < pl_num_tone_map_functions; i++) {
if (strcmp(name, pl_tone_map_functions[i]->name) == 0)
return pl_tone_map_functions[i];
}
return NULL;
}
|