1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
|
/*
* This file is part of libplacebo.
*
* libplacebo is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* libplacebo is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with libplacebo. If not, see <http://www.gnu.org/licenses/>.
*/
#include <errno.h>
#include <math.h>
#include "common.h"
#include "log.h"
#include "pl_thread.h"
#include <libplacebo/utils/frame_queue.h>
struct cache_entry {
pl_tex tex[4];
};
struct entry {
pl_rc_t rc;
double pts;
struct cache_entry cache;
struct pl_source_frame src;
struct pl_frame frame;
uint64_t signature;
bool mapped;
bool ok;
// for interlaced frames
enum pl_field field;
struct entry *primary;
struct entry *prev, *next;
bool dirty;
};
// Hard limits for vsync timing validity
#define MIN_FPS 10
#define MAX_FPS 400
// Limits for FPS estimation state
#define MAX_SAMPLES 32
#define MIN_SAMPLES 4
// Stickiness to prevent `interpolation_threshold` oscillation
#define THRESHOLD_MAX_RATIO 0.3
#define THRESHOLD_FRAMES 5
// Maximum number of not-yet-mapped frames to allow queueing in advance
#define PREFETCH_FRAMES 2
struct pool {
float samples[MAX_SAMPLES];
float estimate;
float sum;
int idx;
int num;
int total;
};
struct pl_queue_t {
pl_gpu gpu;
pl_log log;
// For multi-threading, we use two locks. The `lock_weak` guards the queue
// state itself. The `lock_strong` has a bigger scope and should be held
// for the duration of any functions that expect the queue state to
// remain more or less valid (with the exception of adding new members).
//
// In particular, `pl_queue_reset` and `pl_queue_update` will take
// the strong lock, while `pl_queue_push_*` will only take the weak
// lock.
pl_mutex lock_strong;
pl_mutex lock_weak;
pl_cond wakeup;
// Frame queue and state
PL_ARRAY(struct entry *) queue;
uint64_t signature;
int threshold_frames;
bool want_frame;
bool eof;
// Average vsync/frame fps estimation state
struct pool vps, fps;
float reported_vps;
float reported_fps;
double prev_pts;
// Storage for temporary arrays
PL_ARRAY(uint64_t) tmp_sig;
PL_ARRAY(float) tmp_ts;
PL_ARRAY(const struct pl_frame *) tmp_frame;
// Queue of GPU objects to reuse
PL_ARRAY(struct cache_entry) cache;
};
pl_queue pl_queue_create(pl_gpu gpu)
{
pl_queue p = pl_alloc_ptr(NULL, p);
*p = (struct pl_queue_t) {
.gpu = gpu,
.log = gpu->log,
};
pl_mutex_init(&p->lock_strong);
pl_mutex_init(&p->lock_weak);
int ret = pl_cond_init(&p->wakeup);
if (ret) {
PL_ERR(p, "Failed to init conditional variable: %d", ret);
return NULL;
}
return p;
}
static void recycle_cache(pl_queue p, struct cache_entry *cache, bool recycle)
{
bool has_textures = false;
for (int i = 0; i < PL_ARRAY_SIZE(cache->tex); i++) {
if (!cache->tex[i])
continue;
has_textures = true;
if (recycle) {
pl_tex_invalidate(p->gpu, cache->tex[i]);
} else {
pl_tex_destroy(p->gpu, &cache->tex[i]);
}
}
if (recycle && has_textures)
PL_ARRAY_APPEND(p, p->cache, *cache);
memset(cache, 0, sizeof(*cache)); // sanity
}
static void entry_deref(pl_queue p, struct entry **pentry, bool recycle)
{
struct entry *entry = *pentry;
*pentry = NULL;
if (!entry || !pl_rc_deref(&entry->rc))
return;
if (!entry->mapped && entry->src.discard) {
PL_TRACE(p, "Discarding unused frame id %"PRIu64" with PTS %f",
entry->signature, entry->src.pts);
entry->src.discard(&entry->src);
}
if (entry->mapped && entry->ok && entry->src.unmap) {
PL_TRACE(p, "Unmapping frame id %"PRIu64" with PTS %f",
entry->signature, entry->src.pts);
entry->src.unmap(p->gpu, &entry->frame, &entry->src);
}
recycle_cache(p, &entry->cache, recycle);
pl_free(entry);
}
static struct entry *entry_ref(struct entry *entry)
{
pl_rc_ref(&entry->rc);
return entry;
}
static void entry_cull(pl_queue p, struct entry *entry, bool recycle)
{
// Forcibly clean up references to prev/next frames, even if `entry` has
// remaining refs pointing at it. This is to prevent cyclic references.
entry_deref(p, &entry->primary, recycle);
entry_deref(p, &entry->prev, recycle);
entry_deref(p, &entry->next, recycle);
entry_deref(p, &entry, recycle);
}
void pl_queue_destroy(pl_queue *queue)
{
pl_queue p = *queue;
if (!p)
return;
for (int n = 0; n < p->queue.num; n++)
entry_cull(p, p->queue.elem[n], false);
for (int n = 0; n < p->cache.num; n++) {
for (int i = 0; i < PL_ARRAY_SIZE(p->cache.elem[n].tex); i++)
pl_tex_destroy(p->gpu, &p->cache.elem[n].tex[i]);
}
pl_cond_destroy(&p->wakeup);
pl_mutex_destroy(&p->lock_weak);
pl_mutex_destroy(&p->lock_strong);
pl_free(p);
*queue = NULL;
}
void pl_queue_reset(pl_queue p)
{
pl_mutex_lock(&p->lock_strong);
pl_mutex_lock(&p->lock_weak);
for (int i = 0; i < p->queue.num; i++)
entry_cull(p, p->queue.elem[i], false);
*p = (struct pl_queue_t) {
.gpu = p->gpu,
.log = p->log,
// Reuse lock objects
.lock_strong = p->lock_strong,
.lock_weak = p->lock_weak,
.wakeup = p->wakeup,
// Explicitly preserve allocations
.queue.elem = p->queue.elem,
.tmp_sig.elem = p->tmp_sig.elem,
.tmp_ts.elem = p->tmp_ts.elem,
.tmp_frame.elem = p->tmp_frame.elem,
// Reuse GPU object cache entirely
.cache = p->cache,
};
pl_cond_signal(&p->wakeup);
pl_mutex_unlock(&p->lock_weak);
pl_mutex_unlock(&p->lock_strong);
}
static inline float delta(float old, float new)
{
return fabsf((new - old) / PL_MIN(new, old));
}
static inline void default_estimate(struct pool *pool, float val)
{
if (!pool->estimate && isnormal(val) && val > 0.0)
pool->estimate = val;
}
static inline void update_estimate(struct pool *pool, float cur)
{
if (pool->num) {
static const float max_delta = 0.3;
if (delta(pool->sum / pool->num, cur) > max_delta) {
pool->sum = 0.0;
pool->num = pool->idx = 0;
}
}
if (pool->num++ == MAX_SAMPLES) {
pool->sum -= pool->samples[pool->idx];
pool->num--;
}
pool->sum += pool->samples[pool->idx] = cur;
pool->idx = (pool->idx + 1) % MAX_SAMPLES;
pool->total++;
if (pool->total < MIN_SAMPLES || pool->num >= MIN_SAMPLES)
pool->estimate = pool->sum / pool->num;
}
static void queue_push(pl_queue p, const struct pl_source_frame *src)
{
if (p->eof && !src)
return; // ignore duplicate EOF
if (p->eof && src) {
PL_INFO(p, "Received frame after EOF signaled... discarding frame!");
if (src->discard)
src->discard(src);
return;
}
pl_cond_signal(&p->wakeup);
if (!src) {
PL_TRACE(p, "Received EOF, draining frame queue...");
p->eof = true;
p->want_frame = false;
return;
}
// Update FPS estimates if possible/reasonable
default_estimate(&p->fps, src->first_field ? src->duration / 2 : src->duration);
if (p->queue.num) {
double last_pts = p->queue.elem[p->queue.num - 1]->pts;
float delta = src->pts - last_pts;
if (delta <= 0.0f) {
PL_DEBUG(p, "Non monotonically increasing PTS %f -> %f", last_pts, src->pts);
} else if (p->fps.estimate && delta > 10.0 * p->fps.estimate) {
PL_DEBUG(p, "Discontinuous source PTS jump %f -> %f", last_pts, src->pts);
} else {
update_estimate(&p->fps, delta);
}
} else if (src->pts != 0) {
PL_DEBUG(p, "First frame received with non-zero PTS %f", src->pts);
}
struct entry *entry = pl_alloc_ptr(NULL, entry);
*entry = (struct entry) {
.signature = p->signature++,
.pts = src->pts,
.src = *src,
};
pl_rc_init(&entry->rc);
PL_ARRAY_POP(p->cache, &entry->cache);
PL_TRACE(p, "Added new frame id %"PRIu64" with PTS %f",
entry->signature, entry->pts);
// Insert new entry into the correct spot in the queue, sorted by PTS
for (int i = p->queue.num;; i--) {
if (i == 0 || p->queue.elem[i - 1]->pts <= entry->pts) {
if (src->first_field == PL_FIELD_NONE) {
// Progressive
PL_ARRAY_INSERT_AT(p, p->queue, i, entry);
break;
} else {
// Interlaced
struct entry *prev = i > 0 ? p->queue.elem[i - 1] : NULL;
struct entry *next = i < p->queue.num ? p->queue.elem[i] : NULL;
struct entry *entry2 = pl_zalloc_ptr(NULL, entry2);
pl_rc_init(&entry2->rc);
if (next) {
entry2->pts = (entry->pts + next->pts) / 2;
} else if (src->duration) {
entry2->pts = entry->pts + src->duration / 2;
} else if (p->fps.estimate) {
entry2->pts = entry->pts + p->fps.estimate;
} else {
PL_ERR(p, "Frame with PTS %f specified as interlaced, but "
"no FPS information known yet! Please specify a "
"valid `pl_source_frame.duration`. Treating as "
"progressive...", src->pts);
PL_ARRAY_INSERT_AT(p, p->queue, i, entry);
pl_free(entry2);
break;
}
entry->field = src->first_field;
entry2->primary = entry_ref(entry);
entry2->field = pl_field_other(entry->field);
entry2->signature = p->signature++;
PL_TRACE(p, "Added second field id %"PRIu64" with PTS %f",
entry2->signature, entry2->pts);
// Link previous/next frames
if (prev) {
entry->prev = entry_ref(PL_DEF(prev->primary, prev));
entry2->prev = entry_ref(PL_DEF(prev->primary, prev));
// Retroactively re-link the previous frames that should
// be referencing this frame
for (int j = i - 1; j >= 0; --j) {
struct entry *e = p->queue.elem[j];
if (e != prev && e != prev->primary)
break;
entry_deref(p, &e->next, true);
e->next = entry_ref(entry);
if (e->dirty) { // reset signature to signal change
e->signature = p->signature++;
e->dirty = false;
}
}
}
if (next) {
entry->next = entry_ref(PL_DEF(next->primary, next));
entry2->next = entry_ref(PL_DEF(next->primary, next));
for (int j = i; j < p->queue.num; j++) {
struct entry *e = p->queue.elem[j];
if (e != next && e != next->primary)
break;
entry_deref(p, &e->prev, true);
e->prev = entry_ref(entry);
if (e->dirty) {
e->signature = p->signature++;
e->dirty = false;
}
}
}
PL_ARRAY_INSERT_AT(p, p->queue, i, entry);
PL_ARRAY_INSERT_AT(p, p->queue, i+1, entry2);
break;
}
}
}
p->want_frame = false;
}
void pl_queue_push(pl_queue p, const struct pl_source_frame *frame)
{
pl_mutex_lock(&p->lock_weak);
queue_push(p, frame);
pl_mutex_unlock(&p->lock_weak);
}
static inline bool entry_mapped(struct entry *entry)
{
return entry->mapped || (entry->primary && entry->primary->mapped);
}
static bool queue_has_room(pl_queue p)
{
if (p->want_frame)
return true;
int wanted_frames = PREFETCH_FRAMES;
if (p->fps.estimate && p->vps.estimate && p->vps.estimate <= 1.0f / MIN_FPS)
wanted_frames += ceilf(p->vps.estimate / p->fps.estimate) - 1;
// Examine the queue tail
for (int i = p->queue.num - 1; i >= 0; i--) {
if (entry_mapped(p->queue.elem[i]))
return true;
if (p->queue.num - i >= wanted_frames)
return false;
}
return true;
}
bool pl_queue_push_block(pl_queue p, uint64_t timeout,
const struct pl_source_frame *frame)
{
pl_mutex_lock(&p->lock_weak);
if (!timeout || !frame || p->eof)
goto skip_blocking;
while (!queue_has_room(p) && !p->eof) {
if (pl_cond_timedwait(&p->wakeup, &p->lock_weak, timeout) == ETIMEDOUT) {
pl_mutex_unlock(&p->lock_weak);
return false;
}
}
skip_blocking:
queue_push(p, frame);
pl_mutex_unlock(&p->lock_weak);
return true;
}
static void report_estimates(pl_queue p)
{
if (p->fps.total >= MIN_SAMPLES && p->vps.total >= MIN_SAMPLES) {
if (p->reported_fps && p->reported_vps) {
// Only re-report the estimates if they've changed considerably
// from the previously reported values
static const float report_delta = 0.3f;
float delta_fps = delta(p->reported_fps, p->fps.estimate);
float delta_vps = delta(p->reported_vps, p->vps.estimate);
if (delta_fps < report_delta && delta_vps < report_delta)
return;
}
PL_INFO(p, "Estimated source FPS: %.3f, display FPS: %.3f",
1.0 / p->fps.estimate, 1.0 / p->vps.estimate);
p->reported_fps = p->fps.estimate;
p->reported_vps = p->vps.estimate;
}
}
// note: may add more than one frame, since it releases the lock
static enum pl_queue_status get_frame(pl_queue p, const struct pl_queue_params *params)
{
if (p->eof)
return PL_QUEUE_EOF;
if (!params->get_frame) {
if (!params->timeout)
return PL_QUEUE_MORE;
p->want_frame = true;
pl_cond_signal(&p->wakeup);
while (p->want_frame) {
if (pl_cond_timedwait(&p->wakeup, &p->lock_weak, params->timeout) == ETIMEDOUT)
return PL_QUEUE_MORE;
}
return p->eof ? PL_QUEUE_EOF : PL_QUEUE_OK;
}
// Don't hold the weak mutex while calling into `get_frame`, to allow
// `pl_queue_push` to run concurrently while we're waiting for frames
pl_mutex_unlock(&p->lock_weak);
struct pl_source_frame src;
enum pl_queue_status ret;
switch ((ret = params->get_frame(&src, params))) {
case PL_QUEUE_OK:
pl_queue_push(p, &src);
break;
case PL_QUEUE_EOF:
pl_queue_push(p, NULL);
break;
case PL_QUEUE_MORE:
case PL_QUEUE_ERR:
break;
}
pl_mutex_lock(&p->lock_weak);
return ret;
}
static inline bool map_frame(pl_queue p, struct entry *entry)
{
if (!entry->mapped) {
PL_TRACE(p, "Mapping frame id %"PRIu64" with PTS %f",
entry->signature, entry->pts);
entry->mapped = true;
entry->ok = entry->src.map(p->gpu, entry->cache.tex,
&entry->src, &entry->frame);
if (!entry->ok)
PL_ERR(p, "Failed mapping frame id %"PRIu64" with PTS %f",
entry->signature, entry->pts);
}
return entry->ok;
}
static bool map_entry(pl_queue p, struct entry *entry)
{
bool ok = map_frame(p, entry->primary ? entry->primary : entry);
if (entry->prev)
ok &= map_frame(p, entry->prev);
if (entry->next)
ok &= map_frame(p, entry->next);
if (!ok)
return false;
if (entry->primary)
entry->frame = entry->primary->frame;
if (entry->field) {
entry->frame.field = entry->field;
entry->frame.first_field = PL_DEF(entry->primary, entry)->src.first_field;
entry->frame.prev = entry->prev ? &entry->prev->frame : NULL;
entry->frame.next = entry->next ? &entry->next->frame : NULL;
entry->dirty = true;
}
return true;
}
static bool entry_complete(struct entry *entry)
{
return entry->field ? !!entry->next : true;
}
// Advance the queue as needed to make sure idx 0 is the last frame before
// `pts`, and idx 1 is the first frame after `pts` (unless this is the last).
//
// Returns PL_QUEUE_OK only if idx 0 is still legal under ZOH semantics.
static enum pl_queue_status advance(pl_queue p, double pts,
const struct pl_queue_params *params)
{
// Cull all frames except the last frame before `pts`
int culled = 0;
for (int i = 1; i < p->queue.num; i++) {
if (p->queue.elem[i]->pts <= pts) {
entry_cull(p, p->queue.elem[i - 1], true);
culled++;
}
}
PL_ARRAY_REMOVE_RANGE(p->queue, 0, culled);
// Keep adding new frames until we find one in the future, or EOF
enum pl_queue_status ret = PL_QUEUE_OK;
while (p->queue.num < 2) {
switch ((ret = get_frame(p, params))) {
case PL_QUEUE_ERR:
return ret;
case PL_QUEUE_EOF:
if (!p->queue.num)
return ret;
goto done;
case PL_QUEUE_MORE:
case PL_QUEUE_OK:
while (p->queue.num > 1 && p->queue.elem[1]->pts <= pts) {
entry_cull(p, p->queue.elem[0], true);
PL_ARRAY_REMOVE_AT(p->queue, 0);
}
if (ret == PL_QUEUE_MORE)
return ret;
continue;
}
}
if (!entry_complete(p->queue.elem[1])) {
switch (get_frame(p, params)) {
case PL_QUEUE_ERR:
return PL_QUEUE_ERR;
case PL_QUEUE_MORE:
ret = PL_QUEUE_MORE;
// fall through
case PL_QUEUE_EOF:
case PL_QUEUE_OK:
goto done;
}
}
done:
if (p->eof && p->queue.num == 1) {
if (p->queue.elem[0]->pts == 0.0 || !p->fps.estimate) {
// If the last frame has PTS 0.0, or we have no FPS estimate, then
// this is probably a single-frame file, in which case we want to
// extend the ZOH to infinity, rather than returning. Not a perfect
// heuristic, but w/e
return PL_QUEUE_OK;
}
// Last frame is held for an extra `p->fps.estimate` duration,
// afterwards this function just returns EOF.
if (pts < p->queue.elem[0]->pts + p->fps.estimate) {
ret = PL_QUEUE_OK;
} else {
entry_cull(p, p->queue.elem[0], true);
p->queue.num = 0;
return PL_QUEUE_EOF;
}
}
pl_assert(p->queue.num);
return ret;
}
static inline enum pl_queue_status point(pl_queue p, struct pl_frame_mix *mix,
const struct pl_queue_params *params)
{
if (!p->queue.num) {
*mix = (struct pl_frame_mix) {0};
return PL_QUEUE_MORE;
}
// Find closest frame (nearest neighbour semantics)
struct entry *entry = p->queue.elem[0];
if (entry->pts > params->pts) { // first frame not visible yet
*mix = (struct pl_frame_mix) {0};
return PL_QUEUE_OK;
}
double best = fabs(entry->pts - params->pts);
for (int i = 1; i < p->queue.num; i++) {
double dist = fabs(p->queue.elem[i]->pts - params->pts);
if (dist < best) {
entry = p->queue.elem[i];
best = dist;
continue;
} else {
break;
}
}
if (!map_entry(p, entry))
return PL_QUEUE_ERR;
// Return a mix containing only this single frame
p->tmp_sig.num = p->tmp_ts.num = p->tmp_frame.num = 0;
PL_ARRAY_APPEND(p, p->tmp_sig, entry->signature);
PL_ARRAY_APPEND(p, p->tmp_frame, &entry->frame);
PL_ARRAY_APPEND(p, p->tmp_ts, 0.0);
*mix = (struct pl_frame_mix) {
.num_frames = 1,
.frames = p->tmp_frame.elem,
.signatures = p->tmp_sig.elem,
.timestamps = p->tmp_ts.elem,
.vsync_duration = 1.0,
};
PL_TRACE(p, "Showing single frame id %"PRIu64" with PTS %f for target PTS %f",
entry->signature, entry->pts, params->pts);
report_estimates(p);
return PL_QUEUE_OK;
}
// Present a single frame as appropriate for `pts`
static enum pl_queue_status nearest(pl_queue p, struct pl_frame_mix *mix,
const struct pl_queue_params *params)
{
enum pl_queue_status ret;
switch ((ret = advance(p, params->pts, params))) {
case PL_QUEUE_ERR:
case PL_QUEUE_EOF:
return ret;
case PL_QUEUE_OK:
case PL_QUEUE_MORE:
if (mix && point(p, mix, params) == PL_QUEUE_ERR)
return PL_QUEUE_ERR;
return ret;
}
pl_unreachable();
}
// Special case of `interpolate` for radius = 0, in which case we need exactly
// the previous frame and the following frame
static enum pl_queue_status oversample(pl_queue p, struct pl_frame_mix *mix,
const struct pl_queue_params *params)
{
enum pl_queue_status ret;
switch ((ret = advance(p, params->pts, params))) {
case PL_QUEUE_ERR:
case PL_QUEUE_EOF:
return ret;
case PL_QUEUE_OK:
break;
case PL_QUEUE_MORE:
if (!p->queue.num) {
if (mix)
*mix = (struct pl_frame_mix) {0};
return ret;
}
break;
}
if (!mix)
return PL_QUEUE_OK;
// Can't oversample with only a single frame, fall back to point sampling
if (p->queue.num < 2 || p->queue.elem[0]->pts > params->pts) {
if (point(p, mix, params) != PL_QUEUE_OK)
return PL_QUEUE_ERR;
return ret;
}
struct entry *entries[2] = { p->queue.elem[0], p->queue.elem[1] };
pl_assert(entries[0]->pts <= params->pts);
pl_assert(entries[1]->pts >= params->pts);
// Returning a mix containing both of these two frames
p->tmp_sig.num = p->tmp_ts.num = p->tmp_frame.num = 0;
for (int i = 0; i < 2; i++) {
if (!map_entry(p, entries[i]))
return PL_QUEUE_ERR;
float ts = (entries[i]->pts - params->pts) / p->fps.estimate;
PL_ARRAY_APPEND(p, p->tmp_sig, entries[i]->signature);
PL_ARRAY_APPEND(p, p->tmp_frame, &entries[i]->frame);
PL_ARRAY_APPEND(p, p->tmp_ts, ts);
}
*mix = (struct pl_frame_mix) {
.num_frames = 2,
.frames = p->tmp_frame.elem,
.signatures = p->tmp_sig.elem,
.timestamps = p->tmp_ts.elem,
.vsync_duration = p->vps.estimate / p->fps.estimate,
};
PL_TRACE(p, "Oversampling 2 frames for target PTS %f:", params->pts);
for (int i = 0; i < mix->num_frames; i++)
PL_TRACE(p, " id %"PRIu64" ts %f", mix->signatures[i], mix->timestamps[i]);
report_estimates(p);
return ret;
}
// Present a mixture of frames, relative to the vsync ratio
static enum pl_queue_status interpolate(pl_queue p, struct pl_frame_mix *mix,
const struct pl_queue_params *params)
{
// No FPS estimate available, possibly source contains only a single frame,
// or this is the first frame to be rendered. Fall back to point sampling.
if (!p->fps.estimate)
return nearest(p, mix, params);
// Silently disable interpolation if the ratio dips lower than the
// configured threshold
float ratio = fabs(p->fps.estimate / p->vps.estimate - 1.0);
if (ratio < params->interpolation_threshold) {
if (!p->threshold_frames) {
PL_INFO(p, "Detected fps ratio %.4f below threshold %.4f, "
"disabling interpolation",
ratio, params->interpolation_threshold);
}
p->threshold_frames = THRESHOLD_FRAMES + 1;
return nearest(p, mix, params);
} else if (ratio < THRESHOLD_MAX_RATIO && p->threshold_frames > 1) {
p->threshold_frames--;
return nearest(p, mix, params);
} else {
if (p->threshold_frames) {
PL_INFO(p, "Detected fps ratio %.4f exceeds threshold %.4f, "
"re-enabling interpolation",
ratio, params->interpolation_threshold);
}
p->threshold_frames = 0;
}
// No radius information, special case in which we only need the previous
// and next frames.
if (!params->radius)
return oversample(p, mix, params);
pl_assert(p->fps.estimate && p->vps.estimate);
float radius = params->radius * fmaxf(1.0f, p->vps.estimate / p->fps.estimate);
double min_pts = params->pts - radius * p->fps.estimate,
max_pts = params->pts + radius * p->fps.estimate;
enum pl_queue_status ret;
switch ((ret = advance(p, min_pts, params))) {
case PL_QUEUE_ERR:
case PL_QUEUE_EOF:
return ret;
case PL_QUEUE_MORE:
goto done;
case PL_QUEUE_OK:
break;
}
// Keep adding new frames until we've covered the range we care about
pl_assert(p->queue.num);
while (p->queue.elem[p->queue.num - 1]->pts < max_pts) {
switch ((ret = get_frame(p, params))) {
case PL_QUEUE_ERR:
return ret;
case PL_QUEUE_MORE:
goto done;
case PL_QUEUE_EOF:;
// Don't forward EOF until we've held the last frame for the
// desired ZOH hold duration
double last_pts = p->queue.elem[p->queue.num - 1]->pts;
if (last_pts && params->pts >= last_pts + p->fps.estimate)
return ret;
ret = PL_QUEUE_OK;
goto done;
case PL_QUEUE_OK:
continue;
}
}
if (!entry_complete(p->queue.elem[p->queue.num - 1])) {
switch ((ret = get_frame(p, params))) {
case PL_QUEUE_MORE:
case PL_QUEUE_OK:
break;
case PL_QUEUE_ERR:
case PL_QUEUE_EOF:
return ret;
}
}
done: ;
if (!mix)
return PL_QUEUE_OK;
// Construct a mix object representing the current queue state, starting at
// the last frame before `min_pts` to make sure there's a fallback frame
// available for ZOH semantics.
p->tmp_sig.num = p->tmp_ts.num = p->tmp_frame.num = 0;
for (int i = 0; i < p->queue.num; i++) {
struct entry *entry = p->queue.elem[i];
if (entry->pts > max_pts)
break;
if (!map_entry(p, entry))
return PL_QUEUE_ERR;
float ts = (entry->pts - params->pts) / p->fps.estimate;
PL_ARRAY_APPEND(p, p->tmp_sig, entry->signature);
PL_ARRAY_APPEND(p, p->tmp_frame, &entry->frame);
PL_ARRAY_APPEND(p, p->tmp_ts, ts);
}
*mix = (struct pl_frame_mix) {
.num_frames = p->tmp_frame.num,
.frames = p->tmp_frame.elem,
.signatures = p->tmp_sig.elem,
.timestamps = p->tmp_ts.elem,
.vsync_duration = p->vps.estimate / p->fps.estimate,
};
PL_TRACE(p, "Showing mix of %d frames for target PTS %f:",
mix->num_frames, params->pts);
for (int i = 0; i < mix->num_frames; i++)
PL_TRACE(p, " id %"PRIu64" ts %f", mix->signatures[i], mix->timestamps[i]);
report_estimates(p);
return ret;
}
static bool prefill(pl_queue p, const struct pl_queue_params *params)
{
int min_frames = 2 * ceilf(params->radius);
if (p->fps.estimate && p->vps.estimate && p->vps.estimate <= 1.0f / MIN_FPS)
min_frames *= ceilf(p->vps.estimate / p->fps.estimate);
min_frames = PL_MAX(min_frames, PREFETCH_FRAMES);
while (p->queue.num < min_frames) {
switch (get_frame(p, params)) {
case PL_QUEUE_ERR:
return false;
case PL_QUEUE_EOF:
case PL_QUEUE_MORE:
return true;
case PL_QUEUE_OK:
continue;
}
}
// In the most likely case, the first few frames will all be required. So
// force-map them all to initialize GPU state on initial rendering. This is
// better than the alternative of missing the cache later, when timing is
// more relevant.
for (int i = 0; i < min_frames; i++) {
if (!map_entry(p, p->queue.elem[i]))
return false;
}
return true;
}
enum pl_queue_status pl_queue_update(pl_queue p, struct pl_frame_mix *out_mix,
const struct pl_queue_params *params)
{
pl_mutex_lock(&p->lock_strong);
pl_mutex_lock(&p->lock_weak);
default_estimate(&p->vps, params->vsync_duration);
float delta = params->pts - p->prev_pts;
if (delta < 0.0f) {
// This is a backwards PTS jump. This is something we can handle
// semi-gracefully, but only if we haven't culled past the current
// frame yet.
if (p->queue.num && p->queue.elem[0]->pts > params->pts) {
PL_ERR(p, "Requested PTS %f is lower than the oldest frame "
"PTS %f. This is not supported, PTS must be monotonically "
"increasing! Please use `pl_queue_reset` to reset the frame "
"queue on discontinuous PTS jumps.",
params->pts, p->queue.elem[0]->pts);
pl_mutex_unlock(&p->lock_weak);
pl_mutex_unlock(&p->lock_strong);
return PL_QUEUE_ERR;
}
} else if (delta > 1.0f) {
// A jump of more than a second is probably the result of a
// discontinuous jump after a suspend. To prevent this from exploding
// the FPS estimate, treat this as a new frame.
PL_TRACE(p, "Discontinuous target PTS jump %f -> %f, ignoring...",
p->prev_pts, params->pts);
} else if (delta > 0) {
update_estimate(&p->vps, params->pts - p->prev_pts);
}
p->prev_pts = params->pts;
// As a special case, prefill the queue if this is the first frame
if (!params->pts && !p->queue.num) {
if (!prefill(p, params)) {
pl_mutex_unlock(&p->lock_weak);
pl_mutex_unlock(&p->lock_strong);
return PL_QUEUE_ERR;
}
}
// Ignore unrealistically high or low FPS, common near start of playback
static const float max_vsync = 1.0 / MIN_FPS;
static const float min_vsync = 1.0 / MAX_FPS;
bool estimation_ok = p->vps.estimate > min_vsync && p->vps.estimate < max_vsync;
enum pl_queue_status ret;
if (estimation_ok || params->vsync_duration > 0) {
// We know the vsync duration, so construct an interpolation mix
ret = interpolate(p, out_mix, params);
} else {
// We don't know the vsync duration (yet), so just point-sample
ret = nearest(p, out_mix, params);
}
pl_cond_signal(&p->wakeup);
pl_mutex_unlock(&p->lock_weak);
pl_mutex_unlock(&p->lock_strong);
return ret;
}
float pl_queue_estimate_fps(pl_queue p)
{
pl_mutex_lock(&p->lock_weak);
float estimate = p->fps.estimate;
pl_mutex_unlock(&p->lock_weak);
return estimate ? 1.0f / estimate : 0.0f;
}
float pl_queue_estimate_vps(pl_queue p)
{
pl_mutex_lock(&p->lock_weak);
float estimate = p->vps.estimate;
pl_mutex_unlock(&p->lock_weak);
return estimate ? 1.0f / estimate : 0.0f;
}
int pl_queue_num_frames(pl_queue p)
{
pl_mutex_lock(&p->lock_weak);
int count = p->queue.num;
pl_mutex_unlock(&p->lock_weak);
return count;
}
bool pl_queue_peek(pl_queue p, int idx, struct pl_source_frame *out)
{
pl_mutex_lock(&p->lock_weak);
bool ok = idx >= 0 && idx < p->queue.num;
if (ok)
*out = p->queue.elem[idx]->src;
pl_mutex_unlock(&p->lock_weak);
return ok;
}
|