summaryrefslogtreecommitdiffstats
path: root/basegfx/source/polygon/b2dpolygoncutandtouch.cxx
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-15 05:54:39 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-15 05:54:39 +0000
commit267c6f2ac71f92999e969232431ba04678e7437e (patch)
tree358c9467650e1d0a1d7227a21dac2e3d08b622b2 /basegfx/source/polygon/b2dpolygoncutandtouch.cxx
parentInitial commit. (diff)
downloadlibreoffice-267c6f2ac71f92999e969232431ba04678e7437e.tar.xz
libreoffice-267c6f2ac71f92999e969232431ba04678e7437e.zip
Adding upstream version 4:24.2.0.upstream/4%24.2.0
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'basegfx/source/polygon/b2dpolygoncutandtouch.cxx')
-rw-r--r--basegfx/source/polygon/b2dpolygoncutandtouch.cxx1077
1 files changed, 1077 insertions, 0 deletions
diff --git a/basegfx/source/polygon/b2dpolygoncutandtouch.cxx b/basegfx/source/polygon/b2dpolygoncutandtouch.cxx
new file mode 100644
index 0000000000..c91f0ec48f
--- /dev/null
+++ b/basegfx/source/polygon/b2dpolygoncutandtouch.cxx
@@ -0,0 +1,1077 @@
+/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
+/*
+ * This file is part of the LibreOffice project.
+ *
+ * This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/.
+ *
+ * This file incorporates work covered by the following license notice:
+ *
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed
+ * with this work for additional information regarding copyright
+ * ownership. The ASF licenses this file to you under the Apache
+ * License, Version 2.0 (the "License"); you may not use this file
+ * except in compliance with the License. You may obtain a copy of
+ * the License at http://www.apache.org/licenses/LICENSE-2.0 .
+ */
+
+#include <basegfx/polygon/b2dpolygoncutandtouch.hxx>
+#include <osl/diagnose.h>
+#include <sal/log.hxx>
+#include <basegfx/numeric/ftools.hxx>
+#include <basegfx/point/b2dpoint.hxx>
+#include <basegfx/vector/b2dvector.hxx>
+#include <basegfx/range/b2drange.hxx>
+#include <basegfx/polygon/b2dpolygontools.hxx>
+#include <basegfx/curve/b2dcubicbezier.hxx>
+
+#include <vector>
+#include <algorithm>
+#include <memory>
+
+#define SUBDIVIDE_FOR_CUT_TEST_COUNT (50)
+
+namespace basegfx
+{
+ namespace
+ {
+
+ class temporaryPoint
+ {
+ B2DPoint maPoint; // the new point
+ sal_uInt32 mnIndex; // index after which to insert
+ double mfCut; // parametric cut description [0.0 .. 1.0]
+
+ public:
+ temporaryPoint(const B2DPoint& rNewPoint, sal_uInt32 nIndex, double fCut)
+ : maPoint(rNewPoint),
+ mnIndex(nIndex),
+ mfCut(fCut)
+ {
+ }
+
+ bool operator<(const temporaryPoint& rComp) const
+ {
+ if(mnIndex == rComp.mnIndex)
+ {
+ return (mfCut < rComp.mfCut);
+ }
+
+ return (mnIndex < rComp.mnIndex);
+ }
+
+ const B2DPoint& getPoint() const { return maPoint; }
+ sal_uInt32 getIndex() const { return mnIndex; }
+ double getCut() const { return mfCut; }
+ };
+
+ typedef std::vector< temporaryPoint > temporaryPointVector;
+
+ class temporaryPolygonData
+ {
+ B2DPolygon maPolygon;
+ B2DRange maRange;
+ temporaryPointVector maPoints;
+
+ public:
+ const B2DPolygon& getPolygon() const { return maPolygon; }
+ void setPolygon(const B2DPolygon& rNew) { maPolygon = rNew; maRange = utils::getRange(maPolygon); }
+ const B2DRange& getRange() const { return maRange; }
+ temporaryPointVector& getTemporaryPointVector() { return maPoints; }
+ };
+
+ B2DPolygon mergeTemporaryPointsAndPolygon(const B2DPolygon& rCandidate, temporaryPointVector& rTempPoints)
+ {
+ // #i76891# mergeTemporaryPointsAndPolygon redesigned to be able to correctly handle
+ // single edges with/without control points
+ // #i101491# added counter for non-changing element count
+ const sal_uInt32 nTempPointCount(rTempPoints.size());
+
+ if(nTempPointCount)
+ {
+ B2DPolygon aRetval;
+ const sal_uInt32 nCount(rCandidate.count());
+
+ if(nCount)
+ {
+ // sort temp points to assure increasing fCut values and increasing indices
+ std::sort(rTempPoints.begin(), rTempPoints.end());
+
+ // prepare loop
+ B2DCubicBezier aEdge;
+ sal_uInt32 nNewInd(0);
+
+ // add start point
+ aRetval.append(rCandidate.getB2DPoint(0));
+
+ for(sal_uInt32 a(0); a < nCount; a++)
+ {
+ // get edge
+ rCandidate.getBezierSegment(a, aEdge);
+
+ if(aEdge.isBezier())
+ {
+ // control vectors involved for this edge
+ double fLeftStart(0.0);
+
+ // now add all points targeted to be at this index
+ while (nNewInd < nTempPointCount && rTempPoints[nNewInd].getIndex() == a && fLeftStart < 1.0)
+ {
+ const temporaryPoint& rTempPoint = rTempPoints[nNewInd++];
+
+ // split curve segment. Splits need to come sorted and need to be < 1.0. Also,
+ // since original segment is consumed from left to right, the cut values need
+ // to be scaled to the remaining part
+ B2DCubicBezier aLeftPart;
+ const double fRelativeSplitPoint((rTempPoint.getCut() - fLeftStart) / (1.0 - fLeftStart));
+ aEdge.split(fRelativeSplitPoint, &aLeftPart, &aEdge);
+ fLeftStart = rTempPoint.getCut();
+
+ // add left bow
+ aRetval.appendBezierSegment(aLeftPart.getControlPointA(), aLeftPart.getControlPointB(), rTempPoint.getPoint());
+ }
+
+ // add remaining bow
+ aRetval.appendBezierSegment(aEdge.getControlPointA(), aEdge.getControlPointB(), aEdge.getEndPoint());
+ }
+ else
+ {
+ // add all points targeted to be at this index
+ while(nNewInd < nTempPointCount && rTempPoints[nNewInd].getIndex() == a)
+ {
+ const temporaryPoint& rTempPoint = rTempPoints[nNewInd++];
+ const B2DPoint& aNewPoint(rTempPoint.getPoint());
+
+ // do not add points double
+ if(!aRetval.getB2DPoint(aRetval.count() - 1).equal(aNewPoint))
+ {
+ aRetval.append(aNewPoint);
+ }
+ }
+
+ // add edge end point
+ aRetval.append(aEdge.getEndPoint());
+ }
+ }
+ }
+
+ if(rCandidate.isClosed())
+ {
+ // set closed flag and correct last point (which is added double now).
+ utils::closeWithGeometryChange(aRetval);
+ }
+
+ return aRetval;
+ }
+ else
+ {
+ return rCandidate;
+ }
+ }
+
+ void adaptAndTransferCutsWithBezierSegment(
+ const temporaryPointVector& rPointVector, const B2DPolygon& rPolygon,
+ sal_uInt32 nInd, temporaryPointVector& rTempPoints)
+ {
+ // assuming that the subdivision to create rPolygon used equidistant pieces
+ // (as in adaptiveSubdivideByCount) it is now possible to calculate back the
+ // cut positions in the polygon to relative cut positions on the original bezier
+ // segment.
+ const sal_uInt32 nEdgeCount(rPolygon.count() ? rPolygon.count() - 1 : 0);
+
+ if(!rPointVector.empty() && nEdgeCount)
+ {
+ for( const auto& rTempPoint : rPointVector )
+ {
+ const double fCutPosInPolygon(static_cast<double>(rTempPoint.getIndex()) + rTempPoint.getCut());
+ const double fRelativeCutPos(fCutPosInPolygon / static_cast<double>(nEdgeCount));
+ rTempPoints.emplace_back(rTempPoint.getPoint(), nInd, fRelativeCutPos);
+ }
+ }
+ }
+
+ } // end of anonymous namespace
+} // end of namespace basegfx
+
+namespace basegfx
+{
+ namespace
+ {
+
+ // predefines for calls to this methods before method implementation
+
+ void findCuts(const B2DPolygon& rCandidate, temporaryPointVector& rTempPoints, size_t* pPointLimit = nullptr);
+ void findTouches(const B2DPolygon& rEdgePolygon, const B2DPolygon& rPointPolygon, temporaryPointVector& rTempPoints);
+ void findCuts(const B2DPolygon& rCandidateA, const B2DPolygon& rCandidateB, temporaryPointVector& rTempPointsA, temporaryPointVector& rTempPointsB);
+
+ void findEdgeCutsTwoEdges(
+ const B2DPoint& rCurrA, const B2DPoint& rNextA,
+ const B2DPoint& rCurrB, const B2DPoint& rNextB,
+ sal_uInt32 nIndA, sal_uInt32 nIndB,
+ temporaryPointVector& rTempPointsA, temporaryPointVector& rTempPointsB)
+ {
+ // no null length edges
+ if(rCurrA.equal(rNextA) || rCurrB.equal(rNextB))
+ return;
+
+ // no common start/end points, this can be no cuts
+ if(rCurrB.equal(rCurrA) || rCurrB.equal(rNextA) || rNextB.equal(rCurrA) || rNextB.equal(rNextA))
+ return;
+
+ const B2DVector aVecA(rNextA - rCurrA);
+ const B2DVector aVecB(rNextB - rCurrB);
+ double fCut(aVecA.cross(aVecB));
+
+ if(fTools::equalZero(fCut))
+ return;
+
+ const double fZero(0.0);
+ const double fOne(1.0);
+ fCut = (aVecB.getY() * (rCurrB.getX() - rCurrA.getX()) + aVecB.getX() * (rCurrA.getY() - rCurrB.getY())) / fCut;
+
+ if (!fTools::betweenOrEqualEither(fCut, fZero, fOne))
+ return;
+
+ // it's a candidate, but also need to test parameter value of cut on line 2
+ double fCut2;
+
+ // choose the more precise version
+ if(fabs(aVecB.getX()) > fabs(aVecB.getY()))
+ {
+ fCut2 = (rCurrA.getX() + (fCut * aVecA.getX()) - rCurrB.getX()) / aVecB.getX();
+ }
+ else
+ {
+ fCut2 = (rCurrA.getY() + (fCut * aVecA.getY()) - rCurrB.getY()) / aVecB.getY();
+ }
+
+ if (fTools::betweenOrEqualEither(fCut2, fZero, fOne))
+ {
+ // cut is in range, add point. Two edges can have only one cut, but
+ // add a cut point to each list. The lists may be the same for
+ // self intersections.
+ const B2DPoint aCutPoint(interpolate(rCurrA, rNextA, fCut));
+ rTempPointsA.emplace_back(aCutPoint, nIndA, fCut);
+ rTempPointsB.emplace_back(aCutPoint, nIndB, fCut2);
+ }
+ }
+
+ void findCutsAndTouchesAndCommonForBezier(const B2DPolygon& rCandidateA, const B2DPolygon& rCandidateB, temporaryPointVector& rTempPointsA, temporaryPointVector& rTempPointsB)
+ {
+ // #i76891#
+ // This new method is necessary since in findEdgeCutsBezierAndEdge and in findEdgeCutsTwoBeziers
+ // it is not sufficient to use findCuts() recursively. This will indeed find the cuts between the
+ // segments of the two temporarily adaptive subdivided bezier segments, but not the touches or
+ // equal points of them.
+ // It would be possible to find the touches using findTouches(), but at last with common points
+ // the adding of cut points (temporary points) would fail. But for these temporarily adaptive
+ // subdivided bezier segments, common points may be not very likely, but the bug shows that it
+ // happens.
+ // Touch points are a little bit more likely than common points. All in all it is best to use
+ // a specialized method here which can profit from knowing that it is working on a special
+ // family of B2DPolygons: no curve segments included and not closed.
+ OSL_ENSURE(!rCandidateA.areControlPointsUsed() && !rCandidateB.areControlPointsUsed(), "findCutsAndTouchesAndCommonForBezier only works with subdivided polygons (!)");
+ OSL_ENSURE(!rCandidateA.isClosed() && !rCandidateB.isClosed(), "findCutsAndTouchesAndCommonForBezier only works with opened polygons (!)");
+ const sal_uInt32 nPointCountA(rCandidateA.count());
+ const sal_uInt32 nPointCountB(rCandidateB.count());
+
+ if(nPointCountA <= 1 || nPointCountB <= 1)
+ return;
+
+ const sal_uInt32 nEdgeCountA(nPointCountA - 1);
+ const sal_uInt32 nEdgeCountB(nPointCountB - 1);
+ B2DPoint aCurrA(rCandidateA.getB2DPoint(0));
+
+ for(sal_uInt32 a(0); a < nEdgeCountA; a++)
+ {
+ const B2DPoint aNextA(rCandidateA.getB2DPoint(a + 1));
+ const B2DRange aRangeA(aCurrA, aNextA);
+ B2DPoint aCurrB(rCandidateB.getB2DPoint(0));
+
+ for(sal_uInt32 b(0); b < nEdgeCountB; b++)
+ {
+ const B2DPoint aNextB(rCandidateB.getB2DPoint(b + 1));
+ const B2DRange aRangeB(aCurrB, aNextB);
+
+ if(aRangeA.overlaps(aRangeB))
+ {
+ // no null length edges
+ if(!(aCurrA.equal(aNextA) || aCurrB.equal(aNextB)))
+ {
+ const B2DVector aVecA(aNextA - aCurrA);
+ const B2DVector aVecB(aNextB - aCurrB);
+ double fCutA(aVecA.cross(aVecB));
+
+ if(!fTools::equalZero(fCutA))
+ {
+ const double fZero(0.0);
+ const double fOne(1.0);
+ fCutA = (aVecB.getY() * (aCurrB.getX() - aCurrA.getX()) + aVecB.getX() * (aCurrA.getY() - aCurrB.getY())) / fCutA;
+
+ // use range [0.0 .. 1.0[, thus in the loop, all direct aCurrA cuts will be registered
+ // as 0.0 cut. The 1.0 cut will be registered in the next loop step
+ if(fTools::moreOrEqual(fCutA, fZero) && fTools::less(fCutA, fOne))
+ {
+ // it's a candidate, but also need to test parameter value of cut on line 2
+ double fCutB;
+
+ // choose the more precise version
+ if(fabs(aVecB.getX()) > fabs(aVecB.getY()))
+ {
+ fCutB = (aCurrA.getX() + (fCutA * aVecA.getX()) - aCurrB.getX()) / aVecB.getX();
+ }
+ else
+ {
+ fCutB = (aCurrA.getY() + (fCutA * aVecA.getY()) - aCurrB.getY()) / aVecB.getY();
+ }
+
+ // use range [0.0 .. 1.0[, thus in the loop, all direct aCurrA cuts will be registered
+ // as 0.0 cut. The 1.0 cut will be registered in the next loop step
+ if(fTools::moreOrEqual(fCutB, fZero) && fTools::less(fCutB, fOne))
+ {
+ // cut is in both ranges. Add points for A and B
+ // #i111715# use fTools::equal instead of fTools::equalZero for better accuracy
+ if(fTools::equal(fCutA, fZero))
+ {
+ // ignore for start point in first edge; this is handled
+ // by outer methods and would just produce a double point
+ if(a)
+ {
+ rTempPointsA.emplace_back(aCurrA, a, 0.0);
+ }
+ }
+ else
+ {
+ const B2DPoint aCutPoint(interpolate(aCurrA, aNextA, fCutA));
+ rTempPointsA.emplace_back(aCutPoint, a, fCutA);
+ }
+
+ // #i111715# use fTools::equal instead of fTools::equalZero for better accuracy
+ if(fTools::equal(fCutB, fZero))
+ {
+ // ignore for start point in first edge; this is handled
+ // by outer methods and would just produce a double point
+ if(b)
+ {
+ rTempPointsB.emplace_back(aCurrB, b, 0.0);
+ }
+ }
+ else
+ {
+ const B2DPoint aCutPoint(interpolate(aCurrB, aNextB, fCutB));
+ rTempPointsB.emplace_back(aCutPoint, b, fCutB);
+ }
+ }
+ }
+ }
+ }
+ }
+
+ // prepare next step
+ aCurrB = aNextB;
+ }
+
+ // prepare next step
+ aCurrA = aNextA;
+ }
+ }
+
+ void findEdgeCutsBezierAndEdge(
+ const B2DCubicBezier& rCubicA,
+ const B2DPoint& rCurrB, const B2DPoint& rNextB,
+ sal_uInt32 nIndA, sal_uInt32 nIndB,
+ temporaryPointVector& rTempPointsA, temporaryPointVector& rTempPointsB)
+ {
+ // find all cuts between given bezier segment and edge. Add an entry to the tempPoints
+ // for each common point with the cut value describing the relative position on given
+ // bezier segment and edge.
+ B2DPolygon aTempPolygonA;
+ B2DPolygon aTempPolygonEdge;
+ temporaryPointVector aTempPointVectorA;
+ temporaryPointVector aTempPointVectorEdge;
+
+ // create subdivided polygons and find cuts between them
+ // Keep adaptiveSubdivideByCount due to needed quality
+ aTempPolygonA.reserve(SUBDIVIDE_FOR_CUT_TEST_COUNT + 8);
+ aTempPolygonA.append(rCubicA.getStartPoint());
+ rCubicA.adaptiveSubdivideByCount(aTempPolygonA, SUBDIVIDE_FOR_CUT_TEST_COUNT);
+ aTempPolygonEdge.append(rCurrB);
+ aTempPolygonEdge.append(rNextB);
+
+ // #i76891# using findCuts recursively is not sufficient here
+ findCutsAndTouchesAndCommonForBezier(aTempPolygonA, aTempPolygonEdge, aTempPointVectorA, aTempPointVectorEdge);
+
+ if(!aTempPointVectorA.empty())
+ {
+ // adapt tempVector entries to segment
+ adaptAndTransferCutsWithBezierSegment(aTempPointVectorA, aTempPolygonA, nIndA, rTempPointsA);
+ }
+
+ // append remapped tempVector entries for edge to tempPoints for edge
+ for(const temporaryPoint & rTempPoint : aTempPointVectorEdge)
+ {
+ rTempPointsB.emplace_back(rTempPoint.getPoint(), nIndB, rTempPoint.getCut());
+ }
+ }
+
+ void findEdgeCutsTwoBeziers(
+ const B2DCubicBezier& rCubicA,
+ const B2DCubicBezier& rCubicB,
+ sal_uInt32 nIndA, sal_uInt32 nIndB,
+ temporaryPointVector& rTempPointsA, temporaryPointVector& rTempPointsB)
+ {
+ // find all cuts between the two given bezier segments. Add an entry to the tempPoints
+ // for each common point with the cut value describing the relative position on given
+ // bezier segments.
+ B2DPolygon aTempPolygonA;
+ B2DPolygon aTempPolygonB;
+ temporaryPointVector aTempPointVectorA;
+ temporaryPointVector aTempPointVectorB;
+
+ // create subdivided polygons and find cuts between them
+ // Keep adaptiveSubdivideByCount due to needed quality
+ aTempPolygonA.reserve(SUBDIVIDE_FOR_CUT_TEST_COUNT + 8);
+ aTempPolygonA.append(rCubicA.getStartPoint());
+ rCubicA.adaptiveSubdivideByCount(aTempPolygonA, SUBDIVIDE_FOR_CUT_TEST_COUNT);
+ aTempPolygonB.reserve(SUBDIVIDE_FOR_CUT_TEST_COUNT + 8);
+ aTempPolygonB.append(rCubicB.getStartPoint());
+ rCubicB.adaptiveSubdivideByCount(aTempPolygonB, SUBDIVIDE_FOR_CUT_TEST_COUNT);
+
+ // #i76891# using findCuts recursively is not sufficient here
+ findCutsAndTouchesAndCommonForBezier(aTempPolygonA, aTempPolygonB, aTempPointVectorA, aTempPointVectorB);
+
+ if(!aTempPointVectorA.empty())
+ {
+ // adapt tempVector entries to segment
+ adaptAndTransferCutsWithBezierSegment(aTempPointVectorA, aTempPolygonA, nIndA, rTempPointsA);
+ }
+
+ if(!aTempPointVectorB.empty())
+ {
+ // adapt tempVector entries to segment
+ adaptAndTransferCutsWithBezierSegment(aTempPointVectorB, aTempPolygonB, nIndB, rTempPointsB);
+ }
+ }
+
+ void findEdgeCutsOneBezier(
+ const B2DCubicBezier& rCubicA,
+ sal_uInt32 nInd, temporaryPointVector& rTempPoints)
+ {
+ // avoid expensive part of this method if possible
+ // TODO: use hasAnyExtremum() method instead when it becomes available
+ double fDummy;
+ const bool bHasAnyExtremum = rCubicA.getMinimumExtremumPosition( fDummy );
+ if( !bHasAnyExtremum )
+ return;
+
+ // find all self-intersections on the given bezier segment. Add an entry to the tempPoints
+ // for each self intersection point with the cut value describing the relative position on given
+ // bezier segment.
+ B2DPolygon aTempPolygon;
+ temporaryPointVector aTempPointVector;
+
+ // create subdivided polygon and find cuts on it
+ // Keep adaptiveSubdivideByCount due to needed quality
+ aTempPolygon.reserve(SUBDIVIDE_FOR_CUT_TEST_COUNT + 8);
+ aTempPolygon.append(rCubicA.getStartPoint());
+ rCubicA.adaptiveSubdivideByCount(aTempPolygon, SUBDIVIDE_FOR_CUT_TEST_COUNT);
+ findCuts(aTempPolygon, aTempPointVector);
+
+ if(!aTempPointVector.empty())
+ {
+ // adapt tempVector entries to segment
+ adaptAndTransferCutsWithBezierSegment(aTempPointVector, aTempPolygon, nInd, rTempPoints);
+ }
+ }
+
+ void findCuts(const B2DPolygon& rCandidate, temporaryPointVector& rTempPoints, size_t* pPointLimit)
+ {
+ // find out if there are edges with intersections (self-cuts). If yes, add
+ // entries to rTempPoints accordingly
+ const sal_uInt32 nPointCount(rCandidate.count());
+
+ if(!nPointCount)
+ return;
+
+ const sal_uInt32 nEdgeCount(rCandidate.isClosed() ? nPointCount : nPointCount - 1);
+
+ if(!nEdgeCount)
+ return;
+
+ const bool bCurvesInvolved(rCandidate.areControlPointsUsed());
+
+ if(bCurvesInvolved)
+ {
+ B2DCubicBezier aCubicA;
+ B2DCubicBezier aCubicB;
+
+ for(sal_uInt32 a(0); a < nEdgeCount - 1; a++)
+ {
+ rCandidate.getBezierSegment(a, aCubicA);
+ aCubicA.testAndSolveTrivialBezier();
+ const bool bEdgeAIsCurve(aCubicA.isBezier());
+ const B2DRange aRangeA(aCubicA.getRange());
+
+ if(bEdgeAIsCurve)
+ {
+ // curved segments may have self-intersections, do not forget those (!)
+ findEdgeCutsOneBezier(aCubicA, a, rTempPoints);
+ }
+
+ for(sal_uInt32 b(a + 1); b < nEdgeCount; b++)
+ {
+ rCandidate.getBezierSegment(b, aCubicB);
+ aCubicB.testAndSolveTrivialBezier();
+ const B2DRange aRangeB(aCubicB.getRange());
+
+ // only overlapping segments need to be tested
+ // consecutive segments touch of course
+ bool bOverlap = false;
+ if( b > a+1)
+ bOverlap = aRangeA.overlaps(aRangeB);
+ else
+ bOverlap = aRangeA.overlapsMore(aRangeB);
+ if( bOverlap)
+ {
+ const bool bEdgeBIsCurve(aCubicB.isBezier());
+ if(bEdgeAIsCurve && bEdgeBIsCurve)
+ {
+ // test for bezier-bezier cuts
+ findEdgeCutsTwoBeziers(aCubicA, aCubicB, a, b, rTempPoints, rTempPoints);
+ }
+ else if(bEdgeAIsCurve)
+ {
+ // test for bezier-edge cuts
+ findEdgeCutsBezierAndEdge(aCubicA, aCubicB.getStartPoint(), aCubicB.getEndPoint(), a, b, rTempPoints, rTempPoints);
+ }
+ else if(bEdgeBIsCurve)
+ {
+ // test for bezier-edge cuts
+ findEdgeCutsBezierAndEdge(aCubicB, aCubicA.getStartPoint(), aCubicA.getEndPoint(), b, a, rTempPoints, rTempPoints);
+ }
+ else
+ {
+ // test for simple edge-edge cuts
+ findEdgeCutsTwoEdges(aCubicA.getStartPoint(), aCubicA.getEndPoint(), aCubicB.getStartPoint(), aCubicB.getEndPoint(),
+ a, b, rTempPoints, rTempPoints);
+ }
+ }
+ }
+ }
+ }
+ else
+ {
+ B2DPoint aCurrA(rCandidate.getB2DPoint(0));
+
+ for(sal_uInt32 a(0); a < nEdgeCount - 1; a++)
+ {
+ const B2DPoint aNextA(rCandidate.getB2DPoint(a + 1 == nPointCount ? 0 : a + 1));
+ const B2DRange aRangeA(aCurrA, aNextA);
+ B2DPoint aCurrB(rCandidate.getB2DPoint(a + 1));
+
+ for(sal_uInt32 b(a + 1); b < nEdgeCount; b++)
+ {
+ const B2DPoint aNextB(rCandidate.getB2DPoint(b + 1 == nPointCount ? 0 : b + 1));
+ const B2DRange aRangeB(aCurrB, aNextB);
+
+ // consecutive segments touch of course
+ bool bOverlap = false;
+ if( b > a+1)
+ bOverlap = aRangeA.overlaps(aRangeB);
+ else
+ bOverlap = aRangeA.overlapsMore(aRangeB);
+ if( bOverlap)
+ {
+ findEdgeCutsTwoEdges(aCurrA, aNextA, aCurrB, aNextB, a, b, rTempPoints, rTempPoints);
+ }
+
+ if (pPointLimit && rTempPoints.size() > *pPointLimit)
+ break;
+
+ // prepare next step
+ aCurrB = aNextB;
+ }
+
+ // prepare next step
+ aCurrA = aNextA;
+ }
+ }
+
+ if (pPointLimit)
+ {
+ if (rTempPoints.size() > *pPointLimit)
+ *pPointLimit = 0;
+ else
+ *pPointLimit -= rTempPoints.size();
+ }
+ }
+
+ } // end of anonymous namespace
+} // end of namespace basegfx
+
+namespace basegfx
+{
+ namespace
+ {
+
+ void findTouchesOnEdge(
+ const B2DPoint& rCurr, const B2DPoint& rNext, const B2DPolygon& rPointPolygon,
+ sal_uInt32 nInd, temporaryPointVector& rTempPoints)
+ {
+ // find out if points from rPointPolygon are positioned on given edge. If Yes, add
+ // points there to represent touches (which may be enter or leave nodes later).
+ const sal_uInt32 nPointCount(rPointPolygon.count());
+
+ if(!nPointCount)
+ return;
+
+ const B2DRange aRange(rCurr, rNext);
+ const B2DVector aEdgeVector(rNext - rCurr);
+ bool bTestUsingX(fabs(aEdgeVector.getX()) > fabs(aEdgeVector.getY()));
+
+ for(sal_uInt32 a(0); a < nPointCount; a++)
+ {
+ const B2DPoint aTestPoint(rPointPolygon.getB2DPoint(a));
+
+ if(aRange.isInside(aTestPoint))
+ {
+ if(!aTestPoint.equal(rCurr) && !aTestPoint.equal(rNext))
+ {
+ const B2DVector aTestVector(aTestPoint - rCurr);
+
+ if(areParallel(aEdgeVector, aTestVector))
+ {
+ const double fCut(bTestUsingX
+ ? aTestVector.getX() / aEdgeVector.getX()
+ : aTestVector.getY() / aEdgeVector.getY());
+ const double fZero(0.0);
+ const double fOne(1.0);
+
+ if(fTools::more(fCut, fZero) && fTools::less(fCut, fOne))
+ {
+ rTempPoints.emplace_back(aTestPoint, nInd, fCut);
+ }
+ }
+ }
+ }
+ }
+ }
+
+ void findTouchesOnCurve(
+ const B2DCubicBezier& rCubicA, const B2DPolygon& rPointPolygon,
+ sal_uInt32 nInd, temporaryPointVector& rTempPoints)
+ {
+ // find all points from rPointPolygon which touch the given bezier segment. Add an entry
+ // for each touch to the given pointVector. The cut for that entry is the relative position on
+ // the given bezier segment.
+ B2DPolygon aTempPolygon;
+ temporaryPointVector aTempPointVector;
+
+ // create subdivided polygon and find cuts on it
+ // Keep adaptiveSubdivideByCount due to needed quality
+ aTempPolygon.reserve(SUBDIVIDE_FOR_CUT_TEST_COUNT + 8);
+ aTempPolygon.append(rCubicA.getStartPoint());
+ rCubicA.adaptiveSubdivideByCount(aTempPolygon, SUBDIVIDE_FOR_CUT_TEST_COUNT);
+ findTouches(aTempPolygon, rPointPolygon, aTempPointVector);
+
+ if(!aTempPointVector.empty())
+ {
+ // adapt tempVector entries to segment
+ adaptAndTransferCutsWithBezierSegment(aTempPointVector, aTempPolygon, nInd, rTempPoints);
+ }
+ }
+
+ void findTouches(const B2DPolygon& rEdgePolygon, const B2DPolygon& rPointPolygon, temporaryPointVector& rTempPoints)
+ {
+ // find out if points from rPointPolygon touch edges from rEdgePolygon. If yes,
+ // add entries to rTempPoints
+ const sal_uInt32 nPointCount(rPointPolygon.count());
+ const sal_uInt32 nEdgePointCount(rEdgePolygon.count());
+
+ if(!(nPointCount && nEdgePointCount))
+ return;
+
+ const sal_uInt32 nEdgeCount(rEdgePolygon.isClosed() ? nEdgePointCount : nEdgePointCount - 1);
+ B2DPoint aCurr(rEdgePolygon.getB2DPoint(0));
+
+ for(sal_uInt32 a(0); a < nEdgeCount; a++)
+ {
+ const sal_uInt32 nNextIndex((a + 1) % nEdgePointCount);
+ const B2DPoint aNext(rEdgePolygon.getB2DPoint(nNextIndex));
+
+ if(!aCurr.equal(aNext))
+ {
+ bool bHandleAsSimpleEdge(true);
+
+ if(rEdgePolygon.areControlPointsUsed())
+ {
+ const B2DPoint aNextControlPoint(rEdgePolygon.getNextControlPoint(a));
+ const B2DPoint aPrevControlPoint(rEdgePolygon.getPrevControlPoint(nNextIndex));
+ const bool bEdgeIsCurve(!aNextControlPoint.equal(aCurr) || !aPrevControlPoint.equal(aNext));
+
+ if(bEdgeIsCurve)
+ {
+ bHandleAsSimpleEdge = false;
+ const B2DCubicBezier aCubicA(aCurr, aNextControlPoint, aPrevControlPoint, aNext);
+ findTouchesOnCurve(aCubicA, rPointPolygon, a, rTempPoints);
+ }
+ }
+
+ if(bHandleAsSimpleEdge)
+ {
+ findTouchesOnEdge(aCurr, aNext, rPointPolygon, a, rTempPoints);
+ }
+ }
+
+ // next step
+ aCurr = aNext;
+ }
+ }
+
+ } // end of anonymous namespace
+} // end of namespace basegfx
+
+namespace basegfx
+{
+ namespace
+ {
+
+ void findCuts(const B2DPolygon& rCandidateA, const B2DPolygon& rCandidateB, temporaryPointVector& rTempPointsA, temporaryPointVector& rTempPointsB)
+ {
+ // find out if edges from both polygons cut. If so, add entries to rTempPoints which
+ // should be added to the polygons accordingly
+ const sal_uInt32 nPointCountA(rCandidateA.count());
+ const sal_uInt32 nPointCountB(rCandidateB.count());
+
+ if(!(nPointCountA && nPointCountB))
+ return;
+
+ const sal_uInt32 nEdgeCountA(rCandidateA.isClosed() ? nPointCountA : nPointCountA - 1);
+ const sal_uInt32 nEdgeCountB(rCandidateB.isClosed() ? nPointCountB : nPointCountB - 1);
+
+ if(!(nEdgeCountA && nEdgeCountB))
+ return;
+
+ const bool bCurvesInvolved(rCandidateA.areControlPointsUsed() || rCandidateB.areControlPointsUsed());
+
+ if(bCurvesInvolved)
+ {
+ B2DCubicBezier aCubicA;
+ B2DCubicBezier aCubicB;
+
+ for(sal_uInt32 a(0); a < nEdgeCountA; a++)
+ {
+ rCandidateA.getBezierSegment(a, aCubicA);
+ aCubicA.testAndSolveTrivialBezier();
+ const bool bEdgeAIsCurve(aCubicA.isBezier());
+ const B2DRange aRangeA(aCubicA.getRange());
+
+ for(sal_uInt32 b(0); b < nEdgeCountB; b++)
+ {
+ rCandidateB.getBezierSegment(b, aCubicB);
+ aCubicB.testAndSolveTrivialBezier();
+ const B2DRange aRangeB(aCubicB.getRange());
+
+ // consecutive segments touch of course
+ bool bOverlap = false;
+ if( b > a+1)
+ bOverlap = aRangeA.overlaps(aRangeB);
+ else
+ bOverlap = aRangeA.overlapsMore(aRangeB);
+ if( bOverlap)
+ {
+ const bool bEdgeBIsCurve(aCubicB.isBezier());
+ if(bEdgeAIsCurve && bEdgeBIsCurve)
+ {
+ // test for bezier-bezier cuts
+ findEdgeCutsTwoBeziers(aCubicA, aCubicB, a, b, rTempPointsA, rTempPointsB);
+ }
+ else if(bEdgeAIsCurve)
+ {
+ // test for bezier-edge cuts
+ findEdgeCutsBezierAndEdge(aCubicA, aCubicB.getStartPoint(), aCubicB.getEndPoint(), a, b, rTempPointsA, rTempPointsB);
+ }
+ else if(bEdgeBIsCurve)
+ {
+ // test for bezier-edge cuts
+ findEdgeCutsBezierAndEdge(aCubicB, aCubicA.getStartPoint(), aCubicA.getEndPoint(), b, a, rTempPointsB, rTempPointsA);
+ }
+ else
+ {
+ // test for simple edge-edge cuts
+ findEdgeCutsTwoEdges(aCubicA.getStartPoint(), aCubicA.getEndPoint(), aCubicB.getStartPoint(), aCubicB.getEndPoint(),
+ a, b, rTempPointsA, rTempPointsB);
+ }
+ }
+ }
+ }
+ }
+ else
+ {
+ B2DPoint aCurrA(rCandidateA.getB2DPoint(0));
+
+ for(sal_uInt32 a(0); a < nEdgeCountA; a++)
+ {
+ const B2DPoint aNextA(rCandidateA.getB2DPoint(a + 1 == nPointCountA ? 0 : a + 1));
+ const B2DRange aRangeA(aCurrA, aNextA);
+ B2DPoint aCurrB(rCandidateB.getB2DPoint(0));
+
+ for(sal_uInt32 b(0); b < nEdgeCountB; b++)
+ {
+ const B2DPoint aNextB(rCandidateB.getB2DPoint(b + 1 == nPointCountB ? 0 : b + 1));
+ const B2DRange aRangeB(aCurrB, aNextB);
+
+ // consecutive segments touch of course
+ bool bOverlap = false;
+ if( b > a+1)
+ bOverlap = aRangeA.overlaps(aRangeB);
+ else
+ bOverlap = aRangeA.overlapsMore(aRangeB);
+ if( bOverlap)
+ {
+ // test for simple edge-edge cuts
+ findEdgeCutsTwoEdges(aCurrA, aNextA, aCurrB, aNextB, a, b, rTempPointsA, rTempPointsB);
+ }
+
+ // prepare next step
+ aCurrB = aNextB;
+ }
+
+ // prepare next step
+ aCurrA = aNextA;
+ }
+ }
+ }
+
+ } // end of anonymous namespace
+} // end of namespace basegfx
+
+namespace basegfx::utils
+{
+
+ B2DPolygon addPointsAtCutsAndTouches(const B2DPolygon& rCandidate, size_t* pPointLimit)
+ {
+ if(rCandidate.count())
+ {
+ temporaryPointVector aTempPoints;
+
+ findTouches(rCandidate, rCandidate, aTempPoints);
+ findCuts(rCandidate, aTempPoints, pPointLimit);
+ if (pPointLimit && !*pPointLimit)
+ {
+ SAL_WARN("basegfx", "addPointsAtCutsAndTouches hit point limit");
+ return rCandidate;
+ }
+
+ return mergeTemporaryPointsAndPolygon(rCandidate, aTempPoints);
+ }
+ else
+ {
+ return rCandidate;
+ }
+ }
+
+ B2DPolyPolygon addPointsAtCutsAndTouches(const B2DPolyPolygon& rCandidate, size_t* pPointLimit)
+ {
+ const sal_uInt32 nCount(rCandidate.count());
+
+ if(nCount)
+ {
+ B2DPolyPolygon aRetval;
+
+ if(nCount == 1)
+ {
+ // remove self intersections
+ aRetval.append(addPointsAtCutsAndTouches(rCandidate.getB2DPolygon(0), pPointLimit));
+ }
+ else
+ {
+ // first solve self cuts and self touches for all contained single polygons
+ std::unique_ptr<temporaryPolygonData[]> pTempData(new temporaryPolygonData[nCount]);
+ sal_uInt32 a, b;
+
+ for(a = 0; a < nCount; a++)
+ {
+ // use polygons with solved self intersections
+ pTempData[a].setPolygon(addPointsAtCutsAndTouches(rCandidate.getB2DPolygon(a), pPointLimit));
+ }
+
+ if (pPointLimit && !*pPointLimit)
+ {
+ SAL_WARN("basegfx", "addPointsAtCutsAndTouches hit point limit");
+ return rCandidate;
+ }
+
+ // now cuts and touches between the polygons
+ for(a = 0; a < nCount; a++)
+ {
+ for(b = 0; b < nCount; b++)
+ {
+ if(a != b)
+ {
+ // look for touches, compare each edge polygon to all other points
+ if(pTempData[a].getRange().overlaps(pTempData[b].getRange()))
+ {
+ findTouches(pTempData[a].getPolygon(), pTempData[b].getPolygon(), pTempData[a].getTemporaryPointVector());
+ }
+ }
+
+ if(a < b)
+ {
+ // look for cuts, compare each edge polygon to following ones
+ if(pTempData[a].getRange().overlaps(pTempData[b].getRange()))
+ {
+ findCuts(pTempData[a].getPolygon(), pTempData[b].getPolygon(), pTempData[a].getTemporaryPointVector(), pTempData[b].getTemporaryPointVector());
+ }
+ }
+ }
+ }
+
+ // consolidate the result
+ for(a = 0; a < nCount; a++)
+ {
+ aRetval.append(mergeTemporaryPointsAndPolygon(pTempData[a].getPolygon(), pTempData[a].getTemporaryPointVector()));
+ }
+ }
+
+ return aRetval;
+ }
+ else
+ {
+ return rCandidate;
+ }
+ }
+
+ B2DPolygon addPointsAtCuts(const B2DPolygon& rCandidate, const B2DPoint& rStart, const B2DPoint& rEnd)
+ {
+ const sal_uInt32 nCount(rCandidate.count());
+
+ if(nCount && !rStart.equal(rEnd))
+ {
+ const B2DRange aPolygonRange(rCandidate.getB2DRange());
+ const B2DRange aEdgeRange(rStart, rEnd);
+
+ if(aPolygonRange.overlaps(aEdgeRange))
+ {
+ const sal_uInt32 nEdgeCount(rCandidate.isClosed() ? nCount : nCount - 1);
+ temporaryPointVector aTempPoints;
+ temporaryPointVector aUnusedTempPoints;
+ B2DCubicBezier aCubic;
+
+ for(sal_uInt32 a(0); a < nEdgeCount; a++)
+ {
+ rCandidate.getBezierSegment(a, aCubic);
+ B2DRange aCubicRange(aCubic.getStartPoint(), aCubic.getEndPoint());
+
+ if(aCubic.isBezier())
+ {
+ aCubicRange.expand(aCubic.getControlPointA());
+ aCubicRange.expand(aCubic.getControlPointB());
+
+ if(aCubicRange.overlaps(aEdgeRange))
+ {
+ findEdgeCutsBezierAndEdge(aCubic, rStart, rEnd, a, 0, aTempPoints, aUnusedTempPoints);
+ }
+ }
+ else
+ {
+ if(aCubicRange.overlaps(aEdgeRange))
+ {
+ findEdgeCutsTwoEdges(aCubic.getStartPoint(), aCubic.getEndPoint(), rStart, rEnd, a, 0, aTempPoints, aUnusedTempPoints);
+ }
+ }
+ }
+
+ return mergeTemporaryPointsAndPolygon(rCandidate, aTempPoints);
+ }
+ }
+
+ return rCandidate;
+ }
+
+ B2DPolygon addPointsAtCuts(const B2DPolygon& rCandidate, const B2DPolyPolygon& rPolyMask)
+ {
+ const sal_uInt32 nCountA(rCandidate.count());
+ const sal_uInt32 nCountM(rPolyMask.count());
+
+ if(nCountA && nCountM)
+ {
+ const B2DRange aRangeA(rCandidate.getB2DRange());
+ const B2DRange aRangeM(rPolyMask.getB2DRange());
+
+ if(aRangeA.overlaps(aRangeM))
+ {
+ const sal_uInt32 nEdgeCountA(rCandidate.isClosed() ? nCountA : nCountA - 1);
+ temporaryPointVector aTempPointsA;
+ temporaryPointVector aUnusedTempPointsB;
+
+ for(sal_uInt32 m(0); m < nCountM; m++)
+ {
+ const B2DPolygon& aMask(rPolyMask.getB2DPolygon(m));
+ const sal_uInt32 nCountB(aMask.count());
+
+ if(nCountB)
+ {
+ B2DCubicBezier aCubicA;
+ B2DCubicBezier aCubicB;
+
+ for(sal_uInt32 a(0); a < nEdgeCountA; a++)
+ {
+ rCandidate.getBezierSegment(a, aCubicA);
+ const bool bCubicAIsCurve(aCubicA.isBezier());
+ B2DRange aCubicRangeA(aCubicA.getStartPoint(), aCubicA.getEndPoint());
+
+ if(bCubicAIsCurve)
+ {
+ aCubicRangeA.expand(aCubicA.getControlPointA());
+ aCubicRangeA.expand(aCubicA.getControlPointB());
+ }
+
+ for(sal_uInt32 b(0); b < nCountB; b++)
+ {
+ aMask.getBezierSegment(b, aCubicB);
+ const bool bCubicBIsCurve(aCubicB.isBezier());
+ B2DRange aCubicRangeB(aCubicB.getStartPoint(), aCubicB.getEndPoint());
+
+ if(bCubicBIsCurve)
+ {
+ aCubicRangeB.expand(aCubicB.getControlPointA());
+ aCubicRangeB.expand(aCubicB.getControlPointB());
+ }
+
+ if(aCubicRangeA.overlaps(aCubicRangeB))
+ {
+ if(bCubicAIsCurve && bCubicBIsCurve)
+ {
+ findEdgeCutsTwoBeziers(aCubicA, aCubicB, a, b, aTempPointsA, aUnusedTempPointsB);
+ }
+ else if(bCubicAIsCurve)
+ {
+ findEdgeCutsBezierAndEdge(aCubicA, aCubicB.getStartPoint(), aCubicB.getEndPoint(), a, b, aTempPointsA, aUnusedTempPointsB);
+ }
+ else if(bCubicBIsCurve)
+ {
+ findEdgeCutsBezierAndEdge(aCubicB, aCubicA.getStartPoint(), aCubicA.getEndPoint(), b, a, aUnusedTempPointsB, aTempPointsA);
+ }
+ else
+ {
+ findEdgeCutsTwoEdges(aCubicA.getStartPoint(), aCubicA.getEndPoint(), aCubicB.getStartPoint(), aCubicB.getEndPoint(), a, b, aTempPointsA, aUnusedTempPointsB);
+ }
+ }
+ }
+ }
+ }
+ }
+
+ return mergeTemporaryPointsAndPolygon(rCandidate, aTempPointsA);
+ }
+ }
+
+ return rCandidate;
+ }
+
+} // end of namespace
+
+/* vim:set shiftwidth=4 softtabstop=4 expandtab: */