diff options
Diffstat (limited to '')
-rw-r--r-- | sc/inc/kahan.hxx | 276 |
1 files changed, 276 insertions, 0 deletions
diff --git a/sc/inc/kahan.hxx b/sc/inc/kahan.hxx new file mode 100644 index 0000000000..c2560635fb --- /dev/null +++ b/sc/inc/kahan.hxx @@ -0,0 +1,276 @@ +/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4; fill-column: 100 -*- */ +/* + * This file is part of the LibreOffice project. + * + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. + */ + +#pragma once + +#include <rtl/math.hxx> +#include <cmath> + +class KahanSum; +namespace sc::op +{ +// Checkout available optimization options. +// Note that it turned out to be problematic to support CPU-specific code +// that's not guaranteed to be available on that specific platform (see +// git commit 2d36e7f5186ba5215f2b228b98c24520bd4f2882). SSE2 is guaranteed on +// x86_64 and it is our baseline requirement for x86 on Windows, so SSE2 use is +// hardcoded on those platforms. +// Whenever we raise baseline to e.g. AVX, this may get +// replaced with AVX code (get it from mentioned git commit). +// Do it similarly with other platforms. +#if defined(X86_64) || (defined(INTEL) && defined(_WIN32)) +#define SC_USE_SSE2 1 +KahanSum executeSSE2(size_t& i, size_t nSize, const double* pCurrent); +#else +#define SC_USE_SSE2 0 +#endif +} + +/** + * This class provides LO with Kahan summation algorithm + * About this algorithm: https://en.wikipedia.org/wiki/Kahan_summation_algorithm + * For general purpose software we assume first order error is enough. + * + * Additionally queue and remember the last recent non-zero value and add it + * similar to approxAdd() when obtaining the final result to further eliminate + * accuracy errors. (e.g. for the dreaded 0.1 + 0.2 - 0.3 != 0.0) + */ + +class KahanSum +{ +public: + constexpr KahanSum() = default; + + constexpr KahanSum(double x_0) + : m_fSum(x_0) + { + } + + constexpr KahanSum(double x_0, double err_0) + : m_fSum(x_0) + , m_fError(err_0) + { + } + + constexpr KahanSum(const KahanSum& fSum) = default; + +public: + /** + * Performs one step of the Neumaier sum of doubles. + * Overwrites the summand and error. + * T could be double or long double. + */ + template <typename T> static inline void sumNeumaierNormal(T& sum, T& err, const double& value) + { + T t = sum + value; + if (std::abs(sum) >= std::abs(value)) + err += (sum - t) + value; + else + err += (value - t) + sum; + sum = t; + } + + /** + * Adds a value to the sum using Kahan summation. + * @param x_i + */ + void add(double x_i) + { + if (x_i == 0.0) + return; + + if (!m_fMem) + { + m_fMem = x_i; + return; + } + + sumNeumaierNormal(m_fSum, m_fError, m_fMem); + m_fMem = x_i; + } + + /** + * Adds a value to the sum using Kahan summation. + * @param fSum + */ + inline void add(const KahanSum& fSum) + { +#if SC_USE_SSE2 + add(fSum.m_fSum + fSum.m_fError); + add(fSum.m_fMem); +#else + // Without SSE2 the sum+compensation value fails badly. Continue + // keeping the old though slightly off (see tdf#156985) explicit + // addition of the compensation value. + double sum = fSum.m_fSum; + double err = fSum.m_fError; + if (fSum.m_fMem != 0.0) + sumNeumaierNormal(sum, err, fSum.m_fMem); + add(sum); + add(err); +#endif + } + + /** + * Substracts a value to the sum using Kahan summation. + * @param fSum + */ + inline void subtract(const KahanSum& fSum) { add(-fSum); } + +public: + constexpr KahanSum operator-() const + { + KahanSum fKahanSum; + fKahanSum.m_fSum = -m_fSum; + fKahanSum.m_fError = -m_fError; + fKahanSum.m_fMem = -m_fMem; + return fKahanSum; + } + + constexpr KahanSum& operator=(double fSum) + { + m_fSum = fSum; + m_fError = 0; + m_fMem = 0; + return *this; + } + + constexpr KahanSum& operator=(const KahanSum& fSum) = default; + + inline void operator+=(const KahanSum& fSum) { add(fSum); } + + inline void operator+=(double fSum) { add(fSum); } + + inline void operator-=(const KahanSum& fSum) { subtract(fSum); } + + inline void operator-=(double fSum) { add(-fSum); } + + inline KahanSum operator+(double fSum) const + { + KahanSum fNSum(*this); + fNSum.add(fSum); + return fNSum; + } + + inline KahanSum operator+(const KahanSum& fSum) const + { + KahanSum fNSum(*this); + fNSum += fSum; + return fNSum; + } + + inline KahanSum operator-(double fSum) const + { + KahanSum fNSum(*this); + fNSum.add(-fSum); + return fNSum; + } + + inline KahanSum operator-(const KahanSum& fSum) const + { + KahanSum fNSum(*this); + fNSum -= fSum; + return fNSum; + } + + /** + * In some parts of the code of interpr_.cxx this may be used for + * product instead of sum. This operator shall be used for that task. + */ + constexpr void operator*=(double fTimes) + { + if (m_fMem) + { + m_fSum = get() * fTimes; + m_fMem = 0.0; + } + else + { + m_fSum = (m_fSum + m_fError) * fTimes; + } + m_fError = 0.0; + } + + constexpr void operator/=(double fDivides) + { + if (m_fMem) + { + m_fSum = get() / fDivides; + m_fMem = 0.0; + } + else + { + m_fSum = (m_fSum + m_fError) / fDivides; + } + m_fError = 0.0; + } + + inline KahanSum operator*(const KahanSum& fTimes) const { return get() * fTimes.get(); } + + inline KahanSum operator*(double fTimes) const { return get() * fTimes; } + + inline KahanSum operator/(const KahanSum& fDivides) const { return get() / fDivides.get(); } + + inline KahanSum operator/(double fDivides) const { return get() / fDivides; } + + inline bool operator<(const KahanSum& fSum) const { return get() < fSum.get(); } + + inline bool operator<(double fSum) const { return get() < fSum; } + + inline bool operator>(const KahanSum& fSum) const { return get() > fSum.get(); } + + inline bool operator>(double fSum) const { return get() > fSum; } + + inline bool operator<=(const KahanSum& fSum) const { return get() <= fSum.get(); } + + inline bool operator<=(double fSum) const { return get() <= fSum; } + + inline bool operator>=(const KahanSum& fSum) const { return get() >= fSum.get(); } + + inline bool operator>=(double fSum) const { return get() >= fSum; } + + inline bool operator==(const KahanSum& fSum) const { return get() == fSum.get(); } + + inline bool operator!=(const KahanSum& fSum) const { return get() != fSum.get(); } + +public: + /** + * Returns the final sum. + * @return final sum + */ + double get() const + { + const double fTotal = m_fSum + m_fError; + if (!m_fMem) + return fTotal; + + // Check the same condition as rtl::math::approxAdd() and if true + // return 0.0, if false use another Kahan summation adding m_fMem. + if (((m_fMem < 0.0 && fTotal > 0.0) || (fTotal < 0.0 && m_fMem > 0.0)) + && rtl::math::approxEqual(m_fMem, -fTotal)) + { + /* TODO: should we reset all values to zero here for further + * summation, or is it better to keep them as they are? */ + return 0.0; + } + + // The actual argument passed to add() here does not matter as long as + // it is not 0, m_fMem is not 0 and will be added anyway, see add(). + const_cast<KahanSum*>(this)->add(m_fMem); + const_cast<KahanSum*>(this)->m_fMem = 0.0; + return m_fSum + m_fError; + } + +private: + double m_fSum = 0; + double m_fError = 0; + double m_fMem = 0; +}; + +/* vim:set shiftwidth=4 softtabstop=4 expandtab cinoptions=b1,g0,N-s cinkeys+=0=break: */ |