summaryrefslogtreecommitdiffstats
path: root/scaddins/source/pricing/black_scholes.cxx
diff options
context:
space:
mode:
Diffstat (limited to 'scaddins/source/pricing/black_scholes.cxx')
-rw-r--r--scaddins/source/pricing/black_scholes.cxx939
1 files changed, 939 insertions, 0 deletions
diff --git a/scaddins/source/pricing/black_scholes.cxx b/scaddins/source/pricing/black_scholes.cxx
new file mode 100644
index 0000000000..98baa307c1
--- /dev/null
+++ b/scaddins/source/pricing/black_scholes.cxx
@@ -0,0 +1,939 @@
+/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
+/*
+ * This file is part of the LibreOffice project.
+ *
+ * This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/.
+ *
+ * Copyright (C) 2012 Tino Kluge <tino.kluge@hrz.tu-chemnitz.de>
+ *
+ */
+
+#include <cstdio>
+#include <cstdlib>
+#include <cmath>
+#include <cassert>
+#include <algorithm>
+#include <rtl/math.hxx>
+#include "black_scholes.hxx"
+
+// options prices and greeks in the Black-Scholes model
+// also known as TV (theoretical value)
+
+// the code is structured as follows:
+
+// (1) basic assets
+// - cash-or-nothing option: bincash()
+// - asset-or-nothing option: binasset()
+
+// (2) derived basic assets, can all be priced based on (1)
+// - vanilla put/call: putcall() = +/- ( binasset() - K*bincash() )
+// - truncated put/call (barriers active at maturity only)
+
+// (3) write a wrapper function to include all vanilla prices
+// - this is so we don't duplicate code when pricing barriers
+// as this is derived from vanillas
+
+// (4) single barrier options (knock-out), priced based on truncated vanillas
+// - it follows from the reflection principle that the price W(S) of a
+// single barrier option is given by
+// W(S) = V(S) - (B/S)^a V(B^2/S), a = 2(rd-rf)/vol^2 - 1
+// where V(S) is the price of the corresponding truncated vanilla
+// option
+// - to reduce code duplication and in anticipation of double barrier
+// options we write the following function
+// barrier_term(S,c) = V(c*S) - (B/S)^a V(c*B^2/S)
+
+// (5) double barrier options (knock-out)
+// - value is an infinite sum over option prices of the corresponding
+// truncated vanillas (truncated at both barriers):
+
+// W(S)=sum (B2/B1)^(i*a) (V(S(B2/B1)^(2i)) - (B1/S)^a V(B1^2/S (B2/B1)^(2i))
+
+// (6) write routines for put/call barriers and touch options which
+// mainly call the general double barrier pricer
+// the main routines are touch() and barrier()
+// both can price in/out barriers, double/single barriers as well as
+// vanillas
+
+
+// the framework allows any barriers to be priced as long as we define
+// the value/greek functions for the corresponding truncated vanilla
+// and wrap them into internal::vanilla() and internal::vanilla_trunc()
+
+// disadvantage of that approach is that due to the rules of
+// differentiations the formulas for greeks become long and possible
+// simplifications in the formulas won't be made
+
+// other code inefficiency due to multiplication with pm (+/- 1)
+// cvtsi2sd: int-->double, 6/3 cycles
+// mulsd: double-double multiplication, 5/1 cycles
+// with -O3, however, it compiles 2 versions with pm=1, and pm=-1
+// which are efficient
+// note this is tiny anyway as compared to exp/log (100 cycles),
+// pow (200 cycles), erf (70 cycles)
+
+// this code is not tested for numerical instability, ie overruns,
+// underruns, accuracy, etc
+
+
+namespace sca::pricing::bs {
+
+
+// helper functions
+
+static double sqr(double x) {
+ return x*x;
+}
+// normal density (see also ScInterpreter::phi)
+static double dnorm(double x) {
+ //return (1.0/sqrt(2.0*M_PI))*exp(-0.5*x*x); // windows may not have M_PI
+ return 0.39894228040143268*exp(-0.5*x*x);
+}
+// cumulative normal distribution (see also ScInterpreter::integralPhi)
+static double pnorm(double x) {
+ return 0.5 * std::erfc(-x * M_SQRT1_2);
+}
+
+// binary option cash (domestic)
+// call - pays 1 if S_T is above strike K
+// put - pays 1 if S_T is below strike K
+double bincash(double S, double vol, double rd, double rf,
+ double tau, double K,
+ types::PutCall pc, types::Greeks greeks) {
+ assert(tau>=0.0);
+ assert(S>0.0);
+ assert(vol>0.0);
+ assert(K>=0.0);
+
+ double val=0.0;
+
+ if(tau<=0.0) {
+ // special case tau=0 (expiry)
+ switch(greeks) {
+ case types::Value:
+ if( (pc==types::Call && S>=K) || (pc==types::Put && S<=K) ) {
+ val = 1.0;
+ } else {
+ val = 0.0;
+ }
+ break;
+ default:
+ val = 0.0;
+ }
+ } else if(K==0.0) {
+ // special case with zero strike
+ if(pc==types::Put) {
+ // up-and-out (put) with K=0
+ val=0.0;
+ } else {
+ // down-and-out (call) with K=0 (zero coupon bond)
+ switch(greeks) {
+ case types::Value:
+ val = 1.0;
+ break;
+ case types::Theta:
+ val = rd;
+ break;
+ case types::Rho_d:
+ val = -tau;
+ break;
+ default:
+ val = 0.0;
+ }
+ }
+ } else {
+ // standard case with K>0, tau>0
+ double d1 = ( log(S/K)+(rd-rf+0.5*vol*vol)*tau ) / (vol*sqrt(tau));
+ double d2 = d1 - vol*sqrt(tau);
+ int pm = (pc==types::Call) ? 1 : -1;
+
+ switch(greeks) {
+ case types::Value:
+ val = pnorm(pm*d2);
+ break;
+ case types::Delta:
+ val = pm*dnorm(d2)/(S*vol*sqrt(tau));
+ break;
+ case types::Gamma:
+ val = -pm*dnorm(d2)*d1/(sqr(S*vol)*tau);
+ break;
+ case types::Theta:
+ val = rd*pnorm(pm*d2)
+ + pm*dnorm(d2)*(log(S/K)/(vol*sqrt(tau))-0.5*d2)/tau;
+ break;
+ case types::Vega:
+ val = -pm*dnorm(d2)*d1/vol;
+ break;
+ case types::Volga:
+ val = pm*dnorm(d2)/(vol*vol)*(-d1*d1*d2+d1+d2);
+ break;
+ case types::Vanna:
+ val = pm*dnorm(d2)/(S*vol*vol*sqrt(tau))*(d1*d2-1.0);
+ break;
+ case types::Rho_d:
+ val = -tau*pnorm(pm*d2) + pm*dnorm(d2)*sqrt(tau)/vol;
+ break;
+ case types::Rho_f:
+ val = -pm*dnorm(d2)*sqrt(tau)/vol;
+ break;
+ default:
+ printf("bincash: greek %d not implemented\n", greeks );
+ abort();
+ }
+ }
+ return exp(-rd*tau)*val;
+}
+
+// binary option asset (foreign)
+// call - pays S_T if S_T is above strike K
+// put - pays S_T if S_T is below strike K
+double binasset(double S, double vol, double rd, double rf,
+ double tau, double K,
+ types::PutCall pc, types::Greeks greeks) {
+ assert(tau>=0.0);
+ assert(S>0.0);
+ assert(vol>0.0);
+ assert(K>=0.0);
+
+ double val=0.0;
+ if(tau<=0.0) {
+ // special case tau=0 (expiry)
+ switch(greeks) {
+ case types::Value:
+ if( (pc==types::Call && S>=K) || (pc==types::Put && S<=K) ) {
+ val = S;
+ } else {
+ val = 0.0;
+ }
+ break;
+ case types::Delta:
+ if( (pc==types::Call && S>=K) || (pc==types::Put && S<=K) ) {
+ val = 1.0;
+ } else {
+ val = 0.0;
+ }
+ break;
+ default:
+ val = 0.0;
+ }
+ } else if(K==0.0) {
+ // special case with zero strike (forward with zero strike)
+ if(pc==types::Put) {
+ // up-and-out (put) with K=0
+ val = 0.0;
+ } else {
+ // down-and-out (call) with K=0 (type of forward)
+ switch(greeks) {
+ case types::Value:
+ val = S;
+ break;
+ case types::Delta:
+ val = 1.0;
+ break;
+ case types::Theta:
+ val = rf*S;
+ break;
+ case types::Rho_f:
+ val = -tau*S;
+ break;
+ default:
+ val = 0.0;
+ }
+ }
+ } else {
+ // normal case
+ double d1 = ( log(S/K)+(rd-rf+0.5*vol*vol)*tau ) / (vol*sqrt(tau));
+ double d2 = d1 - vol*sqrt(tau);
+ int pm = (pc==types::Call) ? 1 : -1;
+
+ switch(greeks) {
+ case types::Value:
+ val = S*pnorm(pm*d1);
+ break;
+ case types::Delta:
+ val = pnorm(pm*d1) + pm*dnorm(d1)/(vol*sqrt(tau));
+ break;
+ case types::Gamma:
+ val = -pm*dnorm(d1)*d2/(S*sqr(vol)*tau);
+ break;
+ case types::Theta:
+ val = rf*S*pnorm(pm*d1)
+ + pm*S*dnorm(d1)*(log(S/K)/(vol*sqrt(tau))-0.5*d1)/tau;
+ break;
+ case types::Vega:
+ val = -pm*S*dnorm(d1)*d2/vol;
+ break;
+ case types::Volga:
+ val = pm*S*dnorm(d1)/(vol*vol)*(-d1*d2*d2+d1+d2);
+ break;
+ case types::Vanna:
+ val = pm*dnorm(d1)/(vol*vol*sqrt(tau))*(d2*d2-1.0);
+ break;
+ case types::Rho_d:
+ val = pm*S*dnorm(d1)*sqrt(tau)/vol;
+ break;
+ case types::Rho_f:
+ val = -tau*S*pnorm(pm*d1) - pm*S*dnorm(d1)*sqrt(tau)/vol;
+ break;
+ default:
+ printf("binasset: greek %d not implemented\n", greeks );
+ abort();
+ }
+ }
+ return exp(-rf*tau)*val;
+}
+
+// just for convenience we can combine bincash and binasset into
+// one function binary
+// using bincash() if fd==types::Domestic
+// using binasset() if fd==types::Foreign
+static double binary(double S, double vol, double rd, double rf,
+ double tau, double K,
+ types::PutCall pc, types::ForDom fd,
+ types::Greeks greek) {
+ double val=0.0;
+ switch(fd) {
+ case types::Domestic:
+ val = bincash(S,vol,rd,rf,tau,K,pc,greek);
+ break;
+ case types::Foreign:
+ val = binasset(S,vol,rd,rf,tau,K,pc,greek);
+ break;
+ default:
+ // never get here
+ assert(false);
+ }
+ return val;
+}
+
+// further wrapper to combine single/double barrier binary options
+// into one function
+// B1<=0 - it is assumed lower barrier not set
+// B2<=0 - it is assumed upper barrier not set
+static double binary(double S, double vol, double rd, double rf,
+ double tau, double B1, double B2,
+ types::ForDom fd, types::Greeks greek) {
+ assert(tau>=0.0);
+ assert(S>0.0);
+ assert(vol>0.0);
+
+ double val=0.0;
+
+ if(B1<=0.0 && B2<=0.0) {
+ // no barriers set, payoff 1.0 (domestic) or S_T (foreign)
+ val = binary(S,vol,rd,rf,tau,0.0,types::Call,fd,greek);
+ } else if(B1<=0.0 && B2>0.0) {
+ // upper barrier (put)
+ val = binary(S,vol,rd,rf,tau,B2,types::Put,fd,greek);
+ } else if(B1>0.0 && B2<=0.0) {
+ // lower barrier (call)
+ val = binary(S,vol,rd,rf,tau,B1,types::Call,fd,greek);
+ } else if(B1>0.0 && B2>0.0) {
+ // double barrier
+ if(B2<=B1) {
+ val = 0.0;
+ } else {
+ val = binary(S,vol,rd,rf,tau,B2,types::Put,fd,greek)
+ - binary(S,vol,rd,rf,tau,B1,types::Put,fd,greek);
+ }
+ } else {
+ // never get here
+ assert(false);
+ }
+
+ return val;
+}
+
+// vanilla put/call option
+// call pays (S_T-K)^+
+// put pays (K-S_T)^+
+// this is the same as: +/- (binasset - K*bincash)
+double putcall(double S, double vol, double rd, double rf,
+ double tau, double K,
+ types::PutCall putcall, types::Greeks greeks) {
+
+ assert(tau>=0.0);
+ assert(S>0.0);
+ assert(vol>0.0);
+ assert(K>=0.0);
+
+ double val = 0.0;
+ int pm = (putcall==types::Call) ? 1 : -1;
+
+ if(K==0 || tau==0.0) {
+ // special cases, simply refer to binasset() and bincash()
+ val = pm * ( binasset(S,vol,rd,rf,tau,K,putcall,greeks)
+ - K*bincash(S,vol,rd,rf,tau,K,putcall,greeks) );
+ } else {
+ // general case
+ // we could just use pm*(binasset-K*bincash), however
+ // since the formula for delta and gamma simplify we write them
+ // down here
+ double d1 = ( log(S/K)+(rd-rf+0.5*vol*vol)*tau ) / (vol*sqrt(tau));
+ double d2 = d1 - vol*sqrt(tau);
+
+ switch(greeks) {
+ case types::Value:
+ val = pm * ( exp(-rf*tau)*S*pnorm(pm*d1)-exp(-rd*tau)*K*pnorm(pm*d2) );
+ break;
+ case types::Delta:
+ val = pm*exp(-rf*tau)*pnorm(pm*d1);
+ break;
+ case types::Gamma:
+ val = exp(-rf*tau)*dnorm(d1)/(S*vol*sqrt(tau));
+ break;
+ default:
+ // too lazy for the other greeks, so simply refer to binasset/bincash
+ val = pm * ( binasset(S,vol,rd,rf,tau,K,putcall,greeks)
+ - K*bincash(S,vol,rd,rf,tau,K,putcall,greeks) );
+ }
+ }
+ return val;
+}
+
+// truncated put/call option, single barrier
+// need to specify whether it's down-and-out or up-and-out
+// regular (keeps monotonicity): down-and-out for call, up-and-out for put
+// reverse (destroys monoton): up-and-out for call, down-and-out for put
+// call pays (S_T-K)^+
+// put pays (K-S_T)^+
+double putcalltrunc(double S, double vol, double rd, double rf,
+ double tau, double K, double B,
+ types::PutCall pc, types::KOType kotype,
+ types::Greeks greeks) {
+
+ assert(tau>=0.0);
+ assert(S>0.0);
+ assert(vol>0.0);
+ assert(K>=0.0);
+ assert(B>=0.0);
+
+ int pm = (pc==types::Call) ? 1 : -1;
+ double val = 0.0;
+
+ switch(kotype) {
+ case types::Regular:
+ if( (pc==types::Call && B<=K) || (pc==types::Put && B>=K) ) {
+ // option degenerates to standard plain vanilla call/put
+ val = putcall(S,vol,rd,rf,tau,K,pc,greeks);
+ } else {
+ // normal case with truncation
+ val = pm * ( binasset(S,vol,rd,rf,tau,B,pc,greeks)
+ - K*bincash(S,vol,rd,rf,tau,B,pc,greeks) );
+ }
+ break;
+ case types::Reverse:
+ if( (pc==types::Call && B<=K) || (pc==types::Put && B>=K) ) {
+ // option degenerates to zero payoff
+ val = 0.0;
+ } else {
+ // normal case with truncation
+ val = binasset(S,vol,rd,rf,tau,K,types::Call,greeks)
+ - binasset(S,vol,rd,rf,tau,B,types::Call,greeks)
+ - K * ( bincash(S,vol,rd,rf,tau,K,types::Call,greeks)
+ - bincash(S,vol,rd,rf,tau,B,types::Call,greeks) );
+ }
+ break;
+ default:
+ assert(false);
+ }
+ return val;
+}
+
+// wrapper function for put/call option which combines
+// double/single/no truncation barrier
+// B1<=0 - assume no lower barrier
+// B2<=0 - assume no upper barrier
+double putcalltrunc(double S, double vol, double rd, double rf,
+ double tau, double K, double B1, double B2,
+ types::PutCall pc, types::Greeks greek) {
+
+ assert(tau>=0.0);
+ assert(S>0.0);
+ assert(vol>0.0);
+ assert(K>=0.0);
+
+ double val=0.0;
+
+ if(B1<=0.0 && B2<=0.0) {
+ // no barriers set, plain vanilla
+ val = putcall(S,vol,rd,rf,tau,K,pc,greek);
+ } else if(B1<=0.0 && B2>0.0) {
+ // upper barrier: reverse barrier for call, regular barrier for put
+ if(pc==types::Call) {
+ val = putcalltrunc(S,vol,rd,rf,tau,K,B2,pc,types::Reverse,greek);
+ } else {
+ val = putcalltrunc(S,vol,rd,rf,tau,K,B2,pc,types::Regular,greek);
+ }
+ } else if(B1>0.0 && B2<=0.0) {
+ // lower barrier: regular barrier for call, reverse barrier for put
+ if(pc==types::Call) {
+ val = putcalltrunc(S,vol,rd,rf,tau,K,B1,pc,types::Regular,greek);
+ } else {
+ val = putcalltrunc(S,vol,rd,rf,tau,K,B1,pc,types::Reverse,greek);
+ }
+ } else if(B1>0.0 && B2>0.0) {
+ // double barrier
+ if(B2<=B1) {
+ val = 0.0;
+ } else {
+ int pm = (pc==types::Call) ? 1 : -1;
+ val = pm * (
+ putcalltrunc(S,vol,rd,rf,tau,K,B1,pc,types::Regular,greek)
+ - putcalltrunc(S,vol,rd,rf,tau,K,B2,pc,types::Regular,greek)
+ );
+ }
+ } else {
+ // never get here
+ assert(false);
+ }
+ return val;
+}
+
+namespace internal {
+
+// wrapper function for all non-path dependent options
+// this is only an internal function, used to avoid code duplication when
+// going to path-dependent barrier options,
+// K<0 - assume binary option
+// K>=0 - assume put/call option
+static double vanilla(double S, double vol, double rd, double rf,
+ double tau, double K, double B1, double B2,
+ types::PutCall pc, types::ForDom fd,
+ types::Greeks greek) {
+ double val = 0.0;
+ if(K<0.0) {
+ // binary option if K<0
+ val = binary(S,vol,rd,rf,tau,B1,B2,fd,greek);
+ } else {
+ val = putcall(S,vol,rd,rf,tau,K,pc,greek);
+ }
+ return val;
+}
+static double vanilla_trunc(double S, double vol, double rd, double rf,
+ double tau, double K, double B1, double B2,
+ types::PutCall pc, types::ForDom fd,
+ types::Greeks greek) {
+ double val = 0.0;
+ if(K<0.0) {
+ // binary option if K<0
+ // truncated is actually the same as the vanilla binary
+ val = binary(S,vol,rd,rf,tau,B1,B2,fd,greek);
+ } else {
+ val = putcalltrunc(S,vol,rd,rf,tau,K,B1,B2,pc,greek);
+ }
+ return val;
+}
+
+} // namespace internal
+
+// path dependent options
+
+
+namespace internal {
+
+// helper term for any type of options with continuously monitored barriers,
+// internal, should not be called from outside
+// calculates value and greeks based on
+// V(S) = V1(sc*S) - (B/S)^a V1(sc*B^2/S)
+// (a=2 mu/vol^2, mu drift in logspace, ie. mu=(rd-rf-1/2vol^2))
+// with sc=1 and V1() being the price of the respective truncated
+// vanilla option, V() would be the price of the respective barrier
+// option if only one barrier is present
+static double barrier_term(double S, double vol, double rd, double rf,
+ double tau, double K, double B1, double B2, double sc,
+ types::PutCall pc, types::ForDom fd,
+ types::Greeks greek) {
+
+ assert(tau>=0.0);
+ assert(S>0.0);
+ assert(vol>0.0);
+
+ // V(S) = V1(sc*S) - (B/S)^a V1(sc*B^2/S)
+ double val = 0.0;
+ double B = (B1>0.0) ? B1 : B2;
+ double a = 2.0*(rd-rf)/(vol*vol)-1.0; // helper variable
+ double b = 4.0*(rd-rf)/(vol*vol*vol); // helper variable -da/dvol
+ double c = 12.0*(rd-rf)/(vol*vol*vol*vol); // helper -db/dvol
+ switch(greek) {
+ case types::Value:
+ val = vanilla_trunc(sc*S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek)
+ - pow(B/S,a)*
+ vanilla_trunc(sc*B*B/S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek);
+ break;
+ case types::Delta:
+ val = sc*vanilla_trunc(sc*S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek)
+ + pow(B/S,a) * (
+ a/S*
+ vanilla_trunc(sc*B*B/S,vol,rd,rf,tau,K,B1,B2,pc,fd,types::Value)
+ + sqr(B/S)*sc*
+ vanilla_trunc(sc*B*B/S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek)
+ );
+ break;
+ case types::Gamma:
+ val = sc*sc*vanilla_trunc(sc*S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek)
+ - pow(B/S,a) * (
+ a*(a+1.0)/(S*S)*
+ vanilla_trunc(sc*B*B/S,vol,rd,rf,tau,K,B1,B2,pc,fd,types::Value)
+ + (2.0*a+2.0)*B*B/(S*S*S)*sc*
+ vanilla_trunc(sc*B*B/S,vol,rd,rf,tau,K,B1,B2,pc,fd,types::Delta)
+ + sqr(sqr(B/S))*sc*sc*
+ vanilla_trunc(sc*B*B/S,vol,rd,rf,tau,K,B1,B2,pc,fd,types::Gamma)
+ );
+ break;
+ case types::Theta:
+ val = vanilla_trunc(sc*S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek)
+ - pow(B/S,a)*
+ vanilla_trunc(sc*B*B/S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek);
+ break;
+ case types::Vega:
+ val = vanilla_trunc(sc*S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek)
+ - pow(B/S,a) * (
+ - b*log(B/S)*
+ vanilla_trunc(sc*B*B/S,vol,rd,rf,tau,K,B1,B2,pc,fd,types::Value)
+ + 1.0*
+ vanilla_trunc(sc*B*B/S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek)
+ );
+ break;
+ case types::Volga:
+ val = vanilla_trunc(sc*S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek)
+ - pow(B/S,a) * (
+ log(B/S)*(b*b*log(B/S)+c)*
+ vanilla_trunc(sc*B*B/S,vol,rd,rf,tau,K,B1,B2,pc,fd,types::Value)
+ - 2.0*b*log(B/S)*
+ vanilla_trunc(sc*B*B/S,vol,rd,rf,tau,K,B1,B2,pc,fd,types::Vega)
+ + 1.0*
+ vanilla_trunc(sc*B*B/S,vol,rd,rf,tau,K,B1,B2,pc,fd,types::Volga)
+ );
+ break;
+ case types::Vanna:
+ val = sc*vanilla_trunc(sc*S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek)
+ - pow(B/S,a) * (
+ b/S*(log(B/S)*a+1.0)*
+ vanilla_trunc(B*B/S*sc,vol,rd,rf,tau,K,B1,B2,pc,fd,types::Value)
+ + b*log(B/S)*sqr(B/S)*sc*
+ vanilla_trunc(B*B/S*sc,vol,rd,rf,tau,K,B1,B2,pc,fd,types::Delta)
+ - a/S*
+ vanilla_trunc(B*B/S*sc,vol,rd,rf,tau,K,B1,B2,pc,fd,types::Vega)
+ - sqr(B/S)*sc*
+ vanilla_trunc(B*B/S*sc,vol,rd,rf,tau,K,B1,B2,pc,fd,types::Vanna)
+ );
+ break;
+ case types::Rho_d:
+ val = vanilla_trunc(sc*S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek)
+ - pow(B/S,a) * (
+ 2.0*log(B/S)/(vol*vol)*
+ vanilla_trunc(sc*B*B/S,vol,rd,rf,tau,K,B1,B2,pc,fd,types::Value)
+ + 1.0*
+ vanilla_trunc(sc*B*B/S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek)
+ );
+ break;
+ case types::Rho_f:
+ val = vanilla_trunc(sc*S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek)
+ - pow(B/S,a) * (
+ - 2.0*log(B/S)/(vol*vol)*
+ vanilla_trunc(sc*B*B/S,vol,rd,rf,tau,K,B1,B2,pc,fd,types::Value)
+ + 1.0*
+ vanilla_trunc(sc*B*B/S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek)
+ );
+ break;
+ default:
+ printf("barrier_term: greek %d not implemented\n", greek );
+ abort();
+ }
+ return val;
+}
+
+// one term of the infinite sum for the valuation of double barriers
+static double barrier_double_term( double S, double vol, double rd, double rf,
+ double tau, double K, double B1, double B2,
+ double fac, double sc, int i,
+ types::PutCall pc, types::ForDom fd, types::Greeks greek) {
+
+ double val = 0.0;
+ double b = 4.0*i*(rd-rf)/(vol*vol*vol); // helper variable -da/dvol
+ double c = 12.0*i*(rd-rf)/(vol*vol*vol*vol); // helper -db/dvol
+ switch(greek) {
+ case types::Value:
+ val = fac*barrier_term(S,vol,rd,rf,tau,K,B1,B2,sc,pc,fd,greek);
+ break;
+ case types::Delta:
+ val = fac*barrier_term(S,vol,rd,rf,tau,K,B1,B2,sc,pc,fd,greek);
+ break;
+ case types::Gamma:
+ val = fac*barrier_term(S,vol,rd,rf,tau,K,B1,B2,sc,pc,fd,greek);
+ break;
+ case types::Theta:
+ val = fac*barrier_term(S,vol,rd,rf,tau,K,B1,B2,sc,pc,fd,greek);
+ break;
+ case types::Vega:
+ val = fac*barrier_term(S,vol,rd,rf,tau,K,B1,B2,sc,pc,fd,greek)
+ - b*log(B2/B1)*fac *
+ barrier_term(S,vol,rd,rf,tau,K,B1,B2,sc,pc,fd,types::Value);
+ break;
+ case types::Volga:
+ val = fac*barrier_term(S,vol,rd,rf,tau,K,B1,B2,sc,pc,fd,greek)
+ - 2.0*b*log(B2/B1)*fac *
+ barrier_term(S,vol,rd,rf,tau,K,B1,B2,sc,pc,fd,types::Vega)
+ + log(B2/B1)*fac*(c+b*b*log(B2/B1)) *
+ barrier_term(S,vol,rd,rf,tau,K,B1,B2,sc,pc,fd,types::Value);
+ break;
+ case types::Vanna:
+ val = fac*barrier_term(S,vol,rd,rf,tau,K,B1,B2,sc,pc,fd,greek)
+ - b*log(B2/B1)*fac *
+ barrier_term(S,vol,rd,rf,tau,K,B1,B2,sc,pc,fd,types::Delta);
+ break;
+ case types::Rho_d:
+ val = fac*barrier_term(S,vol,rd,rf,tau,K,B1,B2,sc,pc,fd,greek)
+ + 2.0*i/(vol*vol)*log(B2/B1)*fac *
+ barrier_term(S,vol,rd,rf,tau,K,B1,B2,sc,pc,fd,types::Value);
+ break;
+ case types::Rho_f:
+ val = fac*barrier_term(S,vol,rd,rf,tau,K,B1,B2,sc,pc,fd,greek)
+ - 2.0*i/(vol*vol)*log(B2/B1)*fac *
+ barrier_term(S,vol,rd,rf,tau,K,B1,B2,sc,pc,fd,types::Value);
+ break;
+ default:
+ printf("barrier_double_term: greek %d not implemented\n", greek );
+ abort();
+ }
+ return val;
+}
+
+// general pricer for any type of options with continuously monitored barriers
+// allows two, one or zero barriers, only knock-out style
+// payoff profiles allowed based on vanilla_trunc()
+static double barrier_ko(double S, double vol, double rd, double rf,
+ double tau, double K, double B1, double B2,
+ types::PutCall pc, types::ForDom fd,
+ types::Greeks greek) {
+
+ assert(tau>=0.0);
+ assert(S>0.0);
+ assert(vol>0.0);
+
+ double val = 0.0;
+
+ if(B1<=0.0 && B2<=0.0) {
+ // no barriers --> vanilla case
+ val = vanilla(S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek);
+ } else if(B1>0.0 && B2<=0.0) {
+ // lower barrier
+ if(S<=B1) {
+ val = 0.0; // knocked out
+ } else {
+ val = barrier_term(S,vol,rd,rf,tau,K,B1,B2,1.0,pc,fd,greek);
+ }
+ } else if(B1<=0.0 && B2>0.0) {
+ // upper barrier
+ if(S>=B2) {
+ val = 0.0; // knocked out
+ } else {
+ val = barrier_term(S,vol,rd,rf,tau,K,B1,B2,1.0,pc,fd,greek);
+ }
+ } else if(B1>0.0 && B2>0.0) {
+ // double barrier
+ if(S<=B1 || S>=B2) {
+ val = 0.0; // knocked out (always true if wrong input B1>B2)
+ } else {
+ // more complex calculation as we have to evaluate an infinite
+ // sum
+ // to reduce very costly pow() calls we define some variables
+ double a = 2.0*(rd-rf)/(vol*vol)-1.0; // 2 (mu-1/2vol^2)/sigma^2
+ double BB2=sqr(B2/B1);
+ double BBa=pow(B2/B1,a);
+ double BB2inv=1.0/BB2;
+ double BBainv=1.0/BBa;
+ double fac=1.0;
+ double facinv=1.0;
+ double sc=1.0;
+ double scinv=1.0;
+
+ // initial term i=0
+ val=barrier_double_term(S,vol,rd,rf,tau,K,B1,B2,fac,sc,0,pc,fd,greek);
+ // infinite loop, 10 should be plenty, normal would be 2
+ for(int i=1; i<10; i++) {
+ fac*=BBa;
+ facinv*=BBainv;
+ sc*=BB2;
+ scinv*=BB2inv;
+ double add =
+ barrier_double_term(S,vol,rd,rf,tau,K,B1,B2,fac,sc,i,pc,fd,greek) +
+ barrier_double_term(S,vol,rd,rf,tau,K,B1,B2,facinv,scinv,-i,pc,fd,greek);
+ val += add;
+ //printf("%i: val=%e (add=%e)\n",i,val,add);
+ if(fabs(add) <= 1e-12*fabs(val)) {
+ break;
+ }
+ }
+ // not knocked-out double barrier end
+ }
+ // double barrier end
+ } else {
+ // no such barrier combination exists
+ assert(false);
+ }
+
+ return val;
+}
+
+// knock-in style barrier
+static double barrier_ki(double S, double vol, double rd, double rf,
+ double tau, double K, double B1, double B2,
+ types::PutCall pc, types::ForDom fd,
+ types::Greeks greek) {
+ return vanilla(S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek)
+ -barrier_ko(S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek);
+}
+
+// general barrier
+static double barrier(double S, double vol, double rd, double rf,
+ double tau, double K, double B1, double B2,
+ types::PutCall pc, types::ForDom fd,
+ types::BarrierKIO kio, types::BarrierActive bcont,
+ types::Greeks greek) {
+
+ double val = 0.0;
+ if( kio==types::KnockOut && bcont==types::Maturity ) {
+ // truncated vanilla option
+ val = vanilla_trunc(S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek);
+ } else if ( kio==types::KnockOut && bcont==types::Continuous ) {
+ // standard knock-out barrier
+ val = barrier_ko(S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek);
+ } else if ( kio==types::KnockIn && bcont==types::Maturity ) {
+ // inverse truncated vanilla
+ val = vanilla(S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek)
+ - vanilla_trunc(S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek);
+ } else if ( kio==types::KnockIn && bcont==types::Continuous ) {
+ // standard knock-in barrier
+ val = barrier_ki(S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek);
+ } else {
+ // never get here
+ assert(false);
+ }
+ return val;
+}
+
+} // namespace internal
+
+
+// touch/no-touch options (cash/asset or nothing payoff profile)
+double touch(double S, double vol, double rd, double rf,
+ double tau, double B1, double B2, types::ForDom fd,
+ types::BarrierKIO kio, types::BarrierActive bcont,
+ types::Greeks greek) {
+
+ double K=-1.0; // dummy
+ types::PutCall pc = types::Call; // dummy
+ double val = 0.0;
+ if( kio==types::KnockOut && bcont==types::Maturity ) {
+ // truncated vanilla option
+ val = internal::vanilla_trunc(S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek);
+ } else if ( kio==types::KnockOut && bcont==types::Continuous ) {
+ // standard knock-out barrier
+ val = internal::barrier_ko(S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek);
+ } else if ( kio==types::KnockIn && bcont==types::Maturity ) {
+ // inverse truncated vanilla
+ val = internal::vanilla(S,vol,rd,rf,tau,K,-1.0,-1.0,pc,fd,greek)
+ - internal::vanilla_trunc(S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek);
+ } else if ( kio==types::KnockIn && bcont==types::Continuous ) {
+ // standard knock-in barrier
+ val = internal::vanilla(S,vol,rd,rf,tau,K,-1.0,-1.0,pc,fd,greek)
+ - internal::barrier_ko(S,vol,rd,rf,tau,K,B1,B2,pc,fd,greek);
+ } else {
+ // never get here
+ assert(false);
+ }
+ return val;
+}
+
+// barrier option (put/call payoff profile)
+double barrier(double S, double vol, double rd, double rf,
+ double tau, double K, double B1, double B2,
+ double rebate,
+ types::PutCall pc, types::BarrierKIO kio,
+ types::BarrierActive bcont,
+ types::Greeks greek) {
+ assert(tau>=0.0);
+ assert(S>0.0);
+ assert(vol>0.0);
+ assert(K>=0.0);
+ types::ForDom fd = types::Domestic;
+ double val=internal::barrier(S,vol,rd,rf,tau,K,B1,B2,pc,fd,kio,bcont,greek);
+ if(rebate!=0.0) {
+ // opposite of barrier knock-in/out type
+ types::BarrierKIO kio2 = (kio==types::KnockIn) ? types::KnockOut
+ : types::KnockIn;
+ val += rebate*touch(S,vol,rd,rf,tau,B1,B2,fd,kio2,bcont,greek);
+ }
+ return val;
+}
+
+// probability of hitting a barrier
+// this is almost the same as the price of a touch option (domestic)
+// as it pays one if a barrier is hit; we only have to offset the
+// discounting and we get the probability
+double prob_hit(double S, double vol, double mu,
+ double tau, double B1, double B2) {
+ double const rd=0.0;
+ double rf=-mu;
+ return 1.0 - touch(S,vol,rd,rf,tau,B1,B2,types::Domestic,types::KnockOut,
+ types::Continuous, types::Value);
+}
+
+// probability of being in-the-money, ie payoff is greater zero,
+// assuming payoff(S_T) > 0 iff S_T in [B1, B2]
+// this the same as the price of a cash or nothing option
+// with no discounting
+double prob_in_money(double S, double vol, double mu,
+ double tau, double B1, double B2) {
+ assert(S>0.0);
+ assert(vol>0.0);
+ assert(tau>=0.0);
+ double val = 0.0;
+ if( B1<B2 || B1<=0.0 || B2<=0.0 ) {
+ val = binary(S,vol,0.0,-mu,tau,B1,B2,types::Domestic,types::Value);
+ }
+ return val;
+}
+double prob_in_money(double S, double vol, double mu,
+ double tau, double K, double B1, double B2,
+ types::PutCall pc) {
+ assert(S>0.0);
+ assert(vol>0.0);
+ assert(tau>=0.0);
+
+ // if K<0 we assume a binary option is given
+ if(K<0.0) {
+ return prob_in_money(S,vol,mu,tau,B1,B2);
+ }
+
+ double val = 0.0;
+ double BM1, BM2; // range of in the money [BM1, BM2]
+ // non-sense parameters with no positive payoff
+ if( (B1>B2 && B1>0.0 && B2>0.0) ||
+ (K>=B2 && B2>0.0 && pc==types::Call) ||
+ (K<=B1 && pc==types::Put) ) {
+ val = 0.0;
+ // need to figure out between what barriers payoff is greater 0
+ } else if(pc==types::Call) {
+ BM1=std::max(B1, K);
+ BM2=B2;
+ val = prob_in_money(S,vol,mu,tau,BM1,BM2);
+ } else if (pc==types::Put) {
+ BM1=B1;
+ BM2= (B2>0.0) ? std::min(B2,K) : K;
+ val = prob_in_money(S,vol,mu,tau,BM1,BM2);
+ } else {
+ // don't get here
+ assert(false);
+ }
+ return val;
+}
+
+} // namespace sca
+
+
+/* vim:set shiftwidth=4 softtabstop=4 expandtab: */