/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4; fill-column: 100 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ #include #include #include #include #include #include #include #include #include #include #include "bridge.hxx" #include "types.hxx" #include "unointerfaceproxy.hxx" #include "vtables.hxx" #include "share.hxx" #include "abi.hxx" using namespace ::com::sun::star::uno; namespace { void pushArgs(unsigned long value, unsigned long* const stack, sal_Int32* const sp, unsigned long* const regs, sal_Int32* const nregs) { (*nregs != 8 ? regs[(*nregs)++] : stack[(*sp)++]) = value; } static void callVirtualMethod(void* pAdjustedThisPtr, sal_Int32 nVtableIndex, void* pRegisterReturn, typelib_TypeDescriptionReference* pReturnTypeRef, bool bSimpleReturn, sal_uInt64* pStack, sal_uInt32 nStack, sal_uInt64* pGPR, double* pFPR) { // Get pointer to method sal_uInt64 pMethod = *((sal_uInt64*)pAdjustedThisPtr); pMethod += 8 * nVtableIndex; void* mfunc = (void*)*((sal_uInt64*)pMethod); // Load parameters to stack, if necessary sal_uInt64* pCallStack = NULL; if (nStack) { // 16-bytes aligned sal_uInt32 nStackBytes = ((nStack + 1) >> 1) * 16; pCallStack = (sal_uInt64*)__builtin_alloca(nStackBytes); std::memcpy(pCallStack, pStack, nStackBytes); } sal_Int64 gret[2]; double fret[2]; asm volatile( // Fill the general purpose registers "ld.d $r4,%[gpr],0 \n\t" "ld.d $r5,%[gpr],8 \n\t" "ld.d $r6,%[gpr],16 \n\t" "ld.d $r7,%[gpr],24 \n\t" "ld.d $r8,%[gpr],32 \n\t" "ld.d $r9,%[gpr],40 \n\t" "ld.d $r10,%[gpr],48 \n\t" "ld.d $r11,%[gpr],56 \n\t" // Fill the floating pointer registers "fld.d $f0,%[fpr],0 \n\t" "fld.d $f1,%[fpr],8 \n\t" "fld.d $f2,%[fpr],16 \n\t" "fld.d $f3,%[fpr],24 \n\t" "fld.d $f4,%[fpr],32 \n\t" "fld.d $f5,%[fpr],40 \n\t" "fld.d $f6,%[fpr],48 \n\t" "fld.d $f7,%[fpr],56 \n\t" // Perform the call "jirl $ra,%[mfunc],0 \n\t" // Fill the return values "move %[gret1], $a0 \n\t" "move %[gret2], $a1 \n\t" "fmov.d %[fret1], $f0 \n\t" "fmov.d %[fret2], $f1 \n\t" : [gret1] "=r"(gret[0]), [gret2] "=r"(gret[1]), [fret1] "=f"(fret[0]), [fret2] "=f"(fret[1]) : [gpr] "r"(pGPR), [fpr] "r"(pFPR), [mfunc] "r"(mfunc), [stack] "m"( pCallStack) // dummy input to prevent the compiler from optimizing the alloca out : "$r4", "$r5", "$r6", "$r7", "$r8", "$r9", "$r10", "$r11", "$r1", "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "memory"); switch (pReturnTypeRef->eTypeClass) { case typelib_TypeClass_HYPER: case typelib_TypeClass_UNSIGNED_HYPER: case typelib_TypeClass_LONG: case typelib_TypeClass_UNSIGNED_LONG: case typelib_TypeClass_ENUM: case typelib_TypeClass_CHAR: case typelib_TypeClass_SHORT: case typelib_TypeClass_UNSIGNED_SHORT: case typelib_TypeClass_BOOLEAN: case typelib_TypeClass_BYTE: *reinterpret_cast(pRegisterReturn) = gret[0]; break; case typelib_TypeClass_FLOAT: case typelib_TypeClass_DOUBLE: *reinterpret_cast(pRegisterReturn) = fret[0]; break; case typelib_TypeClass_STRUCT: case typelib_TypeClass_EXCEPTION: { sal_Int32 const nRetSize = pReturnTypeRef->pType->nSize; if (bSimpleReturn && nRetSize <= 16 && nRetSize > 0) { loongarch64::fillReturn(pReturnTypeRef, gret, fret, pRegisterReturn); } break; } default: break; } } static void cpp_call(bridges::cpp_uno::shared::UnoInterfaceProxy* pThis, bridges::cpp_uno::shared::VtableSlot aVtableSlot, typelib_TypeDescriptionReference* pReturnTypeRef, sal_Int32 nParams, typelib_MethodParameter* pParams, void* pUnoReturn, void* pUnoArgs[], uno_Any** ppUnoExc) { // max space for: [complex ret ptr], values|ptr ... sal_uInt64* pStack = (sal_uInt64*)__builtin_alloca(((nParams + 3) * sizeof(sal_Int64))); sal_uInt64* pStackStart = pStack; sal_Int32 sp = 0; sal_uInt64 pGPR[MAX_GP_REGS]; sal_Int32 gCount = 0; double pFPR[MAX_FP_REGS]; sal_Int32 fCount = 0; // return typelib_TypeDescription* pReturnTypeDescr = 0; TYPELIB_DANGER_GET(&pReturnTypeDescr, pReturnTypeRef); assert(pReturnTypeDescr); void* pCppReturn = 0; // if != 0 && != pUnoReturn, needs reconversion bool bSimpleReturn = true; if (pReturnTypeDescr) { if (CPPU_CURRENT_NAMESPACE::return_in_hidden_param(pReturnTypeRef)) { bSimpleReturn = false; // complex return via ptr pCppReturn = bridges::cpp_uno::shared::relatesToInterfaceType(pReturnTypeDescr) ? __builtin_alloca(pReturnTypeDescr->nSize) : pUnoReturn; pGPR[gCount++] = reinterpret_cast(pCppReturn); } else { pCppReturn = pUnoReturn; // direct way for simple types } } // push this void* pAdjustedThisPtr = reinterpret_cast(pThis->getCppI()) + aVtableSlot.offset; pGPR[gCount++] = reinterpret_cast(pAdjustedThisPtr); // args void** pCppArgs = (void**)alloca(3 * sizeof(void*) * nParams); // indices of values this have to be converted (interface conversion cpp<=>uno) sal_Int32* pTempIndices = (sal_Int32*)(pCppArgs + nParams); // type descriptions for reconversions typelib_TypeDescription** ppTempParamTypeDescr = (typelib_TypeDescription**)(pCppArgs + (2 * nParams)); sal_Int32 nTempIndices = 0; for (sal_Int32 nPos = 0; nPos < nParams; ++nPos) { const typelib_MethodParameter& rParam = pParams[nPos]; typelib_TypeDescription* pParamTypeDescr = 0; TYPELIB_DANGER_GET(&pParamTypeDescr, rParam.pTypeRef); if (!rParam.bOut && bridges::cpp_uno::shared::isSimpleType(pParamTypeDescr)) { uno_copyAndConvertData(pCppArgs[nPos] = alloca(8), pUnoArgs[nPos], pParamTypeDescr, pThis->getBridge()->getUno2Cpp()); switch (pParamTypeDescr->eTypeClass) { case typelib_TypeClass_LONG: case typelib_TypeClass_ENUM: pushArgs(*static_cast(pCppArgs[nPos]), pStack, &sp, pGPR, &gCount); break; case typelib_TypeClass_UNSIGNED_LONG: pushArgs(*static_cast(pCppArgs[nPos]), pStack, &sp, pGPR, &gCount); break; case typelib_TypeClass_CHAR: pushArgs(*static_cast(pCppArgs[nPos]), pStack, &sp, pGPR, &gCount); break; case typelib_TypeClass_SHORT: pushArgs(*static_cast(pCppArgs[nPos]), pStack, &sp, pGPR, &gCount); break; case typelib_TypeClass_UNSIGNED_SHORT: pushArgs(*static_cast(pCppArgs[nPos]), pStack, &sp, pGPR, &gCount); break; case typelib_TypeClass_BOOLEAN: pushArgs(static_cast(*static_cast(pCppArgs[nPos])), pStack, &sp, pGPR, &gCount); break; case typelib_TypeClass_BYTE: pushArgs(*static_cast(pCppArgs[nPos]), pStack, &sp, pGPR, &gCount); break; case typelib_TypeClass_FLOAT: case typelib_TypeClass_DOUBLE: if (fCount != MAX_FP_REGS) { pFPR[fCount++] = *static_cast(pCppArgs[nPos]); } else if (gCount != MAX_GP_REGS) { pGPR[gCount++] = *static_cast(pCppArgs[nPos]); } else { pStack[sp++] = *static_cast(pCppArgs[nPos]); } break; case typelib_TypeClass_HYPER: pushArgs(*static_cast(pCppArgs[nPos]), pStack, &sp, pGPR, &gCount); break; case typelib_TypeClass_UNSIGNED_HYPER: pushArgs(*static_cast(pCppArgs[nPos]), pStack, &sp, pGPR, &gCount); break; default: break; } // no longer needed TYPELIB_DANGER_RELEASE(pParamTypeDescr); } else // ptr to complex value | ref { if (!rParam.bIn) // is pure out { // cpp out is constructed mem, uno out is not! uno_constructData(pCppArgs[nPos] = alloca(pParamTypeDescr->nSize), pParamTypeDescr); pTempIndices[nTempIndices] = nPos; // default constructed for cpp call // will be released at reconversion ppTempParamTypeDescr[nTempIndices++] = pParamTypeDescr; } // is in/inout else if (bridges::cpp_uno::shared::relatesToInterfaceType(pParamTypeDescr)) { uno_copyAndConvertData(pCppArgs[nPos] = alloca(pParamTypeDescr->nSize), pUnoArgs[nPos], pParamTypeDescr, pThis->getBridge()->getUno2Cpp()); pTempIndices[nTempIndices] = nPos; // has to be reconverted // will be released at reconversion ppTempParamTypeDescr[nTempIndices++] = pParamTypeDescr; } else // direct way { pCppArgs[nPos] = pUnoArgs[nPos]; // no longer needed TYPELIB_DANGER_RELEASE(pParamTypeDescr); } pushArgs(reinterpret_cast(pCppArgs[nPos]), pStack, &sp, pGPR, &gCount); } } try { try { callVirtualMethod(pAdjustedThisPtr, aVtableSlot.index, pCppReturn, pReturnTypeRef, bSimpleReturn, pStackStart, sp, pGPR, pFPR); } catch (css::uno::Exception&) { throw; } catch (std::exception& e) { throw css::uno::RuntimeException("C++ code threw " + o3tl::runtimeToOUString(typeid(e).name()) + ": " + o3tl::runtimeToOUString(e.what())); } catch (...) { throw css::uno::RuntimeException("C++ code threw unknown exception"); } // NO exception occurred... *ppUnoExc = 0; // reconvert temporary params for (; nTempIndices--;) { sal_Int32 nIndex = pTempIndices[nTempIndices]; typelib_TypeDescription* pParamTypeDescr = ppTempParamTypeDescr[nTempIndices]; if (pParams[nIndex].bIn) { if (pParams[nIndex].bOut) // inout { uno_destructData(pUnoArgs[nIndex], pParamTypeDescr, 0); // destroy uno value uno_copyAndConvertData(pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr, pThis->getBridge()->getCpp2Uno()); } } else // pure out { uno_copyAndConvertData(pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr, pThis->getBridge()->getCpp2Uno()); } // destroy temp cpp param => cpp: every param was constructed uno_destructData(pCppArgs[nIndex], pParamTypeDescr, cpp_release); TYPELIB_DANGER_RELEASE(pParamTypeDescr); } // return value if (pCppReturn && pUnoReturn != pCppReturn) { uno_copyAndConvertData(pUnoReturn, pCppReturn, pReturnTypeDescr, pThis->getBridge()->getCpp2Uno()); uno_destructData(pCppReturn, pReturnTypeDescr, cpp_release); } } catch (...) { // fill uno exception CPPU_CURRENT_NAMESPACE::fillUnoException(*ppUnoExc, pThis->getBridge()->getCpp2Uno()); // temporary params for (; nTempIndices--;) { sal_Int32 nIndex = pTempIndices[nTempIndices]; // destroy temp cpp param => cpp: every param was constructed uno_destructData(pCppArgs[nIndex], ppTempParamTypeDescr[nTempIndices], cpp_release); TYPELIB_DANGER_RELEASE(ppTempParamTypeDescr[nTempIndices]); } // return type if (pReturnTypeDescr) TYPELIB_DANGER_RELEASE(pReturnTypeDescr); } } } namespace bridges::cpp_uno::shared { void unoInterfaceProxyDispatch(uno_Interface* pUnoI, const typelib_TypeDescription* pMemberDescr, void* pReturn, void* pArgs[], uno_Any** ppException) { // is my surrogate bridges::cpp_uno::shared::UnoInterfaceProxy* pThis = static_cast(pUnoI); //typelib_InterfaceTypeDescription * pTypeDescr = pThis->pTypeDescr; switch (pMemberDescr->eTypeClass) { case typelib_TypeClass_INTERFACE_ATTRIBUTE: { VtableSlot aVtableSlot(getVtableSlot( reinterpret_cast(pMemberDescr))); if (pReturn) { // dependent dispatch cpp_call( pThis, aVtableSlot, ((typelib_InterfaceAttributeTypeDescription*)pMemberDescr)->pAttributeTypeRef, 0, 0, // no params pReturn, pArgs, ppException); } else { // is SET typelib_MethodParameter aParam; aParam.pTypeRef = ((typelib_InterfaceAttributeTypeDescription*)pMemberDescr)->pAttributeTypeRef; aParam.bIn = sal_True; aParam.bOut = sal_False; typelib_TypeDescriptionReference* pReturnTypeRef = 0; OUString aVoidName("void"); typelib_typedescriptionreference_new(&pReturnTypeRef, typelib_TypeClass_VOID, aVoidName.pData); // dependent dispatch aVtableSlot.index += 1; //get then set method cpp_call(pThis, aVtableSlot, pReturnTypeRef, 1, &aParam, pReturn, pArgs, ppException); typelib_typedescriptionreference_release(pReturnTypeRef); } break; } case typelib_TypeClass_INTERFACE_METHOD: { VtableSlot aVtableSlot(getVtableSlot( reinterpret_cast(pMemberDescr))); switch (aVtableSlot.index) { // standard calls case 1: // acquire uno interface (*pUnoI->acquire)(pUnoI); *ppException = 0; break; case 2: // release uno interface (*pUnoI->release)(pUnoI); *ppException = 0; break; case 0: // queryInterface() opt { typelib_TypeDescription* pTD = 0; TYPELIB_DANGER_GET(&pTD, reinterpret_cast(pArgs[0])->getTypeLibType()); if (pTD) { uno_Interface* pInterface = 0; (*pThis->pBridge->getUnoEnv()->getRegisteredInterface)( pThis->pBridge->getUnoEnv(), (void**)&pInterface, pThis->oid.pData, (typelib_InterfaceTypeDescription*)pTD); if (pInterface) { ::uno_any_construct(reinterpret_cast(pReturn), &pInterface, pTD, 0); (*pInterface->release)(pInterface); TYPELIB_DANGER_RELEASE(pTD); *ppException = 0; break; } TYPELIB_DANGER_RELEASE(pTD); } } // else perform queryInterface() [[fallthrough]]; default: // dependent dispatch cpp_call( pThis, aVtableSlot, ((typelib_InterfaceMethodTypeDescription*)pMemberDescr)->pReturnTypeRef, ((typelib_InterfaceMethodTypeDescription*)pMemberDescr)->nParams, ((typelib_InterfaceMethodTypeDescription*)pMemberDescr)->pParams, pReturn, pArgs, ppException); } break; } default: { ::com::sun::star::uno::RuntimeException aExc( "illegal member type description!", ::com::sun::star::uno::Reference<::com::sun::star::uno::XInterface>()); Type const& rExcType = cppu::UnoType::get(); // binary identical null reference ::uno_type_any_construct(*ppException, &aExc, rExcType.getTypeLibType(), 0); } } } } /* vim:set shiftwidth=4 softtabstop=4 expandtab cinoptions=b1,g0,N-s cinkeys+=0=break: */