/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ #include <basegfx/point/b2dpoint.hxx> #include <basegfx/polygon/b2dpolygon.hxx> #include <basegfx/polygon/b2dpolypolygon.hxx> #include <sal/log.hxx> #include "emfppath.hxx" namespace { const unsigned char nTopBitInt7 = 0x80; const unsigned char nSignBitInt7 = 0x40; // include the sign bit so if it's negative we get // that "missing" bit pre-set to 1 const unsigned char nValueMaskInt7 = 0x7F; } namespace emfplushelper { typedef double matrix [4][4]; constexpr sal_uInt32 nDetails = 8; constexpr double alpha[nDetails] = { 1. / nDetails, 2. / nDetails, 3. / nDetails, 4. / nDetails, 5. / nDetails, 6. / nDetails, 7. / nDetails, 8. / nDetails }; // see 2.2.2.21 EmfPlusInteger7 // 2.2.2.22 EmfPlusInteger15 // and 2.2.2.37 EmfPlusPointR Object static sal_Int16 GetEmfPlusInteger(SvStream& s) { unsigned char u8(0); s.ReadUChar(u8); bool bIsEmfPlusInteger15 = u8 & nTopBitInt7; bool bNegative = u8 & nSignBitInt7; unsigned char val1 = u8 & nValueMaskInt7; if (bNegative) val1 |= nTopBitInt7; if (!bIsEmfPlusInteger15) { return static_cast<signed char>(val1); } s.ReadUChar(u8); sal_uInt16 nRet = (val1 << 8) | u8; return static_cast<sal_Int16>(nRet); } EMFPPath::EMFPPath (sal_uInt32 _nPoints, bool bLines) { if (_nPoints > SAL_MAX_UINT32 / (2 * sizeof(float))) { _nPoints = SAL_MAX_UINT32 / (2 * sizeof(float)); } nPoints = _nPoints; if (!bLines) pPointTypes.reset( new sal_uInt8 [_nPoints] ); } EMFPPath::~EMFPPath () { } void EMFPPath::Read (SvStream& s, sal_uInt32 pathFlags) { float fx, fy; for (sal_uInt32 i = 0; i < nPoints; i++) { if (pathFlags & 0x800) { // EMFPlusPointR: points are stored in EMFPlusInteger7 or // EMFPlusInteger15 objects, see section 2.2.2.21/22 // If 0x800 bit is set, the 0x4000 bit is undefined and must be ignored sal_Int32 x = GetEmfPlusInteger(s); sal_Int32 y = GetEmfPlusInteger(s); xPoints.push_back(x); yPoints.push_back(y); SAL_INFO("drawinglayer.emf", "EMF+\t\t\t" << i << ". EmfPlusPointR [x,y]: " << x << ", " << y); } else if (pathFlags & 0x4000) { // EMFPlusPoint: stored in signed short 16bit integer format sal_Int16 x, y; s.ReadInt16(x).ReadInt16(y); SAL_INFO("drawinglayer.emf", "EMF+\t\t\t" << i << ". EmfPlusPoint [x,y]: " << x << ", " << y); xPoints.push_back(x); yPoints.push_back(y); } else { // EMFPlusPointF: stored in Single (float) format s.ReadFloat(fx).ReadFloat(fy); SAL_INFO("drawinglayer.emf", "EMF+\t" << i << ". EMFPlusPointF [x,y]: " << fx << ", " << fy); xPoints.push_back(fx); yPoints.push_back(fy); } } if (pPointTypes) { for (sal_uInt32 i = 0; i < nPoints; i++) { s.ReadUChar(pPointTypes[i]); SAL_INFO("drawinglayer.emf", "EMF+\tpoint type: 0x" << std::hex << static_cast<int>(pPointTypes[i]) << std::dec); } } aPolygon.clear(); } ::basegfx::B2DPolyPolygon& EMFPPath::GetPolygon (EmfPlusHelperData const & rR, bool bMapIt, bool bAddLineToCloseShape) { ::basegfx::B2DPolygon polygon; aPolygon.clear (); sal_uInt32 last_normal = 0, p = 0; ::basegfx::B2DPoint prev, mapped; bool hasPrev = false; for (sal_uInt32 i = 0; i < nPoints; i++) { if (p && pPointTypes && (pPointTypes [i] == 0)) { aPolygon.append (polygon); last_normal = i; p = 0; polygon.clear (); } if (bMapIt) mapped = rR.Map(xPoints[i], yPoints [i]); else mapped = ::basegfx::B2DPoint(xPoints[i], yPoints[i]); if (pPointTypes) { if ((pPointTypes [i] & 0x07) == 3) { if (((i - last_normal )% 3) == 1) { polygon.setNextControlPoint (p - 1, mapped); SAL_INFO ("drawinglayer.emf", "EMF+\t\tPolygon append next: " << p - 1 << " mapped: " << mapped.getX () << "," << mapped.getY ()); continue; } else if (((i - last_normal) % 3) == 2) { prev = mapped; hasPrev = true; continue; } } else { last_normal = i; } } polygon.append (mapped); SAL_INFO ("drawinglayer.emf", "EMF+\t\tPoint: " << xPoints[i] << "," << yPoints[i] << " mapped: " << mapped.getX () << ":" << mapped.getY ()); if (hasPrev) { polygon.setPrevControlPoint (p, prev); SAL_INFO ("drawinglayer.emf", "EMF+\t\tPolygon append prev: " << p << " mapped: " << prev.getX () << "," << prev.getY ()); hasPrev = false; } p++; if (pPointTypes && (pPointTypes [i] & 0x80)) // closed polygon { polygon.setClosed (true); aPolygon.append (polygon); SAL_INFO ("drawinglayer.emf", "EMF+\t\tClose polygon"); last_normal = i + 1; p = 0; polygon.clear (); } } // Draw an extra line between the last point and the first point, to close the shape. if (bAddLineToCloseShape) { polygon.setClosed (true); } if (polygon.count ()) { aPolygon.append (polygon); #if OSL_DEBUG_LEVEL > 1 for (unsigned int i=0; i<aPolygon.count(); i++) { polygon = aPolygon.getB2DPolygon(i); SAL_INFO ("drawinglayer.emf", "EMF+\t\tPolygon: " << i); for (unsigned int j=0; j<polygon.count(); j++) { ::basegfx::B2DPoint point = polygon.getB2DPoint(j); SAL_INFO ("drawinglayer.emf", "EMF+\t\t\tPoint: " << point.getX() << "," << point.getY()); if (polygon.isPrevControlPointUsed(j)) { point = polygon.getPrevControlPoint(j); SAL_INFO ("drawinglayer.emf", "EMF+\t\t\tPrev: " << point.getX() << "," << point.getY()); } if (polygon.isNextControlPointUsed(j)) { point = polygon.getNextControlPoint(j); SAL_INFO ("drawinglayer.emf", "EMF+\t\t\tNext: " << point.getX() << "," << point.getY()); } } } #endif } return aPolygon; } static void GetCardinalMatrix(float tension, matrix& m) { m[0][1] = 2. - tension; m[0][2] = tension - 2.; m[1][0] = 2. * tension; m[1][1] = tension - 3.; m[1][2] = 3. - 2. * tension; m[3][1] = 1.; m[0][3] = m[2][2] = tension; m[0][0] = m[1][3] = m[2][0] = -tension; m[2][1] = m[2][3] = m[3][0] = m[3][2] = m[3][3] = 0.; } static double calculateSplineCoefficients(float p0, float p1, float p2, float p3, sal_uInt32 step, matrix m) { double a = m[0][0] * p0 + m[0][1] * p1 + m[0][2] * p2 + m[0][3] * p3; double b = m[1][0] * p0 + m[1][1] * p1 + m[1][2] * p2 + m[1][3] * p3; double c = m[2][0] * p0 + m[2][2] * p2; double d = p1; return (d + alpha[step] * (c + alpha[step] * (b + alpha[step] * a))); } ::basegfx::B2DPolyPolygon& EMFPPath::GetCardinalSpline(EmfPlusHelperData const& rR, float fTension, sal_uInt32 aOffset, sal_uInt32 aNumSegments) { ::basegfx::B2DPolygon polygon; matrix mat; double x, y; if (aNumSegments >= nPoints) aNumSegments = nPoints - 1; GetCardinalMatrix(fTension, mat); // duplicate first point xPoints.push_front(xPoints.front()); yPoints.push_front(yPoints.front()); // duplicate last point xPoints.push_back(xPoints.back()); yPoints.push_back(yPoints.back()); for (sal_uInt32 i = 3 + aOffset; i < aNumSegments + 3; i++) { for (sal_uInt32 s = 0; s < nDetails; s++) { x = calculateSplineCoefficients(xPoints[i - 3], xPoints[i - 2], xPoints[i - 1], xPoints[i], s, mat); y = calculateSplineCoefficients(yPoints[i - 3], yPoints[i - 2], yPoints[i - 1], yPoints[i], s, mat); polygon.append(rR.Map(x, y)); } } if (polygon.count()) aPolygon.append(polygon); return aPolygon; } ::basegfx::B2DPolyPolygon& EMFPPath::GetClosedCardinalSpline(EmfPlusHelperData const& rR, float fTension) { ::basegfx::B2DPolygon polygon; matrix mat; double x, y; GetCardinalMatrix(fTension, mat); // add three first points at the end xPoints.push_back(xPoints[0]); yPoints.push_back(yPoints[0]); xPoints.push_back(xPoints[1]); yPoints.push_back(yPoints[1]); xPoints.push_back(xPoints[2]); yPoints.push_back(yPoints[2]); for (sal_uInt32 i = 3; i < nPoints + 3; i++) { for (sal_uInt32 s = 0; s < nDetails; s++) { x = calculateSplineCoefficients(xPoints[i - 3], xPoints[i - 2], xPoints[i - 1], xPoints[i], s, mat); y = calculateSplineCoefficients(yPoints[i - 3], yPoints[i - 2], yPoints[i - 1], yPoints[i], s, mat); polygon.append(rR.Map(x, y)); } } polygon.setClosed(true); if (polygon.count()) aPolygon.append(polygon); return aPolygon; } } /* vim:set shiftwidth=4 softtabstop=4 expandtab: */