/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ #pragma once #include #include namespace basegfx { class B3DHomMatrix; /** Base Point class with three double values This class derives all operators and common handling for a 3D data class from B3DTuple. All necessary extensions which are special for 3D Vectors are added here. @see B3DTuple */ class SAL_WARN_UNUSED BASEGFX_DLLPUBLIC B3DVector : public ::basegfx::B3DTuple { public: /** Create a 3D Vector The vector is initialized to (0.0, 0.0, 0.0) */ B3DVector() {} /** Create a 3D Vector @param fX This parameter is used to initialize the X-coordinate of the 3D Vector. @param fY This parameter is used to initialize the Y-coordinate of the 3D Vector. @param fZ This parameter is used to initialize the Z-coordinate of the 3D Vector. */ B3DVector(double fX, double fY, double fZ) : B3DTuple(fX, fY, fZ) {} /** constructor with tuple to allow copy-constructing from B3DTuple-based classes */ B3DVector(const ::basegfx::B3DTuple& rTuple) : B3DTuple(rTuple) {} /** *=operator to allow usage from B3DVector, too */ B3DVector& operator*=( const B3DVector& rPnt ) { mnX *= rPnt.mnX; mnY *= rPnt.mnY; mnZ *= rPnt.mnZ; return *this; } /** *=operator to allow usage from B3DVector, too */ B3DVector& operator*=(double t) { mnX *= t; mnY *= t; mnZ *= t; return *this; } /** assignment operator to allow assigning the results of B3DTuple calculations */ B3DVector& operator=( const ::basegfx::B3DTuple& rVec ) { mnX = rVec.getX(); mnY = rVec.getY(); mnZ = rVec.getZ(); return *this; } /** Calculate the length of this 3D Vector @return The Length of the 3D Vector */ double getLength() const { double fLen(scalar(*this)); if((0.0 == fLen) || (1.0 == fLen)) return fLen; return sqrt(fLen); } /** Calculate the length in the XZ-Plane for this 3D Vector @return The XZ-Plane Length of the 3D Vector */ double getXZLength() const { double fLen((mnX * mnX) + (mnZ * mnZ)); // #i73040# if((0.0 == fLen) || (1.0 == fLen)) return fLen; return sqrt(fLen); } /** Calculate the length in the YZ-Plane for this 3D Vector @return The YZ-Plane Length of the 3D Vector */ double getYZLength() const { double fLen((mnY * mnY) + (mnZ * mnZ)); if((0.0 == fLen) || (1.0 == fLen)) return fLen; return sqrt(fLen); } /** Set the length of this 3D Vector @param fLen The to be achieved length of the 3D Vector */ B3DVector& setLength(double fLen) { double fLenNow(scalar(*this)); if(!::basegfx::fTools::equalZero(fLenNow)) { const double fOne(1.0); if(!::basegfx::fTools::equal(fOne, fLenNow)) { fLen /= sqrt(fLenNow); } mnX *= fLen; mnY *= fLen; mnZ *= fLen; } return *this; } /** Normalize this 3D Vector The length of the 3D Vector is set to 1.0 */ B3DVector& normalize(); /** get a 3D Vector which is perpendicular to this and a given 3D Vector @attention This only works if this and the given 3D Vector are both normalized. @param rNormalizedVec A normalized 3D Vector. @return A 3D Vector perpendicular to this and the given one */ B3DVector getPerpendicular(const B3DVector& rNormalizedVec) const; /** Calculate the Scalar product This method calculates the Scalar product between this and the given 3D Vector. @param rVec A second 3D Vector. @return The Scalar Product of two 3D Vectors */ double scalar(const B3DVector& rVec) const { return ((mnX * rVec.mnX) + (mnY * rVec.mnY) + (mnZ * rVec.mnZ)); } /** Transform vector by given transformation matrix. Since this is a vector, translational components of the matrix are disregarded. */ B3DVector& operator*=( const B3DHomMatrix& rMat ); static const B3DVector& getEmptyVector() { return static_cast( ::basegfx::B3DTuple::getEmptyTuple() ); } }; // external operators /** Test two vectors which need not to be normalized for parallelism @param rVecA The first 3D Vector @param rVecB The second 3D Vector @return bool if the two values are parallel. Also true if one of the vectors is empty. */ BASEGFX_DLLPUBLIC bool areParallel( const B3DVector& rVecA, const B3DVector& rVecB ); /** Transform vector by given transformation matrix. Since this is a vector, translational components of the matrix are disregarded. */ BASEGFX_DLLPUBLIC B3DVector operator*( const B3DHomMatrix& rMat, const B3DVector& rVec ); /** Calculate the Cross Product of two 3D Vectors @param rVecA A first 3D Vector. @param rVecB A second 3D Vector. @return The Cross Product of both 3D Vectors */ inline B3DVector cross(const B3DVector& rVecA, const B3DVector& rVecB) { B3DVector aVec( rVecA.getY() * rVecB.getZ() - rVecA.getZ() * rVecB.getY(), rVecA.getZ() * rVecB.getX() - rVecA.getX() * rVecB.getZ(), rVecA.getX() * rVecB.getY() - rVecA.getY() * rVecB.getX()); return aVec; } } // end of namespace basegfx /* vim:set shiftwidth=4 softtabstop=4 expandtab: */