/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace oox::vml { using namespace ::com::sun::star; using namespace ::com::sun::star::geometry; using ::oox::drawingml::Color; using ::oox::drawingml::FillProperties; using ::oox::drawingml::LineArrowProperties; using ::oox::drawingml::LineProperties; using ::oox::drawingml::ShapePropertyMap; using ::com::sun::star::awt::Point; using ::com::sun::star::drawing::PolygonFlags; using ::com::sun::star::drawing::PolygonFlags_NORMAL; using ::com::sun::star::drawing::PolygonFlags_CONTROL; namespace { bool lclExtractDouble( double& orfValue, size_t& ornEndPos, std::u16string_view aValue ) { // extract the double value and find start position of unit characters rtl_math_ConversionStatus eConvStatus = rtl_math_ConversionStatus_Ok; sal_Int32 nEndPos; orfValue = ::rtl::math::stringToDouble( aValue, '.', '\0', &eConvStatus, &nEndPos ); ornEndPos = nEndPos; return eConvStatus == rtl_math_ConversionStatus_Ok; } } // namespace bool ConversionHelper::separatePair( std::u16string_view& orValue1, std::u16string_view& orValue2, std::u16string_view rValue, sal_Unicode cSep ) { size_t nSepPos = rValue.find( cSep ); if( nSepPos != std::u16string_view::npos ) { orValue1 = o3tl::trim(rValue.substr( 0, nSepPos )); orValue2 = o3tl::trim(rValue.substr( nSepPos + 1 )); } else { orValue1 = o3tl::trim(rValue); orValue2 = std::u16string_view(); } return !orValue1.empty() && !orValue2.empty(); } bool ConversionHelper::decodeBool( std::u16string_view rValue ) { sal_Int32 nToken = AttributeConversion::decodeToken( rValue ); // anything else than 't' or 'true' is considered to be false, as specified return (nToken == XML_t) || (nToken == XML_true); } double ConversionHelper::decodePercent( std::u16string_view rValue, double fDefValue ) { if( rValue.empty() ) return fDefValue; double fValue = 0.0; size_t nEndPos = 0; if( !lclExtractDouble( fValue, nEndPos, rValue ) ) return fDefValue; if( nEndPos == rValue.size() ) return fValue; if( (nEndPos + 1 == rValue.size()) && (rValue[ nEndPos ] == '%') ) return fValue / 100.0; if( (nEndPos + 1 == rValue.size()) && (rValue[ nEndPos ] == 'f') ) return fValue / 65536.0; OSL_FAIL( "ConversionHelper::decodePercent - unknown measure unit" ); return fDefValue; } Degree100 ConversionHelper::decodeRotation( std::u16string_view rValue ) { if( rValue.empty() ) return 0_deg100; double fValue = 0.0; double fRotation = 0.0; size_t nEndPos = 0; if( !lclExtractDouble(fValue, nEndPos, rValue) ) return 0_deg100; if( nEndPos == rValue.size() ) fRotation = fValue; else if( (nEndPos + 2 == rValue.size()) && (rValue[nEndPos] == 'f') && (rValue[nEndPos+1] == 'd') ) fRotation = fValue / 65536.0; else { OSL_FAIL("ConversionHelper::decodeRotation - unknown measure unit"); return 0_deg100; } return NormAngle36000(Degree100(static_cast(fRotation * -100))); } sal_Int64 ConversionHelper::decodeMeasureToEmu( const GraphicHelper& rGraphicHelper, std::u16string_view rValue, sal_Int32 nRefValue, bool bPixelX, bool bDefaultAsPixel ) { // default for missing values is 0 if( rValue.empty() ) return 0; // TODO: according to spec, value may contain "auto" if ( rValue == u"auto" ) { OSL_FAIL( "ConversionHelper::decodeMeasureToEmu - special value 'auto' must be handled by caller" ); return nRefValue; } // extract the double value and find start position of unit characters double fValue = 0.0; size_t nEndPos = 0; if( !lclExtractDouble( fValue, nEndPos, rValue ) || (fValue == 0.0) ) return 0; // process trailing unit, convert to EMU std::u16string_view aUnit; if( (0 < nEndPos) && (nEndPos < rValue.size()) ) aUnit = rValue.substr( nEndPos ); else if( bDefaultAsPixel ) aUnit = u"px"; // else default is EMU if( aUnit.size() == 2 ) { sal_Unicode cChar1 = aUnit[ 0 ]; sal_Unicode cChar2 = aUnit[ 1 ]; if ((cChar1 == 'i') && (cChar2 == 'n')) fValue = o3tl::convert(fValue, o3tl::Length::in, o3tl::Length::emu); else if ((cChar1 == 'c') && (cChar2 == 'm')) fValue = o3tl::convert(fValue, o3tl::Length::cm, o3tl::Length::emu); else if ((cChar1 == 'm') && (cChar2 == 'm')) fValue = o3tl::convert(fValue, o3tl::Length::mm, o3tl::Length::emu); else if ((cChar1 == 'p') && (cChar2 == 't')) fValue = o3tl::convert(fValue, o3tl::Length::pt, o3tl::Length::emu); else if ((cChar1 == 'p') && (cChar2 == 'c')) fValue = o3tl::convert(fValue, o3tl::Length::pc, o3tl::Length::emu); else if( (cChar1 == 'p') && (cChar2 == 'x') ) // 1 pixel, dependent on output device fValue = o3tl::convert(bPixelX ? rGraphicHelper.convertScreenPixelXToHmm(fValue) : rGraphicHelper.convertScreenPixelYToHmm(fValue), o3tl::Length::mm100, o3tl::Length::emu); } else if( (aUnit.size() == 1) && (aUnit[ 0 ] == '%') ) { fValue *= nRefValue / 100.0; } else if( bDefaultAsPixel || !aUnit.empty() ) // default as EMU and no unit -> do nothing { OSL_FAIL( "ConversionHelper::decodeMeasureToEmu - unknown measure unit" ); fValue = nRefValue; } return o3tl::saturating_cast< sal_Int64 >( fValue + 0.5 ); } sal_Int32 ConversionHelper::decodeMeasureToHmm( const GraphicHelper& rGraphicHelper, std::u16string_view rValue, sal_Int32 nRefValue, bool bPixelX, bool bDefaultAsPixel ) { return ::oox::drawingml::convertEmuToHmm( decodeMeasureToEmu( rGraphicHelper, rValue, nRefValue, bPixelX, bDefaultAsPixel ) ); } sal_Int32 ConversionHelper::decodeMeasureToTwip(const GraphicHelper& rGraphicHelper, std::u16string_view rValue, sal_Int32 nRefValue, bool bPixelX, bool bDefaultAsPixel) { return ::o3tl::convert( decodeMeasureToEmu(rGraphicHelper, rValue, nRefValue, bPixelX, bDefaultAsPixel), o3tl::Length::emu, o3tl::Length::twip); } Color ConversionHelper::decodeColor( const GraphicHelper& rGraphicHelper, const std::optional< OUString >& roVmlColor, const std::optional< double >& roVmlOpacity, ::Color nDefaultRgb, ::Color nPrimaryRgb ) { Color aDmlColor; // convert opacity const sal_Int32 DML_FULL_OPAQUE = ::oox::drawingml::MAX_PERCENT; double fOpacity = roVmlOpacity.value_or( 1.0 ); sal_Int32 nOpacity = getLimitedValue< sal_Int32, double >( fOpacity * DML_FULL_OPAQUE, 0, DML_FULL_OPAQUE ); if( nOpacity < DML_FULL_OPAQUE ) aDmlColor.addTransformation( XML_alpha, nOpacity ); // color attribute not present - set passed default color if( !roVmlColor.has_value() ) { aDmlColor.setSrgbClr( nDefaultRgb ); return aDmlColor; } // separate leading color name or RGB value from following palette index std::u16string_view aColorName, aColorIndex; separatePair( aColorName, aColorIndex, roVmlColor.value(), ' ' ); // RGB colors in the format '#RRGGBB' if( (aColorName.size() == 7) && (aColorName[ 0 ] == '#') ) { aDmlColor.setSrgbClr( o3tl::toUInt32(aColorName.substr( 1 ), 16) ); return aDmlColor; } // RGB colors in the format '#RGB' if( (aColorName.size() == 4) && (aColorName[ 0 ] == '#') ) { sal_Int32 nR = o3tl::toUInt32(aColorName.substr( 1, 1 ), 16 ) * 0x11; sal_Int32 nG = o3tl::toUInt32(aColorName.substr( 2, 1 ), 16 ) * 0x11; sal_Int32 nB = o3tl::toUInt32(aColorName.substr( 3, 1 ), 16 ) * 0x11; aDmlColor.setSrgbClr( (nR << 16) | (nG << 8) | nB ); return aDmlColor; } /* Predefined color names or system color names (resolve to RGB to detect valid color name). */ sal_Int32 nColorToken = AttributeConversion::decodeToken( aColorName ); ::Color nRgbValue = Color::getVmlPresetColor( nColorToken, API_RGB_TRANSPARENT ); if( nRgbValue == API_RGB_TRANSPARENT ) nRgbValue = rGraphicHelper.getSystemColor( nColorToken ); if( nRgbValue != API_RGB_TRANSPARENT ) { aDmlColor.setSrgbClr( nRgbValue ); return aDmlColor; } // try palette colors enclosed in brackets if( (aColorIndex.size() >= 3) && (aColorIndex[ 0 ] == '[') && (aColorIndex[ aColorIndex.size() - 1 ] == ']') ) { aDmlColor.setPaletteClr( o3tl::toInt32(aColorIndex.substr( 1, aColorIndex.size() - 2 )) ); return aDmlColor; } // try fill gradient modificator 'fill ()' if( (nPrimaryRgb != API_RGB_TRANSPARENT) && (nColorToken == XML_fill) ) { size_t nOpenParen = aColorIndex.find( '(' ); size_t nCloseParen = aColorIndex.find( ')' ); if( nOpenParen != std::u16string_view::npos && nCloseParen != std::u16string_view::npos && (2 <= nOpenParen) && (nOpenParen + 1 < nCloseParen) && (nCloseParen + 1 == aColorIndex.size()) ) { sal_Int32 nModToken = XML_TOKEN_INVALID; switch( AttributeConversion::decodeToken( aColorIndex.substr( 0, nOpenParen ) ) ) { case XML_darken: nModToken = XML_shade;break; case XML_lighten: nModToken = XML_tint; } sal_Int32 nValue = o3tl::toInt32(aColorIndex.substr( nOpenParen + 1, nCloseParen - nOpenParen - 1 )); if( (nModToken != XML_TOKEN_INVALID) && (0 <= nValue) && (nValue < 255) ) { /* Simulate this modifier color by a color with related transformation. The modifier amount has to be converted from the range [0;255] to percentage [0;100000] used by DrawingML. */ aDmlColor.setSrgbClr( nPrimaryRgb ); aDmlColor.addTransformation( nModToken, static_cast< sal_Int32 >( nValue * ::oox::drawingml::MAX_PERCENT / 255 ) ); return aDmlColor; } } } OSL_FAIL( OStringBuffer( "lclGetColor - invalid VML color name '" + OUStringToOString( roVmlColor.value(), RTL_TEXTENCODING_ASCII_US ) + "'" ).getStr() ); aDmlColor.setSrgbClr( nDefaultRgb ); return aDmlColor; } void ConversionHelper::decodeVmlPath( ::std::vector< ::std::vector< Point > >& rPointLists, ::std::vector< ::std::vector< PolygonFlags > >& rFlagLists, std::u16string_view rPath ) { ::std::vector< sal_Int32 > aCoordList; Point aCurrentPoint; sal_Int32 nTokenStart = 0; sal_Int32 nTokenLen = 0; sal_Int32 nParamCount = 0; bool bCommand = false; enum VML_State { START, MOVE_REL, MOVE_ABS, BEZIER_REL, BEZIER_ABS, LINE_REL, LINE_ABS, CLOSE, END, UNSUPPORTED }; VML_State state = START; rPointLists.emplace_back( ); rFlagLists.emplace_back( ); for ( size_t i = 0; i < rPath.size(); i++ ) { // Keep track of current integer token if ( ( rPath[ i ] >= '0' && rPath[ i ] <= '9' ) || rPath[ i ] == '-' ) nTokenLen++; else if ( rPath[ i ] != ' ' ) { // Store coordinate from current token if ( state != START && state != UNSUPPORTED ) { if ( nTokenLen > 0 ) aCoordList.push_back( o3tl::toInt32(rPath.substr( nTokenStart, nTokenLen )) ); else aCoordList.push_back( 0 ); nTokenLen = 0; } if (rPath[ i ] == ',' ) { nParamCount--; } // Upon finding the next command code, deal with stored // coordinates for previous command and reset parameters counter if needed. // See http://www.w3.org/TR/NOTE-VML#_Toc416858382 for params count reference if ( rPath[ i ] != ',' || nParamCount == 0 ) { switch ( state ) { case MOVE_REL: aCoordList.resize(2, 0); // 2* params -> param count reset if ( !rPointLists.empty() && !rPointLists.back().empty() ) { rPointLists.emplace_back( ); rFlagLists.emplace_back( ); } rPointLists.back().emplace_back( aCoordList[ 0 ], aCoordList[ 1 ] ); rFlagLists.back().push_back( PolygonFlags_NORMAL ); aCurrentPoint = rPointLists.back().back(); nParamCount = 2; break; case MOVE_ABS: aCoordList.resize(2, 0); // 2 params -> no param count reset if ( !rPointLists.empty() && !rPointLists.back().empty() ) { rPointLists.emplace_back( ); rFlagLists.emplace_back( ); } rPointLists.back().emplace_back( (aCoordList[ 0 ]), aCoordList[ 1 ] ); rFlagLists.back().push_back( PolygonFlags_NORMAL ); aCurrentPoint = rPointLists.back().back(); break; case BEZIER_REL: aCoordList.resize(6, 0); // 6* params -> param count reset rPointLists.back().emplace_back( aCurrentPoint.X + aCoordList[ 0 ], aCurrentPoint.Y + aCoordList[ 1 ] ); rPointLists.back().emplace_back( aCurrentPoint.X + aCoordList[ 2 ], aCurrentPoint.Y + aCoordList[ 3 ] ); rPointLists.back().emplace_back( aCurrentPoint.X + aCoordList[ 4 ], aCurrentPoint.Y + aCoordList[ 5 ] ); rFlagLists.back().push_back( PolygonFlags_CONTROL ); rFlagLists.back().push_back( PolygonFlags_CONTROL ); rFlagLists.back().push_back( PolygonFlags_NORMAL ); aCurrentPoint = rPointLists.back().back(); nParamCount = 6; break; case BEZIER_ABS: aCoordList.resize(6, 0); // 6* params -> param count reset rPointLists.back().emplace_back( aCoordList[ 0 ], aCoordList[ 1 ] ); rPointLists.back().emplace_back( aCoordList[ 2 ], aCoordList[ 3 ] ); rPointLists.back().emplace_back( aCoordList[ 4 ], aCoordList[ 5 ] ); rFlagLists.back().push_back( PolygonFlags_CONTROL ); rFlagLists.back().push_back( PolygonFlags_CONTROL ); rFlagLists.back().push_back( PolygonFlags_NORMAL ); aCurrentPoint = rPointLists.back().back(); nParamCount = 6; break; case LINE_REL: aCoordList.resize(2, 0); // 2* params -> param count reset rPointLists.back().emplace_back( aCurrentPoint.X + aCoordList[ 0 ], aCurrentPoint.Y + aCoordList[ 1 ] ); rFlagLists.back().push_back( PolygonFlags_NORMAL ); aCurrentPoint = rPointLists.back().back(); nParamCount = 2; break; case LINE_ABS: aCoordList.resize(2, 0); // 2* params -> param count reset rPointLists.back().emplace_back( aCoordList[ 0 ], (aCoordList.size() > 1 ? aCoordList[ 1 ] : 0) ); rFlagLists.back().push_back( PolygonFlags_NORMAL ); aCurrentPoint = rPointLists.back().back(); nParamCount = 2; break; case CLOSE: // 0 param SAL_WARN_IF(rPointLists.back().empty() || rFlagLists.back().empty(), "oox", "empty pointlists at close"); if (!rPointLists.back().empty() && !rFlagLists.back().empty()) { rPointLists.back().push_back( rPointLists.back()[ 0 ] ); rFlagLists.back().push_back( rFlagLists.back()[ 0 ] ); aCurrentPoint = rPointLists.back().back(); } break; case END: // 0 param rPointLists.emplace_back( ); rFlagLists.emplace_back( ); break; case START: case UNSUPPORTED: break; } aCoordList.clear(); } // Allow two-char commands to peek ahead to the next character sal_Unicode nextChar = '\0'; if (i+1 < rPath.size()) nextChar = rPath[i+1]; // Move to relevant state upon finding a command bCommand = true; switch ( rPath[ i ] ) { // Single-character commands case 't': // rmoveto state = MOVE_REL; nParamCount = 2; break; case 'm': // moveto state = MOVE_ABS; nParamCount = 2; break; case 'v': // rcurveto state = BEZIER_REL; nParamCount = 6; break; case 'c': // curveto state = BEZIER_ABS; nParamCount = 6; break; case 'r': // rlineto state = LINE_REL; nParamCount = 2; break; case 'l': // lineto state = LINE_ABS; nParamCount = 2; break; case 'x': // close state = CLOSE; break; case 'e': // end state = END; break; // Two-character commands case 'n': { switch ( nextChar ) { case 'f': // nf - nofill case 's': // ns - nostroke state = UNSUPPORTED; i++; break; } break; } case 'a': // Elliptical curves { switch ( nextChar ) { case 'e': // ae - angleellipseto case 'l': // al - angleellipse state = UNSUPPORTED; i++; break; case 't': // at - arcto case 'r': // ar - arc state = UNSUPPORTED; i++; break; } break; } case 'w': // Clockwise elliptical arcs { switch ( nextChar ) { case 'a': // wa - clockwisearcto case 'r': // wr - clockwisearc state = UNSUPPORTED; i++; break; } break; } case 'q': { switch ( nextChar ) { case 'x': // qx - ellipticalquadrantx case 'y': // qy - ellipticalquadranty state = UNSUPPORTED; i++; break; case 'b': // qb - quadraticbezier state = UNSUPPORTED; i++; break; } break; } case 'h': // behaviour extensions { switch ( nextChar ) { case 'a': // ha - AutoLine case 'b': // hb - AutoCurve case 'c': // hc - CornerLine case 'd': // hd - CornerCurve case 'e': // he - SmoothLine case 'f': // hf - SmoothCurve case 'g': // hg - SymmetricLine case 'h': // hh - SymmetricCurve case 'i': // hi - Freeform state = UNSUPPORTED; i++; break; } break; } default: bCommand = false; break; } if (bCommand) nTokenLen = 0; nTokenStart = i+1; } } } namespace { sal_Int64 lclGetEmu( const GraphicHelper& rGraphicHelper, const std::optional< OUString >& roValue, sal_Int64 nDefValue ) { return roValue.has_value() ? ConversionHelper::decodeMeasureToEmu( rGraphicHelper, roValue.value(), 0, false, false ) : nDefValue; } void lclGetDmlLineDash( std::optional< sal_Int32 >& oroPresetDash, LineProperties::DashStopVector& orCustomDash, const std::optional< OUString >& roDashStyle ) { if( !roDashStyle.has_value() ) return; const OUString& rDashStyle = roDashStyle.value(); switch( AttributeConversion::decodeToken( rDashStyle ) ) { case XML_solid: oroPresetDash = XML_solid; return; case XML_shortdot: oroPresetDash = XML_sysDot; return; case XML_shortdash: oroPresetDash = XML_sysDash; return; case XML_shortdashdot: oroPresetDash = XML_sysDashDot; return; case XML_shortdashdotdot: oroPresetDash = XML_sysDashDotDot; return; case XML_dot: oroPresetDash = XML_dot; return; case XML_dash: oroPresetDash = XML_dash; return; case XML_dashdot: oroPresetDash = XML_dashDot; return; case XML_longdash: oroPresetDash = XML_lgDash; return; case XML_longdashdot: oroPresetDash = XML_lgDashDot; return; case XML_longdashdotdot: oroPresetDash = XML_lgDashDotDot; return; // try to convert user-defined dash style default: { ::std::vector< sal_Int32 > aValues; sal_Int32 nIndex = 0; while( nIndex >= 0 ) aValues.push_back( o3tl::toInt32(o3tl::getToken(rDashStyle, 0, ' ', nIndex )) ); size_t nPairs = aValues.size() / 2; // ignore last value if size is odd for( size_t nPairIdx = 0; nPairIdx < nPairs; ++nPairIdx ) orCustomDash.emplace_back( aValues[ 2 * nPairIdx ], aValues[ 2 * nPairIdx + 1 ] ); } } } sal_Int32 lclGetDmlArrowType( const std::optional< sal_Int32 >& roArrowType ) { if( roArrowType.has_value() ) switch( roArrowType.value() ) { case XML_none: return XML_none; case XML_block: return XML_triangle; case XML_classic: return XML_stealth; case XML_diamond: return XML_diamond; case XML_oval: return XML_oval; case XML_open: return XML_arrow; } return XML_none; } sal_Int32 lclGetDmlArrowWidth( const std::optional< sal_Int32 >& roArrowWidth ) { if( roArrowWidth.has_value() ) switch( roArrowWidth.value() ) { case XML_narrow: return XML_sm; case XML_medium: return XML_med; case XML_wide: return XML_lg; } return XML_med; } sal_Int32 lclGetDmlArrowLength( const std::optional< sal_Int32 >& roArrowLength ) { if( roArrowLength.has_value() ) switch( roArrowLength.value() ) { case XML_short: return XML_sm; case XML_medium: return XML_med; case XML_long: return XML_lg; } return XML_med; } void lclConvertArrow( LineArrowProperties& orArrowProp, const StrokeArrowModel& rStrokeArrow ) { orArrowProp.moArrowType = lclGetDmlArrowType( rStrokeArrow.moArrowType ); orArrowProp.moArrowWidth = lclGetDmlArrowWidth( rStrokeArrow.moArrowWidth ); orArrowProp.moArrowLength = lclGetDmlArrowLength( rStrokeArrow.moArrowLength ); } sal_Int32 lclGetDmlLineCompound( const std::optional< sal_Int32 >& roLineStyle ) { if( roLineStyle.has_value() ) switch( roLineStyle.value() ) { case XML_single: return XML_sng; case XML_thinThin: return XML_dbl; case XML_thinThick: return XML_thinThick; case XML_thickThin: return XML_thickThin; case XML_thickBetweenThin: return XML_tri; } return XML_sng; } sal_Int32 lclGetDmlLineCap( const std::optional< sal_Int32 >& roEndCap ) { if( roEndCap.has_value() ) switch( roEndCap.value() ) { case XML_flat: return XML_flat; case XML_square: return XML_sq; case XML_round: return XML_rnd; } return XML_flat; // different defaults in VML (flat) and DrawingML (square) } sal_Int32 lclGetDmlLineJoint( const std::optional< sal_Int32 >& roJoinStyle ) { if( roJoinStyle.has_value() ) switch( roJoinStyle.value() ) { case XML_round: return XML_round; case XML_bevel: return XML_bevel; case XML_miter: return XML_miter; } return XML_round; } } // namespace void StrokeArrowModel::assignUsed( const StrokeArrowModel& rSource ) { assignIfUsed( moArrowType, rSource.moArrowType ); assignIfUsed( moArrowWidth, rSource.moArrowWidth ); assignIfUsed( moArrowLength, rSource.moArrowLength ); } void StrokeModel::assignUsed( const StrokeModel& rSource ) { assignIfUsed( moStroked, rSource.moStroked ); maStartArrow.assignUsed( rSource.maStartArrow ); maEndArrow.assignUsed( rSource.maEndArrow ); assignIfUsed( moColor, rSource.moColor ); assignIfUsed( moOpacity, rSource.moOpacity ); assignIfUsed( moWeight, rSource.moWeight ); assignIfUsed( moDashStyle, rSource.moDashStyle ); assignIfUsed( moLineStyle, rSource.moLineStyle ); assignIfUsed( moEndCap, rSource.moEndCap ); assignIfUsed( moJoinStyle, rSource.moJoinStyle ); } void StrokeModel::pushToPropMap( ShapePropertyMap& rPropMap, const GraphicHelper& rGraphicHelper ) const { /* Convert VML line formatting to DrawingML line formatting and let the DrawingML code do the hard work. */ LineProperties aLineProps; if( moStroked.value_or( true ) ) { aLineProps.maLineFill.moFillType = XML_solidFill; lclConvertArrow( aLineProps.maStartArrow, maStartArrow ); lclConvertArrow( aLineProps.maEndArrow, maEndArrow ); aLineProps.maLineFill.maFillColor = ConversionHelper::decodeColor( rGraphicHelper, moColor, moOpacity, API_RGB_BLACK ); aLineProps.moLineWidth = getLimitedValue< sal_Int32, sal_Int64 >( lclGetEmu( rGraphicHelper, moWeight, 1 ), 0, SAL_MAX_INT32 ); lclGetDmlLineDash( aLineProps.moPresetDash, aLineProps.maCustomDash, moDashStyle ); aLineProps.moLineCompound = lclGetDmlLineCompound( moLineStyle ); aLineProps.moLineCap = lclGetDmlLineCap( moEndCap ); aLineProps.moLineJoint = lclGetDmlLineJoint( moJoinStyle ); } else { aLineProps.maLineFill.moFillType = XML_noFill; } aLineProps.pushToPropMap( rPropMap, rGraphicHelper ); } void FillModel::assignUsed( const FillModel& rSource ) { assignIfUsed( moFilled, rSource.moFilled ); assignIfUsed( moColor, rSource.moColor ); assignIfUsed( moOpacity, rSource.moOpacity ); assignIfUsed( moColor2, rSource.moColor2 ); assignIfUsed( moOpacity2, rSource.moOpacity2 ); assignIfUsed( moType, rSource.moType ); assignIfUsed( moAngle, rSource.moAngle ); assignIfUsed( moFocus, rSource.moFocus ); assignIfUsed( moFocusPos, rSource.moFocusPos ); assignIfUsed( moFocusSize, rSource.moFocusSize ); assignIfUsed( moBitmapPath, rSource.moBitmapPath ); assignIfUsed( moRotate, rSource.moRotate ); } static void lcl_setGradientStop( std::multimap< double, Color >& rMap, const double fKey, const Color& rValue ) { auto aElement = rMap.find( fKey ); if (aElement != rMap.end()) aElement->second = rValue; else rMap.emplace( fKey, rValue ); } void FillModel::pushToPropMap( ShapePropertyMap& rPropMap, const GraphicHelper& rGraphicHelper ) const { /* Convert VML fill formatting to DrawingML fill formatting and let the DrawingML code do the hard work. */ FillProperties aFillProps; if( moFilled.value_or( true ) ) { sal_Int32 nFillType = moType.value_or( XML_solid ); switch( nFillType ) { case XML_gradient: case XML_gradientRadial: { aFillProps.moFillType = XML_gradFill; aFillProps.maGradientProps.moRotateWithShape = moRotate.value_or( false ); double fFocus = moFocus.value_or( 0.0 ); // prepare colors Color aColor1 = ConversionHelper::decodeColor( rGraphicHelper, moColor, moOpacity, API_RGB_WHITE ); Color aColor2 = ConversionHelper::decodeColor( rGraphicHelper, moColor2, moOpacity2, API_RGB_WHITE, aColor1.getColor( rGraphicHelper ) ); // type XML_gradient is linear or axial gradient if( nFillType == XML_gradient ) { // normalize angle to range [0;360) degrees sal_Int32 nVmlAngle = getIntervalValue< sal_Int32, sal_Int32 >( moAngle.value_or( 0 ), 0, 360 ); // focus of -50% or 50% is axial gradient if( ((-0.75 <= fFocus) && (fFocus <= -0.25)) || ((0.25 <= fFocus) && (fFocus <= 0.75)) ) { /* According to spec, focus of 50% is outer-to-inner, and -50% is inner-to-outer (color to color2). BUT: For angles >= 180 deg., the behaviour is reversed... that's not spec'ed of course. So, [0;180) deg. and 50%, or [180;360) deg. and -50% is outer-to-inner in fact. */ bool bOuterToInner = (fFocus > 0.0) == (nVmlAngle < 180); // simulate axial gradient by 3-step DrawingML gradient const Color& rOuterColor = bOuterToInner ? aColor1 : aColor2; const Color& rInnerColor = bOuterToInner ? aColor2 : aColor1; // add in order of offset lcl_setGradientStop( aFillProps.maGradientProps.maGradientStops, 0.0, rOuterColor); lcl_setGradientStop( aFillProps.maGradientProps.maGradientStops, 0.5, rInnerColor); lcl_setGradientStop( aFillProps.maGradientProps.maGradientStops, 1.0, rOuterColor); } else // focus of -100%, 0%, and 100% is linear gradient { /* According to spec, focus of -100% or 100% swaps the start and stop colors, effectively reversing the gradient. BUT: For angles >= 180 deg., the behaviour is reversed. This means that in this case a focus of 0% swaps the gradient. */ if( fFocus < -0.5 || fFocus > 0.5 ) nVmlAngle = (nVmlAngle + 180) % 360; // set the start and stop colors lcl_setGradientStop( aFillProps.maGradientProps.maGradientStops, 0.0, aColor1 ); lcl_setGradientStop( aFillProps.maGradientProps.maGradientStops, 1.0, aColor2 ); } // VML counts counterclockwise from bottom, DrawingML clockwise from left sal_Int32 nDmlAngle = (630 - nVmlAngle) % 360; aFillProps.maGradientProps.moShadeAngle = nDmlAngle * ::oox::drawingml::PER_DEGREE; } else // XML_gradientRadial is rectangular gradient { aFillProps.maGradientProps.moGradientPath = XML_rect; // convert VML focus position and size to DrawingML fill-to-rect DoublePair aFocusPos = moFocusPos.value_or( DoublePair( 0.0, 0.0 ) ); DoublePair aFocusSize = moFocusSize.value_or( DoublePair( 0.0, 0.0 ) ); double fLeft = getLimitedValue< double, double >( aFocusPos.first, 0.0, 1.0 ); double fTop = getLimitedValue< double, double >( aFocusPos.second, 0.0, 1.0 ); double fRight = getLimitedValue< double, double >( fLeft + aFocusSize.first, fLeft, 1.0 ); double fBottom = getLimitedValue< double, double >( fTop + aFocusSize.second, fTop, 1.0 ); aFillProps.maGradientProps.moFillToRect = IntegerRectangle2D( static_cast< sal_Int32 >( fLeft * ::oox::drawingml::MAX_PERCENT ), static_cast< sal_Int32 >( fTop * ::oox::drawingml::MAX_PERCENT ), static_cast< sal_Int32 >( (1.0 - fRight) * ::oox::drawingml::MAX_PERCENT ), static_cast< sal_Int32 >( (1.0 - fBottom) * ::oox::drawingml::MAX_PERCENT ) ); // set the start and stop colors (focus of 0% means outer-to-inner) bool bOuterToInner = (-0.5 <= fFocus) && (fFocus <= 0.5); lcl_setGradientStop( aFillProps.maGradientProps.maGradientStops, 0.0, bOuterToInner ? aColor2 : aColor1 ); lcl_setGradientStop( aFillProps.maGradientProps.maGradientStops, 1.0, bOuterToInner ? aColor1 : aColor2 ); } } break; case XML_pattern: case XML_tile: case XML_frame: { if( moBitmapPath.has_value() && !moBitmapPath.value().isEmpty() ) { aFillProps.maBlipProps.mxFillGraphic = rGraphicHelper.importEmbeddedGraphic(moBitmapPath.value()); if (aFillProps.maBlipProps.mxFillGraphic.is()) { aFillProps.moFillType = XML_blipFill; aFillProps.maBlipProps.moBitmapMode = (nFillType == XML_frame) ? XML_stretch : XML_tile; break; // do not break if bitmap is missing, but run to XML_solid instead } } } [[fallthrough]]; // to XML_solid in case of missing bitmap path intended! case XML_solid: default: { aFillProps.moFillType = XML_solidFill; // fill color (default is white) aFillProps.maFillColor = ConversionHelper::decodeColor( rGraphicHelper, moColor, moOpacity, API_RGB_WHITE ); } } } else { aFillProps.moFillType = XML_noFill; } aFillProps.pushToPropMap( rPropMap, rGraphicHelper ); } ShadowModel::ShadowModel() : mbHasShadow(false) { } void ShadowModel::pushToPropMap(ShapePropertyMap& rPropMap, const GraphicHelper& rGraphicHelper) const { if (!mbHasShadow || (moShadowOn.has_value() && !moShadowOn.value())) return; drawingml::Color aColor = ConversionHelper::decodeColor(rGraphicHelper, moColor, moOpacity, API_RGB_GRAY); // nOffset* is in mm100, default value is 35 twips, see DffPropertyReader::ApplyAttributes() in msfilter. sal_Int32 nOffsetX = 62, nOffsetY = 62; if (moOffset.has_value()) { std::u16string_view aOffsetX, aOffsetY; ConversionHelper::separatePair(aOffsetX, aOffsetY, moOffset.value(), ','); if (!aOffsetX.empty()) nOffsetX = ConversionHelper::decodeMeasureToHmm(rGraphicHelper, aOffsetX, 0, false, false ); if (!aOffsetY.empty()) nOffsetY = ConversionHelper::decodeMeasureToHmm(rGraphicHelper, aOffsetY, 0, false, false ); } table::ShadowFormat aFormat; aFormat.Color = sal_Int32(aColor.getColor(rGraphicHelper)); aFormat.Location = nOffsetX < 0 ? nOffsetY < 0 ? table::ShadowLocation_TOP_LEFT : table::ShadowLocation_BOTTOM_LEFT : nOffsetY < 0 ? table::ShadowLocation_TOP_RIGHT : table::ShadowLocation_BOTTOM_RIGHT; // The width of the shadow is the average of the x and y values, see SwWW8ImplReader::MatchSdrItemsIntoFlySet(). aFormat.ShadowWidth = ((std::abs(nOffsetX) + std::abs(nOffsetY)) / 2); rPropMap.setProperty(PROP_ShadowFormat, aFormat); } TextpathModel::TextpathModel() { } static beans::PropertyValue lcl_createTextpathProps() { uno::Sequence aTextpathPropSeq( comphelper::InitPropertySequence({ { "TextPath", uno::Any(true) }, { "TextPathMode", uno::Any(drawing::EnhancedCustomShapeTextPathMode_SHAPE) }, { "ScaleX", uno::Any(false) }, { "SameLetterHeights", uno::Any(false) } })); beans::PropertyValue aRet; aRet.Name = "TextPath"; aRet.Value <<= aTextpathPropSeq; return aRet; } void TextpathModel::pushToPropMap(ShapePropertyMap& rPropMap, const uno::Reference& xShape, const GraphicHelper& rGraphicHelper) const { OUString sFont = ""; if (moString.has_value()) { uno::Reference xTextRange(xShape, uno::UNO_QUERY); xTextRange->setString(moString.value()); uno::Reference xPropertySet(xShape, uno::UNO_QUERY); uno::Sequence aGeomPropSeq = xPropertySet->getPropertyValue("CustomShapeGeometry").get< uno::Sequence >(); bool bFound = false; for (beans::PropertyValue& rProp : asNonConstRange(aGeomPropSeq)) { if (rProp.Name == "TextPath") { bFound = true; rProp = lcl_createTextpathProps(); } } if (!bFound) { sal_Int32 nSize = aGeomPropSeq.getLength(); aGeomPropSeq.realloc(nSize+1); aGeomPropSeq.getArray()[nSize] = lcl_createTextpathProps(); } rPropMap.setAnyProperty(PROP_CustomShapeGeometry, uno::Any(aGeomPropSeq)); } if (moStyle.has_value()) { OUString aStyle = moStyle.value_or(OUString()); sal_Int32 nIndex = 0; while( nIndex >= 0 ) { std::u16string_view aName, aValue; if (ConversionHelper::separatePair(aName, aValue, o3tl::getToken(aStyle, 0, ';', nIndex), ':')) { if (aName == u"font-family") { // remove " (first, and last character) if (aValue.size() > 2) aValue = aValue.substr(1, aValue.size() - 2); uno::Reference xPropertySet(xShape, uno::UNO_QUERY); xPropertySet->setPropertyValue("CharFontName", uno::Any(OUString(aValue))); sFont = aValue; } else if (aName == u"font-size") { std::optional aOptString {OUString(aValue)}; float nSize = drawingml::convertEmuToPoints(lclGetEmu(rGraphicHelper, aOptString, 1)); uno::Reference xPropertySet(xShape, uno::UNO_QUERY); xPropertySet->setPropertyValue("CharHeight", uno::Any(nSize)); } } } } if (moTrim.has_value() && moTrim.value()) return; OUString sText = moString.value_or(""); ScopedVclPtrInstance pDevice; vcl::Font aFont = pDevice->GetFont(); aFont.SetFamilyName(sFont); aFont.SetFontSize(Size(0, 96)); pDevice->SetFont(aFont); auto nTextWidth = pDevice->GetTextWidth(sText); if (nTextWidth) { sal_Int32 nNewHeight = (static_cast(pDevice->GetTextHeight()) / nTextWidth) * xShape->getSize().Width; xShape->setSize(awt::Size(xShape->getSize().Width, nNewHeight)); } } } // namespace oox /* vim:set shiftwidth=4 softtabstop=4 expandtab: */