summaryrefslogtreecommitdiffstats
path: root/basegfx/source/matrix/b2dhommatrix.cxx
blob: e4a9dda9e3c59ed9e4d1cb1824351d589210d09d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
 * This file is part of the LibreOffice project.
 *
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
 *
 * This file incorporates work covered by the following license notice:
 *
 *   Licensed to the Apache Software Foundation (ASF) under one or more
 *   contributor license agreements. See the NOTICE file distributed
 *   with this work for additional information regarding copyright
 *   ownership. The ASF licenses this file to you under the Apache
 *   License, Version 2.0 (the "License"); you may not use this file
 *   except in compliance with the License. You may obtain a copy of
 *   the License at http://www.apache.org/licenses/LICENSE-2.0 .
 */

#include <basegfx/matrix/b2dhommatrix.hxx>
#include <basegfx/matrix/hommatrixtemplate.hxx>
#include <basegfx/tuple/b2dtuple.hxx>
#include <basegfx/vector/b2dvector.hxx>
#include <basegfx/matrix/b2dhommatrixtools.hxx>
#include <memory>

namespace basegfx
{
    constexpr int RowSize = 3;

    void B2DHomMatrix::set3x2(double f_0x0, double f_0x1, double f_0x2, double f_1x0, double f_1x1, double f_1x2)
    {
        mfValues[0][0] = f_0x0;
        mfValues[0][1] = f_0x1;
        mfValues[0][2] = f_0x2;
        mfValues[1][0] = f_1x0;
        mfValues[1][1] = f_1x1;
        mfValues[1][2] = f_1x2;
    }

    bool B2DHomMatrix::isIdentity() const
    {
        for(sal_uInt16 a(0); a < RowSize - 1; a++)
        {
            for(sal_uInt16 b(0); b < RowSize; b++)
            {
                const double fDefault(internal::implGetDefaultValue(a, b));
                const double fValueAB(get(a, b));

                if(!::basegfx::fTools::equal(fDefault, fValueAB))
                {
                    return false;
                }
            }
        }

        return true;
    }

    void B2DHomMatrix::identity()
    {
        for(sal_uInt16 a(0); a < RowSize - 1; a++)
        {
            for(sal_uInt16 b(0); b < RowSize; b++)
                mfValues[a][b] = internal::implGetDefaultValue(a, b);
        }
    }

    bool B2DHomMatrix::isInvertible() const
    {
        double dst[6];
        /* Compute adjoint: */
        computeAdjoint(dst);
        /* Compute determinant: */
        double det = computeDeterminant(dst);
        if (fTools::equalZero(det))
            return false;
        return true;
    }

    bool B2DHomMatrix::invert()
    {
        if(isIdentity())
            return true;

        double dst[6];

        /* Compute adjoint: */
        computeAdjoint(dst);

        /* Compute determinant: */
        double det = computeDeterminant(dst);
        if (fTools::equalZero(det))
            return false;

        /* Multiply adjoint with reciprocal of determinant: */
        det = 1.0 / det;
        mfValues[0][0] = dst[0] * det;
        mfValues[0][1] = dst[1] * det;
        mfValues[0][2] = dst[2] * det;
        mfValues[1][0] = dst[3] * det;
        mfValues[1][1] = dst[4] * det;
        mfValues[1][2] = dst[5] * det;

        return true;
    }

    /* Compute adjoint, optimised for the case where the last (not stored) row is { 0, 0, 1 } */
    void B2DHomMatrix::computeAdjoint(double (&dst)[6]) const
    {
        dst[0] = + get(1, 1);
        dst[1] = - get(0, 1);
        dst[2] = + get(0, 1) * get(1, 2) - get(0, 2) * get(1, 1);
        dst[3] = - get(1, 0);
        dst[4] = + get(0, 0);
        dst[5] = - get(0, 0) * get(1, 2) + get(0, 2) * get(1, 0);
    }

    /* Compute the determinant, given the adjoint matrix */
    double B2DHomMatrix::computeDeterminant(double (&dst)[6]) const
    {
        return mfValues[0][0] * dst[0] + mfValues[0][1] * dst[3];
    }

    B2DHomMatrix& B2DHomMatrix::operator*=(const B2DHomMatrix& rMat)
    {
        if(rMat.isIdentity())
        {
            // multiply with identity, no change -> nothing to do
        }
        else if(isIdentity())
        {
            // we are identity, result will be rMat -> assign
            *this = rMat;
        }
        else
        {
            // multiply
            doMulMatrix(rMat);
        }

        return *this;
    }

    void B2DHomMatrix::doMulMatrix(const B2DHomMatrix& rMat)
    {
        // create a copy as source for the original values
        const B2DHomMatrix aCopy(*this);

        for(sal_uInt16 a(0); a < 2; ++a)
        {
            for(sal_uInt16 b(0); b < 3; ++b)
            {
                double fValue = 0.0;

                for(sal_uInt16 c(0); c < 2; ++c)
                    fValue += aCopy.mfValues[c][b] * rMat.mfValues[a][c];

                mfValues[a][b] = fValue;
            }
            mfValues[a][2] += rMat.mfValues[a][2];
        }
    }

    bool B2DHomMatrix::operator==(const B2DHomMatrix& rMat) const
    {
        if (&rMat == this)
            return true;
        for(sal_uInt16 a(0); a < 2; a++)
        {
            for(sal_uInt16 b(0); b < 3; b++)
            {
                const double fValueA(mfValues[a][b]);
                const double fValueB(rMat.mfValues[a][b]);

                if(!::basegfx::fTools::equal(fValueA, fValueB))
                {
                    return false;
                }
            }
        }
        return true;
    }

    bool B2DHomMatrix::operator!=(const B2DHomMatrix& rMat) const
    {
        return !(*this == rMat);
    }

    void B2DHomMatrix::rotate(double fRadiant)
    {
        if(fTools::equalZero(fRadiant))
            return;

        double fSin(0.0);
        double fCos(1.0);

        utils::createSinCosOrthogonal(fSin, fCos, fRadiant);
        B2DHomMatrix aRotMat;

        aRotMat.set(0, 0, fCos);
        aRotMat.set(1, 1, fCos);
        aRotMat.set(1, 0, fSin);
        aRotMat.set(0, 1, -fSin);

        doMulMatrix(aRotMat);
    }

    void B2DHomMatrix::translate(double fX, double fY)
    {
        if(!fTools::equalZero(fX) || !fTools::equalZero(fY))
        {
            B2DHomMatrix aTransMat;

            aTransMat.set(0, 2, fX);
            aTransMat.set(1, 2, fY);

            doMulMatrix(aTransMat);
        }
    }

    void B2DHomMatrix::translate(const B2DTuple& rTuple)
    {
        translate(rTuple.getX(), rTuple.getY());
    }

    void B2DHomMatrix::scale(double fX, double fY)
    {
        const double fOne(1.0);

        if(!fTools::equal(fOne, fX) || !fTools::equal(fOne, fY))
        {
            B2DHomMatrix aScaleMat;

            aScaleMat.set(0, 0, fX);
            aScaleMat.set(1, 1, fY);

            doMulMatrix(aScaleMat);
        }
    }

    void B2DHomMatrix::scale(const B2DTuple& rTuple)
    {
        scale(rTuple.getX(), rTuple.getY());
    }

    void B2DHomMatrix::shearX(double fSx)
    {
        // #i76239# do not test against 1.0, but against 0.0. We are talking about a value not on the diagonal (!)
        if(!fTools::equalZero(fSx))
        {
            B2DHomMatrix aShearXMat;

            aShearXMat.set(0, 1, fSx);

            doMulMatrix(aShearXMat);
        }
    }

    void B2DHomMatrix::shearY(double fSy)
    {
        // #i76239# do not test against 1.0, but against 0.0. We are talking about a value not on the diagonal (!)
        if(!fTools::equalZero(fSy))
        {
            B2DHomMatrix aShearYMat;

            aShearYMat.set(1, 0, fSy);

            doMulMatrix(aShearYMat);
        }
    }

    /** Decomposition

       New, optimized version with local shearX detection. Old version (keeping
       below, is working well, too) used the 3D matrix decomposition when
       shear was used. Keeping old version as comment below since it may get
       necessary to add the determinant() test from there here, too.
    */
    bool B2DHomMatrix::decompose(B2DTuple& rScale, B2DTuple& rTranslate, double& rRotate, double& rShearX) const
    {
        // reset rotate and shear and copy translation values in every case
        rRotate = rShearX = 0.0;
        rTranslate.setX(get(0, 2));
        rTranslate.setY(get(1, 2));

        // test for rotation and shear
        if(fTools::equalZero(get(0, 1)) && fTools::equalZero(get(1, 0)))
        {
            // no rotation and shear, copy scale values
            rScale.setX(get(0, 0));
            rScale.setY(get(1, 1));

            // or is there?
            if( rScale.getX() < 0 && rScale.getY() < 0 )
            {
                // there is - 180 degree rotated
                rScale *= -1;
                rRotate = M_PI;
            }
        }
        else
        {
            // get the unit vectors of the transformation -> the perpendicular vectors
            B2DVector aUnitVecX(get(0, 0), get(1, 0));
            B2DVector aUnitVecY(get(0, 1), get(1, 1));
            const double fScalarXY(aUnitVecX.scalar(aUnitVecY));

            // Test if shear is zero. That's the case if the unit vectors in the matrix
            // are perpendicular -> scalar is zero. This is also the case when one of
            // the unit vectors is zero.
            if(fTools::equalZero(fScalarXY))
            {
                // calculate unsigned scale values
                rScale.setX(aUnitVecX.getLength());
                rScale.setY(aUnitVecY.getLength());

                // check unit vectors for zero lengths
                const bool bXIsZero(fTools::equalZero(rScale.getX()));
                const bool bYIsZero(fTools::equalZero(rScale.getY()));

                if(bXIsZero || bYIsZero)
                {
                    // still extract as much as possible. Scalings are already set
                    if(!bXIsZero)
                    {
                        // get rotation of X-Axis
                        rRotate = atan2(aUnitVecX.getY(), aUnitVecX.getX());
                    }
                    else if(!bYIsZero)
                    {
                        // get rotation of X-Axis. When assuming X and Y perpendicular
                        // and correct rotation, it's the Y-Axis rotation minus 90 degrees
                        rRotate = atan2(aUnitVecY.getY(), aUnitVecY.getX()) - M_PI_2;
                    }

                    // one or both unit vectors do not exist, determinant is zero, no decomposition possible.
                    // Eventually used rotations or shears are lost
                    return false;
                }
                else
                {
                    // no shear
                    // calculate rotation of X unit vector relative to (1, 0)
                    rRotate = atan2(aUnitVecX.getY(), aUnitVecX.getX());

                    // use orientation to evtl. correct sign of Y-Scale
                    const double fCrossXY(aUnitVecX.cross(aUnitVecY));

                    if(fCrossXY < 0.0)
                    {
                        rScale.setY(-rScale.getY());
                    }
                }
            }
            else
            {
                // fScalarXY is not zero, thus both unit vectors exist. No need to handle that here
                // shear, extract it
                double fCrossXY(aUnitVecX.cross(aUnitVecY));

                // get rotation by calculating angle of X unit vector relative to (1, 0).
                // This is before the parallel test following the motto to extract
                // as much as possible
                rRotate = atan2(aUnitVecX.getY(), aUnitVecX.getX());

                // get unsigned scale value for X. It will not change and is useful
                // for further corrections
                rScale.setX(aUnitVecX.getLength());

                if(fTools::equalZero(fCrossXY))
                {
                    // extract as much as possible
                    rScale.setY(aUnitVecY.getLength());

                    // unit vectors are parallel, thus not linear independent. No
                    // useful decomposition possible. This should not happen since
                    // the only way to get the unit vectors nearly parallel is
                    // a very big shearing. Anyways, be prepared for hand-filled
                    // matrices
                    // Eventually used rotations or shears are lost
                    return false;
                }
                else
                {
                    // calculate the contained shear
                    rShearX = fScalarXY / fCrossXY;

                    if(!fTools::equalZero(rRotate))
                    {
                        // To be able to correct the shear for aUnitVecY, rotation needs to be
                        // removed first. Correction of aUnitVecX is easy, it will be rotated back to (1, 0).
                        aUnitVecX.setX(rScale.getX());
                        aUnitVecX.setY(0.0);

                        // for Y correction we rotate the UnitVecY back about -rRotate
                        const double fNegRotate(-rRotate);
                        const double fSin(sin(fNegRotate));
                        const double fCos(cos(fNegRotate));

                        const double fNewX(aUnitVecY.getX() * fCos - aUnitVecY.getY() * fSin);
                        const double fNewY(aUnitVecY.getX() * fSin + aUnitVecY.getY() * fCos);

                        aUnitVecY.setX(fNewX);
                        aUnitVecY.setY(fNewY);
                    }

                    // Correct aUnitVecY and fCrossXY to fShear=0. Rotation is already removed.
                    // Shear correction can only work with removed rotation
                    aUnitVecY.setX(aUnitVecY.getX() - (aUnitVecY.getY() * rShearX));
                    fCrossXY = aUnitVecX.cross(aUnitVecY);

                    // calculate unsigned scale value for Y, after the corrections since
                    // the shear correction WILL change the length of aUnitVecY
                    rScale.setY(aUnitVecY.getLength());

                    // use orientation to set sign of Y-Scale
                    if(fCrossXY < 0.0)
                    {
                        rScale.setY(-rScale.getY());
                    }
                }
            }
        }

        return true;
    }
} // end of namespace basegfx

/* vim:set shiftwidth=4 softtabstop=4 expandtab: */