1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
|
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#pragma once
#include <sal/config.h>
#include <memory>
#include <chartview/ExplicitScaleValues.hxx>
#include <basegfx/range/b2drectangle.hxx>
#include <tools/long.hxx>
#include <com/sun/star/drawing/Direction3D.hpp>
#include <com/sun/star/drawing/Position3D.hpp>
#include <basegfx/matrix/b3dhommatrix.hxx>
#include <com/sun/star/awt/Point.hpp>
#include <com/sun/star/uno/Sequence.hxx>
#include <rtl/ref.hxx>
#include <svx/unoshape.hxx>
namespace com::sun::star::drawing { class XShapes; }
namespace com::sun::star::drawing { struct HomogenMatrix; }
namespace com::sun::star::drawing { struct PolyPolygonShape3D; }
namespace chart
{
class ShapeFactory;
/** allows the transformation of numeric values from one
coordinate-system into another. Values may be transformed using
any mapping.
This is a non-UNO variant of the css::chart2::XTransformation interface,
but using more efficient calling and returning types.
*/
class XTransformation2
{
public:
virtual ~XTransformation2();
/** transforms the given input data tuple, given in the source
coordinate system, according to the internal transformation
rules, into a tuple of transformed coordinates in the
destination coordinate system.
<p>Note that both coordinate systems may have different
dimensions, e.g., if a transformation does simply a projection
into a lower-dimensional space.</p>
@param aValues a source tuple of data that is to be
transformed. The length of this sequence must be
equivalent to the dimension of the source coordinate
system.
@return the transformed data tuple. The length of this
sequence is equal to the dimension of the output
coordinate system.
@throws ::com::sun::star::lang::IllegalArgumentException
if the dimension of the input vector is not equal to the
dimension given in getSourceDimension().
*/
virtual css::drawing::Position3D transform(
const css::drawing::Position3D& rSourceValues ) const = 0;
virtual css::drawing::Position3D transform(
const css::uno::Sequence< double >& rSourceValues ) const = 0;
};
class PlottingPositionHelper
{
public:
PlottingPositionHelper();
PlottingPositionHelper( const PlottingPositionHelper& rSource );
virtual ~PlottingPositionHelper();
virtual std::unique_ptr<PlottingPositionHelper> clone() const;
std::unique_ptr<PlottingPositionHelper> createSecondaryPosHelper( const ExplicitScaleData& rSecondaryScale );
virtual void setTransformationSceneToScreen( const css::drawing::HomogenMatrix& rMatrix);
virtual void setScales( std::vector< ExplicitScaleData >&& rScales, bool bSwapXAndYAxis );
const std::vector< ExplicitScaleData >& getScales() const { return m_aScales;}
//better performance for big data
inline void setCoordinateSystemResolution( const css::uno::Sequence< sal_Int32 >& rCoordinateSystemResolution );
inline bool isSameForGivenResolution( double fX, double fY, double fZ
, double fX2, double fY2, double fZ2 );
inline bool isStrongLowerRequested( sal_Int32 nDimensionIndex ) const;
inline bool isLogicVisible( double fX, double fY, double fZ ) const;
inline void doLogicScaling( double* pX, double* pY, double* pZ ) const;
inline void doUnshiftedLogicScaling( double* pX, double* pY, double* pZ ) const;
inline void clipLogicValues( double* pX, double* pY, double* pZ ) const;
void clipScaledLogicValues( double* pX, double* pY, double* pZ ) const;
inline bool clipYRange( double& rMin, double& rMax ) const;
inline void doLogicScaling( css::drawing::Position3D& rPos ) const;
virtual ::chart::XTransformation2*
getTransformationScaledLogicToScene() const;
virtual css::drawing::Position3D
transformLogicToScene( double fX, double fY, double fZ, bool bClip ) const;
virtual css::drawing::Position3D
transformScaledLogicToScene( double fX, double fY, double fZ, bool bClip ) const;
void transformScaledLogicToScene( css::drawing::PolyPolygonShape3D& rPoly ) const;
void transformScaledLogicToScene( std::vector<std::vector<css::drawing::Position3D>>& rPoly ) const;
static css::awt::Point transformSceneToScreenPosition(
const css::drawing::Position3D& rScenePosition3D
, const rtl::Reference<SvxShapeGroupAnyD>& xSceneTarget
, sal_Int32 nDimensionCount );
inline double getLogicMinX() const;
inline double getLogicMinY() const;
inline double getLogicMinZ() const;
inline double getLogicMaxX() const;
inline double getLogicMaxY() const;
inline double getLogicMaxZ() const;
inline bool isMathematicalOrientationX() const;
inline bool isMathematicalOrientationY() const;
inline bool isMathematicalOrientationZ() const;
::basegfx::B2DRectangle getScaledLogicClipDoubleRect() const;
css::drawing::Direction3D getScaledLogicWidth() const;
inline bool isSwapXAndY() const;
bool isPercentY() const;
double getBaseValueY() const;
inline bool maySkipPointsInRegressionCalculation() const;
void setTimeResolution( tools::Long nTimeResolution, const Date& rNullDate );
virtual void setScaledCategoryWidth( double fScaledCategoryWidth );
void AllowShiftXAxisPos( bool bAllowShift );
void AllowShiftZAxisPos( bool bAllowShift );
protected: //member
std::vector< ExplicitScaleData > m_aScales;
::basegfx::B3DHomMatrix m_aMatrixScreenToScene;
//this is calculated based on m_aScales and m_aMatrixScreenToScene
mutable std::unique_ptr< ::chart::XTransformation2 > m_xTransformationLogicToScene;
bool m_bSwapXAndY;//e.g. true for bar chart and false for column chart
sal_Int32 m_nXResolution;
sal_Int32 m_nYResolution;
sal_Int32 m_nZResolution;
bool m_bMaySkipPointsInRegressionCalculation;
bool m_bDateAxis;
tools::Long m_nTimeResolution;
Date m_aNullDate;
double m_fScaledCategoryWidth;
bool m_bAllowShiftXAxisPos;
bool m_bAllowShiftZAxisPos;
};
class PolarPlottingPositionHelper : public PlottingPositionHelper
{
public:
PolarPlottingPositionHelper();
PolarPlottingPositionHelper( const PolarPlottingPositionHelper& rSource );
virtual ~PolarPlottingPositionHelper() override;
virtual std::unique_ptr<PlottingPositionHelper> clone() const override;
virtual void setTransformationSceneToScreen( const css::drawing::HomogenMatrix& rMatrix) override;
virtual void setScales( std::vector< ExplicitScaleData >&& rScales, bool bSwapXAndYAxis ) override;
const ::basegfx::B3DHomMatrix& getUnitCartesianToScene() const { return m_aUnitCartesianToScene;}
virtual ::chart::XTransformation2*
getTransformationScaledLogicToScene() const override;
//the resulting values provided by the following 3 methods should be used
//for input to the transformation received with
//'getTransformationScaledLogicToScene'
/** Given a value in the radius axis scale range, it returns the normalized
* value.
*/
double transformToRadius( double fLogicValueOnRadiusAxis, bool bDoScaling=true ) const;
/** Given a value in the angle axis scale range (e.g. [0,1] for pie charts)
* this method returns the related angle in degree.
*/
double transformToAngleDegree( double fLogicValueOnAngleAxis, bool bDoScaling=true ) const;
/** Given 2 values in the angle axis scale range (e.g. [0,1] for pie charts)
* this method returns the angle between the 2 values keeping into account
* the correct axis orientation; (for instance, this method is used for
* computing the angle width of a pie slice).
*/
double getWidthAngleDegree( double& fStartLogicValueOnAngleAxis, double& fEndLogicValueOnAngleAxis ) const;
virtual css::drawing::Position3D
transformLogicToScene( double fX, double fY, double fZ, bool bClip ) const override;
virtual css::drawing::Position3D
transformScaledLogicToScene( double fX, double fY, double fZ, bool bClip ) const override;
css::drawing::Position3D
transformAngleRadiusToScene( double fLogicValueOnAngleAxis, double fLogicValueOnRadiusAxis, double fLogicZ, bool bDoScaling=true ) const;
/** It returns the scene coordinates of the passed point: this point is
* described through a normalized cylindrical coordinate system.
* (For a pie chart the origin of the coordinate system is the pie center).
*/
css::drawing::Position3D
transformUnitCircleToScene( double fUnitAngleDegree, double fUnitRadius, double fLogicZ ) const;
using PlottingPositionHelper::transformScaledLogicToScene;
double getOuterLogicRadius() const;
inline bool isMathematicalOrientationAngle() const;
inline bool isMathematicalOrientationRadius() const;
public:
///m_bSwapXAndY (inherited): by default the X axis (scale[0]) represents
///the angle axis and the Y axis (scale[1]) represents the radius axis;
///when this parameter is true, the opposite happens (this is the case for
///pie charts).
///Offset for radius axis in absolute logic scaled values (1.0 == 1 category)
///For a donut, it represents the non-normalized inner radius (see notes for
///transformToRadius)
double m_fRadiusOffset;
///Offset for angle axis in real degree.
///For a pie it represents the angle offset at which the first slice have to
///start;
double m_fAngleDegreeOffset;
private:
::basegfx::B3DHomMatrix m_aUnitCartesianToScene;
::basegfx::B3DHomMatrix impl_calculateMatrixUnitCartesianToScene( const ::basegfx::B3DHomMatrix& rMatrixScreenToScene ) const;
};
bool PolarPlottingPositionHelper::isMathematicalOrientationAngle() const
{
const ExplicitScaleData& rScale = m_bSwapXAndY ? m_aScales[1] : m_aScales[2];
if( css::chart2::AxisOrientation_MATHEMATICAL==rScale.Orientation )
return true;
return false;
}
bool PolarPlottingPositionHelper::isMathematicalOrientationRadius() const
{
const ExplicitScaleData& rScale = m_bSwapXAndY ? m_aScales[0] : m_aScales[1];
if( css::chart2::AxisOrientation_MATHEMATICAL==rScale.Orientation )
return true;
return false;
}
//better performance for big data
void PlottingPositionHelper::setCoordinateSystemResolution( const css::uno::Sequence< sal_Int32 >& rCoordinateSystemResolution )
{
m_nXResolution = 1000;
m_nYResolution = 1000;
m_nZResolution = 1000;
if( rCoordinateSystemResolution.getLength() > 0 )
m_nXResolution = rCoordinateSystemResolution[0];
if( rCoordinateSystemResolution.getLength() > 1 )
m_nYResolution = rCoordinateSystemResolution[1];
if( rCoordinateSystemResolution.getLength() > 2 )
m_nZResolution = rCoordinateSystemResolution[2];
}
bool PlottingPositionHelper::isSameForGivenResolution( double fX, double fY, double fZ
, double fX2, double fY2, double fZ2 /*these values are all expected tp be scaled already*/ )
{
if( !std::isfinite(fX) || !std::isfinite(fY) || !std::isfinite(fZ)
|| !std::isfinite(fX2) || !std::isfinite(fY2) || !std::isfinite(fZ2) )
return false;
double fScaledMinX = getLogicMinX();
double fScaledMinY = getLogicMinY();
double fScaledMinZ = getLogicMinZ();
double fScaledMaxX = getLogicMaxX();
double fScaledMaxY = getLogicMaxY();
double fScaledMaxZ = getLogicMaxZ();
doLogicScaling( &fScaledMinX, &fScaledMinY, &fScaledMinZ );
doLogicScaling( &fScaledMaxX, &fScaledMaxY, &fScaledMaxZ);
bool bSameX = ( static_cast<sal_Int32>(m_nXResolution*(fX - fScaledMinX)/(fScaledMaxX-fScaledMinX))
== static_cast<sal_Int32>(m_nXResolution*(fX2 - fScaledMinX)/(fScaledMaxX-fScaledMinX)) );
bool bSameY = ( static_cast<sal_Int32>(m_nYResolution*(fY - fScaledMinY)/(fScaledMaxY-fScaledMinY))
== static_cast<sal_Int32>(m_nYResolution*(fY2 - fScaledMinY)/(fScaledMaxY-fScaledMinY)) );
bool bSameZ = ( static_cast<sal_Int32>(m_nZResolution*(fZ - fScaledMinZ)/(fScaledMaxZ-fScaledMinZ))
== static_cast<sal_Int32>(m_nZResolution*(fZ2 - fScaledMinZ)/(fScaledMaxZ-fScaledMinZ)) );
return (bSameX && bSameY && bSameZ);
}
bool PlottingPositionHelper::isStrongLowerRequested( sal_Int32 nDimensionIndex ) const
{
if( m_aScales.empty() )
return false;
if( 0==nDimensionIndex )
return m_bAllowShiftXAxisPos && m_aScales[nDimensionIndex].m_bShiftedCategoryPosition;
else if( 2==nDimensionIndex )
return m_bAllowShiftZAxisPos && m_aScales[nDimensionIndex].m_bShiftedCategoryPosition;
return false;
}
bool PlottingPositionHelper::isLogicVisible(
double fX, double fY, double fZ ) const
{
return fX >= m_aScales[0].Minimum && ( isStrongLowerRequested(0) ? fX < m_aScales[0].Maximum : fX <= m_aScales[0].Maximum )
&& fY >= m_aScales[1].Minimum && fY <= m_aScales[1].Maximum
&& fZ >= m_aScales[2].Minimum && ( isStrongLowerRequested(2) ? fZ < m_aScales[2].Maximum : fZ <= m_aScales[2].Maximum );
}
void PlottingPositionHelper::doLogicScaling( double* pX, double* pY, double* pZ ) const
{
if(pX)
{
if( m_aScales[0].Scaling.is())
*pX = m_aScales[0].Scaling->doScaling(*pX);
if( m_bAllowShiftXAxisPos && m_aScales[0].m_bShiftedCategoryPosition )
(*pX) += m_fScaledCategoryWidth/2.0;
}
if(pY && m_aScales[1].Scaling.is())
*pY = m_aScales[1].Scaling->doScaling(*pY);
if(pZ)
{
if( m_aScales[2].Scaling.is())
*pZ = m_aScales[2].Scaling->doScaling(*pZ);
if( m_bAllowShiftZAxisPos && m_aScales[2].m_bShiftedCategoryPosition)
(*pZ) += 0.5;
}
}
void PlottingPositionHelper::doUnshiftedLogicScaling( double* pX, double* pY, double* pZ ) const
{
if(pX && m_aScales[0].Scaling.is())
*pX = m_aScales[0].Scaling->doScaling(*pX);
if(pY && m_aScales[1].Scaling.is())
*pY = m_aScales[1].Scaling->doScaling(*pY);
if(pZ && m_aScales[2].Scaling.is())
*pZ = m_aScales[2].Scaling->doScaling(*pZ);
}
void PlottingPositionHelper::doLogicScaling( css::drawing::Position3D& rPos ) const
{
doLogicScaling( &rPos.PositionX, &rPos.PositionY, &rPos.PositionZ );
}
void PlottingPositionHelper::clipLogicValues( double* pX, double* pY, double* pZ ) const
{
if(pX)
{
if( *pX < m_aScales[0].Minimum )
*pX = m_aScales[0].Minimum;
else if( *pX > m_aScales[0].Maximum )
*pX = m_aScales[0].Maximum;
}
if(pY)
{
if( *pY < m_aScales[1].Minimum )
*pY = m_aScales[1].Minimum;
else if( *pY > m_aScales[1].Maximum )
*pY = m_aScales[1].Maximum;
}
if(pZ)
{
if( *pZ < m_aScales[2].Minimum )
*pZ = m_aScales[2].Minimum;
else if( *pZ > m_aScales[2].Maximum )
*pZ = m_aScales[2].Maximum;
}
}
inline bool PlottingPositionHelper::clipYRange( double& rMin, double& rMax ) const
{
//returns true if something remains
if( rMin > rMax )
std::swap( rMin, rMax );
if( rMin > getLogicMaxY() )
return false;
if( rMax < getLogicMinY() )
return false;
if( rMin < getLogicMinY() )
rMin = getLogicMinY();
if( rMax > getLogicMaxY() )
rMax = getLogicMaxY();
return true;
}
inline double PlottingPositionHelper::getLogicMinX() const
{
return m_aScales[0].Minimum;
}
inline double PlottingPositionHelper::getLogicMinY() const
{
return m_aScales[1].Minimum;
}
inline double PlottingPositionHelper::getLogicMinZ() const
{
return m_aScales[2].Minimum;
}
inline double PlottingPositionHelper::getLogicMaxX() const
{
return m_aScales[0].Maximum;
}
inline double PlottingPositionHelper::getLogicMaxY() const
{
return m_aScales[1].Maximum;
}
inline double PlottingPositionHelper::getLogicMaxZ() const
{
return m_aScales[2].Maximum;
}
inline bool PlottingPositionHelper::isMathematicalOrientationX() const
{
return css::chart2::AxisOrientation_MATHEMATICAL == m_aScales[0].Orientation;
}
inline bool PlottingPositionHelper::isMathematicalOrientationY() const
{
return css::chart2::AxisOrientation_MATHEMATICAL == m_aScales[1].Orientation;
}
inline bool PlottingPositionHelper::isMathematicalOrientationZ() const
{
return css::chart2::AxisOrientation_MATHEMATICAL == m_aScales[2].Orientation;
}
inline bool PlottingPositionHelper::isSwapXAndY() const
{
return m_bSwapXAndY;
}
inline bool PlottingPositionHelper::maySkipPointsInRegressionCalculation() const
{
return m_bMaySkipPointsInRegressionCalculation;
}
} //namespace chart
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|