/** * @file parser_lyb.c * @author Michal Vasko * @brief LYB data parser for libyang * * Copyright (c) 2020 - 2022 CESNET, z.s.p.o. * * This source code is licensed under BSD 3-Clause License (the "License"). * You may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://opensource.org/licenses/BSD-3-Clause */ #include "lyb.h" #include #include #include #include #include #include "common.h" #include "compat.h" #include "context.h" #include "dict.h" #include "hash_table.h" #include "in.h" #include "in_internal.h" #include "log.h" #include "parser_data.h" #include "parser_internal.h" #include "plugins_exts.h" #include "plugins_exts/metadata.h" #include "set.h" #include "tree.h" #include "tree_data.h" #include "tree_data_internal.h" #include "tree_edit.h" #include "tree_schema.h" #include "validation.h" #include "xml.h" static LY_ERR lyb_parse_siblings(struct lyd_lyb_ctx *lybctx, struct lyd_node *parent, struct lyd_node **first_p, struct ly_set *parsed); void lylyb_ctx_free(struct lylyb_ctx *ctx) { LY_ARRAY_COUNT_TYPE u; if (!ctx) { return; } LY_ARRAY_FREE(ctx->siblings); LY_ARRAY_FREE(ctx->models); LY_ARRAY_FOR(ctx->sib_hts, u) { lyht_free(ctx->sib_hts[u].ht, NULL); } LY_ARRAY_FREE(ctx->sib_hts); free(ctx); } void lyd_lyb_ctx_free(struct lyd_ctx *lydctx) { struct lyd_lyb_ctx *ctx = (struct lyd_lyb_ctx *)lydctx; if (!lydctx) { return; } lyd_ctx_free(lydctx); lylyb_ctx_free(ctx->lybctx); free(ctx); } /** * @brief Read metadata about siblings. * * @param[out] sib Structure in which the metadata will be stored. * @param[in] lybctx LYB context. */ static void lyb_read_sibling_meta(struct lyd_lyb_sibling *sib, struct lylyb_ctx *lybctx) { uint8_t meta_buf[LYB_META_BYTES]; uint64_t num = 0; ly_in_read(lybctx->in, meta_buf, LYB_META_BYTES); memcpy(&num, meta_buf, LYB_SIZE_BYTES); sib->written = le64toh(num); memcpy(&num, meta_buf + LYB_SIZE_BYTES, LYB_INCHUNK_BYTES); sib->inner_chunks = le64toh(num); /* remember whether there is a following chunk or not */ sib->position = (sib->written == LYB_SIZE_MAX ? 1 : 0); } /** * @brief Read YANG data from LYB input. Metadata are handled transparently and not returned. * * @param[in] buf Destination buffer. * @param[in] count Number of bytes to read. * @param[in] lybctx LYB context. */ static void lyb_read(uint8_t *buf, size_t count, struct lylyb_ctx *lybctx) { LY_ARRAY_COUNT_TYPE u; struct lyd_lyb_sibling *empty; size_t to_read; assert(lybctx); while (1) { /* check for fully-read (empty) data chunks */ to_read = count; empty = NULL; LY_ARRAY_FOR(lybctx->siblings, u) { /* we want the innermost chunks resolved first, so replace previous empty chunks, * also ignore chunks that are completely finished, there is nothing for us to do */ if ((lybctx->siblings[u].written <= to_read) && lybctx->siblings[u].position) { /* empty chunk, do not read more */ to_read = lybctx->siblings[u].written; empty = &lybctx->siblings[u]; } } if (!empty && !count) { break; } /* we are actually reading some data, not just finishing another chunk */ if (to_read) { if (buf) { ly_in_read(lybctx->in, buf, to_read); } else { ly_in_skip(lybctx->in, to_read); } LY_ARRAY_FOR(lybctx->siblings, u) { /* decrease all written counters */ lybctx->siblings[u].written -= to_read; assert(lybctx->siblings[u].written <= LYB_SIZE_MAX); } /* decrease count/buf */ count -= to_read; if (buf) { buf += to_read; } } if (empty) { /* read the next chunk meta information */ lyb_read_sibling_meta(empty, lybctx); } } } /** * @brief Read a number. * * @param[in] num Destination buffer. * @param[in] num_size Size of @p num. * @param[in] bytes Number of bytes to read. * @param[in] lybctx LYB context. */ static void lyb_read_number(void *num, size_t num_size, size_t bytes, struct lylyb_ctx *lybctx) { uint64_t buf = 0; lyb_read((uint8_t *)&buf, bytes, lybctx); /* correct byte order */ buf = le64toh(buf); switch (num_size) { case sizeof(uint8_t): *((uint8_t *)num) = buf; break; case sizeof(uint16_t): *((uint16_t *)num) = buf; break; case sizeof(uint32_t): *((uint32_t *)num) = buf; break; case sizeof(uint64_t): *((uint64_t *)num) = buf; break; default: LOGINT(lybctx->ctx); } } /** * @brief Read a string. * * @param[in] str Destination buffer, is allocated. * @param[in] len_size Number of bytes on which the length of the string is written. * @param[in] lybctx LYB context. * @return LY_ERR value. */ static LY_ERR lyb_read_string(char **str, uint8_t len_size, struct lylyb_ctx *lybctx) { uint64_t len = 0; assert((len_size == 1) || (len_size == 2) || (len_size == 4) || (len_size == 8)); *str = NULL; lyb_read_number(&len, sizeof len, len_size, lybctx); *str = malloc((len + 1) * sizeof **str); LY_CHECK_ERR_RET(!*str, LOGMEM(lybctx->ctx), LY_EMEM); lyb_read((uint8_t *)*str, len, lybctx); (*str)[len] = '\0'; return LY_SUCCESS; } /** * @brief Skip string. * * @param[in] len_size Number of bytes on which the length of the string is written. * @param[in] lybctx LYB context. */ static void lyb_skip_string(uint8_t len_size, struct lylyb_ctx *lybctx) { size_t len = 0; lyb_read_number(&len, sizeof len, len_size, lybctx); lyb_read(NULL, len, lybctx); } /** * @brief Read value of term node. * * @param[in] term Compiled term node. * @param[out] term_value Set to term node value in dynamically * allocated memory. The caller must release it. * @param[out] term_value_len Value length in bytes. The zero byte is * always included and is not counted. * @param[in,out] lybctx LYB context. * @return LY_ERR value. */ static LY_ERR lyb_read_term_value(const struct lysc_node_leaf *term, uint8_t **term_value, uint64_t *term_value_len, struct lylyb_ctx *lybctx) { uint32_t allocated_size; int32_t lyb_data_len; struct lysc_type_leafref *type_lf; assert(term && term_value && term_value_len && lybctx); /* Find out the size from @ref howtoDataLYB. */ if (term->type->basetype == LY_TYPE_LEAFREF) { /* Leafref itself is ignored, the target is loaded directly. */ type_lf = (struct lysc_type_leafref *)term->type; lyb_data_len = type_lf->realtype->plugin->lyb_data_len; } else { lyb_data_len = term->type->plugin->lyb_data_len; } if (lyb_data_len < 0) { /* Parse value size. */ lyb_read_number(term_value_len, sizeof *term_value_len, sizeof *term_value_len, lybctx); } else { /* Data size is fixed. */ *term_value_len = lyb_data_len; } /* Allocate memory. */ allocated_size = *term_value_len + 1; *term_value = malloc(allocated_size * sizeof **term_value); LY_CHECK_ERR_RET(!*term_value, LOGMEM(lybctx->ctx), LY_EMEM); if (*term_value_len > 0) { /* Parse value. */ lyb_read(*term_value, *term_value_len, lybctx); } /* Add extra zero byte regardless of whether it is string or not. */ (*term_value)[allocated_size - 1] = 0; return LY_SUCCESS; } /** * @brief Stop the current "siblings" - change LYB context state. * * @param[in] lybctx LYB context. * @return LY_ERR value. */ static LY_ERR lyb_read_stop_siblings(struct lylyb_ctx *lybctx) { if (LYB_LAST_SIBLING(lybctx).written) { LOGINT_RET(lybctx->ctx); } LY_ARRAY_DECREMENT(lybctx->siblings); return LY_SUCCESS; } /** * @brief Start a new "siblings" - change LYB context state but also read the expected metadata. * * @param[in] lybctx LYB context. * @return LY_ERR value. */ static LY_ERR lyb_read_start_siblings(struct lylyb_ctx *lybctx) { LY_ARRAY_COUNT_TYPE u; u = LY_ARRAY_COUNT(lybctx->siblings); if (u == lybctx->sibling_size) { LY_ARRAY_CREATE_RET(lybctx->ctx, lybctx->siblings, u + LYB_SIBLING_STEP, LY_EMEM); lybctx->sibling_size = u + LYB_SIBLING_STEP; } LY_ARRAY_INCREMENT(lybctx->siblings); lyb_read_sibling_meta(&LYB_LAST_SIBLING(lybctx), lybctx); return LY_SUCCESS; } /** * @brief Read YANG model info. * * @param[in] lybctx LYB context. * @param[out] mod_name Module name, if any. * @param[out] mod_rev Module revision, "" if none. * @param[in,out] feat_set Set to add the names of enabled features to. If not set, enabled features are not parsed. * @return LY_ERR value. */ static LY_ERR lyb_read_model(struct lylyb_ctx *lybctx, char **mod_name, char mod_rev[], struct ly_set *feat_set) { uint16_t i, rev, length; char *str; *mod_name = NULL; mod_rev[0] = '\0'; lyb_read_number(&length, 2, 2, lybctx); if (!length) { return LY_SUCCESS; } /* module name */ *mod_name = malloc(length + 1); LY_CHECK_ERR_RET(!*mod_name, LOGMEM(lybctx->ctx), LY_EMEM); lyb_read(((uint8_t *)*mod_name), length, lybctx); (*mod_name)[length] = '\0'; /* module revision */ lyb_read_number(&rev, sizeof rev, 2, lybctx); if (rev) { sprintf(mod_rev, "%04u-%02u-%02u", ((rev & LYB_REV_YEAR_MASK) >> LYB_REV_YEAR_SHIFT) + LYB_REV_YEAR_OFFSET, (rev & LYB_REV_MONTH_MASK) >> LYB_REV_MONTH_SHIFT, rev & LYB_REV_DAY_MASK); } if (!feat_set) { /* enabled features not printed */ return LY_SUCCESS; } /* enabled feature count */ lyb_read_number(&length, sizeof length, sizeof length, lybctx); if (!length) { return LY_SUCCESS; } /* enabled features */ for (i = 0; i < length; ++i) { LY_CHECK_RET(lyb_read_string(&str, sizeof length, lybctx)); ly_set_add(feat_set, str, 1, NULL); } return LY_SUCCESS; } /** * @brief Parse YANG model info. * * @param[in] lybctx LYB context. * @param[in] parse_options Flag with options for parsing. * @param[in] with_features Whether the enabled features were also printed and should be read. * @param[out] mod Parsed module. * @return LY_ERR value. */ static LY_ERR lyb_parse_model(struct lylyb_ctx *lybctx, uint32_t parse_options, ly_bool with_features, const struct lys_module **mod) { LY_ERR ret = LY_SUCCESS; const struct lys_module *m = NULL; char *mod_name = NULL, mod_rev[LY_REV_SIZE]; struct ly_set feat_set = {0}; struct lysp_feature *f = NULL; uint32_t i, idx = 0; ly_bool enabled; /* read module info */ if ((ret = lyb_read_model(lybctx, &mod_name, mod_rev, with_features ? &feat_set : NULL))) { goto cleanup; } /* get the module */ if (mod_rev[0]) { m = ly_ctx_get_module(lybctx->ctx, mod_name, mod_rev); if ((parse_options & LYD_PARSE_LYB_MOD_UPDATE) && !m) { /* try to use an updated module */ m = ly_ctx_get_module_implemented(lybctx->ctx, mod_name); if (m && (!m->revision || (strcmp(m->revision, mod_rev) < 0))) { /* not an implemented module in a newer revision */ m = NULL; } } } else { m = ly_ctx_get_module_latest(lybctx->ctx, mod_name); } if (!m || !m->implemented) { if (parse_options & LYD_PARSE_STRICT) { if (!m) { LOGERR(lybctx->ctx, LY_EINVAL, "Invalid context for LYB data parsing, missing module \"%s%s%s\".", mod_name, mod_rev[0] ? "@" : "", mod_rev[0] ? mod_rev : ""); } else if (!m->implemented) { LOGERR(lybctx->ctx, LY_EINVAL, "Invalid context for LYB data parsing, module \"%s%s%s\" not implemented.", mod_name, mod_rev[0] ? "@" : "", mod_rev[0] ? mod_rev : ""); } ret = LY_EINVAL; goto cleanup; } goto cleanup; } if (with_features) { /* check features */ while ((f = lysp_feature_next(f, m->parsed, &idx))) { enabled = 0; for (i = 0; i < feat_set.count; ++i) { if (!strcmp(feat_set.objs[i], f->name)) { enabled = 1; break; } } if (enabled && !(f->flags & LYS_FENABLED)) { LOGERR(lybctx->ctx, LY_EINVAL, "Invalid context for LYB data parsing, module \"%s\" has \"%s\" feature disabled.", mod_name, f->name); ret = LY_EINVAL; goto cleanup; } else if (!enabled && (f->flags & LYS_FENABLED)) { LOGERR(lybctx->ctx, LY_EINVAL, "Invalid context for LYB data parsing, module \"%s\" has \"%s\" feature enabled.", mod_name, f->name); ret = LY_EINVAL; goto cleanup; } } } /* fill cached hashes, if not already */ lyb_cache_module_hash(m); cleanup: *mod = m; free(mod_name); ly_set_erase(&feat_set, free); return ret; } /** * @brief Parse YANG node metadata. * * @param[in] lybctx LYB context. * @param[in] sparent Schema parent node of the metadata. * @param[out] meta Parsed metadata. * @return LY_ERR value. */ static LY_ERR lyb_parse_metadata(struct lyd_lyb_ctx *lybctx, const struct lysc_node *sparent, struct lyd_meta **meta) { LY_ERR ret = LY_SUCCESS; ly_bool dynamic; uint8_t i, count = 0; char *meta_name = NULL, *meta_value; const struct lys_module *mod; /* read number of attributes stored */ lyb_read(&count, 1, lybctx->lybctx); /* read attributes */ for (i = 0; i < count; ++i) { /* find model */ ret = lyb_parse_model(lybctx->lybctx, lybctx->parse_opts, 0, &mod); LY_CHECK_GOTO(ret, cleanup); if (!mod) { /* skip meta name */ lyb_skip_string(sizeof(uint16_t), lybctx->lybctx); /* skip meta value */ lyb_skip_string(sizeof(uint16_t), lybctx->lybctx); continue; } /* meta name */ ret = lyb_read_string(&meta_name, sizeof(uint16_t), lybctx->lybctx); LY_CHECK_GOTO(ret, cleanup); /* meta value */ ret = lyb_read_string(&meta_value, sizeof(uint64_t), lybctx->lybctx); LY_CHECK_GOTO(ret, cleanup); dynamic = 1; /* create metadata */ ret = lyd_parser_create_meta((struct lyd_ctx *)lybctx, NULL, meta, mod, meta_name, strlen(meta_name), meta_value, ly_strlen(meta_value), &dynamic, LY_VALUE_JSON, NULL, LYD_HINT_DATA, sparent); /* free strings */ free(meta_name); meta_name = NULL; if (dynamic) { free(meta_value); dynamic = 0; } LY_CHECK_GOTO(ret, cleanup); } cleanup: free(meta_name); if (ret) { lyd_free_meta_siblings(*meta); *meta = NULL; } return ret; } /** * @brief Parse format-specific prefix data. * * @param[in] lybctx LYB context. * @param[in] format Prefix data format. * @param[out] prefix_data Parsed prefix data. * @return LY_ERR value. */ static LY_ERR lyb_parse_prefix_data(struct lylyb_ctx *lybctx, LY_VALUE_FORMAT format, void **prefix_data) { LY_ERR ret = LY_SUCCESS; uint8_t count, i; struct ly_set *set = NULL; struct lyxml_ns *ns = NULL; switch (format) { case LY_VALUE_XML: /* read count */ lyb_read(&count, 1, lybctx); /* read all NS elements */ LY_CHECK_GOTO(ret = ly_set_new(&set), cleanup); for (i = 0; i < count; ++i) { ns = calloc(1, sizeof *ns); /* prefix */ LY_CHECK_GOTO(ret = lyb_read_string(&ns->prefix, sizeof(uint16_t), lybctx), cleanup); if (!strlen(ns->prefix)) { free(ns->prefix); ns->prefix = NULL; } /* namespace */ LY_CHECK_GOTO(ret = lyb_read_string(&ns->uri, sizeof(uint16_t), lybctx), cleanup); LY_CHECK_GOTO(ret = ly_set_add(set, ns, 1, NULL), cleanup); ns = NULL; } *prefix_data = set; break; case LY_VALUE_JSON: case LY_VALUE_LYB: /* nothing stored */ break; default: LOGINT(lybctx->ctx); ret = LY_EINT; break; } cleanup: if (ret) { ly_free_prefix_data(format, set); if (ns) { free(ns->prefix); free(ns->uri); free(ns); } } return ret; } /** * @brief Parse opaque attributes. * * @param[in] lybctx LYB context. * @param[out] attr Parsed attributes. * @return LY_ERR value. */ static LY_ERR lyb_parse_attributes(struct lylyb_ctx *lybctx, struct lyd_attr **attr) { LY_ERR ret = LY_SUCCESS; uint8_t count, i; struct lyd_attr *attr2 = NULL; char *prefix = NULL, *module_name = NULL, *name = NULL, *value = NULL; ly_bool dynamic = 0; LY_VALUE_FORMAT format = 0; void *val_prefix_data = NULL; /* read count */ lyb_read(&count, 1, lybctx); /* read attributes */ for (i = 0; i < count; ++i) { /* prefix, may be empty */ ret = lyb_read_string(&prefix, sizeof(uint16_t), lybctx); LY_CHECK_GOTO(ret, cleanup); if (!prefix[0]) { free(prefix); prefix = NULL; } /* namespace, may be empty */ ret = lyb_read_string(&module_name, sizeof(uint16_t), lybctx); LY_CHECK_GOTO(ret, cleanup); if (!module_name[0]) { free(module_name); module_name = NULL; } /* name */ ret = lyb_read_string(&name, sizeof(uint16_t), lybctx); LY_CHECK_GOTO(ret, cleanup); /* format */ lyb_read_number(&format, sizeof format, 1, lybctx); /* value prefixes */ ret = lyb_parse_prefix_data(lybctx, format, &val_prefix_data); LY_CHECK_GOTO(ret, cleanup); /* value */ ret = lyb_read_string(&value, sizeof(uint64_t), lybctx); LY_CHECK_ERR_GOTO(ret, ly_free_prefix_data(format, val_prefix_data), cleanup); dynamic = 1; /* attr2 is always changed to the created attribute */ ret = lyd_create_attr(NULL, &attr2, lybctx->ctx, name, strlen(name), prefix, ly_strlen(prefix), module_name, ly_strlen(module_name), value, ly_strlen(value), &dynamic, format, val_prefix_data, LYD_HINT_DATA); LY_CHECK_GOTO(ret, cleanup); free(prefix); prefix = NULL; free(module_name); module_name = NULL; free(name); name = NULL; assert(!dynamic); value = NULL; if (!*attr) { *attr = attr2; } LY_CHECK_GOTO(ret, cleanup); } cleanup: free(prefix); free(module_name); free(name); if (dynamic) { free(value); } if (ret) { lyd_free_attr_siblings(lybctx->ctx, *attr); *attr = NULL; } return ret; } /** * @brief Fill @p hash with hash values. * * @param[in] lybctx LYB context. * @param[in,out] hash Pointer to the array in which the hash values are to be written. * @param[out] hash_count Number of hashes in @p hash. * @return LY_ERR value. */ static LY_ERR lyb_read_hashes(struct lylyb_ctx *lybctx, LYB_HASH *hash, uint8_t *hash_count) { uint8_t i = 0, j; /* read the first hash */ lyb_read(&hash[0], sizeof *hash, lybctx); if (!hash[0]) { *hash_count = i + 1; return LY_SUCCESS; } /* based on the first hash read all the other ones, if any */ for (i = 0; !(hash[0] & (LYB_HASH_COLLISION_ID >> i)); ++i) { if (i > LYB_HASH_BITS) { LOGINT_RET(lybctx->ctx); } } /* move the first hash on its accurate position */ hash[i] = hash[0]; /* read the rest of hashes */ for (j = i; j; --j) { lyb_read(&hash[j - 1], sizeof *hash, lybctx); /* correct collision ID */ assert(hash[j - 1] & (LYB_HASH_COLLISION_ID >> (j - 1))); /* preceded with zeros */ assert(!(hash[j - 1] & (LYB_HASH_MASK << (LYB_HASH_BITS - (j - 1))))); } *hash_count = i + 1; return LY_SUCCESS; } /** * @brief Check whether a schema node matches a hash(es). * * @param[in] sibling Schema node to check. * @param[in] hash Hash array to check. * @param[in] hash_count Number of hashes in @p hash. * @return non-zero if matches, * @return 0 if not. */ static int lyb_is_schema_hash_match(struct lysc_node *sibling, LYB_HASH *hash, uint8_t hash_count) { LYB_HASH sibling_hash; uint8_t i; /* compare all the hashes starting from collision ID 0 */ for (i = 0; i < hash_count; ++i) { sibling_hash = lyb_get_hash(sibling, i); if (sibling_hash != hash[i]) { return 0; } } return 1; } /** * @brief Parse schema node hash. * * @param[in] lybctx LYB context. * @param[in] sparent Schema parent, must be set if @p mod is not. * @param[in] mod Module of the top-level node, must be set if @p sparent is not. * @param[out] snode Parsed found schema node, may be NULL if opaque. * @return LY_ERR value. */ static LY_ERR lyb_parse_schema_hash(struct lyd_lyb_ctx *lybctx, const struct lysc_node *sparent, const struct lys_module *mod, const struct lysc_node **snode) { LY_ERR ret; const struct lysc_node *sibling; LYB_HASH hash[LYB_HASH_BITS - 1]; uint32_t getnext_opts; uint8_t hash_count; *snode = NULL; ret = lyb_read_hashes(lybctx->lybctx, hash, &hash_count); LY_CHECK_RET(ret); if (!hash[0]) { /* opaque node */ return LY_SUCCESS; } getnext_opts = lybctx->int_opts & LYD_INTOPT_REPLY ? LYS_GETNEXT_OUTPUT : 0; /* find our node with matching hashes */ sibling = NULL; while (1) { if (!sparent && lybctx->ext) { sibling = lys_getnext_ext(sibling, sparent, lybctx->ext, getnext_opts); } else { sibling = lys_getnext(sibling, sparent, mod ? mod->compiled : NULL, getnext_opts); } if (!sibling) { break; } /* skip schema nodes from models not present during printing */ if (((sibling->module->ctx != lybctx->lybctx->ctx) || lyb_has_schema_model(sibling, lybctx->lybctx->models)) && lyb_is_schema_hash_match((struct lysc_node *)sibling, hash, hash_count)) { /* match found */ break; } } if (!sibling && (lybctx->parse_opts & LYD_PARSE_STRICT)) { if (lybctx->ext) { LOGVAL(lybctx->lybctx->ctx, LYVE_REFERENCE, "Failed to find matching hash for a node from \"%s\" extension instance node.", lybctx->ext->def->name); } else if (mod) { LOGVAL(lybctx->lybctx->ctx, LYVE_REFERENCE, "Failed to find matching hash for a top-level node" " from \"%s\".", mod->name); } else { LOGVAL(lybctx->lybctx->ctx, LYVE_REFERENCE, "Failed to find matching hash for a child node" " of \"%s\".", sparent->name); } return LY_EVALID; } else if (sibling && (ret = lyd_parser_check_schema((struct lyd_ctx *)lybctx, sibling))) { return ret; } *snode = sibling; return LY_SUCCESS; } /** * @brief Parse schema node name of a nested extension data node. * * @param[in] lybctx LYB context. * @param[in] parent Data parent. * @param[in] mod_name Module name of the node. * @param[out] snode Parsed found schema node of a nested extension. * @return LY_ERR value. */ static LY_ERR lyb_parse_schema_nested_ext(struct lyd_lyb_ctx *lybctx, const struct lyd_node *parent, const char *mod_name, const struct lysc_node **snode) { LY_ERR rc = LY_SUCCESS, r; char *name = NULL; struct lysc_ext_instance *ext; assert(parent); /* read schema node name */ LY_CHECK_GOTO(rc = lyb_read_string(&name, sizeof(uint16_t), lybctx->lybctx), cleanup); /* check for extension data */ r = ly_nested_ext_schema(parent, NULL, mod_name, mod_name ? strlen(mod_name) : 0, LY_VALUE_JSON, NULL, name, strlen(name), snode, &ext); if (r == LY_ENOT) { /* failed to parse */ LOGERR(lybctx->lybctx->ctx, LY_EINVAL, "Failed to parse node \"%s\" as nested extension instance data.", name); rc = LY_EINVAL; goto cleanup; } else if (r) { /* error */ rc = r; goto cleanup; } /* fill cached hashes in the module, it may be from a different context */ lyb_cache_module_hash((*snode)->module); cleanup: free(name); return rc; } /** * @brief Read until the end of the current siblings. * * @param[in] lybctx LYB context. */ static void lyb_skip_siblings(struct lylyb_ctx *lybctx) { do { /* first skip any meta information inside */ ly_in_skip(lybctx->in, LYB_LAST_SIBLING(lybctx).inner_chunks * LYB_META_BYTES); /* then read data */ lyb_read(NULL, LYB_LAST_SIBLING(lybctx).written, lybctx); } while (LYB_LAST_SIBLING(lybctx).written); } /** * @brief Insert new node to @p parsed set. * * Also if needed, correct @p first_p. * * @param[in] lybctx LYB context. * @param[in] parent Data parent of the sibling, must be set if @p first_p is not. * @param[in,out] node Parsed node to insertion. * @param[in,out] first_p First top-level sibling, must be set if @p parent is not. * @param[out] parsed Set of all successfully parsed nodes. * @return LY_ERR value. */ static void lyb_insert_node(struct lyd_lyb_ctx *lybctx, struct lyd_node *parent, struct lyd_node *node, struct lyd_node **first_p, struct ly_set *parsed) { /* insert, keep first pointer correct */ if (parent && (LYD_CTX(parent) != LYD_CTX(node))) { lyplg_ext_insert(parent, node); } else { lyd_insert_node(parent, first_p, node, lybctx->parse_opts & LYD_PARSE_ORDERED ? 1 : 0); } while (!parent && (*first_p)->prev->next) { *first_p = (*first_p)->prev; } /* rememeber a successfully parsed node */ if (parsed) { ly_set_add(parsed, node, 1, NULL); } } /** * @brief Finish parsing the opaq node. * * @param[in] lybctx LYB context. * @param[in] parent Data parent of the sibling, must be set if @p first_p is not. * @param[in] flags Node flags to set. * @param[in,out] attr Attributes to be attached. Finally set to NULL. * @param[in,out] node Parsed opaq node to finish. * @param[in,out] first_p First top-level sibling, must be set if @p parent is not. * @param[out] parsed Set of all successfully parsed nodes. * @return LY_ERR value. */ static void lyb_finish_opaq(struct lyd_lyb_ctx *lybctx, struct lyd_node *parent, uint32_t flags, struct lyd_attr **attr, struct lyd_node **node, struct lyd_node **first_p, struct ly_set *parsed) { struct lyd_attr *iter; /* set flags */ (*node)->flags = flags; /* add attributes */ assert(!(*node)->schema); LY_LIST_FOR(*attr, iter) { iter->parent = (struct lyd_node_opaq *)*node; } ((struct lyd_node_opaq *)*node)->attr = *attr; *attr = NULL; lyb_insert_node(lybctx, parent, *node, first_p, parsed); *node = NULL; } /** * @brief Finish parsing the node. * * @param[in] lybctx LYB context. * @param[in] parent Data parent of the sibling, must be set if @p first_p is not. * @param[in] flags Node flags to set. * @param[in,out] meta Metadata to be attached. Finally set to NULL. * @param[in,out] node Parsed node to finish. * @param[in,out] first_p First top-level sibling, must be set if @p parent is not. * @param[out] parsed Set of all successfully parsed nodes. * @return LY_ERR value. */ static void lyb_finish_node(struct lyd_lyb_ctx *lybctx, struct lyd_node *parent, uint32_t flags, struct lyd_meta **meta, struct lyd_node **node, struct lyd_node **first_p, struct ly_set *parsed) { struct lyd_meta *m; /* set flags */ (*node)->flags = flags; /* add metadata */ LY_LIST_FOR(*meta, m) { m->parent = *node; } (*node)->meta = *meta; *meta = NULL; /* insert into parent */ lyb_insert_node(lybctx, parent, *node, first_p, parsed); if (!(lybctx->parse_opts & LYD_PARSE_ONLY)) { /* store for ext instance node validation, if needed */ (void)lyd_validate_node_ext(*node, &lybctx->ext_node); } *node = NULL; } /** * @brief Parse header for non-opaq node. * * @param[in] lybctx LYB context. * @param[in] sparent Schema parent node of the metadata. * @param[out] flags Parsed node flags. * @param[out] meta Parsed metadata of the node. * @return LY_ERR value. */ static LY_ERR lyb_parse_node_header(struct lyd_lyb_ctx *lybctx, const struct lysc_node *sparent, uint32_t *flags, struct lyd_meta **meta) { LY_ERR ret; /* create and read metadata */ ret = lyb_parse_metadata(lybctx, sparent, meta); LY_CHECK_RET(ret); /* read flags */ lyb_read_number(flags, sizeof *flags, sizeof *flags, lybctx->lybctx); return ret; } /** * @brief Create term node and fill it with value. * * @param[in] lybctx LYB context. * @param[in] snode Schema of the term node. * @param[out] node Created term node. * @return LY_ERR value. */ static LY_ERR lyb_create_term(struct lyd_lyb_ctx *lybctx, const struct lysc_node *snode, struct lyd_node **node) { LY_ERR ret; ly_bool dynamic; uint8_t *term_value; uint64_t term_value_len; ret = lyb_read_term_value((struct lysc_node_leaf *)snode, &term_value, &term_value_len, lybctx->lybctx); LY_CHECK_RET(ret); dynamic = 1; /* create node */ ret = lyd_parser_create_term((struct lyd_ctx *)lybctx, snode, term_value, term_value_len, &dynamic, LY_VALUE_LYB, NULL, LYD_HINT_DATA, node); if (dynamic) { free(term_value); } if (ret) { lyd_free_tree(*node); *node = NULL; } return ret; } /** * @brief Validate inner node, autodelete default values nad create implicit nodes. * * @param[in,out] lybctx LYB context. * @param[in] snode Schema of the inner node. * @param[in] node Parsed inner node. * @return LY_ERR value. */ static LY_ERR lyb_validate_node_inner(struct lyd_lyb_ctx *lybctx, const struct lysc_node *snode, struct lyd_node *node) { LY_ERR ret = LY_SUCCESS; uint32_t impl_opts; if (!(lybctx->parse_opts & LYD_PARSE_ONLY)) { /* new node validation, autodelete CANNOT occur, all nodes are new */ ret = lyd_validate_new(lyd_node_child_p(node), snode, NULL, 0, NULL); LY_CHECK_RET(ret); /* add any missing default children */ impl_opts = (lybctx->val_opts & LYD_VALIDATE_NO_STATE) ? LYD_IMPLICIT_NO_STATE : 0; ret = lyd_new_implicit_r(node, lyd_node_child_p(node), NULL, NULL, &lybctx->node_when, &lybctx->node_types, &lybctx->ext_node, impl_opts, NULL); LY_CHECK_RET(ret); } return ret; } /** * @brief Parse opaq node. * * @param[in] lybctx LYB context. * @param[in] parent Data parent of the sibling. * @param[in,out] first_p First top-level sibling. * @param[out] parsed Set of all successfully parsed nodes. * @return LY_ERR value. */ static LY_ERR lyb_parse_node_opaq(struct lyd_lyb_ctx *lybctx, struct lyd_node *parent, struct lyd_node **first_p, struct ly_set *parsed) { LY_ERR ret; struct lyd_node *node = NULL; struct lyd_attr *attr = NULL; char *value = NULL, *name = NULL, *prefix = NULL, *module_key = NULL; ly_bool dynamic = 0; LY_VALUE_FORMAT format = 0; void *val_prefix_data = NULL; const struct ly_ctx *ctx = lybctx->lybctx->ctx; uint32_t flags; /* parse opaq node attributes */ ret = lyb_parse_attributes(lybctx->lybctx, &attr); LY_CHECK_GOTO(ret, cleanup); /* read flags */ lyb_read_number(&flags, sizeof flags, sizeof flags, lybctx->lybctx); /* parse prefix */ ret = lyb_read_string(&prefix, sizeof(uint16_t), lybctx->lybctx); LY_CHECK_GOTO(ret, cleanup); /* parse module key */ ret = lyb_read_string(&module_key, sizeof(uint16_t), lybctx->lybctx); LY_CHECK_GOTO(ret, cleanup); /* parse name */ ret = lyb_read_string(&name, sizeof(uint16_t), lybctx->lybctx); LY_CHECK_GOTO(ret, cleanup); /* parse value */ ret = lyb_read_string(&value, sizeof(uint64_t), lybctx->lybctx); LY_CHECK_ERR_GOTO(ret, ly_free_prefix_data(format, val_prefix_data), cleanup); dynamic = 1; /* parse format */ lyb_read_number(&format, sizeof format, 1, lybctx->lybctx); /* parse value prefixes */ ret = lyb_parse_prefix_data(lybctx->lybctx, format, &val_prefix_data); LY_CHECK_GOTO(ret, cleanup); if (!(lybctx->parse_opts & LYD_PARSE_OPAQ)) { /* skip children */ ret = lyb_read_start_siblings(lybctx->lybctx); LY_CHECK_GOTO(ret, cleanup); lyb_skip_siblings(lybctx->lybctx); ret = lyb_read_stop_siblings(lybctx->lybctx); LY_CHECK_GOTO(ret, cleanup); goto cleanup; } /* create node */ ret = lyd_create_opaq(ctx, name, strlen(name), prefix, ly_strlen(prefix), module_key, ly_strlen(module_key), value, strlen(value), &dynamic, format, val_prefix_data, LYD_HINT_DATA, &node); LY_CHECK_GOTO(ret, cleanup); assert(node); LOG_LOCSET(NULL, node, NULL, NULL); /* process children */ ret = lyb_parse_siblings(lybctx, node, NULL, NULL); LY_CHECK_GOTO(ret, cleanup); /* register parsed opaq node */ lyb_finish_opaq(lybctx, parent, flags, &attr, &node, first_p, parsed); assert(!attr && !node); LOG_LOCBACK(0, 1, 0, 0); cleanup: if (node) { LOG_LOCBACK(0, 1, 0, 0); } free(prefix); free(module_key); free(name); if (dynamic) { free(value); } lyd_free_attr_siblings(ctx, attr); lyd_free_tree(node); return ret; } /** * @brief Parse anydata or anyxml node. * * @param[in] lybctx LYB context. * @param[in] parent Data parent of the sibling. * @param[in] snode Schema of the node to be parsed. * @param[in,out] first_p First top-level sibling. * @param[out] parsed Set of all successfully parsed nodes. * @return LY_ERR value. */ static LY_ERR lyb_parse_node_any(struct lyd_lyb_ctx *lybctx, struct lyd_node *parent, const struct lysc_node *snode, struct lyd_node **first_p, struct ly_set *parsed) { LY_ERR ret; struct lyd_node *node = NULL, *tree = NULL; struct lyd_meta *meta = NULL; LYD_ANYDATA_VALUETYPE value_type; struct ly_in *in; struct lyd_ctx *lydctx = NULL; char *value = NULL; uint32_t flags; const struct ly_ctx *ctx = lybctx->lybctx->ctx; /* read necessary basic data */ ret = lyb_parse_node_header(lybctx, snode, &flags, &meta); LY_CHECK_GOTO(ret, error); /* parse value type */ lyb_read_number(&value_type, sizeof value_type, sizeof value_type, lybctx->lybctx); if ((value_type == LYD_ANYDATA_DATATREE) || ((snode->nodetype == LYS_ANYDATA) && (value_type != LYD_ANYDATA_LYB))) { LOGINT(ctx); ret = LY_EINT; goto error; } /* read anydata content */ ret = lyb_read_string(&value, sizeof(uint64_t), lybctx->lybctx); LY_CHECK_GOTO(ret, error); if (value_type == LYD_ANYDATA_LYB) { /* parse LYB into a data tree */ LY_CHECK_RET(ly_in_new_memory(value, &in)); ret = lyd_parse_lyb(ctx, NULL, NULL, &tree, in, LYD_PARSE_ONLY | LYD_PARSE_OPAQ | LYD_PARSE_STRICT, 0, LYD_INTOPT_ANY | LYD_INTOPT_WITH_SIBLINGS, NULL, NULL, &lydctx); ly_in_free(in, 0); if (lydctx) { lydctx->free(lydctx); } LY_CHECK_ERR_GOTO(ret, lyd_free_siblings(tree), error); /* use the parsed tree as the value */ free(value); value = (char *)tree; value_type = LYD_ANYDATA_DATATREE; } /* create the node */ switch (value_type) { case LYD_ANYDATA_DATATREE: case LYD_ANYDATA_STRING: case LYD_ANYDATA_XML: case LYD_ANYDATA_JSON: /* use the value directly */ ret = lyd_create_any(snode, value, value_type, 1, &node); LY_CHECK_GOTO(ret, error); break; default: LOGINT(ctx); ret = LY_EINT; goto error; } assert(node); LOG_LOCSET(NULL, node, NULL, NULL); /* register parsed anydata node */ lyb_finish_node(lybctx, parent, flags, &meta, &node, first_p, parsed); LOG_LOCBACK(0, 1, 0, 0); return LY_SUCCESS; error: free(value); lyd_free_meta_siblings(meta); lyd_free_tree(node); return ret; } /** * @brief Parse inner node. * * @param[in] lybctx LYB context. * @param[in] parent Data parent of the sibling, must be set if @p first is not. * @param[in] snode Schema of the node to be parsed. * @param[in,out] first_p First top-level sibling, must be set if @p parent is not. * @param[out] parsed Set of all successfully parsed nodes. * @return LY_ERR value. */ static LY_ERR lyb_parse_node_inner(struct lyd_lyb_ctx *lybctx, struct lyd_node *parent, const struct lysc_node *snode, struct lyd_node **first_p, struct ly_set *parsed) { LY_ERR ret = LY_SUCCESS; struct lyd_node *node = NULL; struct lyd_meta *meta = NULL; uint32_t flags; /* read necessary basic data */ ret = lyb_parse_node_header(lybctx, snode, &flags, &meta); LY_CHECK_GOTO(ret, error); /* create node */ ret = lyd_create_inner(snode, &node); LY_CHECK_GOTO(ret, error); assert(node); LOG_LOCSET(NULL, node, NULL, NULL); /* process children */ ret = lyb_parse_siblings(lybctx, node, NULL, NULL); LY_CHECK_GOTO(ret, error); /* additional procedure for inner node */ ret = lyb_validate_node_inner(lybctx, snode, node); LY_CHECK_GOTO(ret, error); if (snode->nodetype & (LYS_RPC | LYS_ACTION | LYS_NOTIF)) { /* rememeber the RPC/action/notification */ lybctx->op_node = node; } /* register parsed node */ lyb_finish_node(lybctx, parent, flags, &meta, &node, first_p, parsed); LOG_LOCBACK(0, 1, 0, 0); return LY_SUCCESS; error: if (node) { LOG_LOCBACK(0, 1, 0, 0); } lyd_free_meta_siblings(meta); lyd_free_tree(node); return ret; } /** * @brief Parse leaf node. * * @param[in] lybctx LYB context. * @param[in] parent Data parent of the sibling. * @param[in] snode Schema of the node to be parsed. * @param[in,out] first_p First top-level sibling. * @param[out] parsed Set of all successfully parsed nodes. * @return LY_ERR value. */ static LY_ERR lyb_parse_node_leaf(struct lyd_lyb_ctx *lybctx, struct lyd_node *parent, const struct lysc_node *snode, struct lyd_node **first_p, struct ly_set *parsed) { LY_ERR ret; struct lyd_node *node = NULL; struct lyd_meta *meta = NULL; uint32_t flags; /* read necessary basic data */ ret = lyb_parse_node_header(lybctx, snode, &flags, &meta); LY_CHECK_GOTO(ret, error); /* read value of term node and create it */ ret = lyb_create_term(lybctx, snode, &node); LY_CHECK_GOTO(ret, error); assert(node); LOG_LOCSET(NULL, node, NULL, NULL); lyb_finish_node(lybctx, parent, flags, &meta, &node, first_p, parsed); LOG_LOCBACK(0, 1, 0, 0); return LY_SUCCESS; error: lyd_free_meta_siblings(meta); lyd_free_tree(node); return ret; } /** * @brief Parse all leaflist nodes which belong to same schema. * * @param[in] lybctx LYB context. * @param[in] parent Data parent of the sibling. * @param[in] snode Schema of the nodes to be parsed. * @param[in,out] first_p First top-level sibling. * @param[out] parsed Set of all successfully parsed nodes. * @return LY_ERR value. */ static LY_ERR lyb_parse_node_leaflist(struct lyd_lyb_ctx *lybctx, struct lyd_node *parent, const struct lysc_node *snode, struct lyd_node **first_p, struct ly_set *parsed) { LY_ERR ret; /* register a new sibling */ ret = lyb_read_start_siblings(lybctx->lybctx); LY_CHECK_RET(ret); /* process all siblings */ while (LYB_LAST_SIBLING(lybctx->lybctx).written) { ret = lyb_parse_node_leaf(lybctx, parent, snode, first_p, parsed); LY_CHECK_RET(ret); } /* end the sibling */ ret = lyb_read_stop_siblings(lybctx->lybctx); LY_CHECK_RET(ret); return ret; } /** * @brief Parse all list nodes which belong to same schema. * * @param[in] lybctx LYB context. * @param[in] parent Data parent of the sibling. * @param[in] snode Schema of the nodes to be parsed. * @param[in,out] first_p First top-level sibling. * @param[out] parsed Set of all successfully parsed nodes. * @return LY_ERR value. */ static LY_ERR lyb_parse_node_list(struct lyd_lyb_ctx *lybctx, struct lyd_node *parent, const struct lysc_node *snode, struct lyd_node **first_p, struct ly_set *parsed) { LY_ERR ret; struct lyd_node *node = NULL; struct lyd_meta *meta = NULL; uint32_t flags; ly_bool log_node = 0; /* register a new sibling */ ret = lyb_read_start_siblings(lybctx->lybctx); LY_CHECK_RET(ret); while (LYB_LAST_SIBLING(lybctx->lybctx).written) { /* read necessary basic data */ ret = lyb_parse_node_header(lybctx, snode, &flags, &meta); LY_CHECK_GOTO(ret, error); /* create list node */ ret = lyd_create_inner(snode, &node); LY_CHECK_GOTO(ret, error); assert(node); LOG_LOCSET(NULL, node, NULL, NULL); log_node = 1; /* process children */ ret = lyb_parse_siblings(lybctx, node, NULL, NULL); LY_CHECK_GOTO(ret, error); /* additional procedure for inner node */ ret = lyb_validate_node_inner(lybctx, snode, node); LY_CHECK_GOTO(ret, error); if (snode->nodetype & (LYS_RPC | LYS_ACTION | LYS_NOTIF)) { /* rememeber the RPC/action/notification */ lybctx->op_node = node; } /* register parsed list node */ lyb_finish_node(lybctx, parent, flags, &meta, &node, first_p, parsed); LOG_LOCBACK(0, 1, 0, 0); log_node = 0; } /* end the sibling */ ret = lyb_read_stop_siblings(lybctx->lybctx); LY_CHECK_RET(ret); return LY_SUCCESS; error: if (log_node) { LOG_LOCBACK(0, 1, 0, 0); } lyd_free_meta_siblings(meta); lyd_free_tree(node); return ret; } /** * @brief Parse a node. * * @param[in] lybctx LYB context. * @param[in] parent Data parent of the sibling, must be set if @p first_p is not. * @param[in,out] first_p First top-level sibling, must be set if @p parent is not. * @param[in,out] parsed Set of all successfully parsed nodes to add to. * @return LY_ERR value. */ static LY_ERR lyb_parse_node(struct lyd_lyb_ctx *lybctx, struct lyd_node *parent, struct lyd_node **first_p, struct ly_set *parsed) { LY_ERR ret; const struct lysc_node *snode; const struct lys_module *mod; enum lylyb_node_type lyb_type; char *mod_name = NULL, mod_rev[LY_REV_SIZE]; /* read node type */ lyb_read_number(&lyb_type, sizeof lyb_type, 1, lybctx->lybctx); switch (lyb_type) { case LYB_NODE_TOP: /* top-level, read module name */ LY_CHECK_GOTO(ret = lyb_parse_model(lybctx->lybctx, lybctx->parse_opts, 0, &mod), cleanup); /* read hash, find the schema node starting from mod */ LY_CHECK_GOTO(ret = lyb_parse_schema_hash(lybctx, NULL, mod, &snode), cleanup); break; case LYB_NODE_CHILD: case LYB_NODE_OPAQ: /* read hash, find the schema node starting from parent schema, if any */ LY_CHECK_GOTO(ret = lyb_parse_schema_hash(lybctx, lyd_parser_node_schema(parent), NULL, &snode), cleanup); break; case LYB_NODE_EXT: /* ext, read module name */ LY_CHECK_GOTO(ret = lyb_read_model(lybctx->lybctx, &mod_name, mod_rev, NULL), cleanup); /* read schema node name, find the nexted ext schema node */ LY_CHECK_GOTO(ret = lyb_parse_schema_nested_ext(lybctx, parent, mod_name, &snode), cleanup); break; } if (!snode) { ret = lyb_parse_node_opaq(lybctx, parent, first_p, parsed); } else if (snode->nodetype & LYS_LEAFLIST) { ret = lyb_parse_node_leaflist(lybctx, parent, snode, first_p, parsed); } else if (snode->nodetype == LYS_LIST) { ret = lyb_parse_node_list(lybctx, parent, snode, first_p, parsed); } else if (snode->nodetype & LYD_NODE_ANY) { ret = lyb_parse_node_any(lybctx, parent, snode, first_p, parsed); } else if (snode->nodetype & LYD_NODE_INNER) { ret = lyb_parse_node_inner(lybctx, parent, snode, first_p, parsed); } else { ret = lyb_parse_node_leaf(lybctx, parent, snode, first_p, parsed); } LY_CHECK_GOTO(ret, cleanup); cleanup: free(mod_name); return ret; } /** * @brief Parse siblings (@ref lyb_print_siblings()). * * @param[in] lybctx LYB context. * @param[in] parent Data parent of the sibling, must be set if @p first_p is not. * @param[in,out] first_p First top-level sibling, must be set if @p parent is not. * @param[out] parsed Set of all successfully parsed nodes. * @return LY_ERR value. */ static LY_ERR lyb_parse_siblings(struct lyd_lyb_ctx *lybctx, struct lyd_node *parent, struct lyd_node **first_p, struct ly_set *parsed) { ly_bool top_level; top_level = !LY_ARRAY_COUNT(lybctx->lybctx->siblings); /* register a new siblings */ LY_CHECK_RET(lyb_read_start_siblings(lybctx->lybctx)); while (LYB_LAST_SIBLING(lybctx->lybctx).written) { LY_CHECK_RET(lyb_parse_node(lybctx, parent, first_p, parsed)); if (top_level && !(lybctx->int_opts & LYD_INTOPT_WITH_SIBLINGS)) { break; } } /* end the siblings */ LY_CHECK_RET(lyb_read_stop_siblings(lybctx->lybctx)); return LY_SUCCESS; } /** * @brief Parse used YANG data models. * * @param[in] lybctx LYB context. * @param[in] parse_options Flag with options for parsing. * @return LY_ERR value. */ static LY_ERR lyb_parse_data_models(struct lylyb_ctx *lybctx, uint32_t parse_options) { LY_ERR ret; uint32_t count; LY_ARRAY_COUNT_TYPE u; /* read model count */ lyb_read_number(&count, sizeof count, 2, lybctx); if (count) { LY_ARRAY_CREATE_RET(lybctx->ctx, lybctx->models, count, LY_EMEM); /* read modules */ for (u = 0; u < count; ++u) { ret = lyb_parse_model(lybctx, parse_options, 1, &lybctx->models[u]); LY_CHECK_RET(ret); LY_ARRAY_INCREMENT(lybctx->models); } } return LY_SUCCESS; } /** * @brief Parse LYB magic number. * * @param[in] lybctx LYB context. * @return LY_ERR value. */ static LY_ERR lyb_parse_magic_number(struct lylyb_ctx *lybctx) { char magic_byte = 0; lyb_read((uint8_t *)&magic_byte, 1, lybctx); if (magic_byte != 'l') { LOGERR(lybctx->ctx, LY_EINVAL, "Invalid first magic number byte \"0x%02x\".", magic_byte); return LY_EINVAL; } lyb_read((uint8_t *)&magic_byte, 1, lybctx); if (magic_byte != 'y') { LOGERR(lybctx->ctx, LY_EINVAL, "Invalid second magic number byte \"0x%02x\".", magic_byte); return LY_EINVAL; } lyb_read((uint8_t *)&magic_byte, 1, lybctx); if (magic_byte != 'b') { LOGERR(lybctx->ctx, LY_EINVAL, "Invalid third magic number byte \"0x%02x\".", magic_byte); return LY_EINVAL; } return LY_SUCCESS; } /** * @brief Parse LYB header. * * @param[in] lybctx LYB context. * @return LY_ERR value. */ static LY_ERR lyb_parse_header(struct lylyb_ctx *lybctx) { uint8_t byte = 0; /* version, future flags */ lyb_read((uint8_t *)&byte, sizeof byte, lybctx); if ((byte & LYB_VERSION_MASK) != LYB_VERSION_NUM) { LOGERR(lybctx->ctx, LY_EINVAL, "Invalid LYB format version \"0x%02x\", expected \"0x%02x\".", byte & LYB_VERSION_MASK, LYB_VERSION_NUM); return LY_EINVAL; } return LY_SUCCESS; } LY_ERR lyd_parse_lyb(const struct ly_ctx *ctx, const struct lysc_ext_instance *ext, struct lyd_node *parent, struct lyd_node **first_p, struct ly_in *in, uint32_t parse_opts, uint32_t val_opts, uint32_t int_opts, struct ly_set *parsed, ly_bool *subtree_sibling, struct lyd_ctx **lydctx_p) { LY_ERR rc = LY_SUCCESS; struct lyd_lyb_ctx *lybctx; assert(!(parse_opts & ~LYD_PARSE_OPTS_MASK)); assert(!(val_opts & ~LYD_VALIDATE_OPTS_MASK)); LY_CHECK_ARG_RET(ctx, !(parse_opts & LYD_PARSE_SUBTREE), LY_EINVAL); if (subtree_sibling) { *subtree_sibling = 0; } lybctx = calloc(1, sizeof *lybctx); LY_CHECK_ERR_RET(!lybctx, LOGMEM(ctx), LY_EMEM); lybctx->lybctx = calloc(1, sizeof *lybctx->lybctx); LY_CHECK_ERR_GOTO(!lybctx->lybctx, LOGMEM(ctx); rc = LY_EMEM, cleanup); lybctx->lybctx->in = in; lybctx->lybctx->ctx = ctx; lybctx->parse_opts = parse_opts; lybctx->val_opts = val_opts; lybctx->int_opts = int_opts; lybctx->free = lyd_lyb_ctx_free; lybctx->ext = ext; /* find the operation node if it exists already */ LY_CHECK_GOTO(rc = lyd_parser_find_operation(parent, int_opts, &lybctx->op_node), cleanup); /* read magic number */ rc = lyb_parse_magic_number(lybctx->lybctx); LY_CHECK_GOTO(rc, cleanup); /* read header */ rc = lyb_parse_header(lybctx->lybctx); LY_CHECK_GOTO(rc, cleanup); /* read used models */ rc = lyb_parse_data_models(lybctx->lybctx, lybctx->parse_opts); LY_CHECK_GOTO(rc, cleanup); /* read sibling(s) */ rc = lyb_parse_siblings(lybctx, parent, first_p, parsed); LY_CHECK_GOTO(rc, cleanup); if ((int_opts & LYD_INTOPT_NO_SIBLINGS) && lybctx->lybctx->in->current[0]) { LOGVAL(ctx, LYVE_SYNTAX, "Unexpected sibling node."); rc = LY_EVALID; goto cleanup; } if ((int_opts & (LYD_INTOPT_RPC | LYD_INTOPT_ACTION | LYD_INTOPT_NOTIF | LYD_INTOPT_REPLY)) && !lybctx->op_node) { LOGVAL(ctx, LYVE_DATA, "Missing the operation node."); rc = LY_EVALID; goto cleanup; } /* read the last zero, parsing finished */ ly_in_skip(lybctx->lybctx->in, 1); cleanup: /* there should be no unres stored if validation should be skipped */ assert(!(parse_opts & LYD_PARSE_ONLY) || (!lybctx->node_types.count && !lybctx->meta_types.count && !lybctx->node_when.count)); if (rc) { lyd_lyb_ctx_free((struct lyd_ctx *)lybctx); } else { *lydctx_p = (struct lyd_ctx *)lybctx; } return rc; } LIBYANG_API_DEF int lyd_lyb_data_length(const char *data) { LY_ERR ret = LY_SUCCESS; struct lylyb_ctx *lybctx; uint32_t count, feat_count, len = 0, i, j; uint8_t buf[LYB_SIZE_MAX]; uint8_t zero[LYB_SIZE_BYTES] = {0}; if (!data) { return -1; } lybctx = calloc(1, sizeof *lybctx); LY_CHECK_ERR_RET(!lybctx, LOGMEM(NULL), LY_EMEM); ret = ly_in_new_memory(data, &lybctx->in); LY_CHECK_GOTO(ret, cleanup); /* read magic number */ ret = lyb_parse_magic_number(lybctx); LY_CHECK_GOTO(ret, cleanup); /* read header */ ret = lyb_parse_header(lybctx); LY_CHECK_GOTO(ret, cleanup); /* read model count */ lyb_read_number(&count, sizeof count, 2, lybctx); /* read all models */ for (i = 0; i < count; ++i) { /* module name length */ lyb_read_number(&len, sizeof len, 2, lybctx); /* model name */ lyb_read(buf, len, lybctx); /* revision */ lyb_read(buf, 2, lybctx); /* enabled feature count */ lyb_read_number(&feat_count, sizeof feat_count, 2, lybctx); /* enabled features */ for (j = 0; j < feat_count; ++j) { /* feature name length */ lyb_read_number(&len, sizeof len, 2, lybctx); /* feature name */ lyb_read(buf, len, lybctx); } } if (memcmp(zero, lybctx->in->current, LYB_SIZE_BYTES)) { /* register a new sibling */ ret = lyb_read_start_siblings(lybctx); LY_CHECK_GOTO(ret, cleanup); /* skip it */ lyb_skip_siblings(lybctx); /* sibling finished */ ret = lyb_read_stop_siblings(lybctx); LY_CHECK_GOTO(ret, cleanup); } else { lyb_read(NULL, LYB_SIZE_BYTES, lybctx); } /* read the last zero, parsing finished */ ly_in_skip(lybctx->in, 1); cleanup: count = lybctx->in->current - lybctx->in->start; ly_in_free(lybctx->in, 0); lylyb_ctx_free(lybctx); return ret ? -1 : (int)count; }