/** * @file printer_lyb.c * @author Michal Vasko * @brief LYB printer for libyang data structure * * Copyright (c) 2020 - 2022 CESNET, z.s.p.o. * * This source code is licensed under BSD 3-Clause License (the "License"). * You may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://opensource.org/licenses/BSD-3-Clause */ #include "lyb.h" #include #include #include #include #include #include "common.h" #include "compat.h" #include "context.h" #include "hash_table.h" #include "log.h" #include "out.h" #include "out_internal.h" #include "plugins_exts/metadata.h" #include "printer_data.h" #include "printer_internal.h" #include "set.h" #include "tree.h" #include "tree_data.h" #include "tree_data_internal.h" #include "tree_edit.h" #include "tree_schema.h" #include "tree_schema_internal.h" #include "xml.h" static LY_ERR lyb_print_siblings(struct ly_out *out, const struct lyd_node *node, struct lyd_lyb_ctx *lybctx); /** * @brief Hash table equal callback for checking hash equality only. * * Implementation of ::lyht_value_equal_cb. */ static ly_bool lyb_hash_equal_cb(void *UNUSED(val1_p), void *UNUSED(val2_p), ly_bool UNUSED(mod), void *UNUSED(cb_data)) { /* for this purpose, if hash matches, the value does also, we do not want 2 values to have the same hash */ return 1; } /** * @brief Hash table equal callback for checking value pointer equality only. * * Implementation of ::lyht_value_equal_cb. */ static ly_bool lyb_ptr_equal_cb(void *val1_p, void *val2_p, ly_bool UNUSED(mod), void *UNUSED(cb_data)) { struct lysc_node *val1 = *(struct lysc_node **)val1_p; struct lysc_node *val2 = *(struct lysc_node **)val2_p; if (val1 == val2) { return 1; } return 0; } /** * @brief Check that sibling collision hash is safe to insert into hash table. * * @param[in] ht Hash table. * @param[in] sibling Hashed sibling. * @param[in] ht_col_id Sibling hash collision ID. * @param[in] compare_col_id Last collision ID to compare with. * @return LY_SUCCESS when the whole hash sequence does not collide, * @return LY_EEXIST when the whole hash sequence sollides. */ static LY_ERR lyb_hash_sequence_check(struct ly_ht *ht, struct lysc_node *sibling, LYB_HASH ht_col_id, LYB_HASH compare_col_id) { struct lysc_node **col_node; /* get the first node inserted with last hash col ID ht_col_id */ if (lyht_find(ht, &sibling, lyb_get_hash(sibling, ht_col_id), (void **)&col_node)) { /* there is none. valid situation */ return LY_SUCCESS; } lyht_set_cb(ht, lyb_ptr_equal_cb); do { int64_t j; for (j = (int64_t)compare_col_id; j > -1; --j) { if (lyb_get_hash(sibling, j) != lyb_get_hash(*col_node, j)) { /* one non-colliding hash */ break; } } if (j == -1) { /* all whole hash sequences of nodes inserted with last hash col ID compare_col_id collide */ lyht_set_cb(ht, lyb_hash_equal_cb); return LY_EEXIST; } /* get next node inserted with last hash col ID ht_col_id */ } while (!lyht_find_next_with_collision_cb(ht, col_node, lyb_get_hash(*col_node, ht_col_id), lyb_hash_equal_cb, (void **)&col_node)); lyht_set_cb(ht, lyb_hash_equal_cb); return LY_SUCCESS; } /** * @brief Hash all the siblings and add them also into a separate hash table. * * @param[in] sibling Any sibling in all the siblings on one level. * @param[out] ht_p Created hash table. * @return LY_ERR value. */ static LY_ERR lyb_hash_siblings(struct lysc_node *sibling, struct ly_ht **ht_p) { struct ly_ht *ht; const struct lysc_node *parent; const struct lys_module *mod; LYB_HASH i; uint32_t getnext_opts; ht = lyht_new(1, sizeof(struct lysc_node *), lyb_hash_equal_cb, NULL, 1); LY_CHECK_ERR_RET(!ht, LOGMEM(sibling->module->ctx), LY_EMEM); getnext_opts = 0; if (sibling->flags & LYS_IS_OUTPUT) { getnext_opts = LYS_GETNEXT_OUTPUT; } parent = lysc_data_parent(sibling); mod = sibling->module; sibling = NULL; while ((sibling = (struct lysc_node *)lys_getnext(sibling, parent, mod->compiled, getnext_opts))) { /* find the first non-colliding hash (or specifically non-colliding hash sequence) */ for (i = 0; i < LYB_HASH_BITS; ++i) { /* check that we are not colliding with nodes inserted with a lower collision ID than ours */ int64_t j; for (j = (int64_t)i - 1; j > -1; --j) { if (lyb_hash_sequence_check(ht, sibling, (LYB_HASH)j, i)) { break; } } if (j > -1) { /* some check failed, we must use a higher collision ID */ continue; } /* try to insert node with the current collision ID */ if (!lyht_insert_with_resize_cb(ht, &sibling, lyb_get_hash(sibling, i), lyb_ptr_equal_cb, NULL)) { /* success, no collision */ break; } /* make sure we really cannot insert it with this hash col ID (meaning the whole hash sequence is colliding) */ if (i && !lyb_hash_sequence_check(ht, sibling, i, i)) { /* it can be inserted after all, even though there is already a node with the same last collision ID */ lyht_set_cb(ht, lyb_ptr_equal_cb); if (lyht_insert(ht, &sibling, lyb_get_hash(sibling, i), NULL)) { LOGINT(sibling->module->ctx); lyht_set_cb(ht, lyb_hash_equal_cb); lyht_free(ht, NULL); return LY_EINT; } lyht_set_cb(ht, lyb_hash_equal_cb); break; } /* there is still another colliding schema node with the same hash sequence, try higher collision ID */ } if (i == LYB_HASH_BITS) { /* wow */ LOGINT(sibling->module->ctx); lyht_free(ht, NULL); return LY_EINT; } } /* change val equal callback so that the HT is usable for finding value hashes */ lyht_set_cb(ht, lyb_ptr_equal_cb); *ht_p = ht; return LY_SUCCESS; } /** * @brief Find node hash in a hash table. * * @param[in] ht Hash table to search in. * @param[in] node Node to find. * @param[out] hash_p First non-colliding hash found. * @return LY_ERR value. */ static LY_ERR lyb_hash_find(struct ly_ht *ht, struct lysc_node *node, LYB_HASH *hash_p) { LYB_HASH hash; uint32_t i; for (i = 0; i < LYB_HASH_BITS; ++i) { hash = lyb_get_hash(node, i); if (!hash) { LOGINT_RET(node->module->ctx); } if (!lyht_find(ht, &node, hash, NULL)) { /* success, no collision */ break; } } /* cannot happen, we already calculated the hash */ if (i == LYB_HASH_BITS) { LOGINT_RET(node->module->ctx); } *hash_p = hash; return LY_SUCCESS; } /** * @brief Write metadata about siblings. * * @param[in] out Out structure. * @param[in] sib Contains metadata that is written. */ static LY_ERR lyb_write_sibling_meta(struct ly_out *out, struct lyd_lyb_sibling *sib) { uint8_t meta_buf[LYB_META_BYTES]; uint64_t num = 0; /* write the meta chunk information */ num = htole64((uint64_t)sib->written & LYB_SIZE_MAX); memcpy(meta_buf, &num, LYB_SIZE_BYTES); num = htole64((uint64_t)sib->inner_chunks & LYB_INCHUNK_MAX); memcpy(meta_buf + LYB_SIZE_BYTES, &num, LYB_INCHUNK_BYTES); LY_CHECK_RET(ly_write_skipped(out, sib->position, (char *)&meta_buf, LYB_META_BYTES)); return LY_SUCCESS; } /** * @brief Write LYB data fully handling the metadata. * * @param[in] out Out structure. * @param[in] buf Source buffer. * @param[in] count Number of bytes to write. * @param[in] lybctx LYB context. * @return LY_ERR value. */ static LY_ERR lyb_write(struct ly_out *out, const uint8_t *buf, size_t count, struct lylyb_ctx *lybctx) { LY_ARRAY_COUNT_TYPE u; struct lyd_lyb_sibling *full, *iter; size_t to_write; while (1) { /* check for full data chunks */ to_write = count; full = NULL; LY_ARRAY_FOR(lybctx->siblings, u) { /* we want the innermost chunks resolved first, so replace previous full chunks */ if (lybctx->siblings[u].written + to_write >= LYB_SIZE_MAX) { /* full chunk, do not write more than allowed */ to_write = LYB_SIZE_MAX - lybctx->siblings[u].written; full = &lybctx->siblings[u]; } } if (!full && !count) { break; } /* we are actually writing some data, not just finishing another chunk */ if (to_write) { LY_CHECK_RET(ly_write_(out, (char *)buf, to_write)); LY_ARRAY_FOR(lybctx->siblings, u) { /* increase all written counters */ lybctx->siblings[u].written += to_write; assert(lybctx->siblings[u].written <= LYB_SIZE_MAX); } /* decrease count/buf */ count -= to_write; buf += to_write; } if (full) { /* write the meta information (inner chunk count and chunk size) */ LY_CHECK_RET(lyb_write_sibling_meta(out, full)); /* zero written and inner chunks */ full->written = 0; full->inner_chunks = 0; /* skip space for another chunk size */ LY_CHECK_RET(ly_write_skip(out, LYB_META_BYTES, &full->position)); /* increase inner chunk count */ for (iter = &lybctx->siblings[0]; iter != full; ++iter) { if (iter->inner_chunks == LYB_INCHUNK_MAX) { LOGINT(lybctx->ctx); return LY_EINT; } ++iter->inner_chunks; } } } return LY_SUCCESS; } /** * @brief Stop the current "siblings" - write its final metadata. * * @param[in] out Out structure. * @param[in] lybctx LYB context. * @return LY_ERR value. */ static LY_ERR lyb_write_stop_siblings(struct ly_out *out, struct lylyb_ctx *lybctx) { /* write the meta chunk information */ lyb_write_sibling_meta(out, &LYB_LAST_SIBLING(lybctx)); LY_ARRAY_DECREMENT(lybctx->siblings); return LY_SUCCESS; } /** * @brief Start a new "siblings" - skip bytes for its metadata. * * @param[in] out Out structure. * @param[in] lybctx LYB context. * @return LY_ERR value. */ static LY_ERR lyb_write_start_siblings(struct ly_out *out, struct lylyb_ctx *lybctx) { LY_ARRAY_COUNT_TYPE u; u = LY_ARRAY_COUNT(lybctx->siblings); if (u == lybctx->sibling_size) { LY_ARRAY_CREATE_RET(lybctx->ctx, lybctx->siblings, u + LYB_SIBLING_STEP, LY_EMEM); lybctx->sibling_size = u + LYB_SIBLING_STEP; } LY_ARRAY_INCREMENT(lybctx->siblings); LYB_LAST_SIBLING(lybctx).written = 0; LYB_LAST_SIBLING(lybctx).inner_chunks = 0; /* another inner chunk */ for (u = 0; u < LY_ARRAY_COUNT(lybctx->siblings) - 1; ++u) { if (lybctx->siblings[u].inner_chunks == LYB_INCHUNK_MAX) { LOGINT(lybctx->ctx); return LY_EINT; } ++lybctx->siblings[u].inner_chunks; } LY_CHECK_RET(ly_write_skip(out, LYB_META_BYTES, &LYB_LAST_SIBLING(lybctx).position)); return LY_SUCCESS; } /** * @brief Write a number. * * @param[in] num Number to write. * @param[in] bytes Actual accessible bytes of @p num. * @param[in] out Out structure. * @param[in] lybctx LYB context. * @return LY_ERR value. */ static LY_ERR lyb_write_number(uint64_t num, size_t bytes, struct ly_out *out, struct lylyb_ctx *lybctx) { /* correct byte order */ num = htole64(num); return lyb_write(out, (uint8_t *)&num, bytes, lybctx); } /** * @brief Write a string. * * @param[in] str String to write. * @param[in] str_len Length of @p str. * @param[in] len_size Size of @p str_len in bytes. * @param[in] out Out structure. * @param[in] lybctx LYB context. * @return LY_ERR value. */ static LY_ERR lyb_write_string(const char *str, size_t str_len, uint8_t len_size, struct ly_out *out, struct lylyb_ctx *lybctx) { ly_bool error; if (!str) { str = ""; LY_CHECK_ERR_RET(str_len, LOGINT(lybctx->ctx), LY_EINT); } if (!str_len) { str_len = strlen(str); } switch (len_size) { case sizeof(uint8_t): error = str_len > UINT8_MAX; break; case sizeof(uint16_t): error = str_len > UINT16_MAX; break; case sizeof(uint32_t): error = str_len > UINT32_MAX; break; case sizeof(uint64_t): error = str_len > UINT64_MAX; break; default: error = 1; } if (error) { LOGINT(lybctx->ctx); return LY_EINT; } LY_CHECK_RET(lyb_write_number(str_len, len_size, out, lybctx)); LY_CHECK_RET(lyb_write(out, (const uint8_t *)str, str_len, lybctx)); return LY_SUCCESS; } /** * @brief Print YANG module info. * * @param[in] out Out structure. * @param[in] mod Module to print. * @param[in] with_features Whether to also print enabled features or not. * @param[in] lybctx LYB context. * @return LY_ERR value. */ static LY_ERR lyb_print_model(struct ly_out *out, const struct lys_module *mod, ly_bool with_features, struct lylyb_ctx *lybctx) { LY_ERR rc = LY_SUCCESS; uint16_t revision; struct ly_set feat_set = {0}; struct lysp_feature *f = NULL; uint32_t i = 0; int r; /* model name length and model name */ LY_CHECK_GOTO(rc = lyb_write_string(mod->name, 0, sizeof(uint16_t), out, lybctx), cleanup); /* model revision as XXXX XXXX XXXX XXXX (2B) (year is offset from 2000) * YYYY YYYM MMMD DDDD */ revision = 0; if (mod->revision) { r = atoi(mod->revision); r -= LYB_REV_YEAR_OFFSET; r <<= LYB_REV_YEAR_SHIFT; revision |= r; r = atoi(mod->revision + ly_strlen_const("YYYY-")); r <<= LYB_REV_MONTH_SHIFT; revision |= r; r = atoi(mod->revision + ly_strlen_const("YYYY-MM-")); revision |= r; } LY_CHECK_GOTO(rc = lyb_write_number(revision, sizeof revision, out, lybctx), cleanup); if (with_features) { /* collect enabled module features */ while ((f = lysp_feature_next(f, mod->parsed, &i))) { if (f->flags & LYS_FENABLED) { LY_CHECK_GOTO(rc = ly_set_add(&feat_set, f, 1, NULL), cleanup); } } /* print enabled feature count and their names */ LY_CHECK_GOTO(rc = lyb_write_number(feat_set.count, sizeof(uint16_t), out, lybctx), cleanup); for (i = 0; i < feat_set.count; ++i) { f = feat_set.objs[i]; LY_CHECK_GOTO(rc = lyb_write_string(f->name, 0, sizeof(uint16_t), out, lybctx), cleanup); } } /* fill cached hashes, if not already */ lyb_cache_module_hash(mod); cleanup: ly_set_erase(&feat_set, NULL); return rc; } /** * @brief Print all used YANG modules. * * @param[in] out Out structure. * @param[in] root Data root. * @param[in] lybctx LYB context. * @return LY_ERR value. */ static LY_ERR lyb_print_data_models(struct ly_out *out, const struct lyd_node *root, struct lylyb_ctx *lybctx) { struct ly_set *set; LY_ARRAY_COUNT_TYPE u; LY_ERR ret = LY_SUCCESS; struct lys_module *mod; const struct lyd_node *elem, *node; uint32_t i; LY_CHECK_RET(ly_set_new(&set)); /* collect all data node modules */ LY_LIST_FOR(root, elem) { LYD_TREE_DFS_BEGIN(elem, node) { if (node->schema) { mod = node->schema->module; ret = ly_set_add(set, mod, 0, NULL); LY_CHECK_GOTO(ret, cleanup); /* add also their modules deviating or augmenting them */ LY_ARRAY_FOR(mod->deviated_by, u) { ret = ly_set_add(set, mod->deviated_by[u], 0, NULL); LY_CHECK_GOTO(ret, cleanup); } LY_ARRAY_FOR(mod->augmented_by, u) { ret = ly_set_add(set, mod->augmented_by[u], 0, NULL); LY_CHECK_GOTO(ret, cleanup); } /* only top-level nodes are processed */ LYD_TREE_DFS_continue = 1; } LYD_TREE_DFS_END(elem, node); } } /* now write module count on 2 bytes */ LY_CHECK_GOTO(ret = lyb_write_number(set->count, 2, out, lybctx), cleanup); /* and all the used models */ for (i = 0; i < set->count; ++i) { LY_CHECK_GOTO(ret = lyb_print_model(out, set->objs[i], 1, lybctx), cleanup); } cleanup: ly_set_free(set, NULL); return ret; } /** * @brief Print LYB magic number. * * @param[in] out Out structure. * @return LY_ERR value. */ static LY_ERR lyb_print_magic_number(struct ly_out *out) { /* 'l', 'y', 'b' - 0x6c7962 */ char magic_number[] = {'l', 'y', 'b'}; LY_CHECK_RET(ly_write_(out, magic_number, 3)); return LY_SUCCESS; } /** * @brief Print LYB header. * * @param[in] out Out structure. * @return LY_ERR value. */ static LY_ERR lyb_print_header(struct ly_out *out) { uint8_t byte = 0; /* version, future flags */ byte |= LYB_VERSION_NUM; LY_CHECK_RET(ly_write_(out, (char *)&byte, 1)); return LY_SUCCESS; } /** * @brief Print prefix data. * * @param[in] out Out structure. * @param[in] format Value prefix format. * @param[in] prefix_data Format-specific data for resolving any prefixes (see ::ly_resolve_prefix). * @param[in] lybctx LYB context. * @return LY_ERR value. */ static LY_ERR lyb_print_prefix_data(struct ly_out *out, LY_VALUE_FORMAT format, const void *prefix_data, struct lylyb_ctx *lybctx) { const struct ly_set *set; const struct lyxml_ns *ns; uint32_t i; switch (format) { case LY_VALUE_XML: set = prefix_data; if (!set) { /* no prefix data */ i = 0; LY_CHECK_RET(lyb_write(out, (uint8_t *)&i, 1, lybctx)); break; } if (set->count > UINT8_MAX) { LOGERR(lybctx->ctx, LY_EINT, "Maximum supported number of prefixes is %u.", UINT8_MAX); return LY_EINT; } /* write number of prefixes on 1 byte */ LY_CHECK_RET(lyb_write_number(set->count, 1, out, lybctx)); /* write all the prefixes */ for (i = 0; i < set->count; ++i) { ns = set->objs[i]; /* prefix */ LY_CHECK_RET(lyb_write_string(ns->prefix, 0, sizeof(uint16_t), out, lybctx)); /* namespace */ LY_CHECK_RET(lyb_write_string(ns->uri, 0, sizeof(uint16_t), out, lybctx)); } break; case LY_VALUE_JSON: case LY_VALUE_LYB: /* nothing to print */ break; default: LOGINT_RET(lybctx->ctx); } return LY_SUCCESS; } /** * @brief Print term node. * * @param[in] term Node to print. * @param[in] out Out structure. * @param[in] lybctx LYB context. * @return LY_ERR value. */ static LY_ERR lyb_print_term_value(struct lyd_node_term *term, struct ly_out *out, struct lylyb_ctx *lybctx) { LY_ERR ret = LY_SUCCESS; ly_bool dynamic = 0; void *value; size_t value_len = 0; int32_t lyb_data_len; lyplg_type_print_clb print; assert(term->value.realtype && term->value.realtype->plugin && term->value.realtype->plugin->print && term->schema); /* Get length of LYB data to print. */ lyb_data_len = term->value.realtype->plugin->lyb_data_len; /* Get value and also print its length only if size is not fixed. */ print = term->value.realtype->plugin->print; if (lyb_data_len < 0) { /* Variable-length data. */ /* Get value and its length from plugin. */ value = (void *)print(term->schema->module->ctx, &term->value, LY_VALUE_LYB, NULL, &dynamic, &value_len); LY_CHECK_GOTO(ret, cleanup); if (value_len > UINT32_MAX) { LOGERR(lybctx->ctx, LY_EINT, "The maximum length of the LYB data " "from a term node must not exceed %" PRIu32 ".", UINT32_MAX); ret = LY_EINT; goto cleanup; } /* Print the length of the data as 64-bit unsigned integer. */ ret = lyb_write_number(value_len, sizeof(uint64_t), out, lybctx); LY_CHECK_GOTO(ret, cleanup); } else { /* Fixed-length data. */ /* Get value from plugin. */ value = (void *)print(term->schema->module->ctx, &term->value, LY_VALUE_LYB, NULL, &dynamic, NULL); LY_CHECK_GOTO(ret, cleanup); /* Copy the length from the compiled node. */ value_len = lyb_data_len; } /* Print value. */ if (value_len > 0) { /* Print the value simply as it is. */ ret = lyb_write(out, value, value_len, lybctx); LY_CHECK_GOTO(ret, cleanup); } cleanup: if (dynamic) { free(value); } return ret; } /** * @brief Print YANG node metadata. * * @param[in] out Out structure. * @param[in] node Data node whose metadata to print. * @param[in] lybctx LYB context. * @return LY_ERR value. */ static LY_ERR lyb_print_metadata(struct ly_out *out, const struct lyd_node *node, struct lyd_lyb_ctx *lybctx) { uint8_t count = 0; const struct lys_module *wd_mod = NULL; struct lyd_meta *iter; /* with-defaults */ if (node->schema->nodetype & LYD_NODE_TERM) { if (((node->flags & LYD_DEFAULT) && (lybctx->print_options & (LYD_PRINT_WD_ALL_TAG | LYD_PRINT_WD_IMPL_TAG))) || ((lybctx->print_options & LYD_PRINT_WD_ALL_TAG) && lyd_is_default(node))) { /* we have implicit OR explicit default node, print attribute only if context include with-defaults schema */ wd_mod = ly_ctx_get_module_latest(node->schema->module->ctx, "ietf-netconf-with-defaults"); } } /* count metadata */ if (wd_mod) { ++count; } for (iter = node->meta; iter; iter = iter->next) { if (count == UINT8_MAX) { LOGERR(lybctx->lybctx->ctx, LY_EINT, "Maximum supported number of data node metadata is %u.", UINT8_MAX); return LY_EINT; } ++count; } /* write number of metadata on 1 byte */ LY_CHECK_RET(lyb_write(out, &count, 1, lybctx->lybctx)); if (wd_mod) { /* write the "default" metadata */ LY_CHECK_RET(lyb_print_model(out, wd_mod, 0, lybctx->lybctx)); LY_CHECK_RET(lyb_write_string("default", 0, sizeof(uint16_t), out, lybctx->lybctx)); LY_CHECK_RET(lyb_write_string("true", 0, sizeof(uint16_t), out, lybctx->lybctx)); } /* write all the node metadata */ LY_LIST_FOR(node->meta, iter) { /* model */ LY_CHECK_RET(lyb_print_model(out, iter->annotation->module, 0, lybctx->lybctx)); /* annotation name with length */ LY_CHECK_RET(lyb_write_string(iter->name, 0, sizeof(uint16_t), out, lybctx->lybctx)); /* metadata value */ LY_CHECK_RET(lyb_write_string(lyd_get_meta_value(iter), 0, sizeof(uint64_t), out, lybctx->lybctx)); } return LY_SUCCESS; } /** * @brief Print opaque node attributes. * * @param[in] out Out structure. * @param[in] node Opaque node whose attributes to print. * @param[in] lybctx LYB context. * @return LY_ERR value. */ static LY_ERR lyb_print_attributes(struct ly_out *out, const struct lyd_node_opaq *node, struct lylyb_ctx *lybctx) { uint8_t count = 0; struct lyd_attr *iter; for (iter = node->attr; iter; iter = iter->next) { if (count == UINT8_MAX) { LOGERR(lybctx->ctx, LY_EINT, "Maximum supported number of data node attributes is %u.", UINT8_MAX); return LY_EINT; } ++count; } /* write number of attributes on 1 byte */ LY_CHECK_RET(lyb_write(out, &count, 1, lybctx)); /* write all the attributes */ LY_LIST_FOR(node->attr, iter) { /* prefix */ LY_CHECK_RET(lyb_write_string(iter->name.prefix, 0, sizeof(uint16_t), out, lybctx)); /* namespace */ LY_CHECK_RET(lyb_write_string(iter->name.module_name, 0, sizeof(uint16_t), out, lybctx)); /* name */ LY_CHECK_RET(lyb_write_string(iter->name.name, 0, sizeof(uint16_t), out, lybctx)); /* format */ LY_CHECK_RET(lyb_write_number(iter->format, 1, out, lybctx)); /* value prefixes */ LY_CHECK_RET(lyb_print_prefix_data(out, iter->format, iter->val_prefix_data, lybctx)); /* value */ LY_CHECK_RET(lyb_write_string(iter->value, 0, sizeof(uint64_t), out, lybctx)); } return LY_SUCCESS; } /** * @brief Print schema node hash. * * @param[in] out Out structure. * @param[in] schema Schema node whose hash to print. * @param[in,out] sibling_ht Cached hash table for these siblings, created if NULL. * @param[in] lybctx LYB context. * @return LY_ERR value. */ static LY_ERR lyb_print_schema_hash(struct ly_out *out, struct lysc_node *schema, struct ly_ht **sibling_ht, struct lylyb_ctx *lybctx) { LY_ARRAY_COUNT_TYPE u; uint32_t i; LYB_HASH hash; struct lyd_lyb_sib_ht *sib_ht; struct lysc_node *first_sibling; if (!schema) { /* opaque node, write empty hash */ hash = 0; LY_CHECK_RET(lyb_write(out, &hash, sizeof hash, lybctx)); return LY_SUCCESS; } /* create whole sibling HT if not already created and saved */ if (!*sibling_ht) { /* get first schema data sibling */ first_sibling = (struct lysc_node *)lys_getnext(NULL, lysc_data_parent(schema), schema->module->compiled, (schema->flags & LYS_IS_OUTPUT) ? LYS_GETNEXT_OUTPUT : 0); LY_ARRAY_FOR(lybctx->sib_hts, u) { if (lybctx->sib_hts[u].first_sibling == first_sibling) { /* we have already created a hash table for these siblings */ *sibling_ht = lybctx->sib_hts[u].ht; break; } } if (!*sibling_ht) { /* we must create sibling hash table */ LY_CHECK_RET(lyb_hash_siblings(first_sibling, sibling_ht)); /* and save it */ LY_ARRAY_NEW_RET(lybctx->ctx, lybctx->sib_hts, sib_ht, LY_EMEM); sib_ht->first_sibling = first_sibling; sib_ht->ht = *sibling_ht; } } /* get our hash */ LY_CHECK_RET(lyb_hash_find(*sibling_ht, schema, &hash)); /* write the hash */ LY_CHECK_RET(lyb_write(out, &hash, sizeof hash, lybctx)); if (hash & LYB_HASH_COLLISION_ID) { /* no collision for this hash, we are done */ return LY_SUCCESS; } /* written hash was a collision, write also all the preceding hashes */ for (i = 0; !(hash & (LYB_HASH_COLLISION_ID >> i)); ++i) {} for ( ; i; --i) { hash = lyb_get_hash(schema, i - 1); if (!hash) { return LY_EINT; } assert(hash & (LYB_HASH_COLLISION_ID >> (i - 1))); LY_CHECK_RET(lyb_write(out, &hash, sizeof hash, lybctx)); } return LY_SUCCESS; } /** * @brief Print header for non-opaq node. * * @param[in] out Out structure. * @param[in] node Current data node to print. * @param[in] lybctx LYB context. * @return LY_ERR value. */ static LY_ERR lyb_print_node_header(struct ly_out *out, const struct lyd_node *node, struct lyd_lyb_ctx *lybctx) { /* write any metadata */ LY_CHECK_RET(lyb_print_metadata(out, node, lybctx)); /* write node flags */ LY_CHECK_RET(lyb_write_number(node->flags, sizeof node->flags, out, lybctx->lybctx)); return LY_SUCCESS; } /** * @brief Print LYB node type. * * @param[in] out Out structure. * @param[in] node Current data node to print. * @param[in] lybctx LYB context. * @return LY_ERR value. */ static LY_ERR lyb_print_lyb_type(struct ly_out *out, const struct lyd_node *node, struct lyd_lyb_ctx *lybctx) { enum lylyb_node_type lyb_type; if (node->flags & LYD_EXT) { assert(node->schema); lyb_type = LYB_NODE_EXT; } else if (!node->schema) { lyb_type = LYB_NODE_OPAQ; } else if (!lysc_data_parent(node->schema)) { lyb_type = LYB_NODE_TOP; } else { lyb_type = LYB_NODE_CHILD; } LY_CHECK_RET(lyb_write_number(lyb_type, 1, out, lybctx->lybctx)); return LY_SUCCESS; } /** * @brief Print inner node. * * @param[in] out Out structure. * @param[in] node Current data node to print. * @param[in] lybctx LYB context. * @return LY_ERR value. */ static LY_ERR lyb_print_node_inner(struct ly_out *out, const struct lyd_node *node, struct lyd_lyb_ctx *lybctx) { /* write necessary basic data */ LY_CHECK_RET(lyb_print_node_header(out, node, lybctx)); /* recursively write all the descendants */ LY_CHECK_RET(lyb_print_siblings(out, lyd_child(node), lybctx)); return LY_SUCCESS; } /** * @brief Print opaque node and its descendants. * * @param[in] out Out structure. * @param[in] opaq Node to print. * @param[in] lyd_lybctx LYB context. * @return LY_ERR value. */ static LY_ERR lyb_print_node_opaq(struct ly_out *out, const struct lyd_node_opaq *opaq, struct lyd_lyb_ctx *lyd_lybctx) { struct lylyb_ctx *lybctx = lyd_lybctx->lybctx; /* write attributes */ LY_CHECK_RET(lyb_print_attributes(out, opaq, lybctx)); /* write node flags */ LY_CHECK_RET(lyb_write_number(opaq->flags, sizeof opaq->flags, out, lybctx)); /* prefix */ LY_CHECK_RET(lyb_write_string(opaq->name.prefix, 0, sizeof(uint16_t), out, lybctx)); /* module reference */ LY_CHECK_RET(lyb_write_string(opaq->name.module_name, 0, sizeof(uint16_t), out, lybctx)); /* name */ LY_CHECK_RET(lyb_write_string(opaq->name.name, 0, sizeof(uint16_t), out, lybctx)); /* value */ LY_CHECK_RET(lyb_write_string(opaq->value, 0, sizeof(uint64_t), out, lybctx)); /* format */ LY_CHECK_RET(lyb_write_number(opaq->format, 1, out, lybctx)); /* value prefixes */ LY_CHECK_RET(lyb_print_prefix_data(out, opaq->format, opaq->val_prefix_data, lybctx)); /* recursively write all the descendants */ LY_CHECK_RET(lyb_print_siblings(out, opaq->child, lyd_lybctx)); return LY_SUCCESS; } /** * @brief Print anydata or anyxml node. * * @param[in] anydata Node to print. * @param[in] out Out structure. * @param[in] lyd_lybctx LYB context. * @return LY_ERR value. */ static LY_ERR lyb_print_node_any(struct ly_out *out, struct lyd_node_any *anydata, struct lyd_lyb_ctx *lyd_lybctx) { LY_ERR ret = LY_SUCCESS; LYD_ANYDATA_VALUETYPE value_type; int len; char *buf = NULL; const char *str; struct ly_out *out2 = NULL; struct lylyb_ctx *lybctx = lyd_lybctx->lybctx; if ((anydata->schema->nodetype == LYS_ANYDATA) && (anydata->value_type != LYD_ANYDATA_DATATREE)) { LOGINT_RET(lybctx->ctx); } if (anydata->value_type == LYD_ANYDATA_DATATREE) { /* will be printed as a nested LYB data tree because the used modules need to be written */ value_type = LYD_ANYDATA_LYB; } else { value_type = anydata->value_type; } /* write necessary basic data */ LY_CHECK_RET(lyb_print_node_header(out, (struct lyd_node *)anydata, lyd_lybctx)); /* first byte is type */ LY_CHECK_GOTO(ret = lyb_write_number(value_type, sizeof value_type, out, lybctx), cleanup); if (anydata->value_type == LYD_ANYDATA_DATATREE) { /* print LYB data tree to memory */ LY_CHECK_GOTO(ret = ly_out_new_memory(&buf, 0, &out2), cleanup); LY_CHECK_GOTO(ret = lyb_print_data(out2, anydata->value.tree, LYD_PRINT_WITHSIBLINGS), cleanup); len = lyd_lyb_data_length(buf); assert(len != -1); str = buf; } else if (anydata->value_type == LYD_ANYDATA_LYB) { len = lyd_lyb_data_length(anydata->value.mem); assert(len != -1); str = anydata->value.mem; } else { len = strlen(anydata->value.str); str = anydata->value.str; } /* followed by the content */ LY_CHECK_GOTO(ret = lyb_write_string(str, (size_t)len, sizeof(uint64_t), out, lybctx), cleanup); cleanup: ly_out_free(out2, NULL, 1); return ret; } /** * @brief Print leaf node. * * @param[in] out Out structure. * @param[in] node Current data node to print. * @param[in] lybctx LYB context. * @return LY_ERR value. */ static LY_ERR lyb_print_node_leaf(struct ly_out *out, const struct lyd_node *node, struct lyd_lyb_ctx *lybctx) { /* write necessary basic data */ LY_CHECK_RET(lyb_print_node_header(out, node, lybctx)); /* write term value */ LY_CHECK_RET(lyb_print_term_value((struct lyd_node_term *)node, out, lybctx->lybctx)); return LY_SUCCESS; } /** * @brief Print all leaflist nodes which belong to same schema. * * @param[in] out Out structure. * @param[in] node Current data node to print. * @param[in] lybctx LYB context. * @param[out] printed_node Last node that was printed by this function. * @return LY_ERR value. */ static LY_ERR lyb_print_node_leaflist(struct ly_out *out, const struct lyd_node *node, struct lyd_lyb_ctx *lybctx, const struct lyd_node **printed_node) { const struct lysc_node *schema; /* register a new sibling */ LY_CHECK_RET(lyb_write_start_siblings(out, lybctx->lybctx)); schema = node->schema; /* write all the siblings */ LY_LIST_FOR(node, node) { if (schema != node->schema) { /* all leaflist nodes was printed */ break; } /* write leaf data */ LY_CHECK_RET(lyb_print_node_leaf(out, node, lybctx)); *printed_node = node; } /* finish this sibling */ LY_CHECK_RET(lyb_write_stop_siblings(out, lybctx->lybctx)); return LY_SUCCESS; } /** * @brief Print all list nodes which belong to same schema. * * @param[in] out Out structure. * @param[in] node Current data node to print. * @param[in] lybctx LYB context. * @param[out] printed_node Last node that was printed by this function. * @return LY_ERR value. */ static LY_ERR lyb_print_node_list(struct ly_out *out, const struct lyd_node *node, struct lyd_lyb_ctx *lybctx, const struct lyd_node **printed_node) { const struct lysc_node *schema; /* register a new sibling */ LY_CHECK_RET(lyb_write_start_siblings(out, lybctx->lybctx)); schema = node->schema; LY_LIST_FOR(node, node) { if (schema != node->schema) { /* all list nodes was printed */ break; } /* write necessary basic data */ LY_CHECK_RET(lyb_print_node_header(out, node, lybctx)); /* recursively write all the descendants */ LY_CHECK_RET(lyb_print_siblings(out, lyd_child(node), lybctx)); *printed_node = node; } /* finish this sibling */ LY_CHECK_RET(lyb_write_stop_siblings(out, lybctx->lybctx)); return LY_SUCCESS; } /** * @brief Print node. * * @param[in] out Out structure. * @param[in,out] printed_node Current data node to print. Sets to the last printed node. * @param[in,out] sibling_ht Cached hash table for these siblings, created if NULL. * @param[in] lybctx LYB context. * @return LY_ERR value. */ static LY_ERR lyb_print_node(struct ly_out *out, const struct lyd_node **printed_node, struct ly_ht **sibling_ht, struct lyd_lyb_ctx *lybctx) { const struct lyd_node *node = *printed_node; /* write node type */ LY_CHECK_RET(lyb_print_lyb_type(out, node, lybctx)); /* write model info first */ if (node->schema && ((node->flags & LYD_EXT) || !lysc_data_parent(node->schema))) { LY_CHECK_RET(lyb_print_model(out, node->schema->module, 0, lybctx->lybctx)); } if (node->flags & LYD_EXT) { /* write schema node name */ LY_CHECK_RET(lyb_write_string(node->schema->name, 0, sizeof(uint16_t), out, lybctx->lybctx)); } else { /* write schema hash */ LY_CHECK_RET(lyb_print_schema_hash(out, (struct lysc_node *)node->schema, sibling_ht, lybctx->lybctx)); } if (!node->schema) { LY_CHECK_RET(lyb_print_node_opaq(out, (struct lyd_node_opaq *)node, lybctx)); } else if (node->schema->nodetype & LYS_LEAFLIST) { LY_CHECK_RET(lyb_print_node_leaflist(out, node, lybctx, &node)); } else if (node->schema->nodetype == LYS_LIST) { LY_CHECK_RET(lyb_print_node_list(out, node, lybctx, &node)); } else if (node->schema->nodetype & LYD_NODE_ANY) { LY_CHECK_RET(lyb_print_node_any(out, (struct lyd_node_any *)node, lybctx)); } else if (node->schema->nodetype & LYD_NODE_INNER) { LY_CHECK_RET(lyb_print_node_inner(out, node, lybctx)); } else { LY_CHECK_RET(lyb_print_node_leaf(out, node, lybctx)); } *printed_node = node; return LY_SUCCESS; } /** * @brief Print siblings. * * @param[in] out Out structure. * @param[in] node Current data node to print. * @param[in] lybctx LYB context. * @return LY_ERR value. */ static LY_ERR lyb_print_siblings(struct ly_out *out, const struct lyd_node *node, struct lyd_lyb_ctx *lybctx) { struct ly_ht *sibling_ht = NULL; const struct lys_module *prev_mod = NULL; LY_CHECK_RET(lyb_write_start_siblings(out, lybctx->lybctx)); /* write all the siblings */ LY_LIST_FOR(node, node) { /* do not reuse top-level sibling hash tables from different modules */ if (!node->schema || (!lysc_data_parent(node->schema) && (node->schema->module != prev_mod))) { sibling_ht = NULL; prev_mod = node->schema ? node->schema->module : NULL; } LY_CHECK_RET(lyb_print_node(out, &node, &sibling_ht, lybctx)); if (!lyd_parent(node) && !(lybctx->print_options & LYD_PRINT_WITHSIBLINGS)) { break; } } LY_CHECK_RET(lyb_write_stop_siblings(out, lybctx->lybctx)); return LY_SUCCESS; } LY_ERR lyb_print_data(struct ly_out *out, const struct lyd_node *root, uint32_t options) { LY_ERR ret = LY_SUCCESS; uint8_t zero = 0; struct lyd_lyb_ctx *lybctx; const struct ly_ctx *ctx = root ? LYD_CTX(root) : NULL; lybctx = calloc(1, sizeof *lybctx); LY_CHECK_ERR_GOTO(!lybctx, LOGMEM(ctx); ret = LY_EMEM, cleanup); lybctx->lybctx = calloc(1, sizeof *lybctx->lybctx); LY_CHECK_ERR_GOTO(!lybctx->lybctx, LOGMEM(ctx); ret = LY_EMEM, cleanup); lybctx->print_options = options; if (root) { lybctx->lybctx->ctx = ctx; if (root->schema && lysc_data_parent(root->schema)) { LOGERR(lybctx->lybctx->ctx, LY_EINVAL, "LYB printer supports only printing top-level nodes."); ret = LY_EINVAL; goto cleanup; } } /* LYB magic number */ LY_CHECK_GOTO(ret = lyb_print_magic_number(out), cleanup); /* LYB header */ LY_CHECK_GOTO(ret = lyb_print_header(out), cleanup); /* all used models */ LY_CHECK_GOTO(ret = lyb_print_data_models(out, root, lybctx->lybctx), cleanup); ret = lyb_print_siblings(out, root, lybctx); LY_CHECK_GOTO(ret, cleanup); /* ending zero byte */ LY_CHECK_GOTO(ret = lyb_write(out, &zero, sizeof zero, lybctx->lybctx), cleanup); cleanup: lyd_lyb_ctx_free((struct lyd_ctx *)lybctx); return ret; }