/** * @file schema_compile.c * @author Radek Krejci * @author Michal Vasko * @brief Schema compilation. * * Copyright (c) 2015 - 2022 CESNET, z.s.p.o. * * This source code is licensed under BSD 3-Clause License (the "License"). * You may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://opensource.org/licenses/BSD-3-Clause */ #define _GNU_SOURCE #include "schema_compile.h" #include #include #include #include #include #include #include "common.h" #include "compat.h" #include "context.h" #include "dict.h" #include "in.h" #include "log.h" #include "parser_schema.h" #include "path.h" #include "plugins.h" #include "plugins_exts.h" #include "plugins_internal.h" #include "plugins_types.h" #include "schema_compile_amend.h" #include "schema_compile_node.h" #include "schema_features.h" #include "set.h" #include "tree.h" #include "tree_data.h" #include "tree_schema.h" #include "tree_schema_free.h" #include "tree_schema_internal.h" #include "xpath.h" void lysc_update_path(struct lysc_ctx *ctx, const struct lys_module *parent_module, const char *name) { int len; uint8_t nextlevel = 0; /* 0 - no starttag, 1 - '/' starttag, 2 - '=' starttag + '}' endtag */ if (!name) { /* removing last path segment */ if (ctx->path[ctx->path_len - 1] == '}') { for ( ; ctx->path[ctx->path_len] != '=' && ctx->path[ctx->path_len] != '{'; --ctx->path_len) {} if (ctx->path[ctx->path_len] == '=') { ctx->path[ctx->path_len++] = '}'; } else { /* not a top-level special tag, remove also preceiding '/' */ goto remove_nodelevel; } } else { remove_nodelevel: for ( ; ctx->path[ctx->path_len] != '/'; --ctx->path_len) {} if (ctx->path_len == 0) { /* top-level (last segment) */ ctx->path_len = 1; } } /* set new terminating NULL-byte */ ctx->path[ctx->path_len] = '\0'; } else { if (ctx->path_len > 1) { if (!parent_module && (ctx->path[ctx->path_len - 1] == '}') && (ctx->path[ctx->path_len - 2] != '\'')) { /* extension of the special tag */ nextlevel = 2; --ctx->path_len; } else { /* there is already some path, so add next level */ nextlevel = 1; } } /* else the path is just initiated with '/', so do not add additional slash in case of top-level nodes */ if (nextlevel != 2) { if ((parent_module && (parent_module == ctx->cur_mod)) || (!parent_module && (ctx->path_len > 1) && (name[0] == '{'))) { /* module not changed, print the name unprefixed */ len = snprintf(&ctx->path[ctx->path_len], LYSC_CTX_BUFSIZE - ctx->path_len, "%s%s", nextlevel ? "/" : "", name); } else { len = snprintf(&ctx->path[ctx->path_len], LYSC_CTX_BUFSIZE - ctx->path_len, "%s%s:%s", nextlevel ? "/" : "", ctx->cur_mod->name, name); } } else { len = snprintf(&ctx->path[ctx->path_len], LYSC_CTX_BUFSIZE - ctx->path_len, "='%s'}", name); } if (len >= LYSC_CTX_BUFSIZE - (int)ctx->path_len) { /* output truncated */ ctx->path_len = LYSC_CTX_BUFSIZE - 1; } else { ctx->path_len += len; } } LOG_LOCBACK(0, 0, 1, 0); LOG_LOCSET(NULL, NULL, ctx->path, NULL); } /** * @brief Fill in the prepared compiled extensions definition structure according to the parsed extension definition. * * @param[in] ctx Compile context. * @param[in] extp Parsed extension instance. * @param[out] ext Compiled extension definition. * @return LY_ERR value. */ static LY_ERR lys_compile_extension(struct lysc_ctx *ctx, struct lysp_ext_instance *extp, struct lysc_ext **ext) { LY_ERR ret = LY_SUCCESS; struct lysp_ext *ep = extp->def; if (!ep->compiled) { lysc_update_path(ctx, NULL, "{extension}"); lysc_update_path(ctx, NULL, ep->name); /* compile the extension definition */ *ext = ep->compiled = calloc(1, sizeof **ext); (*ext)->refcount = 1; DUP_STRING_GOTO(ctx->ctx, ep->name, (*ext)->name, ret, cleanup); DUP_STRING_GOTO(ctx->ctx, ep->argname, (*ext)->argname, ret, cleanup); LY_CHECK_GOTO(ret = lysp_ext_find_definition(ctx->ctx, extp, (const struct lys_module **)&(*ext)->module, NULL), cleanup); /* compile nested extensions */ COMPILE_EXTS_GOTO(ctx, ep->exts, (*ext)->exts, *ext, ret, cleanup); lysc_update_path(ctx, NULL, NULL); lysc_update_path(ctx, NULL, NULL); /* find extension definition plugin */ (*ext)->plugin = extp->record ? (struct lyplg_ext *)&extp->record->plugin : NULL; } *ext = ep->compiled; cleanup: if (ret) { lysc_update_path(ctx, NULL, NULL); lysc_update_path(ctx, NULL, NULL); } return ret; } LY_ERR lys_compile_ext(struct lysc_ctx *ctx, struct lysp_ext_instance *extp, struct lysc_ext_instance *ext, void *parent) { LY_ERR ret = LY_SUCCESS; DUP_STRING_GOTO(ctx->ctx, extp->argument, ext->argument, ret, cleanup); ext->module = ctx->cur_mod; ext->parent = parent; ext->parent_stmt = extp->parent_stmt; ext->parent_stmt_index = extp->parent_stmt_index; lysc_update_path(ctx, (ext->parent_stmt & LY_STMT_NODE_MASK) ? ((struct lysc_node *)ext->parent)->module : NULL, "{extension}"); lysc_update_path(ctx, NULL, extp->name); /* compile extension if not already */ LY_CHECK_GOTO(ret = lys_compile_extension(ctx, extp, &ext->def), cleanup); /* compile */ if (ext->def->plugin && ext->def->plugin->compile) { if (ext->argument) { lysc_update_path(ctx, ext->module, ext->argument); } ret = ext->def->plugin->compile(ctx, extp, ext); if (ret == LY_ENOT) { lysc_ext_instance_free(&ctx->free_ctx, ext); } if (ext->argument) { lysc_update_path(ctx, NULL, NULL); } LY_CHECK_GOTO(ret, cleanup); } cleanup: lysc_update_path(ctx, NULL, NULL); lysc_update_path(ctx, NULL, NULL); return ret; } static void lysc_unres_must_free(struct lysc_unres_must *m) { LY_ARRAY_FREE(m->local_mods); free(m); } static void lysc_unres_dflt_free(const struct ly_ctx *ctx, struct lysc_unres_dflt *r) { assert(!r->dflt || !r->dflts); if (r->dflt) { lysp_qname_free((struct ly_ctx *)ctx, r->dflt); free(r->dflt); } else { FREE_ARRAY((struct ly_ctx *)ctx, r->dflts, lysp_qname_free); } free(r); } LY_ERR lys_identity_precompile(struct lysc_ctx *ctx_sc, struct ly_ctx *ctx, struct lysp_module *parsed_mod, const struct lysp_ident *identities_p, struct lysc_ident **identities) { LY_ARRAY_COUNT_TYPE u; struct lysc_ctx cctx; struct lysc_ident *ident; LY_ERR ret = LY_SUCCESS; assert(ctx_sc || ctx); if (!ctx_sc) { if (parsed_mod) { LYSC_CTX_INIT_PMOD(cctx, parsed_mod, NULL); } else { LYSC_CTX_INIT_CTX(cctx, ctx); } ctx_sc = &cctx; } if (!identities_p) { return LY_SUCCESS; } lysc_update_path(ctx_sc, NULL, "{identity}"); LY_ARRAY_FOR(identities_p, u) { lysc_update_path(ctx_sc, NULL, identities_p[u].name); /* add new compiled identity */ LY_ARRAY_NEW_GOTO(ctx_sc->ctx, *identities, ident, ret, done); DUP_STRING_GOTO(ctx_sc->ctx, identities_p[u].name, ident->name, ret, done); DUP_STRING_GOTO(ctx_sc->ctx, identities_p[u].dsc, ident->dsc, ret, done); DUP_STRING_GOTO(ctx_sc->ctx, identities_p[u].ref, ident->ref, ret, done); ident->module = ctx_sc->cur_mod; /* backlinks (derived) can be added no sooner than when all the identities in the current module are present */ COMPILE_EXTS_GOTO(ctx_sc, identities_p[u].exts, ident->exts, ident, ret, done); ident->flags = identities_p[u].flags; lysc_update_path(ctx_sc, NULL, NULL); } lysc_update_path(ctx_sc, NULL, NULL); done: if (ret) { lysc_update_path(ctx_sc, NULL, NULL); lysc_update_path(ctx_sc, NULL, NULL); } return ret; } /** * @brief Check circular dependency of identities - identity MUST NOT reference itself (via their base statement). * * The function works in the same way as lys_compile_feature_circular_check() with different structures and error messages. * * @param[in] ctx Compile context for logging. * @param[in] ident The base identity (its derived list is being extended by the identity being currently processed). * @param[in] derived The list of derived identities of the identity being currently processed (not the one provided as @p ident) * @return LY_SUCCESS if everything is ok. * @return LY_EVALID if the identity is derived from itself. */ static LY_ERR lys_compile_identity_circular_check(struct lysc_ctx *ctx, struct lysc_ident *ident, struct lysc_ident **derived) { LY_ERR ret = LY_SUCCESS; LY_ARRAY_COUNT_TYPE u, v; struct ly_set recursion = {0}; struct lysc_ident *drv; if (!derived) { return LY_SUCCESS; } for (u = 0; u < LY_ARRAY_COUNT(derived); ++u) { if (ident == derived[u]) { LOGVAL(ctx->ctx, LYVE_REFERENCE, "Identity \"%s\" is indirectly derived from itself.", ident->name); ret = LY_EVALID; goto cleanup; } ret = ly_set_add(&recursion, derived[u], 0, NULL); LY_CHECK_GOTO(ret, cleanup); } for (v = 0; v < recursion.count; ++v) { drv = recursion.objs[v]; for (u = 0; u < LY_ARRAY_COUNT(drv->derived); ++u) { if (ident == drv->derived[u]) { LOGVAL(ctx->ctx, LYVE_REFERENCE, "Identity \"%s\" is indirectly derived from itself.", ident->name); ret = LY_EVALID; goto cleanup; } ret = ly_set_add(&recursion, drv->derived[u], 0, NULL); LY_CHECK_GOTO(ret, cleanup); } } cleanup: ly_set_erase(&recursion, NULL); return ret; } LY_ERR lys_compile_identity_bases(struct lysc_ctx *ctx, const struct lysp_module *base_pmod, const char **bases_p, struct lysc_ident *ident, struct lysc_ident ***bases) { LY_ARRAY_COUNT_TYPE u, v; const char *s, *name; const struct lys_module *mod; struct lysc_ident **idref; assert(ident || bases); if ((LY_ARRAY_COUNT(bases_p) > 1) && (ctx->pmod->version < LYS_VERSION_1_1)) { LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG, "Multiple bases in %s are allowed only in YANG 1.1 modules.", ident ? "identity" : "identityref type"); return LY_EVALID; } LY_ARRAY_FOR(bases_p, u) { s = strchr(bases_p[u], ':'); if (s) { /* prefixed identity */ name = &s[1]; mod = ly_resolve_prefix(ctx->ctx, bases_p[u], s - bases_p[u], LY_VALUE_SCHEMA, (void *)base_pmod); } else { name = bases_p[u]; mod = base_pmod->mod; } if (!mod) { if (ident) { LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG, "Invalid prefix used for base (%s) of identity \"%s\".", bases_p[u], ident->name); } else { LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG, "Invalid prefix used for base (%s) of identityref.", bases_p[u]); } return LY_EVALID; } idref = NULL; LY_ARRAY_FOR(mod->identities, v) { if (!strcmp(name, mod->identities[v].name)) { if (ident) { if (ident == &mod->identities[v]) { LOGVAL(ctx->ctx, LYVE_REFERENCE, "Identity \"%s\" is derived from itself.", ident->name); return LY_EVALID; } LY_CHECK_RET(lys_compile_identity_circular_check(ctx, &mod->identities[v], ident->derived)); /* we have match! store the backlink */ LY_ARRAY_NEW_RET(ctx->ctx, mod->identities[v].derived, idref, LY_EMEM); *idref = ident; } else { /* we have match! store the found identity */ LY_ARRAY_NEW_RET(ctx->ctx, *bases, idref, LY_EMEM); *idref = &mod->identities[v]; } break; } } if (!idref) { if (ident) { LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG, "Unable to find base (%s) of identity \"%s\".", bases_p[u], ident->name); } else { LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG, "Unable to find base (%s) of identityref.", bases_p[u]); } return LY_EVALID; } } return LY_SUCCESS; } /** * @brief For the given array of identities, set the backlinks from all their base identities. * * @param[in] ctx Compile context, not only for logging but also to get the current module to resolve prefixes. * @param[in] idents_p Array of identities definitions from the parsed schema structure. * @param[in,out] idents Array of referencing identities to which the backlinks are supposed to be set. * @return LY_ERR value - LY_SUCCESS or LY_EVALID. */ static LY_ERR lys_compile_identities_derived(struct lysc_ctx *ctx, struct lysp_ident *idents_p, struct lysc_ident **idents) { LY_ARRAY_COUNT_TYPE u, v; lysc_update_path(ctx, NULL, "{identity}"); for (u = 0; u < LY_ARRAY_COUNT(*idents); ++u) { /* find matching parsed identity */ for (v = 0; v < LY_ARRAY_COUNT(idents_p); ++v) { if (idents_p[v].name == (*idents)[u].name) { break; } } if ((v == LY_ARRAY_COUNT(idents_p)) || !idents_p[v].bases) { /* identity not found (it may be from a submodule) or identity without bases */ continue; } lysc_update_path(ctx, NULL, (*idents)[u].name); LY_CHECK_RET(lys_compile_identity_bases(ctx, ctx->pmod, idents_p[v].bases, &(*idents)[u], NULL)); lysc_update_path(ctx, NULL, NULL); } lysc_update_path(ctx, NULL, NULL); return LY_SUCCESS; } LY_ERR lys_compile_expr_implement(const struct ly_ctx *ctx, const struct lyxp_expr *expr, LY_VALUE_FORMAT format, void *prefix_data, ly_bool implement, struct lys_glob_unres *unres, const struct lys_module **mod_p) { uint32_t i; const char *ptr, *start, **imp_f, *all_f[] = {"*", NULL}; const struct lys_module *mod; assert(implement || mod_p); if (mod_p) { *mod_p = NULL; } for (i = 0; i < expr->used; ++i) { if ((expr->tokens[i] != LYXP_TOKEN_NAMETEST) && (expr->tokens[i] != LYXP_TOKEN_LITERAL)) { /* token cannot have a prefix */ continue; } start = expr->expr + expr->tok_pos[i]; if (!(ptr = ly_strnchr(start, ':', expr->tok_len[i]))) { /* token without a prefix */ continue; } if (!(mod = ly_resolve_prefix(ctx, start, ptr - start, format, prefix_data))) { /* unknown prefix, do not care right now */ continue; } /* unimplemented module found */ if (!mod->implemented && !implement) { /* should not be implemented now */ *mod_p = mod; break; } if (!mod->implemented) { /* implement if not implemented */ imp_f = (ctx->flags & LY_CTX_ENABLE_IMP_FEATURES) ? all_f : NULL; LY_CHECK_RET(lys_implement((struct lys_module *)mod, imp_f, unres)); } if (!mod->compiled) { /* compile if not implemented before or only marked for compilation */ LY_CHECK_RET(lys_compile((struct lys_module *)mod, &unres->ds_unres)); } } return LY_SUCCESS; } /** * @brief Check when for cyclic dependencies. * * @param[in] set Set with all the referenced nodes. * @param[in] node Node whose "when" referenced nodes are in @p set. * @return LY_ERR value */ static LY_ERR lys_compile_unres_when_cyclic(struct lyxp_set *set, const struct lysc_node *node) { struct lyxp_set tmp_set; struct lyxp_set_scnode *xp_scnode; uint32_t i, j, idx; LY_ARRAY_COUNT_TYPE u; LY_ERR ret = LY_SUCCESS; memset(&tmp_set, 0, sizeof tmp_set); /* prepare in_ctx of the set */ for (i = 0; i < set->used; ++i) { xp_scnode = &set->val.scnodes[i]; if (xp_scnode->in_ctx != LYXP_SET_SCNODE_START_USED) { /* check node when, skip the context node (it was just checked) */ xp_scnode->in_ctx = LYXP_SET_SCNODE_ATOM_CTX; } } for (i = 0; i < set->used; ++i) { xp_scnode = &set->val.scnodes[i]; if (xp_scnode->in_ctx != LYXP_SET_SCNODE_ATOM_CTX) { /* already checked */ continue; } if ((xp_scnode->type != LYXP_NODE_ELEM) || !lysc_node_when(xp_scnode->scnode)) { /* no when to check */ xp_scnode->in_ctx = LYXP_SET_SCNODE_ATOM_NODE; continue; } node = xp_scnode->scnode; do { struct lysc_when **when_list, *when; LOG_LOCSET(node, NULL, NULL, NULL); when_list = lysc_node_when(node); LY_ARRAY_FOR(when_list, u) { when = when_list[u]; ret = lyxp_atomize(set->ctx, when->cond, node->module, LY_VALUE_SCHEMA_RESOLVED, when->prefixes, when->context, when->context, &tmp_set, LYXP_SCNODE_SCHEMA); if (ret != LY_SUCCESS) { LOGVAL(set->ctx, LYVE_SEMANTICS, "Invalid when condition \"%s\".", when->cond->expr); LOG_LOCBACK(1, 0, 0, 0); goto cleanup; } for (j = 0; j < tmp_set.used; ++j) { if (tmp_set.val.scnodes[j].type != LYXP_NODE_ELEM) { /* skip roots'n'stuff, no when, nothing to check */ tmp_set.val.scnodes[j].in_ctx = LYXP_SET_SCNODE_ATOM_NODE; continue; } /* try to find this node in our set */ if (lyxp_set_scnode_contains(set, tmp_set.val.scnodes[j].scnode, LYXP_NODE_ELEM, -1, &idx) && (set->val.scnodes[idx].in_ctx == LYXP_SET_SCNODE_START_USED)) { LOGVAL(set->ctx, LYVE_SEMANTICS, "When condition cyclic dependency on the node \"%s\".", tmp_set.val.scnodes[j].scnode->name); ret = LY_EVALID; LOG_LOCBACK(1, 0, 0, 0); goto cleanup; } /* needs to be checked, if in both sets, will be ignored */ tmp_set.val.scnodes[j].in_ctx = LYXP_SET_SCNODE_ATOM_CTX; } if (when->context != node) { /* node actually depends on this "when", not the context node */ assert(tmp_set.val.scnodes[0].scnode == when->context); if (tmp_set.val.scnodes[0].in_ctx == LYXP_SET_SCNODE_START_USED) { /* replace the non-traversed context node with the dependent node */ tmp_set.val.scnodes[0].scnode = (struct lysc_node *)node; } else { /* context node was traversed, so just add the dependent node */ ret = lyxp_set_scnode_insert_node(&tmp_set, node, LYXP_SET_SCNODE_START_USED, LYXP_AXIS_CHILD, NULL); LY_CHECK_ERR_GOTO(ret, LOG_LOCBACK(1, 0, 0, 0), cleanup); } } /* merge this set into the global when set */ lyxp_set_scnode_merge(set, &tmp_set); } LOG_LOCBACK(1, 0, 0, 0); /* check when of non-data parents as well */ node = node->parent; } while (node && (node->nodetype & (LYS_CASE | LYS_CHOICE))); /* this node when was checked (xp_scnode could have been reallocd) */ set->val.scnodes[i].in_ctx = LYXP_SET_SCNODE_ATOM_NODE; } cleanup: lyxp_set_free_content(&tmp_set); return ret; } LY_ERR lysc_check_status(struct lysc_ctx *ctx, uint16_t flags1, void *mod1, const char *name1, uint16_t flags2, void *mod2, const char *name2) { uint16_t flg1, flg2; flg1 = (flags1 & LYS_STATUS_MASK) ? (flags1 & LYS_STATUS_MASK) : LYS_STATUS_CURR; flg2 = (flags2 & LYS_STATUS_MASK) ? (flags2 & LYS_STATUS_MASK) : LYS_STATUS_CURR; if ((flg1 < flg2) && (mod1 == mod2)) { if (ctx) { LOGVAL(ctx->ctx, LYVE_REFERENCE, "A %s definition \"%s\" is not allowed to reference %s definition \"%s\".", flg1 == LYS_STATUS_CURR ? "current" : "deprecated", name1, flg2 == LYS_STATUS_OBSLT ? "obsolete" : "deprecated", name2); } return LY_EVALID; } return LY_SUCCESS; } /** * @brief Check when expressions of a node on a complete compiled schema tree. * * @param[in] ctx Compile context. * @param[in] when When to check. * @param[in] node Node with @p when. * @return LY_ERR value. */ static LY_ERR lys_compile_unres_when(struct lysc_ctx *ctx, const struct lysc_when *when, const struct lysc_node *node) { struct lyxp_set tmp_set = {0}; uint32_t i, opts; struct lysc_node *schema; LY_ERR ret = LY_SUCCESS; opts = LYXP_SCNODE_SCHEMA | ((node->flags & LYS_IS_OUTPUT) ? LYXP_SCNODE_OUTPUT : 0); /* check "when" */ ret = lyxp_atomize(ctx->ctx, when->cond, node->module, LY_VALUE_SCHEMA_RESOLVED, when->prefixes, when->context, when->context, &tmp_set, opts); if (ret) { LOGVAL(ctx->ctx, LYVE_SEMANTICS, "Invalid when condition \"%s\".", when->cond->expr); goto cleanup; } ctx->path[0] = '\0'; lysc_path(node, LYSC_PATH_LOG, ctx->path, LYSC_CTX_BUFSIZE); for (i = 0; i < tmp_set.used; ++i) { if (tmp_set.val.scnodes[i].type != LYXP_NODE_ELEM) { /* skip roots'n'stuff */ continue; } else if (tmp_set.val.scnodes[i].in_ctx == LYXP_SET_SCNODE_START_USED) { /* context node not actually traversed */ continue; } schema = tmp_set.val.scnodes[i].scnode; /* XPath expression cannot reference "lower" status than the node that has the definition */ if (lysc_check_status(NULL, when->flags, node->module, node->name, schema->flags, schema->module, schema->name)) { LOGWRN(ctx->ctx, "When condition \"%s\" may be referencing %s node \"%s\".", when->cond->expr, (schema->flags == LYS_STATUS_OBSLT) ? "obsolete" : "deprecated", schema->name); } /* check dummy node children/value accessing */ if (lysc_data_parent(schema) == node) { LOGVAL(ctx->ctx, LYVE_SEMANTICS, "When condition is accessing its own conditional node children."); ret = LY_EVALID; goto cleanup; } else if ((schema == node) && (tmp_set.val.scnodes[i].in_ctx == LYXP_SET_SCNODE_ATOM_VAL)) { LOGVAL(ctx->ctx, LYVE_SEMANTICS, "When condition is accessing its own conditional node value."); ret = LY_EVALID; goto cleanup; } } if (when->context != node) { /* node actually depends on this "when", not the context node */ assert(tmp_set.val.scnodes[0].scnode == when->context); if (tmp_set.val.scnodes[0].in_ctx == LYXP_SET_SCNODE_START_USED) { /* replace the non-traversed context node with the dependent node */ tmp_set.val.scnodes[0].scnode = (struct lysc_node *)node; } else { /* context node was traversed, so just add the dependent node */ ret = lyxp_set_scnode_insert_node(&tmp_set, node, LYXP_SET_SCNODE_START_USED, LYXP_AXIS_CHILD, NULL); LY_CHECK_GOTO(ret, cleanup); } } /* check cyclic dependencies */ ret = lys_compile_unres_when_cyclic(&tmp_set, node); LY_CHECK_GOTO(ret, cleanup); cleanup: lyxp_set_free_content(&tmp_set); return ret; } /** * @brief Check must expressions of a node on a complete compiled schema tree. * * @param[in] ctx Compile context. * @param[in] node Node to check. * @param[in] local_mods Sized array of local modules for musts of @p node at the same index. * @return LY_ERR value. */ static LY_ERR lys_compile_unres_must(struct lysc_ctx *ctx, const struct lysc_node *node, const struct lysp_module **local_mods) { struct lyxp_set tmp_set; uint32_t i, opts; LY_ARRAY_COUNT_TYPE u; struct lysc_must *musts; LY_ERR ret = LY_SUCCESS; uint16_t flg; LOG_LOCSET(node, NULL, NULL, NULL); memset(&tmp_set, 0, sizeof tmp_set); opts = LYXP_SCNODE_SCHEMA | ((node->flags & LYS_IS_OUTPUT) ? LYXP_SCNODE_OUTPUT : 0); musts = lysc_node_musts(node); LY_ARRAY_FOR(musts, u) { /* check "must" */ ret = lyxp_atomize(ctx->ctx, musts[u].cond, node->module, LY_VALUE_SCHEMA_RESOLVED, musts[u].prefixes, node, node, &tmp_set, opts); if (ret) { LOGVAL(ctx->ctx, LYVE_SEMANTICS, "Invalid must condition \"%s\".", musts[u].cond->expr); goto cleanup; } ctx->path[0] = '\0'; lysc_path(node, LYSC_PATH_LOG, ctx->path, LYSC_CTX_BUFSIZE); for (i = 0; i < tmp_set.used; ++i) { /* skip roots'n'stuff */ if (tmp_set.val.scnodes[i].type == LYXP_NODE_ELEM) { struct lysc_node *schema = tmp_set.val.scnodes[i].scnode; /* XPath expression cannot reference "lower" status than the node that has the definition */ if (local_mods[u]->mod == node->module) { /* use flags of the context node since the definition is local */ flg = node->flags; } else { /* definition is foreign (deviation, refine), always current */ flg = LYS_STATUS_CURR; } if (lysc_check_status(NULL, flg, local_mods[u]->mod, node->name, schema->flags, schema->module, schema->name)) { LOGWRN(ctx->ctx, "Must condition \"%s\" may be referencing %s node \"%s\".", musts[u].cond->expr, (schema->flags == LYS_STATUS_OBSLT) ? "obsolete" : "deprecated", schema->name); break; } } } lyxp_set_free_content(&tmp_set); } cleanup: lyxp_set_free_content(&tmp_set); LOG_LOCBACK(1, 0, 0, 0); return ret; } /** * @brief Remove all disabled bits/enums from a sized array. * * @param[in] ctx Context with the dictionary. * @param[in] items Sized array of bits/enums. */ static void lys_compile_unres_disabled_bitenum_remove(struct lysf_ctx *ctx, struct lysc_type_bitenum_item *items) { LY_ARRAY_COUNT_TYPE u = 0, last_u; while (u < LY_ARRAY_COUNT(items)) { if (items[u].flags & LYS_DISABLED) { /* free the disabled item */ lysc_enum_item_free(ctx, &items[u]); /* replace it with the following items */ last_u = LY_ARRAY_COUNT(items) - 1; if (u < last_u) { memmove(items + u, items + u + 1, (last_u - u) * sizeof *items); } /* one item less */ LY_ARRAY_DECREMENT(items); continue; } ++u; } } /** * @brief Find and remove all disabled bits/enums in a leaf/leaf-list type. * * @param[in] ctx Compile context. * @param[in] leaf Leaf/leaf-list to check. * @return LY_ERR value */ static LY_ERR lys_compile_unres_disabled_bitenum(struct lysc_ctx *ctx, struct lysc_node_leaf *leaf) { struct lysc_type **t; LY_ARRAY_COUNT_TYPE u, count; struct lysc_type_enum *ent; ly_bool has_value = 0; if (leaf->type->basetype == LY_TYPE_UNION) { t = ((struct lysc_type_union *)leaf->type)->types; count = LY_ARRAY_COUNT(t); } else { t = &leaf->type; count = 1; } for (u = 0; u < count; ++u) { if ((t[u]->basetype == LY_TYPE_BITS) || (t[u]->basetype == LY_TYPE_ENUM)) { /* remove all disabled items */ ent = (struct lysc_type_enum *)(t[u]); lys_compile_unres_disabled_bitenum_remove(&ctx->free_ctx, ent->enums); if (LY_ARRAY_COUNT(ent->enums)) { has_value = 1; } } else { has_value = 1; } } if (!has_value) { LOGVAL(ctx->ctx, LYVE_SEMANTICS, "Node \"%s\" without any (or all disabled) valid values.", leaf->name); return LY_EVALID; } return LY_SUCCESS; } /** * @brief Check leafref for its target existence on a complete compiled schema tree. * * @param[in] ctx Compile context. * @param[in] node Context node for the leafref. * @param[in] lref Leafref to check/resolve. * @param[in] local_mod Local module for the leafref type. * @return LY_ERR value. */ static LY_ERR lys_compile_unres_leafref(struct lysc_ctx *ctx, const struct lysc_node *node, struct lysc_type_leafref *lref, const struct lysp_module *local_mod) { const struct lysc_node *target = NULL; struct ly_path *p; struct lysc_type *type; uint16_t flg; assert(node->nodetype & (LYS_LEAF | LYS_LEAFLIST)); if (lref->realtype) { /* already resolved, may happen (shared union typedef with a leafref) */ return LY_SUCCESS; } /* try to find the target, current module is that of the context node (RFC 7950 6.4.1 second bullet) */ LY_CHECK_RET(ly_path_compile_leafref(ctx->ctx, node, ctx->ext, lref->path, (node->flags & LYS_IS_OUTPUT) ? LY_PATH_OPER_OUTPUT : LY_PATH_OPER_INPUT, LY_PATH_TARGET_MANY, LY_VALUE_SCHEMA_RESOLVED, lref->prefixes, &p)); /* get the target node */ target = p[LY_ARRAY_COUNT(p) - 1].node; ly_path_free(node->module->ctx, p); if (!(target->nodetype & (LYS_LEAF | LYS_LEAFLIST))) { LOGVAL(ctx->ctx, LYVE_REFERENCE, "Invalid leafref path \"%s\" - target node is %s instead of leaf or leaf-list.", lref->path->expr, lys_nodetype2str(target->nodetype)); return LY_EVALID; } /* check status */ ctx->path[0] = '\0'; lysc_path(node, LYSC_PATH_LOG, ctx->path, LYSC_CTX_BUFSIZE); ctx->path_len = strlen(ctx->path); if (node->module == local_mod->mod) { /* use flags of the context node since the definition is local */ flg = node->flags; } else { /* definition is foreign (deviation), always current */ flg = LYS_STATUS_CURR; } if (lysc_check_status(ctx, flg, local_mod->mod, node->name, target->flags, target->module, target->name)) { return LY_EVALID; } ctx->path_len = 1; ctx->path[1] = '\0'; /* check config */ if (lref->require_instance) { if ((node->flags & LYS_CONFIG_W) && (target->flags & LYS_CONFIG_R)) { LOGVAL(ctx->ctx, LYVE_REFERENCE, "Invalid leafref path \"%s\" - target is supposed" " to represent configuration data (as the leafref does), but it does not.", lref->path->expr); return LY_EVALID; } } /* check for circular chain of leafrefs */ for (type = ((struct lysc_node_leaf *)target)->type; type && (type->basetype == LY_TYPE_LEAFREF); type = ((struct lysc_type_leafref *)type)->realtype) { if (type == (struct lysc_type *)lref) { /* circular chain detected */ LOGVAL(ctx->ctx, LYVE_REFERENCE, "Invalid leafref path \"%s\" - circular chain of leafrefs detected.", lref->path->expr); return LY_EVALID; } } /* store the type */ lref->realtype = ((struct lysc_node_leaf *)target)->type; ++lref->realtype->refcount; return LY_SUCCESS; } /** * @brief Compile default value(s) for leaf or leaf-list expecting a complete compiled schema tree. * * @param[in] ctx Compile context. * @param[in] node Leaf or leaf-list to compile the default value(s) for. * @param[in] type Type of the default value. * @param[in] dflt Default value. * @param[in] dflt_pmod Parsed module of the @p dflt to resolve possible prefixes. * @param[in,out] storage Storage for the compiled default value. * @param[in,out] unres Global unres structure for newly implemented modules. * @return LY_ERECOMPILE if the whole dep set needs to be recompiled for the value to be checked. * @return LY_ERR value. */ static LY_ERR lys_compile_unres_dflt(struct lysc_ctx *ctx, struct lysc_node *node, struct lysc_type *type, const char *dflt, const struct lysp_module *dflt_pmod, struct lyd_value *storage, struct lys_glob_unres *unres) { LY_ERR ret; uint32_t options; struct ly_err_item *err = NULL; options = (ctx->ctx->flags & LY_CTX_REF_IMPLEMENTED) ? LYPLG_TYPE_STORE_IMPLEMENT : 0; ret = type->plugin->store(ctx->ctx, type, dflt, strlen(dflt), options, LY_VALUE_SCHEMA, (void *)dflt_pmod, LYD_HINT_SCHEMA, node, storage, unres, &err); if (ret == LY_ERECOMPILE) { /* fine, but we need to recompile */ return LY_ERECOMPILE; } else if (ret == LY_EINCOMPLETE) { /* we have no data so we will not be resolving it */ ret = LY_SUCCESS; } if (ret) { LOG_LOCSET(node, NULL, NULL, NULL); if (err) { LOGVAL(ctx->ctx, LYVE_SEMANTICS, "Invalid default - value does not fit the type (%s).", err->msg); ly_err_free(err); } else { LOGVAL(ctx->ctx, LYVE_SEMANTICS, "Invalid default - value does not fit the type."); } LOG_LOCBACK(1, 0, 0, 0); return ret; } LY_ATOMIC_INC_BARRIER(((struct lysc_type *)storage->realtype)->refcount); return LY_SUCCESS; } /** * @brief Compile default value of a leaf expecting a complete compiled schema tree. * * @param[in] ctx Compile context. * @param[in] leaf Leaf that the default value is for. * @param[in] dflt Default value to compile. * @param[in,out] unres Global unres structure for newly implemented modules. * @return LY_ERR value. */ static LY_ERR lys_compile_unres_leaf_dlft(struct lysc_ctx *ctx, struct lysc_node_leaf *leaf, struct lysp_qname *dflt, struct lys_glob_unres *unres) { LY_ERR ret; assert(!leaf->dflt); if (leaf->flags & (LYS_MAND_TRUE | LYS_KEY)) { /* ignore default values for keys and mandatory leaves */ return LY_SUCCESS; } /* allocate the default value */ leaf->dflt = calloc(1, sizeof *leaf->dflt); LY_CHECK_ERR_RET(!leaf->dflt, LOGMEM(ctx->ctx), LY_EMEM); /* store the default value */ ret = lys_compile_unres_dflt(ctx, &leaf->node, leaf->type, dflt->str, dflt->mod, leaf->dflt, unres); if (ret) { free(leaf->dflt); leaf->dflt = NULL; } return ret; } /** * @brief Compile default values of a leaf-list expecting a complete compiled schema tree. * * @param[in] ctx Compile context. * @param[in] llist Leaf-list that the default value(s) are for. * @param[in] dflt Default value to compile, in case of a single value. * @param[in] dflts Sized array of default values, in case of more values. * @param[in,out] unres Global unres structure for newly implemented modules. * @return LY_ERR value. */ static LY_ERR lys_compile_unres_llist_dflts(struct lysc_ctx *ctx, struct lysc_node_leaflist *llist, struct lysp_qname *dflt, struct lysp_qname *dflts, struct lys_glob_unres *unres) { LY_ERR ret; LY_ARRAY_COUNT_TYPE orig_count, u, v; assert(dflt || dflts); /* in case there were already some defaults and we are adding new by deviations */ orig_count = LY_ARRAY_COUNT(llist->dflts); /* allocate new items */ LY_ARRAY_CREATE_RET(ctx->ctx, llist->dflts, orig_count + (dflts ? LY_ARRAY_COUNT(dflts) : 1), LY_EMEM); /* fill each new default value */ if (dflts) { LY_ARRAY_FOR(dflts, u) { llist->dflts[orig_count + u] = calloc(1, sizeof **llist->dflts); ret = lys_compile_unres_dflt(ctx, &llist->node, llist->type, dflts[u].str, dflts[u].mod, llist->dflts[orig_count + u], unres); LY_CHECK_ERR_RET(ret, free(llist->dflts[orig_count + u]), ret); LY_ARRAY_INCREMENT(llist->dflts); } } else { llist->dflts[orig_count] = calloc(1, sizeof **llist->dflts); ret = lys_compile_unres_dflt(ctx, &llist->node, llist->type, dflt->str, dflt->mod, llist->dflts[orig_count], unres); LY_CHECK_ERR_RET(ret, free(llist->dflts[orig_count]), ret); LY_ARRAY_INCREMENT(llist->dflts); } /* check default value uniqueness */ if (llist->flags & LYS_CONFIG_W) { /* configuration data values must be unique - so check the default values */ for (u = orig_count; u < LY_ARRAY_COUNT(llist->dflts); ++u) { for (v = 0; v < u; ++v) { if (!llist->dflts[u]->realtype->plugin->compare(llist->dflts[u], llist->dflts[v])) { lysc_update_path(ctx, llist->parent ? llist->parent->module : NULL, llist->name); LOGVAL(ctx->ctx, LYVE_SEMANTICS, "Configuration leaf-list has multiple defaults of the same value \"%s\".", (char *)llist->dflts[u]->realtype->plugin->print(ctx->ctx, llist->dflts[u], LY_VALUE_CANON, NULL, NULL, NULL)); lysc_update_path(ctx, NULL, NULL); return LY_EVALID; } } } } return LY_SUCCESS; } /** * @brief Iteratively get all leafrefs from @p node * if the node is of type union, otherwise just return the leafref. * * @param[in] node Node that may contain the leafref. * @param[in,out] index Value that is passed between function calls. * For each new node, initialize value of the @p index to 0, otherwise * do not modify the value between calls. * @return Pointer to the leafref or next leafref, otherwise NULL. */ static struct lysc_type_leafref * lys_type_leafref_next(const struct lysc_node *node, uint64_t *index) { struct lysc_type_leafref *ret = NULL; struct lysc_type_union *uni; struct lysc_type *leaf_type; assert(node->nodetype & LYD_NODE_TERM); leaf_type = ((struct lysc_node_leaf *)node)->type; if (leaf_type->basetype == LY_TYPE_UNION) { uni = (struct lysc_type_union *)leaf_type; /* find next union leafref */ while (*index < LY_ARRAY_COUNT(uni->types)) { if (uni->types[*index]->basetype == LY_TYPE_LEAFREF) { ret = (struct lysc_type_leafref *)uni->types[*index]; ++(*index); break; } ++(*index); } } else { /* return just the single leafref */ if (*index == 0) { ++(*index); assert(leaf_type->basetype == LY_TYPE_LEAFREF); ret = (struct lysc_type_leafref *)leaf_type; } } return ret; } /** * @brief Implement all referenced modules by leafrefs, when and must conditions. * * @param[in] ctx libyang context. * @param[in] unres Global unres structure with the sets to resolve. * @return LY_SUCCESS on success. * @return LY_ERECOMPILE if the whole dep set needs to be recompiled with the new implemented modules. * @return LY_ERR value on error. */ static LY_ERR lys_compile_unres_depset_implement(struct ly_ctx *ctx, struct lys_glob_unres *unres) { struct lys_depset_unres *ds_unres = &unres->ds_unres; struct lysc_type_leafref *lref; const struct lys_module *mod; LY_ARRAY_COUNT_TYPE u; struct lysc_unres_leafref *l; struct lysc_unres_when *w; struct lysc_unres_must *m; struct lysc_must *musts; ly_bool not_implemented; uint32_t di = 0, li = 0, wi = 0, mi = 0; implement_all: /* disabled leafrefs - even those because we need to check their target exists */ while (di < ds_unres->disabled_leafrefs.count) { l = ds_unres->disabled_leafrefs.objs[di]; u = 0; while ((lref = lys_type_leafref_next(l->node, &u))) { LY_CHECK_RET(lys_compile_expr_implement(ctx, lref->path, LY_VALUE_SCHEMA_RESOLVED, lref->prefixes, 1, unres, NULL)); } ++di; } /* leafrefs */ while (li < ds_unres->leafrefs.count) { l = ds_unres->leafrefs.objs[li]; u = 0; while ((lref = lys_type_leafref_next(l->node, &u))) { LY_CHECK_RET(lys_compile_expr_implement(ctx, lref->path, LY_VALUE_SCHEMA_RESOLVED, lref->prefixes, 1, unres, NULL)); } ++li; } /* when conditions */ while (wi < ds_unres->whens.count) { w = ds_unres->whens.objs[wi]; LY_CHECK_RET(lys_compile_expr_implement(ctx, w->when->cond, LY_VALUE_SCHEMA_RESOLVED, w->when->prefixes, ctx->flags & LY_CTX_REF_IMPLEMENTED, unres, &mod)); if (mod) { LOGWRN(ctx, "When condition \"%s\" check skipped because referenced module \"%s\" is not implemented.", w->when->cond->expr, mod->name); /* remove from the set to skip the check */ ly_set_rm_index(&ds_unres->whens, wi, free); continue; } ++wi; } /* must conditions */ while (mi < ds_unres->musts.count) { m = ds_unres->musts.objs[mi]; not_implemented = 0; musts = lysc_node_musts(m->node); LY_ARRAY_FOR(musts, u) { LY_CHECK_RET(lys_compile_expr_implement(ctx, musts[u].cond, LY_VALUE_SCHEMA_RESOLVED, musts[u].prefixes, ctx->flags & LY_CTX_REF_IMPLEMENTED, unres, &mod)); if (mod) { LOGWRN(ctx, "Must condition \"%s\" check skipped because referenced module \"%s\" is not implemented.", musts[u].cond->expr, mod->name); /* need to implement modules from all the expressions */ not_implemented = 1; } } if (not_implemented) { /* remove from the set to skip the check */ lysc_unres_must_free(m); ly_set_rm_index(&ds_unres->musts, mi, NULL); continue; } ++mi; } if ((di < ds_unres->disabled_leafrefs.count) || (li < ds_unres->leafrefs.count) || (wi < ds_unres->whens.count)) { /* new items in the sets */ goto implement_all; } return LY_SUCCESS; } /** * @brief Finish dependency set compilation by resolving all the unres sets. * * @param[in] ctx libyang context. * @param[in] unres Global unres structure with the sets to resolve. * @return LY_SUCCESS on success. * @return LY_ERECOMPILE if the dep set needs to be recompiled. * @return LY_ERR value on error. */ static LY_ERR lys_compile_unres_depset(struct ly_ctx *ctx, struct lys_glob_unres *unres) { LY_ERR ret = LY_SUCCESS; struct lysc_node *node; struct lysc_type *typeiter; struct lysc_type_leafref *lref; struct lysc_ctx cctx = {0}; struct lys_depset_unres *ds_unres = &unres->ds_unres; struct ly_path *path; LY_ARRAY_COUNT_TYPE v; struct lysc_unres_leafref *l; struct lysc_unres_when *w; struct lysc_unres_must *m; struct lysc_unres_dflt *d; uint32_t i, processed_leafrefs = 0; resolve_all: /* implement all referenced modules to get final ds_unres set */ if ((ret = lys_compile_unres_depset_implement(ctx, unres))) { goto cleanup; } /* check disabled leafrefs */ while (ds_unres->disabled_leafrefs.count) { /* remember index, it can change before we get to free this item */ i = ds_unres->disabled_leafrefs.count - 1; l = ds_unres->disabled_leafrefs.objs[i]; LYSC_CTX_INIT_PMOD(cctx, l->node->module->parsed, l->ext); LOG_LOCSET(l->node, NULL, NULL, NULL); v = 0; while ((ret == LY_SUCCESS) && (lref = lys_type_leafref_next(l->node, &v))) { ret = lys_compile_unres_leafref(&cctx, l->node, lref, l->local_mod); } LOG_LOCBACK(1, 0, 0, 0); LY_CHECK_GOTO(ret, cleanup); ly_set_rm_index(&ds_unres->disabled_leafrefs, i, free); } /* for leafref, we need 2 rounds - first detects circular chain by storing the first referred type (which * can be also leafref, in case it is already resolved, go through the chain and check that it does not * point to the starting leafref type). The second round stores the first non-leafref type for later data validation. * Also do the same check for set of the disabled leafrefs, but without the second round. */ for (i = processed_leafrefs; i < ds_unres->leafrefs.count; ++i) { l = ds_unres->leafrefs.objs[i]; LYSC_CTX_INIT_PMOD(cctx, l->node->module->parsed, l->ext); LOG_LOCSET(l->node, NULL, NULL, NULL); v = 0; while ((ret == LY_SUCCESS) && (lref = lys_type_leafref_next(l->node, &v))) { ret = lys_compile_unres_leafref(&cctx, l->node, lref, l->local_mod); } LOG_LOCBACK(1, 0, 0, 0); LY_CHECK_GOTO(ret, cleanup); } for (i = processed_leafrefs; i < ds_unres->leafrefs.count; ++i) { l = ds_unres->leafrefs.objs[i]; /* store pointer to the real type */ v = 0; while ((lref = lys_type_leafref_next(l->node, &v))) { for (typeiter = lref->realtype; typeiter->basetype == LY_TYPE_LEAFREF; typeiter = ((struct lysc_type_leafref *)typeiter)->realtype) {} lysc_type_free(&cctx.free_ctx, lref->realtype); lref->realtype = typeiter; ++lref->realtype->refcount; } /* if 'goto' will be used on the 'resolve_all' label, then the current leafref will not be processed again */ processed_leafrefs++; } /* check when, the referenced modules must be implemented now */ while (ds_unres->whens.count) { i = ds_unres->whens.count - 1; w = ds_unres->whens.objs[i]; LYSC_CTX_INIT_PMOD(cctx, w->node->module->parsed, NULL); LOG_LOCSET(w->node, NULL, NULL, NULL); ret = lys_compile_unres_when(&cctx, w->when, w->node); LOG_LOCBACK(w->node ? 1 : 0, 0, 0, 0); LY_CHECK_GOTO(ret, cleanup); free(w); ly_set_rm_index(&ds_unres->whens, i, NULL); } /* check must */ while (ds_unres->musts.count) { i = ds_unres->musts.count - 1; m = ds_unres->musts.objs[i]; LYSC_CTX_INIT_PMOD(cctx, m->node->module->parsed, m->ext); LOG_LOCSET(m->node, NULL, NULL, NULL); ret = lys_compile_unres_must(&cctx, m->node, m->local_mods); LOG_LOCBACK(1, 0, 0, 0); LY_CHECK_GOTO(ret, cleanup); lysc_unres_must_free(m); ly_set_rm_index(&ds_unres->musts, i, NULL); } /* remove disabled enums/bits */ while (ds_unres->disabled_bitenums.count) { i = ds_unres->disabled_bitenums.count - 1; node = ds_unres->disabled_bitenums.objs[i]; LYSC_CTX_INIT_PMOD(cctx, node->module->parsed, NULL); LOG_LOCSET(node, NULL, NULL, NULL); ret = lys_compile_unres_disabled_bitenum(&cctx, (struct lysc_node_leaf *)node); LOG_LOCBACK(1, 0, 0, 0); LY_CHECK_GOTO(ret, cleanup); ly_set_rm_index(&ds_unres->disabled_bitenums, i, NULL); } /* finish incomplete default values compilation */ while (ds_unres->dflts.count) { i = ds_unres->dflts.count - 1; d = ds_unres->dflts.objs[i]; LYSC_CTX_INIT_PMOD(cctx, d->leaf->module->parsed, NULL); LOG_LOCSET(&d->leaf->node, NULL, NULL, NULL); if (d->leaf->nodetype == LYS_LEAF) { ret = lys_compile_unres_leaf_dlft(&cctx, d->leaf, d->dflt, unres); } else { ret = lys_compile_unres_llist_dflts(&cctx, d->llist, d->dflt, d->dflts, unres); } LOG_LOCBACK(1, 0, 0, 0); LY_CHECK_GOTO(ret, cleanup); lysc_unres_dflt_free(ctx, d); ly_set_rm_index(&ds_unres->dflts, i, NULL); } /* some unres items may have been added by the default values */ if ((processed_leafrefs != ds_unres->leafrefs.count) || ds_unres->disabled_leafrefs.count || ds_unres->whens.count || ds_unres->musts.count || ds_unres->dflts.count) { goto resolve_all; } /* finally, remove all disabled nodes */ for (i = 0; i < ds_unres->disabled.count; ++i) { node = ds_unres->disabled.snodes[i]; if (node->flags & LYS_KEY) { LOG_LOCSET(node, NULL, NULL, NULL); LOGVAL(ctx, LYVE_REFERENCE, "Key \"%s\" is disabled.", node->name); LOG_LOCBACK(1, 0, 0, 0); ret = LY_EVALID; goto cleanup; } LYSC_CTX_INIT_PMOD(cctx, node->module->parsed, NULL); lysc_node_free(&cctx.free_ctx, node, 1); } /* also check if the leafref target has not been disabled */ for (i = 0; i < ds_unres->leafrefs.count; ++i) { l = ds_unres->leafrefs.objs[i]; LYSC_CTX_INIT_PMOD(cctx, l->node->module->parsed, l->ext); v = 0; while ((lref = lys_type_leafref_next(l->node, &v))) { ret = ly_path_compile_leafref(cctx.ctx, l->node, cctx.ext, lref->path, (l->node->flags & LYS_IS_OUTPUT) ? LY_PATH_OPER_OUTPUT : LY_PATH_OPER_INPUT, LY_PATH_TARGET_MANY, LY_VALUE_SCHEMA_RESOLVED, lref->prefixes, &path); ly_path_free(l->node->module->ctx, path); assert(ret != LY_ERECOMPILE); if (ret) { LOG_LOCSET(l->node, NULL, NULL, NULL); LOGVAL(ctx, LYVE_REFERENCE, "Target of leafref \"%s\" cannot be referenced because it is disabled.", l->node->name); LOG_LOCBACK(1, 0, 0, 0); ret = LY_EVALID; goto cleanup; } } } cleanup: lysf_ctx_erase(&cctx.free_ctx); return ret; } /** * @brief Erase dep set unres. * * @param[in] ctx libyang context. * @param[in] unres Global unres structure with the sets to resolve. */ static void lys_compile_unres_depset_erase(const struct ly_ctx *ctx, struct lys_glob_unres *unres) { uint32_t i; ly_set_erase(&unres->ds_unres.whens, free); for (i = 0; i < unres->ds_unres.musts.count; ++i) { lysc_unres_must_free(unres->ds_unres.musts.objs[i]); } ly_set_erase(&unres->ds_unres.musts, NULL); ly_set_erase(&unres->ds_unres.leafrefs, free); for (i = 0; i < unres->ds_unres.dflts.count; ++i) { lysc_unres_dflt_free(ctx, unres->ds_unres.dflts.objs[i]); } ly_set_erase(&unres->ds_unres.dflts, NULL); ly_set_erase(&unres->ds_unres.disabled, NULL); ly_set_erase(&unres->ds_unres.disabled_leafrefs, free); ly_set_erase(&unres->ds_unres.disabled_bitenums, NULL); } /** * @brief Compile all flagged modules in a dependency set, recursively if recompilation is needed. * * @param[in] ctx libyang context. * @param[in] dep_set Dependency set to compile. * @param[in,out] unres Global unres to use. * @return LY_ERR value. */ static LY_ERR lys_compile_depset_r(struct ly_ctx *ctx, struct ly_set *dep_set, struct lys_glob_unres *unres) { LY_ERR ret = LY_SUCCESS; struct lysf_ctx fctx = {.ctx = ctx}; struct lys_module *mod; uint32_t i; for (i = 0; i < dep_set->count; ++i) { mod = dep_set->objs[i]; if (!mod->to_compile) { /* skip */ continue; } assert(mod->implemented); /* free the compiled module, if any */ lysc_module_free(&fctx, mod->compiled); mod->compiled = NULL; /* (re)compile the module */ LY_CHECK_GOTO(ret = lys_compile(mod, &unres->ds_unres), cleanup); } /* resolve dep set unres */ ret = lys_compile_unres_depset(ctx, unres); if (ret == LY_ERECOMPILE) { /* new module is implemented, discard current dep set unres and recompile the whole dep set */ lys_compile_unres_depset_erase(ctx, unres); return lys_compile_depset_r(ctx, dep_set, unres); } else if (ret) { /* error */ goto cleanup; } /* success, unset the flags of all the modules in the dep set */ for (i = 0; i < dep_set->count; ++i) { mod = dep_set->objs[i]; mod->to_compile = 0; } cleanup: lys_compile_unres_depset_erase(ctx, unres); lysf_ctx_erase(&fctx); return ret; } /** * @brief Check if-feature of all features of all modules in a dep set. * * @param[in] dep_set Dep set to check. * @return LY_ERR value. */ static LY_ERR lys_compile_depset_check_features(struct ly_set *dep_set) { struct lys_module *mod; uint32_t i; for (i = 0; i < dep_set->count; ++i) { mod = dep_set->objs[i]; if (!mod->to_compile) { /* skip */ continue; } /* check features of this module */ LY_CHECK_RET(lys_check_features(mod->parsed)); } return LY_SUCCESS; } LY_ERR lys_compile_depset_all(struct ly_ctx *ctx, struct lys_glob_unres *unres) { uint32_t i; for (i = 0; i < unres->dep_sets.count; ++i) { LY_CHECK_RET(lys_compile_depset_check_features(unres->dep_sets.objs[i])); LY_CHECK_RET(lys_compile_depset_r(ctx, unres->dep_sets.objs[i], unres)); } return LY_SUCCESS; } /** * @brief Finish compilation of all the module unres sets in a compile context. * * @param[in] ctx Compile context with unres sets. * @return LY_ERR value. */ static LY_ERR lys_compile_unres_mod(struct lysc_ctx *ctx) { struct lysc_augment *aug; struct lysc_deviation *dev; struct lys_module *orig_mod = ctx->cur_mod; uint32_t i; /* check that all augments were applied */ for (i = 0; i < ctx->augs.count; ++i) { aug = ctx->augs.objs[i]; ctx->cur_mod = aug->aug_pmod->mod; if (aug->ext) { lysc_update_path(ctx, NULL, "{extension}"); lysc_update_path(ctx, NULL, aug->ext->name); } lysc_update_path(ctx, NULL, "{augment}"); lysc_update_path(ctx, NULL, aug->nodeid->expr); LOGVAL(ctx->ctx, LYVE_REFERENCE, "Augment%s target node \"%s\" from module \"%s\" was not found.", aug->ext ? " extension" : "", aug->nodeid->expr, LYSP_MODULE_NAME(aug->aug_pmod)); ctx->cur_mod = orig_mod; lysc_update_path(ctx, NULL, NULL); lysc_update_path(ctx, NULL, NULL); if (aug->ext) { lysc_update_path(ctx, NULL, NULL); lysc_update_path(ctx, NULL, NULL); } } if (ctx->augs.count) { return LY_ENOTFOUND; } /* check that all deviations were applied */ for (i = 0; i < ctx->devs.count; ++i) { dev = ctx->devs.objs[i]; lysc_update_path(ctx, NULL, "{deviation}"); lysc_update_path(ctx, NULL, dev->nodeid->expr); LOGVAL(ctx->ctx, LYVE_REFERENCE, "Deviation(s) target node \"%s\" from module \"%s\" was not found.", dev->nodeid->expr, LYSP_MODULE_NAME(dev->dev_pmods[0])); lysc_update_path(ctx, NULL, NULL); lysc_update_path(ctx, NULL, NULL); } if (ctx->devs.count) { return LY_ENOTFOUND; } return LY_SUCCESS; } /** * @brief Erase all the module unres sets in a compile context. * * @param[in] ctx Compile context with unres sets. * @param[in] error Whether the compilation finished with an error or not. */ static void lys_compile_unres_mod_erase(struct lysc_ctx *ctx, ly_bool error) { uint32_t i; ly_set_erase(&ctx->groupings, NULL); ly_set_erase(&ctx->tpdf_chain, NULL); if (!error) { /* there can be no leftover deviations or augments */ LY_CHECK_ERR_RET(ctx->augs.count, LOGINT(ctx->ctx), ); LY_CHECK_ERR_RET(ctx->devs.count, LOGINT(ctx->ctx), ); ly_set_erase(&ctx->augs, NULL); ly_set_erase(&ctx->devs, NULL); ly_set_erase(&ctx->uses_augs, NULL); ly_set_erase(&ctx->uses_rfns, NULL); } else { for (i = 0; i < ctx->augs.count; ++i) { lysc_augment_free(ctx->ctx, ctx->augs.objs[i]); } ly_set_erase(&ctx->augs, NULL); for (i = 0; i < ctx->devs.count; ++i) { lysc_deviation_free(ctx->ctx, ctx->devs.objs[i]); } ly_set_erase(&ctx->devs, NULL); for (i = 0; i < ctx->uses_augs.count; ++i) { lysc_augment_free(ctx->ctx, ctx->uses_augs.objs[i]); } ly_set_erase(&ctx->uses_augs, NULL); for (i = 0; i < ctx->uses_rfns.count; ++i) { lysc_refine_free(ctx->ctx, ctx->uses_rfns.objs[i]); } ly_set_erase(&ctx->uses_rfns, NULL); } } LY_ERR lys_compile(struct lys_module *mod, struct lys_depset_unres *unres) { struct lysc_ctx ctx; struct lysc_module *mod_c = NULL; struct lysp_module *sp; struct lysp_submodule *submod; struct lysp_node *pnode; struct lysp_node_grp *grp; LY_ARRAY_COUNT_TYPE u; LY_ERR ret = LY_SUCCESS; LY_CHECK_ARG_RET(NULL, mod, mod->parsed, !mod->compiled, mod->ctx, LY_EINVAL); assert(mod->implemented && mod->to_compile); sp = mod->parsed; LYSC_CTX_INIT_PMOD(ctx, sp, NULL); ctx.unres = unres; ++mod->ctx->change_count; mod->compiled = mod_c = calloc(1, sizeof *mod_c); LY_CHECK_ERR_RET(!mod_c, LOGMEM(mod->ctx), LY_EMEM); mod_c->mod = mod; /* compile augments and deviations of our module from other modules so they can be applied during compilation */ LY_CHECK_GOTO(ret = lys_precompile_own_augments(&ctx), cleanup); LY_CHECK_GOTO(ret = lys_precompile_own_deviations(&ctx), cleanup); /* data nodes */ LY_LIST_FOR(sp->data, pnode) { LY_CHECK_GOTO(ret = lys_compile_node(&ctx, pnode, NULL, 0, NULL), cleanup); } /* top-level RPCs */ LY_LIST_FOR((struct lysp_node *)sp->rpcs, pnode) { LY_CHECK_GOTO(ret = lys_compile_node(&ctx, pnode, NULL, 0, NULL), cleanup); } /* top-level notifications */ LY_LIST_FOR((struct lysp_node *)sp->notifs, pnode) { LY_CHECK_GOTO(ret = lys_compile_node(&ctx, pnode, NULL, 0, NULL), cleanup); } /* module extension instances */ COMPILE_EXTS_GOTO(&ctx, sp->exts, mod_c->exts, mod_c, ret, cleanup); /* the same for submodules */ LY_ARRAY_FOR(sp->includes, u) { submod = sp->includes[u].submodule; ctx.pmod = (struct lysp_module *)submod; LY_LIST_FOR(submod->data, pnode) { ret = lys_compile_node(&ctx, pnode, NULL, 0, NULL); LY_CHECK_GOTO(ret, cleanup); } LY_LIST_FOR((struct lysp_node *)submod->rpcs, pnode) { ret = lys_compile_node(&ctx, pnode, NULL, 0, NULL); LY_CHECK_GOTO(ret, cleanup); } LY_LIST_FOR((struct lysp_node *)submod->notifs, pnode) { ret = lys_compile_node(&ctx, pnode, NULL, 0, NULL); LY_CHECK_GOTO(ret, cleanup); } COMPILE_EXTS_GOTO(&ctx, submod->exts, mod_c->exts, mod_c, ret, cleanup); } ctx.pmod = sp; /* validate non-instantiated groupings from the parsed schema, * without it we would accept even the schemas with invalid grouping specification */ ctx.compile_opts |= LYS_COMPILE_GROUPING; LY_LIST_FOR(sp->groupings, grp) { if (!(grp->flags & LYS_USED_GRP)) { LY_CHECK_GOTO(ret = lys_compile_grouping(&ctx, NULL, grp), cleanup); } } LY_LIST_FOR(sp->data, pnode) { LY_LIST_FOR((struct lysp_node_grp *)lysp_node_groupings(pnode), grp) { if (!(grp->flags & LYS_USED_GRP)) { LY_CHECK_GOTO(ret = lys_compile_grouping(&ctx, pnode, grp), cleanup); } } } LY_ARRAY_FOR(sp->includes, u) { submod = sp->includes[u].submodule; ctx.pmod = (struct lysp_module *)submod; LY_LIST_FOR(submod->groupings, grp) { if (!(grp->flags & LYS_USED_GRP)) { LY_CHECK_GOTO(ret = lys_compile_grouping(&ctx, NULL, grp), cleanup); } } LY_LIST_FOR(submod->data, pnode) { LY_LIST_FOR((struct lysp_node_grp *)lysp_node_groupings(pnode), grp) { if (!(grp->flags & LYS_USED_GRP)) { LY_CHECK_GOTO(ret = lys_compile_grouping(&ctx, pnode, grp), cleanup); } } } } ctx.pmod = sp; LOG_LOCBACK(0, 0, 1, 0); /* finish compilation for all unresolved module items in the context */ LY_CHECK_GOTO(ret = lys_compile_unres_mod(&ctx), cleanup); cleanup: LOG_LOCBACK(0, 0, 1, 0); lys_compile_unres_mod_erase(&ctx, ret); if (ret) { lysc_module_free(&ctx.free_ctx, mod_c); mod->compiled = NULL; } return ret; } LY_ERR lys_compile_identities(struct lys_module *mod) { LY_ERR rc = LY_SUCCESS; struct lysc_ctx ctx; struct lysp_submodule *submod; LY_ARRAY_COUNT_TYPE u; /* pre-compile identities of the module and any submodules */ rc = lys_identity_precompile(NULL, mod->ctx, mod->parsed, mod->parsed->identities, &mod->identities); LY_CHECK_GOTO(rc, cleanup); LY_ARRAY_FOR(mod->parsed->includes, u) { submod = mod->parsed->includes[u].submodule; rc = lys_identity_precompile(NULL, mod->ctx, (struct lysp_module *)submod, submod->identities, &mod->identities); LY_CHECK_GOTO(rc, cleanup); } /* prepare context */ LYSC_CTX_INIT_PMOD(ctx, mod->parsed, NULL); if (mod->parsed->identities) { rc = lys_compile_identities_derived(&ctx, mod->parsed->identities, &mod->identities); LY_CHECK_GOTO(rc, cleanup); } lysc_update_path(&ctx, NULL, "{submodule}"); LY_ARRAY_FOR(mod->parsed->includes, u) { submod = mod->parsed->includes[u].submodule; if (submod->identities) { ctx.pmod = (struct lysp_module *)submod; lysc_update_path(&ctx, NULL, submod->name); rc = lys_compile_identities_derived(&ctx, submod->identities, &mod->identities); lysc_update_path(&ctx, NULL, NULL); } if (rc) { break; } } lysc_update_path(&ctx, NULL, NULL); cleanup: /* always needed when using lysc_update_path() */ LOG_LOCBACK(0, 0, 1, 0); return rc; } /** * @brief Check whether a module does not have any (recursive) compiled import. * * @param[in] mod Module to examine. * @return LY_SUCCESS on success. * @return LY_ERECOMPILE on required recompilation of the dep set. * @return LY_ERR on error. */ static LY_ERR lys_has_compiled_import_r(struct lys_module *mod) { LY_ARRAY_COUNT_TYPE u; struct lys_module *m; LY_ARRAY_FOR(mod->parsed->imports, u) { m = mod->parsed->imports[u].module; if (!m->implemented) { continue; } if (!m->to_compile) { /* module was not/will not be compiled in this compilation (so disabled nodes are not present) */ m->to_compile = 1; return LY_ERECOMPILE; } /* recursive */ LY_CHECK_RET(lys_has_compiled_import_r(m)); } return LY_SUCCESS; } LY_ERR lys_implement(struct lys_module *mod, const char **features, struct lys_glob_unres *unres) { LY_ERR r; struct lys_module *m; assert(!mod->implemented); /* check collision with other implemented revision */ m = ly_ctx_get_module_implemented(mod->ctx, mod->name); if (m) { assert(m != mod); LOGERR(mod->ctx, LY_EDENIED, "Module \"%s@%s\" is already implemented in revision \"%s\".", mod->name, mod->revision ? mod->revision : "", m->revision ? m->revision : ""); return LY_EDENIED; } /* set features */ r = lys_set_features(mod->parsed, features); if (r && (r != LY_EEXIST)) { return r; } /* * mark the module implemented, which means * 1) to (re)compile it only ::lys_compile() call is needed * 2) its compilation will never cause new modules to be implemented (::lys_compile() does not return ::LY_ERECOMPILE) * but there can be some unres items added that do */ mod->implemented = 1; /* this module is compiled in this compilation */ mod->to_compile = 1; /* add the module into newly implemented module set */ LY_CHECK_RET(ly_set_add(&unres->implementing, mod, 1, NULL)); /* mark target modules with our augments and deviations */ LY_CHECK_RET(lys_precompile_augments_deviations(mod, unres)); /* check whether this module may reference any modules compiled previously */ LY_CHECK_RET(lys_has_compiled_import_r(mod)); return LY_SUCCESS; }