1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
|
/**
* @file printer_lyb.c
* @author Michal Vasko <mvasko@cesnet.cz>
* @brief LYB printer for libyang data structure
*
* Copyright (c) 2020 - 2022 CESNET, z.s.p.o.
*
* This source code is licensed under BSD 3-Clause License (the "License").
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://opensource.org/licenses/BSD-3-Clause
*/
#include "lyb.h"
#include <assert.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "common.h"
#include "compat.h"
#include "context.h"
#include "hash_table.h"
#include "log.h"
#include "out.h"
#include "out_internal.h"
#include "plugins_exts/metadata.h"
#include "printer_data.h"
#include "printer_internal.h"
#include "set.h"
#include "tree.h"
#include "tree_data.h"
#include "tree_data_internal.h"
#include "tree_edit.h"
#include "tree_schema.h"
#include "tree_schema_internal.h"
#include "xml.h"
static LY_ERR lyb_print_siblings(struct ly_out *out, const struct lyd_node *node, struct lyd_lyb_ctx *lybctx);
/**
* @brief Hash table equal callback for checking hash equality only.
*
* Implementation of ::lyht_value_equal_cb.
*/
static ly_bool
lyb_hash_equal_cb(void *UNUSED(val1_p), void *UNUSED(val2_p), ly_bool UNUSED(mod), void *UNUSED(cb_data))
{
/* for this purpose, if hash matches, the value does also, we do not want 2 values to have the same hash */
return 1;
}
/**
* @brief Hash table equal callback for checking value pointer equality only.
*
* Implementation of ::lyht_value_equal_cb.
*/
static ly_bool
lyb_ptr_equal_cb(void *val1_p, void *val2_p, ly_bool UNUSED(mod), void *UNUSED(cb_data))
{
struct lysc_node *val1 = *(struct lysc_node **)val1_p;
struct lysc_node *val2 = *(struct lysc_node **)val2_p;
if (val1 == val2) {
return 1;
}
return 0;
}
/**
* @brief Check that sibling collision hash is safe to insert into hash table.
*
* @param[in] ht Hash table.
* @param[in] sibling Hashed sibling.
* @param[in] ht_col_id Sibling hash collision ID.
* @param[in] compare_col_id Last collision ID to compare with.
* @return LY_SUCCESS when the whole hash sequence does not collide,
* @return LY_EEXIST when the whole hash sequence sollides.
*/
static LY_ERR
lyb_hash_sequence_check(struct hash_table *ht, struct lysc_node *sibling, LYB_HASH ht_col_id, LYB_HASH compare_col_id)
{
struct lysc_node **col_node;
/* get the first node inserted with last hash col ID ht_col_id */
if (lyht_find(ht, &sibling, lyb_get_hash(sibling, ht_col_id), (void **)&col_node)) {
/* there is none. valid situation */
return LY_SUCCESS;
}
lyht_set_cb(ht, lyb_ptr_equal_cb);
do {
int64_t j;
for (j = (int64_t)compare_col_id; j > -1; --j) {
if (lyb_get_hash(sibling, j) != lyb_get_hash(*col_node, j)) {
/* one non-colliding hash */
break;
}
}
if (j == -1) {
/* all whole hash sequences of nodes inserted with last hash col ID compare_col_id collide */
lyht_set_cb(ht, lyb_hash_equal_cb);
return LY_EEXIST;
}
/* get next node inserted with last hash col ID ht_col_id */
} while (!lyht_find_next_with_collision_cb(ht, col_node, lyb_get_hash(*col_node, ht_col_id), lyb_hash_equal_cb,
(void **)&col_node));
lyht_set_cb(ht, lyb_hash_equal_cb);
return LY_SUCCESS;
}
/**
* @brief Hash all the siblings and add them also into a separate hash table.
*
* @param[in] sibling Any sibling in all the siblings on one level.
* @param[out] ht_p Created hash table.
* @return LY_ERR value.
*/
static LY_ERR
lyb_hash_siblings(struct lysc_node *sibling, struct hash_table **ht_p)
{
struct hash_table *ht;
const struct lysc_node *parent;
const struct lys_module *mod;
LYB_HASH i;
uint32_t getnext_opts;
ht = lyht_new(1, sizeof(struct lysc_node *), lyb_hash_equal_cb, NULL, 1);
LY_CHECK_ERR_RET(!ht, LOGMEM(sibling->module->ctx), LY_EMEM);
getnext_opts = 0;
if (sibling->flags & LYS_IS_OUTPUT) {
getnext_opts = LYS_GETNEXT_OUTPUT;
}
parent = lysc_data_parent(sibling);
mod = sibling->module;
sibling = NULL;
while ((sibling = (struct lysc_node *)lys_getnext(sibling, parent, mod->compiled, getnext_opts))) {
/* find the first non-colliding hash (or specifically non-colliding hash sequence) */
for (i = 0; i < LYB_HASH_BITS; ++i) {
/* check that we are not colliding with nodes inserted with a lower collision ID than ours */
int64_t j;
for (j = (int64_t)i - 1; j > -1; --j) {
if (lyb_hash_sequence_check(ht, sibling, (LYB_HASH)j, i)) {
break;
}
}
if (j > -1) {
/* some check failed, we must use a higher collision ID */
continue;
}
/* try to insert node with the current collision ID */
if (!lyht_insert_with_resize_cb(ht, &sibling, lyb_get_hash(sibling, i), lyb_ptr_equal_cb, NULL)) {
/* success, no collision */
break;
}
/* make sure we really cannot insert it with this hash col ID (meaning the whole hash sequence is colliding) */
if (i && !lyb_hash_sequence_check(ht, sibling, i, i)) {
/* it can be inserted after all, even though there is already a node with the same last collision ID */
lyht_set_cb(ht, lyb_ptr_equal_cb);
if (lyht_insert(ht, &sibling, lyb_get_hash(sibling, i), NULL)) {
LOGINT(sibling->module->ctx);
lyht_set_cb(ht, lyb_hash_equal_cb);
lyht_free(ht);
return LY_EINT;
}
lyht_set_cb(ht, lyb_hash_equal_cb);
break;
}
/* there is still another colliding schema node with the same hash sequence, try higher collision ID */
}
if (i == LYB_HASH_BITS) {
/* wow */
LOGINT(sibling->module->ctx);
lyht_free(ht);
return LY_EINT;
}
}
/* change val equal callback so that the HT is usable for finding value hashes */
lyht_set_cb(ht, lyb_ptr_equal_cb);
*ht_p = ht;
return LY_SUCCESS;
}
/**
* @brief Find node hash in a hash table.
*
* @param[in] ht Hash table to search in.
* @param[in] node Node to find.
* @param[out] hash_p First non-colliding hash found.
* @return LY_ERR value.
*/
static LY_ERR
lyb_hash_find(struct hash_table *ht, struct lysc_node *node, LYB_HASH *hash_p)
{
LYB_HASH hash;
uint32_t i;
for (i = 0; i < LYB_HASH_BITS; ++i) {
hash = lyb_get_hash(node, i);
if (!hash) {
LOGINT_RET(node->module->ctx);
}
if (!lyht_find(ht, &node, hash, NULL)) {
/* success, no collision */
break;
}
}
/* cannot happen, we already calculated the hash */
if (i == LYB_HASH_BITS) {
LOGINT_RET(node->module->ctx);
}
*hash_p = hash;
return LY_SUCCESS;
}
/**
* @brief Write metadata about siblings.
*
* @param[in] out Out structure.
* @param[in] sib Contains metadata that is written.
*/
static LY_ERR
lyb_write_sibling_meta(struct ly_out *out, struct lyd_lyb_sibling *sib)
{
uint8_t meta_buf[LYB_META_BYTES];
uint64_t num = 0;
/* write the meta chunk information */
num = htole64((uint64_t)sib->written & LYB_SIZE_MAX);
memcpy(meta_buf, &num, LYB_SIZE_BYTES);
num = htole64((uint64_t)sib->inner_chunks & LYB_INCHUNK_MAX);
memcpy(meta_buf + LYB_SIZE_BYTES, &num, LYB_INCHUNK_BYTES);
LY_CHECK_RET(ly_write_skipped(out, sib->position, (char *)&meta_buf, LYB_META_BYTES));
return LY_SUCCESS;
}
/**
* @brief Write LYB data fully handling the metadata.
*
* @param[in] out Out structure.
* @param[in] buf Source buffer.
* @param[in] count Number of bytes to write.
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_write(struct ly_out *out, const uint8_t *buf, size_t count, struct lylyb_ctx *lybctx)
{
LY_ARRAY_COUNT_TYPE u;
struct lyd_lyb_sibling *full, *iter;
size_t to_write;
while (1) {
/* check for full data chunks */
to_write = count;
full = NULL;
LY_ARRAY_FOR(lybctx->siblings, u) {
/* we want the innermost chunks resolved first, so replace previous full chunks */
if (lybctx->siblings[u].written + to_write >= LYB_SIZE_MAX) {
/* full chunk, do not write more than allowed */
to_write = LYB_SIZE_MAX - lybctx->siblings[u].written;
full = &lybctx->siblings[u];
}
}
if (!full && !count) {
break;
}
/* we are actually writing some data, not just finishing another chunk */
if (to_write) {
LY_CHECK_RET(ly_write_(out, (char *)buf, to_write));
LY_ARRAY_FOR(lybctx->siblings, u) {
/* increase all written counters */
lybctx->siblings[u].written += to_write;
assert(lybctx->siblings[u].written <= LYB_SIZE_MAX);
}
/* decrease count/buf */
count -= to_write;
buf += to_write;
}
if (full) {
/* write the meta information (inner chunk count and chunk size) */
LY_CHECK_RET(lyb_write_sibling_meta(out, full));
/* zero written and inner chunks */
full->written = 0;
full->inner_chunks = 0;
/* skip space for another chunk size */
LY_CHECK_RET(ly_write_skip(out, LYB_META_BYTES, &full->position));
/* increase inner chunk count */
for (iter = &lybctx->siblings[0]; iter != full; ++iter) {
if (iter->inner_chunks == LYB_INCHUNK_MAX) {
LOGINT(lybctx->ctx);
return LY_EINT;
}
++iter->inner_chunks;
}
}
}
return LY_SUCCESS;
}
/**
* @brief Stop the current "siblings" - write its final metadata.
*
* @param[in] out Out structure.
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_write_stop_siblings(struct ly_out *out, struct lylyb_ctx *lybctx)
{
/* write the meta chunk information */
lyb_write_sibling_meta(out, &LYB_LAST_SIBLING(lybctx));
LY_ARRAY_DECREMENT(lybctx->siblings);
return LY_SUCCESS;
}
/**
* @brief Start a new "siblings" - skip bytes for its metadata.
*
* @param[in] out Out structure.
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_write_start_siblings(struct ly_out *out, struct lylyb_ctx *lybctx)
{
LY_ARRAY_COUNT_TYPE u;
u = LY_ARRAY_COUNT(lybctx->siblings);
if (u == lybctx->sibling_size) {
LY_ARRAY_CREATE_RET(lybctx->ctx, lybctx->siblings, u + LYB_SIBLING_STEP, LY_EMEM);
lybctx->sibling_size = u + LYB_SIBLING_STEP;
}
LY_ARRAY_INCREMENT(lybctx->siblings);
LYB_LAST_SIBLING(lybctx).written = 0;
LYB_LAST_SIBLING(lybctx).inner_chunks = 0;
/* another inner chunk */
for (u = 0; u < LY_ARRAY_COUNT(lybctx->siblings) - 1; ++u) {
if (lybctx->siblings[u].inner_chunks == LYB_INCHUNK_MAX) {
LOGINT(lybctx->ctx);
return LY_EINT;
}
++lybctx->siblings[u].inner_chunks;
}
LY_CHECK_RET(ly_write_skip(out, LYB_META_BYTES, &LYB_LAST_SIBLING(lybctx).position));
return LY_SUCCESS;
}
/**
* @brief Write a number.
*
* @param[in] num Number to write.
* @param[in] bytes Actual accessible bytes of @p num.
* @param[in] out Out structure.
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_write_number(uint64_t num, size_t bytes, struct ly_out *out, struct lylyb_ctx *lybctx)
{
/* correct byte order */
num = htole64(num);
return lyb_write(out, (uint8_t *)&num, bytes, lybctx);
}
/**
* @brief Write a string.
*
* @param[in] str String to write.
* @param[in] str_len Length of @p str.
* @param[in] len_size Size of @p str_len in bytes.
* @param[in] out Out structure.
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_write_string(const char *str, size_t str_len, uint8_t len_size, struct ly_out *out, struct lylyb_ctx *lybctx)
{
ly_bool error;
if (!str) {
str = "";
LY_CHECK_ERR_RET(str_len, LOGINT(lybctx->ctx), LY_EINT);
}
if (!str_len) {
str_len = strlen(str);
}
switch (len_size) {
case sizeof(uint8_t):
error = str_len > UINT8_MAX;
break;
case sizeof(uint16_t):
error = str_len > UINT16_MAX;
break;
case sizeof(uint32_t):
error = str_len > UINT32_MAX;
break;
case sizeof(uint64_t):
error = str_len > UINT64_MAX;
break;
default:
error = 1;
}
if (error) {
LOGINT(lybctx->ctx);
return LY_EINT;
}
LY_CHECK_RET(lyb_write_number(str_len, len_size, out, lybctx));
LY_CHECK_RET(lyb_write(out, (const uint8_t *)str, str_len, lybctx));
return LY_SUCCESS;
}
/**
* @brief Print YANG module info.
*
* @param[in] out Out structure.
* @param[in] mod Module to print.
* @param[in] with_features Whether to also print enabled features or not.
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_print_model(struct ly_out *out, const struct lys_module *mod, ly_bool with_features, struct lylyb_ctx *lybctx)
{
LY_ERR rc = LY_SUCCESS;
uint16_t revision;
struct ly_set feat_set = {0};
struct lysp_feature *f = NULL;
uint32_t i = 0;
int r;
/* model name length and model name */
LY_CHECK_GOTO(rc = lyb_write_string(mod->name, 0, sizeof(uint16_t), out, lybctx), cleanup);
/* model revision as XXXX XXXX XXXX XXXX (2B) (year is offset from 2000)
* YYYY YYYM MMMD DDDD */
revision = 0;
if (mod->revision) {
r = atoi(mod->revision);
r -= LYB_REV_YEAR_OFFSET;
r <<= LYB_REV_YEAR_SHIFT;
revision |= r;
r = atoi(mod->revision + ly_strlen_const("YYYY-"));
r <<= LYB_REV_MONTH_SHIFT;
revision |= r;
r = atoi(mod->revision + ly_strlen_const("YYYY-MM-"));
revision |= r;
}
LY_CHECK_GOTO(rc = lyb_write_number(revision, sizeof revision, out, lybctx), cleanup);
if (with_features) {
/* collect enabled module features */
while ((f = lysp_feature_next(f, mod->parsed, &i))) {
if (f->flags & LYS_FENABLED) {
LY_CHECK_GOTO(rc = ly_set_add(&feat_set, f, 1, NULL), cleanup);
}
}
/* print enabled feature count and their names */
LY_CHECK_GOTO(rc = lyb_write_number(feat_set.count, sizeof(uint16_t), out, lybctx), cleanup);
for (i = 0; i < feat_set.count; ++i) {
f = feat_set.objs[i];
LY_CHECK_GOTO(rc = lyb_write_string(f->name, 0, sizeof(uint16_t), out, lybctx), cleanup);
}
}
/* fill cached hashes, if not already */
lyb_cache_module_hash(mod);
cleanup:
ly_set_erase(&feat_set, NULL);
return rc;
}
/**
* @brief Print all used YANG modules.
*
* @param[in] out Out structure.
* @param[in] root Data root.
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_print_data_models(struct ly_out *out, const struct lyd_node *root, struct lylyb_ctx *lybctx)
{
struct ly_set *set;
LY_ARRAY_COUNT_TYPE u;
LY_ERR ret = LY_SUCCESS;
struct lys_module *mod;
const struct lyd_node *elem, *node;
uint32_t i;
LY_CHECK_RET(ly_set_new(&set));
/* collect all data node modules */
LY_LIST_FOR(root, elem) {
LYD_TREE_DFS_BEGIN(elem, node) {
if (node->schema) {
mod = node->schema->module;
ret = ly_set_add(set, mod, 0, NULL);
LY_CHECK_GOTO(ret, cleanup);
/* add also their modules deviating or augmenting them */
LY_ARRAY_FOR(mod->deviated_by, u) {
ret = ly_set_add(set, mod->deviated_by[u], 0, NULL);
LY_CHECK_GOTO(ret, cleanup);
}
LY_ARRAY_FOR(mod->augmented_by, u) {
ret = ly_set_add(set, mod->augmented_by[u], 0, NULL);
LY_CHECK_GOTO(ret, cleanup);
}
/* only top-level nodes are processed */
LYD_TREE_DFS_continue = 1;
}
LYD_TREE_DFS_END(elem, node);
}
}
/* now write module count on 2 bytes */
LY_CHECK_GOTO(ret = lyb_write_number(set->count, 2, out, lybctx), cleanup);
/* and all the used models */
for (i = 0; i < set->count; ++i) {
LY_CHECK_GOTO(ret = lyb_print_model(out, set->objs[i], 1, lybctx), cleanup);
}
cleanup:
ly_set_free(set, NULL);
return ret;
}
/**
* @brief Print LYB magic number.
*
* @param[in] out Out structure.
* @return LY_ERR value.
*/
static LY_ERR
lyb_print_magic_number(struct ly_out *out)
{
/* 'l', 'y', 'b' - 0x6c7962 */
char magic_number[] = {'l', 'y', 'b'};
LY_CHECK_RET(ly_write_(out, magic_number, 3));
return LY_SUCCESS;
}
/**
* @brief Print LYB header.
*
* @param[in] out Out structure.
* @return LY_ERR value.
*/
static LY_ERR
lyb_print_header(struct ly_out *out)
{
uint8_t byte = 0;
/* version, future flags */
byte |= LYB_VERSION_NUM;
LY_CHECK_RET(ly_write_(out, (char *)&byte, 1));
return LY_SUCCESS;
}
/**
* @brief Print prefix data.
*
* @param[in] out Out structure.
* @param[in] format Value prefix format.
* @param[in] prefix_data Format-specific data for resolving any prefixes (see ::ly_resolve_prefix).
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_print_prefix_data(struct ly_out *out, LY_VALUE_FORMAT format, const void *prefix_data, struct lylyb_ctx *lybctx)
{
const struct ly_set *set;
const struct lyxml_ns *ns;
uint32_t i;
switch (format) {
case LY_VALUE_XML:
set = prefix_data;
if (!set) {
/* no prefix data */
i = 0;
LY_CHECK_RET(lyb_write(out, (uint8_t *)&i, 1, lybctx));
break;
}
if (set->count > UINT8_MAX) {
LOGERR(lybctx->ctx, LY_EINT, "Maximum supported number of prefixes is %u.", UINT8_MAX);
return LY_EINT;
}
/* write number of prefixes on 1 byte */
LY_CHECK_RET(lyb_write_number(set->count, 1, out, lybctx));
/* write all the prefixes */
for (i = 0; i < set->count; ++i) {
ns = set->objs[i];
/* prefix */
LY_CHECK_RET(lyb_write_string(ns->prefix, 0, sizeof(uint16_t), out, lybctx));
/* namespace */
LY_CHECK_RET(lyb_write_string(ns->uri, 0, sizeof(uint16_t), out, lybctx));
}
break;
case LY_VALUE_JSON:
case LY_VALUE_LYB:
/* nothing to print */
break;
default:
LOGINT_RET(lybctx->ctx);
}
return LY_SUCCESS;
}
/**
* @brief Print term node.
*
* @param[in] term Node to print.
* @param[in] out Out structure.
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_print_term_value(struct lyd_node_term *term, struct ly_out *out, struct lylyb_ctx *lybctx)
{
LY_ERR ret = LY_SUCCESS;
ly_bool dynamic = 0;
void *value;
size_t value_len = 0;
int32_t lyb_data_len;
lyplg_type_print_clb print;
assert(term->value.realtype && term->value.realtype->plugin && term->value.realtype->plugin->print &&
term->schema);
/* Get length of LYB data to print. */
lyb_data_len = term->value.realtype->plugin->lyb_data_len;
/* Get value and also print its length only if size is not fixed. */
print = term->value.realtype->plugin->print;
if (lyb_data_len < 0) {
/* Variable-length data. */
/* Get value and its length from plugin. */
value = (void *)print(term->schema->module->ctx, &term->value,
LY_VALUE_LYB, NULL, &dynamic, &value_len);
LY_CHECK_GOTO(ret, cleanup);
if (value_len > UINT32_MAX) {
LOGERR(lybctx->ctx, LY_EINT, "The maximum length of the LYB data "
"from a term node must not exceed %lu.", UINT32_MAX);
ret = LY_EINT;
goto cleanup;
}
/* Print the length of the data as 64-bit unsigned integer. */
ret = lyb_write_number(value_len, sizeof(uint64_t), out, lybctx);
LY_CHECK_GOTO(ret, cleanup);
} else {
/* Fixed-length data. */
/* Get value from plugin. */
value = (void *)print(term->schema->module->ctx, &term->value,
LY_VALUE_LYB, NULL, &dynamic, NULL);
LY_CHECK_GOTO(ret, cleanup);
/* Copy the length from the compiled node. */
value_len = lyb_data_len;
}
/* Print value. */
if (value_len > 0) {
/* Print the value simply as it is. */
ret = lyb_write(out, value, value_len, lybctx);
LY_CHECK_GOTO(ret, cleanup);
}
cleanup:
if (dynamic) {
free(value);
}
return ret;
}
/**
* @brief Print YANG node metadata.
*
* @param[in] out Out structure.
* @param[in] node Data node whose metadata to print.
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_print_metadata(struct ly_out *out, const struct lyd_node *node, struct lyd_lyb_ctx *lybctx)
{
uint8_t count = 0;
const struct lys_module *wd_mod = NULL;
struct lyd_meta *iter;
/* with-defaults */
if (node->schema->nodetype & LYD_NODE_TERM) {
if (((node->flags & LYD_DEFAULT) && (lybctx->print_options & (LYD_PRINT_WD_ALL_TAG | LYD_PRINT_WD_IMPL_TAG))) ||
((lybctx->print_options & LYD_PRINT_WD_ALL_TAG) && lyd_is_default(node))) {
/* we have implicit OR explicit default node, print attribute only if context include with-defaults schema */
wd_mod = ly_ctx_get_module_latest(node->schema->module->ctx, "ietf-netconf-with-defaults");
}
}
/* count metadata */
if (wd_mod) {
++count;
}
for (iter = node->meta; iter; iter = iter->next) {
if (count == UINT8_MAX) {
LOGERR(lybctx->lybctx->ctx, LY_EINT, "Maximum supported number of data node metadata is %u.", UINT8_MAX);
return LY_EINT;
}
++count;
}
/* write number of metadata on 1 byte */
LY_CHECK_RET(lyb_write(out, &count, 1, lybctx->lybctx));
if (wd_mod) {
/* write the "default" metadata */
LY_CHECK_RET(lyb_print_model(out, wd_mod, 0, lybctx->lybctx));
LY_CHECK_RET(lyb_write_string("default", 0, sizeof(uint16_t), out, lybctx->lybctx));
LY_CHECK_RET(lyb_write_string("true", 0, sizeof(uint16_t), out, lybctx->lybctx));
}
/* write all the node metadata */
LY_LIST_FOR(node->meta, iter) {
/* model */
LY_CHECK_RET(lyb_print_model(out, iter->annotation->module, 0, lybctx->lybctx));
/* annotation name with length */
LY_CHECK_RET(lyb_write_string(iter->name, 0, sizeof(uint16_t), out, lybctx->lybctx));
/* metadata value */
LY_CHECK_RET(lyb_write_string(lyd_get_meta_value(iter), 0, sizeof(uint64_t), out, lybctx->lybctx));
}
return LY_SUCCESS;
}
/**
* @brief Print opaque node attributes.
*
* @param[in] out Out structure.
* @param[in] node Opaque node whose attributes to print.
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_print_attributes(struct ly_out *out, const struct lyd_node_opaq *node, struct lylyb_ctx *lybctx)
{
uint8_t count = 0;
struct lyd_attr *iter;
for (iter = node->attr; iter; iter = iter->next) {
if (count == UINT8_MAX) {
LOGERR(lybctx->ctx, LY_EINT, "Maximum supported number of data node attributes is %u.", UINT8_MAX);
return LY_EINT;
}
++count;
}
/* write number of attributes on 1 byte */
LY_CHECK_RET(lyb_write(out, &count, 1, lybctx));
/* write all the attributes */
LY_LIST_FOR(node->attr, iter) {
/* prefix */
LY_CHECK_RET(lyb_write_string(iter->name.prefix, 0, sizeof(uint16_t), out, lybctx));
/* namespace */
LY_CHECK_RET(lyb_write_string(iter->name.module_name, 0, sizeof(uint16_t), out, lybctx));
/* name */
LY_CHECK_RET(lyb_write_string(iter->name.name, 0, sizeof(uint16_t), out, lybctx));
/* format */
LY_CHECK_RET(lyb_write_number(iter->format, 1, out, lybctx));
/* value prefixes */
LY_CHECK_RET(lyb_print_prefix_data(out, iter->format, iter->val_prefix_data, lybctx));
/* value */
LY_CHECK_RET(lyb_write_string(iter->value, 0, sizeof(uint64_t), out, lybctx));
}
return LY_SUCCESS;
}
/**
* @brief Print schema node hash.
*
* @param[in] out Out structure.
* @param[in] schema Schema node whose hash to print.
* @param[in,out] sibling_ht Cached hash table for these siblings, created if NULL.
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_print_schema_hash(struct ly_out *out, struct lysc_node *schema, struct hash_table **sibling_ht, struct lylyb_ctx *lybctx)
{
LY_ARRAY_COUNT_TYPE u;
uint32_t i;
LYB_HASH hash;
struct lyd_lyb_sib_ht *sib_ht;
struct lysc_node *first_sibling;
if (!schema) {
/* opaque node, write empty hash */
hash = 0;
LY_CHECK_RET(lyb_write(out, &hash, sizeof hash, lybctx));
return LY_SUCCESS;
}
/* create whole sibling HT if not already created and saved */
if (!*sibling_ht) {
/* get first schema data sibling */
first_sibling = (struct lysc_node *)lys_getnext(NULL, lysc_data_parent(schema), schema->module->compiled,
(schema->flags & LYS_IS_OUTPUT) ? LYS_GETNEXT_OUTPUT : 0);
LY_ARRAY_FOR(lybctx->sib_hts, u) {
if (lybctx->sib_hts[u].first_sibling == first_sibling) {
/* we have already created a hash table for these siblings */
*sibling_ht = lybctx->sib_hts[u].ht;
break;
}
}
if (!*sibling_ht) {
/* we must create sibling hash table */
LY_CHECK_RET(lyb_hash_siblings(first_sibling, sibling_ht));
/* and save it */
LY_ARRAY_NEW_RET(lybctx->ctx, lybctx->sib_hts, sib_ht, LY_EMEM);
sib_ht->first_sibling = first_sibling;
sib_ht->ht = *sibling_ht;
}
}
/* get our hash */
LY_CHECK_RET(lyb_hash_find(*sibling_ht, schema, &hash));
/* write the hash */
LY_CHECK_RET(lyb_write(out, &hash, sizeof hash, lybctx));
if (hash & LYB_HASH_COLLISION_ID) {
/* no collision for this hash, we are done */
return LY_SUCCESS;
}
/* written hash was a collision, write also all the preceding hashes */
for (i = 0; !(hash & (LYB_HASH_COLLISION_ID >> i)); ++i) {}
for ( ; i; --i) {
hash = lyb_get_hash(schema, i - 1);
if (!hash) {
return LY_EINT;
}
assert(hash & (LYB_HASH_COLLISION_ID >> (i - 1)));
LY_CHECK_RET(lyb_write(out, &hash, sizeof hash, lybctx));
}
return LY_SUCCESS;
}
/**
* @brief Print header for non-opaq node.
*
* @param[in] out Out structure.
* @param[in] node Current data node to print.
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_print_node_header(struct ly_out *out, const struct lyd_node *node, struct lyd_lyb_ctx *lybctx)
{
/* write any metadata */
LY_CHECK_RET(lyb_print_metadata(out, node, lybctx));
/* write node flags */
LY_CHECK_RET(lyb_write_number(node->flags, sizeof node->flags, out, lybctx->lybctx));
return LY_SUCCESS;
}
/**
* @brief Print LYB node type.
*
* @param[in] out Out structure.
* @param[in] node Current data node to print.
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_print_lyb_type(struct ly_out *out, const struct lyd_node *node, struct lyd_lyb_ctx *lybctx)
{
enum lylyb_node_type lyb_type;
if (node->flags & LYD_EXT) {
assert(node->schema);
lyb_type = LYB_NODE_EXT;
} else if (!node->schema) {
lyb_type = LYB_NODE_OPAQ;
} else if (!lysc_data_parent(node->schema)) {
lyb_type = LYB_NODE_TOP;
} else {
lyb_type = LYB_NODE_CHILD;
}
LY_CHECK_RET(lyb_write_number(lyb_type, 1, out, lybctx->lybctx));
return LY_SUCCESS;
}
/**
* @brief Print inner node.
*
* @param[in] out Out structure.
* @param[in] node Current data node to print.
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_print_node_inner(struct ly_out *out, const struct lyd_node *node, struct lyd_lyb_ctx *lybctx)
{
/* write necessary basic data */
LY_CHECK_RET(lyb_print_node_header(out, node, lybctx));
/* recursively write all the descendants */
LY_CHECK_RET(lyb_print_siblings(out, lyd_child(node), lybctx));
return LY_SUCCESS;
}
/**
* @brief Print opaque node and its descendants.
*
* @param[in] out Out structure.
* @param[in] opaq Node to print.
* @param[in] lyd_lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_print_node_opaq(struct ly_out *out, const struct lyd_node_opaq *opaq, struct lyd_lyb_ctx *lyd_lybctx)
{
struct lylyb_ctx *lybctx = lyd_lybctx->lybctx;
/* write attributes */
LY_CHECK_RET(lyb_print_attributes(out, opaq, lybctx));
/* write node flags */
LY_CHECK_RET(lyb_write_number(opaq->flags, sizeof opaq->flags, out, lybctx));
/* prefix */
LY_CHECK_RET(lyb_write_string(opaq->name.prefix, 0, sizeof(uint16_t), out, lybctx));
/* module reference */
LY_CHECK_RET(lyb_write_string(opaq->name.module_name, 0, sizeof(uint16_t), out, lybctx));
/* name */
LY_CHECK_RET(lyb_write_string(opaq->name.name, 0, sizeof(uint16_t), out, lybctx));
/* value */
LY_CHECK_RET(lyb_write_string(opaq->value, 0, sizeof(uint64_t), out, lybctx));
/* format */
LY_CHECK_RET(lyb_write_number(opaq->format, 1, out, lybctx));
/* value prefixes */
LY_CHECK_RET(lyb_print_prefix_data(out, opaq->format, opaq->val_prefix_data, lybctx));
/* recursively write all the descendants */
LY_CHECK_RET(lyb_print_siblings(out, opaq->child, lyd_lybctx));
return LY_SUCCESS;
}
/**
* @brief Print anydata or anyxml node.
*
* @param[in] anydata Node to print.
* @param[in] out Out structure.
* @param[in] lyd_lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_print_node_any(struct ly_out *out, struct lyd_node_any *anydata, struct lyd_lyb_ctx *lyd_lybctx)
{
LY_ERR ret = LY_SUCCESS;
LYD_ANYDATA_VALUETYPE value_type;
int len;
char *buf = NULL;
const char *str;
struct ly_out *out2 = NULL;
struct lylyb_ctx *lybctx = lyd_lybctx->lybctx;
if ((anydata->schema->nodetype == LYS_ANYDATA) && (anydata->value_type != LYD_ANYDATA_DATATREE)) {
LOGINT_RET(lybctx->ctx);
}
if (anydata->value_type == LYD_ANYDATA_DATATREE) {
/* will be printed as a nested LYB data tree because the used modules need to be written */
value_type = LYD_ANYDATA_LYB;
} else {
value_type = anydata->value_type;
}
/* write necessary basic data */
LY_CHECK_RET(lyb_print_node_header(out, (struct lyd_node *)anydata, lyd_lybctx));
/* first byte is type */
LY_CHECK_GOTO(ret = lyb_write_number(value_type, sizeof value_type, out, lybctx), cleanup);
if (anydata->value_type == LYD_ANYDATA_DATATREE) {
/* print LYB data tree to memory */
LY_CHECK_GOTO(ret = ly_out_new_memory(&buf, 0, &out2), cleanup);
LY_CHECK_GOTO(ret = lyb_print_data(out2, anydata->value.tree, LYD_PRINT_WITHSIBLINGS), cleanup);
len = lyd_lyb_data_length(buf);
assert(len != -1);
str = buf;
} else if (anydata->value_type == LYD_ANYDATA_LYB) {
len = lyd_lyb_data_length(anydata->value.mem);
assert(len != -1);
str = anydata->value.mem;
} else {
len = strlen(anydata->value.str);
str = anydata->value.str;
}
/* followed by the content */
LY_CHECK_GOTO(ret = lyb_write_string(str, (size_t)len, sizeof(uint64_t), out, lybctx), cleanup);
cleanup:
ly_out_free(out2, NULL, 1);
return ret;
}
/**
* @brief Print leaf node.
*
* @param[in] out Out structure.
* @param[in] node Current data node to print.
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_print_node_leaf(struct ly_out *out, const struct lyd_node *node, struct lyd_lyb_ctx *lybctx)
{
/* write necessary basic data */
LY_CHECK_RET(lyb_print_node_header(out, node, lybctx));
/* write term value */
LY_CHECK_RET(lyb_print_term_value((struct lyd_node_term *)node, out, lybctx->lybctx));
return LY_SUCCESS;
}
/**
* @brief Print all leaflist nodes which belong to same schema.
*
* @param[in] out Out structure.
* @param[in] node Current data node to print.
* @param[in] lybctx LYB context.
* @param[out] printed_node Last node that was printed by this function.
* @return LY_ERR value.
*/
static LY_ERR
lyb_print_node_leaflist(struct ly_out *out, const struct lyd_node *node, struct lyd_lyb_ctx *lybctx,
const struct lyd_node **printed_node)
{
const struct lysc_node *schema;
/* register a new sibling */
LY_CHECK_RET(lyb_write_start_siblings(out, lybctx->lybctx));
schema = node->schema;
/* write all the siblings */
LY_LIST_FOR(node, node) {
if (schema != node->schema) {
/* all leaflist nodes was printed */
break;
}
/* write leaf data */
LY_CHECK_RET(lyb_print_node_leaf(out, node, lybctx));
*printed_node = node;
}
/* finish this sibling */
LY_CHECK_RET(lyb_write_stop_siblings(out, lybctx->lybctx));
return LY_SUCCESS;
}
/**
* @brief Print all list nodes which belong to same schema.
*
* @param[in] out Out structure.
* @param[in] node Current data node to print.
* @param[in] lybctx LYB context.
* @param[out] printed_node Last node that was printed by this function.
* @return LY_ERR value.
*/
static LY_ERR
lyb_print_node_list(struct ly_out *out, const struct lyd_node *node, struct lyd_lyb_ctx *lybctx,
const struct lyd_node **printed_node)
{
const struct lysc_node *schema;
/* register a new sibling */
LY_CHECK_RET(lyb_write_start_siblings(out, lybctx->lybctx));
schema = node->schema;
LY_LIST_FOR(node, node) {
if (schema != node->schema) {
/* all list nodes was printed */
break;
}
/* write necessary basic data */
LY_CHECK_RET(lyb_print_node_header(out, node, lybctx));
/* recursively write all the descendants */
LY_CHECK_RET(lyb_print_siblings(out, lyd_child(node), lybctx));
*printed_node = node;
}
/* finish this sibling */
LY_CHECK_RET(lyb_write_stop_siblings(out, lybctx->lybctx));
return LY_SUCCESS;
}
/**
* @brief Print node.
*
* @param[in] out Out structure.
* @param[in,out] printed_node Current data node to print. Sets to the last printed node.
* @param[in,out] sibling_ht Cached hash table for these siblings, created if NULL.
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_print_node(struct ly_out *out, const struct lyd_node **printed_node, struct hash_table **sibling_ht,
struct lyd_lyb_ctx *lybctx)
{
const struct lyd_node *node = *printed_node;
/* write node type */
LY_CHECK_RET(lyb_print_lyb_type(out, node, lybctx));
/* write model info first */
if (node->schema && ((node->flags & LYD_EXT) || !lysc_data_parent(node->schema))) {
LY_CHECK_RET(lyb_print_model(out, node->schema->module, 0, lybctx->lybctx));
}
if (node->flags & LYD_EXT) {
/* write schema node name */
LY_CHECK_RET(lyb_write_string(node->schema->name, 0, sizeof(uint16_t), out, lybctx->lybctx));
} else {
/* write schema hash */
LY_CHECK_RET(lyb_print_schema_hash(out, (struct lysc_node *)node->schema, sibling_ht, lybctx->lybctx));
}
if (!node->schema) {
LY_CHECK_RET(lyb_print_node_opaq(out, (struct lyd_node_opaq *)node, lybctx));
} else if (node->schema->nodetype & LYS_LEAFLIST) {
LY_CHECK_RET(lyb_print_node_leaflist(out, node, lybctx, &node));
} else if (node->schema->nodetype == LYS_LIST) {
LY_CHECK_RET(lyb_print_node_list(out, node, lybctx, &node));
} else if (node->schema->nodetype & LYD_NODE_ANY) {
LY_CHECK_RET(lyb_print_node_any(out, (struct lyd_node_any *)node, lybctx));
} else if (node->schema->nodetype & LYD_NODE_INNER) {
LY_CHECK_RET(lyb_print_node_inner(out, node, lybctx));
} else {
LY_CHECK_RET(lyb_print_node_leaf(out, node, lybctx));
}
*printed_node = node;
return LY_SUCCESS;
}
/**
* @brief Print siblings.
*
* @param[in] out Out structure.
* @param[in] node Current data node to print.
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_print_siblings(struct ly_out *out, const struct lyd_node *node, struct lyd_lyb_ctx *lybctx)
{
struct hash_table *sibling_ht = NULL;
const struct lys_module *prev_mod = NULL;
ly_bool top_level;
top_level = !LY_ARRAY_COUNT(lybctx->lybctx->siblings);
LY_CHECK_RET(lyb_write_start_siblings(out, lybctx->lybctx));
if (top_level) {
/* write all the siblings */
LY_LIST_FOR(node, node) {
/* do not reuse sibling hash tables from different modules */
if (!node->schema || (node->schema->module != prev_mod)) {
sibling_ht = NULL;
prev_mod = node->schema ? node->schema->module : NULL;
}
LY_CHECK_RET(lyb_print_node(out, &node, &sibling_ht, lybctx));
if (!(lybctx->print_options & LYD_PRINT_WITHSIBLINGS)) {
break;
}
}
} else {
LY_LIST_FOR(node, node) {
LY_CHECK_RET(lyb_print_node(out, &node, &sibling_ht, lybctx));
}
}
LY_CHECK_RET(lyb_write_stop_siblings(out, lybctx->lybctx));
return LY_SUCCESS;
}
LY_ERR
lyb_print_data(struct ly_out *out, const struct lyd_node *root, uint32_t options)
{
LY_ERR ret = LY_SUCCESS;
uint8_t zero = 0;
struct lyd_lyb_ctx *lybctx;
const struct ly_ctx *ctx = root ? LYD_CTX(root) : NULL;
lybctx = calloc(1, sizeof *lybctx);
LY_CHECK_ERR_RET(!lybctx, LOGMEM(ctx), LY_EMEM);
lybctx->lybctx = calloc(1, sizeof *lybctx->lybctx);
LY_CHECK_ERR_RET(!lybctx->lybctx, LOGMEM(ctx), LY_EMEM);
lybctx->print_options = options;
if (root) {
lybctx->lybctx->ctx = ctx;
if (root->schema && lysc_data_parent(root->schema)) {
LOGERR(lybctx->lybctx->ctx, LY_EINVAL, "LYB printer supports only printing top-level nodes.");
ret = LY_EINVAL;
goto cleanup;
}
}
/* LYB magic number */
LY_CHECK_GOTO(ret = lyb_print_magic_number(out), cleanup);
/* LYB header */
LY_CHECK_GOTO(ret = lyb_print_header(out), cleanup);
/* all used models */
LY_CHECK_GOTO(ret = lyb_print_data_models(out, root, lybctx->lybctx), cleanup);
ret = lyb_print_siblings(out, root, lybctx);
LY_CHECK_GOTO(ret, cleanup);
/* ending zero byte */
LY_CHECK_GOTO(ret = lyb_write(out, &zero, sizeof zero, lybctx->lybctx), cleanup);
cleanup:
lyd_lyb_ctx_free((struct lyd_ctx *)lybctx);
return ret;
}
|