diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-11 08:27:49 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-11 08:27:49 +0000 |
commit | ace9429bb58fd418f0c81d4c2835699bddf6bde6 (patch) | |
tree | b2d64bc10158fdd5497876388cd68142ca374ed3 /Documentation/RCU/listRCU.rst | |
parent | Initial commit. (diff) | |
download | linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.tar.xz linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.zip |
Adding upstream version 6.6.15.upstream/6.6.15
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'Documentation/RCU/listRCU.rst')
-rw-r--r-- | Documentation/RCU/listRCU.rst | 500 |
1 files changed, 500 insertions, 0 deletions
diff --git a/Documentation/RCU/listRCU.rst b/Documentation/RCU/listRCU.rst new file mode 100644 index 0000000000..bdc4bcc528 --- /dev/null +++ b/Documentation/RCU/listRCU.rst @@ -0,0 +1,500 @@ +.. _list_rcu_doc: + +Using RCU to Protect Read-Mostly Linked Lists +============================================= + +One of the most common uses of RCU is protecting read-mostly linked lists +(``struct list_head`` in list.h). One big advantage of this approach is +that all of the required memory ordering is provided by the list macros. +This document describes several list-based RCU use cases. + + +Example 1: Read-mostly list: Deferred Destruction +------------------------------------------------- + +A widely used usecase for RCU lists in the kernel is lockless iteration over +all processes in the system. ``task_struct::tasks`` represents the list node that +links all the processes. The list can be traversed in parallel to any list +additions or removals. + +The traversal of the list is done using ``for_each_process()`` which is defined +by the 2 macros:: + + #define next_task(p) \ + list_entry_rcu((p)->tasks.next, struct task_struct, tasks) + + #define for_each_process(p) \ + for (p = &init_task ; (p = next_task(p)) != &init_task ; ) + +The code traversing the list of all processes typically looks like:: + + rcu_read_lock(); + for_each_process(p) { + /* Do something with p */ + } + rcu_read_unlock(); + +The simplified and heavily inlined code for removing a process from a +task list is:: + + void release_task(struct task_struct *p) + { + write_lock(&tasklist_lock); + list_del_rcu(&p->tasks); + write_unlock(&tasklist_lock); + call_rcu(&p->rcu, delayed_put_task_struct); + } + +When a process exits, ``release_task()`` calls ``list_del_rcu(&p->tasks)`` +via __exit_signal() and __unhash_process() under ``tasklist_lock`` +writer lock protection. The list_del_rcu() invocation removes +the task from the list of all tasks. The ``tasklist_lock`` +prevents concurrent list additions/removals from corrupting the +list. Readers using ``for_each_process()`` are not protected with the +``tasklist_lock``. To prevent readers from noticing changes in the list +pointers, the ``task_struct`` object is freed only after one or more +grace periods elapse, with the help of call_rcu(), which is invoked via +put_task_struct_rcu_user(). This deferring of destruction ensures that +any readers traversing the list will see valid ``p->tasks.next`` pointers +and deletion/freeing can happen in parallel with traversal of the list. +This pattern is also called an **existence lock**, since RCU refrains +from invoking the delayed_put_task_struct() callback function until +all existing readers finish, which guarantees that the ``task_struct`` +object in question will remain in existence until after the completion +of all RCU readers that might possibly have a reference to that object. + + +Example 2: Read-Side Action Taken Outside of Lock: No In-Place Updates +---------------------------------------------------------------------- + +Some reader-writer locking use cases compute a value while holding +the read-side lock, but continue to use that value after that lock is +released. These use cases are often good candidates for conversion +to RCU. One prominent example involves network packet routing. +Because the packet-routing data tracks the state of equipment outside +of the computer, it will at times contain stale data. Therefore, once +the route has been computed, there is no need to hold the routing table +static during transmission of the packet. After all, you can hold the +routing table static all you want, but that won't keep the external +Internet from changing, and it is the state of the external Internet +that really matters. In addition, routing entries are typically added +or deleted, rather than being modified in place. This is a rare example +of the finite speed of light and the non-zero size of atoms actually +helping make synchronization be lighter weight. + +A straightforward example of this type of RCU use case may be found in +the system-call auditing support. For example, a reader-writer locked +implementation of ``audit_filter_task()`` might be as follows:: + + static enum audit_state audit_filter_task(struct task_struct *tsk, char **key) + { + struct audit_entry *e; + enum audit_state state; + + read_lock(&auditsc_lock); + /* Note: audit_filter_mutex held by caller. */ + list_for_each_entry(e, &audit_tsklist, list) { + if (audit_filter_rules(tsk, &e->rule, NULL, &state)) { + if (state == AUDIT_STATE_RECORD) + *key = kstrdup(e->rule.filterkey, GFP_ATOMIC); + read_unlock(&auditsc_lock); + return state; + } + } + read_unlock(&auditsc_lock); + return AUDIT_BUILD_CONTEXT; + } + +Here the list is searched under the lock, but the lock is dropped before +the corresponding value is returned. By the time that this value is acted +on, the list may well have been modified. This makes sense, since if +you are turning auditing off, it is OK to audit a few extra system calls. + +This means that RCU can be easily applied to the read side, as follows:: + + static enum audit_state audit_filter_task(struct task_struct *tsk, char **key) + { + struct audit_entry *e; + enum audit_state state; + + rcu_read_lock(); + /* Note: audit_filter_mutex held by caller. */ + list_for_each_entry_rcu(e, &audit_tsklist, list) { + if (audit_filter_rules(tsk, &e->rule, NULL, &state)) { + if (state == AUDIT_STATE_RECORD) + *key = kstrdup(e->rule.filterkey, GFP_ATOMIC); + rcu_read_unlock(); + return state; + } + } + rcu_read_unlock(); + return AUDIT_BUILD_CONTEXT; + } + +The read_lock() and read_unlock() calls have become rcu_read_lock() +and rcu_read_unlock(), respectively, and the list_for_each_entry() +has become list_for_each_entry_rcu(). The **_rcu()** list-traversal +primitives add READ_ONCE() and diagnostic checks for incorrect use +outside of an RCU read-side critical section. + +The changes to the update side are also straightforward. A reader-writer lock +might be used as follows for deletion and insertion in these simplified +versions of audit_del_rule() and audit_add_rule():: + + static inline int audit_del_rule(struct audit_rule *rule, + struct list_head *list) + { + struct audit_entry *e; + + write_lock(&auditsc_lock); + list_for_each_entry(e, list, list) { + if (!audit_compare_rule(rule, &e->rule)) { + list_del(&e->list); + write_unlock(&auditsc_lock); + return 0; + } + } + write_unlock(&auditsc_lock); + return -EFAULT; /* No matching rule */ + } + + static inline int audit_add_rule(struct audit_entry *entry, + struct list_head *list) + { + write_lock(&auditsc_lock); + if (entry->rule.flags & AUDIT_PREPEND) { + entry->rule.flags &= ~AUDIT_PREPEND; + list_add(&entry->list, list); + } else { + list_add_tail(&entry->list, list); + } + write_unlock(&auditsc_lock); + return 0; + } + +Following are the RCU equivalents for these two functions:: + + static inline int audit_del_rule(struct audit_rule *rule, + struct list_head *list) + { + struct audit_entry *e; + + /* No need to use the _rcu iterator here, since this is the only + * deletion routine. */ + list_for_each_entry(e, list, list) { + if (!audit_compare_rule(rule, &e->rule)) { + list_del_rcu(&e->list); + call_rcu(&e->rcu, audit_free_rule); + return 0; + } + } + return -EFAULT; /* No matching rule */ + } + + static inline int audit_add_rule(struct audit_entry *entry, + struct list_head *list) + { + if (entry->rule.flags & AUDIT_PREPEND) { + entry->rule.flags &= ~AUDIT_PREPEND; + list_add_rcu(&entry->list, list); + } else { + list_add_tail_rcu(&entry->list, list); + } + return 0; + } + +Normally, the write_lock() and write_unlock() would be replaced by a +spin_lock() and a spin_unlock(). But in this case, all callers hold +``audit_filter_mutex``, so no additional locking is required. The +auditsc_lock can therefore be eliminated, since use of RCU eliminates the +need for writers to exclude readers. + +The list_del(), list_add(), and list_add_tail() primitives have been +replaced by list_del_rcu(), list_add_rcu(), and list_add_tail_rcu(). +The **_rcu()** list-manipulation primitives add memory barriers that are +needed on weakly ordered CPUs. The list_del_rcu() primitive omits the +pointer poisoning debug-assist code that would otherwise cause concurrent +readers to fail spectacularly. + +So, when readers can tolerate stale data and when entries are either added or +deleted, without in-place modification, it is very easy to use RCU! + + +Example 3: Handling In-Place Updates +------------------------------------ + +The system-call auditing code does not update auditing rules in place. However, +if it did, the reader-writer-locked code to do so might look as follows +(assuming only ``field_count`` is updated, otherwise, the added fields would +need to be filled in):: + + static inline int audit_upd_rule(struct audit_rule *rule, + struct list_head *list, + __u32 newaction, + __u32 newfield_count) + { + struct audit_entry *e; + struct audit_entry *ne; + + write_lock(&auditsc_lock); + /* Note: audit_filter_mutex held by caller. */ + list_for_each_entry(e, list, list) { + if (!audit_compare_rule(rule, &e->rule)) { + e->rule.action = newaction; + e->rule.field_count = newfield_count; + write_unlock(&auditsc_lock); + return 0; + } + } + write_unlock(&auditsc_lock); + return -EFAULT; /* No matching rule */ + } + +The RCU version creates a copy, updates the copy, then replaces the old +entry with the newly updated entry. This sequence of actions, allowing +concurrent reads while making a copy to perform an update, is what gives +RCU (*read-copy update*) its name. + +The RCU version of audit_upd_rule() is as follows:: + + static inline int audit_upd_rule(struct audit_rule *rule, + struct list_head *list, + __u32 newaction, + __u32 newfield_count) + { + struct audit_entry *e; + struct audit_entry *ne; + + list_for_each_entry(e, list, list) { + if (!audit_compare_rule(rule, &e->rule)) { + ne = kmalloc(sizeof(*entry), GFP_ATOMIC); + if (ne == NULL) + return -ENOMEM; + audit_copy_rule(&ne->rule, &e->rule); + ne->rule.action = newaction; + ne->rule.field_count = newfield_count; + list_replace_rcu(&e->list, &ne->list); + call_rcu(&e->rcu, audit_free_rule); + return 0; + } + } + return -EFAULT; /* No matching rule */ + } + +Again, this assumes that the caller holds ``audit_filter_mutex``. Normally, the +writer lock would become a spinlock in this sort of code. + +The update_lsm_rule() does something very similar, for those who would +prefer to look at real Linux-kernel code. + +Another use of this pattern can be found in the openswitch driver's *connection +tracking table* code in ``ct_limit_set()``. The table holds connection tracking +entries and has a limit on the maximum entries. There is one such table +per-zone and hence one *limit* per zone. The zones are mapped to their limits +through a hashtable using an RCU-managed hlist for the hash chains. When a new +limit is set, a new limit object is allocated and ``ct_limit_set()`` is called +to replace the old limit object with the new one using list_replace_rcu(). +The old limit object is then freed after a grace period using kfree_rcu(). + + +Example 4: Eliminating Stale Data +--------------------------------- + +The auditing example above tolerates stale data, as do most algorithms +that are tracking external state. After all, given there is a delay +from the time the external state changes before Linux becomes aware +of the change, and so as noted earlier, a small quantity of additional +RCU-induced staleness is generally not a problem. + +However, there are many examples where stale data cannot be tolerated. +One example in the Linux kernel is the System V IPC (see the shm_lock() +function in ipc/shm.c). This code checks a *deleted* flag under a +per-entry spinlock, and, if the *deleted* flag is set, pretends that the +entry does not exist. For this to be helpful, the search function must +return holding the per-entry spinlock, as shm_lock() does in fact do. + +.. _quick_quiz: + +Quick Quiz: + For the deleted-flag technique to be helpful, why is it necessary + to hold the per-entry lock while returning from the search function? + +:ref:`Answer to Quick Quiz <quick_quiz_answer>` + +If the system-call audit module were to ever need to reject stale data, one way +to accomplish this would be to add a ``deleted`` flag and a ``lock`` spinlock to the +``audit_entry`` structure, and modify audit_filter_task() as follows:: + + static enum audit_state audit_filter_task(struct task_struct *tsk) + { + struct audit_entry *e; + enum audit_state state; + + rcu_read_lock(); + list_for_each_entry_rcu(e, &audit_tsklist, list) { + if (audit_filter_rules(tsk, &e->rule, NULL, &state)) { + spin_lock(&e->lock); + if (e->deleted) { + spin_unlock(&e->lock); + rcu_read_unlock(); + return AUDIT_BUILD_CONTEXT; + } + rcu_read_unlock(); + if (state == AUDIT_STATE_RECORD) + *key = kstrdup(e->rule.filterkey, GFP_ATOMIC); + return state; + } + } + rcu_read_unlock(); + return AUDIT_BUILD_CONTEXT; + } + +The ``audit_del_rule()`` function would need to set the ``deleted`` flag under the +spinlock as follows:: + + static inline int audit_del_rule(struct audit_rule *rule, + struct list_head *list) + { + struct audit_entry *e; + + /* No need to use the _rcu iterator here, since this + * is the only deletion routine. */ + list_for_each_entry(e, list, list) { + if (!audit_compare_rule(rule, &e->rule)) { + spin_lock(&e->lock); + list_del_rcu(&e->list); + e->deleted = 1; + spin_unlock(&e->lock); + call_rcu(&e->rcu, audit_free_rule); + return 0; + } + } + return -EFAULT; /* No matching rule */ + } + +This too assumes that the caller holds ``audit_filter_mutex``. + +Note that this example assumes that entries are only added and deleted. +Additional mechanism is required to deal correctly with the update-in-place +performed by audit_upd_rule(). For one thing, audit_upd_rule() would +need to hold the locks of both the old ``audit_entry`` and its replacement +while executing the list_replace_rcu(). + + +Example 5: Skipping Stale Objects +--------------------------------- + +For some use cases, reader performance can be improved by skipping +stale objects during read-side list traversal, where stale objects +are those that will be removed and destroyed after one or more grace +periods. One such example can be found in the timerfd subsystem. When a +``CLOCK_REALTIME`` clock is reprogrammed (for example due to setting +of the system time) then all programmed ``timerfds`` that depend on +this clock get triggered and processes waiting on them are awakened in +advance of their scheduled expiry. To facilitate this, all such timers +are added to an RCU-managed ``cancel_list`` when they are setup in +``timerfd_setup_cancel()``:: + + static void timerfd_setup_cancel(struct timerfd_ctx *ctx, int flags) + { + spin_lock(&ctx->cancel_lock); + if ((ctx->clockid == CLOCK_REALTIME || + ctx->clockid == CLOCK_REALTIME_ALARM) && + (flags & TFD_TIMER_ABSTIME) && (flags & TFD_TIMER_CANCEL_ON_SET)) { + if (!ctx->might_cancel) { + ctx->might_cancel = true; + spin_lock(&cancel_lock); + list_add_rcu(&ctx->clist, &cancel_list); + spin_unlock(&cancel_lock); + } + } else { + __timerfd_remove_cancel(ctx); + } + spin_unlock(&ctx->cancel_lock); + } + +When a timerfd is freed (fd is closed), then the ``might_cancel`` +flag of the timerfd object is cleared, the object removed from the +``cancel_list`` and destroyed, as shown in this simplified and inlined +version of timerfd_release():: + + int timerfd_release(struct inode *inode, struct file *file) + { + struct timerfd_ctx *ctx = file->private_data; + + spin_lock(&ctx->cancel_lock); + if (ctx->might_cancel) { + ctx->might_cancel = false; + spin_lock(&cancel_lock); + list_del_rcu(&ctx->clist); + spin_unlock(&cancel_lock); + } + spin_unlock(&ctx->cancel_lock); + + if (isalarm(ctx)) + alarm_cancel(&ctx->t.alarm); + else + hrtimer_cancel(&ctx->t.tmr); + kfree_rcu(ctx, rcu); + return 0; + } + +If the ``CLOCK_REALTIME`` clock is set, for example by a time server, the +hrtimer framework calls ``timerfd_clock_was_set()`` which walks the +``cancel_list`` and wakes up processes waiting on the timerfd. While iterating +the ``cancel_list``, the ``might_cancel`` flag is consulted to skip stale +objects:: + + void timerfd_clock_was_set(void) + { + ktime_t moffs = ktime_mono_to_real(0); + struct timerfd_ctx *ctx; + unsigned long flags; + + rcu_read_lock(); + list_for_each_entry_rcu(ctx, &cancel_list, clist) { + if (!ctx->might_cancel) + continue; + spin_lock_irqsave(&ctx->wqh.lock, flags); + if (ctx->moffs != moffs) { + ctx->moffs = KTIME_MAX; + ctx->ticks++; + wake_up_locked_poll(&ctx->wqh, EPOLLIN); + } + spin_unlock_irqrestore(&ctx->wqh.lock, flags); + } + rcu_read_unlock(); + } + +The key point is that because RCU-protected traversal of the +``cancel_list`` happens concurrently with object addition and removal, +sometimes the traversal can access an object that has been removed from +the list. In this example, a flag is used to skip such objects. + + +Summary +------- + +Read-mostly list-based data structures that can tolerate stale data are +the most amenable to use of RCU. The simplest case is where entries are +either added or deleted from the data structure (or atomically modified +in place), but non-atomic in-place modifications can be handled by making +a copy, updating the copy, then replacing the original with the copy. +If stale data cannot be tolerated, then a *deleted* flag may be used +in conjunction with a per-entry spinlock in order to allow the search +function to reject newly deleted data. + +.. _quick_quiz_answer: + +Answer to Quick Quiz: + For the deleted-flag technique to be helpful, why is it necessary + to hold the per-entry lock while returning from the search function? + + If the search function drops the per-entry lock before returning, + then the caller will be processing stale data in any case. If it + is really OK to be processing stale data, then you don't need a + *deleted* flag. If processing stale data really is a problem, + then you need to hold the per-entry lock across all of the code + that uses the value that was returned. + +:ref:`Back to Quick Quiz <quick_quiz>` |