summaryrefslogtreecommitdiffstats
path: root/Documentation/admin-guide/cgroup-v2.rst
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-11 08:27:49 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-11 08:27:49 +0000
commitace9429bb58fd418f0c81d4c2835699bddf6bde6 (patch)
treeb2d64bc10158fdd5497876388cd68142ca374ed3 /Documentation/admin-guide/cgroup-v2.rst
parentInitial commit. (diff)
downloadlinux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.tar.xz
linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.zip
Adding upstream version 6.6.15.upstream/6.6.15
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'Documentation/admin-guide/cgroup-v2.rst')
-rw-r--r--Documentation/admin-guide/cgroup-v2.rst2988
1 files changed, 2988 insertions, 0 deletions
diff --git a/Documentation/admin-guide/cgroup-v2.rst b/Documentation/admin-guide/cgroup-v2.rst
new file mode 100644
index 0000000000..b26b5274ea
--- /dev/null
+++ b/Documentation/admin-guide/cgroup-v2.rst
@@ -0,0 +1,2988 @@
+.. _cgroup-v2:
+
+================
+Control Group v2
+================
+
+:Date: October, 2015
+:Author: Tejun Heo <tj@kernel.org>
+
+This is the authoritative documentation on the design, interface and
+conventions of cgroup v2. It describes all userland-visible aspects
+of cgroup including core and specific controller behaviors. All
+future changes must be reflected in this document. Documentation for
+v1 is available under :ref:`Documentation/admin-guide/cgroup-v1/index.rst <cgroup-v1>`.
+
+.. CONTENTS
+
+ 1. Introduction
+ 1-1. Terminology
+ 1-2. What is cgroup?
+ 2. Basic Operations
+ 2-1. Mounting
+ 2-2. Organizing Processes and Threads
+ 2-2-1. Processes
+ 2-2-2. Threads
+ 2-3. [Un]populated Notification
+ 2-4. Controlling Controllers
+ 2-4-1. Enabling and Disabling
+ 2-4-2. Top-down Constraint
+ 2-4-3. No Internal Process Constraint
+ 2-5. Delegation
+ 2-5-1. Model of Delegation
+ 2-5-2. Delegation Containment
+ 2-6. Guidelines
+ 2-6-1. Organize Once and Control
+ 2-6-2. Avoid Name Collisions
+ 3. Resource Distribution Models
+ 3-1. Weights
+ 3-2. Limits
+ 3-3. Protections
+ 3-4. Allocations
+ 4. Interface Files
+ 4-1. Format
+ 4-2. Conventions
+ 4-3. Core Interface Files
+ 5. Controllers
+ 5-1. CPU
+ 5-1-1. CPU Interface Files
+ 5-2. Memory
+ 5-2-1. Memory Interface Files
+ 5-2-2. Usage Guidelines
+ 5-2-3. Memory Ownership
+ 5-3. IO
+ 5-3-1. IO Interface Files
+ 5-3-2. Writeback
+ 5-3-3. IO Latency
+ 5-3-3-1. How IO Latency Throttling Works
+ 5-3-3-2. IO Latency Interface Files
+ 5-3-4. IO Priority
+ 5-4. PID
+ 5-4-1. PID Interface Files
+ 5-5. Cpuset
+ 5.5-1. Cpuset Interface Files
+ 5-6. Device
+ 5-7. RDMA
+ 5-7-1. RDMA Interface Files
+ 5-8. HugeTLB
+ 5.8-1. HugeTLB Interface Files
+ 5-9. Misc
+ 5.9-1 Miscellaneous cgroup Interface Files
+ 5.9-2 Migration and Ownership
+ 5-10. Others
+ 5-10-1. perf_event
+ 5-N. Non-normative information
+ 5-N-1. CPU controller root cgroup process behaviour
+ 5-N-2. IO controller root cgroup process behaviour
+ 6. Namespace
+ 6-1. Basics
+ 6-2. The Root and Views
+ 6-3. Migration and setns(2)
+ 6-4. Interaction with Other Namespaces
+ P. Information on Kernel Programming
+ P-1. Filesystem Support for Writeback
+ D. Deprecated v1 Core Features
+ R. Issues with v1 and Rationales for v2
+ R-1. Multiple Hierarchies
+ R-2. Thread Granularity
+ R-3. Competition Between Inner Nodes and Threads
+ R-4. Other Interface Issues
+ R-5. Controller Issues and Remedies
+ R-5-1. Memory
+
+
+Introduction
+============
+
+Terminology
+-----------
+
+"cgroup" stands for "control group" and is never capitalized. The
+singular form is used to designate the whole feature and also as a
+qualifier as in "cgroup controllers". When explicitly referring to
+multiple individual control groups, the plural form "cgroups" is used.
+
+
+What is cgroup?
+---------------
+
+cgroup is a mechanism to organize processes hierarchically and
+distribute system resources along the hierarchy in a controlled and
+configurable manner.
+
+cgroup is largely composed of two parts - the core and controllers.
+cgroup core is primarily responsible for hierarchically organizing
+processes. A cgroup controller is usually responsible for
+distributing a specific type of system resource along the hierarchy
+although there are utility controllers which serve purposes other than
+resource distribution.
+
+cgroups form a tree structure and every process in the system belongs
+to one and only one cgroup. All threads of a process belong to the
+same cgroup. On creation, all processes are put in the cgroup that
+the parent process belongs to at the time. A process can be migrated
+to another cgroup. Migration of a process doesn't affect already
+existing descendant processes.
+
+Following certain structural constraints, controllers may be enabled or
+disabled selectively on a cgroup. All controller behaviors are
+hierarchical - if a controller is enabled on a cgroup, it affects all
+processes which belong to the cgroups consisting the inclusive
+sub-hierarchy of the cgroup. When a controller is enabled on a nested
+cgroup, it always restricts the resource distribution further. The
+restrictions set closer to the root in the hierarchy can not be
+overridden from further away.
+
+
+Basic Operations
+================
+
+Mounting
+--------
+
+Unlike v1, cgroup v2 has only single hierarchy. The cgroup v2
+hierarchy can be mounted with the following mount command::
+
+ # mount -t cgroup2 none $MOUNT_POINT
+
+cgroup2 filesystem has the magic number 0x63677270 ("cgrp"). All
+controllers which support v2 and are not bound to a v1 hierarchy are
+automatically bound to the v2 hierarchy and show up at the root.
+Controllers which are not in active use in the v2 hierarchy can be
+bound to other hierarchies. This allows mixing v2 hierarchy with the
+legacy v1 multiple hierarchies in a fully backward compatible way.
+
+A controller can be moved across hierarchies only after the controller
+is no longer referenced in its current hierarchy. Because per-cgroup
+controller states are destroyed asynchronously and controllers may
+have lingering references, a controller may not show up immediately on
+the v2 hierarchy after the final umount of the previous hierarchy.
+Similarly, a controller should be fully disabled to be moved out of
+the unified hierarchy and it may take some time for the disabled
+controller to become available for other hierarchies; furthermore, due
+to inter-controller dependencies, other controllers may need to be
+disabled too.
+
+While useful for development and manual configurations, moving
+controllers dynamically between the v2 and other hierarchies is
+strongly discouraged for production use. It is recommended to decide
+the hierarchies and controller associations before starting using the
+controllers after system boot.
+
+During transition to v2, system management software might still
+automount the v1 cgroup filesystem and so hijack all controllers
+during boot, before manual intervention is possible. To make testing
+and experimenting easier, the kernel parameter cgroup_no_v1= allows
+disabling controllers in v1 and make them always available in v2.
+
+cgroup v2 currently supports the following mount options.
+
+ nsdelegate
+ Consider cgroup namespaces as delegation boundaries. This
+ option is system wide and can only be set on mount or modified
+ through remount from the init namespace. The mount option is
+ ignored on non-init namespace mounts. Please refer to the
+ Delegation section for details.
+
+ favordynmods
+ Reduce the latencies of dynamic cgroup modifications such as
+ task migrations and controller on/offs at the cost of making
+ hot path operations such as forks and exits more expensive.
+ The static usage pattern of creating a cgroup, enabling
+ controllers, and then seeding it with CLONE_INTO_CGROUP is
+ not affected by this option.
+
+ memory_localevents
+ Only populate memory.events with data for the current cgroup,
+ and not any subtrees. This is legacy behaviour, the default
+ behaviour without this option is to include subtree counts.
+ This option is system wide and can only be set on mount or
+ modified through remount from the init namespace. The mount
+ option is ignored on non-init namespace mounts.
+
+ memory_recursiveprot
+ Recursively apply memory.min and memory.low protection to
+ entire subtrees, without requiring explicit downward
+ propagation into leaf cgroups. This allows protecting entire
+ subtrees from one another, while retaining free competition
+ within those subtrees. This should have been the default
+ behavior but is a mount-option to avoid regressing setups
+ relying on the original semantics (e.g. specifying bogusly
+ high 'bypass' protection values at higher tree levels).
+
+
+Organizing Processes and Threads
+--------------------------------
+
+Processes
+~~~~~~~~~
+
+Initially, only the root cgroup exists to which all processes belong.
+A child cgroup can be created by creating a sub-directory::
+
+ # mkdir $CGROUP_NAME
+
+A given cgroup may have multiple child cgroups forming a tree
+structure. Each cgroup has a read-writable interface file
+"cgroup.procs". When read, it lists the PIDs of all processes which
+belong to the cgroup one-per-line. The PIDs are not ordered and the
+same PID may show up more than once if the process got moved to
+another cgroup and then back or the PID got recycled while reading.
+
+A process can be migrated into a cgroup by writing its PID to the
+target cgroup's "cgroup.procs" file. Only one process can be migrated
+on a single write(2) call. If a process is composed of multiple
+threads, writing the PID of any thread migrates all threads of the
+process.
+
+When a process forks a child process, the new process is born into the
+cgroup that the forking process belongs to at the time of the
+operation. After exit, a process stays associated with the cgroup
+that it belonged to at the time of exit until it's reaped; however, a
+zombie process does not appear in "cgroup.procs" and thus can't be
+moved to another cgroup.
+
+A cgroup which doesn't have any children or live processes can be
+destroyed by removing the directory. Note that a cgroup which doesn't
+have any children and is associated only with zombie processes is
+considered empty and can be removed::
+
+ # rmdir $CGROUP_NAME
+
+"/proc/$PID/cgroup" lists a process's cgroup membership. If legacy
+cgroup is in use in the system, this file may contain multiple lines,
+one for each hierarchy. The entry for cgroup v2 is always in the
+format "0::$PATH"::
+
+ # cat /proc/842/cgroup
+ ...
+ 0::/test-cgroup/test-cgroup-nested
+
+If the process becomes a zombie and the cgroup it was associated with
+is removed subsequently, " (deleted)" is appended to the path::
+
+ # cat /proc/842/cgroup
+ ...
+ 0::/test-cgroup/test-cgroup-nested (deleted)
+
+
+Threads
+~~~~~~~
+
+cgroup v2 supports thread granularity for a subset of controllers to
+support use cases requiring hierarchical resource distribution across
+the threads of a group of processes. By default, all threads of a
+process belong to the same cgroup, which also serves as the resource
+domain to host resource consumptions which are not specific to a
+process or thread. The thread mode allows threads to be spread across
+a subtree while still maintaining the common resource domain for them.
+
+Controllers which support thread mode are called threaded controllers.
+The ones which don't are called domain controllers.
+
+Marking a cgroup threaded makes it join the resource domain of its
+parent as a threaded cgroup. The parent may be another threaded
+cgroup whose resource domain is further up in the hierarchy. The root
+of a threaded subtree, that is, the nearest ancestor which is not
+threaded, is called threaded domain or thread root interchangeably and
+serves as the resource domain for the entire subtree.
+
+Inside a threaded subtree, threads of a process can be put in
+different cgroups and are not subject to the no internal process
+constraint - threaded controllers can be enabled on non-leaf cgroups
+whether they have threads in them or not.
+
+As the threaded domain cgroup hosts all the domain resource
+consumptions of the subtree, it is considered to have internal
+resource consumptions whether there are processes in it or not and
+can't have populated child cgroups which aren't threaded. Because the
+root cgroup is not subject to no internal process constraint, it can
+serve both as a threaded domain and a parent to domain cgroups.
+
+The current operation mode or type of the cgroup is shown in the
+"cgroup.type" file which indicates whether the cgroup is a normal
+domain, a domain which is serving as the domain of a threaded subtree,
+or a threaded cgroup.
+
+On creation, a cgroup is always a domain cgroup and can be made
+threaded by writing "threaded" to the "cgroup.type" file. The
+operation is single direction::
+
+ # echo threaded > cgroup.type
+
+Once threaded, the cgroup can't be made a domain again. To enable the
+thread mode, the following conditions must be met.
+
+- As the cgroup will join the parent's resource domain. The parent
+ must either be a valid (threaded) domain or a threaded cgroup.
+
+- When the parent is an unthreaded domain, it must not have any domain
+ controllers enabled or populated domain children. The root is
+ exempt from this requirement.
+
+Topology-wise, a cgroup can be in an invalid state. Please consider
+the following topology::
+
+ A (threaded domain) - B (threaded) - C (domain, just created)
+
+C is created as a domain but isn't connected to a parent which can
+host child domains. C can't be used until it is turned into a
+threaded cgroup. "cgroup.type" file will report "domain (invalid)" in
+these cases. Operations which fail due to invalid topology use
+EOPNOTSUPP as the errno.
+
+A domain cgroup is turned into a threaded domain when one of its child
+cgroup becomes threaded or threaded controllers are enabled in the
+"cgroup.subtree_control" file while there are processes in the cgroup.
+A threaded domain reverts to a normal domain when the conditions
+clear.
+
+When read, "cgroup.threads" contains the list of the thread IDs of all
+threads in the cgroup. Except that the operations are per-thread
+instead of per-process, "cgroup.threads" has the same format and
+behaves the same way as "cgroup.procs". While "cgroup.threads" can be
+written to in any cgroup, as it can only move threads inside the same
+threaded domain, its operations are confined inside each threaded
+subtree.
+
+The threaded domain cgroup serves as the resource domain for the whole
+subtree, and, while the threads can be scattered across the subtree,
+all the processes are considered to be in the threaded domain cgroup.
+"cgroup.procs" in a threaded domain cgroup contains the PIDs of all
+processes in the subtree and is not readable in the subtree proper.
+However, "cgroup.procs" can be written to from anywhere in the subtree
+to migrate all threads of the matching process to the cgroup.
+
+Only threaded controllers can be enabled in a threaded subtree. When
+a threaded controller is enabled inside a threaded subtree, it only
+accounts for and controls resource consumptions associated with the
+threads in the cgroup and its descendants. All consumptions which
+aren't tied to a specific thread belong to the threaded domain cgroup.
+
+Because a threaded subtree is exempt from no internal process
+constraint, a threaded controller must be able to handle competition
+between threads in a non-leaf cgroup and its child cgroups. Each
+threaded controller defines how such competitions are handled.
+
+
+[Un]populated Notification
+--------------------------
+
+Each non-root cgroup has a "cgroup.events" file which contains
+"populated" field indicating whether the cgroup's sub-hierarchy has
+live processes in it. Its value is 0 if there is no live process in
+the cgroup and its descendants; otherwise, 1. poll and [id]notify
+events are triggered when the value changes. This can be used, for
+example, to start a clean-up operation after all processes of a given
+sub-hierarchy have exited. The populated state updates and
+notifications are recursive. Consider the following sub-hierarchy
+where the numbers in the parentheses represent the numbers of processes
+in each cgroup::
+
+ A(4) - B(0) - C(1)
+ \ D(0)
+
+A, B and C's "populated" fields would be 1 while D's 0. After the one
+process in C exits, B and C's "populated" fields would flip to "0" and
+file modified events will be generated on the "cgroup.events" files of
+both cgroups.
+
+
+Controlling Controllers
+-----------------------
+
+Enabling and Disabling
+~~~~~~~~~~~~~~~~~~~~~~
+
+Each cgroup has a "cgroup.controllers" file which lists all
+controllers available for the cgroup to enable::
+
+ # cat cgroup.controllers
+ cpu io memory
+
+No controller is enabled by default. Controllers can be enabled and
+disabled by writing to the "cgroup.subtree_control" file::
+
+ # echo "+cpu +memory -io" > cgroup.subtree_control
+
+Only controllers which are listed in "cgroup.controllers" can be
+enabled. When multiple operations are specified as above, either they
+all succeed or fail. If multiple operations on the same controller
+are specified, the last one is effective.
+
+Enabling a controller in a cgroup indicates that the distribution of
+the target resource across its immediate children will be controlled.
+Consider the following sub-hierarchy. The enabled controllers are
+listed in parentheses::
+
+ A(cpu,memory) - B(memory) - C()
+ \ D()
+
+As A has "cpu" and "memory" enabled, A will control the distribution
+of CPU cycles and memory to its children, in this case, B. As B has
+"memory" enabled but not "CPU", C and D will compete freely on CPU
+cycles but their division of memory available to B will be controlled.
+
+As a controller regulates the distribution of the target resource to
+the cgroup's children, enabling it creates the controller's interface
+files in the child cgroups. In the above example, enabling "cpu" on B
+would create the "cpu." prefixed controller interface files in C and
+D. Likewise, disabling "memory" from B would remove the "memory."
+prefixed controller interface files from C and D. This means that the
+controller interface files - anything which doesn't start with
+"cgroup." are owned by the parent rather than the cgroup itself.
+
+
+Top-down Constraint
+~~~~~~~~~~~~~~~~~~~
+
+Resources are distributed top-down and a cgroup can further distribute
+a resource only if the resource has been distributed to it from the
+parent. This means that all non-root "cgroup.subtree_control" files
+can only contain controllers which are enabled in the parent's
+"cgroup.subtree_control" file. A controller can be enabled only if
+the parent has the controller enabled and a controller can't be
+disabled if one or more children have it enabled.
+
+
+No Internal Process Constraint
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Non-root cgroups can distribute domain resources to their children
+only when they don't have any processes of their own. In other words,
+only domain cgroups which don't contain any processes can have domain
+controllers enabled in their "cgroup.subtree_control" files.
+
+This guarantees that, when a domain controller is looking at the part
+of the hierarchy which has it enabled, processes are always only on
+the leaves. This rules out situations where child cgroups compete
+against internal processes of the parent.
+
+The root cgroup is exempt from this restriction. Root contains
+processes and anonymous resource consumption which can't be associated
+with any other cgroups and requires special treatment from most
+controllers. How resource consumption in the root cgroup is governed
+is up to each controller (for more information on this topic please
+refer to the Non-normative information section in the Controllers
+chapter).
+
+Note that the restriction doesn't get in the way if there is no
+enabled controller in the cgroup's "cgroup.subtree_control". This is
+important as otherwise it wouldn't be possible to create children of a
+populated cgroup. To control resource distribution of a cgroup, the
+cgroup must create children and transfer all its processes to the
+children before enabling controllers in its "cgroup.subtree_control"
+file.
+
+
+Delegation
+----------
+
+Model of Delegation
+~~~~~~~~~~~~~~~~~~~
+
+A cgroup can be delegated in two ways. First, to a less privileged
+user by granting write access of the directory and its "cgroup.procs",
+"cgroup.threads" and "cgroup.subtree_control" files to the user.
+Second, if the "nsdelegate" mount option is set, automatically to a
+cgroup namespace on namespace creation.
+
+Because the resource control interface files in a given directory
+control the distribution of the parent's resources, the delegatee
+shouldn't be allowed to write to them. For the first method, this is
+achieved by not granting access to these files. For the second, the
+kernel rejects writes to all files other than "cgroup.procs" and
+"cgroup.subtree_control" on a namespace root from inside the
+namespace.
+
+The end results are equivalent for both delegation types. Once
+delegated, the user can build sub-hierarchy under the directory,
+organize processes inside it as it sees fit and further distribute the
+resources it received from the parent. The limits and other settings
+of all resource controllers are hierarchical and regardless of what
+happens in the delegated sub-hierarchy, nothing can escape the
+resource restrictions imposed by the parent.
+
+Currently, cgroup doesn't impose any restrictions on the number of
+cgroups in or nesting depth of a delegated sub-hierarchy; however,
+this may be limited explicitly in the future.
+
+
+Delegation Containment
+~~~~~~~~~~~~~~~~~~~~~~
+
+A delegated sub-hierarchy is contained in the sense that processes
+can't be moved into or out of the sub-hierarchy by the delegatee.
+
+For delegations to a less privileged user, this is achieved by
+requiring the following conditions for a process with a non-root euid
+to migrate a target process into a cgroup by writing its PID to the
+"cgroup.procs" file.
+
+- The writer must have write access to the "cgroup.procs" file.
+
+- The writer must have write access to the "cgroup.procs" file of the
+ common ancestor of the source and destination cgroups.
+
+The above two constraints ensure that while a delegatee may migrate
+processes around freely in the delegated sub-hierarchy it can't pull
+in from or push out to outside the sub-hierarchy.
+
+For an example, let's assume cgroups C0 and C1 have been delegated to
+user U0 who created C00, C01 under C0 and C10 under C1 as follows and
+all processes under C0 and C1 belong to U0::
+
+ ~~~~~~~~~~~~~ - C0 - C00
+ ~ cgroup ~ \ C01
+ ~ hierarchy ~
+ ~~~~~~~~~~~~~ - C1 - C10
+
+Let's also say U0 wants to write the PID of a process which is
+currently in C10 into "C00/cgroup.procs". U0 has write access to the
+file; however, the common ancestor of the source cgroup C10 and the
+destination cgroup C00 is above the points of delegation and U0 would
+not have write access to its "cgroup.procs" files and thus the write
+will be denied with -EACCES.
+
+For delegations to namespaces, containment is achieved by requiring
+that both the source and destination cgroups are reachable from the
+namespace of the process which is attempting the migration. If either
+is not reachable, the migration is rejected with -ENOENT.
+
+
+Guidelines
+----------
+
+Organize Once and Control
+~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Migrating a process across cgroups is a relatively expensive operation
+and stateful resources such as memory are not moved together with the
+process. This is an explicit design decision as there often exist
+inherent trade-offs between migration and various hot paths in terms
+of synchronization cost.
+
+As such, migrating processes across cgroups frequently as a means to
+apply different resource restrictions is discouraged. A workload
+should be assigned to a cgroup according to the system's logical and
+resource structure once on start-up. Dynamic adjustments to resource
+distribution can be made by changing controller configuration through
+the interface files.
+
+
+Avoid Name Collisions
+~~~~~~~~~~~~~~~~~~~~~
+
+Interface files for a cgroup and its children cgroups occupy the same
+directory and it is possible to create children cgroups which collide
+with interface files.
+
+All cgroup core interface files are prefixed with "cgroup." and each
+controller's interface files are prefixed with the controller name and
+a dot. A controller's name is composed of lower case alphabets and
+'_'s but never begins with an '_' so it can be used as the prefix
+character for collision avoidance. Also, interface file names won't
+start or end with terms which are often used in categorizing workloads
+such as job, service, slice, unit or workload.
+
+cgroup doesn't do anything to prevent name collisions and it's the
+user's responsibility to avoid them.
+
+
+Resource Distribution Models
+============================
+
+cgroup controllers implement several resource distribution schemes
+depending on the resource type and expected use cases. This section
+describes major schemes in use along with their expected behaviors.
+
+
+Weights
+-------
+
+A parent's resource is distributed by adding up the weights of all
+active children and giving each the fraction matching the ratio of its
+weight against the sum. As only children which can make use of the
+resource at the moment participate in the distribution, this is
+work-conserving. Due to the dynamic nature, this model is usually
+used for stateless resources.
+
+All weights are in the range [1, 10000] with the default at 100. This
+allows symmetric multiplicative biases in both directions at fine
+enough granularity while staying in the intuitive range.
+
+As long as the weight is in range, all configuration combinations are
+valid and there is no reason to reject configuration changes or
+process migrations.
+
+"cpu.weight" proportionally distributes CPU cycles to active children
+and is an example of this type.
+
+
+.. _cgroupv2-limits-distributor:
+
+Limits
+------
+
+A child can only consume up to the configured amount of the resource.
+Limits can be over-committed - the sum of the limits of children can
+exceed the amount of resource available to the parent.
+
+Limits are in the range [0, max] and defaults to "max", which is noop.
+
+As limits can be over-committed, all configuration combinations are
+valid and there is no reason to reject configuration changes or
+process migrations.
+
+"io.max" limits the maximum BPS and/or IOPS that a cgroup can consume
+on an IO device and is an example of this type.
+
+.. _cgroupv2-protections-distributor:
+
+Protections
+-----------
+
+A cgroup is protected up to the configured amount of the resource
+as long as the usages of all its ancestors are under their
+protected levels. Protections can be hard guarantees or best effort
+soft boundaries. Protections can also be over-committed in which case
+only up to the amount available to the parent is protected among
+children.
+
+Protections are in the range [0, max] and defaults to 0, which is
+noop.
+
+As protections can be over-committed, all configuration combinations
+are valid and there is no reason to reject configuration changes or
+process migrations.
+
+"memory.low" implements best-effort memory protection and is an
+example of this type.
+
+
+Allocations
+-----------
+
+A cgroup is exclusively allocated a certain amount of a finite
+resource. Allocations can't be over-committed - the sum of the
+allocations of children can not exceed the amount of resource
+available to the parent.
+
+Allocations are in the range [0, max] and defaults to 0, which is no
+resource.
+
+As allocations can't be over-committed, some configuration
+combinations are invalid and should be rejected. Also, if the
+resource is mandatory for execution of processes, process migrations
+may be rejected.
+
+"cpu.rt.max" hard-allocates realtime slices and is an example of this
+type.
+
+
+Interface Files
+===============
+
+Format
+------
+
+All interface files should be in one of the following formats whenever
+possible::
+
+ New-line separated values
+ (when only one value can be written at once)
+
+ VAL0\n
+ VAL1\n
+ ...
+
+ Space separated values
+ (when read-only or multiple values can be written at once)
+
+ VAL0 VAL1 ...\n
+
+ Flat keyed
+
+ KEY0 VAL0\n
+ KEY1 VAL1\n
+ ...
+
+ Nested keyed
+
+ KEY0 SUB_KEY0=VAL00 SUB_KEY1=VAL01...
+ KEY1 SUB_KEY0=VAL10 SUB_KEY1=VAL11...
+ ...
+
+For a writable file, the format for writing should generally match
+reading; however, controllers may allow omitting later fields or
+implement restricted shortcuts for most common use cases.
+
+For both flat and nested keyed files, only the values for a single key
+can be written at a time. For nested keyed files, the sub key pairs
+may be specified in any order and not all pairs have to be specified.
+
+
+Conventions
+-----------
+
+- Settings for a single feature should be contained in a single file.
+
+- The root cgroup should be exempt from resource control and thus
+ shouldn't have resource control interface files.
+
+- The default time unit is microseconds. If a different unit is ever
+ used, an explicit unit suffix must be present.
+
+- A parts-per quantity should use a percentage decimal with at least
+ two digit fractional part - e.g. 13.40.
+
+- If a controller implements weight based resource distribution, its
+ interface file should be named "weight" and have the range [1,
+ 10000] with 100 as the default. The values are chosen to allow
+ enough and symmetric bias in both directions while keeping it
+ intuitive (the default is 100%).
+
+- If a controller implements an absolute resource guarantee and/or
+ limit, the interface files should be named "min" and "max"
+ respectively. If a controller implements best effort resource
+ guarantee and/or limit, the interface files should be named "low"
+ and "high" respectively.
+
+ In the above four control files, the special token "max" should be
+ used to represent upward infinity for both reading and writing.
+
+- If a setting has a configurable default value and keyed specific
+ overrides, the default entry should be keyed with "default" and
+ appear as the first entry in the file.
+
+ The default value can be updated by writing either "default $VAL" or
+ "$VAL".
+
+ When writing to update a specific override, "default" can be used as
+ the value to indicate removal of the override. Override entries
+ with "default" as the value must not appear when read.
+
+ For example, a setting which is keyed by major:minor device numbers
+ with integer values may look like the following::
+
+ # cat cgroup-example-interface-file
+ default 150
+ 8:0 300
+
+ The default value can be updated by::
+
+ # echo 125 > cgroup-example-interface-file
+
+ or::
+
+ # echo "default 125" > cgroup-example-interface-file
+
+ An override can be set by::
+
+ # echo "8:16 170" > cgroup-example-interface-file
+
+ and cleared by::
+
+ # echo "8:0 default" > cgroup-example-interface-file
+ # cat cgroup-example-interface-file
+ default 125
+ 8:16 170
+
+- For events which are not very high frequency, an interface file
+ "events" should be created which lists event key value pairs.
+ Whenever a notifiable event happens, file modified event should be
+ generated on the file.
+
+
+Core Interface Files
+--------------------
+
+All cgroup core files are prefixed with "cgroup."
+
+ cgroup.type
+ A read-write single value file which exists on non-root
+ cgroups.
+
+ When read, it indicates the current type of the cgroup, which
+ can be one of the following values.
+
+ - "domain" : A normal valid domain cgroup.
+
+ - "domain threaded" : A threaded domain cgroup which is
+ serving as the root of a threaded subtree.
+
+ - "domain invalid" : A cgroup which is in an invalid state.
+ It can't be populated or have controllers enabled. It may
+ be allowed to become a threaded cgroup.
+
+ - "threaded" : A threaded cgroup which is a member of a
+ threaded subtree.
+
+ A cgroup can be turned into a threaded cgroup by writing
+ "threaded" to this file.
+
+ cgroup.procs
+ A read-write new-line separated values file which exists on
+ all cgroups.
+
+ When read, it lists the PIDs of all processes which belong to
+ the cgroup one-per-line. The PIDs are not ordered and the
+ same PID may show up more than once if the process got moved
+ to another cgroup and then back or the PID got recycled while
+ reading.
+
+ A PID can be written to migrate the process associated with
+ the PID to the cgroup. The writer should match all of the
+ following conditions.
+
+ - It must have write access to the "cgroup.procs" file.
+
+ - It must have write access to the "cgroup.procs" file of the
+ common ancestor of the source and destination cgroups.
+
+ When delegating a sub-hierarchy, write access to this file
+ should be granted along with the containing directory.
+
+ In a threaded cgroup, reading this file fails with EOPNOTSUPP
+ as all the processes belong to the thread root. Writing is
+ supported and moves every thread of the process to the cgroup.
+
+ cgroup.threads
+ A read-write new-line separated values file which exists on
+ all cgroups.
+
+ When read, it lists the TIDs of all threads which belong to
+ the cgroup one-per-line. The TIDs are not ordered and the
+ same TID may show up more than once if the thread got moved to
+ another cgroup and then back or the TID got recycled while
+ reading.
+
+ A TID can be written to migrate the thread associated with the
+ TID to the cgroup. The writer should match all of the
+ following conditions.
+
+ - It must have write access to the "cgroup.threads" file.
+
+ - The cgroup that the thread is currently in must be in the
+ same resource domain as the destination cgroup.
+
+ - It must have write access to the "cgroup.procs" file of the
+ common ancestor of the source and destination cgroups.
+
+ When delegating a sub-hierarchy, write access to this file
+ should be granted along with the containing directory.
+
+ cgroup.controllers
+ A read-only space separated values file which exists on all
+ cgroups.
+
+ It shows space separated list of all controllers available to
+ the cgroup. The controllers are not ordered.
+
+ cgroup.subtree_control
+ A read-write space separated values file which exists on all
+ cgroups. Starts out empty.
+
+ When read, it shows space separated list of the controllers
+ which are enabled to control resource distribution from the
+ cgroup to its children.
+
+ Space separated list of controllers prefixed with '+' or '-'
+ can be written to enable or disable controllers. A controller
+ name prefixed with '+' enables the controller and '-'
+ disables. If a controller appears more than once on the list,
+ the last one is effective. When multiple enable and disable
+ operations are specified, either all succeed or all fail.
+
+ cgroup.events
+ A read-only flat-keyed file which exists on non-root cgroups.
+ The following entries are defined. Unless specified
+ otherwise, a value change in this file generates a file
+ modified event.
+
+ populated
+ 1 if the cgroup or its descendants contains any live
+ processes; otherwise, 0.
+ frozen
+ 1 if the cgroup is frozen; otherwise, 0.
+
+ cgroup.max.descendants
+ A read-write single value files. The default is "max".
+
+ Maximum allowed number of descent cgroups.
+ If the actual number of descendants is equal or larger,
+ an attempt to create a new cgroup in the hierarchy will fail.
+
+ cgroup.max.depth
+ A read-write single value files. The default is "max".
+
+ Maximum allowed descent depth below the current cgroup.
+ If the actual descent depth is equal or larger,
+ an attempt to create a new child cgroup will fail.
+
+ cgroup.stat
+ A read-only flat-keyed file with the following entries:
+
+ nr_descendants
+ Total number of visible descendant cgroups.
+
+ nr_dying_descendants
+ Total number of dying descendant cgroups. A cgroup becomes
+ dying after being deleted by a user. The cgroup will remain
+ in dying state for some time undefined time (which can depend
+ on system load) before being completely destroyed.
+
+ A process can't enter a dying cgroup under any circumstances,
+ a dying cgroup can't revive.
+
+ A dying cgroup can consume system resources not exceeding
+ limits, which were active at the moment of cgroup deletion.
+
+ cgroup.freeze
+ A read-write single value file which exists on non-root cgroups.
+ Allowed values are "0" and "1". The default is "0".
+
+ Writing "1" to the file causes freezing of the cgroup and all
+ descendant cgroups. This means that all belonging processes will
+ be stopped and will not run until the cgroup will be explicitly
+ unfrozen. Freezing of the cgroup may take some time; when this action
+ is completed, the "frozen" value in the cgroup.events control file
+ will be updated to "1" and the corresponding notification will be
+ issued.
+
+ A cgroup can be frozen either by its own settings, or by settings
+ of any ancestor cgroups. If any of ancestor cgroups is frozen, the
+ cgroup will remain frozen.
+
+ Processes in the frozen cgroup can be killed by a fatal signal.
+ They also can enter and leave a frozen cgroup: either by an explicit
+ move by a user, or if freezing of the cgroup races with fork().
+ If a process is moved to a frozen cgroup, it stops. If a process is
+ moved out of a frozen cgroup, it becomes running.
+
+ Frozen status of a cgroup doesn't affect any cgroup tree operations:
+ it's possible to delete a frozen (and empty) cgroup, as well as
+ create new sub-cgroups.
+
+ cgroup.kill
+ A write-only single value file which exists in non-root cgroups.
+ The only allowed value is "1".
+
+ Writing "1" to the file causes the cgroup and all descendant cgroups to
+ be killed. This means that all processes located in the affected cgroup
+ tree will be killed via SIGKILL.
+
+ Killing a cgroup tree will deal with concurrent forks appropriately and
+ is protected against migrations.
+
+ In a threaded cgroup, writing this file fails with EOPNOTSUPP as
+ killing cgroups is a process directed operation, i.e. it affects
+ the whole thread-group.
+
+ cgroup.pressure
+ A read-write single value file that allowed values are "0" and "1".
+ The default is "1".
+
+ Writing "0" to the file will disable the cgroup PSI accounting.
+ Writing "1" to the file will re-enable the cgroup PSI accounting.
+
+ This control attribute is not hierarchical, so disable or enable PSI
+ accounting in a cgroup does not affect PSI accounting in descendants
+ and doesn't need pass enablement via ancestors from root.
+
+ The reason this control attribute exists is that PSI accounts stalls for
+ each cgroup separately and aggregates it at each level of the hierarchy.
+ This may cause non-negligible overhead for some workloads when under
+ deep level of the hierarchy, in which case this control attribute can
+ be used to disable PSI accounting in the non-leaf cgroups.
+
+ irq.pressure
+ A read-write nested-keyed file.
+
+ Shows pressure stall information for IRQ/SOFTIRQ. See
+ :ref:`Documentation/accounting/psi.rst <psi>` for details.
+
+Controllers
+===========
+
+.. _cgroup-v2-cpu:
+
+CPU
+---
+
+The "cpu" controllers regulates distribution of CPU cycles. This
+controller implements weight and absolute bandwidth limit models for
+normal scheduling policy and absolute bandwidth allocation model for
+realtime scheduling policy.
+
+In all the above models, cycles distribution is defined only on a temporal
+base and it does not account for the frequency at which tasks are executed.
+The (optional) utilization clamping support allows to hint the schedutil
+cpufreq governor about the minimum desired frequency which should always be
+provided by a CPU, as well as the maximum desired frequency, which should not
+be exceeded by a CPU.
+
+WARNING: cgroup2 doesn't yet support control of realtime processes and
+the cpu controller can only be enabled when all RT processes are in
+the root cgroup. Be aware that system management software may already
+have placed RT processes into nonroot cgroups during the system boot
+process, and these processes may need to be moved to the root cgroup
+before the cpu controller can be enabled.
+
+
+CPU Interface Files
+~~~~~~~~~~~~~~~~~~~
+
+All time durations are in microseconds.
+
+ cpu.stat
+ A read-only flat-keyed file.
+ This file exists whether the controller is enabled or not.
+
+ It always reports the following three stats:
+
+ - usage_usec
+ - user_usec
+ - system_usec
+
+ and the following five when the controller is enabled:
+
+ - nr_periods
+ - nr_throttled
+ - throttled_usec
+ - nr_bursts
+ - burst_usec
+
+ cpu.weight
+ A read-write single value file which exists on non-root
+ cgroups. The default is "100".
+
+ The weight in the range [1, 10000].
+
+ cpu.weight.nice
+ A read-write single value file which exists on non-root
+ cgroups. The default is "0".
+
+ The nice value is in the range [-20, 19].
+
+ This interface file is an alternative interface for
+ "cpu.weight" and allows reading and setting weight using the
+ same values used by nice(2). Because the range is smaller and
+ granularity is coarser for the nice values, the read value is
+ the closest approximation of the current weight.
+
+ cpu.max
+ A read-write two value file which exists on non-root cgroups.
+ The default is "max 100000".
+
+ The maximum bandwidth limit. It's in the following format::
+
+ $MAX $PERIOD
+
+ which indicates that the group may consume up to $MAX in each
+ $PERIOD duration. "max" for $MAX indicates no limit. If only
+ one number is written, $MAX is updated.
+
+ cpu.max.burst
+ A read-write single value file which exists on non-root
+ cgroups. The default is "0".
+
+ The burst in the range [0, $MAX].
+
+ cpu.pressure
+ A read-write nested-keyed file.
+
+ Shows pressure stall information for CPU. See
+ :ref:`Documentation/accounting/psi.rst <psi>` for details.
+
+ cpu.uclamp.min
+ A read-write single value file which exists on non-root cgroups.
+ The default is "0", i.e. no utilization boosting.
+
+ The requested minimum utilization (protection) as a percentage
+ rational number, e.g. 12.34 for 12.34%.
+
+ This interface allows reading and setting minimum utilization clamp
+ values similar to the sched_setattr(2). This minimum utilization
+ value is used to clamp the task specific minimum utilization clamp.
+
+ The requested minimum utilization (protection) is always capped by
+ the current value for the maximum utilization (limit), i.e.
+ `cpu.uclamp.max`.
+
+ cpu.uclamp.max
+ A read-write single value file which exists on non-root cgroups.
+ The default is "max". i.e. no utilization capping
+
+ The requested maximum utilization (limit) as a percentage rational
+ number, e.g. 98.76 for 98.76%.
+
+ This interface allows reading and setting maximum utilization clamp
+ values similar to the sched_setattr(2). This maximum utilization
+ value is used to clamp the task specific maximum utilization clamp.
+
+
+
+Memory
+------
+
+The "memory" controller regulates distribution of memory. Memory is
+stateful and implements both limit and protection models. Due to the
+intertwining between memory usage and reclaim pressure and the
+stateful nature of memory, the distribution model is relatively
+complex.
+
+While not completely water-tight, all major memory usages by a given
+cgroup are tracked so that the total memory consumption can be
+accounted and controlled to a reasonable extent. Currently, the
+following types of memory usages are tracked.
+
+- Userland memory - page cache and anonymous memory.
+
+- Kernel data structures such as dentries and inodes.
+
+- TCP socket buffers.
+
+The above list may expand in the future for better coverage.
+
+
+Memory Interface Files
+~~~~~~~~~~~~~~~~~~~~~~
+
+All memory amounts are in bytes. If a value which is not aligned to
+PAGE_SIZE is written, the value may be rounded up to the closest
+PAGE_SIZE multiple when read back.
+
+ memory.current
+ A read-only single value file which exists on non-root
+ cgroups.
+
+ The total amount of memory currently being used by the cgroup
+ and its descendants.
+
+ memory.min
+ A read-write single value file which exists on non-root
+ cgroups. The default is "0".
+
+ Hard memory protection. If the memory usage of a cgroup
+ is within its effective min boundary, the cgroup's memory
+ won't be reclaimed under any conditions. If there is no
+ unprotected reclaimable memory available, OOM killer
+ is invoked. Above the effective min boundary (or
+ effective low boundary if it is higher), pages are reclaimed
+ proportionally to the overage, reducing reclaim pressure for
+ smaller overages.
+
+ Effective min boundary is limited by memory.min values of
+ all ancestor cgroups. If there is memory.min overcommitment
+ (child cgroup or cgroups are requiring more protected memory
+ than parent will allow), then each child cgroup will get
+ the part of parent's protection proportional to its
+ actual memory usage below memory.min.
+
+ Putting more memory than generally available under this
+ protection is discouraged and may lead to constant OOMs.
+
+ If a memory cgroup is not populated with processes,
+ its memory.min is ignored.
+
+ memory.low
+ A read-write single value file which exists on non-root
+ cgroups. The default is "0".
+
+ Best-effort memory protection. If the memory usage of a
+ cgroup is within its effective low boundary, the cgroup's
+ memory won't be reclaimed unless there is no reclaimable
+ memory available in unprotected cgroups.
+ Above the effective low boundary (or
+ effective min boundary if it is higher), pages are reclaimed
+ proportionally to the overage, reducing reclaim pressure for
+ smaller overages.
+
+ Effective low boundary is limited by memory.low values of
+ all ancestor cgroups. If there is memory.low overcommitment
+ (child cgroup or cgroups are requiring more protected memory
+ than parent will allow), then each child cgroup will get
+ the part of parent's protection proportional to its
+ actual memory usage below memory.low.
+
+ Putting more memory than generally available under this
+ protection is discouraged.
+
+ memory.high
+ A read-write single value file which exists on non-root
+ cgroups. The default is "max".
+
+ Memory usage throttle limit. If a cgroup's usage goes
+ over the high boundary, the processes of the cgroup are
+ throttled and put under heavy reclaim pressure.
+
+ Going over the high limit never invokes the OOM killer and
+ under extreme conditions the limit may be breached. The high
+ limit should be used in scenarios where an external process
+ monitors the limited cgroup to alleviate heavy reclaim
+ pressure.
+
+ memory.max
+ A read-write single value file which exists on non-root
+ cgroups. The default is "max".
+
+ Memory usage hard limit. This is the main mechanism to limit
+ memory usage of a cgroup. If a cgroup's memory usage reaches
+ this limit and can't be reduced, the OOM killer is invoked in
+ the cgroup. Under certain circumstances, the usage may go
+ over the limit temporarily.
+
+ In default configuration regular 0-order allocations always
+ succeed unless OOM killer chooses current task as a victim.
+
+ Some kinds of allocations don't invoke the OOM killer.
+ Caller could retry them differently, return into userspace
+ as -ENOMEM or silently ignore in cases like disk readahead.
+
+ memory.reclaim
+ A write-only nested-keyed file which exists for all cgroups.
+
+ This is a simple interface to trigger memory reclaim in the
+ target cgroup.
+
+ This file accepts a single key, the number of bytes to reclaim.
+ No nested keys are currently supported.
+
+ Example::
+
+ echo "1G" > memory.reclaim
+
+ The interface can be later extended with nested keys to
+ configure the reclaim behavior. For example, specify the
+ type of memory to reclaim from (anon, file, ..).
+
+ Please note that the kernel can over or under reclaim from
+ the target cgroup. If less bytes are reclaimed than the
+ specified amount, -EAGAIN is returned.
+
+ Please note that the proactive reclaim (triggered by this
+ interface) is not meant to indicate memory pressure on the
+ memory cgroup. Therefore socket memory balancing triggered by
+ the memory reclaim normally is not exercised in this case.
+ This means that the networking layer will not adapt based on
+ reclaim induced by memory.reclaim.
+
+ memory.peak
+ A read-only single value file which exists on non-root
+ cgroups.
+
+ The max memory usage recorded for the cgroup and its
+ descendants since the creation of the cgroup.
+
+ memory.oom.group
+ A read-write single value file which exists on non-root
+ cgroups. The default value is "0".
+
+ Determines whether the cgroup should be treated as
+ an indivisible workload by the OOM killer. If set,
+ all tasks belonging to the cgroup or to its descendants
+ (if the memory cgroup is not a leaf cgroup) are killed
+ together or not at all. This can be used to avoid
+ partial kills to guarantee workload integrity.
+
+ Tasks with the OOM protection (oom_score_adj set to -1000)
+ are treated as an exception and are never killed.
+
+ If the OOM killer is invoked in a cgroup, it's not going
+ to kill any tasks outside of this cgroup, regardless
+ memory.oom.group values of ancestor cgroups.
+
+ memory.events
+ A read-only flat-keyed file which exists on non-root cgroups.
+ The following entries are defined. Unless specified
+ otherwise, a value change in this file generates a file
+ modified event.
+
+ Note that all fields in this file are hierarchical and the
+ file modified event can be generated due to an event down the
+ hierarchy. For the local events at the cgroup level see
+ memory.events.local.
+
+ low
+ The number of times the cgroup is reclaimed due to
+ high memory pressure even though its usage is under
+ the low boundary. This usually indicates that the low
+ boundary is over-committed.
+
+ high
+ The number of times processes of the cgroup are
+ throttled and routed to perform direct memory reclaim
+ because the high memory boundary was exceeded. For a
+ cgroup whose memory usage is capped by the high limit
+ rather than global memory pressure, this event's
+ occurrences are expected.
+
+ max
+ The number of times the cgroup's memory usage was
+ about to go over the max boundary. If direct reclaim
+ fails to bring it down, the cgroup goes to OOM state.
+
+ oom
+ The number of time the cgroup's memory usage was
+ reached the limit and allocation was about to fail.
+
+ This event is not raised if the OOM killer is not
+ considered as an option, e.g. for failed high-order
+ allocations or if caller asked to not retry attempts.
+
+ oom_kill
+ The number of processes belonging to this cgroup
+ killed by any kind of OOM killer.
+
+ oom_group_kill
+ The number of times a group OOM has occurred.
+
+ memory.events.local
+ Similar to memory.events but the fields in the file are local
+ to the cgroup i.e. not hierarchical. The file modified event
+ generated on this file reflects only the local events.
+
+ memory.stat
+ A read-only flat-keyed file which exists on non-root cgroups.
+
+ This breaks down the cgroup's memory footprint into different
+ types of memory, type-specific details, and other information
+ on the state and past events of the memory management system.
+
+ All memory amounts are in bytes.
+
+ The entries are ordered to be human readable, and new entries
+ can show up in the middle. Don't rely on items remaining in a
+ fixed position; use the keys to look up specific values!
+
+ If the entry has no per-node counter (or not show in the
+ memory.numa_stat). We use 'npn' (non-per-node) as the tag
+ to indicate that it will not show in the memory.numa_stat.
+
+ anon
+ Amount of memory used in anonymous mappings such as
+ brk(), sbrk(), and mmap(MAP_ANONYMOUS)
+
+ file
+ Amount of memory used to cache filesystem data,
+ including tmpfs and shared memory.
+
+ kernel (npn)
+ Amount of total kernel memory, including
+ (kernel_stack, pagetables, percpu, vmalloc, slab) in
+ addition to other kernel memory use cases.
+
+ kernel_stack
+ Amount of memory allocated to kernel stacks.
+
+ pagetables
+ Amount of memory allocated for page tables.
+
+ sec_pagetables
+ Amount of memory allocated for secondary page tables,
+ this currently includes KVM mmu allocations on x86
+ and arm64.
+
+ percpu (npn)
+ Amount of memory used for storing per-cpu kernel
+ data structures.
+
+ sock (npn)
+ Amount of memory used in network transmission buffers
+
+ vmalloc (npn)
+ Amount of memory used for vmap backed memory.
+
+ shmem
+ Amount of cached filesystem data that is swap-backed,
+ such as tmpfs, shm segments, shared anonymous mmap()s
+
+ zswap
+ Amount of memory consumed by the zswap compression backend.
+
+ zswapped
+ Amount of application memory swapped out to zswap.
+
+ file_mapped
+ Amount of cached filesystem data mapped with mmap()
+
+ file_dirty
+ Amount of cached filesystem data that was modified but
+ not yet written back to disk
+
+ file_writeback
+ Amount of cached filesystem data that was modified and
+ is currently being written back to disk
+
+ swapcached
+ Amount of swap cached in memory. The swapcache is accounted
+ against both memory and swap usage.
+
+ anon_thp
+ Amount of memory used in anonymous mappings backed by
+ transparent hugepages
+
+ file_thp
+ Amount of cached filesystem data backed by transparent
+ hugepages
+
+ shmem_thp
+ Amount of shm, tmpfs, shared anonymous mmap()s backed by
+ transparent hugepages
+
+ inactive_anon, active_anon, inactive_file, active_file, unevictable
+ Amount of memory, swap-backed and filesystem-backed,
+ on the internal memory management lists used by the
+ page reclaim algorithm.
+
+ As these represent internal list state (eg. shmem pages are on anon
+ memory management lists), inactive_foo + active_foo may not be equal to
+ the value for the foo counter, since the foo counter is type-based, not
+ list-based.
+
+ slab_reclaimable
+ Part of "slab" that might be reclaimed, such as
+ dentries and inodes.
+
+ slab_unreclaimable
+ Part of "slab" that cannot be reclaimed on memory
+ pressure.
+
+ slab (npn)
+ Amount of memory used for storing in-kernel data
+ structures.
+
+ workingset_refault_anon
+ Number of refaults of previously evicted anonymous pages.
+
+ workingset_refault_file
+ Number of refaults of previously evicted file pages.
+
+ workingset_activate_anon
+ Number of refaulted anonymous pages that were immediately
+ activated.
+
+ workingset_activate_file
+ Number of refaulted file pages that were immediately activated.
+
+ workingset_restore_anon
+ Number of restored anonymous pages which have been detected as
+ an active workingset before they got reclaimed.
+
+ workingset_restore_file
+ Number of restored file pages which have been detected as an
+ active workingset before they got reclaimed.
+
+ workingset_nodereclaim
+ Number of times a shadow node has been reclaimed
+
+ pgscan (npn)
+ Amount of scanned pages (in an inactive LRU list)
+
+ pgsteal (npn)
+ Amount of reclaimed pages
+
+ pgscan_kswapd (npn)
+ Amount of scanned pages by kswapd (in an inactive LRU list)
+
+ pgscan_direct (npn)
+ Amount of scanned pages directly (in an inactive LRU list)
+
+ pgscan_khugepaged (npn)
+ Amount of scanned pages by khugepaged (in an inactive LRU list)
+
+ pgsteal_kswapd (npn)
+ Amount of reclaimed pages by kswapd
+
+ pgsteal_direct (npn)
+ Amount of reclaimed pages directly
+
+ pgsteal_khugepaged (npn)
+ Amount of reclaimed pages by khugepaged
+
+ pgfault (npn)
+ Total number of page faults incurred
+
+ pgmajfault (npn)
+ Number of major page faults incurred
+
+ pgrefill (npn)
+ Amount of scanned pages (in an active LRU list)
+
+ pgactivate (npn)
+ Amount of pages moved to the active LRU list
+
+ pgdeactivate (npn)
+ Amount of pages moved to the inactive LRU list
+
+ pglazyfree (npn)
+ Amount of pages postponed to be freed under memory pressure
+
+ pglazyfreed (npn)
+ Amount of reclaimed lazyfree pages
+
+ thp_fault_alloc (npn)
+ Number of transparent hugepages which were allocated to satisfy
+ a page fault. This counter is not present when CONFIG_TRANSPARENT_HUGEPAGE
+ is not set.
+
+ thp_collapse_alloc (npn)
+ Number of transparent hugepages which were allocated to allow
+ collapsing an existing range of pages. This counter is not
+ present when CONFIG_TRANSPARENT_HUGEPAGE is not set.
+
+ memory.numa_stat
+ A read-only nested-keyed file which exists on non-root cgroups.
+
+ This breaks down the cgroup's memory footprint into different
+ types of memory, type-specific details, and other information
+ per node on the state of the memory management system.
+
+ This is useful for providing visibility into the NUMA locality
+ information within an memcg since the pages are allowed to be
+ allocated from any physical node. One of the use case is evaluating
+ application performance by combining this information with the
+ application's CPU allocation.
+
+ All memory amounts are in bytes.
+
+ The output format of memory.numa_stat is::
+
+ type N0=<bytes in node 0> N1=<bytes in node 1> ...
+
+ The entries are ordered to be human readable, and new entries
+ can show up in the middle. Don't rely on items remaining in a
+ fixed position; use the keys to look up specific values!
+
+ The entries can refer to the memory.stat.
+
+ memory.swap.current
+ A read-only single value file which exists on non-root
+ cgroups.
+
+ The total amount of swap currently being used by the cgroup
+ and its descendants.
+
+ memory.swap.high
+ A read-write single value file which exists on non-root
+ cgroups. The default is "max".
+
+ Swap usage throttle limit. If a cgroup's swap usage exceeds
+ this limit, all its further allocations will be throttled to
+ allow userspace to implement custom out-of-memory procedures.
+
+ This limit marks a point of no return for the cgroup. It is NOT
+ designed to manage the amount of swapping a workload does
+ during regular operation. Compare to memory.swap.max, which
+ prohibits swapping past a set amount, but lets the cgroup
+ continue unimpeded as long as other memory can be reclaimed.
+
+ Healthy workloads are not expected to reach this limit.
+
+ memory.swap.peak
+ A read-only single value file which exists on non-root
+ cgroups.
+
+ The max swap usage recorded for the cgroup and its
+ descendants since the creation of the cgroup.
+
+ memory.swap.max
+ A read-write single value file which exists on non-root
+ cgroups. The default is "max".
+
+ Swap usage hard limit. If a cgroup's swap usage reaches this
+ limit, anonymous memory of the cgroup will not be swapped out.
+
+ memory.swap.events
+ A read-only flat-keyed file which exists on non-root cgroups.
+ The following entries are defined. Unless specified
+ otherwise, a value change in this file generates a file
+ modified event.
+
+ high
+ The number of times the cgroup's swap usage was over
+ the high threshold.
+
+ max
+ The number of times the cgroup's swap usage was about
+ to go over the max boundary and swap allocation
+ failed.
+
+ fail
+ The number of times swap allocation failed either
+ because of running out of swap system-wide or max
+ limit.
+
+ When reduced under the current usage, the existing swap
+ entries are reclaimed gradually and the swap usage may stay
+ higher than the limit for an extended period of time. This
+ reduces the impact on the workload and memory management.
+
+ memory.zswap.current
+ A read-only single value file which exists on non-root
+ cgroups.
+
+ The total amount of memory consumed by the zswap compression
+ backend.
+
+ memory.zswap.max
+ A read-write single value file which exists on non-root
+ cgroups. The default is "max".
+
+ Zswap usage hard limit. If a cgroup's zswap pool reaches this
+ limit, it will refuse to take any more stores before existing
+ entries fault back in or are written out to disk.
+
+ memory.pressure
+ A read-only nested-keyed file.
+
+ Shows pressure stall information for memory. See
+ :ref:`Documentation/accounting/psi.rst <psi>` for details.
+
+
+Usage Guidelines
+~~~~~~~~~~~~~~~~
+
+"memory.high" is the main mechanism to control memory usage.
+Over-committing on high limit (sum of high limits > available memory)
+and letting global memory pressure to distribute memory according to
+usage is a viable strategy.
+
+Because breach of the high limit doesn't trigger the OOM killer but
+throttles the offending cgroup, a management agent has ample
+opportunities to monitor and take appropriate actions such as granting
+more memory or terminating the workload.
+
+Determining whether a cgroup has enough memory is not trivial as
+memory usage doesn't indicate whether the workload can benefit from
+more memory. For example, a workload which writes data received from
+network to a file can use all available memory but can also operate as
+performant with a small amount of memory. A measure of memory
+pressure - how much the workload is being impacted due to lack of
+memory - is necessary to determine whether a workload needs more
+memory; unfortunately, memory pressure monitoring mechanism isn't
+implemented yet.
+
+
+Memory Ownership
+~~~~~~~~~~~~~~~~
+
+A memory area is charged to the cgroup which instantiated it and stays
+charged to the cgroup until the area is released. Migrating a process
+to a different cgroup doesn't move the memory usages that it
+instantiated while in the previous cgroup to the new cgroup.
+
+A memory area may be used by processes belonging to different cgroups.
+To which cgroup the area will be charged is in-deterministic; however,
+over time, the memory area is likely to end up in a cgroup which has
+enough memory allowance to avoid high reclaim pressure.
+
+If a cgroup sweeps a considerable amount of memory which is expected
+to be accessed repeatedly by other cgroups, it may make sense to use
+POSIX_FADV_DONTNEED to relinquish the ownership of memory areas
+belonging to the affected files to ensure correct memory ownership.
+
+
+IO
+--
+
+The "io" controller regulates the distribution of IO resources. This
+controller implements both weight based and absolute bandwidth or IOPS
+limit distribution; however, weight based distribution is available
+only if cfq-iosched is in use and neither scheme is available for
+blk-mq devices.
+
+
+IO Interface Files
+~~~~~~~~~~~~~~~~~~
+
+ io.stat
+ A read-only nested-keyed file.
+
+ Lines are keyed by $MAJ:$MIN device numbers and not ordered.
+ The following nested keys are defined.
+
+ ====== =====================
+ rbytes Bytes read
+ wbytes Bytes written
+ rios Number of read IOs
+ wios Number of write IOs
+ dbytes Bytes discarded
+ dios Number of discard IOs
+ ====== =====================
+
+ An example read output follows::
+
+ 8:16 rbytes=1459200 wbytes=314773504 rios=192 wios=353 dbytes=0 dios=0
+ 8:0 rbytes=90430464 wbytes=299008000 rios=8950 wios=1252 dbytes=50331648 dios=3021
+
+ io.cost.qos
+ A read-write nested-keyed file which exists only on the root
+ cgroup.
+
+ This file configures the Quality of Service of the IO cost
+ model based controller (CONFIG_BLK_CGROUP_IOCOST) which
+ currently implements "io.weight" proportional control. Lines
+ are keyed by $MAJ:$MIN device numbers and not ordered. The
+ line for a given device is populated on the first write for
+ the device on "io.cost.qos" or "io.cost.model". The following
+ nested keys are defined.
+
+ ====== =====================================
+ enable Weight-based control enable
+ ctrl "auto" or "user"
+ rpct Read latency percentile [0, 100]
+ rlat Read latency threshold
+ wpct Write latency percentile [0, 100]
+ wlat Write latency threshold
+ min Minimum scaling percentage [1, 10000]
+ max Maximum scaling percentage [1, 10000]
+ ====== =====================================
+
+ The controller is disabled by default and can be enabled by
+ setting "enable" to 1. "rpct" and "wpct" parameters default
+ to zero and the controller uses internal device saturation
+ state to adjust the overall IO rate between "min" and "max".
+
+ When a better control quality is needed, latency QoS
+ parameters can be configured. For example::
+
+ 8:16 enable=1 ctrl=auto rpct=95.00 rlat=75000 wpct=95.00 wlat=150000 min=50.00 max=150.0
+
+ shows that on sdb, the controller is enabled, will consider
+ the device saturated if the 95th percentile of read completion
+ latencies is above 75ms or write 150ms, and adjust the overall
+ IO issue rate between 50% and 150% accordingly.
+
+ The lower the saturation point, the better the latency QoS at
+ the cost of aggregate bandwidth. The narrower the allowed
+ adjustment range between "min" and "max", the more conformant
+ to the cost model the IO behavior. Note that the IO issue
+ base rate may be far off from 100% and setting "min" and "max"
+ blindly can lead to a significant loss of device capacity or
+ control quality. "min" and "max" are useful for regulating
+ devices which show wide temporary behavior changes - e.g. a
+ ssd which accepts writes at the line speed for a while and
+ then completely stalls for multiple seconds.
+
+ When "ctrl" is "auto", the parameters are controlled by the
+ kernel and may change automatically. Setting "ctrl" to "user"
+ or setting any of the percentile and latency parameters puts
+ it into "user" mode and disables the automatic changes. The
+ automatic mode can be restored by setting "ctrl" to "auto".
+
+ io.cost.model
+ A read-write nested-keyed file which exists only on the root
+ cgroup.
+
+ This file configures the cost model of the IO cost model based
+ controller (CONFIG_BLK_CGROUP_IOCOST) which currently
+ implements "io.weight" proportional control. Lines are keyed
+ by $MAJ:$MIN device numbers and not ordered. The line for a
+ given device is populated on the first write for the device on
+ "io.cost.qos" or "io.cost.model". The following nested keys
+ are defined.
+
+ ===== ================================
+ ctrl "auto" or "user"
+ model The cost model in use - "linear"
+ ===== ================================
+
+ When "ctrl" is "auto", the kernel may change all parameters
+ dynamically. When "ctrl" is set to "user" or any other
+ parameters are written to, "ctrl" become "user" and the
+ automatic changes are disabled.
+
+ When "model" is "linear", the following model parameters are
+ defined.
+
+ ============= ========================================
+ [r|w]bps The maximum sequential IO throughput
+ [r|w]seqiops The maximum 4k sequential IOs per second
+ [r|w]randiops The maximum 4k random IOs per second
+ ============= ========================================
+
+ From the above, the builtin linear model determines the base
+ costs of a sequential and random IO and the cost coefficient
+ for the IO size. While simple, this model can cover most
+ common device classes acceptably.
+
+ The IO cost model isn't expected to be accurate in absolute
+ sense and is scaled to the device behavior dynamically.
+
+ If needed, tools/cgroup/iocost_coef_gen.py can be used to
+ generate device-specific coefficients.
+
+ io.weight
+ A read-write flat-keyed file which exists on non-root cgroups.
+ The default is "default 100".
+
+ The first line is the default weight applied to devices
+ without specific override. The rest are overrides keyed by
+ $MAJ:$MIN device numbers and not ordered. The weights are in
+ the range [1, 10000] and specifies the relative amount IO time
+ the cgroup can use in relation to its siblings.
+
+ The default weight can be updated by writing either "default
+ $WEIGHT" or simply "$WEIGHT". Overrides can be set by writing
+ "$MAJ:$MIN $WEIGHT" and unset by writing "$MAJ:$MIN default".
+
+ An example read output follows::
+
+ default 100
+ 8:16 200
+ 8:0 50
+
+ io.max
+ A read-write nested-keyed file which exists on non-root
+ cgroups.
+
+ BPS and IOPS based IO limit. Lines are keyed by $MAJ:$MIN
+ device numbers and not ordered. The following nested keys are
+ defined.
+
+ ===== ==================================
+ rbps Max read bytes per second
+ wbps Max write bytes per second
+ riops Max read IO operations per second
+ wiops Max write IO operations per second
+ ===== ==================================
+
+ When writing, any number of nested key-value pairs can be
+ specified in any order. "max" can be specified as the value
+ to remove a specific limit. If the same key is specified
+ multiple times, the outcome is undefined.
+
+ BPS and IOPS are measured in each IO direction and IOs are
+ delayed if limit is reached. Temporary bursts are allowed.
+
+ Setting read limit at 2M BPS and write at 120 IOPS for 8:16::
+
+ echo "8:16 rbps=2097152 wiops=120" > io.max
+
+ Reading returns the following::
+
+ 8:16 rbps=2097152 wbps=max riops=max wiops=120
+
+ Write IOPS limit can be removed by writing the following::
+
+ echo "8:16 wiops=max" > io.max
+
+ Reading now returns the following::
+
+ 8:16 rbps=2097152 wbps=max riops=max wiops=max
+
+ io.pressure
+ A read-only nested-keyed file.
+
+ Shows pressure stall information for IO. See
+ :ref:`Documentation/accounting/psi.rst <psi>` for details.
+
+
+Writeback
+~~~~~~~~~
+
+Page cache is dirtied through buffered writes and shared mmaps and
+written asynchronously to the backing filesystem by the writeback
+mechanism. Writeback sits between the memory and IO domains and
+regulates the proportion of dirty memory by balancing dirtying and
+write IOs.
+
+The io controller, in conjunction with the memory controller,
+implements control of page cache writeback IOs. The memory controller
+defines the memory domain that dirty memory ratio is calculated and
+maintained for and the io controller defines the io domain which
+writes out dirty pages for the memory domain. Both system-wide and
+per-cgroup dirty memory states are examined and the more restrictive
+of the two is enforced.
+
+cgroup writeback requires explicit support from the underlying
+filesystem. Currently, cgroup writeback is implemented on ext2, ext4,
+btrfs, f2fs, and xfs. On other filesystems, all writeback IOs are
+attributed to the root cgroup.
+
+There are inherent differences in memory and writeback management
+which affects how cgroup ownership is tracked. Memory is tracked per
+page while writeback per inode. For the purpose of writeback, an
+inode is assigned to a cgroup and all IO requests to write dirty pages
+from the inode are attributed to that cgroup.
+
+As cgroup ownership for memory is tracked per page, there can be pages
+which are associated with different cgroups than the one the inode is
+associated with. These are called foreign pages. The writeback
+constantly keeps track of foreign pages and, if a particular foreign
+cgroup becomes the majority over a certain period of time, switches
+the ownership of the inode to that cgroup.
+
+While this model is enough for most use cases where a given inode is
+mostly dirtied by a single cgroup even when the main writing cgroup
+changes over time, use cases where multiple cgroups write to a single
+inode simultaneously are not supported well. In such circumstances, a
+significant portion of IOs are likely to be attributed incorrectly.
+As memory controller assigns page ownership on the first use and
+doesn't update it until the page is released, even if writeback
+strictly follows page ownership, multiple cgroups dirtying overlapping
+areas wouldn't work as expected. It's recommended to avoid such usage
+patterns.
+
+The sysctl knobs which affect writeback behavior are applied to cgroup
+writeback as follows.
+
+ vm.dirty_background_ratio, vm.dirty_ratio
+ These ratios apply the same to cgroup writeback with the
+ amount of available memory capped by limits imposed by the
+ memory controller and system-wide clean memory.
+
+ vm.dirty_background_bytes, vm.dirty_bytes
+ For cgroup writeback, this is calculated into ratio against
+ total available memory and applied the same way as
+ vm.dirty[_background]_ratio.
+
+
+IO Latency
+~~~~~~~~~~
+
+This is a cgroup v2 controller for IO workload protection. You provide a group
+with a latency target, and if the average latency exceeds that target the
+controller will throttle any peers that have a lower latency target than the
+protected workload.
+
+The limits are only applied at the peer level in the hierarchy. This means that
+in the diagram below, only groups A, B, and C will influence each other, and
+groups D and F will influence each other. Group G will influence nobody::
+
+ [root]
+ / | \
+ A B C
+ / \ |
+ D F G
+
+
+So the ideal way to configure this is to set io.latency in groups A, B, and C.
+Generally you do not want to set a value lower than the latency your device
+supports. Experiment to find the value that works best for your workload.
+Start at higher than the expected latency for your device and watch the
+avg_lat value in io.stat for your workload group to get an idea of the
+latency you see during normal operation. Use the avg_lat value as a basis for
+your real setting, setting at 10-15% higher than the value in io.stat.
+
+How IO Latency Throttling Works
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+io.latency is work conserving; so as long as everybody is meeting their latency
+target the controller doesn't do anything. Once a group starts missing its
+target it begins throttling any peer group that has a higher target than itself.
+This throttling takes 2 forms:
+
+- Queue depth throttling. This is the number of outstanding IO's a group is
+ allowed to have. We will clamp down relatively quickly, starting at no limit
+ and going all the way down to 1 IO at a time.
+
+- Artificial delay induction. There are certain types of IO that cannot be
+ throttled without possibly adversely affecting higher priority groups. This
+ includes swapping and metadata IO. These types of IO are allowed to occur
+ normally, however they are "charged" to the originating group. If the
+ originating group is being throttled you will see the use_delay and delay
+ fields in io.stat increase. The delay value is how many microseconds that are
+ being added to any process that runs in this group. Because this number can
+ grow quite large if there is a lot of swapping or metadata IO occurring we
+ limit the individual delay events to 1 second at a time.
+
+Once the victimized group starts meeting its latency target again it will start
+unthrottling any peer groups that were throttled previously. If the victimized
+group simply stops doing IO the global counter will unthrottle appropriately.
+
+IO Latency Interface Files
+~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+ io.latency
+ This takes a similar format as the other controllers.
+
+ "MAJOR:MINOR target=<target time in microseconds>"
+
+ io.stat
+ If the controller is enabled you will see extra stats in io.stat in
+ addition to the normal ones.
+
+ depth
+ This is the current queue depth for the group.
+
+ avg_lat
+ This is an exponential moving average with a decay rate of 1/exp
+ bound by the sampling interval. The decay rate interval can be
+ calculated by multiplying the win value in io.stat by the
+ corresponding number of samples based on the win value.
+
+ win
+ The sampling window size in milliseconds. This is the minimum
+ duration of time between evaluation events. Windows only elapse
+ with IO activity. Idle periods extend the most recent window.
+
+IO Priority
+~~~~~~~~~~~
+
+A single attribute controls the behavior of the I/O priority cgroup policy,
+namely the blkio.prio.class attribute. The following values are accepted for
+that attribute:
+
+ no-change
+ Do not modify the I/O priority class.
+
+ promote-to-rt
+ For requests that have a non-RT I/O priority class, change it into RT.
+ Also change the priority level of these requests to 4. Do not modify
+ the I/O priority of requests that have priority class RT.
+
+ restrict-to-be
+ For requests that do not have an I/O priority class or that have I/O
+ priority class RT, change it into BE. Also change the priority level
+ of these requests to 0. Do not modify the I/O priority class of
+ requests that have priority class IDLE.
+
+ idle
+ Change the I/O priority class of all requests into IDLE, the lowest
+ I/O priority class.
+
+ none-to-rt
+ Deprecated. Just an alias for promote-to-rt.
+
+The following numerical values are associated with the I/O priority policies:
+
++----------------+---+
+| no-change | 0 |
++----------------+---+
+| rt-to-be | 2 |
++----------------+---+
+| all-to-idle | 3 |
++----------------+---+
+
+The numerical value that corresponds to each I/O priority class is as follows:
+
++-------------------------------+---+
+| IOPRIO_CLASS_NONE | 0 |
++-------------------------------+---+
+| IOPRIO_CLASS_RT (real-time) | 1 |
++-------------------------------+---+
+| IOPRIO_CLASS_BE (best effort) | 2 |
++-------------------------------+---+
+| IOPRIO_CLASS_IDLE | 3 |
++-------------------------------+---+
+
+The algorithm to set the I/O priority class for a request is as follows:
+
+- If I/O priority class policy is promote-to-rt, change the request I/O
+ priority class to IOPRIO_CLASS_RT and change the request I/O priority
+ level to 4.
+- If I/O priorityt class is not promote-to-rt, translate the I/O priority
+ class policy into a number, then change the request I/O priority class
+ into the maximum of the I/O priority class policy number and the numerical
+ I/O priority class.
+
+PID
+---
+
+The process number controller is used to allow a cgroup to stop any
+new tasks from being fork()'d or clone()'d after a specified limit is
+reached.
+
+The number of tasks in a cgroup can be exhausted in ways which other
+controllers cannot prevent, thus warranting its own controller. For
+example, a fork bomb is likely to exhaust the number of tasks before
+hitting memory restrictions.
+
+Note that PIDs used in this controller refer to TIDs, process IDs as
+used by the kernel.
+
+
+PID Interface Files
+~~~~~~~~~~~~~~~~~~~
+
+ pids.max
+ A read-write single value file which exists on non-root
+ cgroups. The default is "max".
+
+ Hard limit of number of processes.
+
+ pids.current
+ A read-only single value file which exists on all cgroups.
+
+ The number of processes currently in the cgroup and its
+ descendants.
+
+Organisational operations are not blocked by cgroup policies, so it is
+possible to have pids.current > pids.max. This can be done by either
+setting the limit to be smaller than pids.current, or attaching enough
+processes to the cgroup such that pids.current is larger than
+pids.max. However, it is not possible to violate a cgroup PID policy
+through fork() or clone(). These will return -EAGAIN if the creation
+of a new process would cause a cgroup policy to be violated.
+
+
+Cpuset
+------
+
+The "cpuset" controller provides a mechanism for constraining
+the CPU and memory node placement of tasks to only the resources
+specified in the cpuset interface files in a task's current cgroup.
+This is especially valuable on large NUMA systems where placing jobs
+on properly sized subsets of the systems with careful processor and
+memory placement to reduce cross-node memory access and contention
+can improve overall system performance.
+
+The "cpuset" controller is hierarchical. That means the controller
+cannot use CPUs or memory nodes not allowed in its parent.
+
+
+Cpuset Interface Files
+~~~~~~~~~~~~~~~~~~~~~~
+
+ cpuset.cpus
+ A read-write multiple values file which exists on non-root
+ cpuset-enabled cgroups.
+
+ It lists the requested CPUs to be used by tasks within this
+ cgroup. The actual list of CPUs to be granted, however, is
+ subjected to constraints imposed by its parent and can differ
+ from the requested CPUs.
+
+ The CPU numbers are comma-separated numbers or ranges.
+ For example::
+
+ # cat cpuset.cpus
+ 0-4,6,8-10
+
+ An empty value indicates that the cgroup is using the same
+ setting as the nearest cgroup ancestor with a non-empty
+ "cpuset.cpus" or all the available CPUs if none is found.
+
+ The value of "cpuset.cpus" stays constant until the next update
+ and won't be affected by any CPU hotplug events.
+
+ cpuset.cpus.effective
+ A read-only multiple values file which exists on all
+ cpuset-enabled cgroups.
+
+ It lists the onlined CPUs that are actually granted to this
+ cgroup by its parent. These CPUs are allowed to be used by
+ tasks within the current cgroup.
+
+ If "cpuset.cpus" is empty, the "cpuset.cpus.effective" file shows
+ all the CPUs from the parent cgroup that can be available to
+ be used by this cgroup. Otherwise, it should be a subset of
+ "cpuset.cpus" unless none of the CPUs listed in "cpuset.cpus"
+ can be granted. In this case, it will be treated just like an
+ empty "cpuset.cpus".
+
+ Its value will be affected by CPU hotplug events.
+
+ cpuset.mems
+ A read-write multiple values file which exists on non-root
+ cpuset-enabled cgroups.
+
+ It lists the requested memory nodes to be used by tasks within
+ this cgroup. The actual list of memory nodes granted, however,
+ is subjected to constraints imposed by its parent and can differ
+ from the requested memory nodes.
+
+ The memory node numbers are comma-separated numbers or ranges.
+ For example::
+
+ # cat cpuset.mems
+ 0-1,3
+
+ An empty value indicates that the cgroup is using the same
+ setting as the nearest cgroup ancestor with a non-empty
+ "cpuset.mems" or all the available memory nodes if none
+ is found.
+
+ The value of "cpuset.mems" stays constant until the next update
+ and won't be affected by any memory nodes hotplug events.
+
+ Setting a non-empty value to "cpuset.mems" causes memory of
+ tasks within the cgroup to be migrated to the designated nodes if
+ they are currently using memory outside of the designated nodes.
+
+ There is a cost for this memory migration. The migration
+ may not be complete and some memory pages may be left behind.
+ So it is recommended that "cpuset.mems" should be set properly
+ before spawning new tasks into the cpuset. Even if there is
+ a need to change "cpuset.mems" with active tasks, it shouldn't
+ be done frequently.
+
+ cpuset.mems.effective
+ A read-only multiple values file which exists on all
+ cpuset-enabled cgroups.
+
+ It lists the onlined memory nodes that are actually granted to
+ this cgroup by its parent. These memory nodes are allowed to
+ be used by tasks within the current cgroup.
+
+ If "cpuset.mems" is empty, it shows all the memory nodes from the
+ parent cgroup that will be available to be used by this cgroup.
+ Otherwise, it should be a subset of "cpuset.mems" unless none of
+ the memory nodes listed in "cpuset.mems" can be granted. In this
+ case, it will be treated just like an empty "cpuset.mems".
+
+ Its value will be affected by memory nodes hotplug events.
+
+ cpuset.cpus.partition
+ A read-write single value file which exists on non-root
+ cpuset-enabled cgroups. This flag is owned by the parent cgroup
+ and is not delegatable.
+
+ It accepts only the following input values when written to.
+
+ ========== =====================================
+ "member" Non-root member of a partition
+ "root" Partition root
+ "isolated" Partition root without load balancing
+ ========== =====================================
+
+ The root cgroup is always a partition root and its state
+ cannot be changed. All other non-root cgroups start out as
+ "member".
+
+ When set to "root", the current cgroup is the root of a new
+ partition or scheduling domain that comprises itself and all
+ its descendants except those that are separate partition roots
+ themselves and their descendants.
+
+ When set to "isolated", the CPUs in that partition root will
+ be in an isolated state without any load balancing from the
+ scheduler. Tasks placed in such a partition with multiple
+ CPUs should be carefully distributed and bound to each of the
+ individual CPUs for optimal performance.
+
+ The value shown in "cpuset.cpus.effective" of a partition root
+ is the CPUs that the partition root can dedicate to a potential
+ new child partition root. The new child subtracts available
+ CPUs from its parent "cpuset.cpus.effective".
+
+ A partition root ("root" or "isolated") can be in one of the
+ two possible states - valid or invalid. An invalid partition
+ root is in a degraded state where some state information may
+ be retained, but behaves more like a "member".
+
+ All possible state transitions among "member", "root" and
+ "isolated" are allowed.
+
+ On read, the "cpuset.cpus.partition" file can show the following
+ values.
+
+ ============================= =====================================
+ "member" Non-root member of a partition
+ "root" Partition root
+ "isolated" Partition root without load balancing
+ "root invalid (<reason>)" Invalid partition root
+ "isolated invalid (<reason>)" Invalid isolated partition root
+ ============================= =====================================
+
+ In the case of an invalid partition root, a descriptive string on
+ why the partition is invalid is included within parentheses.
+
+ For a partition root to become valid, the following conditions
+ must be met.
+
+ 1) The "cpuset.cpus" is exclusive with its siblings , i.e. they
+ are not shared by any of its siblings (exclusivity rule).
+ 2) The parent cgroup is a valid partition root.
+ 3) The "cpuset.cpus" is not empty and must contain at least
+ one of the CPUs from parent's "cpuset.cpus", i.e. they overlap.
+ 4) The "cpuset.cpus.effective" cannot be empty unless there is
+ no task associated with this partition.
+
+ External events like hotplug or changes to "cpuset.cpus" can
+ cause a valid partition root to become invalid and vice versa.
+ Note that a task cannot be moved to a cgroup with empty
+ "cpuset.cpus.effective".
+
+ For a valid partition root with the sibling cpu exclusivity
+ rule enabled, changes made to "cpuset.cpus" that violate the
+ exclusivity rule will invalidate the partition as well as its
+ sibling partitions with conflicting cpuset.cpus values. So
+ care must be taking in changing "cpuset.cpus".
+
+ A valid non-root parent partition may distribute out all its CPUs
+ to its child partitions when there is no task associated with it.
+
+ Care must be taken to change a valid partition root to
+ "member" as all its child partitions, if present, will become
+ invalid causing disruption to tasks running in those child
+ partitions. These inactivated partitions could be recovered if
+ their parent is switched back to a partition root with a proper
+ set of "cpuset.cpus".
+
+ Poll and inotify events are triggered whenever the state of
+ "cpuset.cpus.partition" changes. That includes changes caused
+ by write to "cpuset.cpus.partition", cpu hotplug or other
+ changes that modify the validity status of the partition.
+ This will allow user space agents to monitor unexpected changes
+ to "cpuset.cpus.partition" without the need to do continuous
+ polling.
+
+
+Device controller
+-----------------
+
+Device controller manages access to device files. It includes both
+creation of new device files (using mknod), and access to the
+existing device files.
+
+Cgroup v2 device controller has no interface files and is implemented
+on top of cgroup BPF. To control access to device files, a user may
+create bpf programs of type BPF_PROG_TYPE_CGROUP_DEVICE and attach
+them to cgroups with BPF_CGROUP_DEVICE flag. On an attempt to access a
+device file, corresponding BPF programs will be executed, and depending
+on the return value the attempt will succeed or fail with -EPERM.
+
+A BPF_PROG_TYPE_CGROUP_DEVICE program takes a pointer to the
+bpf_cgroup_dev_ctx structure, which describes the device access attempt:
+access type (mknod/read/write) and device (type, major and minor numbers).
+If the program returns 0, the attempt fails with -EPERM, otherwise it
+succeeds.
+
+An example of BPF_PROG_TYPE_CGROUP_DEVICE program may be found in
+tools/testing/selftests/bpf/progs/dev_cgroup.c in the kernel source tree.
+
+
+RDMA
+----
+
+The "rdma" controller regulates the distribution and accounting of
+RDMA resources.
+
+RDMA Interface Files
+~~~~~~~~~~~~~~~~~~~~
+
+ rdma.max
+ A readwrite nested-keyed file that exists for all the cgroups
+ except root that describes current configured resource limit
+ for a RDMA/IB device.
+
+ Lines are keyed by device name and are not ordered.
+ Each line contains space separated resource name and its configured
+ limit that can be distributed.
+
+ The following nested keys are defined.
+
+ ========== =============================
+ hca_handle Maximum number of HCA Handles
+ hca_object Maximum number of HCA Objects
+ ========== =============================
+
+ An example for mlx4 and ocrdma device follows::
+
+ mlx4_0 hca_handle=2 hca_object=2000
+ ocrdma1 hca_handle=3 hca_object=max
+
+ rdma.current
+ A read-only file that describes current resource usage.
+ It exists for all the cgroup except root.
+
+ An example for mlx4 and ocrdma device follows::
+
+ mlx4_0 hca_handle=1 hca_object=20
+ ocrdma1 hca_handle=1 hca_object=23
+
+HugeTLB
+-------
+
+The HugeTLB controller allows to limit the HugeTLB usage per control group and
+enforces the controller limit during page fault.
+
+HugeTLB Interface Files
+~~~~~~~~~~~~~~~~~~~~~~~
+
+ hugetlb.<hugepagesize>.current
+ Show current usage for "hugepagesize" hugetlb. It exists for all
+ the cgroup except root.
+
+ hugetlb.<hugepagesize>.max
+ Set/show the hard limit of "hugepagesize" hugetlb usage.
+ The default value is "max". It exists for all the cgroup except root.
+
+ hugetlb.<hugepagesize>.events
+ A read-only flat-keyed file which exists on non-root cgroups.
+
+ max
+ The number of allocation failure due to HugeTLB limit
+
+ hugetlb.<hugepagesize>.events.local
+ Similar to hugetlb.<hugepagesize>.events but the fields in the file
+ are local to the cgroup i.e. not hierarchical. The file modified event
+ generated on this file reflects only the local events.
+
+ hugetlb.<hugepagesize>.numa_stat
+ Similar to memory.numa_stat, it shows the numa information of the
+ hugetlb pages of <hugepagesize> in this cgroup. Only active in
+ use hugetlb pages are included. The per-node values are in bytes.
+
+Misc
+----
+
+The Miscellaneous cgroup provides the resource limiting and tracking
+mechanism for the scalar resources which cannot be abstracted like the other
+cgroup resources. Controller is enabled by the CONFIG_CGROUP_MISC config
+option.
+
+A resource can be added to the controller via enum misc_res_type{} in the
+include/linux/misc_cgroup.h file and the corresponding name via misc_res_name[]
+in the kernel/cgroup/misc.c file. Provider of the resource must set its
+capacity prior to using the resource by calling misc_cg_set_capacity().
+
+Once a capacity is set then the resource usage can be updated using charge and
+uncharge APIs. All of the APIs to interact with misc controller are in
+include/linux/misc_cgroup.h.
+
+Misc Interface Files
+~~~~~~~~~~~~~~~~~~~~
+
+Miscellaneous controller provides 3 interface files. If two misc resources (res_a and res_b) are registered then:
+
+ misc.capacity
+ A read-only flat-keyed file shown only in the root cgroup. It shows
+ miscellaneous scalar resources available on the platform along with
+ their quantities::
+
+ $ cat misc.capacity
+ res_a 50
+ res_b 10
+
+ misc.current
+ A read-only flat-keyed file shown in the all cgroups. It shows
+ the current usage of the resources in the cgroup and its children.::
+
+ $ cat misc.current
+ res_a 3
+ res_b 0
+
+ misc.max
+ A read-write flat-keyed file shown in the non root cgroups. Allowed
+ maximum usage of the resources in the cgroup and its children.::
+
+ $ cat misc.max
+ res_a max
+ res_b 4
+
+ Limit can be set by::
+
+ # echo res_a 1 > misc.max
+
+ Limit can be set to max by::
+
+ # echo res_a max > misc.max
+
+ Limits can be set higher than the capacity value in the misc.capacity
+ file.
+
+ misc.events
+ A read-only flat-keyed file which exists on non-root cgroups. The
+ following entries are defined. Unless specified otherwise, a value
+ change in this file generates a file modified event. All fields in
+ this file are hierarchical.
+
+ max
+ The number of times the cgroup's resource usage was
+ about to go over the max boundary.
+
+Migration and Ownership
+~~~~~~~~~~~~~~~~~~~~~~~
+
+A miscellaneous scalar resource is charged to the cgroup in which it is used
+first, and stays charged to that cgroup until that resource is freed. Migrating
+a process to a different cgroup does not move the charge to the destination
+cgroup where the process has moved.
+
+Others
+------
+
+perf_event
+~~~~~~~~~~
+
+perf_event controller, if not mounted on a legacy hierarchy, is
+automatically enabled on the v2 hierarchy so that perf events can
+always be filtered by cgroup v2 path. The controller can still be
+moved to a legacy hierarchy after v2 hierarchy is populated.
+
+
+Non-normative information
+-------------------------
+
+This section contains information that isn't considered to be a part of
+the stable kernel API and so is subject to change.
+
+
+CPU controller root cgroup process behaviour
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+When distributing CPU cycles in the root cgroup each thread in this
+cgroup is treated as if it was hosted in a separate child cgroup of the
+root cgroup. This child cgroup weight is dependent on its thread nice
+level.
+
+For details of this mapping see sched_prio_to_weight array in
+kernel/sched/core.c file (values from this array should be scaled
+appropriately so the neutral - nice 0 - value is 100 instead of 1024).
+
+
+IO controller root cgroup process behaviour
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Root cgroup processes are hosted in an implicit leaf child node.
+When distributing IO resources this implicit child node is taken into
+account as if it was a normal child cgroup of the root cgroup with a
+weight value of 200.
+
+
+Namespace
+=========
+
+Basics
+------
+
+cgroup namespace provides a mechanism to virtualize the view of the
+"/proc/$PID/cgroup" file and cgroup mounts. The CLONE_NEWCGROUP clone
+flag can be used with clone(2) and unshare(2) to create a new cgroup
+namespace. The process running inside the cgroup namespace will have
+its "/proc/$PID/cgroup" output restricted to cgroupns root. The
+cgroupns root is the cgroup of the process at the time of creation of
+the cgroup namespace.
+
+Without cgroup namespace, the "/proc/$PID/cgroup" file shows the
+complete path of the cgroup of a process. In a container setup where
+a set of cgroups and namespaces are intended to isolate processes the
+"/proc/$PID/cgroup" file may leak potential system level information
+to the isolated processes. For example::
+
+ # cat /proc/self/cgroup
+ 0::/batchjobs/container_id1
+
+The path '/batchjobs/container_id1' can be considered as system-data
+and undesirable to expose to the isolated processes. cgroup namespace
+can be used to restrict visibility of this path. For example, before
+creating a cgroup namespace, one would see::
+
+ # ls -l /proc/self/ns/cgroup
+ lrwxrwxrwx 1 root root 0 2014-07-15 10:37 /proc/self/ns/cgroup -> cgroup:[4026531835]
+ # cat /proc/self/cgroup
+ 0::/batchjobs/container_id1
+
+After unsharing a new namespace, the view changes::
+
+ # ls -l /proc/self/ns/cgroup
+ lrwxrwxrwx 1 root root 0 2014-07-15 10:35 /proc/self/ns/cgroup -> cgroup:[4026532183]
+ # cat /proc/self/cgroup
+ 0::/
+
+When some thread from a multi-threaded process unshares its cgroup
+namespace, the new cgroupns gets applied to the entire process (all
+the threads). This is natural for the v2 hierarchy; however, for the
+legacy hierarchies, this may be unexpected.
+
+A cgroup namespace is alive as long as there are processes inside or
+mounts pinning it. When the last usage goes away, the cgroup
+namespace is destroyed. The cgroupns root and the actual cgroups
+remain.
+
+
+The Root and Views
+------------------
+
+The 'cgroupns root' for a cgroup namespace is the cgroup in which the
+process calling unshare(2) is running. For example, if a process in
+/batchjobs/container_id1 cgroup calls unshare, cgroup
+/batchjobs/container_id1 becomes the cgroupns root. For the
+init_cgroup_ns, this is the real root ('/') cgroup.
+
+The cgroupns root cgroup does not change even if the namespace creator
+process later moves to a different cgroup::
+
+ # ~/unshare -c # unshare cgroupns in some cgroup
+ # cat /proc/self/cgroup
+ 0::/
+ # mkdir sub_cgrp_1
+ # echo 0 > sub_cgrp_1/cgroup.procs
+ # cat /proc/self/cgroup
+ 0::/sub_cgrp_1
+
+Each process gets its namespace-specific view of "/proc/$PID/cgroup"
+
+Processes running inside the cgroup namespace will be able to see
+cgroup paths (in /proc/self/cgroup) only inside their root cgroup.
+From within an unshared cgroupns::
+
+ # sleep 100000 &
+ [1] 7353
+ # echo 7353 > sub_cgrp_1/cgroup.procs
+ # cat /proc/7353/cgroup
+ 0::/sub_cgrp_1
+
+From the initial cgroup namespace, the real cgroup path will be
+visible::
+
+ $ cat /proc/7353/cgroup
+ 0::/batchjobs/container_id1/sub_cgrp_1
+
+From a sibling cgroup namespace (that is, a namespace rooted at a
+different cgroup), the cgroup path relative to its own cgroup
+namespace root will be shown. For instance, if PID 7353's cgroup
+namespace root is at '/batchjobs/container_id2', then it will see::
+
+ # cat /proc/7353/cgroup
+ 0::/../container_id2/sub_cgrp_1
+
+Note that the relative path always starts with '/' to indicate that
+its relative to the cgroup namespace root of the caller.
+
+
+Migration and setns(2)
+----------------------
+
+Processes inside a cgroup namespace can move into and out of the
+namespace root if they have proper access to external cgroups. For
+example, from inside a namespace with cgroupns root at
+/batchjobs/container_id1, and assuming that the global hierarchy is
+still accessible inside cgroupns::
+
+ # cat /proc/7353/cgroup
+ 0::/sub_cgrp_1
+ # echo 7353 > batchjobs/container_id2/cgroup.procs
+ # cat /proc/7353/cgroup
+ 0::/../container_id2
+
+Note that this kind of setup is not encouraged. A task inside cgroup
+namespace should only be exposed to its own cgroupns hierarchy.
+
+setns(2) to another cgroup namespace is allowed when:
+
+(a) the process has CAP_SYS_ADMIN against its current user namespace
+(b) the process has CAP_SYS_ADMIN against the target cgroup
+ namespace's userns
+
+No implicit cgroup changes happen with attaching to another cgroup
+namespace. It is expected that the someone moves the attaching
+process under the target cgroup namespace root.
+
+
+Interaction with Other Namespaces
+---------------------------------
+
+Namespace specific cgroup hierarchy can be mounted by a process
+running inside a non-init cgroup namespace::
+
+ # mount -t cgroup2 none $MOUNT_POINT
+
+This will mount the unified cgroup hierarchy with cgroupns root as the
+filesystem root. The process needs CAP_SYS_ADMIN against its user and
+mount namespaces.
+
+The virtualization of /proc/self/cgroup file combined with restricting
+the view of cgroup hierarchy by namespace-private cgroupfs mount
+provides a properly isolated cgroup view inside the container.
+
+
+Information on Kernel Programming
+=================================
+
+This section contains kernel programming information in the areas
+where interacting with cgroup is necessary. cgroup core and
+controllers are not covered.
+
+
+Filesystem Support for Writeback
+--------------------------------
+
+A filesystem can support cgroup writeback by updating
+address_space_operations->writepage[s]() to annotate bio's using the
+following two functions.
+
+ wbc_init_bio(@wbc, @bio)
+ Should be called for each bio carrying writeback data and
+ associates the bio with the inode's owner cgroup and the
+ corresponding request queue. This must be called after
+ a queue (device) has been associated with the bio and
+ before submission.
+
+ wbc_account_cgroup_owner(@wbc, @page, @bytes)
+ Should be called for each data segment being written out.
+ While this function doesn't care exactly when it's called
+ during the writeback session, it's the easiest and most
+ natural to call it as data segments are added to a bio.
+
+With writeback bio's annotated, cgroup support can be enabled per
+super_block by setting SB_I_CGROUPWB in ->s_iflags. This allows for
+selective disabling of cgroup writeback support which is helpful when
+certain filesystem features, e.g. journaled data mode, are
+incompatible.
+
+wbc_init_bio() binds the specified bio to its cgroup. Depending on
+the configuration, the bio may be executed at a lower priority and if
+the writeback session is holding shared resources, e.g. a journal
+entry, may lead to priority inversion. There is no one easy solution
+for the problem. Filesystems can try to work around specific problem
+cases by skipping wbc_init_bio() and using bio_associate_blkg()
+directly.
+
+
+Deprecated v1 Core Features
+===========================
+
+- Multiple hierarchies including named ones are not supported.
+
+- All v1 mount options are not supported.
+
+- The "tasks" file is removed and "cgroup.procs" is not sorted.
+
+- "cgroup.clone_children" is removed.
+
+- /proc/cgroups is meaningless for v2. Use "cgroup.controllers" file
+ at the root instead.
+
+
+Issues with v1 and Rationales for v2
+====================================
+
+Multiple Hierarchies
+--------------------
+
+cgroup v1 allowed an arbitrary number of hierarchies and each
+hierarchy could host any number of controllers. While this seemed to
+provide a high level of flexibility, it wasn't useful in practice.
+
+For example, as there is only one instance of each controller, utility
+type controllers such as freezer which can be useful in all
+hierarchies could only be used in one. The issue is exacerbated by
+the fact that controllers couldn't be moved to another hierarchy once
+hierarchies were populated. Another issue was that all controllers
+bound to a hierarchy were forced to have exactly the same view of the
+hierarchy. It wasn't possible to vary the granularity depending on
+the specific controller.
+
+In practice, these issues heavily limited which controllers could be
+put on the same hierarchy and most configurations resorted to putting
+each controller on its own hierarchy. Only closely related ones, such
+as the cpu and cpuacct controllers, made sense to be put on the same
+hierarchy. This often meant that userland ended up managing multiple
+similar hierarchies repeating the same steps on each hierarchy
+whenever a hierarchy management operation was necessary.
+
+Furthermore, support for multiple hierarchies came at a steep cost.
+It greatly complicated cgroup core implementation but more importantly
+the support for multiple hierarchies restricted how cgroup could be
+used in general and what controllers was able to do.
+
+There was no limit on how many hierarchies there might be, which meant
+that a thread's cgroup membership couldn't be described in finite
+length. The key might contain any number of entries and was unlimited
+in length, which made it highly awkward to manipulate and led to
+addition of controllers which existed only to identify membership,
+which in turn exacerbated the original problem of proliferating number
+of hierarchies.
+
+Also, as a controller couldn't have any expectation regarding the
+topologies of hierarchies other controllers might be on, each
+controller had to assume that all other controllers were attached to
+completely orthogonal hierarchies. This made it impossible, or at
+least very cumbersome, for controllers to cooperate with each other.
+
+In most use cases, putting controllers on hierarchies which are
+completely orthogonal to each other isn't necessary. What usually is
+called for is the ability to have differing levels of granularity
+depending on the specific controller. In other words, hierarchy may
+be collapsed from leaf towards root when viewed from specific
+controllers. For example, a given configuration might not care about
+how memory is distributed beyond a certain level while still wanting
+to control how CPU cycles are distributed.
+
+
+Thread Granularity
+------------------
+
+cgroup v1 allowed threads of a process to belong to different cgroups.
+This didn't make sense for some controllers and those controllers
+ended up implementing different ways to ignore such situations but
+much more importantly it blurred the line between API exposed to
+individual applications and system management interface.
+
+Generally, in-process knowledge is available only to the process
+itself; thus, unlike service-level organization of processes,
+categorizing threads of a process requires active participation from
+the application which owns the target process.
+
+cgroup v1 had an ambiguously defined delegation model which got abused
+in combination with thread granularity. cgroups were delegated to
+individual applications so that they can create and manage their own
+sub-hierarchies and control resource distributions along them. This
+effectively raised cgroup to the status of a syscall-like API exposed
+to lay programs.
+
+First of all, cgroup has a fundamentally inadequate interface to be
+exposed this way. For a process to access its own knobs, it has to
+extract the path on the target hierarchy from /proc/self/cgroup,
+construct the path by appending the name of the knob to the path, open
+and then read and/or write to it. This is not only extremely clunky
+and unusual but also inherently racy. There is no conventional way to
+define transaction across the required steps and nothing can guarantee
+that the process would actually be operating on its own sub-hierarchy.
+
+cgroup controllers implemented a number of knobs which would never be
+accepted as public APIs because they were just adding control knobs to
+system-management pseudo filesystem. cgroup ended up with interface
+knobs which were not properly abstracted or refined and directly
+revealed kernel internal details. These knobs got exposed to
+individual applications through the ill-defined delegation mechanism
+effectively abusing cgroup as a shortcut to implementing public APIs
+without going through the required scrutiny.
+
+This was painful for both userland and kernel. Userland ended up with
+misbehaving and poorly abstracted interfaces and kernel exposing and
+locked into constructs inadvertently.
+
+
+Competition Between Inner Nodes and Threads
+-------------------------------------------
+
+cgroup v1 allowed threads to be in any cgroups which created an
+interesting problem where threads belonging to a parent cgroup and its
+children cgroups competed for resources. This was nasty as two
+different types of entities competed and there was no obvious way to
+settle it. Different controllers did different things.
+
+The cpu controller considered threads and cgroups as equivalents and
+mapped nice levels to cgroup weights. This worked for some cases but
+fell flat when children wanted to be allocated specific ratios of CPU
+cycles and the number of internal threads fluctuated - the ratios
+constantly changed as the number of competing entities fluctuated.
+There also were other issues. The mapping from nice level to weight
+wasn't obvious or universal, and there were various other knobs which
+simply weren't available for threads.
+
+The io controller implicitly created a hidden leaf node for each
+cgroup to host the threads. The hidden leaf had its own copies of all
+the knobs with ``leaf_`` prefixed. While this allowed equivalent
+control over internal threads, it was with serious drawbacks. It
+always added an extra layer of nesting which wouldn't be necessary
+otherwise, made the interface messy and significantly complicated the
+implementation.
+
+The memory controller didn't have a way to control what happened
+between internal tasks and child cgroups and the behavior was not
+clearly defined. There were attempts to add ad-hoc behaviors and
+knobs to tailor the behavior to specific workloads which would have
+led to problems extremely difficult to resolve in the long term.
+
+Multiple controllers struggled with internal tasks and came up with
+different ways to deal with it; unfortunately, all the approaches were
+severely flawed and, furthermore, the widely different behaviors
+made cgroup as a whole highly inconsistent.
+
+This clearly is a problem which needs to be addressed from cgroup core
+in a uniform way.
+
+
+Other Interface Issues
+----------------------
+
+cgroup v1 grew without oversight and developed a large number of
+idiosyncrasies and inconsistencies. One issue on the cgroup core side
+was how an empty cgroup was notified - a userland helper binary was
+forked and executed for each event. The event delivery wasn't
+recursive or delegatable. The limitations of the mechanism also led
+to in-kernel event delivery filtering mechanism further complicating
+the interface.
+
+Controller interfaces were problematic too. An extreme example is
+controllers completely ignoring hierarchical organization and treating
+all cgroups as if they were all located directly under the root
+cgroup. Some controllers exposed a large amount of inconsistent
+implementation details to userland.
+
+There also was no consistency across controllers. When a new cgroup
+was created, some controllers defaulted to not imposing extra
+restrictions while others disallowed any resource usage until
+explicitly configured. Configuration knobs for the same type of
+control used widely differing naming schemes and formats. Statistics
+and information knobs were named arbitrarily and used different
+formats and units even in the same controller.
+
+cgroup v2 establishes common conventions where appropriate and updates
+controllers so that they expose minimal and consistent interfaces.
+
+
+Controller Issues and Remedies
+------------------------------
+
+Memory
+~~~~~~
+
+The original lower boundary, the soft limit, is defined as a limit
+that is per default unset. As a result, the set of cgroups that
+global reclaim prefers is opt-in, rather than opt-out. The costs for
+optimizing these mostly negative lookups are so high that the
+implementation, despite its enormous size, does not even provide the
+basic desirable behavior. First off, the soft limit has no
+hierarchical meaning. All configured groups are organized in a global
+rbtree and treated like equal peers, regardless where they are located
+in the hierarchy. This makes subtree delegation impossible. Second,
+the soft limit reclaim pass is so aggressive that it not just
+introduces high allocation latencies into the system, but also impacts
+system performance due to overreclaim, to the point where the feature
+becomes self-defeating.
+
+The memory.low boundary on the other hand is a top-down allocated
+reserve. A cgroup enjoys reclaim protection when it's within its
+effective low, which makes delegation of subtrees possible. It also
+enjoys having reclaim pressure proportional to its overage when
+above its effective low.
+
+The original high boundary, the hard limit, is defined as a strict
+limit that can not budge, even if the OOM killer has to be called.
+But this generally goes against the goal of making the most out of the
+available memory. The memory consumption of workloads varies during
+runtime, and that requires users to overcommit. But doing that with a
+strict upper limit requires either a fairly accurate prediction of the
+working set size or adding slack to the limit. Since working set size
+estimation is hard and error prone, and getting it wrong results in
+OOM kills, most users tend to err on the side of a looser limit and
+end up wasting precious resources.
+
+The memory.high boundary on the other hand can be set much more
+conservatively. When hit, it throttles allocations by forcing them
+into direct reclaim to work off the excess, but it never invokes the
+OOM killer. As a result, a high boundary that is chosen too
+aggressively will not terminate the processes, but instead it will
+lead to gradual performance degradation. The user can monitor this
+and make corrections until the minimal memory footprint that still
+gives acceptable performance is found.
+
+In extreme cases, with many concurrent allocations and a complete
+breakdown of reclaim progress within the group, the high boundary can
+be exceeded. But even then it's mostly better to satisfy the
+allocation from the slack available in other groups or the rest of the
+system than killing the group. Otherwise, memory.max is there to
+limit this type of spillover and ultimately contain buggy or even
+malicious applications.
+
+Setting the original memory.limit_in_bytes below the current usage was
+subject to a race condition, where concurrent charges could cause the
+limit setting to fail. memory.max on the other hand will first set the
+limit to prevent new charges, and then reclaim and OOM kill until the
+new limit is met - or the task writing to memory.max is killed.
+
+The combined memory+swap accounting and limiting is replaced by real
+control over swap space.
+
+The main argument for a combined memory+swap facility in the original
+cgroup design was that global or parental pressure would always be
+able to swap all anonymous memory of a child group, regardless of the
+child's own (possibly untrusted) configuration. However, untrusted
+groups can sabotage swapping by other means - such as referencing its
+anonymous memory in a tight loop - and an admin can not assume full
+swappability when overcommitting untrusted jobs.
+
+For trusted jobs, on the other hand, a combined counter is not an
+intuitive userspace interface, and it flies in the face of the idea
+that cgroup controllers should account and limit specific physical
+resources. Swap space is a resource like all others in the system,
+and that's why unified hierarchy allows distributing it separately.