diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-11 08:27:49 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-11 08:27:49 +0000 |
commit | ace9429bb58fd418f0c81d4c2835699bddf6bde6 (patch) | |
tree | b2d64bc10158fdd5497876388cd68142ca374ed3 /Documentation/arch/arm64/sme.rst | |
parent | Initial commit. (diff) | |
download | linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.tar.xz linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.zip |
Adding upstream version 6.6.15.upstream/6.6.15
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'Documentation/arch/arm64/sme.rst')
-rw-r--r-- | Documentation/arch/arm64/sme.rst | 468 |
1 files changed, 468 insertions, 0 deletions
diff --git a/Documentation/arch/arm64/sme.rst b/Documentation/arch/arm64/sme.rst new file mode 100644 index 0000000000..3d0e53ecac --- /dev/null +++ b/Documentation/arch/arm64/sme.rst @@ -0,0 +1,468 @@ +=================================================== +Scalable Matrix Extension support for AArch64 Linux +=================================================== + +This document outlines briefly the interface provided to userspace by Linux in +order to support use of the ARM Scalable Matrix Extension (SME). + +This is an outline of the most important features and issues only and not +intended to be exhaustive. It should be read in conjunction with the SVE +documentation in sve.rst which provides details on the Streaming SVE mode +included in SME. + +This document does not aim to describe the SME architecture or programmer's +model. To aid understanding, a minimal description of relevant programmer's +model features for SME is included in Appendix A. + + +1. General +----------- + +* PSTATE.SM, PSTATE.ZA, the streaming mode vector length, the ZA and (when + present) ZTn register state and TPIDR2_EL0 are tracked per thread. + +* The presence of SME is reported to userspace via HWCAP2_SME in the aux vector + AT_HWCAP2 entry. Presence of this flag implies the presence of the SME + instructions and registers, and the Linux-specific system interfaces + described in this document. SME is reported in /proc/cpuinfo as "sme". + +* The presence of SME2 is reported to userspace via HWCAP2_SME2 in the + aux vector AT_HWCAP2 entry. Presence of this flag implies the presence of + the SME2 instructions and ZT0, and the Linux-specific system interfaces + described in this document. SME2 is reported in /proc/cpuinfo as "sme2". + +* Support for the execution of SME instructions in userspace can also be + detected by reading the CPU ID register ID_AA64PFR1_EL1 using an MRS + instruction, and checking that the value of the SME field is nonzero. [3] + + It does not guarantee the presence of the system interfaces described in the + following sections: software that needs to verify that those interfaces are + present must check for HWCAP2_SME instead. + +* There are a number of optional SME features, presence of these is reported + through AT_HWCAP2 through: + + HWCAP2_SME_I16I64 + HWCAP2_SME_F64F64 + HWCAP2_SME_I8I32 + HWCAP2_SME_F16F32 + HWCAP2_SME_B16F32 + HWCAP2_SME_F32F32 + HWCAP2_SME_FA64 + HWCAP2_SME2 + + This list may be extended over time as the SME architecture evolves. + + These extensions are also reported via the CPU ID register ID_AA64SMFR0_EL1, + which userspace can read using an MRS instruction. See elf_hwcaps.txt and + cpu-feature-registers.txt for details. + +* Debuggers should restrict themselves to interacting with the target via the + NT_ARM_SVE, NT_ARM_SSVE, NT_ARM_ZA and NT_ARM_ZT regsets. The recommended + way of detecting support for these regsets is to connect to a target process + first and then attempt a + + ptrace(PTRACE_GETREGSET, pid, NT_ARM_<regset>, &iov). + +* Whenever ZA register values are exchanged in memory between userspace and + the kernel, the register value is encoded in memory as a series of horizontal + vectors from 0 to VL/8-1 stored in the same endianness invariant format as is + used for SVE vectors. + +* On thread creation TPIDR2_EL0 is preserved unless CLONE_SETTLS is specified, + in which case it is set to 0. + +2. Vector lengths +------------------ + +SME defines a second vector length similar to the SVE vector length which is +controls the size of the streaming mode SVE vectors and the ZA matrix array. +The ZA matrix is square with each side having as many bytes as a streaming +mode SVE vector. + + +3. Sharing of streaming and non-streaming mode SVE state +--------------------------------------------------------- + +It is implementation defined which if any parts of the SVE state are shared +between streaming and non-streaming modes. When switching between modes +via software interfaces such as ptrace if no register content is provided as +part of switching no state will be assumed to be shared and everything will +be zeroed. + + +4. System call behaviour +------------------------- + +* On syscall PSTATE.ZA is preserved, if PSTATE.ZA==1 then the contents of the + ZA matrix and ZTn (if present) are preserved. + +* On syscall PSTATE.SM will be cleared and the SVE registers will be handled + as per the standard SVE ABI. + +* None of the SVE registers, ZA or ZTn are used to pass arguments to + or receive results from any syscall. + +* On process creation (eg, clone()) the newly created process will have + PSTATE.SM cleared. + +* All other SME state of a thread, including the currently configured vector + length, the state of the PR_SME_VL_INHERIT flag, and the deferred vector + length (if any), is preserved across all syscalls, subject to the specific + exceptions for execve() described in section 6. + + +5. Signal handling +------------------- + +* Signal handlers are invoked with streaming mode and ZA disabled. + +* A new signal frame record TPIDR2_MAGIC is added formatted as a struct + tpidr2_context to allow access to TPIDR2_EL0 from signal handlers. + +* A new signal frame record za_context encodes the ZA register contents on + signal delivery. [1] + +* The signal frame record for ZA always contains basic metadata, in particular + the thread's vector length (in za_context.vl). + +* The ZA matrix may or may not be included in the record, depending on + the value of PSTATE.ZA. The registers are present if and only if: + za_context.head.size >= ZA_SIG_CONTEXT_SIZE(sve_vq_from_vl(za_context.vl)) + in which case PSTATE.ZA == 1. + +* If matrix data is present, the remainder of the record has a vl-dependent + size and layout. Macros ZA_SIG_* are defined [1] to facilitate access to + them. + +* The matrix is stored as a series of horizontal vectors in the same format as + is used for SVE vectors. + +* If the ZA context is too big to fit in sigcontext.__reserved[], then extra + space is allocated on the stack, an extra_context record is written in + __reserved[] referencing this space. za_context is then written in the + extra space. Refer to [1] for further details about this mechanism. + +* If ZTn is supported and PSTATE.ZA==1 then a signal frame record for ZTn will + be generated. + +* The signal record for ZTn has magic ZT_MAGIC (0x5a544e01) and consists of a + standard signal frame header followed by a struct zt_context specifying + the number of ZTn registers supported by the system, then zt_context.nregs + blocks of 64 bytes of data per register. + + +5. Signal return +----------------- + +When returning from a signal handler: + +* If there is no za_context record in the signal frame, or if the record is + present but contains no register data as described in the previous section, + then ZA is disabled. + +* If za_context is present in the signal frame and contains matrix data then + PSTATE.ZA is set to 1 and ZA is populated with the specified data. + +* The vector length cannot be changed via signal return. If za_context.vl in + the signal frame does not match the current vector length, the signal return + attempt is treated as illegal, resulting in a forced SIGSEGV. + +* If ZTn is not supported or PSTATE.ZA==0 then it is illegal to have a + signal frame record for ZTn, resulting in a forced SIGSEGV. + + +6. prctl extensions +-------------------- + +Some new prctl() calls are added to allow programs to manage the SME vector +length: + +prctl(PR_SME_SET_VL, unsigned long arg) + + Sets the vector length of the calling thread and related flags, where + arg == vl | flags. Other threads of the calling process are unaffected. + + vl is the desired vector length, where sve_vl_valid(vl) must be true. + + flags: + + PR_SME_VL_INHERIT + + Inherit the current vector length across execve(). Otherwise, the + vector length is reset to the system default at execve(). (See + Section 9.) + + PR_SME_SET_VL_ONEXEC + + Defer the requested vector length change until the next execve() + performed by this thread. + + The effect is equivalent to implicit execution of the following + call immediately after the next execve() (if any) by the thread: + + prctl(PR_SME_SET_VL, arg & ~PR_SME_SET_VL_ONEXEC) + + This allows launching of a new program with a different vector + length, while avoiding runtime side effects in the caller. + + Without PR_SME_SET_VL_ONEXEC, the requested change takes effect + immediately. + + + Return value: a nonnegative on success, or a negative value on error: + EINVAL: SME not supported, invalid vector length requested, or + invalid flags. + + + On success: + + * Either the calling thread's vector length or the deferred vector length + to be applied at the next execve() by the thread (dependent on whether + PR_SME_SET_VL_ONEXEC is present in arg), is set to the largest value + supported by the system that is less than or equal to vl. If vl == + SVE_VL_MAX, the value set will be the largest value supported by the + system. + + * Any previously outstanding deferred vector length change in the calling + thread is cancelled. + + * The returned value describes the resulting configuration, encoded as for + PR_SME_GET_VL. The vector length reported in this value is the new + current vector length for this thread if PR_SME_SET_VL_ONEXEC was not + present in arg; otherwise, the reported vector length is the deferred + vector length that will be applied at the next execve() by the calling + thread. + + * Changing the vector length causes all of ZA, ZTn, P0..P15, FFR and all + bits of Z0..Z31 except for Z0 bits [127:0] .. Z31 bits [127:0] to become + unspecified, including both streaming and non-streaming SVE state. + Calling PR_SME_SET_VL with vl equal to the thread's current vector + length, or calling PR_SME_SET_VL with the PR_SVE_SET_VL_ONEXEC flag, + does not constitute a change to the vector length for this purpose. + + * Changing the vector length causes PSTATE.ZA and PSTATE.SM to be cleared. + Calling PR_SME_SET_VL with vl equal to the thread's current vector + length, or calling PR_SME_SET_VL with the PR_SVE_SET_VL_ONEXEC flag, + does not constitute a change to the vector length for this purpose. + + +prctl(PR_SME_GET_VL) + + Gets the vector length of the calling thread. + + The following flag may be OR-ed into the result: + + PR_SME_VL_INHERIT + + Vector length will be inherited across execve(). + + There is no way to determine whether there is an outstanding deferred + vector length change (which would only normally be the case between a + fork() or vfork() and the corresponding execve() in typical use). + + To extract the vector length from the result, bitwise and it with + PR_SME_VL_LEN_MASK. + + Return value: a nonnegative value on success, or a negative value on error: + EINVAL: SME not supported. + + +7. ptrace extensions +--------------------- + +* A new regset NT_ARM_SSVE is defined for access to streaming mode SVE + state via PTRACE_GETREGSET and PTRACE_SETREGSET, this is documented in + sve.rst. + +* A new regset NT_ARM_ZA is defined for ZA state for access to ZA state via + PTRACE_GETREGSET and PTRACE_SETREGSET. + + Refer to [2] for definitions. + +The regset data starts with struct user_za_header, containing: + + size + + Size of the complete regset, in bytes. + This depends on vl and possibly on other things in the future. + + If a call to PTRACE_GETREGSET requests less data than the value of + size, the caller can allocate a larger buffer and retry in order to + read the complete regset. + + max_size + + Maximum size in bytes that the regset can grow to for the target + thread. The regset won't grow bigger than this even if the target + thread changes its vector length etc. + + vl + + Target thread's current streaming vector length, in bytes. + + max_vl + + Maximum possible streaming vector length for the target thread. + + flags + + Zero or more of the following flags, which have the same + meaning and behaviour as the corresponding PR_SET_VL_* flags: + + SME_PT_VL_INHERIT + + SME_PT_VL_ONEXEC (SETREGSET only). + +* The effects of changing the vector length and/or flags are equivalent to + those documented for PR_SME_SET_VL. + + The caller must make a further GETREGSET call if it needs to know what VL is + actually set by SETREGSET, unless is it known in advance that the requested + VL is supported. + +* The size and layout of the payload depends on the header fields. The + ZA_PT_ZA*() macros are provided to facilitate access to the data. + +* In either case, for SETREGSET it is permissible to omit the payload, in which + case the vector length and flags are changed and PSTATE.ZA is set to 0 + (along with any consequences of those changes). If a payload is provided + then PSTATE.ZA will be set to 1. + +* For SETREGSET, if the requested VL is not supported, the effect will be the + same as if the payload were omitted, except that an EIO error is reported. + No attempt is made to translate the payload data to the correct layout + for the vector length actually set. It is up to the caller to translate the + payload layout for the actual VL and retry. + +* The effect of writing a partial, incomplete payload is unspecified. + +* A new regset NT_ARM_ZT is defined for access to ZTn state via + PTRACE_GETREGSET and PTRACE_SETREGSET. + +* The NT_ARM_ZT regset consists of a single 512 bit register. + +* When PSTATE.ZA==0 reads of NT_ARM_ZT will report all bits of ZTn as 0. + +* Writes to NT_ARM_ZT will set PSTATE.ZA to 1. + + +8. ELF coredump extensions +--------------------------- + +* NT_ARM_SSVE notes will be added to each coredump for + each thread of the dumped process. The contents will be equivalent to the + data that would have been read if a PTRACE_GETREGSET of the corresponding + type were executed for each thread when the coredump was generated. + +* A NT_ARM_ZA note will be added to each coredump for each thread of the + dumped process. The contents will be equivalent to the data that would have + been read if a PTRACE_GETREGSET of NT_ARM_ZA were executed for each thread + when the coredump was generated. + +* A NT_ARM_ZT note will be added to each coredump for each thread of the + dumped process. The contents will be equivalent to the data that would have + been read if a PTRACE_GETREGSET of NT_ARM_ZT were executed for each thread + when the coredump was generated. + +* The NT_ARM_TLS note will be extended to two registers, the second register + will contain TPIDR2_EL0 on systems that support SME and will be read as + zero with writes ignored otherwise. + +9. System runtime configuration +-------------------------------- + +* To mitigate the ABI impact of expansion of the signal frame, a policy + mechanism is provided for administrators, distro maintainers and developers + to set the default vector length for userspace processes: + +/proc/sys/abi/sme_default_vector_length + + Writing the text representation of an integer to this file sets the system + default vector length to the specified value, unless the value is greater + than the maximum vector length supported by the system in which case the + default vector length is set to that maximum. + + The result can be determined by reopening the file and reading its + contents. + + At boot, the default vector length is initially set to 32 or the maximum + supported vector length, whichever is smaller and supported. This + determines the initial vector length of the init process (PID 1). + + Reading this file returns the current system default vector length. + +* At every execve() call, the new vector length of the new process is set to + the system default vector length, unless + + * PR_SME_VL_INHERIT (or equivalently SME_PT_VL_INHERIT) is set for the + calling thread, or + + * a deferred vector length change is pending, established via the + PR_SME_SET_VL_ONEXEC flag (or SME_PT_VL_ONEXEC). + +* Modifying the system default vector length does not affect the vector length + of any existing process or thread that does not make an execve() call. + + +Appendix A. SME programmer's model (informative) +================================================= + +This section provides a minimal description of the additions made by SME to the +ARMv8-A programmer's model that are relevant to this document. + +Note: This section is for information only and not intended to be complete or +to replace any architectural specification. + +A.1. Registers +--------------- + +In A64 state, SME adds the following: + +* A new mode, streaming mode, in which a subset of the normal FPSIMD and SVE + features are available. When supported EL0 software may enter and leave + streaming mode at any time. + + For best system performance it is strongly encouraged for software to enable + streaming mode only when it is actively being used. + +* A new vector length controlling the size of ZA and the Z registers when in + streaming mode, separately to the vector length used for SVE when not in + streaming mode. There is no requirement that either the currently selected + vector length or the set of vector lengths supported for the two modes in + a given system have any relationship. The streaming mode vector length + is referred to as SVL. + +* A new ZA matrix register. This is a square matrix of SVLxSVL bits. Most + operations on ZA require that streaming mode be enabled but ZA can be + enabled without streaming mode in order to load, save and retain data. + + For best system performance it is strongly encouraged for software to enable + ZA only when it is actively being used. + +* A new ZT0 register is introduced when SME2 is present. This is a 512 bit + register which is accessible when PSTATE.ZA is set, as ZA itself is. + +* Two new 1 bit fields in PSTATE which may be controlled via the SMSTART and + SMSTOP instructions or by access to the SVCR system register: + + * PSTATE.ZA, if this is 1 then the ZA matrix is accessible and has valid + data while if it is 0 then ZA can not be accessed. When PSTATE.ZA is + changed from 0 to 1 all bits in ZA are cleared. + + * PSTATE.SM, if this is 1 then the PE is in streaming mode. When the value + of PSTATE.SM is changed then it is implementation defined if the subset + of the floating point register bits valid in both modes may be retained. + Any other bits will be cleared. + + +References +========== + +[1] arch/arm64/include/uapi/asm/sigcontext.h + AArch64 Linux signal ABI definitions + +[2] arch/arm64/include/uapi/asm/ptrace.h + AArch64 Linux ptrace ABI definitions + +[3] Documentation/arch/arm64/cpu-feature-registers.rst |