diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-11 08:27:49 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-11 08:27:49 +0000 |
commit | ace9429bb58fd418f0c81d4c2835699bddf6bde6 (patch) | |
tree | b2d64bc10158fdd5497876388cd68142ca374ed3 /Documentation/devicetree/bindings/fpga | |
parent | Initial commit. (diff) | |
download | linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.tar.xz linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.zip |
Adding upstream version 6.6.15.upstream/6.6.15
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
19 files changed, 1097 insertions, 0 deletions
diff --git a/Documentation/devicetree/bindings/fpga/altera-fpga2sdram-bridge.txt b/Documentation/devicetree/bindings/fpga/altera-fpga2sdram-bridge.txt new file mode 100644 index 0000000000..5dd0ff0f7b --- /dev/null +++ b/Documentation/devicetree/bindings/fpga/altera-fpga2sdram-bridge.txt @@ -0,0 +1,13 @@ +Altera FPGA To SDRAM Bridge Driver + +Required properties: +- compatible : Should contain "altr,socfpga-fpga2sdram-bridge" + +See Documentation/devicetree/bindings/fpga/fpga-bridge.txt for generic bindings. + +Example: + fpga_bridge3: fpga-bridge@ffc25080 { + compatible = "altr,socfpga-fpga2sdram-bridge"; + reg = <0xffc25080 0x4>; + bridge-enable = <0>; + }; diff --git a/Documentation/devicetree/bindings/fpga/altera-freeze-bridge.txt b/Documentation/devicetree/bindings/fpga/altera-freeze-bridge.txt new file mode 100644 index 0000000000..8b26fbcff3 --- /dev/null +++ b/Documentation/devicetree/bindings/fpga/altera-freeze-bridge.txt @@ -0,0 +1,20 @@ +Altera Freeze Bridge Controller Driver + +The Altera Freeze Bridge Controller manages one or more freeze bridges. +The controller can freeze/disable the bridges which prevents signal +changes from passing through the bridge. The controller can also +unfreeze/enable the bridges which allows traffic to pass through the +bridge normally. + +Required properties: +- compatible : Should contain "altr,freeze-bridge-controller" +- regs : base address and size for freeze bridge module + +See Documentation/devicetree/bindings/fpga/fpga-bridge.txt for generic bindings. + +Example: + freeze-controller@100000450 { + compatible = "altr,freeze-bridge-controller"; + regs = <0x1000 0x10>; + bridge-enable = <0>; + }; diff --git a/Documentation/devicetree/bindings/fpga/altera-hps2fpga-bridge.txt b/Documentation/devicetree/bindings/fpga/altera-hps2fpga-bridge.txt new file mode 100644 index 0000000000..68cce3945b --- /dev/null +++ b/Documentation/devicetree/bindings/fpga/altera-hps2fpga-bridge.txt @@ -0,0 +1,36 @@ +Altera FPGA/HPS Bridge Driver + +Required properties: +- regs : base address and size for AXI bridge module +- compatible : Should contain one of: + "altr,socfpga-lwhps2fpga-bridge", + "altr,socfpga-hps2fpga-bridge", or + "altr,socfpga-fpga2hps-bridge" +- resets : Phandle and reset specifier for this bridge's reset +- clocks : Clocks used by this module. + +See Documentation/devicetree/bindings/fpga/fpga-bridge.txt for generic bindings. + +Example: + fpga_bridge0: fpga-bridge@ff400000 { + compatible = "altr,socfpga-lwhps2fpga-bridge"; + reg = <0xff400000 0x100000>; + resets = <&rst LWHPS2FPGA_RESET>; + clocks = <&l4_main_clk>; + bridge-enable = <0>; + }; + + fpga_bridge1: fpga-bridge@ff500000 { + compatible = "altr,socfpga-hps2fpga-bridge"; + reg = <0xff500000 0x10000>; + resets = <&rst HPS2FPGA_RESET>; + clocks = <&l4_main_clk>; + bridge-enable = <1>; + }; + + fpga_bridge2: fpga-bridge@ff600000 { + compatible = "altr,socfpga-fpga2hps-bridge"; + reg = <0xff600000 0x100000>; + resets = <&rst FPGA2HPS_RESET>; + clocks = <&l4_main_clk>; + }; diff --git a/Documentation/devicetree/bindings/fpga/altera-passive-serial.txt b/Documentation/devicetree/bindings/fpga/altera-passive-serial.txt new file mode 100644 index 0000000000..48478bc07e --- /dev/null +++ b/Documentation/devicetree/bindings/fpga/altera-passive-serial.txt @@ -0,0 +1,29 @@ +Altera Passive Serial SPI FPGA Manager + +Altera FPGAs support a method of loading the bitstream over what is +referred to as "passive serial". +The passive serial link is not technically SPI, and might require extra +circuits in order to play nicely with other SPI slaves on the same bus. + +See https://www.altera.com/literature/hb/cyc/cyc_c51013.pdf + +Required properties: +- compatible: Must be one of the following: + "altr,fpga-passive-serial", + "altr,fpga-arria10-passive-serial" +- reg: SPI chip select of the FPGA +- nconfig-gpios: config pin (referred to as nCONFIG in the manual) +- nstat-gpios: status pin (referred to as nSTATUS in the manual) + +Optional properties: +- confd-gpios: confd pin (referred to as CONF_DONE in the manual) + +Example: + fpga: fpga@0 { + compatible = "altr,fpga-passive-serial"; + spi-max-frequency = <20000000>; + reg = <0>; + nconfig-gpios = <&gpio4 9 GPIO_ACTIVE_LOW>; + nstat-gpios = <&gpio4 11 GPIO_ACTIVE_LOW>; + confd-gpios = <&gpio4 12 GPIO_ACTIVE_LOW>; + }; diff --git a/Documentation/devicetree/bindings/fpga/altera-pr-ip.txt b/Documentation/devicetree/bindings/fpga/altera-pr-ip.txt new file mode 100644 index 0000000000..52a294cf27 --- /dev/null +++ b/Documentation/devicetree/bindings/fpga/altera-pr-ip.txt @@ -0,0 +1,12 @@ +Altera Arria10 Partial Reconfiguration IP + +Required properties: +- compatible : should contain "altr,a10-pr-ip" +- reg : base address and size for memory mapped io. + +Example: + + fpga_mgr: fpga-mgr@ff20c000 { + compatible = "altr,a10-pr-ip"; + reg = <0xff20c000 0x10>; + }; diff --git a/Documentation/devicetree/bindings/fpga/altera-socfpga-a10-fpga-mgr.txt b/Documentation/devicetree/bindings/fpga/altera-socfpga-a10-fpga-mgr.txt new file mode 100644 index 0000000000..2fd8e7a847 --- /dev/null +++ b/Documentation/devicetree/bindings/fpga/altera-socfpga-a10-fpga-mgr.txt @@ -0,0 +1,19 @@ +Altera SOCFPGA Arria10 FPGA Manager + +Required properties: +- compatible : should contain "altr,socfpga-a10-fpga-mgr" +- reg : base address and size for memory mapped io. + - The first index is for FPGA manager register access. + - The second index is for writing FPGA configuration data. +- resets : Phandle and reset specifier for the device's reset. +- clocks : Clocks used by the device. + +Example: + + fpga_mgr: fpga-mgr@ffd03000 { + compatible = "altr,socfpga-a10-fpga-mgr"; + reg = <0xffd03000 0x100 + 0xffcfe400 0x20>; + clocks = <&l4_mp_clk>; + resets = <&rst FPGAMGR_RESET>; + }; diff --git a/Documentation/devicetree/bindings/fpga/altera-socfpga-fpga-mgr.txt b/Documentation/devicetree/bindings/fpga/altera-socfpga-fpga-mgr.txt new file mode 100644 index 0000000000..d52f334041 --- /dev/null +++ b/Documentation/devicetree/bindings/fpga/altera-socfpga-fpga-mgr.txt @@ -0,0 +1,17 @@ +Altera SOCFPGA FPGA Manager + +Required properties: +- compatible : should contain "altr,socfpga-fpga-mgr" +- reg : base address and size for memory mapped io. + - The first index is for FPGA manager register access. + - The second index is for writing FPGA configuration data. +- interrupts : interrupt for the FPGA Manager device. + +Example: + + hps_0_fpgamgr: fpgamgr@ff706000 { + compatible = "altr,socfpga-fpga-mgr"; + reg = <0xFF706000 0x1000 + 0xFFB90000 0x1000>; + interrupts = <0 175 4>; + }; diff --git a/Documentation/devicetree/bindings/fpga/fpga-bridge.txt b/Documentation/devicetree/bindings/fpga/fpga-bridge.txt new file mode 100644 index 0000000000..72e0691728 --- /dev/null +++ b/Documentation/devicetree/bindings/fpga/fpga-bridge.txt @@ -0,0 +1,13 @@ +FPGA Bridge Device Tree Binding + +Optional properties: +- bridge-enable : 0 if driver should disable bridge at startup + 1 if driver should enable bridge at startup + Default is to leave bridge in current state. + +Example: + fpga_bridge3: fpga-bridge@ffc25080 { + compatible = "altr,socfpga-fpga2sdram-bridge"; + reg = <0xffc25080 0x4>; + bridge-enable = <0>; + }; diff --git a/Documentation/devicetree/bindings/fpga/fpga-region.txt b/Documentation/devicetree/bindings/fpga/fpga-region.txt new file mode 100644 index 0000000000..528df8a0e6 --- /dev/null +++ b/Documentation/devicetree/bindings/fpga/fpga-region.txt @@ -0,0 +1,479 @@ +FPGA Region Device Tree Binding + +Alan Tull 2016 + + CONTENTS + - Introduction + - Terminology + - Sequence + - FPGA Region + - Supported Use Models + - Device Tree Examples + - Constraints + + +Introduction +============ + +FPGA Regions represent FPGA's and partial reconfiguration regions of FPGA's in +the Device Tree. FPGA Regions provide a way to program FPGAs under device tree +control. + +This device tree binding document hits some of the high points of FPGA usage and +attempts to include terminology used by both major FPGA manufacturers. This +document isn't a replacement for any manufacturers specifications for FPGA +usage. + + +Terminology +=========== + +Full Reconfiguration + * The entire FPGA is programmed. + +Partial Reconfiguration (PR) + * A section of an FPGA is reprogrammed while the rest of the FPGA is not + affected. + * Not all FPGA's support PR. + +Partial Reconfiguration Region (PRR) + * Also called a "reconfigurable partition" + * A PRR is a specific section of an FPGA reserved for reconfiguration. + * A base (or static) FPGA image may create a set of PRR's that later may + be independently reprogrammed many times. + * The size and specific location of each PRR is fixed. + * The connections at the edge of each PRR are fixed. The image that is loaded + into a PRR must fit and must use a subset of the region's connections. + * The busses within the FPGA are split such that each region gets its own + branch that may be gated independently. + +Persona + * Also called a "partial bit stream" + * An FPGA image that is designed to be loaded into a PRR. There may be + any number of personas designed to fit into a PRR, but only one at at time + may be loaded. + * A persona may create more regions. + +FPGA Bridge + * FPGA Bridges gate bus signals between a host and FPGA. + * FPGA Bridges should be disabled while the FPGA is being programmed to + prevent spurious signals on the cpu bus and to the soft logic. + * FPGA bridges may be actual hardware or soft logic on an FPGA. + * During Full Reconfiguration, hardware bridges between the host and FPGA + will be disabled. + * During Partial Reconfiguration of a specific region, that region's bridge + will be used to gate the busses. Traffic to other regions is not affected. + * In some implementations, the FPGA Manager transparently handles gating the + buses, eliminating the need to show the hardware FPGA bridges in the + device tree. + * An FPGA image may create a set of reprogrammable regions, each having its + own bridge and its own split of the busses in the FPGA. + +FPGA Manager + * An FPGA Manager is a hardware block that programs an FPGA under the control + of a host processor. + +Base Image + * Also called the "static image" + * An FPGA image that is designed to do full reconfiguration of the FPGA. + * A base image may set up a set of partial reconfiguration regions that may + later be reprogrammed. + + ---------------- ---------------------------------- + | Host CPU | | FPGA | + | | | | + | ----| | ----------- -------- | + | | H | | |==>| Bridge0 |<==>| PRR0 | | + | | W | | | ----------- -------- | + | | | | | | + | | B |<=====>|<==| ----------- -------- | + | | R | | |==>| Bridge1 |<==>| PRR1 | | + | | I | | | ----------- -------- | + | | D | | | | + | | G | | | ----------- -------- | + | | E | | |==>| Bridge2 |<==>| PRR2 | | + | ----| | ----------- -------- | + | | | | + ---------------- ---------------------------------- + +Figure 1: An FPGA set up with a base image that created three regions. Each +region (PRR0-2) gets its own split of the busses that is independently gated by +a soft logic bridge (Bridge0-2) in the FPGA. The contents of each PRR can be +reprogrammed independently while the rest of the system continues to function. + + +Sequence +======== + +When a DT overlay that targets an FPGA Region is applied, the FPGA Region will +do the following: + + 1. Disable appropriate FPGA bridges. + 2. Program the FPGA using the FPGA manager. + 3. Enable the FPGA bridges. + 4. The Device Tree overlay is accepted into the live tree. + 5. Child devices are populated. + +When the overlay is removed, the child nodes will be removed and the FPGA Region +will disable the bridges. + + +FPGA Region +=========== + +FPGA Regions represent FPGA's and FPGA PR regions in the device tree. An FPGA +Region brings together the elements needed to program on a running system and +add the child devices: + + * FPGA Manager + * FPGA Bridges + * image-specific information needed to to the programming. + * child nodes + +The intended use is that a Device Tree overlay (DTO) can be used to reprogram an +FPGA while an operating system is running. + +An FPGA Region that exists in the live Device Tree reflects the current state. +If the live tree shows a "firmware-name" property or child nodes under an FPGA +Region, the FPGA already has been programmed. A DTO that targets an FPGA Region +and adds the "firmware-name" property is taken as a request to reprogram the +FPGA. After reprogramming is successful, the overlay is accepted into the live +tree. + +The base FPGA Region in the device tree represents the FPGA and supports full +reconfiguration. It must include a phandle to an FPGA Manager. The base +FPGA region will be the child of one of the hardware bridges (the bridge that +allows register access) between the cpu and the FPGA. If there are more than +one bridge to control during FPGA programming, the region will also contain a +list of phandles to the additional hardware FPGA Bridges. + +For partial reconfiguration (PR), each PR region will have an FPGA Region. +These FPGA regions are children of FPGA bridges which are then children of the +base FPGA region. The "Full Reconfiguration to add PRR's" example below shows +this. + +If an FPGA Region does not specify an FPGA Manager, it will inherit the FPGA +Manager specified by its ancestor FPGA Region. This supports both the case +where the same FPGA Manager is used for all of an FPGA as well the case where +a different FPGA Manager is used for each region. + +FPGA Regions do not inherit their ancestor FPGA regions' bridges. This prevents +shutting down bridges that are upstream from the other active regions while one +region is getting reconfigured (see Figure 1 above). During PR, the FPGA's +hardware bridges remain enabled. The PR regions' bridges will be FPGA bridges +within the static image of the FPGA. + +Required properties: +- compatible : should contain "fpga-region" +- fpga-mgr : should contain a phandle to an FPGA Manager. Child FPGA Regions + inherit this property from their ancestor regions. An fpga-mgr property + in a region will override any inherited FPGA manager. +- #address-cells, #size-cells, ranges : must be present to handle address space + mapping for child nodes. + +Optional properties: +- firmware-name : should contain the name of an FPGA image file located on the + firmware search path. If this property shows up in a live device tree + it indicates that the FPGA has already been programmed with this image. + If this property is in an overlay targeting an FPGA region, it is a + request to program the FPGA with that image. +- fpga-bridges : should contain a list of phandles to FPGA Bridges that must be + controlled during FPGA programming along with the parent FPGA bridge. + This property is optional if the FPGA Manager handles the bridges. + If the fpga-region is the child of an fpga-bridge, the list should not + contain the parent bridge. +- partial-fpga-config : boolean, set if partial reconfiguration is to be done, + otherwise full reconfiguration is done. +- external-fpga-config : boolean, set if the FPGA has already been configured + prior to OS boot up. +- encrypted-fpga-config : boolean, set if the bitstream is encrypted +- region-unfreeze-timeout-us : The maximum time in microseconds to wait for + bridges to successfully become enabled after the region has been + programmed. +- region-freeze-timeout-us : The maximum time in microseconds to wait for + bridges to successfully become disabled before the region has been + programmed. +- config-complete-timeout-us : The maximum time in microseconds time for the + FPGA to go to operating mode after the region has been programmed. +- child nodes : devices in the FPGA after programming. + +In the example below, when an overlay is applied targeting fpga-region0, +fpga_mgr is used to program the FPGA. Two bridges are controlled during +programming: the parent fpga_bridge0 and fpga_bridge1. Because the region is +the child of fpga_bridge0, only fpga_bridge1 needs to be specified in the +fpga-bridges property. During programming, these bridges are disabled, the +firmware specified in the overlay is loaded to the FPGA using the FPGA manager +specified in the region. If FPGA programming succeeds, the bridges are +reenabled and the overlay makes it into the live device tree. The child devices +are then populated. If FPGA programming fails, the bridges are left disabled +and the overlay is rejected. The overlay's ranges property maps the lwhps +bridge's region (0xff200000) and the hps bridge's region (0xc0000000) for use by +the two child devices. + +Example: +Base tree contains: + + fpga_mgr: fpga-mgr@ff706000 { + compatible = "altr,socfpga-fpga-mgr"; + reg = <0xff706000 0x1000 + 0xffb90000 0x20>; + interrupts = <0 175 4>; + }; + + fpga_bridge0: fpga-bridge@ff400000 { + compatible = "altr,socfpga-lwhps2fpga-bridge"; + reg = <0xff400000 0x100000>; + resets = <&rst LWHPS2FPGA_RESET>; + clocks = <&l4_main_clk>; + + #address-cells = <1>; + #size-cells = <1>; + ranges; + + fpga_region0: fpga-region0 { + compatible = "fpga-region"; + fpga-mgr = <&fpga_mgr>; + }; + }; + + fpga_bridge1: fpga-bridge@ff500000 { + compatible = "altr,socfpga-hps2fpga-bridge"; + reg = <0xff500000 0x10000>; + resets = <&rst HPS2FPGA_RESET>; + clocks = <&l4_main_clk>; + }; + +Overlay contains: + +/dts-v1/; +/plugin/; + +&fpga_region0 { + #address-cells = <1>; + #size-cells = <1>; + + firmware-name = "soc_system.rbf"; + fpga-bridges = <&fpga_bridge1>; + ranges = <0x20000 0xff200000 0x100000>, + <0x0 0xc0000000 0x20000000>; + + gpio@10040 { + compatible = "altr,pio-1.0"; + reg = <0x10040 0x20>; + altr,ngpio = <4>; + #gpio-cells = <2>; + clocks = <2>; + gpio-controller; + }; + + onchip-memory { + device_type = "memory"; + compatible = "altr,onchipmem-15.1"; + reg = <0x0 0x10000>; + }; +}; + + +Supported Use Models +==================== + +In all cases the live DT must have the FPGA Manager, FPGA Bridges (if any), and +a FPGA Region. The target of the Device Tree Overlay is the FPGA Region. Some +uses are specific to an FPGA device. + + * No FPGA Bridges + In this case, the FPGA Manager which programs the FPGA also handles the + bridges behind the scenes. No FPGA Bridge devices are needed for full + reconfiguration. + + * Full reconfiguration with hardware bridges + In this case, there are hardware bridges between the processor and FPGA that + need to be controlled during full reconfiguration. Before the overlay is + applied, the live DT must include the FPGA Manager, FPGA Bridges, and a + FPGA Region. The FPGA Region is the child of the bridge that allows + register access to the FPGA. Additional bridges may be listed in a + fpga-bridges property in the FPGA region or in the device tree overlay. + + * Partial reconfiguration with bridges in the FPGA + In this case, the FPGA will have one or more PRR's that may be programmed + separately while the rest of the FPGA can remain active. To manage this, + bridges need to exist in the FPGA that can gate the buses going to each FPGA + region while the buses are enabled for other sections. Before any partial + reconfiguration can be done, a base FPGA image must be loaded which includes + PRR's with FPGA bridges. The device tree should have an FPGA region for each + PRR. + +Device Tree Examples +==================== + +The intention of this section is to give some simple examples, focusing on +the placement of the elements detailed above, especially: + * FPGA Manager + * FPGA Bridges + * FPGA Region + * ranges + * target-path or target + +For the purposes of this section, I'm dividing the Device Tree into two parts, +each with its own requirements. The two parts are: + * The live DT prior to the overlay being added + * The DT overlay + +The live Device Tree must contain an FPGA Region, an FPGA Manager, and any FPGA +Bridges. The FPGA Region's "fpga-mgr" property specifies the manager by phandle +to handle programming the FPGA. If the FPGA Region is the child of another FPGA +Region, the parent's FPGA Manager is used. If FPGA Bridges need to be involved, +they are specified in the FPGA Region by the "fpga-bridges" property. During +FPGA programming, the FPGA Region will disable the bridges that are in its +"fpga-bridges" list and will re-enable them after FPGA programming has +succeeded. + +The Device Tree Overlay will contain: + * "target-path" or "target" + The insertion point where the contents of the overlay will go into the + live tree. target-path is a full path, while target is a phandle. + * "ranges" + The address space mapping from processor to FPGA bus(ses). + * "firmware-name" + Specifies the name of the FPGA image file on the firmware search + path. The search path is described in the firmware class documentation. + * "partial-fpga-config" + This binding is a boolean and should be present if partial reconfiguration + is to be done. + * child nodes corresponding to hardware that will be loaded in this region of + the FPGA. + +Device Tree Example: Full Reconfiguration without Bridges +========================================================= + +Live Device Tree contains: + fpga_mgr0: fpga-mgr@f8007000 { + compatible = "xlnx,zynq-devcfg-1.0"; + reg = <0xf8007000 0x100>; + interrupt-parent = <&intc>; + interrupts = <0 8 4>; + clocks = <&clkc 12>; + clock-names = "ref_clk"; + syscon = <&slcr>; + }; + + fpga_region0: fpga-region0 { + compatible = "fpga-region"; + fpga-mgr = <&fpga_mgr0>; + #address-cells = <0x1>; + #size-cells = <0x1>; + ranges; + }; + +DT Overlay contains: + +/dts-v1/; +/plugin/; + +&fpga_region0 { + #address-cells = <1>; + #size-cells = <1>; + + firmware-name = "zynq-gpio.bin"; + + gpio1: gpio@40000000 { + compatible = "xlnx,xps-gpio-1.00.a"; + reg = <0x40000000 0x10000>; + gpio-controller; + #gpio-cells = <0x2>; + xlnx,gpio-width= <0x6>; + }; +}; + +Device Tree Example: Full Reconfiguration to add PRR's +====================================================== + +The base FPGA Region is specified similar to the first example above. + +This example programs the FPGA to have two regions that can later be partially +configured. Each region has its own bridge in the FPGA fabric. + +DT Overlay contains: + +/dts-v1/; +/plugin/; + +&fpga_region0 { + #address-cells = <1>; + #size-cells = <1>; + + firmware-name = "base.rbf"; + + fpga-bridge@4400 { + compatible = "altr,freeze-bridge-controller"; + reg = <0x4400 0x10>; + + fpga_region1: fpga-region1 { + compatible = "fpga-region"; + #address-cells = <0x1>; + #size-cells = <0x1>; + ranges; + }; + }; + + fpga-bridge@4420 { + compatible = "altr,freeze-bridge-controller"; + reg = <0x4420 0x10>; + + fpga_region2: fpga-region2 { + compatible = "fpga-region"; + #address-cells = <0x1>; + #size-cells = <0x1>; + ranges; + }; + }; +}; + +Device Tree Example: Partial Reconfiguration +============================================ + +This example reprograms one of the PRR's set up in the previous example. + +The sequence that occurs when this overlay is similar to the above, the only +differences are that the FPGA is partially reconfigured due to the +"partial-fpga-config" boolean and the only bridge that is controlled during +programming is the FPGA based bridge of fpga_region1. + +/dts-v1/; +/plugin/; + +&fpga_region1 { + #address-cells = <1>; + #size-cells = <1>; + + firmware-name = "soc_image2.rbf"; + partial-fpga-config; + + gpio@10040 { + compatible = "altr,pio-1.0"; + reg = <0x10040 0x20>; + clocks = <0x2>; + altr,ngpio = <0x4>; + #gpio-cells = <0x2>; + gpio-controller; + }; +}; + +Constraints +=========== + +It is beyond the scope of this document to fully describe all the FPGA design +constraints required to make partial reconfiguration work[1] [2] [3], but a few +deserve quick mention. + +A persona must have boundary connections that line up with those of the partition +or region it is designed to go into. + +During programming, transactions through those connections must be stopped and +the connections must be held at a fixed logic level. This can be achieved by +FPGA Bridges that exist on the FPGA fabric prior to the partial reconfiguration. + +-- +[1] www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_partrecon.pdf +[2] tspace.library.utoronto.ca/bitstream/1807/67932/1/Byma_Stuart_A_201411_MAS_thesis.pdf +[3] https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/ug702.pdf diff --git a/Documentation/devicetree/bindings/fpga/intel-stratix10-soc-fpga-mgr.txt b/Documentation/devicetree/bindings/fpga/intel-stratix10-soc-fpga-mgr.txt new file mode 100644 index 0000000000..0f874137ca --- /dev/null +++ b/Documentation/devicetree/bindings/fpga/intel-stratix10-soc-fpga-mgr.txt @@ -0,0 +1,18 @@ +Intel Stratix10 SoC FPGA Manager + +Required properties: +The fpga_mgr node has the following mandatory property, must be located under +firmware/svc node. + +- compatible : should contain "intel,stratix10-soc-fpga-mgr" or + "intel,agilex-soc-fpga-mgr" + +Example: + + firmware { + svc { + fpga_mgr: fpga-mgr { + compatible = "intel,stratix10-soc-fpga-mgr"; + }; + }; + }; diff --git a/Documentation/devicetree/bindings/fpga/lattice,sysconfig.yaml b/Documentation/devicetree/bindings/fpga/lattice,sysconfig.yaml new file mode 100644 index 0000000000..164331eb62 --- /dev/null +++ b/Documentation/devicetree/bindings/fpga/lattice,sysconfig.yaml @@ -0,0 +1,81 @@ +# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause) +%YAML 1.2 +--- +$id: http://devicetree.org/schemas/fpga/lattice,sysconfig.yaml# +$schema: http://devicetree.org/meta-schemas/core.yaml# + +title: Lattice Slave SPI sysCONFIG FPGA manager + +maintainers: + - Vladimir Georgiev <v.georgiev@metrotek.ru> + +description: | + Lattice sysCONFIG port, which is used for FPGA configuration, among others, + have Slave Serial Peripheral Interface. Only full reconfiguration is + supported. + + Programming of ECP5 is done by writing uncompressed bitstream image in .bit + format into FPGA's SRAM configuration memory. + +properties: + compatible: + enum: + - lattice,sysconfig-ecp5 + + reg: + maxItems: 1 + + program-gpios: + description: + A GPIO line connected to PROGRAMN (active low) pin of the device. + Initiates configuration sequence. + maxItems: 1 + + init-gpios: + description: + A GPIO line connected to INITN (active low) pin of the device. + Indicates that the FPGA is ready to be configured. + maxItems: 1 + + done-gpios: + description: + A GPIO line connected to DONE (active high) pin of the device. + Indicates that the configuration sequence is complete. + maxItems: 1 + +required: + - compatible + - reg + +allOf: + - $ref: /schemas/spi/spi-peripheral-props.yaml + + - if: + properties: + compatible: + contains: + const: lattice,sysconfig-ecp5 + then: + properties: + spi-max-frequency: + maximum: 60000000 + +unevaluatedProperties: false + +examples: + - | + #include <dt-bindings/gpio/gpio.h> + + spi { + #address-cells = <1>; + #size-cells = <0>; + + fpga-mgr@0 { + compatible = "lattice,sysconfig-ecp5"; + reg = <0>; + spi-max-frequency = <20000000>; + program-gpios = <&gpio3 4 GPIO_ACTIVE_LOW>; + init-gpios = <&gpio3 3 GPIO_ACTIVE_LOW>; + done-gpios = <&gpio3 2 GPIO_ACTIVE_HIGH>; + }; + }; diff --git a/Documentation/devicetree/bindings/fpga/lattice-ice40-fpga-mgr.txt b/Documentation/devicetree/bindings/fpga/lattice-ice40-fpga-mgr.txt new file mode 100644 index 0000000000..4dc412437b --- /dev/null +++ b/Documentation/devicetree/bindings/fpga/lattice-ice40-fpga-mgr.txt @@ -0,0 +1,21 @@ +Lattice iCE40 FPGA Manager + +Required properties: +- compatible: Should contain "lattice,ice40-fpga-mgr" +- reg: SPI chip select +- spi-max-frequency: Maximum SPI frequency (>=1000000, <=25000000) +- cdone-gpios: GPIO input connected to CDONE pin +- reset-gpios: Active-low GPIO output connected to CRESET_B pin. Note + that unless the GPIO is held low during startup, the + FPGA will enter Master SPI mode and drive SCK with a + clock signal potentially jamming other devices on the + bus until the firmware is loaded. + +Example: + fpga: fpga@0 { + compatible = "lattice,ice40-fpga-mgr"; + reg = <0>; + spi-max-frequency = <1000000>; + cdone-gpios = <&gpio 24 GPIO_ACTIVE_HIGH>; + reset-gpios = <&gpio 22 GPIO_ACTIVE_LOW>; + }; diff --git a/Documentation/devicetree/bindings/fpga/lattice-machxo2-spi.txt b/Documentation/devicetree/bindings/fpga/lattice-machxo2-spi.txt new file mode 100644 index 0000000000..a8c362eb16 --- /dev/null +++ b/Documentation/devicetree/bindings/fpga/lattice-machxo2-spi.txt @@ -0,0 +1,29 @@ +Lattice MachXO2 Slave SPI FPGA Manager + +Lattice MachXO2 FPGAs support a method of loading the bitstream over +'slave SPI' interface. + +See 'MachXO2ProgrammingandConfigurationUsageGuide.pdf' on www.latticesemi.com + +Required properties: +- compatible: should contain "lattice,machxo2-slave-spi" +- reg: spi chip select of the FPGA + +Example for full FPGA configuration: + + fpga-region0 { + compatible = "fpga-region"; + fpga-mgr = <&fpga_mgr_spi>; + #address-cells = <0x1>; + #size-cells = <0x1>; + }; + + spi1: spi@2000 { + ... + + fpga_mgr_spi: fpga-mgr@0 { + compatible = "lattice,machxo2-slave-spi"; + spi-max-frequency = <8000000>; + reg = <0>; + }; + }; diff --git a/Documentation/devicetree/bindings/fpga/microchip,mpf-spi-fpga-mgr.yaml b/Documentation/devicetree/bindings/fpga/microchip,mpf-spi-fpga-mgr.yaml new file mode 100644 index 0000000000..a157eecfb5 --- /dev/null +++ b/Documentation/devicetree/bindings/fpga/microchip,mpf-spi-fpga-mgr.yaml @@ -0,0 +1,45 @@ +# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause) +%YAML 1.2 +--- +$id: http://devicetree.org/schemas/fpga/microchip,mpf-spi-fpga-mgr.yaml# +$schema: http://devicetree.org/meta-schemas/core.yaml# + +title: Microchip Polarfire FPGA manager. + +maintainers: + - Vladimir Georgiev <v.georgiev@metrotek.ru> + +description: + Device Tree Bindings for Microchip Polarfire FPGA Manager using slave SPI to + load the bitstream in .dat format. + +properties: + compatible: + enum: + - microchip,mpf-spi-fpga-mgr + + reg: + description: SPI chip select + maxItems: 1 + +required: + - compatible + - reg + +allOf: + - $ref: /schemas/spi/spi-peripheral-props.yaml# + +unevaluatedProperties: false + +examples: + - | + spi { + #address-cells = <1>; + #size-cells = <0>; + + fpga_mgr@0 { + compatible = "microchip,mpf-spi-fpga-mgr"; + spi-max-frequency = <20000000>; + reg = <0>; + }; + }; diff --git a/Documentation/devicetree/bindings/fpga/xilinx-zynq-fpga-mgr.yaml b/Documentation/devicetree/bindings/fpga/xilinx-zynq-fpga-mgr.yaml new file mode 100644 index 0000000000..04dcadc2c2 --- /dev/null +++ b/Documentation/devicetree/bindings/fpga/xilinx-zynq-fpga-mgr.yaml @@ -0,0 +1,52 @@ +# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause) +%YAML 1.2 +--- +$id: http://devicetree.org/schemas/fpga/xilinx-zynq-fpga-mgr.yaml# +$schema: http://devicetree.org/meta-schemas/core.yaml# + +title: Xilinx Zynq FPGA Manager + +maintainers: + - Michal Simek <michal.simek@amd.com> + +properties: + compatible: + const: xlnx,zynq-devcfg-1.0 + + reg: + maxItems: 1 + + interrupts: + maxItems: 1 + + clocks: + maxItems: 1 + + clock-names: + items: + - const: ref_clk + + syscon: + $ref: /schemas/types.yaml#/definitions/phandle + description: + Phandle to syscon block which provide access to SLCR registers + +required: + - compatible + - reg + - clocks + - clock-names + - syscon + +additionalProperties: false + +examples: + - | + devcfg: devcfg@f8007000 { + compatible = "xlnx,zynq-devcfg-1.0"; + reg = <0xf8007000 0x100>; + interrupts = <0 8 4>; + clocks = <&clkc 12>; + clock-names = "ref_clk"; + syscon = <&slcr>; + }; diff --git a/Documentation/devicetree/bindings/fpga/xlnx,fpga-slave-serial.yaml b/Documentation/devicetree/bindings/fpga/xlnx,fpga-slave-serial.yaml new file mode 100644 index 0000000000..614d86ad82 --- /dev/null +++ b/Documentation/devicetree/bindings/fpga/xlnx,fpga-slave-serial.yaml @@ -0,0 +1,80 @@ +# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause) +%YAML 1.2 +--- +$id: http://devicetree.org/schemas/fpga/xlnx,fpga-slave-serial.yaml# +$schema: http://devicetree.org/meta-schemas/core.yaml# + +title: Xilinx Slave Serial SPI FPGA + +maintainers: + - Nava kishore Manne <nava.kishore.manne@amd.com> + +description: | + Xilinx Spartan-6 and 7 Series FPGAs support a method of loading the bitstream + over what is referred to as slave serial interface.The slave serial link is + not technically SPI, and might require extra circuits in order to play nicely + with other SPI slaves on the same bus. + + Datasheets: + https://www.xilinx.com/support/documentation/user_guides/ug380.pdf + https://www.xilinx.com/support/documentation/user_guides/ug470_7Series_Config.pdf + https://www.xilinx.com/support/documentation/application_notes/xapp583-fpga-configuration.pdf + +allOf: + - $ref: /schemas/spi/spi-peripheral-props.yaml# + +properties: + compatible: + enum: + - xlnx,fpga-slave-serial + + spi-cpha: true + + spi-max-frequency: + maximum: 60000000 + + reg: + maxItems: 1 + + prog_b-gpios: + description: + config pin (referred to as PROGRAM_B in the manual) + maxItems: 1 + + done-gpios: + description: + config status pin (referred to as DONE in the manual) + maxItems: 1 + + init-b-gpios: + description: + initialization status and configuration error pin + (referred to as INIT_B in the manual) + maxItems: 1 + +required: + - compatible + - reg + - prog_b-gpios + - done-gpios + - init-b-gpios + +additionalProperties: false + +examples: + - | + #include <dt-bindings/gpio/gpio.h> + spi { + #address-cells = <1>; + #size-cells = <0>; + fpga_mgr_spi: fpga-mgr@0 { + compatible = "xlnx,fpga-slave-serial"; + spi-max-frequency = <60000000>; + spi-cpha; + reg = <0>; + prog_b-gpios = <&gpio0 29 GPIO_ACTIVE_LOW>; + init-b-gpios = <&gpio0 28 GPIO_ACTIVE_LOW>; + done-gpios = <&gpio0 9 GPIO_ACTIVE_HIGH>; + }; + }; +... diff --git a/Documentation/devicetree/bindings/fpga/xlnx,pr-decoupler.yaml b/Documentation/devicetree/bindings/fpga/xlnx,pr-decoupler.yaml new file mode 100644 index 0000000000..a7d4b8e59e --- /dev/null +++ b/Documentation/devicetree/bindings/fpga/xlnx,pr-decoupler.yaml @@ -0,0 +1,64 @@ +# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause) +%YAML 1.2 +--- +$id: http://devicetree.org/schemas/fpga/xlnx,pr-decoupler.yaml# +$schema: http://devicetree.org/meta-schemas/core.yaml# + +title: Xilinx LogiCORE Partial Reconfig Decoupler/AXI shutdown manager Softcore + +maintainers: + - Nava kishore Manne <nava.kishore.manne@amd.com> + +description: | + The Xilinx LogiCORE Partial Reconfig(PR) Decoupler manages one or more + decouplers/fpga bridges. The controller can decouple/disable the bridges + which prevents signal changes from passing through the bridge. The controller + can also couple / enable the bridges which allows traffic to pass through the + bridge normally. + Xilinx LogiCORE Dynamic Function eXchange(DFX) AXI shutdown manager Softcore + is compatible with the Xilinx LogiCORE pr-decoupler. The Dynamic Function + eXchange AXI shutdown manager prevents AXI traffic from passing through the + bridge. The controller safely handles AXI4MM and AXI4-Lite interfaces on a + Reconfigurable Partition when it is undergoing dynamic reconfiguration, + preventing the system deadlock that can occur if AXI transactions are + interrupted by DFX. + Please refer to fpga-region.txt and fpga-bridge.txt in this directory for + common binding part and usage. + +properties: + compatible: + oneOf: + - items: + - const: xlnx,pr-decoupler-1.00 + - const: xlnx,pr-decoupler + - items: + - const: xlnx,dfx-axi-shutdown-manager-1.00 + - const: xlnx,dfx-axi-shutdown-manager + + reg: + maxItems: 1 + + clocks: + maxItems: 1 + + clock-names: + items: + - const: aclk + +required: + - compatible + - reg + - clocks + - clock-names + +additionalProperties: false + +examples: + - | + fpga-bridge@100000450 { + compatible = "xlnx,pr-decoupler-1.00", "xlnx,pr-decoupler"; + reg = <0x10000045 0x10>; + clocks = <&clkc 15>; + clock-names = "aclk"; + }; +... diff --git a/Documentation/devicetree/bindings/fpga/xlnx,versal-fpga.yaml b/Documentation/devicetree/bindings/fpga/xlnx,versal-fpga.yaml new file mode 100644 index 0000000000..26f18834ca --- /dev/null +++ b/Documentation/devicetree/bindings/fpga/xlnx,versal-fpga.yaml @@ -0,0 +1,33 @@ +# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause) +%YAML 1.2 +--- +$id: http://devicetree.org/schemas/fpga/xlnx,versal-fpga.yaml# +$schema: http://devicetree.org/meta-schemas/core.yaml# + +title: Xilinx Versal FPGA driver. + +maintainers: + - Nava kishore Manne <nava.kishore.manne@amd.com> + +description: | + Device Tree Versal FPGA bindings for the Versal SoC, controlled + using firmware interface. + +properties: + compatible: + items: + - enum: + - xlnx,versal-fpga + +required: + - compatible + +additionalProperties: false + +examples: + - | + versal_fpga: versal_fpga { + compatible = "xlnx,versal-fpga"; + }; + +... diff --git a/Documentation/devicetree/bindings/fpga/xlnx,zynqmp-pcap-fpga.yaml b/Documentation/devicetree/bindings/fpga/xlnx,zynqmp-pcap-fpga.yaml new file mode 100644 index 0000000000..1390ae103b --- /dev/null +++ b/Documentation/devicetree/bindings/fpga/xlnx,zynqmp-pcap-fpga.yaml @@ -0,0 +1,36 @@ +# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause) +%YAML 1.2 +--- +$id: http://devicetree.org/schemas/fpga/xlnx,zynqmp-pcap-fpga.yaml# +$schema: http://devicetree.org/meta-schemas/core.yaml# + +title: Xilinx Zynq Ultrascale MPSoC FPGA Manager + +maintainers: + - Nava kishore Manne <nava.kishore.manne@amd.com> + +description: | + Device Tree Bindings for Zynq Ultrascale MPSoC FPGA Manager. + The ZynqMP SoC uses the PCAP (Processor Configuration Port) to + configure the Programmable Logic (PL). The configuration uses the + firmware interface. + +properties: + compatible: + const: xlnx,zynqmp-pcap-fpga + +required: + - compatible + +additionalProperties: false + +examples: + - | + firmware { + zynqmp_firmware: zynqmp-firmware { + zynqmp_pcap: pcap { + compatible = "xlnx,zynqmp-pcap-fpga"; + }; + }; + }; +... |