summaryrefslogtreecommitdiffstats
path: root/Documentation/hwmon/pc87360.rst
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-11 08:27:49 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-11 08:27:49 +0000
commitace9429bb58fd418f0c81d4c2835699bddf6bde6 (patch)
treeb2d64bc10158fdd5497876388cd68142ca374ed3 /Documentation/hwmon/pc87360.rst
parentInitial commit. (diff)
downloadlinux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.tar.xz
linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.zip
Adding upstream version 6.6.15.upstream/6.6.15
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'Documentation/hwmon/pc87360.rst')
-rw-r--r--Documentation/hwmon/pc87360.rst198
1 files changed, 198 insertions, 0 deletions
diff --git a/Documentation/hwmon/pc87360.rst b/Documentation/hwmon/pc87360.rst
new file mode 100644
index 0000000000..4bad07bce5
--- /dev/null
+++ b/Documentation/hwmon/pc87360.rst
@@ -0,0 +1,198 @@
+Kernel driver pc87360
+=====================
+
+Supported chips:
+
+ * National Semiconductor PC87360, PC87363, PC87364, PC87365 and PC87366
+
+ Prefixes: 'pc87360', 'pc87363', 'pc87364', 'pc87365', 'pc87366'
+
+ Addresses scanned: none, address read from Super I/O config space
+
+ Datasheets: No longer available
+
+Authors: Jean Delvare <jdelvare@suse.de>
+
+Thanks to Sandeep Mehta, Tonko de Rooy and Daniel Ceregatti for testing.
+
+Thanks to Rudolf Marek for helping me investigate conversion issues.
+
+
+Module Parameters
+-----------------
+
+* init int
+ Chip initialization level:
+
+ - 0: None
+ - **1**: Forcibly enable internal voltage and temperature channels,
+ except in9
+ - 2: Forcibly enable all voltage and temperature channels, except in9
+ - 3: Forcibly enable all voltage and temperature channels, including in9
+
+Note that this parameter has no effect for the PC87360, PC87363 and PC87364
+chips.
+
+Also note that for the PC87366, initialization levels 2 and 3 don't enable
+all temperature channels, because some of them share pins with each other,
+so they can't be used at the same time.
+
+
+Description
+-----------
+
+The National Semiconductor PC87360 Super I/O chip contains monitoring and
+PWM control circuitry for two fans. The PC87363 chip is similar, and the
+PC87364 chip has monitoring and PWM control for a third fan.
+
+The National Semiconductor PC87365 and PC87366 Super I/O chips are complete
+hardware monitoring chipsets, not only controlling and monitoring three fans,
+but also monitoring eleven voltage inputs and two (PC87365) or up to four
+(PC87366) temperatures.
+
+ =========== ======= ======= ======= ======= =====
+ Chip #vin #fan #pwm #temp devid
+ =========== ======= ======= ======= ======= =====
+ PC87360 - 2 2 - 0xE1
+ PC87363 - 2 2 - 0xE8
+ PC87364 - 3 3 - 0xE4
+ PC87365 11 3 3 2 0xE5
+ PC87366 11 3 3 3-4 0xE9
+ =========== ======= ======= ======= ======= =====
+
+The driver assumes that no more than one chip is present, and one of the
+standard Super I/O addresses is used (0x2E/0x2F or 0x4E/0x4F)
+
+Fan Monitoring
+--------------
+
+Fan rotation speeds are reported in RPM (revolutions per minute). An alarm
+is triggered if the rotation speed has dropped below a programmable limit.
+A different alarm is triggered if the fan speed is too low to be measured.
+
+Fan readings are affected by a programmable clock divider, giving the
+readings more range or accuracy. Usually, users have to learn how it works,
+but this driver implements dynamic clock divider selection, so you don't
+have to care no more.
+
+For reference, here are a few values about clock dividers:
+
+ =========== =============== =============== ===========
+ slowest accuracy highest
+ measurable around 3000 accurate
+ divider speed (RPM) RPM (RPM) speed (RPM)
+ =========== =============== =============== ===========
+ 1 1882 18 6928
+ 2 941 37 4898
+ 4 470 74 3464
+ 8 235 150 2449
+ =========== =============== =============== ===========
+
+For the curious, here is how the values above were computed:
+
+ * slowest measurable speed: clock/(255*divider)
+ * accuracy around 3000 RPM: 3000^2/clock
+ * highest accurate speed: sqrt(clock*100)
+
+The clock speed for the PC87360 family is 480 kHz. I arbitrarily chose 100
+RPM as the lowest acceptable accuracy.
+
+As mentioned above, you don't have to care about this no more.
+
+Note that not all RPM values can be represented, even when the best clock
+divider is selected. This is not only true for the measured speeds, but
+also for the programmable low limits, so don't be surprised if you try to
+set, say, fan1_min to 2900 and it finally reads 2909.
+
+
+Fan Control
+-----------
+
+PWM (pulse width modulation) values range from 0 to 255, with 0 meaning
+that the fan is stopped, and 255 meaning that the fan goes at full speed.
+
+Be extremely careful when changing PWM values. Low PWM values, even
+non-zero, can stop the fan, which may cause irreversible damage to your
+hardware if temperature increases too much. When changing PWM values, go
+step by step and keep an eye on temperatures.
+
+One user reported problems with PWM. Changing PWM values would break fan
+speed readings. No explanation nor fix could be found.
+
+
+Temperature Monitoring
+----------------------
+
+Temperatures are reported in degrees Celsius. Each temperature measured has
+associated low, high and overtemperature limits, each of which triggers an
+alarm when crossed.
+
+The first two temperature channels are external. The third one (PC87366
+only) is internal.
+
+The PC87366 has three additional temperature channels, based on
+thermistors (as opposed to thermal diodes for the first three temperature
+channels). For technical reasons, these channels are held by the VLM
+(voltage level monitor) logical device, not the TMS (temperature
+measurement) one. As a consequence, these temperatures are exported as
+voltages, and converted into temperatures in user-space.
+
+Note that these three additional channels share their pins with the
+external thermal diode channels, so you (physically) can't use them all at
+the same time. Although it should be possible to mix the two sensor types,
+the documents from National Semiconductor suggest that motherboard
+manufacturers should choose one type and stick to it. So you will more
+likely have either channels 1 to 3 (thermal diodes) or 3 to 6 (internal
+thermal diode, and thermistors).
+
+
+Voltage Monitoring
+------------------
+
+Voltages are reported relatively to a reference voltage, either internal or
+external. Some of them (in7:Vsb, in8:Vdd and in10:AVdd) are divided by two
+internally, you will have to compensate in sensors.conf. Others (in0 to in6)
+are likely to be divided externally. The meaning of each of these inputs as
+well as the values of the resistors used for division is left to the
+motherboard manufacturers, so you will have to document yourself and edit
+sensors.conf accordingly. National Semiconductor has a document with
+recommended resistor values for some voltages, but this still leaves much
+room for per motherboard specificities, unfortunately. Even worse,
+motherboard manufacturers don't seem to care about National Semiconductor's
+recommendations.
+
+Each voltage measured has associated low and high limits, each of which
+triggers an alarm when crossed.
+
+When available, VID inputs are used to provide the nominal CPU Core voltage.
+The driver will default to VRM 9.0, but this can be changed from user-space.
+The chipsets can handle two sets of VID inputs (on dual-CPU systems), but
+the driver will only export one for now. This may change later if there is
+a need.
+
+
+General Remarks
+---------------
+
+If an alarm triggers, it will remain triggered until the hardware register
+is read at least once. This means that the cause for the alarm may already
+have disappeared! Note that all hardware registers are read whenever any
+data is read (unless it is less than 2 seconds since the last update, in
+which case cached values are returned instead). As a consequence, when
+a once-only alarm triggers, it may take 2 seconds for it to show, and 2
+more seconds for it to disappear.
+
+Monitoring of in9 isn't enabled at lower init levels (<3) because that
+channel measures the battery voltage (Vbat). It is a known fact that
+repeatedly sampling the battery voltage reduces its lifetime. National
+Semiconductor smartly designed their chipset so that in9 is sampled only
+once every 1024 sampling cycles (that is every 34 minutes at the default
+sampling rate), so the effect is attenuated, but still present.
+
+
+Limitations
+-----------
+
+The datasheets suggests that some values (fan mins, fan dividers)
+shouldn't be changed once the monitoring has started, but we ignore that
+recommendation. We'll reconsider if it actually causes trouble.