summaryrefslogtreecommitdiffstats
path: root/Documentation/networking/caif
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-11 08:27:49 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-11 08:27:49 +0000
commitace9429bb58fd418f0c81d4c2835699bddf6bde6 (patch)
treeb2d64bc10158fdd5497876388cd68142ca374ed3 /Documentation/networking/caif
parentInitial commit. (diff)
downloadlinux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.tar.xz
linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.zip
Adding upstream version 6.6.15.upstream/6.6.15
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'Documentation/networking/caif')
-rw-r--r--Documentation/networking/caif/caif.rst138
-rw-r--r--Documentation/networking/caif/index.rst12
-rw-r--r--Documentation/networking/caif/linux_caif.rst195
3 files changed, 345 insertions, 0 deletions
diff --git a/Documentation/networking/caif/caif.rst b/Documentation/networking/caif/caif.rst
new file mode 100644
index 0000000000..d922d419c5
--- /dev/null
+++ b/Documentation/networking/caif/caif.rst
@@ -0,0 +1,138 @@
+.. SPDX-License-Identifier: GPL-2.0
+.. include:: <isonum.txt>
+
+
+================
+Using Linux CAIF
+================
+
+
+:Copyright: |copy| ST-Ericsson AB 2010
+
+:Author: Sjur Brendeland/ sjur.brandeland@stericsson.com
+
+Start
+=====
+
+If you have compiled CAIF for modules do::
+
+ $modprobe crc_ccitt
+ $modprobe caif
+ $modprobe caif_socket
+ $modprobe chnl_net
+
+
+Preparing the setup with a STE modem
+====================================
+
+If you are working on integration of CAIF you should make sure
+that the kernel is built with module support.
+
+There are some things that need to be tweaked to get the host TTY correctly
+set up to talk to the modem.
+Since the CAIF stack is running in the kernel and we want to use the existing
+TTY, we are installing our physical serial driver as a line discipline above
+the TTY device.
+
+To achieve this we need to install the N_CAIF ldisc from user space.
+The benefit is that we can hook up to any TTY.
+
+The use of Start-of-frame-extension (STX) must also be set as
+module parameter "ser_use_stx".
+
+Normally Frame Checksum is always used on UART, but this is also provided as a
+module parameter "ser_use_fcs".
+
+::
+
+ $ modprobe caif_serial ser_ttyname=/dev/ttyS0 ser_use_stx=yes
+ $ ifconfig caif_ttyS0 up
+
+PLEASE NOTE:
+ There is a limitation in Android shell.
+ It only accepts one argument to insmod/modprobe!
+
+Trouble shooting
+================
+
+There are debugfs parameters provided for serial communication.
+/sys/kernel/debug/caif_serial/<tty-name>/
+
+* ser_state: Prints the bit-mask status where
+
+ - 0x02 means SENDING, this is a transient state.
+ - 0x10 means FLOW_OFF_SENT, i.e. the previous frame has not been sent
+ and is blocking further send operation. Flow OFF has been propagated
+ to all CAIF Channels using this TTY.
+
+* tty_status: Prints the bit-mask tty status information
+
+ - 0x01 - tty->warned is on.
+ - 0x04 - tty->packed is on.
+ - 0x08 - tty->flow.tco_stopped is on.
+ - 0x10 - tty->hw_stopped is on.
+ - 0x20 - tty->flow.stopped is on.
+
+* last_tx_msg: Binary blob Prints the last transmitted frame.
+
+ This can be printed with::
+
+ $od --format=x1 /sys/kernel/debug/caif_serial/<tty>/last_rx_msg.
+
+ The first two tx messages sent look like this. Note: The initial
+ byte 02 is start of frame extension (STX) used for re-syncing
+ upon errors.
+
+ - Enumeration::
+
+ 0000000 02 05 00 00 03 01 d2 02
+ | | | | | |
+ STX(1) | | | |
+ Length(2)| | |
+ Control Channel(1)
+ Command:Enumeration(1)
+ Link-ID(1)
+ Checksum(2)
+
+ - Channel Setup::
+
+ 0000000 02 07 00 00 00 21 a1 00 48 df
+ | | | | | | | |
+ STX(1) | | | | | |
+ Length(2)| | | | |
+ Control Channel(1)
+ Command:Channel Setup(1)
+ Channel Type(1)
+ Priority and Link-ID(1)
+ Endpoint(1)
+ Checksum(2)
+
+* last_rx_msg: Prints the last transmitted frame.
+
+ The RX messages for LinkSetup look almost identical but they have the
+ bit 0x20 set in the command bit, and Channel Setup has added one byte
+ before Checksum containing Channel ID.
+
+ NOTE:
+ Several CAIF Messages might be concatenated. The maximum debug
+ buffer size is 128 bytes.
+
+Error Scenarios
+===============
+
+- last_tx_msg contains channel setup message and last_rx_msg is empty ->
+ The host seems to be able to send over the UART, at least the CAIF ldisc get
+ notified that sending is completed.
+
+- last_tx_msg contains enumeration message and last_rx_msg is empty ->
+ The host is not able to send the message from UART, the tty has not been
+ able to complete the transmit operation.
+
+- if /sys/kernel/debug/caif_serial/<tty>/tty_status is non-zero there
+ might be problems transmitting over UART.
+
+ E.g. host and modem wiring is not correct you will typically see
+ tty_status = 0x10 (hw_stopped) and ser_state = 0x10 (FLOW_OFF_SENT).
+
+ You will probably see the enumeration message in last_tx_message
+ and empty last_rx_message.
diff --git a/Documentation/networking/caif/index.rst b/Documentation/networking/caif/index.rst
new file mode 100644
index 0000000000..ec29b6f4bd
--- /dev/null
+++ b/Documentation/networking/caif/index.rst
@@ -0,0 +1,12 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+CAIF
+====
+
+Contents:
+
+.. toctree::
+ :maxdepth: 2
+
+ linux_caif
+ caif
diff --git a/Documentation/networking/caif/linux_caif.rst b/Documentation/networking/caif/linux_caif.rst
new file mode 100644
index 0000000000..a0480862ab
--- /dev/null
+++ b/Documentation/networking/caif/linux_caif.rst
@@ -0,0 +1,195 @@
+.. SPDX-License-Identifier: GPL-2.0
+.. include:: <isonum.txt>
+
+==========
+Linux CAIF
+==========
+
+Copyright |copy| ST-Ericsson AB 2010
+
+:Author: Sjur Brendeland/ sjur.brandeland@stericsson.com
+:License terms: GNU General Public License (GPL) version 2
+
+
+Introduction
+============
+
+CAIF is a MUX protocol used by ST-Ericsson cellular modems for
+communication between Modem and host. The host processes can open virtual AT
+channels, initiate GPRS Data connections, Video channels and Utility Channels.
+The Utility Channels are general purpose pipes between modem and host.
+
+ST-Ericsson modems support a number of transports between modem
+and host. Currently, UART and Loopback are available for Linux.
+
+
+Architecture
+============
+
+The implementation of CAIF is divided into:
+
+* CAIF Socket Layer and GPRS IP Interface.
+* CAIF Core Protocol Implementation
+* CAIF Link Layer, implemented as NET devices.
+
+::
+
+ RTNL
+ !
+ ! +------+ +------+
+ ! +------+! +------+!
+ ! ! IP !! !Socket!!
+ +-------> !interf!+ ! API !+ <- CAIF Client APIs
+ ! +------+ +------!
+ ! ! !
+ ! +-----------+
+ ! !
+ ! +------+ <- CAIF Core Protocol
+ ! ! CAIF !
+ ! ! Core !
+ ! +------+
+ ! +----------!---------+
+ ! ! ! !
+ ! +------+ +-----+ +------+
+ +--> ! HSI ! ! TTY ! ! USB ! <- Link Layer (Net Devices)
+ +------+ +-----+ +------+
+
+
+
+Implementation
+==============
+
+
+CAIF Core Protocol Layer
+------------------------
+
+CAIF Core layer implements the CAIF protocol as defined by ST-Ericsson.
+It implements the CAIF protocol stack in a layered approach, where
+each layer described in the specification is implemented as a separate layer.
+The architecture is inspired by the design patterns "Protocol Layer" and
+"Protocol Packet".
+
+CAIF structure
+^^^^^^^^^^^^^^
+
+The Core CAIF implementation contains:
+
+ - Simple implementation of CAIF.
+ - Layered architecture (a la Streams), each layer in the CAIF
+ specification is implemented in a separate c-file.
+ - Clients must call configuration function to add PHY layer.
+ - Clients must implement CAIF layer to consume/produce
+ CAIF payload with receive and transmit functions.
+ - Clients must call configuration function to add and connect the
+ Client layer.
+ - When receiving / transmitting CAIF Packets (cfpkt), ownership is passed
+ to the called function (except for framing layers' receive function)
+
+Layered Architecture
+====================
+
+The CAIF protocol can be divided into two parts: Support functions and Protocol
+Implementation. The support functions include:
+
+ - CFPKT CAIF Packet. Implementation of CAIF Protocol Packet. The
+ CAIF Packet has functions for creating, destroying and adding content
+ and for adding/extracting header and trailers to protocol packets.
+
+The CAIF Protocol implementation contains:
+
+ - CFCNFG CAIF Configuration layer. Configures the CAIF Protocol
+ Stack and provides a Client interface for adding Link-Layer and
+ Driver interfaces on top of the CAIF Stack.
+
+ - CFCTRL CAIF Control layer. Encodes and Decodes control messages
+ such as enumeration and channel setup. Also matches request and
+ response messages.
+
+ - CFSERVL General CAIF Service Layer functionality; handles flow
+ control and remote shutdown requests.
+
+ - CFVEI CAIF VEI layer. Handles CAIF AT Channels on VEI (Virtual
+ External Interface). This layer encodes/decodes VEI frames.
+
+ - CFDGML CAIF Datagram layer. Handles CAIF Datagram layer (IP
+ traffic), encodes/decodes Datagram frames.
+
+ - CFMUX CAIF Mux layer. Handles multiplexing between multiple
+ physical bearers and multiple channels such as VEI, Datagram, etc.
+ The MUX keeps track of the existing CAIF Channels and
+ Physical Instances and selects the appropriate instance based
+ on Channel-Id and Physical-ID.
+
+ - CFFRML CAIF Framing layer. Handles Framing i.e. Frame length
+ and frame checksum.
+
+ - CFSERL CAIF Serial layer. Handles concatenation/split of frames
+ into CAIF Frames with correct length.
+
+::
+
+ +---------+
+ | Config |
+ | CFCNFG |
+ +---------+
+ !
+ +---------+ +---------+ +---------+
+ | AT | | Control | | Datagram|
+ | CFVEIL | | CFCTRL | | CFDGML |
+ +---------+ +---------+ +---------+
+ \_____________!______________/
+ !
+ +---------+
+ | MUX |
+ | |
+ +---------+
+ _____!_____
+ / \
+ +---------+ +---------+
+ | CFFRML | | CFFRML |
+ | Framing | | Framing |
+ +---------+ +---------+
+ ! !
+ +---------+ +---------+
+ | | | Serial |
+ | | | CFSERL |
+ +---------+ +---------+
+
+
+In this layered approach the following "rules" apply.
+
+ - All layers embed the same structure "struct cflayer"
+ - A layer does not depend on any other layer's private data.
+ - Layers are stacked by setting the pointers::
+
+ layer->up , layer->dn
+
+ - In order to send data upwards, each layer should do::
+
+ layer->up->receive(layer->up, packet);
+
+ - In order to send data downwards, each layer should do::
+
+ layer->dn->transmit(layer->dn, packet);
+
+
+CAIF Socket and IP interface
+============================
+
+The IP interface and CAIF socket API are implemented on top of the
+CAIF Core protocol. The IP Interface and CAIF socket have an instance of
+'struct cflayer', just like the CAIF Core protocol stack.
+Net device and Socket implement the 'receive()' function defined by
+'struct cflayer', just like the rest of the CAIF stack. In this way, transmit and
+receive of packets is handled as by the rest of the layers: the 'dn->transmit()'
+function is called in order to transmit data.
+
+Configuration of Link Layer
+---------------------------
+The Link Layer is implemented as Linux network devices (struct net_device).
+Payload handling and registration is done using standard Linux mechanisms.
+
+The CAIF Protocol relies on a loss-less link layer without implementing
+retransmission. This implies that packet drops must not happen.
+Therefore a flow-control mechanism is implemented where the physical
+interface can initiate flow stop for all CAIF Channels.