summaryrefslogtreecommitdiffstats
path: root/Documentation/networking/mctp.rst
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-11 08:27:49 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-11 08:27:49 +0000
commitace9429bb58fd418f0c81d4c2835699bddf6bde6 (patch)
treeb2d64bc10158fdd5497876388cd68142ca374ed3 /Documentation/networking/mctp.rst
parentInitial commit. (diff)
downloadlinux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.tar.xz
linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.zip
Adding upstream version 6.6.15.upstream/6.6.15
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r--Documentation/networking/mctp.rst320
1 files changed, 320 insertions, 0 deletions
diff --git a/Documentation/networking/mctp.rst b/Documentation/networking/mctp.rst
new file mode 100644
index 0000000000..c628cb5406
--- /dev/null
+++ b/Documentation/networking/mctp.rst
@@ -0,0 +1,320 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+==============================================
+Management Component Transport Protocol (MCTP)
+==============================================
+
+net/mctp/ contains protocol support for MCTP, as defined by DMTF standard
+DSP0236. Physical interface drivers ("bindings" in the specification) are
+provided in drivers/net/mctp/.
+
+The core code provides a socket-based interface to send and receive MCTP
+messages, through an AF_MCTP, SOCK_DGRAM socket.
+
+Structure: interfaces & networks
+================================
+
+The kernel models the local MCTP topology through two items: interfaces and
+networks.
+
+An interface (or "link") is an instance of an MCTP physical transport binding
+(as defined by DSP0236, section 3.2.47), likely connected to a specific hardware
+device. This is represented as a ``struct netdevice``.
+
+A network defines a unique address space for MCTP endpoints by endpoint-ID
+(described by DSP0236, section 3.2.31). A network has a user-visible identifier
+to allow references from userspace. Route definitions are specific to one
+network.
+
+Interfaces are associated with one network. A network may be associated with one
+or more interfaces.
+
+If multiple networks are present, each may contain endpoint IDs (EIDs) that are
+also present on other networks.
+
+Sockets API
+===========
+
+Protocol definitions
+--------------------
+
+MCTP uses ``AF_MCTP`` / ``PF_MCTP`` for the address- and protocol- families.
+Since MCTP is message-based, only ``SOCK_DGRAM`` sockets are supported.
+
+.. code-block:: C
+
+ int sd = socket(AF_MCTP, SOCK_DGRAM, 0);
+
+The only (current) value for the ``protocol`` argument is 0.
+
+As with all socket address families, source and destination addresses are
+specified with a ``sockaddr`` type, with a single-byte endpoint address:
+
+.. code-block:: C
+
+ typedef __u8 mctp_eid_t;
+
+ struct mctp_addr {
+ mctp_eid_t s_addr;
+ };
+
+ struct sockaddr_mctp {
+ __kernel_sa_family_t smctp_family;
+ unsigned int smctp_network;
+ struct mctp_addr smctp_addr;
+ __u8 smctp_type;
+ __u8 smctp_tag;
+ };
+
+ #define MCTP_NET_ANY 0x0
+ #define MCTP_ADDR_ANY 0xff
+
+
+Syscall behaviour
+-----------------
+
+The following sections describe the MCTP-specific behaviours of the standard
+socket system calls. These behaviours have been chosen to map closely to the
+existing sockets APIs.
+
+``bind()`` : set local socket address
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Sockets that receive incoming request packets will bind to a local address,
+using the ``bind()`` syscall.
+
+.. code-block:: C
+
+ struct sockaddr_mctp addr;
+
+ addr.smctp_family = AF_MCTP;
+ addr.smctp_network = MCTP_NET_ANY;
+ addr.smctp_addr.s_addr = MCTP_ADDR_ANY;
+ addr.smctp_type = MCTP_TYPE_PLDM;
+ addr.smctp_tag = MCTP_TAG_OWNER;
+
+ int rc = bind(sd, (struct sockaddr *)&addr, sizeof(addr));
+
+This establishes the local address of the socket. Incoming MCTP messages that
+match the network, address, and message type will be received by this socket.
+The reference to 'incoming' is important here; a bound socket will only receive
+messages with the TO bit set, to indicate an incoming request message, rather
+than a response.
+
+The ``smctp_tag`` value will configure the tags accepted from the remote side of
+this socket. Given the above, the only valid value is ``MCTP_TAG_OWNER``, which
+will result in remotely "owned" tags being routed to this socket. Since
+``MCTP_TAG_OWNER`` is set, the 3 least-significant bits of ``smctp_tag`` are not
+used; callers must set them to zero.
+
+A ``smctp_network`` value of ``MCTP_NET_ANY`` will configure the socket to
+receive incoming packets from any locally-connected network. A specific network
+value will cause the socket to only receive incoming messages from that network.
+
+The ``smctp_addr`` field specifies a local address to bind to. A value of
+``MCTP_ADDR_ANY`` configures the socket to receive messages addressed to any
+local destination EID.
+
+The ``smctp_type`` field specifies which message types to receive. Only the
+lower 7 bits of the type is matched on incoming messages (ie., the
+most-significant IC bit is not part of the match). This results in the socket
+receiving packets with and without a message integrity check footer.
+
+``sendto()``, ``sendmsg()``, ``send()`` : transmit an MCTP message
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+An MCTP message is transmitted using one of the ``sendto()``, ``sendmsg()`` or
+``send()`` syscalls. Using ``sendto()`` as the primary example:
+
+.. code-block:: C
+
+ struct sockaddr_mctp addr;
+ char buf[14];
+ ssize_t len;
+
+ /* set message destination */
+ addr.smctp_family = AF_MCTP;
+ addr.smctp_network = 0;
+ addr.smctp_addr.s_addr = 8;
+ addr.smctp_tag = MCTP_TAG_OWNER;
+ addr.smctp_type = MCTP_TYPE_ECHO;
+
+ /* arbitrary message to send, with message-type header */
+ buf[0] = MCTP_TYPE_ECHO;
+ memcpy(buf + 1, "hello, world!", sizeof(buf) - 1);
+
+ len = sendto(sd, buf, sizeof(buf), 0,
+ (struct sockaddr_mctp *)&addr, sizeof(addr));
+
+The network and address fields of ``addr`` define the remote address to send to.
+If ``smctp_tag`` has the ``MCTP_TAG_OWNER``, the kernel will ignore any bits set
+in ``MCTP_TAG_VALUE``, and generate a tag value suitable for the destination
+EID. If ``MCTP_TAG_OWNER`` is not set, the message will be sent with the tag
+value as specified. If a tag value cannot be allocated, the system call will
+report an errno of ``EAGAIN``.
+
+The application must provide the message type byte as the first byte of the
+message buffer passed to ``sendto()``. If a message integrity check is to be
+included in the transmitted message, it must also be provided in the message
+buffer, and the most-significant bit of the message type byte must be 1.
+
+The ``sendmsg()`` system call allows a more compact argument interface, and the
+message buffer to be specified as a scatter-gather list. At present no ancillary
+message types (used for the ``msg_control`` data passed to ``sendmsg()``) are
+defined.
+
+Transmitting a message on an unconnected socket with ``MCTP_TAG_OWNER``
+specified will cause an allocation of a tag, if no valid tag is already
+allocated for that destination. The (destination-eid,tag) tuple acts as an
+implicit local socket address, to allow the socket to receive responses to this
+outgoing message. If any previous allocation has been performed (to for a
+different remote EID), that allocation is lost.
+
+Sockets will only receive responses to requests they have sent (with TO=1) and
+may only respond (with TO=0) to requests they have received.
+
+``recvfrom()``, ``recvmsg()``, ``recv()`` : receive an MCTP message
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+An MCTP message can be received by an application using one of the
+``recvfrom()``, ``recvmsg()``, or ``recv()`` system calls. Using ``recvfrom()``
+as the primary example:
+
+.. code-block:: C
+
+ struct sockaddr_mctp addr;
+ socklen_t addrlen;
+ char buf[14];
+ ssize_t len;
+
+ addrlen = sizeof(addr);
+
+ len = recvfrom(sd, buf, sizeof(buf), 0,
+ (struct sockaddr_mctp *)&addr, &addrlen);
+
+ /* We can expect addr to describe an MCTP address */
+ assert(addrlen >= sizeof(buf));
+ assert(addr.smctp_family == AF_MCTP);
+
+ printf("received %zd bytes from remote EID %d\n", rc, addr.smctp_addr);
+
+The address argument to ``recvfrom`` and ``recvmsg`` is populated with the
+remote address of the incoming message, including tag value (this will be needed
+in order to reply to the message).
+
+The first byte of the message buffer will contain the message type byte. If an
+integrity check follows the message, it will be included in the received buffer.
+
+The ``recv()`` system call behaves in a similar way, but does not provide a
+remote address to the application. Therefore, these are only useful if the
+remote address is already known, or the message does not require a reply.
+
+Like the send calls, sockets will only receive responses to requests they have
+sent (TO=1) and may only respond (TO=0) to requests they have received.
+
+``ioctl(SIOCMCTPALLOCTAG)`` and ``ioctl(SIOCMCTPDROPTAG)``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+These tags give applications more control over MCTP message tags, by allocating
+(and dropping) tag values explicitly, rather than the kernel automatically
+allocating a per-message tag at ``sendmsg()`` time.
+
+In general, you will only need to use these ioctls if your MCTP protocol does
+not fit the usual request/response model. For example, if you need to persist
+tags across multiple requests, or a request may generate more than one response.
+In these cases, the ioctls allow you to decouple the tag allocation (and
+release) from individual message send and receive operations.
+
+Both ioctls are passed a pointer to a ``struct mctp_ioc_tag_ctl``:
+
+.. code-block:: C
+
+ struct mctp_ioc_tag_ctl {
+ mctp_eid_t peer_addr;
+ __u8 tag;
+ __u16 flags;
+ };
+
+``SIOCMCTPALLOCTAG`` allocates a tag for a specific peer, which an application
+can use in future ``sendmsg()`` calls. The application populates the
+``peer_addr`` member with the remote EID. Other fields must be zero.
+
+On return, the ``tag`` member will be populated with the allocated tag value.
+The allocated tag will have the following tag bits set:
+
+ - ``MCTP_TAG_OWNER``: it only makes sense to allocate tags if you're the tag
+ owner
+
+ - ``MCTP_TAG_PREALLOC``: to indicate to ``sendmsg()`` that this is a
+ preallocated tag.
+
+ - ... and the actual tag value, within the least-significant three bits
+ (``MCTP_TAG_MASK``). Note that zero is a valid tag value.
+
+The tag value should be used as-is for the ``smctp_tag`` member of ``struct
+sockaddr_mctp``.
+
+``SIOCMCTPDROPTAG`` releases a tag that has been previously allocated by a
+``SIOCMCTPALLOCTAG`` ioctl. The ``peer_addr`` must be the same as used for the
+allocation, and the ``tag`` value must match exactly the tag returned from the
+allocation (including the ``MCTP_TAG_OWNER`` and ``MCTP_TAG_PREALLOC`` bits).
+The ``flags`` field must be zero.
+
+Kernel internals
+================
+
+There are a few possible packet flows in the MCTP stack:
+
+1. local TX to remote endpoint, message <= MTU::
+
+ sendmsg()
+ -> mctp_local_output()
+ : route lookup
+ -> rt->output() (== mctp_route_output)
+ -> dev_queue_xmit()
+
+2. local TX to remote endpoint, message > MTU::
+
+ sendmsg()
+ -> mctp_local_output()
+ -> mctp_do_fragment_route()
+ : creates packet-sized skbs. For each new skb:
+ -> rt->output() (== mctp_route_output)
+ -> dev_queue_xmit()
+
+3. remote TX to local endpoint, single-packet message::
+
+ mctp_pkttype_receive()
+ : route lookup
+ -> rt->output() (== mctp_route_input)
+ : sk_key lookup
+ -> sock_queue_rcv_skb()
+
+4. remote TX to local endpoint, multiple-packet message::
+
+ mctp_pkttype_receive()
+ : route lookup
+ -> rt->output() (== mctp_route_input)
+ : sk_key lookup
+ : stores skb in struct sk_key->reasm_head
+
+ mctp_pkttype_receive()
+ : route lookup
+ -> rt->output() (== mctp_route_input)
+ : sk_key lookup
+ : finds existing reassembly in sk_key->reasm_head
+ : appends new fragment
+ -> sock_queue_rcv_skb()
+
+Key refcounts
+-------------
+
+ * keys are refed by:
+
+ - a skb: during route output, stored in ``skb->cb``.
+
+ - netns and sock lists.
+
+ * keys can be associated with a device, in which case they hold a
+ reference to the dev (set through ``key->dev``, counted through
+ ``dev->key_count``). Multiple keys can reference the device.