summaryrefslogtreecommitdiffstats
path: root/Documentation/trace/fprobe.rst
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-11 08:27:49 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-11 08:27:49 +0000
commitace9429bb58fd418f0c81d4c2835699bddf6bde6 (patch)
treeb2d64bc10158fdd5497876388cd68142ca374ed3 /Documentation/trace/fprobe.rst
parentInitial commit. (diff)
downloadlinux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.tar.xz
linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.zip
Adding upstream version 6.6.15.upstream/6.6.15
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'Documentation/trace/fprobe.rst')
-rw-r--r--Documentation/trace/fprobe.rst186
1 files changed, 186 insertions, 0 deletions
diff --git a/Documentation/trace/fprobe.rst b/Documentation/trace/fprobe.rst
new file mode 100644
index 0000000000..196f52386a
--- /dev/null
+++ b/Documentation/trace/fprobe.rst
@@ -0,0 +1,186 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+==================================
+Fprobe - Function entry/exit probe
+==================================
+
+.. Author: Masami Hiramatsu <mhiramat@kernel.org>
+
+Introduction
+============
+
+Fprobe is a function entry/exit probe mechanism based on ftrace.
+Instead of using ftrace full feature, if you only want to attach callbacks
+on function entry and exit, similar to the kprobes and kretprobes, you can
+use fprobe. Compared with kprobes and kretprobes, fprobe gives faster
+instrumentation for multiple functions with single handler. This document
+describes how to use fprobe.
+
+The usage of fprobe
+===================
+
+The fprobe is a wrapper of ftrace (+ kretprobe-like return callback) to
+attach callbacks to multiple function entry and exit. User needs to set up
+the `struct fprobe` and pass it to `register_fprobe()`.
+
+Typically, `fprobe` data structure is initialized with the `entry_handler`
+and/or `exit_handler` as below.
+
+.. code-block:: c
+
+ struct fprobe fp = {
+ .entry_handler = my_entry_callback,
+ .exit_handler = my_exit_callback,
+ };
+
+To enable the fprobe, call one of register_fprobe(), register_fprobe_ips(), and
+register_fprobe_syms(). These functions register the fprobe with different types
+of parameters.
+
+The register_fprobe() enables a fprobe by function-name filters.
+E.g. this enables @fp on "func*()" function except "func2()".::
+
+ register_fprobe(&fp, "func*", "func2");
+
+The register_fprobe_ips() enables a fprobe by ftrace-location addresses.
+E.g.
+
+.. code-block:: c
+
+ unsigned long ips[] = { 0x.... };
+
+ register_fprobe_ips(&fp, ips, ARRAY_SIZE(ips));
+
+And the register_fprobe_syms() enables a fprobe by symbol names.
+E.g.
+
+.. code-block:: c
+
+ char syms[] = {"func1", "func2", "func3"};
+
+ register_fprobe_syms(&fp, syms, ARRAY_SIZE(syms));
+
+To disable (remove from functions) this fprobe, call::
+
+ unregister_fprobe(&fp);
+
+You can temporally (soft) disable the fprobe by::
+
+ disable_fprobe(&fp);
+
+and resume by::
+
+ enable_fprobe(&fp);
+
+The above is defined by including the header::
+
+ #include <linux/fprobe.h>
+
+Same as ftrace, the registered callbacks will start being called some time
+after the register_fprobe() is called and before it returns. See
+:file:`Documentation/trace/ftrace.rst`.
+
+Also, the unregister_fprobe() will guarantee that the both enter and exit
+handlers are no longer being called by functions after unregister_fprobe()
+returns as same as unregister_ftrace_function().
+
+The fprobe entry/exit handler
+=============================
+
+The prototype of the entry/exit callback function are as follows:
+
+.. code-block:: c
+
+ int entry_callback(struct fprobe *fp, unsigned long entry_ip, unsigned long ret_ip, struct pt_regs *regs, void *entry_data);
+
+ void exit_callback(struct fprobe *fp, unsigned long entry_ip, unsigned long ret_ip, struct pt_regs *regs, void *entry_data);
+
+Note that the @entry_ip is saved at function entry and passed to exit handler.
+If the entry callback function returns !0, the corresponding exit callback will be cancelled.
+
+@fp
+ This is the address of `fprobe` data structure related to this handler.
+ You can embed the `fprobe` to your data structure and get it by
+ container_of() macro from @fp. The @fp must not be NULL.
+
+@entry_ip
+ This is the ftrace address of the traced function (both entry and exit).
+ Note that this may not be the actual entry address of the function but
+ the address where the ftrace is instrumented.
+
+@ret_ip
+ This is the return address that the traced function will return to,
+ somewhere in the caller. This can be used at both entry and exit.
+
+@regs
+ This is the `pt_regs` data structure at the entry and exit. Note that
+ the instruction pointer of @regs may be different from the @entry_ip
+ in the entry_handler. If you need traced instruction pointer, you need
+ to use @entry_ip. On the other hand, in the exit_handler, the instruction
+ pointer of @regs is set to the current return address.
+
+@entry_data
+ This is a local storage to share the data between entry and exit handlers.
+ This storage is NULL by default. If the user specify `exit_handler` field
+ and `entry_data_size` field when registering the fprobe, the storage is
+ allocated and passed to both `entry_handler` and `exit_handler`.
+
+Share the callbacks with kprobes
+================================
+
+Since the recursion safeness of the fprobe (and ftrace) is a bit different
+from the kprobes, this may cause an issue if user wants to run the same
+code from the fprobe and the kprobes.
+
+Kprobes has per-cpu 'current_kprobe' variable which protects the kprobe
+handler from recursion in all cases. On the other hand, fprobe uses
+only ftrace_test_recursion_trylock(). This allows interrupt context to
+call another (or same) fprobe while the fprobe user handler is running.
+
+This is not a matter if the common callback code has its own recursion
+detection, or it can handle the recursion in the different contexts
+(normal/interrupt/NMI.)
+But if it relies on the 'current_kprobe' recursion lock, it has to check
+kprobe_running() and use kprobe_busy_*() APIs.
+
+Fprobe has FPROBE_FL_KPROBE_SHARED flag to do this. If your common callback
+code will be shared with kprobes, please set FPROBE_FL_KPROBE_SHARED
+*before* registering the fprobe, like:
+
+.. code-block:: c
+
+ fprobe.flags = FPROBE_FL_KPROBE_SHARED;
+
+ register_fprobe(&fprobe, "func*", NULL);
+
+This will protect your common callback from the nested call.
+
+The missed counter
+==================
+
+The `fprobe` data structure has `fprobe::nmissed` counter field as same as
+kprobes.
+This counter counts up when;
+
+ - fprobe fails to take ftrace_recursion lock. This usually means that a function
+ which is traced by other ftrace users is called from the entry_handler.
+
+ - fprobe fails to setup the function exit because of the shortage of rethook
+ (the shadow stack for hooking the function return.)
+
+The `fprobe::nmissed` field counts up in both cases. Therefore, the former
+skips both of entry and exit callback and the latter skips the exit
+callback, but in both case the counter will increase by 1.
+
+Note that if you set the FTRACE_OPS_FL_RECURSION and/or FTRACE_OPS_FL_RCU to
+`fprobe::ops::flags` (ftrace_ops::flags) when registering the fprobe, this
+counter may not work correctly, because ftrace skips the fprobe function which
+increase the counter.
+
+
+Functions and structures
+========================
+
+.. kernel-doc:: include/linux/fprobe.h
+.. kernel-doc:: kernel/trace/fprobe.c
+