summaryrefslogtreecommitdiffstats
path: root/Documentation/virt/kvm/x86
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-08-07 13:11:27 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-08-07 13:11:27 +0000
commit34996e42f82bfd60bc2c191e5cae3c6ab233ec6c (patch)
tree62db60558cbf089714b48daeabca82bf2b20b20e /Documentation/virt/kvm/x86
parentAdding debian version 6.8.12-1. (diff)
downloadlinux-34996e42f82bfd60bc2c191e5cae3c6ab233ec6c.tar.xz
linux-34996e42f82bfd60bc2c191e5cae3c6ab233ec6c.zip
Merging upstream version 6.9.7.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'Documentation/virt/kvm/x86')
-rw-r--r--Documentation/virt/kvm/x86/amd-memory-encryption.rst42
-rw-r--r--Documentation/virt/kvm/x86/msr.rst19
2 files changed, 33 insertions, 28 deletions
diff --git a/Documentation/virt/kvm/x86/amd-memory-encryption.rst b/Documentation/virt/kvm/x86/amd-memory-encryption.rst
index 995780088e..84335d119f 100644
--- a/Documentation/virt/kvm/x86/amd-memory-encryption.rst
+++ b/Documentation/virt/kvm/x86/amd-memory-encryption.rst
@@ -46,21 +46,16 @@ SEV hardware uses ASIDs to associate a memory encryption key with a VM.
Hence, the ASID for the SEV-enabled guests must be from 1 to a maximum value
defined in the CPUID 0x8000001f[ecx] field.
-SEV Key Management
-==================
+The KVM_MEMORY_ENCRYPT_OP ioctl
+===============================
-The SEV guest key management is handled by a separate processor called the AMD
-Secure Processor (AMD-SP). Firmware running inside the AMD-SP provides a secure
-key management interface to perform common hypervisor activities such as
-encrypting bootstrap code, snapshot, migrating and debugging the guest. For more
-information, see the SEV Key Management spec [api-spec]_
-
-The main ioctl to access SEV is KVM_MEMORY_ENCRYPT_OP. If the argument
-to KVM_MEMORY_ENCRYPT_OP is NULL, the ioctl returns 0 if SEV is enabled
-and ``ENOTTY`` if it is disabled (on some older versions of Linux,
-the ioctl runs normally even with a NULL argument, and therefore will
-likely return ``EFAULT``). If non-NULL, the argument to KVM_MEMORY_ENCRYPT_OP
-must be a struct kvm_sev_cmd::
+The main ioctl to access SEV is KVM_MEMORY_ENCRYPT_OP, which operates on
+the VM file descriptor. If the argument to KVM_MEMORY_ENCRYPT_OP is NULL,
+the ioctl returns 0 if SEV is enabled and ``ENOTTY`` if it is disabled
+(on some older versions of Linux, the ioctl tries to run normally even
+with a NULL argument, and therefore will likely return ``EFAULT`` instead
+of zero if SEV is enabled). If non-NULL, the argument to
+KVM_MEMORY_ENCRYPT_OP must be a struct kvm_sev_cmd::
struct kvm_sev_cmd {
__u32 id;
@@ -87,10 +82,6 @@ guests, such as launching, running, snapshotting, migrating and decommissioning.
The KVM_SEV_INIT command is used by the hypervisor to initialize the SEV platform
context. In a typical workflow, this command should be the first command issued.
-The firmware can be initialized either by using its own non-volatile storage or
-the OS can manage the NV storage for the firmware using the module parameter
-``init_ex_path``. If the file specified by ``init_ex_path`` does not exist or
-is invalid, the OS will create or override the file with output from PSP.
Returns: 0 on success, -negative on error
@@ -434,6 +425,21 @@ issued by the hypervisor to make the guest ready for execution.
Returns: 0 on success, -negative on error
+Firmware Management
+===================
+
+The SEV guest key management is handled by a separate processor called the AMD
+Secure Processor (AMD-SP). Firmware running inside the AMD-SP provides a secure
+key management interface to perform common hypervisor activities such as
+encrypting bootstrap code, snapshot, migrating and debugging the guest. For more
+information, see the SEV Key Management spec [api-spec]_
+
+The AMD-SP firmware can be initialized either by using its own non-volatile
+storage or the OS can manage the NV storage for the firmware using
+parameter ``init_ex_path`` of the ``ccp`` module. If the file specified
+by ``init_ex_path`` does not exist or is invalid, the OS will create or
+override the file with PSP non-volatile storage.
+
References
==========
diff --git a/Documentation/virt/kvm/x86/msr.rst b/Documentation/virt/kvm/x86/msr.rst
index 9315fc385f..3aecf2a70e 100644
--- a/Documentation/virt/kvm/x86/msr.rst
+++ b/Documentation/virt/kvm/x86/msr.rst
@@ -193,8 +193,8 @@ data:
Asynchronous page fault (APF) control MSR.
Bits 63-6 hold 64-byte aligned physical address of a 64 byte memory area
- which must be in guest RAM and must be zeroed. This memory is expected
- to hold a copy of the following structure::
+ which must be in guest RAM. This memory is expected to hold the
+ following structure::
struct kvm_vcpu_pv_apf_data {
/* Used for 'page not present' events delivered via #PF */
@@ -204,7 +204,6 @@ data:
__u32 token;
__u8 pad[56];
- __u32 enabled;
};
Bits 5-4 of the MSR are reserved and should be zero. Bit 0 is set to 1
@@ -232,14 +231,14 @@ data:
as regular page fault, guest must reset 'flags' to '0' before it does
something that can generate normal page fault.
- Bytes 5-7 of 64 byte memory location ('token') will be written to by the
+ Bytes 4-7 of 64 byte memory location ('token') will be written to by the
hypervisor at the time of APF 'page ready' event injection. The content
- of these bytes is a token which was previously delivered as 'page not
- present' event. The event indicates the page in now available. Guest is
- supposed to write '0' to 'token' when it is done handling 'page ready'
- event and to write 1' to MSR_KVM_ASYNC_PF_ACK after clearing the location;
- writing to the MSR forces KVM to re-scan its queue and deliver the next
- pending notification.
+ of these bytes is a token which was previously delivered in CR2 as
+ 'page not present' event. The event indicates the page is now available.
+ Guest is supposed to write '0' to 'token' when it is done handling
+ 'page ready' event and to write '1' to MSR_KVM_ASYNC_PF_ACK after
+ clearing the location; writing to the MSR forces KVM to re-scan its
+ queue and deliver the next pending notification.
Note, MSR_KVM_ASYNC_PF_INT MSR specifying the interrupt vector for 'page
ready' APF delivery needs to be written to before enabling APF mechanism