diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-11 08:27:49 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-11 08:27:49 +0000 |
commit | ace9429bb58fd418f0c81d4c2835699bddf6bde6 (patch) | |
tree | b2d64bc10158fdd5497876388cd68142ca374ed3 /arch/arm64/include/asm/cpufeature.h | |
parent | Initial commit. (diff) | |
download | linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.tar.xz linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.zip |
Adding upstream version 6.6.15.upstream/6.6.15
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'arch/arm64/include/asm/cpufeature.h')
-rw-r--r-- | arch/arm64/include/asm/cpufeature.h | 929 |
1 files changed, 929 insertions, 0 deletions
diff --git a/arch/arm64/include/asm/cpufeature.h b/arch/arm64/include/asm/cpufeature.h new file mode 100644 index 0000000000..5bba393760 --- /dev/null +++ b/arch/arm64/include/asm/cpufeature.h @@ -0,0 +1,929 @@ +/* SPDX-License-Identifier: GPL-2.0-only */ +/* + * Copyright (C) 2014 Linaro Ltd. <ard.biesheuvel@linaro.org> + */ + +#ifndef __ASM_CPUFEATURE_H +#define __ASM_CPUFEATURE_H + +#include <asm/alternative-macros.h> +#include <asm/cpucaps.h> +#include <asm/cputype.h> +#include <asm/hwcap.h> +#include <asm/sysreg.h> + +#define MAX_CPU_FEATURES 128 +#define cpu_feature(x) KERNEL_HWCAP_ ## x + +#define ARM64_SW_FEATURE_OVERRIDE_NOKASLR 0 +#define ARM64_SW_FEATURE_OVERRIDE_HVHE 4 + +#ifndef __ASSEMBLY__ + +#include <linux/bug.h> +#include <linux/jump_label.h> +#include <linux/kernel.h> + +/* + * CPU feature register tracking + * + * The safe value of a CPUID feature field is dependent on the implications + * of the values assigned to it by the architecture. Based on the relationship + * between the values, the features are classified into 3 types - LOWER_SAFE, + * HIGHER_SAFE and EXACT. + * + * The lowest value of all the CPUs is chosen for LOWER_SAFE and highest + * for HIGHER_SAFE. It is expected that all CPUs have the same value for + * a field when EXACT is specified, failing which, the safe value specified + * in the table is chosen. + */ + +enum ftr_type { + FTR_EXACT, /* Use a predefined safe value */ + FTR_LOWER_SAFE, /* Smaller value is safe */ + FTR_HIGHER_SAFE, /* Bigger value is safe */ + FTR_HIGHER_OR_ZERO_SAFE, /* Bigger value is safe, but 0 is biggest */ +}; + +#define FTR_STRICT true /* SANITY check strict matching required */ +#define FTR_NONSTRICT false /* SANITY check ignored */ + +#define FTR_SIGNED true /* Value should be treated as signed */ +#define FTR_UNSIGNED false /* Value should be treated as unsigned */ + +#define FTR_VISIBLE true /* Feature visible to the user space */ +#define FTR_HIDDEN false /* Feature is hidden from the user */ + +#define FTR_VISIBLE_IF_IS_ENABLED(config) \ + (IS_ENABLED(config) ? FTR_VISIBLE : FTR_HIDDEN) + +struct arm64_ftr_bits { + bool sign; /* Value is signed ? */ + bool visible; + bool strict; /* CPU Sanity check: strict matching required ? */ + enum ftr_type type; + u8 shift; + u8 width; + s64 safe_val; /* safe value for FTR_EXACT features */ +}; + +/* + * Describe the early feature override to the core override code: + * + * @val Values that are to be merged into the final + * sanitised value of the register. Only the bitfields + * set to 1 in @mask are valid + * @mask Mask of the features that are overridden by @val + * + * A @mask field set to full-1 indicates that the corresponding field + * in @val is a valid override. + * + * A @mask field set to full-0 with the corresponding @val field set + * to full-0 denotes that this field has no override + * + * A @mask field set to full-0 with the corresponding @val field set + * to full-1 denotes thath this field has an invalid override. + */ +struct arm64_ftr_override { + u64 val; + u64 mask; +}; + +/* + * @arm64_ftr_reg - Feature register + * @strict_mask Bits which should match across all CPUs for sanity. + * @sys_val Safe value across the CPUs (system view) + */ +struct arm64_ftr_reg { + const char *name; + u64 strict_mask; + u64 user_mask; + u64 sys_val; + u64 user_val; + struct arm64_ftr_override *override; + const struct arm64_ftr_bits *ftr_bits; +}; + +extern struct arm64_ftr_reg arm64_ftr_reg_ctrel0; + +/* + * CPU capabilities: + * + * We use arm64_cpu_capabilities to represent system features, errata work + * arounds (both used internally by kernel and tracked in system_cpucaps) and + * ELF HWCAPs (which are exposed to user). + * + * To support systems with heterogeneous CPUs, we need to make sure that we + * detect the capabilities correctly on the system and take appropriate + * measures to ensure there are no incompatibilities. + * + * This comment tries to explain how we treat the capabilities. + * Each capability has the following list of attributes : + * + * 1) Scope of Detection : The system detects a given capability by + * performing some checks at runtime. This could be, e.g, checking the + * value of a field in CPU ID feature register or checking the cpu + * model. The capability provides a call back ( @matches() ) to + * perform the check. Scope defines how the checks should be performed. + * There are three cases: + * + * a) SCOPE_LOCAL_CPU: check all the CPUs and "detect" if at least one + * matches. This implies, we have to run the check on all the + * booting CPUs, until the system decides that state of the + * capability is finalised. (See section 2 below) + * Or + * b) SCOPE_SYSTEM: check all the CPUs and "detect" if all the CPUs + * matches. This implies, we run the check only once, when the + * system decides to finalise the state of the capability. If the + * capability relies on a field in one of the CPU ID feature + * registers, we use the sanitised value of the register from the + * CPU feature infrastructure to make the decision. + * Or + * c) SCOPE_BOOT_CPU: Check only on the primary boot CPU to detect the + * feature. This category is for features that are "finalised" + * (or used) by the kernel very early even before the SMP cpus + * are brought up. + * + * The process of detection is usually denoted by "update" capability + * state in the code. + * + * 2) Finalise the state : The kernel should finalise the state of a + * capability at some point during its execution and take necessary + * actions if any. Usually, this is done, after all the boot-time + * enabled CPUs are brought up by the kernel, so that it can make + * better decision based on the available set of CPUs. However, there + * are some special cases, where the action is taken during the early + * boot by the primary boot CPU. (e.g, running the kernel at EL2 with + * Virtualisation Host Extensions). The kernel usually disallows any + * changes to the state of a capability once it finalises the capability + * and takes any action, as it may be impossible to execute the actions + * safely. A CPU brought up after a capability is "finalised" is + * referred to as "Late CPU" w.r.t the capability. e.g, all secondary + * CPUs are treated "late CPUs" for capabilities determined by the boot + * CPU. + * + * At the moment there are two passes of finalising the capabilities. + * a) Boot CPU scope capabilities - Finalised by primary boot CPU via + * setup_boot_cpu_capabilities(). + * b) Everything except (a) - Run via setup_system_capabilities(). + * + * 3) Verification: When a CPU is brought online (e.g, by user or by the + * kernel), the kernel should make sure that it is safe to use the CPU, + * by verifying that the CPU is compliant with the state of the + * capabilities finalised already. This happens via : + * + * secondary_start_kernel()-> check_local_cpu_capabilities() + * + * As explained in (2) above, capabilities could be finalised at + * different points in the execution. Each newly booted CPU is verified + * against the capabilities that have been finalised by the time it + * boots. + * + * a) SCOPE_BOOT_CPU : All CPUs are verified against the capability + * except for the primary boot CPU. + * + * b) SCOPE_LOCAL_CPU, SCOPE_SYSTEM: All CPUs hotplugged on by the + * user after the kernel boot are verified against the capability. + * + * If there is a conflict, the kernel takes an action, based on the + * severity (e.g, a CPU could be prevented from booting or cause a + * kernel panic). The CPU is allowed to "affect" the state of the + * capability, if it has not been finalised already. See section 5 + * for more details on conflicts. + * + * 4) Action: As mentioned in (2), the kernel can take an action for each + * detected capability, on all CPUs on the system. Appropriate actions + * include, turning on an architectural feature, modifying the control + * registers (e.g, SCTLR, TCR etc.) or patching the kernel via + * alternatives. The kernel patching is batched and performed at later + * point. The actions are always initiated only after the capability + * is finalised. This is usally denoted by "enabling" the capability. + * The actions are initiated as follows : + * a) Action is triggered on all online CPUs, after the capability is + * finalised, invoked within the stop_machine() context from + * enable_cpu_capabilitie(). + * + * b) Any late CPU, brought up after (1), the action is triggered via: + * + * check_local_cpu_capabilities() -> verify_local_cpu_capabilities() + * + * 5) Conflicts: Based on the state of the capability on a late CPU vs. + * the system state, we could have the following combinations : + * + * x-----------------------------x + * | Type | System | Late CPU | + * |-----------------------------| + * | a | y | n | + * |-----------------------------| + * | b | n | y | + * x-----------------------------x + * + * Two separate flag bits are defined to indicate whether each kind of + * conflict can be allowed: + * ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU - Case(a) is allowed + * ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU - Case(b) is allowed + * + * Case (a) is not permitted for a capability that the system requires + * all CPUs to have in order for the capability to be enabled. This is + * typical for capabilities that represent enhanced functionality. + * + * Case (b) is not permitted for a capability that must be enabled + * during boot if any CPU in the system requires it in order to run + * safely. This is typical for erratum work arounds that cannot be + * enabled after the corresponding capability is finalised. + * + * In some non-typical cases either both (a) and (b), or neither, + * should be permitted. This can be described by including neither + * or both flags in the capability's type field. + * + * In case of a conflict, the CPU is prevented from booting. If the + * ARM64_CPUCAP_PANIC_ON_CONFLICT flag is specified for the capability, + * then a kernel panic is triggered. + */ + + +/* + * Decide how the capability is detected. + * On any local CPU vs System wide vs the primary boot CPU + */ +#define ARM64_CPUCAP_SCOPE_LOCAL_CPU ((u16)BIT(0)) +#define ARM64_CPUCAP_SCOPE_SYSTEM ((u16)BIT(1)) +/* + * The capabilitiy is detected on the Boot CPU and is used by kernel + * during early boot. i.e, the capability should be "detected" and + * "enabled" as early as possibly on all booting CPUs. + */ +#define ARM64_CPUCAP_SCOPE_BOOT_CPU ((u16)BIT(2)) +#define ARM64_CPUCAP_SCOPE_MASK \ + (ARM64_CPUCAP_SCOPE_SYSTEM | \ + ARM64_CPUCAP_SCOPE_LOCAL_CPU | \ + ARM64_CPUCAP_SCOPE_BOOT_CPU) + +#define SCOPE_SYSTEM ARM64_CPUCAP_SCOPE_SYSTEM +#define SCOPE_LOCAL_CPU ARM64_CPUCAP_SCOPE_LOCAL_CPU +#define SCOPE_BOOT_CPU ARM64_CPUCAP_SCOPE_BOOT_CPU +#define SCOPE_ALL ARM64_CPUCAP_SCOPE_MASK + +/* + * Is it permitted for a late CPU to have this capability when system + * hasn't already enabled it ? + */ +#define ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU ((u16)BIT(4)) +/* Is it safe for a late CPU to miss this capability when system has it */ +#define ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU ((u16)BIT(5)) +/* Panic when a conflict is detected */ +#define ARM64_CPUCAP_PANIC_ON_CONFLICT ((u16)BIT(6)) + +/* + * CPU errata workarounds that need to be enabled at boot time if one or + * more CPUs in the system requires it. When one of these capabilities + * has been enabled, it is safe to allow any CPU to boot that doesn't + * require the workaround. However, it is not safe if a "late" CPU + * requires a workaround and the system hasn't enabled it already. + */ +#define ARM64_CPUCAP_LOCAL_CPU_ERRATUM \ + (ARM64_CPUCAP_SCOPE_LOCAL_CPU | ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU) +/* + * CPU feature detected at boot time based on system-wide value of a + * feature. It is safe for a late CPU to have this feature even though + * the system hasn't enabled it, although the feature will not be used + * by Linux in this case. If the system has enabled this feature already, + * then every late CPU must have it. + */ +#define ARM64_CPUCAP_SYSTEM_FEATURE \ + (ARM64_CPUCAP_SCOPE_SYSTEM | ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU) +/* + * CPU feature detected at boot time based on feature of one or more CPUs. + * All possible conflicts for a late CPU are ignored. + * NOTE: this means that a late CPU with the feature will *not* cause the + * capability to be advertised by cpus_have_*cap()! + */ +#define ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE \ + (ARM64_CPUCAP_SCOPE_LOCAL_CPU | \ + ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU | \ + ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU) + +/* + * CPU feature detected at boot time, on one or more CPUs. A late CPU + * is not allowed to have the capability when the system doesn't have it. + * It is Ok for a late CPU to miss the feature. + */ +#define ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE \ + (ARM64_CPUCAP_SCOPE_LOCAL_CPU | \ + ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU) + +/* + * CPU feature used early in the boot based on the boot CPU. All secondary + * CPUs must match the state of the capability as detected by the boot CPU. In + * case of a conflict, a kernel panic is triggered. + */ +#define ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE \ + (ARM64_CPUCAP_SCOPE_BOOT_CPU | ARM64_CPUCAP_PANIC_ON_CONFLICT) + +/* + * CPU feature used early in the boot based on the boot CPU. It is safe for a + * late CPU to have this feature even though the boot CPU hasn't enabled it, + * although the feature will not be used by Linux in this case. If the boot CPU + * has enabled this feature already, then every late CPU must have it. + */ +#define ARM64_CPUCAP_BOOT_CPU_FEATURE \ + (ARM64_CPUCAP_SCOPE_BOOT_CPU | ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU) + +struct arm64_cpu_capabilities { + const char *desc; + u16 capability; + u16 type; + bool (*matches)(const struct arm64_cpu_capabilities *caps, int scope); + /* + * Take the appropriate actions to configure this capability + * for this CPU. If the capability is detected by the kernel + * this will be called on all the CPUs in the system, + * including the hotplugged CPUs, regardless of whether the + * capability is available on that specific CPU. This is + * useful for some capabilities (e.g, working around CPU + * errata), where all the CPUs must take some action (e.g, + * changing system control/configuration). Thus, if an action + * is required only if the CPU has the capability, then the + * routine must check it before taking any action. + */ + void (*cpu_enable)(const struct arm64_cpu_capabilities *cap); + union { + struct { /* To be used for erratum handling only */ + struct midr_range midr_range; + const struct arm64_midr_revidr { + u32 midr_rv; /* revision/variant */ + u32 revidr_mask; + } * const fixed_revs; + }; + + const struct midr_range *midr_range_list; + struct { /* Feature register checking */ + u32 sys_reg; + u8 field_pos; + u8 field_width; + u8 min_field_value; + u8 hwcap_type; + bool sign; + unsigned long hwcap; + }; + }; + + /* + * An optional list of "matches/cpu_enable" pair for the same + * "capability" of the same "type" as described by the parent. + * Only matches(), cpu_enable() and fields relevant to these + * methods are significant in the list. The cpu_enable is + * invoked only if the corresponding entry "matches()". + * However, if a cpu_enable() method is associated + * with multiple matches(), care should be taken that either + * the match criteria are mutually exclusive, or that the + * method is robust against being called multiple times. + */ + const struct arm64_cpu_capabilities *match_list; +}; + +static inline int cpucap_default_scope(const struct arm64_cpu_capabilities *cap) +{ + return cap->type & ARM64_CPUCAP_SCOPE_MASK; +} + +/* + * Generic helper for handling capabilities with multiple (match,enable) pairs + * of call backs, sharing the same capability bit. + * Iterate over each entry to see if at least one matches. + */ +static inline bool +cpucap_multi_entry_cap_matches(const struct arm64_cpu_capabilities *entry, + int scope) +{ + const struct arm64_cpu_capabilities *caps; + + for (caps = entry->match_list; caps->matches; caps++) + if (caps->matches(caps, scope)) + return true; + + return false; +} + +static __always_inline bool is_vhe_hyp_code(void) +{ + /* Only defined for code run in VHE hyp context */ + return __is_defined(__KVM_VHE_HYPERVISOR__); +} + +static __always_inline bool is_nvhe_hyp_code(void) +{ + /* Only defined for code run in NVHE hyp context */ + return __is_defined(__KVM_NVHE_HYPERVISOR__); +} + +static __always_inline bool is_hyp_code(void) +{ + return is_vhe_hyp_code() || is_nvhe_hyp_code(); +} + +extern DECLARE_BITMAP(system_cpucaps, ARM64_NCAPS); + +extern DECLARE_BITMAP(boot_cpucaps, ARM64_NCAPS); + +#define for_each_available_cap(cap) \ + for_each_set_bit(cap, system_cpucaps, ARM64_NCAPS) + +bool this_cpu_has_cap(unsigned int cap); +void cpu_set_feature(unsigned int num); +bool cpu_have_feature(unsigned int num); +unsigned long cpu_get_elf_hwcap(void); +unsigned long cpu_get_elf_hwcap2(void); + +#define cpu_set_named_feature(name) cpu_set_feature(cpu_feature(name)) +#define cpu_have_named_feature(name) cpu_have_feature(cpu_feature(name)) + +static __always_inline bool system_capabilities_finalized(void) +{ + return alternative_has_cap_likely(ARM64_ALWAYS_SYSTEM); +} + +/* + * Test for a capability with a runtime check. + * + * Before the capability is detected, this returns false. + */ +static __always_inline bool cpus_have_cap(unsigned int num) +{ + if (num >= ARM64_NCAPS) + return false; + return arch_test_bit(num, system_cpucaps); +} + +/* + * Test for a capability without a runtime check. + * + * Before capabilities are finalized, this returns false. + * After capabilities are finalized, this is patched to avoid a runtime check. + * + * @num must be a compile-time constant. + */ +static __always_inline bool __cpus_have_const_cap(int num) +{ + if (num >= ARM64_NCAPS) + return false; + return alternative_has_cap_unlikely(num); +} + +/* + * Test for a capability without a runtime check. + * + * Before capabilities are finalized, this will BUG(). + * After capabilities are finalized, this is patched to avoid a runtime check. + * + * @num must be a compile-time constant. + */ +static __always_inline bool cpus_have_final_cap(int num) +{ + if (system_capabilities_finalized()) + return __cpus_have_const_cap(num); + else + BUG(); +} + +/* + * Test for a capability, possibly with a runtime check for non-hyp code. + * + * For hyp code, this behaves the same as cpus_have_final_cap(). + * + * For non-hyp code: + * Before capabilities are finalized, this behaves as cpus_have_cap(). + * After capabilities are finalized, this is patched to avoid a runtime check. + * + * @num must be a compile-time constant. + */ +static __always_inline bool cpus_have_const_cap(int num) +{ + if (is_hyp_code()) + return cpus_have_final_cap(num); + else if (system_capabilities_finalized()) + return __cpus_have_const_cap(num); + else + return cpus_have_cap(num); +} + +static inline int __attribute_const__ +cpuid_feature_extract_signed_field_width(u64 features, int field, int width) +{ + return (s64)(features << (64 - width - field)) >> (64 - width); +} + +static inline int __attribute_const__ +cpuid_feature_extract_signed_field(u64 features, int field) +{ + return cpuid_feature_extract_signed_field_width(features, field, 4); +} + +static __always_inline unsigned int __attribute_const__ +cpuid_feature_extract_unsigned_field_width(u64 features, int field, int width) +{ + return (u64)(features << (64 - width - field)) >> (64 - width); +} + +static __always_inline unsigned int __attribute_const__ +cpuid_feature_extract_unsigned_field(u64 features, int field) +{ + return cpuid_feature_extract_unsigned_field_width(features, field, 4); +} + +/* + * Fields that identify the version of the Performance Monitors Extension do + * not follow the standard ID scheme. See ARM DDI 0487E.a page D13-2825, + * "Alternative ID scheme used for the Performance Monitors Extension version". + */ +static inline u64 __attribute_const__ +cpuid_feature_cap_perfmon_field(u64 features, int field, u64 cap) +{ + u64 val = cpuid_feature_extract_unsigned_field(features, field); + u64 mask = GENMASK_ULL(field + 3, field); + + /* Treat IMPLEMENTATION DEFINED functionality as unimplemented */ + if (val == ID_AA64DFR0_EL1_PMUVer_IMP_DEF) + val = 0; + + if (val > cap) { + features &= ~mask; + features |= (cap << field) & mask; + } + + return features; +} + +static inline u64 arm64_ftr_mask(const struct arm64_ftr_bits *ftrp) +{ + return (u64)GENMASK(ftrp->shift + ftrp->width - 1, ftrp->shift); +} + +static inline u64 arm64_ftr_reg_user_value(const struct arm64_ftr_reg *reg) +{ + return (reg->user_val | (reg->sys_val & reg->user_mask)); +} + +static inline int __attribute_const__ +cpuid_feature_extract_field_width(u64 features, int field, int width, bool sign) +{ + if (WARN_ON_ONCE(!width)) + width = 4; + return (sign) ? + cpuid_feature_extract_signed_field_width(features, field, width) : + cpuid_feature_extract_unsigned_field_width(features, field, width); +} + +static inline int __attribute_const__ +cpuid_feature_extract_field(u64 features, int field, bool sign) +{ + return cpuid_feature_extract_field_width(features, field, 4, sign); +} + +static inline s64 arm64_ftr_value(const struct arm64_ftr_bits *ftrp, u64 val) +{ + return (s64)cpuid_feature_extract_field_width(val, ftrp->shift, ftrp->width, ftrp->sign); +} + +static inline bool id_aa64mmfr0_mixed_endian_el0(u64 mmfr0) +{ + return cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_EL1_BIGEND_SHIFT) == 0x1 || + cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_EL1_BIGENDEL0_SHIFT) == 0x1; +} + +static inline bool id_aa64pfr0_32bit_el1(u64 pfr0) +{ + u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL1_EL1_SHIFT); + + return val == ID_AA64PFR0_EL1_ELx_32BIT_64BIT; +} + +static inline bool id_aa64pfr0_32bit_el0(u64 pfr0) +{ + u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL1_EL0_SHIFT); + + return val == ID_AA64PFR0_EL1_ELx_32BIT_64BIT; +} + +static inline bool id_aa64pfr0_sve(u64 pfr0) +{ + u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL1_SVE_SHIFT); + + return val > 0; +} + +static inline bool id_aa64pfr1_sme(u64 pfr1) +{ + u32 val = cpuid_feature_extract_unsigned_field(pfr1, ID_AA64PFR1_EL1_SME_SHIFT); + + return val > 0; +} + +static inline bool id_aa64pfr1_mte(u64 pfr1) +{ + u32 val = cpuid_feature_extract_unsigned_field(pfr1, ID_AA64PFR1_EL1_MTE_SHIFT); + + return val >= ID_AA64PFR1_EL1_MTE_MTE2; +} + +void __init setup_cpu_features(void); +void check_local_cpu_capabilities(void); + +u64 read_sanitised_ftr_reg(u32 id); +u64 __read_sysreg_by_encoding(u32 sys_id); + +static inline bool cpu_supports_mixed_endian_el0(void) +{ + return id_aa64mmfr0_mixed_endian_el0(read_cpuid(ID_AA64MMFR0_EL1)); +} + + +static inline bool supports_csv2p3(int scope) +{ + u64 pfr0; + u8 csv2_val; + + if (scope == SCOPE_LOCAL_CPU) + pfr0 = read_sysreg_s(SYS_ID_AA64PFR0_EL1); + else + pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1); + + csv2_val = cpuid_feature_extract_unsigned_field(pfr0, + ID_AA64PFR0_EL1_CSV2_SHIFT); + return csv2_val == 3; +} + +static inline bool supports_clearbhb(int scope) +{ + u64 isar2; + + if (scope == SCOPE_LOCAL_CPU) + isar2 = read_sysreg_s(SYS_ID_AA64ISAR2_EL1); + else + isar2 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1); + + return cpuid_feature_extract_unsigned_field(isar2, + ID_AA64ISAR2_EL1_CLRBHB_SHIFT); +} + +const struct cpumask *system_32bit_el0_cpumask(void); +DECLARE_STATIC_KEY_FALSE(arm64_mismatched_32bit_el0); + +static inline bool system_supports_32bit_el0(void) +{ + u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1); + + return static_branch_unlikely(&arm64_mismatched_32bit_el0) || + id_aa64pfr0_32bit_el0(pfr0); +} + +static inline bool system_supports_4kb_granule(void) +{ + u64 mmfr0; + u32 val; + + mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); + val = cpuid_feature_extract_unsigned_field(mmfr0, + ID_AA64MMFR0_EL1_TGRAN4_SHIFT); + + return (val >= ID_AA64MMFR0_EL1_TGRAN4_SUPPORTED_MIN) && + (val <= ID_AA64MMFR0_EL1_TGRAN4_SUPPORTED_MAX); +} + +static inline bool system_supports_64kb_granule(void) +{ + u64 mmfr0; + u32 val; + + mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); + val = cpuid_feature_extract_unsigned_field(mmfr0, + ID_AA64MMFR0_EL1_TGRAN64_SHIFT); + + return (val >= ID_AA64MMFR0_EL1_TGRAN64_SUPPORTED_MIN) && + (val <= ID_AA64MMFR0_EL1_TGRAN64_SUPPORTED_MAX); +} + +static inline bool system_supports_16kb_granule(void) +{ + u64 mmfr0; + u32 val; + + mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); + val = cpuid_feature_extract_unsigned_field(mmfr0, + ID_AA64MMFR0_EL1_TGRAN16_SHIFT); + + return (val >= ID_AA64MMFR0_EL1_TGRAN16_SUPPORTED_MIN) && + (val <= ID_AA64MMFR0_EL1_TGRAN16_SUPPORTED_MAX); +} + +static inline bool system_supports_mixed_endian_el0(void) +{ + return id_aa64mmfr0_mixed_endian_el0(read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1)); +} + +static inline bool system_supports_mixed_endian(void) +{ + u64 mmfr0; + u32 val; + + mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); + val = cpuid_feature_extract_unsigned_field(mmfr0, + ID_AA64MMFR0_EL1_BIGEND_SHIFT); + + return val == 0x1; +} + +static __always_inline bool system_supports_fpsimd(void) +{ + return !cpus_have_const_cap(ARM64_HAS_NO_FPSIMD); +} + +static inline bool system_uses_hw_pan(void) +{ + return IS_ENABLED(CONFIG_ARM64_PAN) && + cpus_have_const_cap(ARM64_HAS_PAN); +} + +static inline bool system_uses_ttbr0_pan(void) +{ + return IS_ENABLED(CONFIG_ARM64_SW_TTBR0_PAN) && + !system_uses_hw_pan(); +} + +static __always_inline bool system_supports_sve(void) +{ + return IS_ENABLED(CONFIG_ARM64_SVE) && + cpus_have_const_cap(ARM64_SVE); +} + +static __always_inline bool system_supports_sme(void) +{ + return IS_ENABLED(CONFIG_ARM64_SME) && + cpus_have_const_cap(ARM64_SME); +} + +static __always_inline bool system_supports_sme2(void) +{ + return IS_ENABLED(CONFIG_ARM64_SME) && + cpus_have_const_cap(ARM64_SME2); +} + +static __always_inline bool system_supports_fa64(void) +{ + return IS_ENABLED(CONFIG_ARM64_SME) && + cpus_have_const_cap(ARM64_SME_FA64); +} + +static __always_inline bool system_supports_tpidr2(void) +{ + return system_supports_sme(); +} + +static __always_inline bool system_supports_cnp(void) +{ + return IS_ENABLED(CONFIG_ARM64_CNP) && + cpus_have_const_cap(ARM64_HAS_CNP); +} + +static inline bool system_supports_address_auth(void) +{ + return IS_ENABLED(CONFIG_ARM64_PTR_AUTH) && + cpus_have_const_cap(ARM64_HAS_ADDRESS_AUTH); +} + +static inline bool system_supports_generic_auth(void) +{ + return IS_ENABLED(CONFIG_ARM64_PTR_AUTH) && + cpus_have_const_cap(ARM64_HAS_GENERIC_AUTH); +} + +static inline bool system_has_full_ptr_auth(void) +{ + return system_supports_address_auth() && system_supports_generic_auth(); +} + +static __always_inline bool system_uses_irq_prio_masking(void) +{ + return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) && + cpus_have_const_cap(ARM64_HAS_GIC_PRIO_MASKING); +} + +static inline bool system_supports_mte(void) +{ + return IS_ENABLED(CONFIG_ARM64_MTE) && + cpus_have_const_cap(ARM64_MTE); +} + +static inline bool system_has_prio_mask_debugging(void) +{ + return IS_ENABLED(CONFIG_ARM64_DEBUG_PRIORITY_MASKING) && + system_uses_irq_prio_masking(); +} + +static inline bool system_supports_bti(void) +{ + return IS_ENABLED(CONFIG_ARM64_BTI) && cpus_have_const_cap(ARM64_BTI); +} + +static inline bool system_supports_tlb_range(void) +{ + return IS_ENABLED(CONFIG_ARM64_TLB_RANGE) && + cpus_have_const_cap(ARM64_HAS_TLB_RANGE); +} + +int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt); +bool try_emulate_mrs(struct pt_regs *regs, u32 isn); + +static inline u32 id_aa64mmfr0_parange_to_phys_shift(int parange) +{ + switch (parange) { + case ID_AA64MMFR0_EL1_PARANGE_32: return 32; + case ID_AA64MMFR0_EL1_PARANGE_36: return 36; + case ID_AA64MMFR0_EL1_PARANGE_40: return 40; + case ID_AA64MMFR0_EL1_PARANGE_42: return 42; + case ID_AA64MMFR0_EL1_PARANGE_44: return 44; + case ID_AA64MMFR0_EL1_PARANGE_48: return 48; + case ID_AA64MMFR0_EL1_PARANGE_52: return 52; + /* + * A future PE could use a value unknown to the kernel. + * However, by the "D10.1.4 Principles of the ID scheme + * for fields in ID registers", ARM DDI 0487C.a, any new + * value is guaranteed to be higher than what we know already. + * As a safe limit, we return the limit supported by the kernel. + */ + default: return CONFIG_ARM64_PA_BITS; + } +} + +/* Check whether hardware update of the Access flag is supported */ +static inline bool cpu_has_hw_af(void) +{ + u64 mmfr1; + + if (!IS_ENABLED(CONFIG_ARM64_HW_AFDBM)) + return false; + + /* + * Use cached version to avoid emulated msr operation on KVM + * guests. + */ + mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1); + return cpuid_feature_extract_unsigned_field(mmfr1, + ID_AA64MMFR1_EL1_HAFDBS_SHIFT); +} + +static inline bool cpu_has_pan(void) +{ + u64 mmfr1 = read_cpuid(ID_AA64MMFR1_EL1); + return cpuid_feature_extract_unsigned_field(mmfr1, + ID_AA64MMFR1_EL1_PAN_SHIFT); +} + +#ifdef CONFIG_ARM64_AMU_EXTN +/* Check whether the cpu supports the Activity Monitors Unit (AMU) */ +extern bool cpu_has_amu_feat(int cpu); +#else +static inline bool cpu_has_amu_feat(int cpu) +{ + return false; +} +#endif + +/* Get a cpu that supports the Activity Monitors Unit (AMU) */ +extern int get_cpu_with_amu_feat(void); + +static inline unsigned int get_vmid_bits(u64 mmfr1) +{ + int vmid_bits; + + vmid_bits = cpuid_feature_extract_unsigned_field(mmfr1, + ID_AA64MMFR1_EL1_VMIDBits_SHIFT); + if (vmid_bits == ID_AA64MMFR1_EL1_VMIDBits_16) + return 16; + + /* + * Return the default here even if any reserved + * value is fetched from the system register. + */ + return 8; +} + +s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new, s64 cur); +struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id); + +extern struct arm64_ftr_override id_aa64mmfr1_override; +extern struct arm64_ftr_override id_aa64pfr0_override; +extern struct arm64_ftr_override id_aa64pfr1_override; +extern struct arm64_ftr_override id_aa64zfr0_override; +extern struct arm64_ftr_override id_aa64smfr0_override; +extern struct arm64_ftr_override id_aa64isar1_override; +extern struct arm64_ftr_override id_aa64isar2_override; + +extern struct arm64_ftr_override arm64_sw_feature_override; + +u32 get_kvm_ipa_limit(void); +void dump_cpu_features(void); + +#endif /* __ASSEMBLY__ */ + +#endif |