diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-11 08:27:49 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-11 08:27:49 +0000 |
commit | ace9429bb58fd418f0c81d4c2835699bddf6bde6 (patch) | |
tree | b2d64bc10158fdd5497876388cd68142ca374ed3 /arch/arm64/kernel/smp.c | |
parent | Initial commit. (diff) | |
download | linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.tar.xz linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.zip |
Adding upstream version 6.6.15.upstream/6.6.15
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'arch/arm64/kernel/smp.c')
-rw-r--r-- | arch/arm64/kernel/smp.c | 1096 |
1 files changed, 1096 insertions, 0 deletions
diff --git a/arch/arm64/kernel/smp.c b/arch/arm64/kernel/smp.c new file mode 100644 index 0000000000..960b98b435 --- /dev/null +++ b/arch/arm64/kernel/smp.c @@ -0,0 +1,1096 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * SMP initialisation and IPI support + * Based on arch/arm/kernel/smp.c + * + * Copyright (C) 2012 ARM Ltd. + */ + +#include <linux/acpi.h> +#include <linux/arm_sdei.h> +#include <linux/delay.h> +#include <linux/init.h> +#include <linux/spinlock.h> +#include <linux/sched/mm.h> +#include <linux/sched/hotplug.h> +#include <linux/sched/task_stack.h> +#include <linux/interrupt.h> +#include <linux/cache.h> +#include <linux/profile.h> +#include <linux/errno.h> +#include <linux/mm.h> +#include <linux/err.h> +#include <linux/cpu.h> +#include <linux/smp.h> +#include <linux/seq_file.h> +#include <linux/irq.h> +#include <linux/irqchip/arm-gic-v3.h> +#include <linux/percpu.h> +#include <linux/clockchips.h> +#include <linux/completion.h> +#include <linux/of.h> +#include <linux/irq_work.h> +#include <linux/kernel_stat.h> +#include <linux/kexec.h> +#include <linux/kvm_host.h> + +#include <asm/alternative.h> +#include <asm/atomic.h> +#include <asm/cacheflush.h> +#include <asm/cpu.h> +#include <asm/cputype.h> +#include <asm/cpu_ops.h> +#include <asm/daifflags.h> +#include <asm/kvm_mmu.h> +#include <asm/mmu_context.h> +#include <asm/numa.h> +#include <asm/processor.h> +#include <asm/smp_plat.h> +#include <asm/sections.h> +#include <asm/tlbflush.h> +#include <asm/ptrace.h> +#include <asm/virt.h> + +#include <trace/events/ipi.h> + +DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number); +EXPORT_PER_CPU_SYMBOL(cpu_number); + +/* + * as from 2.5, kernels no longer have an init_tasks structure + * so we need some other way of telling a new secondary core + * where to place its SVC stack + */ +struct secondary_data secondary_data; +/* Number of CPUs which aren't online, but looping in kernel text. */ +static int cpus_stuck_in_kernel; + +enum ipi_msg_type { + IPI_RESCHEDULE, + IPI_CALL_FUNC, + IPI_CPU_STOP, + IPI_CPU_CRASH_STOP, + IPI_TIMER, + IPI_IRQ_WORK, + IPI_WAKEUP, + NR_IPI +}; + +static int ipi_irq_base __read_mostly; +static int nr_ipi __read_mostly = NR_IPI; +static struct irq_desc *ipi_desc[NR_IPI] __read_mostly; + +static void ipi_setup(int cpu); + +#ifdef CONFIG_HOTPLUG_CPU +static void ipi_teardown(int cpu); +static int op_cpu_kill(unsigned int cpu); +#else +static inline int op_cpu_kill(unsigned int cpu) +{ + return -ENOSYS; +} +#endif + + +/* + * Boot a secondary CPU, and assign it the specified idle task. + * This also gives us the initial stack to use for this CPU. + */ +static int boot_secondary(unsigned int cpu, struct task_struct *idle) +{ + const struct cpu_operations *ops = get_cpu_ops(cpu); + + if (ops->cpu_boot) + return ops->cpu_boot(cpu); + + return -EOPNOTSUPP; +} + +static DECLARE_COMPLETION(cpu_running); + +int __cpu_up(unsigned int cpu, struct task_struct *idle) +{ + int ret; + long status; + + /* + * We need to tell the secondary core where to find its stack and the + * page tables. + */ + secondary_data.task = idle; + update_cpu_boot_status(CPU_MMU_OFF); + + /* Now bring the CPU into our world */ + ret = boot_secondary(cpu, idle); + if (ret) { + pr_err("CPU%u: failed to boot: %d\n", cpu, ret); + return ret; + } + + /* + * CPU was successfully started, wait for it to come online or + * time out. + */ + wait_for_completion_timeout(&cpu_running, + msecs_to_jiffies(5000)); + if (cpu_online(cpu)) + return 0; + + pr_crit("CPU%u: failed to come online\n", cpu); + secondary_data.task = NULL; + status = READ_ONCE(secondary_data.status); + if (status == CPU_MMU_OFF) + status = READ_ONCE(__early_cpu_boot_status); + + switch (status & CPU_BOOT_STATUS_MASK) { + default: + pr_err("CPU%u: failed in unknown state : 0x%lx\n", + cpu, status); + cpus_stuck_in_kernel++; + break; + case CPU_KILL_ME: + if (!op_cpu_kill(cpu)) { + pr_crit("CPU%u: died during early boot\n", cpu); + break; + } + pr_crit("CPU%u: may not have shut down cleanly\n", cpu); + fallthrough; + case CPU_STUCK_IN_KERNEL: + pr_crit("CPU%u: is stuck in kernel\n", cpu); + if (status & CPU_STUCK_REASON_52_BIT_VA) + pr_crit("CPU%u: does not support 52-bit VAs\n", cpu); + if (status & CPU_STUCK_REASON_NO_GRAN) { + pr_crit("CPU%u: does not support %luK granule\n", + cpu, PAGE_SIZE / SZ_1K); + } + cpus_stuck_in_kernel++; + break; + case CPU_PANIC_KERNEL: + panic("CPU%u detected unsupported configuration\n", cpu); + } + + return -EIO; +} + +static void init_gic_priority_masking(void) +{ + u32 cpuflags; + + if (WARN_ON(!gic_enable_sre())) + return; + + cpuflags = read_sysreg(daif); + + WARN_ON(!(cpuflags & PSR_I_BIT)); + WARN_ON(!(cpuflags & PSR_F_BIT)); + + gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET); +} + +/* + * This is the secondary CPU boot entry. We're using this CPUs + * idle thread stack, but a set of temporary page tables. + */ +asmlinkage notrace void secondary_start_kernel(void) +{ + u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK; + struct mm_struct *mm = &init_mm; + const struct cpu_operations *ops; + unsigned int cpu = smp_processor_id(); + + /* + * All kernel threads share the same mm context; grab a + * reference and switch to it. + */ + mmgrab(mm); + current->active_mm = mm; + + /* + * TTBR0 is only used for the identity mapping at this stage. Make it + * point to zero page to avoid speculatively fetching new entries. + */ + cpu_uninstall_idmap(); + + if (system_uses_irq_prio_masking()) + init_gic_priority_masking(); + + rcu_cpu_starting(cpu); + trace_hardirqs_off(); + + /* + * If the system has established the capabilities, make sure + * this CPU ticks all of those. If it doesn't, the CPU will + * fail to come online. + */ + check_local_cpu_capabilities(); + + ops = get_cpu_ops(cpu); + if (ops->cpu_postboot) + ops->cpu_postboot(); + + /* + * Log the CPU info before it is marked online and might get read. + */ + cpuinfo_store_cpu(); + store_cpu_topology(cpu); + + /* + * Enable GIC and timers. + */ + notify_cpu_starting(cpu); + + ipi_setup(cpu); + + numa_add_cpu(cpu); + + /* + * OK, now it's safe to let the boot CPU continue. Wait for + * the CPU migration code to notice that the CPU is online + * before we continue. + */ + pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n", + cpu, (unsigned long)mpidr, + read_cpuid_id()); + update_cpu_boot_status(CPU_BOOT_SUCCESS); + set_cpu_online(cpu, true); + complete(&cpu_running); + + local_daif_restore(DAIF_PROCCTX); + + /* + * OK, it's off to the idle thread for us + */ + cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); +} + +#ifdef CONFIG_HOTPLUG_CPU +static int op_cpu_disable(unsigned int cpu) +{ + const struct cpu_operations *ops = get_cpu_ops(cpu); + + /* + * If we don't have a cpu_die method, abort before we reach the point + * of no return. CPU0 may not have an cpu_ops, so test for it. + */ + if (!ops || !ops->cpu_die) + return -EOPNOTSUPP; + + /* + * We may need to abort a hot unplug for some other mechanism-specific + * reason. + */ + if (ops->cpu_disable) + return ops->cpu_disable(cpu); + + return 0; +} + +/* + * __cpu_disable runs on the processor to be shutdown. + */ +int __cpu_disable(void) +{ + unsigned int cpu = smp_processor_id(); + int ret; + + ret = op_cpu_disable(cpu); + if (ret) + return ret; + + remove_cpu_topology(cpu); + numa_remove_cpu(cpu); + + /* + * Take this CPU offline. Once we clear this, we can't return, + * and we must not schedule until we're ready to give up the cpu. + */ + set_cpu_online(cpu, false); + ipi_teardown(cpu); + + /* + * OK - migrate IRQs away from this CPU + */ + irq_migrate_all_off_this_cpu(); + + return 0; +} + +static int op_cpu_kill(unsigned int cpu) +{ + const struct cpu_operations *ops = get_cpu_ops(cpu); + + /* + * If we have no means of synchronising with the dying CPU, then assume + * that it is really dead. We can only wait for an arbitrary length of + * time and hope that it's dead, so let's skip the wait and just hope. + */ + if (!ops->cpu_kill) + return 0; + + return ops->cpu_kill(cpu); +} + +/* + * Called on the thread which is asking for a CPU to be shutdown after the + * shutdown completed. + */ +void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) +{ + int err; + + pr_debug("CPU%u: shutdown\n", cpu); + + /* + * Now that the dying CPU is beyond the point of no return w.r.t. + * in-kernel synchronisation, try to get the firwmare to help us to + * verify that it has really left the kernel before we consider + * clobbering anything it might still be using. + */ + err = op_cpu_kill(cpu); + if (err) + pr_warn("CPU%d may not have shut down cleanly: %d\n", cpu, err); +} + +/* + * Called from the idle thread for the CPU which has been shutdown. + * + */ +void __noreturn cpu_die(void) +{ + unsigned int cpu = smp_processor_id(); + const struct cpu_operations *ops = get_cpu_ops(cpu); + + idle_task_exit(); + + local_daif_mask(); + + /* Tell cpuhp_bp_sync_dead() that this CPU is now safe to dispose of */ + cpuhp_ap_report_dead(); + + /* + * Actually shutdown the CPU. This must never fail. The specific hotplug + * mechanism must perform all required cache maintenance to ensure that + * no dirty lines are lost in the process of shutting down the CPU. + */ + ops->cpu_die(cpu); + + BUG(); +} +#endif + +static void __cpu_try_die(int cpu) +{ +#ifdef CONFIG_HOTPLUG_CPU + const struct cpu_operations *ops = get_cpu_ops(cpu); + + if (ops && ops->cpu_die) + ops->cpu_die(cpu); +#endif +} + +/* + * Kill the calling secondary CPU, early in bringup before it is turned + * online. + */ +void __noreturn cpu_die_early(void) +{ + int cpu = smp_processor_id(); + + pr_crit("CPU%d: will not boot\n", cpu); + + /* Mark this CPU absent */ + set_cpu_present(cpu, 0); + rcu_report_dead(cpu); + + if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) { + update_cpu_boot_status(CPU_KILL_ME); + __cpu_try_die(cpu); + } + + update_cpu_boot_status(CPU_STUCK_IN_KERNEL); + + cpu_park_loop(); +} + +static void __init hyp_mode_check(void) +{ + if (is_hyp_mode_available()) + pr_info("CPU: All CPU(s) started at EL2\n"); + else if (is_hyp_mode_mismatched()) + WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC, + "CPU: CPUs started in inconsistent modes"); + else + pr_info("CPU: All CPU(s) started at EL1\n"); + if (IS_ENABLED(CONFIG_KVM) && !is_kernel_in_hyp_mode()) { + kvm_compute_layout(); + kvm_apply_hyp_relocations(); + } +} + +void __init smp_cpus_done(unsigned int max_cpus) +{ + pr_info("SMP: Total of %d processors activated.\n", num_online_cpus()); + setup_cpu_features(); + hyp_mode_check(); + apply_alternatives_all(); + mark_linear_text_alias_ro(); +} + +void __init smp_prepare_boot_cpu(void) +{ + /* + * The runtime per-cpu areas have been allocated by + * setup_per_cpu_areas(), and CPU0's boot time per-cpu area will be + * freed shortly, so we must move over to the runtime per-cpu area. + */ + set_my_cpu_offset(per_cpu_offset(smp_processor_id())); + cpuinfo_store_boot_cpu(); + + /* + * We now know enough about the boot CPU to apply the + * alternatives that cannot wait until interrupt handling + * and/or scheduling is enabled. + */ + apply_boot_alternatives(); + + /* Conditionally switch to GIC PMR for interrupt masking */ + if (system_uses_irq_prio_masking()) + init_gic_priority_masking(); + + kasan_init_hw_tags(); +} + +/* + * Duplicate MPIDRs are a recipe for disaster. Scan all initialized + * entries and check for duplicates. If any is found just ignore the + * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid + * matching valid MPIDR values. + */ +static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid) +{ + unsigned int i; + + for (i = 1; (i < cpu) && (i < NR_CPUS); i++) + if (cpu_logical_map(i) == hwid) + return true; + return false; +} + +/* + * Initialize cpu operations for a logical cpu and + * set it in the possible mask on success + */ +static int __init smp_cpu_setup(int cpu) +{ + const struct cpu_operations *ops; + + if (init_cpu_ops(cpu)) + return -ENODEV; + + ops = get_cpu_ops(cpu); + if (ops->cpu_init(cpu)) + return -ENODEV; + + set_cpu_possible(cpu, true); + + return 0; +} + +static bool bootcpu_valid __initdata; +static unsigned int cpu_count = 1; + +#ifdef CONFIG_ACPI +static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS]; + +struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu) +{ + return &cpu_madt_gicc[cpu]; +} +EXPORT_SYMBOL_GPL(acpi_cpu_get_madt_gicc); + +/* + * acpi_map_gic_cpu_interface - parse processor MADT entry + * + * Carry out sanity checks on MADT processor entry and initialize + * cpu_logical_map on success + */ +static void __init +acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor) +{ + u64 hwid = processor->arm_mpidr; + + if (!(processor->flags & ACPI_MADT_ENABLED)) { + pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid); + return; + } + + if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) { + pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid); + return; + } + + if (is_mpidr_duplicate(cpu_count, hwid)) { + pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid); + return; + } + + /* Check if GICC structure of boot CPU is available in the MADT */ + if (cpu_logical_map(0) == hwid) { + if (bootcpu_valid) { + pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n", + hwid); + return; + } + bootcpu_valid = true; + cpu_madt_gicc[0] = *processor; + return; + } + + if (cpu_count >= NR_CPUS) + return; + + /* map the logical cpu id to cpu MPIDR */ + set_cpu_logical_map(cpu_count, hwid); + + cpu_madt_gicc[cpu_count] = *processor; + + /* + * Set-up the ACPI parking protocol cpu entries + * while initializing the cpu_logical_map to + * avoid parsing MADT entries multiple times for + * nothing (ie a valid cpu_logical_map entry should + * contain a valid parking protocol data set to + * initialize the cpu if the parking protocol is + * the only available enable method). + */ + acpi_set_mailbox_entry(cpu_count, processor); + + cpu_count++; +} + +static int __init +acpi_parse_gic_cpu_interface(union acpi_subtable_headers *header, + const unsigned long end) +{ + struct acpi_madt_generic_interrupt *processor; + + processor = (struct acpi_madt_generic_interrupt *)header; + if (BAD_MADT_GICC_ENTRY(processor, end)) + return -EINVAL; + + acpi_table_print_madt_entry(&header->common); + + acpi_map_gic_cpu_interface(processor); + + return 0; +} + +static void __init acpi_parse_and_init_cpus(void) +{ + int i; + + /* + * do a walk of MADT to determine how many CPUs + * we have including disabled CPUs, and get information + * we need for SMP init. + */ + acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT, + acpi_parse_gic_cpu_interface, 0); + + /* + * In ACPI, SMP and CPU NUMA information is provided in separate + * static tables, namely the MADT and the SRAT. + * + * Thus, it is simpler to first create the cpu logical map through + * an MADT walk and then map the logical cpus to their node ids + * as separate steps. + */ + acpi_map_cpus_to_nodes(); + + for (i = 0; i < nr_cpu_ids; i++) + early_map_cpu_to_node(i, acpi_numa_get_nid(i)); +} +#else +#define acpi_parse_and_init_cpus(...) do { } while (0) +#endif + +/* + * Enumerate the possible CPU set from the device tree and build the + * cpu logical map array containing MPIDR values related to logical + * cpus. Assumes that cpu_logical_map(0) has already been initialized. + */ +static void __init of_parse_and_init_cpus(void) +{ + struct device_node *dn; + + for_each_of_cpu_node(dn) { + u64 hwid = of_get_cpu_hwid(dn, 0); + + if (hwid & ~MPIDR_HWID_BITMASK) + goto next; + + if (is_mpidr_duplicate(cpu_count, hwid)) { + pr_err("%pOF: duplicate cpu reg properties in the DT\n", + dn); + goto next; + } + + /* + * The numbering scheme requires that the boot CPU + * must be assigned logical id 0. Record it so that + * the logical map built from DT is validated and can + * be used. + */ + if (hwid == cpu_logical_map(0)) { + if (bootcpu_valid) { + pr_err("%pOF: duplicate boot cpu reg property in DT\n", + dn); + goto next; + } + + bootcpu_valid = true; + early_map_cpu_to_node(0, of_node_to_nid(dn)); + + /* + * cpu_logical_map has already been + * initialized and the boot cpu doesn't need + * the enable-method so continue without + * incrementing cpu. + */ + continue; + } + + if (cpu_count >= NR_CPUS) + goto next; + + pr_debug("cpu logical map 0x%llx\n", hwid); + set_cpu_logical_map(cpu_count, hwid); + + early_map_cpu_to_node(cpu_count, of_node_to_nid(dn)); +next: + cpu_count++; + } +} + +/* + * Enumerate the possible CPU set from the device tree or ACPI and build the + * cpu logical map array containing MPIDR values related to logical + * cpus. Assumes that cpu_logical_map(0) has already been initialized. + */ +void __init smp_init_cpus(void) +{ + int i; + + if (acpi_disabled) + of_parse_and_init_cpus(); + else + acpi_parse_and_init_cpus(); + + if (cpu_count > nr_cpu_ids) + pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n", + cpu_count, nr_cpu_ids); + + if (!bootcpu_valid) { + pr_err("missing boot CPU MPIDR, not enabling secondaries\n"); + return; + } + + /* + * We need to set the cpu_logical_map entries before enabling + * the cpus so that cpu processor description entries (DT cpu nodes + * and ACPI MADT entries) can be retrieved by matching the cpu hwid + * with entries in cpu_logical_map while initializing the cpus. + * If the cpu set-up fails, invalidate the cpu_logical_map entry. + */ + for (i = 1; i < nr_cpu_ids; i++) { + if (cpu_logical_map(i) != INVALID_HWID) { + if (smp_cpu_setup(i)) + set_cpu_logical_map(i, INVALID_HWID); + } + } +} + +void __init smp_prepare_cpus(unsigned int max_cpus) +{ + const struct cpu_operations *ops; + int err; + unsigned int cpu; + unsigned int this_cpu; + + init_cpu_topology(); + + this_cpu = smp_processor_id(); + store_cpu_topology(this_cpu); + numa_store_cpu_info(this_cpu); + numa_add_cpu(this_cpu); + + /* + * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set + * secondary CPUs present. + */ + if (max_cpus == 0) + return; + + /* + * Initialise the present map (which describes the set of CPUs + * actually populated at the present time) and release the + * secondaries from the bootloader. + */ + for_each_possible_cpu(cpu) { + + per_cpu(cpu_number, cpu) = cpu; + + if (cpu == smp_processor_id()) + continue; + + ops = get_cpu_ops(cpu); + if (!ops) + continue; + + err = ops->cpu_prepare(cpu); + if (err) + continue; + + set_cpu_present(cpu, true); + numa_store_cpu_info(cpu); + } +} + +static const char *ipi_types[NR_IPI] __tracepoint_string = { + [IPI_RESCHEDULE] = "Rescheduling interrupts", + [IPI_CALL_FUNC] = "Function call interrupts", + [IPI_CPU_STOP] = "CPU stop interrupts", + [IPI_CPU_CRASH_STOP] = "CPU stop (for crash dump) interrupts", + [IPI_TIMER] = "Timer broadcast interrupts", + [IPI_IRQ_WORK] = "IRQ work interrupts", + [IPI_WAKEUP] = "CPU wake-up interrupts", +}; + +static void smp_cross_call(const struct cpumask *target, unsigned int ipinr); + +unsigned long irq_err_count; + +int arch_show_interrupts(struct seq_file *p, int prec) +{ + unsigned int cpu, i; + + for (i = 0; i < NR_IPI; i++) { + seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i, + prec >= 4 ? " " : ""); + for_each_online_cpu(cpu) + seq_printf(p, "%10u ", irq_desc_kstat_cpu(ipi_desc[i], cpu)); + seq_printf(p, " %s\n", ipi_types[i]); + } + + seq_printf(p, "%*s: %10lu\n", prec, "Err", irq_err_count); + return 0; +} + +void arch_send_call_function_ipi_mask(const struct cpumask *mask) +{ + smp_cross_call(mask, IPI_CALL_FUNC); +} + +void arch_send_call_function_single_ipi(int cpu) +{ + smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC); +} + +#ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL +void arch_send_wakeup_ipi_mask(const struct cpumask *mask) +{ + smp_cross_call(mask, IPI_WAKEUP); +} +#endif + +#ifdef CONFIG_IRQ_WORK +void arch_irq_work_raise(void) +{ + smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK); +} +#endif + +static void __noreturn local_cpu_stop(void) +{ + set_cpu_online(smp_processor_id(), false); + + local_daif_mask(); + sdei_mask_local_cpu(); + cpu_park_loop(); +} + +/* + * We need to implement panic_smp_self_stop() for parallel panic() calls, so + * that cpu_online_mask gets correctly updated and smp_send_stop() can skip + * CPUs that have already stopped themselves. + */ +void __noreturn panic_smp_self_stop(void) +{ + local_cpu_stop(); +} + +#ifdef CONFIG_KEXEC_CORE +static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0); +#endif + +static void __noreturn ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs) +{ +#ifdef CONFIG_KEXEC_CORE + crash_save_cpu(regs, cpu); + + atomic_dec(&waiting_for_crash_ipi); + + local_irq_disable(); + sdei_mask_local_cpu(); + + if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) + __cpu_try_die(cpu); + + /* just in case */ + cpu_park_loop(); +#else + BUG(); +#endif +} + +/* + * Main handler for inter-processor interrupts + */ +static void do_handle_IPI(int ipinr) +{ + unsigned int cpu = smp_processor_id(); + + if ((unsigned)ipinr < NR_IPI) + trace_ipi_entry(ipi_types[ipinr]); + + switch (ipinr) { + case IPI_RESCHEDULE: + scheduler_ipi(); + break; + + case IPI_CALL_FUNC: + generic_smp_call_function_interrupt(); + break; + + case IPI_CPU_STOP: + local_cpu_stop(); + break; + + case IPI_CPU_CRASH_STOP: + if (IS_ENABLED(CONFIG_KEXEC_CORE)) { + ipi_cpu_crash_stop(cpu, get_irq_regs()); + + unreachable(); + } + break; + +#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST + case IPI_TIMER: + tick_receive_broadcast(); + break; +#endif + +#ifdef CONFIG_IRQ_WORK + case IPI_IRQ_WORK: + irq_work_run(); + break; +#endif + +#ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL + case IPI_WAKEUP: + WARN_ONCE(!acpi_parking_protocol_valid(cpu), + "CPU%u: Wake-up IPI outside the ACPI parking protocol\n", + cpu); + break; +#endif + + default: + pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr); + break; + } + + if ((unsigned)ipinr < NR_IPI) + trace_ipi_exit(ipi_types[ipinr]); +} + +static irqreturn_t ipi_handler(int irq, void *data) +{ + do_handle_IPI(irq - ipi_irq_base); + return IRQ_HANDLED; +} + +static void smp_cross_call(const struct cpumask *target, unsigned int ipinr) +{ + trace_ipi_raise(target, ipi_types[ipinr]); + __ipi_send_mask(ipi_desc[ipinr], target); +} + +static void ipi_setup(int cpu) +{ + int i; + + if (WARN_ON_ONCE(!ipi_irq_base)) + return; + + for (i = 0; i < nr_ipi; i++) + enable_percpu_irq(ipi_irq_base + i, 0); +} + +#ifdef CONFIG_HOTPLUG_CPU +static void ipi_teardown(int cpu) +{ + int i; + + if (WARN_ON_ONCE(!ipi_irq_base)) + return; + + for (i = 0; i < nr_ipi; i++) + disable_percpu_irq(ipi_irq_base + i); +} +#endif + +void __init set_smp_ipi_range(int ipi_base, int n) +{ + int i; + + WARN_ON(n < NR_IPI); + nr_ipi = min(n, NR_IPI); + + for (i = 0; i < nr_ipi; i++) { + int err; + + err = request_percpu_irq(ipi_base + i, ipi_handler, + "IPI", &cpu_number); + WARN_ON(err); + + ipi_desc[i] = irq_to_desc(ipi_base + i); + irq_set_status_flags(ipi_base + i, IRQ_HIDDEN); + } + + ipi_irq_base = ipi_base; + + /* Setup the boot CPU immediately */ + ipi_setup(smp_processor_id()); +} + +void arch_smp_send_reschedule(int cpu) +{ + smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); +} + +#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST +void tick_broadcast(const struct cpumask *mask) +{ + smp_cross_call(mask, IPI_TIMER); +} +#endif + +/* + * The number of CPUs online, not counting this CPU (which may not be + * fully online and so not counted in num_online_cpus()). + */ +static inline unsigned int num_other_online_cpus(void) +{ + unsigned int this_cpu_online = cpu_online(smp_processor_id()); + + return num_online_cpus() - this_cpu_online; +} + +void smp_send_stop(void) +{ + unsigned long timeout; + + if (num_other_online_cpus()) { + cpumask_t mask; + + cpumask_copy(&mask, cpu_online_mask); + cpumask_clear_cpu(smp_processor_id(), &mask); + + if (system_state <= SYSTEM_RUNNING) + pr_crit("SMP: stopping secondary CPUs\n"); + smp_cross_call(&mask, IPI_CPU_STOP); + } + + /* Wait up to one second for other CPUs to stop */ + timeout = USEC_PER_SEC; + while (num_other_online_cpus() && timeout--) + udelay(1); + + if (num_other_online_cpus()) + pr_warn("SMP: failed to stop secondary CPUs %*pbl\n", + cpumask_pr_args(cpu_online_mask)); + + sdei_mask_local_cpu(); +} + +#ifdef CONFIG_KEXEC_CORE +void crash_smp_send_stop(void) +{ + static int cpus_stopped; + cpumask_t mask; + unsigned long timeout; + + /* + * This function can be called twice in panic path, but obviously + * we execute this only once. + */ + if (cpus_stopped) + return; + + cpus_stopped = 1; + + /* + * If this cpu is the only one alive at this point in time, online or + * not, there are no stop messages to be sent around, so just back out. + */ + if (num_other_online_cpus() == 0) + goto skip_ipi; + + cpumask_copy(&mask, cpu_online_mask); + cpumask_clear_cpu(smp_processor_id(), &mask); + + atomic_set(&waiting_for_crash_ipi, num_other_online_cpus()); + + pr_crit("SMP: stopping secondary CPUs\n"); + smp_cross_call(&mask, IPI_CPU_CRASH_STOP); + + /* Wait up to one second for other CPUs to stop */ + timeout = USEC_PER_SEC; + while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--) + udelay(1); + + if (atomic_read(&waiting_for_crash_ipi) > 0) + pr_warn("SMP: failed to stop secondary CPUs %*pbl\n", + cpumask_pr_args(&mask)); + +skip_ipi: + sdei_mask_local_cpu(); + sdei_handler_abort(); +} + +bool smp_crash_stop_failed(void) +{ + return (atomic_read(&waiting_for_crash_ipi) > 0); +} +#endif + +static bool have_cpu_die(void) +{ +#ifdef CONFIG_HOTPLUG_CPU + int any_cpu = raw_smp_processor_id(); + const struct cpu_operations *ops = get_cpu_ops(any_cpu); + + if (ops && ops->cpu_die) + return true; +#endif + return false; +} + +bool cpus_are_stuck_in_kernel(void) +{ + bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die()); + + return !!cpus_stuck_in_kernel || smp_spin_tables || + is_protected_kvm_enabled(); +} |