summaryrefslogtreecommitdiffstats
path: root/arch/arm64/kvm
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-11 08:27:49 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-11 08:27:49 +0000
commitace9429bb58fd418f0c81d4c2835699bddf6bde6 (patch)
treeb2d64bc10158fdd5497876388cd68142ca374ed3 /arch/arm64/kvm
parentInitial commit. (diff)
downloadlinux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.tar.xz
linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.zip
Adding upstream version 6.6.15.upstream/6.6.15
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'arch/arm64/kvm')
-rw-r--r--arch/arm64/kvm/.gitignore2
-rw-r--r--arch/arm64/kvm/Kconfig74
-rw-r--r--arch/arm64/kvm/Makefile41
-rw-r--r--arch/arm64/kvm/arch_timer.c1684
-rw-r--r--arch/arm64/kvm/arm.c2528
-rw-r--r--arch/arm64/kvm/debug.c344
-rw-r--r--arch/arm64/kvm/emulate-nested.c2057
-rw-r--r--arch/arm64/kvm/fpsimd.c224
-rw-r--r--arch/arm64/kvm/guest.c1106
-rw-r--r--arch/arm64/kvm/handle_exit.c434
-rw-r--r--arch/arm64/kvm/hyp/Makefile10
-rw-r--r--arch/arm64/kvm/hyp/aarch32.c140
-rw-r--r--arch/arm64/kvm/hyp/entry.S215
-rw-r--r--arch/arm64/kvm/hyp/exception.c375
-rw-r--r--arch/arm64/kvm/hyp/fpsimd.S27
-rw-r--r--arch/arm64/kvm/hyp/hyp-constants.c13
-rw-r--r--arch/arm64/kvm/hyp/hyp-entry.S264
-rw-r--r--arch/arm64/kvm/hyp/include/hyp/adjust_pc.h53
-rw-r--r--arch/arm64/kvm/hyp/include/hyp/debug-sr.h168
-rw-r--r--arch/arm64/kvm/hyp/include/hyp/fault.h75
-rw-r--r--arch/arm64/kvm/hyp/include/hyp/switch.h727
-rw-r--r--arch/arm64/kvm/hyp/include/hyp/sysreg-sr.h246
-rw-r--r--arch/arm64/kvm/hyp/include/nvhe/early_alloc.h14
-rw-r--r--arch/arm64/kvm/hyp/include/nvhe/ffa.h17
-rw-r--r--arch/arm64/kvm/hyp/include/nvhe/fixed_config.h208
-rw-r--r--arch/arm64/kvm/hyp/include/nvhe/gfp.h34
-rw-r--r--arch/arm64/kvm/hyp/include/nvhe/mem_protect.h93
-rw-r--r--arch/arm64/kvm/hyp/include/nvhe/memory.h75
-rw-r--r--arch/arm64/kvm/hyp/include/nvhe/mm.h32
-rw-r--r--arch/arm64/kvm/hyp/include/nvhe/pkvm.h68
-rw-r--r--arch/arm64/kvm/hyp/include/nvhe/spinlock.h125
-rw-r--r--arch/arm64/kvm/hyp/include/nvhe/trap_handler.h20
-rw-r--r--arch/arm64/kvm/hyp/nvhe/.gitignore4
-rw-r--r--arch/arm64/kvm/hyp/nvhe/Makefile112
-rw-r--r--arch/arm64/kvm/hyp/nvhe/cache.S25
-rw-r--r--arch/arm64/kvm/hyp/nvhe/debug-sr.c113
-rw-r--r--arch/arm64/kvm/hyp/nvhe/early_alloc.c59
-rw-r--r--arch/arm64/kvm/hyp/nvhe/ffa.c774
-rw-r--r--arch/arm64/kvm/hyp/nvhe/gen-hyprel.c456
-rw-r--r--arch/arm64/kvm/hyp/nvhe/host.S309
-rw-r--r--arch/arm64/kvm/hyp/nvhe/hyp-init.S299
-rw-r--r--arch/arm64/kvm/hyp/nvhe/hyp-main.c438
-rw-r--r--arch/arm64/kvm/hyp/nvhe/hyp-smp.c40
-rw-r--r--arch/arm64/kvm/hyp/nvhe/hyp.lds.S29
-rw-r--r--arch/arm64/kvm/hyp/nvhe/list_debug.c56
-rw-r--r--arch/arm64/kvm/hyp/nvhe/mem_protect.c1305
-rw-r--r--arch/arm64/kvm/hyp/nvhe/mm.c423
-rw-r--r--arch/arm64/kvm/hyp/nvhe/page_alloc.c247
-rw-r--r--arch/arm64/kvm/hyp/nvhe/pkvm.c636
-rw-r--r--arch/arm64/kvm/hyp/nvhe/psci-relay.c303
-rw-r--r--arch/arm64/kvm/hyp/nvhe/setup.c346
-rw-r--r--arch/arm64/kvm/hyp/nvhe/stacktrace.c158
-rw-r--r--arch/arm64/kvm/hyp/nvhe/switch.c394
-rw-r--r--arch/arm64/kvm/hyp/nvhe/sys_regs.c516
-rw-r--r--arch/arm64/kvm/hyp/nvhe/sysreg-sr.c35
-rw-r--r--arch/arm64/kvm/hyp/nvhe/timer-sr.c62
-rw-r--r--arch/arm64/kvm/hyp/nvhe/tlb.c263
-rw-r--r--arch/arm64/kvm/hyp/pgtable.c1600
-rw-r--r--arch/arm64/kvm/hyp/vgic-v2-cpuif-proxy.c89
-rw-r--r--arch/arm64/kvm/hyp/vgic-v3-sr.c1143
-rw-r--r--arch/arm64/kvm/hyp/vhe/Makefile11
-rw-r--r--arch/arm64/kvm/hyp/vhe/debug-sr.c26
-rw-r--r--arch/arm64/kvm/hyp/vhe/switch.c327
-rw-r--r--arch/arm64/kvm/hyp/vhe/sysreg-sr.c126
-rw-r--r--arch/arm64/kvm/hyp/vhe/timer-sr.c12
-rw-r--r--arch/arm64/kvm/hyp/vhe/tlb.c223
-rw-r--r--arch/arm64/kvm/hypercalls.c652
-rw-r--r--arch/arm64/kvm/inject_fault.c254
-rw-r--r--arch/arm64/kvm/mmio.c196
-rw-r--r--arch/arm64/kvm/mmu.c2158
-rw-r--r--arch/arm64/kvm/nested.c162
-rw-r--r--arch/arm64/kvm/pkvm.c263
-rw-r--r--arch/arm64/kvm/pmu-emul.c1074
-rw-r--r--arch/arm64/kvm/pmu.c256
-rw-r--r--arch/arm64/kvm/psci.c465
-rw-r--r--arch/arm64/kvm/pvtime.c133
-rw-r--r--arch/arm64/kvm/reset.c352
-rw-r--r--arch/arm64/kvm/stacktrace.c245
-rw-r--r--arch/arm64/kvm/sys_regs.c3606
-rw-r--r--arch/arm64/kvm/sys_regs.h249
-rw-r--r--arch/arm64/kvm/trace.h8
-rw-r--r--arch/arm64/kvm/trace_arm.h401
-rw-r--r--arch/arm64/kvm/trace_handle_exit.h219
-rw-r--r--arch/arm64/kvm/trng.c85
-rw-r--r--arch/arm64/kvm/va_layout.c298
-rw-r--r--arch/arm64/kvm/vgic-sys-reg-v3.c366
-rw-r--r--arch/arm64/kvm/vgic/trace.h38
-rw-r--r--arch/arm64/kvm/vgic/vgic-debug.c280
-rw-r--r--arch/arm64/kvm/vgic/vgic-init.c626
-rw-r--r--arch/arm64/kvm/vgic/vgic-irqfd.c155
-rw-r--r--arch/arm64/kvm/vgic/vgic-its.c2908
-rw-r--r--arch/arm64/kvm/vgic/vgic-kvm-device.c672
-rw-r--r--arch/arm64/kvm/vgic/vgic-mmio-v2.c561
-rw-r--r--arch/arm64/kvm/vgic/vgic-mmio-v3.c1186
-rw-r--r--arch/arm64/kvm/vgic/vgic-mmio.c1118
-rw-r--r--arch/arm64/kvm/vgic/vgic-mmio.h230
-rw-r--r--arch/arm64/kvm/vgic/vgic-v2.c480
-rw-r--r--arch/arm64/kvm/vgic/vgic-v3.c760
-rw-r--r--arch/arm64/kvm/vgic/vgic-v4.c521
-rw-r--r--arch/arm64/kvm/vgic/vgic.c1078
-rw-r--r--arch/arm64/kvm/vgic/vgic.h346
-rw-r--r--arch/arm64/kvm/vmid.c195
102 files changed, 45048 insertions, 0 deletions
diff --git a/arch/arm64/kvm/.gitignore b/arch/arm64/kvm/.gitignore
new file mode 100644
index 0000000000..6182aefb83
--- /dev/null
+++ b/arch/arm64/kvm/.gitignore
@@ -0,0 +1,2 @@
+# SPDX-License-Identifier: GPL-2.0-only
+hyp_constants.h
diff --git a/arch/arm64/kvm/Kconfig b/arch/arm64/kvm/Kconfig
new file mode 100644
index 0000000000..83c1e09be4
--- /dev/null
+++ b/arch/arm64/kvm/Kconfig
@@ -0,0 +1,74 @@
+# SPDX-License-Identifier: GPL-2.0
+#
+# KVM configuration
+#
+
+source "virt/lib/Kconfig"
+source "virt/kvm/Kconfig"
+
+menuconfig VIRTUALIZATION
+ bool "Virtualization"
+ help
+ Say Y here to get to see options for using your Linux host to run
+ other operating systems inside virtual machines (guests).
+ This option alone does not add any kernel code.
+
+ If you say N, all options in this submenu will be skipped and
+ disabled.
+
+if VIRTUALIZATION
+
+menuconfig KVM
+ bool "Kernel-based Virtual Machine (KVM) support"
+ depends on HAVE_KVM
+ select KVM_GENERIC_HARDWARE_ENABLING
+ select MMU_NOTIFIER
+ select PREEMPT_NOTIFIERS
+ select HAVE_KVM_CPU_RELAX_INTERCEPT
+ select KVM_MMIO
+ select KVM_GENERIC_DIRTYLOG_READ_PROTECT
+ select KVM_XFER_TO_GUEST_WORK
+ select KVM_VFIO
+ select HAVE_KVM_EVENTFD
+ select HAVE_KVM_IRQFD
+ select HAVE_KVM_DIRTY_RING_ACQ_REL
+ select NEED_KVM_DIRTY_RING_WITH_BITMAP
+ select HAVE_KVM_MSI
+ select HAVE_KVM_IRQCHIP
+ select HAVE_KVM_IRQ_ROUTING
+ select IRQ_BYPASS_MANAGER
+ select HAVE_KVM_IRQ_BYPASS
+ select HAVE_KVM_VCPU_RUN_PID_CHANGE
+ select SCHED_INFO
+ select GUEST_PERF_EVENTS if PERF_EVENTS
+ select INTERVAL_TREE
+ select XARRAY_MULTI
+ help
+ Support hosting virtualized guest machines.
+
+ If unsure, say N.
+
+config NVHE_EL2_DEBUG
+ bool "Debug mode for non-VHE EL2 object"
+ depends on KVM
+ help
+ Say Y here to enable the debug mode for the non-VHE KVM EL2 object.
+ Failure reports will BUG() in the hypervisor. This is intended for
+ local EL2 hypervisor development.
+
+ If unsure, say N.
+
+config PROTECTED_NVHE_STACKTRACE
+ bool "Protected KVM hypervisor stacktraces"
+ depends on NVHE_EL2_DEBUG
+ default n
+ help
+ Say Y here to enable pKVM hypervisor stacktraces on hyp_panic()
+
+ If using protected nVHE mode, but cannot afford the associated
+ memory cost (less than 0.75 page per CPU) of pKVM stacktraces,
+ say N.
+
+ If unsure, or not using protected nVHE (pKVM), say N.
+
+endif # VIRTUALIZATION
diff --git a/arch/arm64/kvm/Makefile b/arch/arm64/kvm/Makefile
new file mode 100644
index 0000000000..c0c050e531
--- /dev/null
+++ b/arch/arm64/kvm/Makefile
@@ -0,0 +1,41 @@
+# SPDX-License-Identifier: GPL-2.0
+#
+# Makefile for Kernel-based Virtual Machine module
+#
+
+ccflags-y += -I $(srctree)/$(src)
+
+include $(srctree)/virt/kvm/Makefile.kvm
+
+obj-$(CONFIG_KVM) += kvm.o
+obj-$(CONFIG_KVM) += hyp/
+
+kvm-y += arm.o mmu.o mmio.o psci.o hypercalls.o pvtime.o \
+ inject_fault.o va_layout.o handle_exit.o \
+ guest.o debug.o reset.o sys_regs.o stacktrace.o \
+ vgic-sys-reg-v3.o fpsimd.o pkvm.o \
+ arch_timer.o trng.o vmid.o emulate-nested.o nested.o \
+ vgic/vgic.o vgic/vgic-init.o \
+ vgic/vgic-irqfd.o vgic/vgic-v2.o \
+ vgic/vgic-v3.o vgic/vgic-v4.o \
+ vgic/vgic-mmio.o vgic/vgic-mmio-v2.o \
+ vgic/vgic-mmio-v3.o vgic/vgic-kvm-device.o \
+ vgic/vgic-its.o vgic/vgic-debug.o
+
+kvm-$(CONFIG_HW_PERF_EVENTS) += pmu-emul.o pmu.o
+
+always-y := hyp_constants.h hyp-constants.s
+
+define rule_gen_hyp_constants
+ $(call filechk,offsets,__HYP_CONSTANTS_H__)
+endef
+
+CFLAGS_hyp-constants.o = -I $(srctree)/$(src)/hyp/include
+$(obj)/hyp-constants.s: $(src)/hyp/hyp-constants.c FORCE
+ $(call if_changed_dep,cc_s_c)
+
+$(obj)/hyp_constants.h: $(obj)/hyp-constants.s FORCE
+ $(call if_changed_rule,gen_hyp_constants)
+
+obj-kvm := $(addprefix $(obj)/, $(kvm-y))
+$(obj-kvm): $(obj)/hyp_constants.h
diff --git a/arch/arm64/kvm/arch_timer.c b/arch/arm64/kvm/arch_timer.c
new file mode 100644
index 0000000000..a1e24228aa
--- /dev/null
+++ b/arch/arm64/kvm/arch_timer.c
@@ -0,0 +1,1684 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2012 ARM Ltd.
+ * Author: Marc Zyngier <marc.zyngier@arm.com>
+ */
+
+#include <linux/cpu.h>
+#include <linux/kvm.h>
+#include <linux/kvm_host.h>
+#include <linux/interrupt.h>
+#include <linux/irq.h>
+#include <linux/irqdomain.h>
+#include <linux/uaccess.h>
+
+#include <clocksource/arm_arch_timer.h>
+#include <asm/arch_timer.h>
+#include <asm/kvm_emulate.h>
+#include <asm/kvm_hyp.h>
+#include <asm/kvm_nested.h>
+
+#include <kvm/arm_vgic.h>
+#include <kvm/arm_arch_timer.h>
+
+#include "trace.h"
+
+static struct timecounter *timecounter;
+static unsigned int host_vtimer_irq;
+static unsigned int host_ptimer_irq;
+static u32 host_vtimer_irq_flags;
+static u32 host_ptimer_irq_flags;
+
+static DEFINE_STATIC_KEY_FALSE(has_gic_active_state);
+
+static const u8 default_ppi[] = {
+ [TIMER_PTIMER] = 30,
+ [TIMER_VTIMER] = 27,
+ [TIMER_HPTIMER] = 26,
+ [TIMER_HVTIMER] = 28,
+};
+
+static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx);
+static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
+ struct arch_timer_context *timer_ctx);
+static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx);
+static void kvm_arm_timer_write(struct kvm_vcpu *vcpu,
+ struct arch_timer_context *timer,
+ enum kvm_arch_timer_regs treg,
+ u64 val);
+static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
+ struct arch_timer_context *timer,
+ enum kvm_arch_timer_regs treg);
+static bool kvm_arch_timer_get_input_level(int vintid);
+
+static struct irq_ops arch_timer_irq_ops = {
+ .get_input_level = kvm_arch_timer_get_input_level,
+};
+
+static int nr_timers(struct kvm_vcpu *vcpu)
+{
+ if (!vcpu_has_nv(vcpu))
+ return NR_KVM_EL0_TIMERS;
+
+ return NR_KVM_TIMERS;
+}
+
+u32 timer_get_ctl(struct arch_timer_context *ctxt)
+{
+ struct kvm_vcpu *vcpu = ctxt->vcpu;
+
+ switch(arch_timer_ctx_index(ctxt)) {
+ case TIMER_VTIMER:
+ return __vcpu_sys_reg(vcpu, CNTV_CTL_EL0);
+ case TIMER_PTIMER:
+ return __vcpu_sys_reg(vcpu, CNTP_CTL_EL0);
+ case TIMER_HVTIMER:
+ return __vcpu_sys_reg(vcpu, CNTHV_CTL_EL2);
+ case TIMER_HPTIMER:
+ return __vcpu_sys_reg(vcpu, CNTHP_CTL_EL2);
+ default:
+ WARN_ON(1);
+ return 0;
+ }
+}
+
+u64 timer_get_cval(struct arch_timer_context *ctxt)
+{
+ struct kvm_vcpu *vcpu = ctxt->vcpu;
+
+ switch(arch_timer_ctx_index(ctxt)) {
+ case TIMER_VTIMER:
+ return __vcpu_sys_reg(vcpu, CNTV_CVAL_EL0);
+ case TIMER_PTIMER:
+ return __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0);
+ case TIMER_HVTIMER:
+ return __vcpu_sys_reg(vcpu, CNTHV_CVAL_EL2);
+ case TIMER_HPTIMER:
+ return __vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2);
+ default:
+ WARN_ON(1);
+ return 0;
+ }
+}
+
+static u64 timer_get_offset(struct arch_timer_context *ctxt)
+{
+ u64 offset = 0;
+
+ if (!ctxt)
+ return 0;
+
+ if (ctxt->offset.vm_offset)
+ offset += *ctxt->offset.vm_offset;
+ if (ctxt->offset.vcpu_offset)
+ offset += *ctxt->offset.vcpu_offset;
+
+ return offset;
+}
+
+static void timer_set_ctl(struct arch_timer_context *ctxt, u32 ctl)
+{
+ struct kvm_vcpu *vcpu = ctxt->vcpu;
+
+ switch(arch_timer_ctx_index(ctxt)) {
+ case TIMER_VTIMER:
+ __vcpu_sys_reg(vcpu, CNTV_CTL_EL0) = ctl;
+ break;
+ case TIMER_PTIMER:
+ __vcpu_sys_reg(vcpu, CNTP_CTL_EL0) = ctl;
+ break;
+ case TIMER_HVTIMER:
+ __vcpu_sys_reg(vcpu, CNTHV_CTL_EL2) = ctl;
+ break;
+ case TIMER_HPTIMER:
+ __vcpu_sys_reg(vcpu, CNTHP_CTL_EL2) = ctl;
+ break;
+ default:
+ WARN_ON(1);
+ }
+}
+
+static void timer_set_cval(struct arch_timer_context *ctxt, u64 cval)
+{
+ struct kvm_vcpu *vcpu = ctxt->vcpu;
+
+ switch(arch_timer_ctx_index(ctxt)) {
+ case TIMER_VTIMER:
+ __vcpu_sys_reg(vcpu, CNTV_CVAL_EL0) = cval;
+ break;
+ case TIMER_PTIMER:
+ __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0) = cval;
+ break;
+ case TIMER_HVTIMER:
+ __vcpu_sys_reg(vcpu, CNTHV_CVAL_EL2) = cval;
+ break;
+ case TIMER_HPTIMER:
+ __vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2) = cval;
+ break;
+ default:
+ WARN_ON(1);
+ }
+}
+
+static void timer_set_offset(struct arch_timer_context *ctxt, u64 offset)
+{
+ if (!ctxt->offset.vm_offset) {
+ WARN(offset, "timer %ld\n", arch_timer_ctx_index(ctxt));
+ return;
+ }
+
+ WRITE_ONCE(*ctxt->offset.vm_offset, offset);
+}
+
+u64 kvm_phys_timer_read(void)
+{
+ return timecounter->cc->read(timecounter->cc);
+}
+
+void get_timer_map(struct kvm_vcpu *vcpu, struct timer_map *map)
+{
+ if (vcpu_has_nv(vcpu)) {
+ if (is_hyp_ctxt(vcpu)) {
+ map->direct_vtimer = vcpu_hvtimer(vcpu);
+ map->direct_ptimer = vcpu_hptimer(vcpu);
+ map->emul_vtimer = vcpu_vtimer(vcpu);
+ map->emul_ptimer = vcpu_ptimer(vcpu);
+ } else {
+ map->direct_vtimer = vcpu_vtimer(vcpu);
+ map->direct_ptimer = vcpu_ptimer(vcpu);
+ map->emul_vtimer = vcpu_hvtimer(vcpu);
+ map->emul_ptimer = vcpu_hptimer(vcpu);
+ }
+ } else if (has_vhe()) {
+ map->direct_vtimer = vcpu_vtimer(vcpu);
+ map->direct_ptimer = vcpu_ptimer(vcpu);
+ map->emul_vtimer = NULL;
+ map->emul_ptimer = NULL;
+ } else {
+ map->direct_vtimer = vcpu_vtimer(vcpu);
+ map->direct_ptimer = NULL;
+ map->emul_vtimer = NULL;
+ map->emul_ptimer = vcpu_ptimer(vcpu);
+ }
+
+ trace_kvm_get_timer_map(vcpu->vcpu_id, map);
+}
+
+static inline bool userspace_irqchip(struct kvm *kvm)
+{
+ return static_branch_unlikely(&userspace_irqchip_in_use) &&
+ unlikely(!irqchip_in_kernel(kvm));
+}
+
+static void soft_timer_start(struct hrtimer *hrt, u64 ns)
+{
+ hrtimer_start(hrt, ktime_add_ns(ktime_get(), ns),
+ HRTIMER_MODE_ABS_HARD);
+}
+
+static void soft_timer_cancel(struct hrtimer *hrt)
+{
+ hrtimer_cancel(hrt);
+}
+
+static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id)
+{
+ struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id;
+ struct arch_timer_context *ctx;
+ struct timer_map map;
+
+ /*
+ * We may see a timer interrupt after vcpu_put() has been called which
+ * sets the CPU's vcpu pointer to NULL, because even though the timer
+ * has been disabled in timer_save_state(), the hardware interrupt
+ * signal may not have been retired from the interrupt controller yet.
+ */
+ if (!vcpu)
+ return IRQ_HANDLED;
+
+ get_timer_map(vcpu, &map);
+
+ if (irq == host_vtimer_irq)
+ ctx = map.direct_vtimer;
+ else
+ ctx = map.direct_ptimer;
+
+ if (kvm_timer_should_fire(ctx))
+ kvm_timer_update_irq(vcpu, true, ctx);
+
+ if (userspace_irqchip(vcpu->kvm) &&
+ !static_branch_unlikely(&has_gic_active_state))
+ disable_percpu_irq(host_vtimer_irq);
+
+ return IRQ_HANDLED;
+}
+
+static u64 kvm_counter_compute_delta(struct arch_timer_context *timer_ctx,
+ u64 val)
+{
+ u64 now = kvm_phys_timer_read() - timer_get_offset(timer_ctx);
+
+ if (now < val) {
+ u64 ns;
+
+ ns = cyclecounter_cyc2ns(timecounter->cc,
+ val - now,
+ timecounter->mask,
+ &timer_ctx->ns_frac);
+ return ns;
+ }
+
+ return 0;
+}
+
+static u64 kvm_timer_compute_delta(struct arch_timer_context *timer_ctx)
+{
+ return kvm_counter_compute_delta(timer_ctx, timer_get_cval(timer_ctx));
+}
+
+static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx)
+{
+ WARN_ON(timer_ctx && timer_ctx->loaded);
+ return timer_ctx &&
+ ((timer_get_ctl(timer_ctx) &
+ (ARCH_TIMER_CTRL_IT_MASK | ARCH_TIMER_CTRL_ENABLE)) == ARCH_TIMER_CTRL_ENABLE);
+}
+
+static bool vcpu_has_wfit_active(struct kvm_vcpu *vcpu)
+{
+ return (cpus_have_final_cap(ARM64_HAS_WFXT) &&
+ vcpu_get_flag(vcpu, IN_WFIT));
+}
+
+static u64 wfit_delay_ns(struct kvm_vcpu *vcpu)
+{
+ u64 val = vcpu_get_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu));
+ struct arch_timer_context *ctx;
+
+ ctx = (vcpu_has_nv(vcpu) && is_hyp_ctxt(vcpu)) ? vcpu_hvtimer(vcpu)
+ : vcpu_vtimer(vcpu);
+
+ return kvm_counter_compute_delta(ctx, val);
+}
+
+/*
+ * Returns the earliest expiration time in ns among guest timers.
+ * Note that it will return 0 if none of timers can fire.
+ */
+static u64 kvm_timer_earliest_exp(struct kvm_vcpu *vcpu)
+{
+ u64 min_delta = ULLONG_MAX;
+ int i;
+
+ for (i = 0; i < nr_timers(vcpu); i++) {
+ struct arch_timer_context *ctx = &vcpu->arch.timer_cpu.timers[i];
+
+ WARN(ctx->loaded, "timer %d loaded\n", i);
+ if (kvm_timer_irq_can_fire(ctx))
+ min_delta = min(min_delta, kvm_timer_compute_delta(ctx));
+ }
+
+ if (vcpu_has_wfit_active(vcpu))
+ min_delta = min(min_delta, wfit_delay_ns(vcpu));
+
+ /* If none of timers can fire, then return 0 */
+ if (min_delta == ULLONG_MAX)
+ return 0;
+
+ return min_delta;
+}
+
+static enum hrtimer_restart kvm_bg_timer_expire(struct hrtimer *hrt)
+{
+ struct arch_timer_cpu *timer;
+ struct kvm_vcpu *vcpu;
+ u64 ns;
+
+ timer = container_of(hrt, struct arch_timer_cpu, bg_timer);
+ vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);
+
+ /*
+ * Check that the timer has really expired from the guest's
+ * PoV (NTP on the host may have forced it to expire
+ * early). If we should have slept longer, restart it.
+ */
+ ns = kvm_timer_earliest_exp(vcpu);
+ if (unlikely(ns)) {
+ hrtimer_forward_now(hrt, ns_to_ktime(ns));
+ return HRTIMER_RESTART;
+ }
+
+ kvm_vcpu_wake_up(vcpu);
+ return HRTIMER_NORESTART;
+}
+
+static enum hrtimer_restart kvm_hrtimer_expire(struct hrtimer *hrt)
+{
+ struct arch_timer_context *ctx;
+ struct kvm_vcpu *vcpu;
+ u64 ns;
+
+ ctx = container_of(hrt, struct arch_timer_context, hrtimer);
+ vcpu = ctx->vcpu;
+
+ trace_kvm_timer_hrtimer_expire(ctx);
+
+ /*
+ * Check that the timer has really expired from the guest's
+ * PoV (NTP on the host may have forced it to expire
+ * early). If not ready, schedule for a later time.
+ */
+ ns = kvm_timer_compute_delta(ctx);
+ if (unlikely(ns)) {
+ hrtimer_forward_now(hrt, ns_to_ktime(ns));
+ return HRTIMER_RESTART;
+ }
+
+ kvm_timer_update_irq(vcpu, true, ctx);
+ return HRTIMER_NORESTART;
+}
+
+static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx)
+{
+ enum kvm_arch_timers index;
+ u64 cval, now;
+
+ if (!timer_ctx)
+ return false;
+
+ index = arch_timer_ctx_index(timer_ctx);
+
+ if (timer_ctx->loaded) {
+ u32 cnt_ctl = 0;
+
+ switch (index) {
+ case TIMER_VTIMER:
+ case TIMER_HVTIMER:
+ cnt_ctl = read_sysreg_el0(SYS_CNTV_CTL);
+ break;
+ case TIMER_PTIMER:
+ case TIMER_HPTIMER:
+ cnt_ctl = read_sysreg_el0(SYS_CNTP_CTL);
+ break;
+ case NR_KVM_TIMERS:
+ /* GCC is braindead */
+ cnt_ctl = 0;
+ break;
+ }
+
+ return (cnt_ctl & ARCH_TIMER_CTRL_ENABLE) &&
+ (cnt_ctl & ARCH_TIMER_CTRL_IT_STAT) &&
+ !(cnt_ctl & ARCH_TIMER_CTRL_IT_MASK);
+ }
+
+ if (!kvm_timer_irq_can_fire(timer_ctx))
+ return false;
+
+ cval = timer_get_cval(timer_ctx);
+ now = kvm_phys_timer_read() - timer_get_offset(timer_ctx);
+
+ return cval <= now;
+}
+
+int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
+{
+ return vcpu_has_wfit_active(vcpu) && wfit_delay_ns(vcpu) == 0;
+}
+
+/*
+ * Reflect the timer output level into the kvm_run structure
+ */
+void kvm_timer_update_run(struct kvm_vcpu *vcpu)
+{
+ struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
+ struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
+ struct kvm_sync_regs *regs = &vcpu->run->s.regs;
+
+ /* Populate the device bitmap with the timer states */
+ regs->device_irq_level &= ~(KVM_ARM_DEV_EL1_VTIMER |
+ KVM_ARM_DEV_EL1_PTIMER);
+ if (kvm_timer_should_fire(vtimer))
+ regs->device_irq_level |= KVM_ARM_DEV_EL1_VTIMER;
+ if (kvm_timer_should_fire(ptimer))
+ regs->device_irq_level |= KVM_ARM_DEV_EL1_PTIMER;
+}
+
+static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
+ struct arch_timer_context *timer_ctx)
+{
+ int ret;
+
+ timer_ctx->irq.level = new_level;
+ trace_kvm_timer_update_irq(vcpu->vcpu_id, timer_irq(timer_ctx),
+ timer_ctx->irq.level);
+
+ if (!userspace_irqchip(vcpu->kvm)) {
+ ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id,
+ timer_irq(timer_ctx),
+ timer_ctx->irq.level,
+ timer_ctx);
+ WARN_ON(ret);
+ }
+}
+
+/* Only called for a fully emulated timer */
+static void timer_emulate(struct arch_timer_context *ctx)
+{
+ bool should_fire = kvm_timer_should_fire(ctx);
+
+ trace_kvm_timer_emulate(ctx, should_fire);
+
+ if (should_fire != ctx->irq.level) {
+ kvm_timer_update_irq(ctx->vcpu, should_fire, ctx);
+ return;
+ }
+
+ /*
+ * If the timer can fire now, we don't need to have a soft timer
+ * scheduled for the future. If the timer cannot fire at all,
+ * then we also don't need a soft timer.
+ */
+ if (should_fire || !kvm_timer_irq_can_fire(ctx))
+ return;
+
+ soft_timer_start(&ctx->hrtimer, kvm_timer_compute_delta(ctx));
+}
+
+static void set_cntvoff(u64 cntvoff)
+{
+ kvm_call_hyp(__kvm_timer_set_cntvoff, cntvoff);
+}
+
+static void set_cntpoff(u64 cntpoff)
+{
+ if (has_cntpoff())
+ write_sysreg_s(cntpoff, SYS_CNTPOFF_EL2);
+}
+
+static void timer_save_state(struct arch_timer_context *ctx)
+{
+ struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu);
+ enum kvm_arch_timers index = arch_timer_ctx_index(ctx);
+ unsigned long flags;
+
+ if (!timer->enabled)
+ return;
+
+ local_irq_save(flags);
+
+ if (!ctx->loaded)
+ goto out;
+
+ switch (index) {
+ u64 cval;
+
+ case TIMER_VTIMER:
+ case TIMER_HVTIMER:
+ timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTV_CTL));
+ timer_set_cval(ctx, read_sysreg_el0(SYS_CNTV_CVAL));
+
+ /* Disable the timer */
+ write_sysreg_el0(0, SYS_CNTV_CTL);
+ isb();
+
+ /*
+ * The kernel may decide to run userspace after
+ * calling vcpu_put, so we reset cntvoff to 0 to
+ * ensure a consistent read between user accesses to
+ * the virtual counter and kernel access to the
+ * physical counter of non-VHE case.
+ *
+ * For VHE, the virtual counter uses a fixed virtual
+ * offset of zero, so no need to zero CNTVOFF_EL2
+ * register, but this is actually useful when switching
+ * between EL1/vEL2 with NV.
+ *
+ * Do it unconditionally, as this is either unavoidable
+ * or dirt cheap.
+ */
+ set_cntvoff(0);
+ break;
+ case TIMER_PTIMER:
+ case TIMER_HPTIMER:
+ timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTP_CTL));
+ cval = read_sysreg_el0(SYS_CNTP_CVAL);
+
+ cval -= timer_get_offset(ctx);
+
+ timer_set_cval(ctx, cval);
+
+ /* Disable the timer */
+ write_sysreg_el0(0, SYS_CNTP_CTL);
+ isb();
+
+ set_cntpoff(0);
+ break;
+ case NR_KVM_TIMERS:
+ BUG();
+ }
+
+ trace_kvm_timer_save_state(ctx);
+
+ ctx->loaded = false;
+out:
+ local_irq_restore(flags);
+}
+
+/*
+ * Schedule the background timer before calling kvm_vcpu_halt, so that this
+ * thread is removed from its waitqueue and made runnable when there's a timer
+ * interrupt to handle.
+ */
+static void kvm_timer_blocking(struct kvm_vcpu *vcpu)
+{
+ struct arch_timer_cpu *timer = vcpu_timer(vcpu);
+ struct timer_map map;
+
+ get_timer_map(vcpu, &map);
+
+ /*
+ * If no timers are capable of raising interrupts (disabled or
+ * masked), then there's no more work for us to do.
+ */
+ if (!kvm_timer_irq_can_fire(map.direct_vtimer) &&
+ !kvm_timer_irq_can_fire(map.direct_ptimer) &&
+ !kvm_timer_irq_can_fire(map.emul_vtimer) &&
+ !kvm_timer_irq_can_fire(map.emul_ptimer) &&
+ !vcpu_has_wfit_active(vcpu))
+ return;
+
+ /*
+ * At least one guest time will expire. Schedule a background timer.
+ * Set the earliest expiration time among the guest timers.
+ */
+ soft_timer_start(&timer->bg_timer, kvm_timer_earliest_exp(vcpu));
+}
+
+static void kvm_timer_unblocking(struct kvm_vcpu *vcpu)
+{
+ struct arch_timer_cpu *timer = vcpu_timer(vcpu);
+
+ soft_timer_cancel(&timer->bg_timer);
+}
+
+static void timer_restore_state(struct arch_timer_context *ctx)
+{
+ struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu);
+ enum kvm_arch_timers index = arch_timer_ctx_index(ctx);
+ unsigned long flags;
+
+ if (!timer->enabled)
+ return;
+
+ local_irq_save(flags);
+
+ if (ctx->loaded)
+ goto out;
+
+ switch (index) {
+ u64 cval, offset;
+
+ case TIMER_VTIMER:
+ case TIMER_HVTIMER:
+ set_cntvoff(timer_get_offset(ctx));
+ write_sysreg_el0(timer_get_cval(ctx), SYS_CNTV_CVAL);
+ isb();
+ write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTV_CTL);
+ break;
+ case TIMER_PTIMER:
+ case TIMER_HPTIMER:
+ cval = timer_get_cval(ctx);
+ offset = timer_get_offset(ctx);
+ set_cntpoff(offset);
+ cval += offset;
+ write_sysreg_el0(cval, SYS_CNTP_CVAL);
+ isb();
+ write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTP_CTL);
+ break;
+ case NR_KVM_TIMERS:
+ BUG();
+ }
+
+ trace_kvm_timer_restore_state(ctx);
+
+ ctx->loaded = true;
+out:
+ local_irq_restore(flags);
+}
+
+static inline void set_timer_irq_phys_active(struct arch_timer_context *ctx, bool active)
+{
+ int r;
+ r = irq_set_irqchip_state(ctx->host_timer_irq, IRQCHIP_STATE_ACTIVE, active);
+ WARN_ON(r);
+}
+
+static void kvm_timer_vcpu_load_gic(struct arch_timer_context *ctx)
+{
+ struct kvm_vcpu *vcpu = ctx->vcpu;
+ bool phys_active = false;
+
+ /*
+ * Update the timer output so that it is likely to match the
+ * state we're about to restore. If the timer expires between
+ * this point and the register restoration, we'll take the
+ * interrupt anyway.
+ */
+ kvm_timer_update_irq(ctx->vcpu, kvm_timer_should_fire(ctx), ctx);
+
+ if (irqchip_in_kernel(vcpu->kvm))
+ phys_active = kvm_vgic_map_is_active(vcpu, timer_irq(ctx));
+
+ phys_active |= ctx->irq.level;
+
+ set_timer_irq_phys_active(ctx, phys_active);
+}
+
+static void kvm_timer_vcpu_load_nogic(struct kvm_vcpu *vcpu)
+{
+ struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
+
+ /*
+ * Update the timer output so that it is likely to match the
+ * state we're about to restore. If the timer expires between
+ * this point and the register restoration, we'll take the
+ * interrupt anyway.
+ */
+ kvm_timer_update_irq(vcpu, kvm_timer_should_fire(vtimer), vtimer);
+
+ /*
+ * When using a userspace irqchip with the architected timers and a
+ * host interrupt controller that doesn't support an active state, we
+ * must still prevent continuously exiting from the guest, and
+ * therefore mask the physical interrupt by disabling it on the host
+ * interrupt controller when the virtual level is high, such that the
+ * guest can make forward progress. Once we detect the output level
+ * being de-asserted, we unmask the interrupt again so that we exit
+ * from the guest when the timer fires.
+ */
+ if (vtimer->irq.level)
+ disable_percpu_irq(host_vtimer_irq);
+ else
+ enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
+}
+
+/* If _pred is true, set bit in _set, otherwise set it in _clr */
+#define assign_clear_set_bit(_pred, _bit, _clr, _set) \
+ do { \
+ if (_pred) \
+ (_set) |= (_bit); \
+ else \
+ (_clr) |= (_bit); \
+ } while (0)
+
+static void kvm_timer_vcpu_load_nested_switch(struct kvm_vcpu *vcpu,
+ struct timer_map *map)
+{
+ int hw, ret;
+
+ if (!irqchip_in_kernel(vcpu->kvm))
+ return;
+
+ /*
+ * We only ever unmap the vtimer irq on a VHE system that runs nested
+ * virtualization, in which case we have both a valid emul_vtimer,
+ * emul_ptimer, direct_vtimer, and direct_ptimer.
+ *
+ * Since this is called from kvm_timer_vcpu_load(), a change between
+ * vEL2 and vEL1/0 will have just happened, and the timer_map will
+ * represent this, and therefore we switch the emul/direct mappings
+ * below.
+ */
+ hw = kvm_vgic_get_map(vcpu, timer_irq(map->direct_vtimer));
+ if (hw < 0) {
+ kvm_vgic_unmap_phys_irq(vcpu, timer_irq(map->emul_vtimer));
+ kvm_vgic_unmap_phys_irq(vcpu, timer_irq(map->emul_ptimer));
+
+ ret = kvm_vgic_map_phys_irq(vcpu,
+ map->direct_vtimer->host_timer_irq,
+ timer_irq(map->direct_vtimer),
+ &arch_timer_irq_ops);
+ WARN_ON_ONCE(ret);
+ ret = kvm_vgic_map_phys_irq(vcpu,
+ map->direct_ptimer->host_timer_irq,
+ timer_irq(map->direct_ptimer),
+ &arch_timer_irq_ops);
+ WARN_ON_ONCE(ret);
+
+ /*
+ * The virtual offset behaviour is "interresting", as it
+ * always applies when HCR_EL2.E2H==0, but only when
+ * accessed from EL1 when HCR_EL2.E2H==1. So make sure we
+ * track E2H when putting the HV timer in "direct" mode.
+ */
+ if (map->direct_vtimer == vcpu_hvtimer(vcpu)) {
+ struct arch_timer_offset *offs = &map->direct_vtimer->offset;
+
+ if (vcpu_el2_e2h_is_set(vcpu))
+ offs->vcpu_offset = NULL;
+ else
+ offs->vcpu_offset = &__vcpu_sys_reg(vcpu, CNTVOFF_EL2);
+ }
+ }
+}
+
+static void timer_set_traps(struct kvm_vcpu *vcpu, struct timer_map *map)
+{
+ bool tpt, tpc;
+ u64 clr, set;
+
+ /*
+ * No trapping gets configured here with nVHE. See
+ * __timer_enable_traps(), which is where the stuff happens.
+ */
+ if (!has_vhe())
+ return;
+
+ /*
+ * Our default policy is not to trap anything. As we progress
+ * within this function, reality kicks in and we start adding
+ * traps based on emulation requirements.
+ */
+ tpt = tpc = false;
+
+ /*
+ * We have two possibility to deal with a physical offset:
+ *
+ * - Either we have CNTPOFF (yay!) or the offset is 0:
+ * we let the guest freely access the HW
+ *
+ * - or neither of these condition apply:
+ * we trap accesses to the HW, but still use it
+ * after correcting the physical offset
+ */
+ if (!has_cntpoff() && timer_get_offset(map->direct_ptimer))
+ tpt = tpc = true;
+
+ /*
+ * Apply the enable bits that the guest hypervisor has requested for
+ * its own guest. We can only add traps that wouldn't have been set
+ * above.
+ */
+ if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) {
+ u64 val = __vcpu_sys_reg(vcpu, CNTHCTL_EL2);
+
+ /* Use the VHE format for mental sanity */
+ if (!vcpu_el2_e2h_is_set(vcpu))
+ val = (val & (CNTHCTL_EL1PCEN | CNTHCTL_EL1PCTEN)) << 10;
+
+ tpt |= !(val & (CNTHCTL_EL1PCEN << 10));
+ tpc |= !(val & (CNTHCTL_EL1PCTEN << 10));
+ }
+
+ /*
+ * Now that we have collected our requirements, compute the
+ * trap and enable bits.
+ */
+ set = 0;
+ clr = 0;
+
+ assign_clear_set_bit(tpt, CNTHCTL_EL1PCEN << 10, set, clr);
+ assign_clear_set_bit(tpc, CNTHCTL_EL1PCTEN << 10, set, clr);
+
+ /* This only happens on VHE, so use the CNTHCTL_EL2 accessor. */
+ sysreg_clear_set(cnthctl_el2, clr, set);
+}
+
+void kvm_timer_vcpu_load(struct kvm_vcpu *vcpu)
+{
+ struct arch_timer_cpu *timer = vcpu_timer(vcpu);
+ struct timer_map map;
+
+ if (unlikely(!timer->enabled))
+ return;
+
+ get_timer_map(vcpu, &map);
+
+ if (static_branch_likely(&has_gic_active_state)) {
+ if (vcpu_has_nv(vcpu))
+ kvm_timer_vcpu_load_nested_switch(vcpu, &map);
+
+ kvm_timer_vcpu_load_gic(map.direct_vtimer);
+ if (map.direct_ptimer)
+ kvm_timer_vcpu_load_gic(map.direct_ptimer);
+ } else {
+ kvm_timer_vcpu_load_nogic(vcpu);
+ }
+
+ kvm_timer_unblocking(vcpu);
+
+ timer_restore_state(map.direct_vtimer);
+ if (map.direct_ptimer)
+ timer_restore_state(map.direct_ptimer);
+ if (map.emul_vtimer)
+ timer_emulate(map.emul_vtimer);
+ if (map.emul_ptimer)
+ timer_emulate(map.emul_ptimer);
+
+ timer_set_traps(vcpu, &map);
+}
+
+bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu)
+{
+ struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
+ struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
+ struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
+ bool vlevel, plevel;
+
+ if (likely(irqchip_in_kernel(vcpu->kvm)))
+ return false;
+
+ vlevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_VTIMER;
+ plevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_PTIMER;
+
+ return kvm_timer_should_fire(vtimer) != vlevel ||
+ kvm_timer_should_fire(ptimer) != plevel;
+}
+
+void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
+{
+ struct arch_timer_cpu *timer = vcpu_timer(vcpu);
+ struct timer_map map;
+
+ if (unlikely(!timer->enabled))
+ return;
+
+ get_timer_map(vcpu, &map);
+
+ timer_save_state(map.direct_vtimer);
+ if (map.direct_ptimer)
+ timer_save_state(map.direct_ptimer);
+
+ /*
+ * Cancel soft timer emulation, because the only case where we
+ * need it after a vcpu_put is in the context of a sleeping VCPU, and
+ * in that case we already factor in the deadline for the physical
+ * timer when scheduling the bg_timer.
+ *
+ * In any case, we re-schedule the hrtimer for the physical timer when
+ * coming back to the VCPU thread in kvm_timer_vcpu_load().
+ */
+ if (map.emul_vtimer)
+ soft_timer_cancel(&map.emul_vtimer->hrtimer);
+ if (map.emul_ptimer)
+ soft_timer_cancel(&map.emul_ptimer->hrtimer);
+
+ if (kvm_vcpu_is_blocking(vcpu))
+ kvm_timer_blocking(vcpu);
+}
+
+/*
+ * With a userspace irqchip we have to check if the guest de-asserted the
+ * timer and if so, unmask the timer irq signal on the host interrupt
+ * controller to ensure that we see future timer signals.
+ */
+static void unmask_vtimer_irq_user(struct kvm_vcpu *vcpu)
+{
+ struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
+
+ if (!kvm_timer_should_fire(vtimer)) {
+ kvm_timer_update_irq(vcpu, false, vtimer);
+ if (static_branch_likely(&has_gic_active_state))
+ set_timer_irq_phys_active(vtimer, false);
+ else
+ enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
+ }
+}
+
+void kvm_timer_sync_user(struct kvm_vcpu *vcpu)
+{
+ struct arch_timer_cpu *timer = vcpu_timer(vcpu);
+
+ if (unlikely(!timer->enabled))
+ return;
+
+ if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
+ unmask_vtimer_irq_user(vcpu);
+}
+
+int kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu)
+{
+ struct arch_timer_cpu *timer = vcpu_timer(vcpu);
+ struct timer_map map;
+
+ get_timer_map(vcpu, &map);
+
+ /*
+ * The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8
+ * and to 0 for ARMv7. We provide an implementation that always
+ * resets the timer to be disabled and unmasked and is compliant with
+ * the ARMv7 architecture.
+ */
+ for (int i = 0; i < nr_timers(vcpu); i++)
+ timer_set_ctl(vcpu_get_timer(vcpu, i), 0);
+
+ /*
+ * A vcpu running at EL2 is in charge of the offset applied to
+ * the virtual timer, so use the physical VM offset, and point
+ * the vcpu offset to CNTVOFF_EL2.
+ */
+ if (vcpu_has_nv(vcpu)) {
+ struct arch_timer_offset *offs = &vcpu_vtimer(vcpu)->offset;
+
+ offs->vcpu_offset = &__vcpu_sys_reg(vcpu, CNTVOFF_EL2);
+ offs->vm_offset = &vcpu->kvm->arch.timer_data.poffset;
+ }
+
+ if (timer->enabled) {
+ for (int i = 0; i < nr_timers(vcpu); i++)
+ kvm_timer_update_irq(vcpu, false,
+ vcpu_get_timer(vcpu, i));
+
+ if (irqchip_in_kernel(vcpu->kvm)) {
+ kvm_vgic_reset_mapped_irq(vcpu, timer_irq(map.direct_vtimer));
+ if (map.direct_ptimer)
+ kvm_vgic_reset_mapped_irq(vcpu, timer_irq(map.direct_ptimer));
+ }
+ }
+
+ if (map.emul_vtimer)
+ soft_timer_cancel(&map.emul_vtimer->hrtimer);
+ if (map.emul_ptimer)
+ soft_timer_cancel(&map.emul_ptimer->hrtimer);
+
+ return 0;
+}
+
+static void timer_context_init(struct kvm_vcpu *vcpu, int timerid)
+{
+ struct arch_timer_context *ctxt = vcpu_get_timer(vcpu, timerid);
+ struct kvm *kvm = vcpu->kvm;
+
+ ctxt->vcpu = vcpu;
+
+ if (timerid == TIMER_VTIMER)
+ ctxt->offset.vm_offset = &kvm->arch.timer_data.voffset;
+ else
+ ctxt->offset.vm_offset = &kvm->arch.timer_data.poffset;
+
+ hrtimer_init(&ctxt->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
+ ctxt->hrtimer.function = kvm_hrtimer_expire;
+
+ switch (timerid) {
+ case TIMER_PTIMER:
+ case TIMER_HPTIMER:
+ ctxt->host_timer_irq = host_ptimer_irq;
+ break;
+ case TIMER_VTIMER:
+ case TIMER_HVTIMER:
+ ctxt->host_timer_irq = host_vtimer_irq;
+ break;
+ }
+}
+
+void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
+{
+ struct arch_timer_cpu *timer = vcpu_timer(vcpu);
+
+ for (int i = 0; i < NR_KVM_TIMERS; i++)
+ timer_context_init(vcpu, i);
+
+ /* Synchronize offsets across timers of a VM if not already provided */
+ if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET, &vcpu->kvm->arch.flags)) {
+ timer_set_offset(vcpu_vtimer(vcpu), kvm_phys_timer_read());
+ timer_set_offset(vcpu_ptimer(vcpu), 0);
+ }
+
+ hrtimer_init(&timer->bg_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
+ timer->bg_timer.function = kvm_bg_timer_expire;
+}
+
+void kvm_timer_init_vm(struct kvm *kvm)
+{
+ for (int i = 0; i < NR_KVM_TIMERS; i++)
+ kvm->arch.timer_data.ppi[i] = default_ppi[i];
+}
+
+void kvm_timer_cpu_up(void)
+{
+ enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
+ if (host_ptimer_irq)
+ enable_percpu_irq(host_ptimer_irq, host_ptimer_irq_flags);
+}
+
+void kvm_timer_cpu_down(void)
+{
+ disable_percpu_irq(host_vtimer_irq);
+ if (host_ptimer_irq)
+ disable_percpu_irq(host_ptimer_irq);
+}
+
+int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value)
+{
+ struct arch_timer_context *timer;
+
+ switch (regid) {
+ case KVM_REG_ARM_TIMER_CTL:
+ timer = vcpu_vtimer(vcpu);
+ kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value);
+ break;
+ case KVM_REG_ARM_TIMER_CNT:
+ if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET,
+ &vcpu->kvm->arch.flags)) {
+ timer = vcpu_vtimer(vcpu);
+ timer_set_offset(timer, kvm_phys_timer_read() - value);
+ }
+ break;
+ case KVM_REG_ARM_TIMER_CVAL:
+ timer = vcpu_vtimer(vcpu);
+ kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value);
+ break;
+ case KVM_REG_ARM_PTIMER_CTL:
+ timer = vcpu_ptimer(vcpu);
+ kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value);
+ break;
+ case KVM_REG_ARM_PTIMER_CNT:
+ if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET,
+ &vcpu->kvm->arch.flags)) {
+ timer = vcpu_ptimer(vcpu);
+ timer_set_offset(timer, kvm_phys_timer_read() - value);
+ }
+ break;
+ case KVM_REG_ARM_PTIMER_CVAL:
+ timer = vcpu_ptimer(vcpu);
+ kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value);
+ break;
+
+ default:
+ return -1;
+ }
+
+ return 0;
+}
+
+static u64 read_timer_ctl(struct arch_timer_context *timer)
+{
+ /*
+ * Set ISTATUS bit if it's expired.
+ * Note that according to ARMv8 ARM Issue A.k, ISTATUS bit is
+ * UNKNOWN when ENABLE bit is 0, so we chose to set ISTATUS bit
+ * regardless of ENABLE bit for our implementation convenience.
+ */
+ u32 ctl = timer_get_ctl(timer);
+
+ if (!kvm_timer_compute_delta(timer))
+ ctl |= ARCH_TIMER_CTRL_IT_STAT;
+
+ return ctl;
+}
+
+u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid)
+{
+ switch (regid) {
+ case KVM_REG_ARM_TIMER_CTL:
+ return kvm_arm_timer_read(vcpu,
+ vcpu_vtimer(vcpu), TIMER_REG_CTL);
+ case KVM_REG_ARM_TIMER_CNT:
+ return kvm_arm_timer_read(vcpu,
+ vcpu_vtimer(vcpu), TIMER_REG_CNT);
+ case KVM_REG_ARM_TIMER_CVAL:
+ return kvm_arm_timer_read(vcpu,
+ vcpu_vtimer(vcpu), TIMER_REG_CVAL);
+ case KVM_REG_ARM_PTIMER_CTL:
+ return kvm_arm_timer_read(vcpu,
+ vcpu_ptimer(vcpu), TIMER_REG_CTL);
+ case KVM_REG_ARM_PTIMER_CNT:
+ return kvm_arm_timer_read(vcpu,
+ vcpu_ptimer(vcpu), TIMER_REG_CNT);
+ case KVM_REG_ARM_PTIMER_CVAL:
+ return kvm_arm_timer_read(vcpu,
+ vcpu_ptimer(vcpu), TIMER_REG_CVAL);
+ }
+ return (u64)-1;
+}
+
+static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
+ struct arch_timer_context *timer,
+ enum kvm_arch_timer_regs treg)
+{
+ u64 val;
+
+ switch (treg) {
+ case TIMER_REG_TVAL:
+ val = timer_get_cval(timer) - kvm_phys_timer_read() + timer_get_offset(timer);
+ val = lower_32_bits(val);
+ break;
+
+ case TIMER_REG_CTL:
+ val = read_timer_ctl(timer);
+ break;
+
+ case TIMER_REG_CVAL:
+ val = timer_get_cval(timer);
+ break;
+
+ case TIMER_REG_CNT:
+ val = kvm_phys_timer_read() - timer_get_offset(timer);
+ break;
+
+ case TIMER_REG_VOFF:
+ val = *timer->offset.vcpu_offset;
+ break;
+
+ default:
+ BUG();
+ }
+
+ return val;
+}
+
+u64 kvm_arm_timer_read_sysreg(struct kvm_vcpu *vcpu,
+ enum kvm_arch_timers tmr,
+ enum kvm_arch_timer_regs treg)
+{
+ struct arch_timer_context *timer;
+ struct timer_map map;
+ u64 val;
+
+ get_timer_map(vcpu, &map);
+ timer = vcpu_get_timer(vcpu, tmr);
+
+ if (timer == map.emul_vtimer || timer == map.emul_ptimer)
+ return kvm_arm_timer_read(vcpu, timer, treg);
+
+ preempt_disable();
+ timer_save_state(timer);
+
+ val = kvm_arm_timer_read(vcpu, timer, treg);
+
+ timer_restore_state(timer);
+ preempt_enable();
+
+ return val;
+}
+
+static void kvm_arm_timer_write(struct kvm_vcpu *vcpu,
+ struct arch_timer_context *timer,
+ enum kvm_arch_timer_regs treg,
+ u64 val)
+{
+ switch (treg) {
+ case TIMER_REG_TVAL:
+ timer_set_cval(timer, kvm_phys_timer_read() - timer_get_offset(timer) + (s32)val);
+ break;
+
+ case TIMER_REG_CTL:
+ timer_set_ctl(timer, val & ~ARCH_TIMER_CTRL_IT_STAT);
+ break;
+
+ case TIMER_REG_CVAL:
+ timer_set_cval(timer, val);
+ break;
+
+ case TIMER_REG_VOFF:
+ *timer->offset.vcpu_offset = val;
+ break;
+
+ default:
+ BUG();
+ }
+}
+
+void kvm_arm_timer_write_sysreg(struct kvm_vcpu *vcpu,
+ enum kvm_arch_timers tmr,
+ enum kvm_arch_timer_regs treg,
+ u64 val)
+{
+ struct arch_timer_context *timer;
+ struct timer_map map;
+
+ get_timer_map(vcpu, &map);
+ timer = vcpu_get_timer(vcpu, tmr);
+ if (timer == map.emul_vtimer || timer == map.emul_ptimer) {
+ soft_timer_cancel(&timer->hrtimer);
+ kvm_arm_timer_write(vcpu, timer, treg, val);
+ timer_emulate(timer);
+ } else {
+ preempt_disable();
+ timer_save_state(timer);
+ kvm_arm_timer_write(vcpu, timer, treg, val);
+ timer_restore_state(timer);
+ preempt_enable();
+ }
+}
+
+static int timer_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
+{
+ if (vcpu)
+ irqd_set_forwarded_to_vcpu(d);
+ else
+ irqd_clr_forwarded_to_vcpu(d);
+
+ return 0;
+}
+
+static int timer_irq_set_irqchip_state(struct irq_data *d,
+ enum irqchip_irq_state which, bool val)
+{
+ if (which != IRQCHIP_STATE_ACTIVE || !irqd_is_forwarded_to_vcpu(d))
+ return irq_chip_set_parent_state(d, which, val);
+
+ if (val)
+ irq_chip_mask_parent(d);
+ else
+ irq_chip_unmask_parent(d);
+
+ return 0;
+}
+
+static void timer_irq_eoi(struct irq_data *d)
+{
+ if (!irqd_is_forwarded_to_vcpu(d))
+ irq_chip_eoi_parent(d);
+}
+
+static void timer_irq_ack(struct irq_data *d)
+{
+ d = d->parent_data;
+ if (d->chip->irq_ack)
+ d->chip->irq_ack(d);
+}
+
+static struct irq_chip timer_chip = {
+ .name = "KVM",
+ .irq_ack = timer_irq_ack,
+ .irq_mask = irq_chip_mask_parent,
+ .irq_unmask = irq_chip_unmask_parent,
+ .irq_eoi = timer_irq_eoi,
+ .irq_set_type = irq_chip_set_type_parent,
+ .irq_set_vcpu_affinity = timer_irq_set_vcpu_affinity,
+ .irq_set_irqchip_state = timer_irq_set_irqchip_state,
+};
+
+static int timer_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
+ unsigned int nr_irqs, void *arg)
+{
+ irq_hw_number_t hwirq = (uintptr_t)arg;
+
+ return irq_domain_set_hwirq_and_chip(domain, virq, hwirq,
+ &timer_chip, NULL);
+}
+
+static void timer_irq_domain_free(struct irq_domain *domain, unsigned int virq,
+ unsigned int nr_irqs)
+{
+}
+
+static const struct irq_domain_ops timer_domain_ops = {
+ .alloc = timer_irq_domain_alloc,
+ .free = timer_irq_domain_free,
+};
+
+static void kvm_irq_fixup_flags(unsigned int virq, u32 *flags)
+{
+ *flags = irq_get_trigger_type(virq);
+ if (*flags != IRQF_TRIGGER_HIGH && *flags != IRQF_TRIGGER_LOW) {
+ kvm_err("Invalid trigger for timer IRQ%d, assuming level low\n",
+ virq);
+ *flags = IRQF_TRIGGER_LOW;
+ }
+}
+
+static int kvm_irq_init(struct arch_timer_kvm_info *info)
+{
+ struct irq_domain *domain = NULL;
+
+ if (info->virtual_irq <= 0) {
+ kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n",
+ info->virtual_irq);
+ return -ENODEV;
+ }
+
+ host_vtimer_irq = info->virtual_irq;
+ kvm_irq_fixup_flags(host_vtimer_irq, &host_vtimer_irq_flags);
+
+ if (kvm_vgic_global_state.no_hw_deactivation) {
+ struct fwnode_handle *fwnode;
+ struct irq_data *data;
+
+ fwnode = irq_domain_alloc_named_fwnode("kvm-timer");
+ if (!fwnode)
+ return -ENOMEM;
+
+ /* Assume both vtimer and ptimer in the same parent */
+ data = irq_get_irq_data(host_vtimer_irq);
+ domain = irq_domain_create_hierarchy(data->domain, 0,
+ NR_KVM_TIMERS, fwnode,
+ &timer_domain_ops, NULL);
+ if (!domain) {
+ irq_domain_free_fwnode(fwnode);
+ return -ENOMEM;
+ }
+
+ arch_timer_irq_ops.flags |= VGIC_IRQ_SW_RESAMPLE;
+ WARN_ON(irq_domain_push_irq(domain, host_vtimer_irq,
+ (void *)TIMER_VTIMER));
+ }
+
+ if (info->physical_irq > 0) {
+ host_ptimer_irq = info->physical_irq;
+ kvm_irq_fixup_flags(host_ptimer_irq, &host_ptimer_irq_flags);
+
+ if (domain)
+ WARN_ON(irq_domain_push_irq(domain, host_ptimer_irq,
+ (void *)TIMER_PTIMER));
+ }
+
+ return 0;
+}
+
+int __init kvm_timer_hyp_init(bool has_gic)
+{
+ struct arch_timer_kvm_info *info;
+ int err;
+
+ info = arch_timer_get_kvm_info();
+ timecounter = &info->timecounter;
+
+ if (!timecounter->cc) {
+ kvm_err("kvm_arch_timer: uninitialized timecounter\n");
+ return -ENODEV;
+ }
+
+ err = kvm_irq_init(info);
+ if (err)
+ return err;
+
+ /* First, do the virtual EL1 timer irq */
+
+ err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler,
+ "kvm guest vtimer", kvm_get_running_vcpus());
+ if (err) {
+ kvm_err("kvm_arch_timer: can't request vtimer interrupt %d (%d)\n",
+ host_vtimer_irq, err);
+ return err;
+ }
+
+ if (has_gic) {
+ err = irq_set_vcpu_affinity(host_vtimer_irq,
+ kvm_get_running_vcpus());
+ if (err) {
+ kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
+ goto out_free_vtimer_irq;
+ }
+
+ static_branch_enable(&has_gic_active_state);
+ }
+
+ kvm_debug("virtual timer IRQ%d\n", host_vtimer_irq);
+
+ /* Now let's do the physical EL1 timer irq */
+
+ if (info->physical_irq > 0) {
+ err = request_percpu_irq(host_ptimer_irq, kvm_arch_timer_handler,
+ "kvm guest ptimer", kvm_get_running_vcpus());
+ if (err) {
+ kvm_err("kvm_arch_timer: can't request ptimer interrupt %d (%d)\n",
+ host_ptimer_irq, err);
+ goto out_free_vtimer_irq;
+ }
+
+ if (has_gic) {
+ err = irq_set_vcpu_affinity(host_ptimer_irq,
+ kvm_get_running_vcpus());
+ if (err) {
+ kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
+ goto out_free_ptimer_irq;
+ }
+ }
+
+ kvm_debug("physical timer IRQ%d\n", host_ptimer_irq);
+ } else if (has_vhe()) {
+ kvm_err("kvm_arch_timer: invalid physical timer IRQ: %d\n",
+ info->physical_irq);
+ err = -ENODEV;
+ goto out_free_vtimer_irq;
+ }
+
+ return 0;
+
+out_free_ptimer_irq:
+ if (info->physical_irq > 0)
+ free_percpu_irq(host_ptimer_irq, kvm_get_running_vcpus());
+out_free_vtimer_irq:
+ free_percpu_irq(host_vtimer_irq, kvm_get_running_vcpus());
+ return err;
+}
+
+void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu)
+{
+ struct arch_timer_cpu *timer = vcpu_timer(vcpu);
+
+ soft_timer_cancel(&timer->bg_timer);
+}
+
+static bool timer_irqs_are_valid(struct kvm_vcpu *vcpu)
+{
+ u32 ppis = 0;
+ bool valid;
+
+ mutex_lock(&vcpu->kvm->arch.config_lock);
+
+ for (int i = 0; i < nr_timers(vcpu); i++) {
+ struct arch_timer_context *ctx;
+ int irq;
+
+ ctx = vcpu_get_timer(vcpu, i);
+ irq = timer_irq(ctx);
+ if (kvm_vgic_set_owner(vcpu, irq, ctx))
+ break;
+
+ /*
+ * We know by construction that we only have PPIs, so
+ * all values are less than 32.
+ */
+ ppis |= BIT(irq);
+ }
+
+ valid = hweight32(ppis) == nr_timers(vcpu);
+
+ if (valid)
+ set_bit(KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE, &vcpu->kvm->arch.flags);
+
+ mutex_unlock(&vcpu->kvm->arch.config_lock);
+
+ return valid;
+}
+
+static bool kvm_arch_timer_get_input_level(int vintid)
+{
+ struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
+
+ if (WARN(!vcpu, "No vcpu context!\n"))
+ return false;
+
+ for (int i = 0; i < nr_timers(vcpu); i++) {
+ struct arch_timer_context *ctx;
+
+ ctx = vcpu_get_timer(vcpu, i);
+ if (timer_irq(ctx) == vintid)
+ return kvm_timer_should_fire(ctx);
+ }
+
+ /* A timer IRQ has fired, but no matching timer was found? */
+ WARN_RATELIMIT(1, "timer INTID%d unknown\n", vintid);
+
+ return false;
+}
+
+int kvm_timer_enable(struct kvm_vcpu *vcpu)
+{
+ struct arch_timer_cpu *timer = vcpu_timer(vcpu);
+ struct timer_map map;
+ int ret;
+
+ if (timer->enabled)
+ return 0;
+
+ /* Without a VGIC we do not map virtual IRQs to physical IRQs */
+ if (!irqchip_in_kernel(vcpu->kvm))
+ goto no_vgic;
+
+ /*
+ * At this stage, we have the guarantee that the vgic is both
+ * available and initialized.
+ */
+ if (!timer_irqs_are_valid(vcpu)) {
+ kvm_debug("incorrectly configured timer irqs\n");
+ return -EINVAL;
+ }
+
+ get_timer_map(vcpu, &map);
+
+ ret = kvm_vgic_map_phys_irq(vcpu,
+ map.direct_vtimer->host_timer_irq,
+ timer_irq(map.direct_vtimer),
+ &arch_timer_irq_ops);
+ if (ret)
+ return ret;
+
+ if (map.direct_ptimer) {
+ ret = kvm_vgic_map_phys_irq(vcpu,
+ map.direct_ptimer->host_timer_irq,
+ timer_irq(map.direct_ptimer),
+ &arch_timer_irq_ops);
+ }
+
+ if (ret)
+ return ret;
+
+no_vgic:
+ timer->enabled = 1;
+ return 0;
+}
+
+/* If we have CNTPOFF, permanently set ECV to enable it */
+void kvm_timer_init_vhe(void)
+{
+ if (cpus_have_final_cap(ARM64_HAS_ECV_CNTPOFF))
+ sysreg_clear_set(cnthctl_el2, 0, CNTHCTL_ECV);
+}
+
+int kvm_arm_timer_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
+{
+ int __user *uaddr = (int __user *)(long)attr->addr;
+ int irq, idx, ret = 0;
+
+ if (!irqchip_in_kernel(vcpu->kvm))
+ return -EINVAL;
+
+ if (get_user(irq, uaddr))
+ return -EFAULT;
+
+ if (!(irq_is_ppi(irq)))
+ return -EINVAL;
+
+ mutex_lock(&vcpu->kvm->arch.config_lock);
+
+ if (test_bit(KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE,
+ &vcpu->kvm->arch.flags)) {
+ ret = -EBUSY;
+ goto out;
+ }
+
+ switch (attr->attr) {
+ case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
+ idx = TIMER_VTIMER;
+ break;
+ case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
+ idx = TIMER_PTIMER;
+ break;
+ case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER:
+ idx = TIMER_HVTIMER;
+ break;
+ case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER:
+ idx = TIMER_HPTIMER;
+ break;
+ default:
+ ret = -ENXIO;
+ goto out;
+ }
+
+ /*
+ * We cannot validate the IRQ unicity before we run, so take it at
+ * face value. The verdict will be given on first vcpu run, for each
+ * vcpu. Yes this is late. Blame it on the stupid API.
+ */
+ vcpu->kvm->arch.timer_data.ppi[idx] = irq;
+
+out:
+ mutex_unlock(&vcpu->kvm->arch.config_lock);
+ return ret;
+}
+
+int kvm_arm_timer_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
+{
+ int __user *uaddr = (int __user *)(long)attr->addr;
+ struct arch_timer_context *timer;
+ int irq;
+
+ switch (attr->attr) {
+ case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
+ timer = vcpu_vtimer(vcpu);
+ break;
+ case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
+ timer = vcpu_ptimer(vcpu);
+ break;
+ case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER:
+ timer = vcpu_hvtimer(vcpu);
+ break;
+ case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER:
+ timer = vcpu_hptimer(vcpu);
+ break;
+ default:
+ return -ENXIO;
+ }
+
+ irq = timer_irq(timer);
+ return put_user(irq, uaddr);
+}
+
+int kvm_arm_timer_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
+{
+ switch (attr->attr) {
+ case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
+ case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
+ case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER:
+ case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER:
+ return 0;
+ }
+
+ return -ENXIO;
+}
+
+int kvm_vm_ioctl_set_counter_offset(struct kvm *kvm,
+ struct kvm_arm_counter_offset *offset)
+{
+ int ret = 0;
+
+ if (offset->reserved)
+ return -EINVAL;
+
+ mutex_lock(&kvm->lock);
+
+ if (lock_all_vcpus(kvm)) {
+ set_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET, &kvm->arch.flags);
+
+ /*
+ * If userspace decides to set the offset using this
+ * API rather than merely restoring the counter
+ * values, the offset applies to both the virtual and
+ * physical views.
+ */
+ kvm->arch.timer_data.voffset = offset->counter_offset;
+ kvm->arch.timer_data.poffset = offset->counter_offset;
+
+ unlock_all_vcpus(kvm);
+ } else {
+ ret = -EBUSY;
+ }
+
+ mutex_unlock(&kvm->lock);
+
+ return ret;
+}
diff --git a/arch/arm64/kvm/arm.c b/arch/arm64/kvm/arm.c
new file mode 100644
index 0000000000..685cc43614
--- /dev/null
+++ b/arch/arm64/kvm/arm.c
@@ -0,0 +1,2528 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2012 - Virtual Open Systems and Columbia University
+ * Author: Christoffer Dall <c.dall@virtualopensystems.com>
+ */
+
+#include <linux/bug.h>
+#include <linux/cpu_pm.h>
+#include <linux/entry-kvm.h>
+#include <linux/errno.h>
+#include <linux/err.h>
+#include <linux/kvm_host.h>
+#include <linux/list.h>
+#include <linux/module.h>
+#include <linux/vmalloc.h>
+#include <linux/fs.h>
+#include <linux/mman.h>
+#include <linux/sched.h>
+#include <linux/kvm.h>
+#include <linux/kvm_irqfd.h>
+#include <linux/irqbypass.h>
+#include <linux/sched/stat.h>
+#include <linux/psci.h>
+#include <trace/events/kvm.h>
+
+#define CREATE_TRACE_POINTS
+#include "trace_arm.h"
+
+#include <linux/uaccess.h>
+#include <asm/ptrace.h>
+#include <asm/mman.h>
+#include <asm/tlbflush.h>
+#include <asm/cacheflush.h>
+#include <asm/cpufeature.h>
+#include <asm/virt.h>
+#include <asm/kvm_arm.h>
+#include <asm/kvm_asm.h>
+#include <asm/kvm_mmu.h>
+#include <asm/kvm_nested.h>
+#include <asm/kvm_pkvm.h>
+#include <asm/kvm_emulate.h>
+#include <asm/sections.h>
+
+#include <kvm/arm_hypercalls.h>
+#include <kvm/arm_pmu.h>
+#include <kvm/arm_psci.h>
+
+static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
+
+DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
+
+DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
+DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
+
+DECLARE_KVM_NVHE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
+
+static bool vgic_present, kvm_arm_initialised;
+
+static DEFINE_PER_CPU(unsigned char, kvm_hyp_initialized);
+DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
+
+bool is_kvm_arm_initialised(void)
+{
+ return kvm_arm_initialised;
+}
+
+int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
+{
+ return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
+}
+
+int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
+ struct kvm_enable_cap *cap)
+{
+ int r;
+ u64 new_cap;
+
+ if (cap->flags)
+ return -EINVAL;
+
+ switch (cap->cap) {
+ case KVM_CAP_ARM_NISV_TO_USER:
+ r = 0;
+ set_bit(KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER,
+ &kvm->arch.flags);
+ break;
+ case KVM_CAP_ARM_MTE:
+ mutex_lock(&kvm->lock);
+ if (!system_supports_mte() || kvm->created_vcpus) {
+ r = -EINVAL;
+ } else {
+ r = 0;
+ set_bit(KVM_ARCH_FLAG_MTE_ENABLED, &kvm->arch.flags);
+ }
+ mutex_unlock(&kvm->lock);
+ break;
+ case KVM_CAP_ARM_SYSTEM_SUSPEND:
+ r = 0;
+ set_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags);
+ break;
+ case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE:
+ new_cap = cap->args[0];
+
+ mutex_lock(&kvm->slots_lock);
+ /*
+ * To keep things simple, allow changing the chunk
+ * size only when no memory slots have been created.
+ */
+ if (!kvm_are_all_memslots_empty(kvm)) {
+ r = -EINVAL;
+ } else if (new_cap && !kvm_is_block_size_supported(new_cap)) {
+ r = -EINVAL;
+ } else {
+ r = 0;
+ kvm->arch.mmu.split_page_chunk_size = new_cap;
+ }
+ mutex_unlock(&kvm->slots_lock);
+ break;
+ default:
+ r = -EINVAL;
+ break;
+ }
+
+ return r;
+}
+
+static int kvm_arm_default_max_vcpus(void)
+{
+ return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
+}
+
+/**
+ * kvm_arch_init_vm - initializes a VM data structure
+ * @kvm: pointer to the KVM struct
+ */
+int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
+{
+ int ret;
+
+ mutex_init(&kvm->arch.config_lock);
+
+#ifdef CONFIG_LOCKDEP
+ /* Clue in lockdep that the config_lock must be taken inside kvm->lock */
+ mutex_lock(&kvm->lock);
+ mutex_lock(&kvm->arch.config_lock);
+ mutex_unlock(&kvm->arch.config_lock);
+ mutex_unlock(&kvm->lock);
+#endif
+
+ ret = kvm_share_hyp(kvm, kvm + 1);
+ if (ret)
+ return ret;
+
+ ret = pkvm_init_host_vm(kvm);
+ if (ret)
+ goto err_unshare_kvm;
+
+ if (!zalloc_cpumask_var(&kvm->arch.supported_cpus, GFP_KERNEL_ACCOUNT)) {
+ ret = -ENOMEM;
+ goto err_unshare_kvm;
+ }
+ cpumask_copy(kvm->arch.supported_cpus, cpu_possible_mask);
+
+ ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu, type);
+ if (ret)
+ goto err_free_cpumask;
+
+ kvm_vgic_early_init(kvm);
+
+ kvm_timer_init_vm(kvm);
+
+ /* The maximum number of VCPUs is limited by the host's GIC model */
+ kvm->max_vcpus = kvm_arm_default_max_vcpus();
+
+ kvm_arm_init_hypercalls(kvm);
+
+ bitmap_zero(kvm->arch.vcpu_features, KVM_VCPU_MAX_FEATURES);
+
+ return 0;
+
+err_free_cpumask:
+ free_cpumask_var(kvm->arch.supported_cpus);
+err_unshare_kvm:
+ kvm_unshare_hyp(kvm, kvm + 1);
+ return ret;
+}
+
+vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
+{
+ return VM_FAULT_SIGBUS;
+}
+
+
+/**
+ * kvm_arch_destroy_vm - destroy the VM data structure
+ * @kvm: pointer to the KVM struct
+ */
+void kvm_arch_destroy_vm(struct kvm *kvm)
+{
+ bitmap_free(kvm->arch.pmu_filter);
+ free_cpumask_var(kvm->arch.supported_cpus);
+
+ kvm_vgic_destroy(kvm);
+
+ if (is_protected_kvm_enabled())
+ pkvm_destroy_hyp_vm(kvm);
+
+ kvm_destroy_vcpus(kvm);
+
+ kvm_unshare_hyp(kvm, kvm + 1);
+
+ kvm_arm_teardown_hypercalls(kvm);
+}
+
+int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
+{
+ int r;
+ switch (ext) {
+ case KVM_CAP_IRQCHIP:
+ r = vgic_present;
+ break;
+ case KVM_CAP_IOEVENTFD:
+ case KVM_CAP_DEVICE_CTRL:
+ case KVM_CAP_USER_MEMORY:
+ case KVM_CAP_SYNC_MMU:
+ case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
+ case KVM_CAP_ONE_REG:
+ case KVM_CAP_ARM_PSCI:
+ case KVM_CAP_ARM_PSCI_0_2:
+ case KVM_CAP_READONLY_MEM:
+ case KVM_CAP_MP_STATE:
+ case KVM_CAP_IMMEDIATE_EXIT:
+ case KVM_CAP_VCPU_EVENTS:
+ case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
+ case KVM_CAP_ARM_NISV_TO_USER:
+ case KVM_CAP_ARM_INJECT_EXT_DABT:
+ case KVM_CAP_SET_GUEST_DEBUG:
+ case KVM_CAP_VCPU_ATTRIBUTES:
+ case KVM_CAP_PTP_KVM:
+ case KVM_CAP_ARM_SYSTEM_SUSPEND:
+ case KVM_CAP_IRQFD_RESAMPLE:
+ case KVM_CAP_COUNTER_OFFSET:
+ r = 1;
+ break;
+ case KVM_CAP_SET_GUEST_DEBUG2:
+ return KVM_GUESTDBG_VALID_MASK;
+ case KVM_CAP_ARM_SET_DEVICE_ADDR:
+ r = 1;
+ break;
+ case KVM_CAP_NR_VCPUS:
+ /*
+ * ARM64 treats KVM_CAP_NR_CPUS differently from all other
+ * architectures, as it does not always bound it to
+ * KVM_CAP_MAX_VCPUS. It should not matter much because
+ * this is just an advisory value.
+ */
+ r = min_t(unsigned int, num_online_cpus(),
+ kvm_arm_default_max_vcpus());
+ break;
+ case KVM_CAP_MAX_VCPUS:
+ case KVM_CAP_MAX_VCPU_ID:
+ if (kvm)
+ r = kvm->max_vcpus;
+ else
+ r = kvm_arm_default_max_vcpus();
+ break;
+ case KVM_CAP_MSI_DEVID:
+ if (!kvm)
+ r = -EINVAL;
+ else
+ r = kvm->arch.vgic.msis_require_devid;
+ break;
+ case KVM_CAP_ARM_USER_IRQ:
+ /*
+ * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
+ * (bump this number if adding more devices)
+ */
+ r = 1;
+ break;
+ case KVM_CAP_ARM_MTE:
+ r = system_supports_mte();
+ break;
+ case KVM_CAP_STEAL_TIME:
+ r = kvm_arm_pvtime_supported();
+ break;
+ case KVM_CAP_ARM_EL1_32BIT:
+ r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1);
+ break;
+ case KVM_CAP_GUEST_DEBUG_HW_BPS:
+ r = get_num_brps();
+ break;
+ case KVM_CAP_GUEST_DEBUG_HW_WPS:
+ r = get_num_wrps();
+ break;
+ case KVM_CAP_ARM_PMU_V3:
+ r = kvm_arm_support_pmu_v3();
+ break;
+ case KVM_CAP_ARM_INJECT_SERROR_ESR:
+ r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
+ break;
+ case KVM_CAP_ARM_VM_IPA_SIZE:
+ r = get_kvm_ipa_limit();
+ break;
+ case KVM_CAP_ARM_SVE:
+ r = system_supports_sve();
+ break;
+ case KVM_CAP_ARM_PTRAUTH_ADDRESS:
+ case KVM_CAP_ARM_PTRAUTH_GENERIC:
+ r = system_has_full_ptr_auth();
+ break;
+ case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE:
+ if (kvm)
+ r = kvm->arch.mmu.split_page_chunk_size;
+ else
+ r = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT;
+ break;
+ case KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES:
+ r = kvm_supported_block_sizes();
+ break;
+ default:
+ r = 0;
+ }
+
+ return r;
+}
+
+long kvm_arch_dev_ioctl(struct file *filp,
+ unsigned int ioctl, unsigned long arg)
+{
+ return -EINVAL;
+}
+
+struct kvm *kvm_arch_alloc_vm(void)
+{
+ size_t sz = sizeof(struct kvm);
+
+ if (!has_vhe())
+ return kzalloc(sz, GFP_KERNEL_ACCOUNT);
+
+ return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO);
+}
+
+int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
+{
+ if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
+ return -EBUSY;
+
+ if (id >= kvm->max_vcpus)
+ return -EINVAL;
+
+ return 0;
+}
+
+int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
+{
+ int err;
+
+ spin_lock_init(&vcpu->arch.mp_state_lock);
+
+#ifdef CONFIG_LOCKDEP
+ /* Inform lockdep that the config_lock is acquired after vcpu->mutex */
+ mutex_lock(&vcpu->mutex);
+ mutex_lock(&vcpu->kvm->arch.config_lock);
+ mutex_unlock(&vcpu->kvm->arch.config_lock);
+ mutex_unlock(&vcpu->mutex);
+#endif
+
+ /* Force users to call KVM_ARM_VCPU_INIT */
+ vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
+ bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
+
+ vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
+
+ /*
+ * Default value for the FP state, will be overloaded at load
+ * time if we support FP (pretty likely)
+ */
+ vcpu->arch.fp_state = FP_STATE_FREE;
+
+ /* Set up the timer */
+ kvm_timer_vcpu_init(vcpu);
+
+ kvm_pmu_vcpu_init(vcpu);
+
+ kvm_arm_reset_debug_ptr(vcpu);
+
+ kvm_arm_pvtime_vcpu_init(&vcpu->arch);
+
+ vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
+
+ err = kvm_vgic_vcpu_init(vcpu);
+ if (err)
+ return err;
+
+ return kvm_share_hyp(vcpu, vcpu + 1);
+}
+
+void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
+{
+}
+
+void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
+{
+ if (vcpu_has_run_once(vcpu) && unlikely(!irqchip_in_kernel(vcpu->kvm)))
+ static_branch_dec(&userspace_irqchip_in_use);
+
+ kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
+ kvm_timer_vcpu_terminate(vcpu);
+ kvm_pmu_vcpu_destroy(vcpu);
+ kvm_vgic_vcpu_destroy(vcpu);
+ kvm_arm_vcpu_destroy(vcpu);
+}
+
+void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
+{
+
+}
+
+void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
+{
+
+}
+
+void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
+{
+ struct kvm_s2_mmu *mmu;
+ int *last_ran;
+
+ mmu = vcpu->arch.hw_mmu;
+ last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
+
+ /*
+ * We guarantee that both TLBs and I-cache are private to each
+ * vcpu. If detecting that a vcpu from the same VM has
+ * previously run on the same physical CPU, call into the
+ * hypervisor code to nuke the relevant contexts.
+ *
+ * We might get preempted before the vCPU actually runs, but
+ * over-invalidation doesn't affect correctness.
+ */
+ if (*last_ran != vcpu->vcpu_id) {
+ kvm_call_hyp(__kvm_flush_cpu_context, mmu);
+ *last_ran = vcpu->vcpu_id;
+ }
+
+ vcpu->cpu = cpu;
+
+ kvm_vgic_load(vcpu);
+ kvm_timer_vcpu_load(vcpu);
+ if (has_vhe())
+ kvm_vcpu_load_sysregs_vhe(vcpu);
+ kvm_arch_vcpu_load_fp(vcpu);
+ kvm_vcpu_pmu_restore_guest(vcpu);
+ if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
+ kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
+
+ if (single_task_running())
+ vcpu_clear_wfx_traps(vcpu);
+ else
+ vcpu_set_wfx_traps(vcpu);
+
+ if (vcpu_has_ptrauth(vcpu))
+ vcpu_ptrauth_disable(vcpu);
+ kvm_arch_vcpu_load_debug_state_flags(vcpu);
+
+ if (!cpumask_test_cpu(cpu, vcpu->kvm->arch.supported_cpus))
+ vcpu_set_on_unsupported_cpu(vcpu);
+}
+
+void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
+{
+ kvm_arch_vcpu_put_debug_state_flags(vcpu);
+ kvm_arch_vcpu_put_fp(vcpu);
+ if (has_vhe())
+ kvm_vcpu_put_sysregs_vhe(vcpu);
+ kvm_timer_vcpu_put(vcpu);
+ kvm_vgic_put(vcpu);
+ kvm_vcpu_pmu_restore_host(vcpu);
+ kvm_arm_vmid_clear_active();
+
+ vcpu_clear_on_unsupported_cpu(vcpu);
+ vcpu->cpu = -1;
+}
+
+static void __kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
+{
+ WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED);
+ kvm_make_request(KVM_REQ_SLEEP, vcpu);
+ kvm_vcpu_kick(vcpu);
+}
+
+void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
+{
+ spin_lock(&vcpu->arch.mp_state_lock);
+ __kvm_arm_vcpu_power_off(vcpu);
+ spin_unlock(&vcpu->arch.mp_state_lock);
+}
+
+bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu)
+{
+ return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_STOPPED;
+}
+
+static void kvm_arm_vcpu_suspend(struct kvm_vcpu *vcpu)
+{
+ WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_SUSPENDED);
+ kvm_make_request(KVM_REQ_SUSPEND, vcpu);
+ kvm_vcpu_kick(vcpu);
+}
+
+static bool kvm_arm_vcpu_suspended(struct kvm_vcpu *vcpu)
+{
+ return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_SUSPENDED;
+}
+
+int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
+ struct kvm_mp_state *mp_state)
+{
+ *mp_state = READ_ONCE(vcpu->arch.mp_state);
+
+ return 0;
+}
+
+int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
+ struct kvm_mp_state *mp_state)
+{
+ int ret = 0;
+
+ spin_lock(&vcpu->arch.mp_state_lock);
+
+ switch (mp_state->mp_state) {
+ case KVM_MP_STATE_RUNNABLE:
+ WRITE_ONCE(vcpu->arch.mp_state, *mp_state);
+ break;
+ case KVM_MP_STATE_STOPPED:
+ __kvm_arm_vcpu_power_off(vcpu);
+ break;
+ case KVM_MP_STATE_SUSPENDED:
+ kvm_arm_vcpu_suspend(vcpu);
+ break;
+ default:
+ ret = -EINVAL;
+ }
+
+ spin_unlock(&vcpu->arch.mp_state_lock);
+
+ return ret;
+}
+
+/**
+ * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
+ * @v: The VCPU pointer
+ *
+ * If the guest CPU is not waiting for interrupts or an interrupt line is
+ * asserted, the CPU is by definition runnable.
+ */
+int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
+{
+ bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
+ return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
+ && !kvm_arm_vcpu_stopped(v) && !v->arch.pause);
+}
+
+bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
+{
+ return vcpu_mode_priv(vcpu);
+}
+
+#ifdef CONFIG_GUEST_PERF_EVENTS
+unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
+{
+ return *vcpu_pc(vcpu);
+}
+#endif
+
+static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
+{
+ return vcpu_get_flag(vcpu, VCPU_INITIALIZED);
+}
+
+/*
+ * Handle both the initialisation that is being done when the vcpu is
+ * run for the first time, as well as the updates that must be
+ * performed each time we get a new thread dealing with this vcpu.
+ */
+int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
+{
+ struct kvm *kvm = vcpu->kvm;
+ int ret;
+
+ if (!kvm_vcpu_initialized(vcpu))
+ return -ENOEXEC;
+
+ if (!kvm_arm_vcpu_is_finalized(vcpu))
+ return -EPERM;
+
+ ret = kvm_arch_vcpu_run_map_fp(vcpu);
+ if (ret)
+ return ret;
+
+ if (likely(vcpu_has_run_once(vcpu)))
+ return 0;
+
+ kvm_arm_vcpu_init_debug(vcpu);
+
+ if (likely(irqchip_in_kernel(kvm))) {
+ /*
+ * Map the VGIC hardware resources before running a vcpu the
+ * first time on this VM.
+ */
+ ret = kvm_vgic_map_resources(kvm);
+ if (ret)
+ return ret;
+ }
+
+ ret = kvm_timer_enable(vcpu);
+ if (ret)
+ return ret;
+
+ ret = kvm_arm_pmu_v3_enable(vcpu);
+ if (ret)
+ return ret;
+
+ if (is_protected_kvm_enabled()) {
+ ret = pkvm_create_hyp_vm(kvm);
+ if (ret)
+ return ret;
+ }
+
+ if (!irqchip_in_kernel(kvm)) {
+ /*
+ * Tell the rest of the code that there are userspace irqchip
+ * VMs in the wild.
+ */
+ static_branch_inc(&userspace_irqchip_in_use);
+ }
+
+ /*
+ * Initialize traps for protected VMs.
+ * NOTE: Move to run in EL2 directly, rather than via a hypercall, once
+ * the code is in place for first run initialization at EL2.
+ */
+ if (kvm_vm_is_protected(kvm))
+ kvm_call_hyp_nvhe(__pkvm_vcpu_init_traps, vcpu);
+
+ mutex_lock(&kvm->arch.config_lock);
+ set_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &kvm->arch.flags);
+ mutex_unlock(&kvm->arch.config_lock);
+
+ return ret;
+}
+
+bool kvm_arch_intc_initialized(struct kvm *kvm)
+{
+ return vgic_initialized(kvm);
+}
+
+void kvm_arm_halt_guest(struct kvm *kvm)
+{
+ unsigned long i;
+ struct kvm_vcpu *vcpu;
+
+ kvm_for_each_vcpu(i, vcpu, kvm)
+ vcpu->arch.pause = true;
+ kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
+}
+
+void kvm_arm_resume_guest(struct kvm *kvm)
+{
+ unsigned long i;
+ struct kvm_vcpu *vcpu;
+
+ kvm_for_each_vcpu(i, vcpu, kvm) {
+ vcpu->arch.pause = false;
+ __kvm_vcpu_wake_up(vcpu);
+ }
+}
+
+static void kvm_vcpu_sleep(struct kvm_vcpu *vcpu)
+{
+ struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
+
+ rcuwait_wait_event(wait,
+ (!kvm_arm_vcpu_stopped(vcpu)) && (!vcpu->arch.pause),
+ TASK_INTERRUPTIBLE);
+
+ if (kvm_arm_vcpu_stopped(vcpu) || vcpu->arch.pause) {
+ /* Awaken to handle a signal, request we sleep again later. */
+ kvm_make_request(KVM_REQ_SLEEP, vcpu);
+ }
+
+ /*
+ * Make sure we will observe a potential reset request if we've
+ * observed a change to the power state. Pairs with the smp_wmb() in
+ * kvm_psci_vcpu_on().
+ */
+ smp_rmb();
+}
+
+/**
+ * kvm_vcpu_wfi - emulate Wait-For-Interrupt behavior
+ * @vcpu: The VCPU pointer
+ *
+ * Suspend execution of a vCPU until a valid wake event is detected, i.e. until
+ * the vCPU is runnable. The vCPU may or may not be scheduled out, depending
+ * on when a wake event arrives, e.g. there may already be a pending wake event.
+ */
+void kvm_vcpu_wfi(struct kvm_vcpu *vcpu)
+{
+ /*
+ * Sync back the state of the GIC CPU interface so that we have
+ * the latest PMR and group enables. This ensures that
+ * kvm_arch_vcpu_runnable has up-to-date data to decide whether
+ * we have pending interrupts, e.g. when determining if the
+ * vCPU should block.
+ *
+ * For the same reason, we want to tell GICv4 that we need
+ * doorbells to be signalled, should an interrupt become pending.
+ */
+ preempt_disable();
+ kvm_vgic_vmcr_sync(vcpu);
+ vcpu_set_flag(vcpu, IN_WFI);
+ vgic_v4_put(vcpu);
+ preempt_enable();
+
+ kvm_vcpu_halt(vcpu);
+ vcpu_clear_flag(vcpu, IN_WFIT);
+
+ preempt_disable();
+ vcpu_clear_flag(vcpu, IN_WFI);
+ vgic_v4_load(vcpu);
+ preempt_enable();
+}
+
+static int kvm_vcpu_suspend(struct kvm_vcpu *vcpu)
+{
+ if (!kvm_arm_vcpu_suspended(vcpu))
+ return 1;
+
+ kvm_vcpu_wfi(vcpu);
+
+ /*
+ * The suspend state is sticky; we do not leave it until userspace
+ * explicitly marks the vCPU as runnable. Request that we suspend again
+ * later.
+ */
+ kvm_make_request(KVM_REQ_SUSPEND, vcpu);
+
+ /*
+ * Check to make sure the vCPU is actually runnable. If so, exit to
+ * userspace informing it of the wakeup condition.
+ */
+ if (kvm_arch_vcpu_runnable(vcpu)) {
+ memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event));
+ vcpu->run->system_event.type = KVM_SYSTEM_EVENT_WAKEUP;
+ vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
+ return 0;
+ }
+
+ /*
+ * Otherwise, we were unblocked to process a different event, such as a
+ * pending signal. Return 1 and allow kvm_arch_vcpu_ioctl_run() to
+ * process the event.
+ */
+ return 1;
+}
+
+/**
+ * check_vcpu_requests - check and handle pending vCPU requests
+ * @vcpu: the VCPU pointer
+ *
+ * Return: 1 if we should enter the guest
+ * 0 if we should exit to userspace
+ * < 0 if we should exit to userspace, where the return value indicates
+ * an error
+ */
+static int check_vcpu_requests(struct kvm_vcpu *vcpu)
+{
+ if (kvm_request_pending(vcpu)) {
+ if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
+ kvm_vcpu_sleep(vcpu);
+
+ if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
+ kvm_reset_vcpu(vcpu);
+
+ /*
+ * Clear IRQ_PENDING requests that were made to guarantee
+ * that a VCPU sees new virtual interrupts.
+ */
+ kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
+
+ if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
+ kvm_update_stolen_time(vcpu);
+
+ if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
+ /* The distributor enable bits were changed */
+ preempt_disable();
+ vgic_v4_put(vcpu);
+ vgic_v4_load(vcpu);
+ preempt_enable();
+ }
+
+ if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
+ kvm_pmu_handle_pmcr(vcpu,
+ __vcpu_sys_reg(vcpu, PMCR_EL0));
+
+ if (kvm_check_request(KVM_REQ_RESYNC_PMU_EL0, vcpu))
+ kvm_vcpu_pmu_restore_guest(vcpu);
+
+ if (kvm_check_request(KVM_REQ_SUSPEND, vcpu))
+ return kvm_vcpu_suspend(vcpu);
+
+ if (kvm_dirty_ring_check_request(vcpu))
+ return 0;
+ }
+
+ return 1;
+}
+
+static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
+{
+ if (likely(!vcpu_mode_is_32bit(vcpu)))
+ return false;
+
+ if (vcpu_has_nv(vcpu))
+ return true;
+
+ return !kvm_supports_32bit_el0();
+}
+
+/**
+ * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest
+ * @vcpu: The VCPU pointer
+ * @ret: Pointer to write optional return code
+ *
+ * Returns: true if the VCPU needs to return to a preemptible + interruptible
+ * and skip guest entry.
+ *
+ * This function disambiguates between two different types of exits: exits to a
+ * preemptible + interruptible kernel context and exits to userspace. For an
+ * exit to userspace, this function will write the return code to ret and return
+ * true. For an exit to preemptible + interruptible kernel context (i.e. check
+ * for pending work and re-enter), return true without writing to ret.
+ */
+static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret)
+{
+ struct kvm_run *run = vcpu->run;
+
+ /*
+ * If we're using a userspace irqchip, then check if we need
+ * to tell a userspace irqchip about timer or PMU level
+ * changes and if so, exit to userspace (the actual level
+ * state gets updated in kvm_timer_update_run and
+ * kvm_pmu_update_run below).
+ */
+ if (static_branch_unlikely(&userspace_irqchip_in_use)) {
+ if (kvm_timer_should_notify_user(vcpu) ||
+ kvm_pmu_should_notify_user(vcpu)) {
+ *ret = -EINTR;
+ run->exit_reason = KVM_EXIT_INTR;
+ return true;
+ }
+ }
+
+ if (unlikely(vcpu_on_unsupported_cpu(vcpu))) {
+ run->exit_reason = KVM_EXIT_FAIL_ENTRY;
+ run->fail_entry.hardware_entry_failure_reason = KVM_EXIT_FAIL_ENTRY_CPU_UNSUPPORTED;
+ run->fail_entry.cpu = smp_processor_id();
+ *ret = 0;
+ return true;
+ }
+
+ return kvm_request_pending(vcpu) ||
+ xfer_to_guest_mode_work_pending();
+}
+
+/*
+ * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
+ * the vCPU is running.
+ *
+ * This must be noinstr as instrumentation may make use of RCU, and this is not
+ * safe during the EQS.
+ */
+static int noinstr kvm_arm_vcpu_enter_exit(struct kvm_vcpu *vcpu)
+{
+ int ret;
+
+ guest_state_enter_irqoff();
+ ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
+ guest_state_exit_irqoff();
+
+ return ret;
+}
+
+/**
+ * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
+ * @vcpu: The VCPU pointer
+ *
+ * This function is called through the VCPU_RUN ioctl called from user space. It
+ * will execute VM code in a loop until the time slice for the process is used
+ * or some emulation is needed from user space in which case the function will
+ * return with return value 0 and with the kvm_run structure filled in with the
+ * required data for the requested emulation.
+ */
+int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
+{
+ struct kvm_run *run = vcpu->run;
+ int ret;
+
+ if (run->exit_reason == KVM_EXIT_MMIO) {
+ ret = kvm_handle_mmio_return(vcpu);
+ if (ret)
+ return ret;
+ }
+
+ vcpu_load(vcpu);
+
+ if (run->immediate_exit) {
+ ret = -EINTR;
+ goto out;
+ }
+
+ kvm_sigset_activate(vcpu);
+
+ ret = 1;
+ run->exit_reason = KVM_EXIT_UNKNOWN;
+ run->flags = 0;
+ while (ret > 0) {
+ /*
+ * Check conditions before entering the guest
+ */
+ ret = xfer_to_guest_mode_handle_work(vcpu);
+ if (!ret)
+ ret = 1;
+
+ if (ret > 0)
+ ret = check_vcpu_requests(vcpu);
+
+ /*
+ * Preparing the interrupts to be injected also
+ * involves poking the GIC, which must be done in a
+ * non-preemptible context.
+ */
+ preempt_disable();
+
+ /*
+ * The VMID allocator only tracks active VMIDs per
+ * physical CPU, and therefore the VMID allocated may not be
+ * preserved on VMID roll-over if the task was preempted,
+ * making a thread's VMID inactive. So we need to call
+ * kvm_arm_vmid_update() in non-premptible context.
+ */
+ kvm_arm_vmid_update(&vcpu->arch.hw_mmu->vmid);
+
+ kvm_pmu_flush_hwstate(vcpu);
+
+ local_irq_disable();
+
+ kvm_vgic_flush_hwstate(vcpu);
+
+ kvm_pmu_update_vcpu_events(vcpu);
+
+ /*
+ * Ensure we set mode to IN_GUEST_MODE after we disable
+ * interrupts and before the final VCPU requests check.
+ * See the comment in kvm_vcpu_exiting_guest_mode() and
+ * Documentation/virt/kvm/vcpu-requests.rst
+ */
+ smp_store_mb(vcpu->mode, IN_GUEST_MODE);
+
+ if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) {
+ vcpu->mode = OUTSIDE_GUEST_MODE;
+ isb(); /* Ensure work in x_flush_hwstate is committed */
+ kvm_pmu_sync_hwstate(vcpu);
+ if (static_branch_unlikely(&userspace_irqchip_in_use))
+ kvm_timer_sync_user(vcpu);
+ kvm_vgic_sync_hwstate(vcpu);
+ local_irq_enable();
+ preempt_enable();
+ continue;
+ }
+
+ kvm_arm_setup_debug(vcpu);
+ kvm_arch_vcpu_ctxflush_fp(vcpu);
+
+ /**************************************************************
+ * Enter the guest
+ */
+ trace_kvm_entry(*vcpu_pc(vcpu));
+ guest_timing_enter_irqoff();
+
+ ret = kvm_arm_vcpu_enter_exit(vcpu);
+
+ vcpu->mode = OUTSIDE_GUEST_MODE;
+ vcpu->stat.exits++;
+ /*
+ * Back from guest
+ *************************************************************/
+
+ kvm_arm_clear_debug(vcpu);
+
+ /*
+ * We must sync the PMU state before the vgic state so
+ * that the vgic can properly sample the updated state of the
+ * interrupt line.
+ */
+ kvm_pmu_sync_hwstate(vcpu);
+
+ /*
+ * Sync the vgic state before syncing the timer state because
+ * the timer code needs to know if the virtual timer
+ * interrupts are active.
+ */
+ kvm_vgic_sync_hwstate(vcpu);
+
+ /*
+ * Sync the timer hardware state before enabling interrupts as
+ * we don't want vtimer interrupts to race with syncing the
+ * timer virtual interrupt state.
+ */
+ if (static_branch_unlikely(&userspace_irqchip_in_use))
+ kvm_timer_sync_user(vcpu);
+
+ kvm_arch_vcpu_ctxsync_fp(vcpu);
+
+ /*
+ * We must ensure that any pending interrupts are taken before
+ * we exit guest timing so that timer ticks are accounted as
+ * guest time. Transiently unmask interrupts so that any
+ * pending interrupts are taken.
+ *
+ * Per ARM DDI 0487G.b section D1.13.4, an ISB (or other
+ * context synchronization event) is necessary to ensure that
+ * pending interrupts are taken.
+ */
+ if (ARM_EXCEPTION_CODE(ret) == ARM_EXCEPTION_IRQ) {
+ local_irq_enable();
+ isb();
+ local_irq_disable();
+ }
+
+ guest_timing_exit_irqoff();
+
+ local_irq_enable();
+
+ trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
+
+ /* Exit types that need handling before we can be preempted */
+ handle_exit_early(vcpu, ret);
+
+ preempt_enable();
+
+ /*
+ * The ARMv8 architecture doesn't give the hypervisor
+ * a mechanism to prevent a guest from dropping to AArch32 EL0
+ * if implemented by the CPU. If we spot the guest in such
+ * state and that we decided it wasn't supposed to do so (like
+ * with the asymmetric AArch32 case), return to userspace with
+ * a fatal error.
+ */
+ if (vcpu_mode_is_bad_32bit(vcpu)) {
+ /*
+ * As we have caught the guest red-handed, decide that
+ * it isn't fit for purpose anymore by making the vcpu
+ * invalid. The VMM can try and fix it by issuing a
+ * KVM_ARM_VCPU_INIT if it really wants to.
+ */
+ vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
+ ret = ARM_EXCEPTION_IL;
+ }
+
+ ret = handle_exit(vcpu, ret);
+ }
+
+ /* Tell userspace about in-kernel device output levels */
+ if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
+ kvm_timer_update_run(vcpu);
+ kvm_pmu_update_run(vcpu);
+ }
+
+ kvm_sigset_deactivate(vcpu);
+
+out:
+ /*
+ * In the unlikely event that we are returning to userspace
+ * with pending exceptions or PC adjustment, commit these
+ * adjustments in order to give userspace a consistent view of
+ * the vcpu state. Note that this relies on __kvm_adjust_pc()
+ * being preempt-safe on VHE.
+ */
+ if (unlikely(vcpu_get_flag(vcpu, PENDING_EXCEPTION) ||
+ vcpu_get_flag(vcpu, INCREMENT_PC)))
+ kvm_call_hyp(__kvm_adjust_pc, vcpu);
+
+ vcpu_put(vcpu);
+ return ret;
+}
+
+static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
+{
+ int bit_index;
+ bool set;
+ unsigned long *hcr;
+
+ if (number == KVM_ARM_IRQ_CPU_IRQ)
+ bit_index = __ffs(HCR_VI);
+ else /* KVM_ARM_IRQ_CPU_FIQ */
+ bit_index = __ffs(HCR_VF);
+
+ hcr = vcpu_hcr(vcpu);
+ if (level)
+ set = test_and_set_bit(bit_index, hcr);
+ else
+ set = test_and_clear_bit(bit_index, hcr);
+
+ /*
+ * If we didn't change anything, no need to wake up or kick other CPUs
+ */
+ if (set == level)
+ return 0;
+
+ /*
+ * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
+ * trigger a world-switch round on the running physical CPU to set the
+ * virtual IRQ/FIQ fields in the HCR appropriately.
+ */
+ kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
+ kvm_vcpu_kick(vcpu);
+
+ return 0;
+}
+
+int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
+ bool line_status)
+{
+ u32 irq = irq_level->irq;
+ unsigned int irq_type, vcpu_idx, irq_num;
+ int nrcpus = atomic_read(&kvm->online_vcpus);
+ struct kvm_vcpu *vcpu = NULL;
+ bool level = irq_level->level;
+
+ irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
+ vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
+ vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
+ irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
+
+ trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
+
+ switch (irq_type) {
+ case KVM_ARM_IRQ_TYPE_CPU:
+ if (irqchip_in_kernel(kvm))
+ return -ENXIO;
+
+ if (vcpu_idx >= nrcpus)
+ return -EINVAL;
+
+ vcpu = kvm_get_vcpu(kvm, vcpu_idx);
+ if (!vcpu)
+ return -EINVAL;
+
+ if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
+ return -EINVAL;
+
+ return vcpu_interrupt_line(vcpu, irq_num, level);
+ case KVM_ARM_IRQ_TYPE_PPI:
+ if (!irqchip_in_kernel(kvm))
+ return -ENXIO;
+
+ if (vcpu_idx >= nrcpus)
+ return -EINVAL;
+
+ vcpu = kvm_get_vcpu(kvm, vcpu_idx);
+ if (!vcpu)
+ return -EINVAL;
+
+ if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
+ return -EINVAL;
+
+ return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
+ case KVM_ARM_IRQ_TYPE_SPI:
+ if (!irqchip_in_kernel(kvm))
+ return -ENXIO;
+
+ if (irq_num < VGIC_NR_PRIVATE_IRQS)
+ return -EINVAL;
+
+ return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
+ }
+
+ return -EINVAL;
+}
+
+static int kvm_vcpu_init_check_features(struct kvm_vcpu *vcpu,
+ const struct kvm_vcpu_init *init)
+{
+ unsigned long features = init->features[0];
+ int i;
+
+ if (features & ~KVM_VCPU_VALID_FEATURES)
+ return -ENOENT;
+
+ for (i = 1; i < ARRAY_SIZE(init->features); i++) {
+ if (init->features[i])
+ return -ENOENT;
+ }
+
+ if (!test_bit(KVM_ARM_VCPU_EL1_32BIT, &features))
+ return 0;
+
+ if (!cpus_have_const_cap(ARM64_HAS_32BIT_EL1))
+ return -EINVAL;
+
+ /* MTE is incompatible with AArch32 */
+ if (kvm_has_mte(vcpu->kvm))
+ return -EINVAL;
+
+ /* NV is incompatible with AArch32 */
+ if (test_bit(KVM_ARM_VCPU_HAS_EL2, &features))
+ return -EINVAL;
+
+ return 0;
+}
+
+static bool kvm_vcpu_init_changed(struct kvm_vcpu *vcpu,
+ const struct kvm_vcpu_init *init)
+{
+ unsigned long features = init->features[0];
+
+ return !bitmap_equal(vcpu->arch.features, &features, KVM_VCPU_MAX_FEATURES);
+}
+
+static int __kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
+ const struct kvm_vcpu_init *init)
+{
+ unsigned long features = init->features[0];
+ struct kvm *kvm = vcpu->kvm;
+ int ret = -EINVAL;
+
+ mutex_lock(&kvm->arch.config_lock);
+
+ if (test_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags) &&
+ !bitmap_equal(kvm->arch.vcpu_features, &features, KVM_VCPU_MAX_FEATURES))
+ goto out_unlock;
+
+ bitmap_copy(vcpu->arch.features, &features, KVM_VCPU_MAX_FEATURES);
+
+ /* Now we know what it is, we can reset it. */
+ ret = kvm_reset_vcpu(vcpu);
+ if (ret) {
+ bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
+ goto out_unlock;
+ }
+
+ bitmap_copy(kvm->arch.vcpu_features, &features, KVM_VCPU_MAX_FEATURES);
+ set_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags);
+ vcpu_set_flag(vcpu, VCPU_INITIALIZED);
+out_unlock:
+ mutex_unlock(&kvm->arch.config_lock);
+ return ret;
+}
+
+static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
+ const struct kvm_vcpu_init *init)
+{
+ int ret;
+
+ if (init->target != KVM_ARM_TARGET_GENERIC_V8 &&
+ init->target != kvm_target_cpu())
+ return -EINVAL;
+
+ ret = kvm_vcpu_init_check_features(vcpu, init);
+ if (ret)
+ return ret;
+
+ if (!kvm_vcpu_initialized(vcpu))
+ return __kvm_vcpu_set_target(vcpu, init);
+
+ if (kvm_vcpu_init_changed(vcpu, init))
+ return -EINVAL;
+
+ return kvm_reset_vcpu(vcpu);
+}
+
+static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
+ struct kvm_vcpu_init *init)
+{
+ bool power_off = false;
+ int ret;
+
+ /*
+ * Treat the power-off vCPU feature as ephemeral. Clear the bit to avoid
+ * reflecting it in the finalized feature set, thus limiting its scope
+ * to a single KVM_ARM_VCPU_INIT call.
+ */
+ if (init->features[0] & BIT(KVM_ARM_VCPU_POWER_OFF)) {
+ init->features[0] &= ~BIT(KVM_ARM_VCPU_POWER_OFF);
+ power_off = true;
+ }
+
+ ret = kvm_vcpu_set_target(vcpu, init);
+ if (ret)
+ return ret;
+
+ /*
+ * Ensure a rebooted VM will fault in RAM pages and detect if the
+ * guest MMU is turned off and flush the caches as needed.
+ *
+ * S2FWB enforces all memory accesses to RAM being cacheable,
+ * ensuring that the data side is always coherent. We still
+ * need to invalidate the I-cache though, as FWB does *not*
+ * imply CTR_EL0.DIC.
+ */
+ if (vcpu_has_run_once(vcpu)) {
+ if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
+ stage2_unmap_vm(vcpu->kvm);
+ else
+ icache_inval_all_pou();
+ }
+
+ vcpu_reset_hcr(vcpu);
+ vcpu->arch.cptr_el2 = kvm_get_reset_cptr_el2(vcpu);
+
+ /*
+ * Handle the "start in power-off" case.
+ */
+ spin_lock(&vcpu->arch.mp_state_lock);
+
+ if (power_off)
+ __kvm_arm_vcpu_power_off(vcpu);
+ else
+ WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE);
+
+ spin_unlock(&vcpu->arch.mp_state_lock);
+
+ return 0;
+}
+
+static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
+ struct kvm_device_attr *attr)
+{
+ int ret = -ENXIO;
+
+ switch (attr->group) {
+ default:
+ ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
+ break;
+ }
+
+ return ret;
+}
+
+static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
+ struct kvm_device_attr *attr)
+{
+ int ret = -ENXIO;
+
+ switch (attr->group) {
+ default:
+ ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
+ break;
+ }
+
+ return ret;
+}
+
+static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
+ struct kvm_device_attr *attr)
+{
+ int ret = -ENXIO;
+
+ switch (attr->group) {
+ default:
+ ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
+ break;
+ }
+
+ return ret;
+}
+
+static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
+ struct kvm_vcpu_events *events)
+{
+ memset(events, 0, sizeof(*events));
+
+ return __kvm_arm_vcpu_get_events(vcpu, events);
+}
+
+static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
+ struct kvm_vcpu_events *events)
+{
+ int i;
+
+ /* check whether the reserved field is zero */
+ for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
+ if (events->reserved[i])
+ return -EINVAL;
+
+ /* check whether the pad field is zero */
+ for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
+ if (events->exception.pad[i])
+ return -EINVAL;
+
+ return __kvm_arm_vcpu_set_events(vcpu, events);
+}
+
+long kvm_arch_vcpu_ioctl(struct file *filp,
+ unsigned int ioctl, unsigned long arg)
+{
+ struct kvm_vcpu *vcpu = filp->private_data;
+ void __user *argp = (void __user *)arg;
+ struct kvm_device_attr attr;
+ long r;
+
+ switch (ioctl) {
+ case KVM_ARM_VCPU_INIT: {
+ struct kvm_vcpu_init init;
+
+ r = -EFAULT;
+ if (copy_from_user(&init, argp, sizeof(init)))
+ break;
+
+ r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
+ break;
+ }
+ case KVM_SET_ONE_REG:
+ case KVM_GET_ONE_REG: {
+ struct kvm_one_reg reg;
+
+ r = -ENOEXEC;
+ if (unlikely(!kvm_vcpu_initialized(vcpu)))
+ break;
+
+ r = -EFAULT;
+ if (copy_from_user(&reg, argp, sizeof(reg)))
+ break;
+
+ /*
+ * We could owe a reset due to PSCI. Handle the pending reset
+ * here to ensure userspace register accesses are ordered after
+ * the reset.
+ */
+ if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
+ kvm_reset_vcpu(vcpu);
+
+ if (ioctl == KVM_SET_ONE_REG)
+ r = kvm_arm_set_reg(vcpu, &reg);
+ else
+ r = kvm_arm_get_reg(vcpu, &reg);
+ break;
+ }
+ case KVM_GET_REG_LIST: {
+ struct kvm_reg_list __user *user_list = argp;
+ struct kvm_reg_list reg_list;
+ unsigned n;
+
+ r = -ENOEXEC;
+ if (unlikely(!kvm_vcpu_initialized(vcpu)))
+ break;
+
+ r = -EPERM;
+ if (!kvm_arm_vcpu_is_finalized(vcpu))
+ break;
+
+ r = -EFAULT;
+ if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
+ break;
+ n = reg_list.n;
+ reg_list.n = kvm_arm_num_regs(vcpu);
+ if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
+ break;
+ r = -E2BIG;
+ if (n < reg_list.n)
+ break;
+ r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
+ break;
+ }
+ case KVM_SET_DEVICE_ATTR: {
+ r = -EFAULT;
+ if (copy_from_user(&attr, argp, sizeof(attr)))
+ break;
+ r = kvm_arm_vcpu_set_attr(vcpu, &attr);
+ break;
+ }
+ case KVM_GET_DEVICE_ATTR: {
+ r = -EFAULT;
+ if (copy_from_user(&attr, argp, sizeof(attr)))
+ break;
+ r = kvm_arm_vcpu_get_attr(vcpu, &attr);
+ break;
+ }
+ case KVM_HAS_DEVICE_ATTR: {
+ r = -EFAULT;
+ if (copy_from_user(&attr, argp, sizeof(attr)))
+ break;
+ r = kvm_arm_vcpu_has_attr(vcpu, &attr);
+ break;
+ }
+ case KVM_GET_VCPU_EVENTS: {
+ struct kvm_vcpu_events events;
+
+ if (kvm_arm_vcpu_get_events(vcpu, &events))
+ return -EINVAL;
+
+ if (copy_to_user(argp, &events, sizeof(events)))
+ return -EFAULT;
+
+ return 0;
+ }
+ case KVM_SET_VCPU_EVENTS: {
+ struct kvm_vcpu_events events;
+
+ if (copy_from_user(&events, argp, sizeof(events)))
+ return -EFAULT;
+
+ return kvm_arm_vcpu_set_events(vcpu, &events);
+ }
+ case KVM_ARM_VCPU_FINALIZE: {
+ int what;
+
+ if (!kvm_vcpu_initialized(vcpu))
+ return -ENOEXEC;
+
+ if (get_user(what, (const int __user *)argp))
+ return -EFAULT;
+
+ return kvm_arm_vcpu_finalize(vcpu, what);
+ }
+ default:
+ r = -EINVAL;
+ }
+
+ return r;
+}
+
+void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
+{
+
+}
+
+static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
+ struct kvm_arm_device_addr *dev_addr)
+{
+ switch (FIELD_GET(KVM_ARM_DEVICE_ID_MASK, dev_addr->id)) {
+ case KVM_ARM_DEVICE_VGIC_V2:
+ if (!vgic_present)
+ return -ENXIO;
+ return kvm_set_legacy_vgic_v2_addr(kvm, dev_addr);
+ default:
+ return -ENODEV;
+ }
+}
+
+static int kvm_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
+{
+ switch (attr->group) {
+ case KVM_ARM_VM_SMCCC_CTRL:
+ return kvm_vm_smccc_has_attr(kvm, attr);
+ default:
+ return -ENXIO;
+ }
+}
+
+static int kvm_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
+{
+ switch (attr->group) {
+ case KVM_ARM_VM_SMCCC_CTRL:
+ return kvm_vm_smccc_set_attr(kvm, attr);
+ default:
+ return -ENXIO;
+ }
+}
+
+int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
+{
+ struct kvm *kvm = filp->private_data;
+ void __user *argp = (void __user *)arg;
+ struct kvm_device_attr attr;
+
+ switch (ioctl) {
+ case KVM_CREATE_IRQCHIP: {
+ int ret;
+ if (!vgic_present)
+ return -ENXIO;
+ mutex_lock(&kvm->lock);
+ ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
+ mutex_unlock(&kvm->lock);
+ return ret;
+ }
+ case KVM_ARM_SET_DEVICE_ADDR: {
+ struct kvm_arm_device_addr dev_addr;
+
+ if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
+ return -EFAULT;
+ return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
+ }
+ case KVM_ARM_PREFERRED_TARGET: {
+ struct kvm_vcpu_init init = {
+ .target = KVM_ARM_TARGET_GENERIC_V8,
+ };
+
+ if (copy_to_user(argp, &init, sizeof(init)))
+ return -EFAULT;
+
+ return 0;
+ }
+ case KVM_ARM_MTE_COPY_TAGS: {
+ struct kvm_arm_copy_mte_tags copy_tags;
+
+ if (copy_from_user(&copy_tags, argp, sizeof(copy_tags)))
+ return -EFAULT;
+ return kvm_vm_ioctl_mte_copy_tags(kvm, &copy_tags);
+ }
+ case KVM_ARM_SET_COUNTER_OFFSET: {
+ struct kvm_arm_counter_offset offset;
+
+ if (copy_from_user(&offset, argp, sizeof(offset)))
+ return -EFAULT;
+ return kvm_vm_ioctl_set_counter_offset(kvm, &offset);
+ }
+ case KVM_HAS_DEVICE_ATTR: {
+ if (copy_from_user(&attr, argp, sizeof(attr)))
+ return -EFAULT;
+
+ return kvm_vm_has_attr(kvm, &attr);
+ }
+ case KVM_SET_DEVICE_ATTR: {
+ if (copy_from_user(&attr, argp, sizeof(attr)))
+ return -EFAULT;
+
+ return kvm_vm_set_attr(kvm, &attr);
+ }
+ default:
+ return -EINVAL;
+ }
+}
+
+/* unlocks vcpus from @vcpu_lock_idx and smaller */
+static void unlock_vcpus(struct kvm *kvm, int vcpu_lock_idx)
+{
+ struct kvm_vcpu *tmp_vcpu;
+
+ for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
+ tmp_vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
+ mutex_unlock(&tmp_vcpu->mutex);
+ }
+}
+
+void unlock_all_vcpus(struct kvm *kvm)
+{
+ lockdep_assert_held(&kvm->lock);
+
+ unlock_vcpus(kvm, atomic_read(&kvm->online_vcpus) - 1);
+}
+
+/* Returns true if all vcpus were locked, false otherwise */
+bool lock_all_vcpus(struct kvm *kvm)
+{
+ struct kvm_vcpu *tmp_vcpu;
+ unsigned long c;
+
+ lockdep_assert_held(&kvm->lock);
+
+ /*
+ * Any time a vcpu is in an ioctl (including running), the
+ * core KVM code tries to grab the vcpu->mutex.
+ *
+ * By grabbing the vcpu->mutex of all VCPUs we ensure that no
+ * other VCPUs can fiddle with the state while we access it.
+ */
+ kvm_for_each_vcpu(c, tmp_vcpu, kvm) {
+ if (!mutex_trylock(&tmp_vcpu->mutex)) {
+ unlock_vcpus(kvm, c - 1);
+ return false;
+ }
+ }
+
+ return true;
+}
+
+static unsigned long nvhe_percpu_size(void)
+{
+ return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
+ (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
+}
+
+static unsigned long nvhe_percpu_order(void)
+{
+ unsigned long size = nvhe_percpu_size();
+
+ return size ? get_order(size) : 0;
+}
+
+/* A lookup table holding the hypervisor VA for each vector slot */
+static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
+
+static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
+{
+ hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
+}
+
+static int kvm_init_vector_slots(void)
+{
+ int err;
+ void *base;
+
+ base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
+ kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
+
+ base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
+ kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
+
+ if (kvm_system_needs_idmapped_vectors() &&
+ !is_protected_kvm_enabled()) {
+ err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
+ __BP_HARDEN_HYP_VECS_SZ, &base);
+ if (err)
+ return err;
+ }
+
+ kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
+ kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
+ return 0;
+}
+
+static void __init cpu_prepare_hyp_mode(int cpu, u32 hyp_va_bits)
+{
+ struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
+ unsigned long tcr;
+
+ /*
+ * Calculate the raw per-cpu offset without a translation from the
+ * kernel's mapping to the linear mapping, and store it in tpidr_el2
+ * so that we can use adr_l to access per-cpu variables in EL2.
+ * Also drop the KASAN tag which gets in the way...
+ */
+ params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
+ (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
+
+ params->mair_el2 = read_sysreg(mair_el1);
+
+ tcr = read_sysreg(tcr_el1);
+ if (cpus_have_final_cap(ARM64_KVM_HVHE)) {
+ tcr |= TCR_EPD1_MASK;
+ } else {
+ tcr &= TCR_EL2_MASK;
+ tcr |= TCR_EL2_RES1;
+ }
+ tcr &= ~TCR_T0SZ_MASK;
+ tcr |= TCR_T0SZ(hyp_va_bits);
+ params->tcr_el2 = tcr;
+
+ params->pgd_pa = kvm_mmu_get_httbr();
+ if (is_protected_kvm_enabled())
+ params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
+ else
+ params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
+ if (cpus_have_final_cap(ARM64_KVM_HVHE))
+ params->hcr_el2 |= HCR_E2H;
+ params->vttbr = params->vtcr = 0;
+
+ /*
+ * Flush the init params from the data cache because the struct will
+ * be read while the MMU is off.
+ */
+ kvm_flush_dcache_to_poc(params, sizeof(*params));
+}
+
+static void hyp_install_host_vector(void)
+{
+ struct kvm_nvhe_init_params *params;
+ struct arm_smccc_res res;
+
+ /* Switch from the HYP stub to our own HYP init vector */
+ __hyp_set_vectors(kvm_get_idmap_vector());
+
+ /*
+ * Call initialization code, and switch to the full blown HYP code.
+ * If the cpucaps haven't been finalized yet, something has gone very
+ * wrong, and hyp will crash and burn when it uses any
+ * cpus_have_const_cap() wrapper.
+ */
+ BUG_ON(!system_capabilities_finalized());
+ params = this_cpu_ptr_nvhe_sym(kvm_init_params);
+ arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
+ WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
+}
+
+static void cpu_init_hyp_mode(void)
+{
+ hyp_install_host_vector();
+
+ /*
+ * Disabling SSBD on a non-VHE system requires us to enable SSBS
+ * at EL2.
+ */
+ if (this_cpu_has_cap(ARM64_SSBS) &&
+ arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
+ kvm_call_hyp_nvhe(__kvm_enable_ssbs);
+ }
+}
+
+static void cpu_hyp_reset(void)
+{
+ if (!is_kernel_in_hyp_mode())
+ __hyp_reset_vectors();
+}
+
+/*
+ * EL2 vectors can be mapped and rerouted in a number of ways,
+ * depending on the kernel configuration and CPU present:
+ *
+ * - If the CPU is affected by Spectre-v2, the hardening sequence is
+ * placed in one of the vector slots, which is executed before jumping
+ * to the real vectors.
+ *
+ * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
+ * containing the hardening sequence is mapped next to the idmap page,
+ * and executed before jumping to the real vectors.
+ *
+ * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
+ * empty slot is selected, mapped next to the idmap page, and
+ * executed before jumping to the real vectors.
+ *
+ * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
+ * VHE, as we don't have hypervisor-specific mappings. If the system
+ * is VHE and yet selects this capability, it will be ignored.
+ */
+static void cpu_set_hyp_vector(void)
+{
+ struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
+ void *vector = hyp_spectre_vector_selector[data->slot];
+
+ if (!is_protected_kvm_enabled())
+ *this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
+ else
+ kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
+}
+
+static void cpu_hyp_init_context(void)
+{
+ kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
+
+ if (!is_kernel_in_hyp_mode())
+ cpu_init_hyp_mode();
+}
+
+static void cpu_hyp_init_features(void)
+{
+ cpu_set_hyp_vector();
+ kvm_arm_init_debug();
+
+ if (is_kernel_in_hyp_mode())
+ kvm_timer_init_vhe();
+
+ if (vgic_present)
+ kvm_vgic_init_cpu_hardware();
+}
+
+static void cpu_hyp_reinit(void)
+{
+ cpu_hyp_reset();
+ cpu_hyp_init_context();
+ cpu_hyp_init_features();
+}
+
+static void cpu_hyp_init(void *discard)
+{
+ if (!__this_cpu_read(kvm_hyp_initialized)) {
+ cpu_hyp_reinit();
+ __this_cpu_write(kvm_hyp_initialized, 1);
+ }
+}
+
+static void cpu_hyp_uninit(void *discard)
+{
+ if (__this_cpu_read(kvm_hyp_initialized)) {
+ cpu_hyp_reset();
+ __this_cpu_write(kvm_hyp_initialized, 0);
+ }
+}
+
+int kvm_arch_hardware_enable(void)
+{
+ /*
+ * Most calls to this function are made with migration
+ * disabled, but not with preemption disabled. The former is
+ * enough to ensure correctness, but most of the helpers
+ * expect the later and will throw a tantrum otherwise.
+ */
+ preempt_disable();
+
+ cpu_hyp_init(NULL);
+
+ kvm_vgic_cpu_up();
+ kvm_timer_cpu_up();
+
+ preempt_enable();
+
+ return 0;
+}
+
+void kvm_arch_hardware_disable(void)
+{
+ kvm_timer_cpu_down();
+ kvm_vgic_cpu_down();
+
+ if (!is_protected_kvm_enabled())
+ cpu_hyp_uninit(NULL);
+}
+
+#ifdef CONFIG_CPU_PM
+static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
+ unsigned long cmd,
+ void *v)
+{
+ /*
+ * kvm_hyp_initialized is left with its old value over
+ * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
+ * re-enable hyp.
+ */
+ switch (cmd) {
+ case CPU_PM_ENTER:
+ if (__this_cpu_read(kvm_hyp_initialized))
+ /*
+ * don't update kvm_hyp_initialized here
+ * so that the hyp will be re-enabled
+ * when we resume. See below.
+ */
+ cpu_hyp_reset();
+
+ return NOTIFY_OK;
+ case CPU_PM_ENTER_FAILED:
+ case CPU_PM_EXIT:
+ if (__this_cpu_read(kvm_hyp_initialized))
+ /* The hyp was enabled before suspend. */
+ cpu_hyp_reinit();
+
+ return NOTIFY_OK;
+
+ default:
+ return NOTIFY_DONE;
+ }
+}
+
+static struct notifier_block hyp_init_cpu_pm_nb = {
+ .notifier_call = hyp_init_cpu_pm_notifier,
+};
+
+static void __init hyp_cpu_pm_init(void)
+{
+ if (!is_protected_kvm_enabled())
+ cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
+}
+static void __init hyp_cpu_pm_exit(void)
+{
+ if (!is_protected_kvm_enabled())
+ cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
+}
+#else
+static inline void __init hyp_cpu_pm_init(void)
+{
+}
+static inline void __init hyp_cpu_pm_exit(void)
+{
+}
+#endif
+
+static void __init init_cpu_logical_map(void)
+{
+ unsigned int cpu;
+
+ /*
+ * Copy the MPIDR <-> logical CPU ID mapping to hyp.
+ * Only copy the set of online CPUs whose features have been checked
+ * against the finalized system capabilities. The hypervisor will not
+ * allow any other CPUs from the `possible` set to boot.
+ */
+ for_each_online_cpu(cpu)
+ hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
+}
+
+#define init_psci_0_1_impl_state(config, what) \
+ config.psci_0_1_ ## what ## _implemented = psci_ops.what
+
+static bool __init init_psci_relay(void)
+{
+ /*
+ * If PSCI has not been initialized, protected KVM cannot install
+ * itself on newly booted CPUs.
+ */
+ if (!psci_ops.get_version) {
+ kvm_err("Cannot initialize protected mode without PSCI\n");
+ return false;
+ }
+
+ kvm_host_psci_config.version = psci_ops.get_version();
+ kvm_host_psci_config.smccc_version = arm_smccc_get_version();
+
+ if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
+ kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
+ init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
+ init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
+ init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
+ init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
+ }
+ return true;
+}
+
+static int __init init_subsystems(void)
+{
+ int err = 0;
+
+ /*
+ * Enable hardware so that subsystem initialisation can access EL2.
+ */
+ on_each_cpu(cpu_hyp_init, NULL, 1);
+
+ /*
+ * Register CPU lower-power notifier
+ */
+ hyp_cpu_pm_init();
+
+ /*
+ * Init HYP view of VGIC
+ */
+ err = kvm_vgic_hyp_init();
+ switch (err) {
+ case 0:
+ vgic_present = true;
+ break;
+ case -ENODEV:
+ case -ENXIO:
+ vgic_present = false;
+ err = 0;
+ break;
+ default:
+ goto out;
+ }
+
+ /*
+ * Init HYP architected timer support
+ */
+ err = kvm_timer_hyp_init(vgic_present);
+ if (err)
+ goto out;
+
+ kvm_register_perf_callbacks(NULL);
+
+out:
+ if (err)
+ hyp_cpu_pm_exit();
+
+ if (err || !is_protected_kvm_enabled())
+ on_each_cpu(cpu_hyp_uninit, NULL, 1);
+
+ return err;
+}
+
+static void __init teardown_subsystems(void)
+{
+ kvm_unregister_perf_callbacks();
+ hyp_cpu_pm_exit();
+}
+
+static void __init teardown_hyp_mode(void)
+{
+ int cpu;
+
+ free_hyp_pgds();
+ for_each_possible_cpu(cpu) {
+ free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
+ free_pages(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu], nvhe_percpu_order());
+ }
+}
+
+static int __init do_pkvm_init(u32 hyp_va_bits)
+{
+ void *per_cpu_base = kvm_ksym_ref(kvm_nvhe_sym(kvm_arm_hyp_percpu_base));
+ int ret;
+
+ preempt_disable();
+ cpu_hyp_init_context();
+ ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
+ num_possible_cpus(), kern_hyp_va(per_cpu_base),
+ hyp_va_bits);
+ cpu_hyp_init_features();
+
+ /*
+ * The stub hypercalls are now disabled, so set our local flag to
+ * prevent a later re-init attempt in kvm_arch_hardware_enable().
+ */
+ __this_cpu_write(kvm_hyp_initialized, 1);
+ preempt_enable();
+
+ return ret;
+}
+
+static u64 get_hyp_id_aa64pfr0_el1(void)
+{
+ /*
+ * Track whether the system isn't affected by spectre/meltdown in the
+ * hypervisor's view of id_aa64pfr0_el1, used for protected VMs.
+ * Although this is per-CPU, we make it global for simplicity, e.g., not
+ * to have to worry about vcpu migration.
+ *
+ * Unlike for non-protected VMs, userspace cannot override this for
+ * protected VMs.
+ */
+ u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
+
+ val &= ~(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2) |
+ ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3));
+
+ val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2),
+ arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED);
+ val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3),
+ arm64_get_meltdown_state() == SPECTRE_UNAFFECTED);
+
+ return val;
+}
+
+static void kvm_hyp_init_symbols(void)
+{
+ kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = get_hyp_id_aa64pfr0_el1();
+ kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
+ kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1);
+ kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
+ kvm_nvhe_sym(id_aa64isar2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
+ kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
+ kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
+ kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1);
+ kvm_nvhe_sym(id_aa64smfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64SMFR0_EL1);
+ kvm_nvhe_sym(__icache_flags) = __icache_flags;
+ kvm_nvhe_sym(kvm_arm_vmid_bits) = kvm_arm_vmid_bits;
+}
+
+static int __init kvm_hyp_init_protection(u32 hyp_va_bits)
+{
+ void *addr = phys_to_virt(hyp_mem_base);
+ int ret;
+
+ ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
+ if (ret)
+ return ret;
+
+ ret = do_pkvm_init(hyp_va_bits);
+ if (ret)
+ return ret;
+
+ free_hyp_pgds();
+
+ return 0;
+}
+
+static void pkvm_hyp_init_ptrauth(void)
+{
+ struct kvm_cpu_context *hyp_ctxt;
+ int cpu;
+
+ for_each_possible_cpu(cpu) {
+ hyp_ctxt = per_cpu_ptr_nvhe_sym(kvm_hyp_ctxt, cpu);
+ hyp_ctxt->sys_regs[APIAKEYLO_EL1] = get_random_long();
+ hyp_ctxt->sys_regs[APIAKEYHI_EL1] = get_random_long();
+ hyp_ctxt->sys_regs[APIBKEYLO_EL1] = get_random_long();
+ hyp_ctxt->sys_regs[APIBKEYHI_EL1] = get_random_long();
+ hyp_ctxt->sys_regs[APDAKEYLO_EL1] = get_random_long();
+ hyp_ctxt->sys_regs[APDAKEYHI_EL1] = get_random_long();
+ hyp_ctxt->sys_regs[APDBKEYLO_EL1] = get_random_long();
+ hyp_ctxt->sys_regs[APDBKEYHI_EL1] = get_random_long();
+ hyp_ctxt->sys_regs[APGAKEYLO_EL1] = get_random_long();
+ hyp_ctxt->sys_regs[APGAKEYHI_EL1] = get_random_long();
+ }
+}
+
+/* Inits Hyp-mode on all online CPUs */
+static int __init init_hyp_mode(void)
+{
+ u32 hyp_va_bits;
+ int cpu;
+ int err = -ENOMEM;
+
+ /*
+ * The protected Hyp-mode cannot be initialized if the memory pool
+ * allocation has failed.
+ */
+ if (is_protected_kvm_enabled() && !hyp_mem_base)
+ goto out_err;
+
+ /*
+ * Allocate Hyp PGD and setup Hyp identity mapping
+ */
+ err = kvm_mmu_init(&hyp_va_bits);
+ if (err)
+ goto out_err;
+
+ /*
+ * Allocate stack pages for Hypervisor-mode
+ */
+ for_each_possible_cpu(cpu) {
+ unsigned long stack_page;
+
+ stack_page = __get_free_page(GFP_KERNEL);
+ if (!stack_page) {
+ err = -ENOMEM;
+ goto out_err;
+ }
+
+ per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
+ }
+
+ /*
+ * Allocate and initialize pages for Hypervisor-mode percpu regions.
+ */
+ for_each_possible_cpu(cpu) {
+ struct page *page;
+ void *page_addr;
+
+ page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
+ if (!page) {
+ err = -ENOMEM;
+ goto out_err;
+ }
+
+ page_addr = page_address(page);
+ memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
+ kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu] = (unsigned long)page_addr;
+ }
+
+ /*
+ * Map the Hyp-code called directly from the host
+ */
+ err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
+ kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
+ if (err) {
+ kvm_err("Cannot map world-switch code\n");
+ goto out_err;
+ }
+
+ err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
+ kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
+ if (err) {
+ kvm_err("Cannot map .hyp.rodata section\n");
+ goto out_err;
+ }
+
+ err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
+ kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
+ if (err) {
+ kvm_err("Cannot map rodata section\n");
+ goto out_err;
+ }
+
+ /*
+ * .hyp.bss is guaranteed to be placed at the beginning of the .bss
+ * section thanks to an assertion in the linker script. Map it RW and
+ * the rest of .bss RO.
+ */
+ err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
+ kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
+ if (err) {
+ kvm_err("Cannot map hyp bss section: %d\n", err);
+ goto out_err;
+ }
+
+ err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
+ kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
+ if (err) {
+ kvm_err("Cannot map bss section\n");
+ goto out_err;
+ }
+
+ /*
+ * Map the Hyp stack pages
+ */
+ for_each_possible_cpu(cpu) {
+ struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
+ char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
+
+ err = create_hyp_stack(__pa(stack_page), &params->stack_hyp_va);
+ if (err) {
+ kvm_err("Cannot map hyp stack\n");
+ goto out_err;
+ }
+
+ /*
+ * Save the stack PA in nvhe_init_params. This will be needed
+ * to recreate the stack mapping in protected nVHE mode.
+ * __hyp_pa() won't do the right thing there, since the stack
+ * has been mapped in the flexible private VA space.
+ */
+ params->stack_pa = __pa(stack_page);
+ }
+
+ for_each_possible_cpu(cpu) {
+ char *percpu_begin = (char *)kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu];
+ char *percpu_end = percpu_begin + nvhe_percpu_size();
+
+ /* Map Hyp percpu pages */
+ err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
+ if (err) {
+ kvm_err("Cannot map hyp percpu region\n");
+ goto out_err;
+ }
+
+ /* Prepare the CPU initialization parameters */
+ cpu_prepare_hyp_mode(cpu, hyp_va_bits);
+ }
+
+ kvm_hyp_init_symbols();
+
+ if (is_protected_kvm_enabled()) {
+ if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL) &&
+ cpus_have_const_cap(ARM64_HAS_ADDRESS_AUTH))
+ pkvm_hyp_init_ptrauth();
+
+ init_cpu_logical_map();
+
+ if (!init_psci_relay()) {
+ err = -ENODEV;
+ goto out_err;
+ }
+
+ err = kvm_hyp_init_protection(hyp_va_bits);
+ if (err) {
+ kvm_err("Failed to init hyp memory protection\n");
+ goto out_err;
+ }
+ }
+
+ return 0;
+
+out_err:
+ teardown_hyp_mode();
+ kvm_err("error initializing Hyp mode: %d\n", err);
+ return err;
+}
+
+struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
+{
+ struct kvm_vcpu *vcpu;
+ unsigned long i;
+
+ mpidr &= MPIDR_HWID_BITMASK;
+ kvm_for_each_vcpu(i, vcpu, kvm) {
+ if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
+ return vcpu;
+ }
+ return NULL;
+}
+
+bool kvm_arch_irqchip_in_kernel(struct kvm *kvm)
+{
+ return irqchip_in_kernel(kvm);
+}
+
+bool kvm_arch_has_irq_bypass(void)
+{
+ return true;
+}
+
+int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
+ struct irq_bypass_producer *prod)
+{
+ struct kvm_kernel_irqfd *irqfd =
+ container_of(cons, struct kvm_kernel_irqfd, consumer);
+
+ return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
+ &irqfd->irq_entry);
+}
+void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
+ struct irq_bypass_producer *prod)
+{
+ struct kvm_kernel_irqfd *irqfd =
+ container_of(cons, struct kvm_kernel_irqfd, consumer);
+
+ kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
+ &irqfd->irq_entry);
+}
+
+void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
+{
+ struct kvm_kernel_irqfd *irqfd =
+ container_of(cons, struct kvm_kernel_irqfd, consumer);
+
+ kvm_arm_halt_guest(irqfd->kvm);
+}
+
+void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
+{
+ struct kvm_kernel_irqfd *irqfd =
+ container_of(cons, struct kvm_kernel_irqfd, consumer);
+
+ kvm_arm_resume_guest(irqfd->kvm);
+}
+
+/* Initialize Hyp-mode and memory mappings on all CPUs */
+static __init int kvm_arm_init(void)
+{
+ int err;
+ bool in_hyp_mode;
+
+ if (!is_hyp_mode_available()) {
+ kvm_info("HYP mode not available\n");
+ return -ENODEV;
+ }
+
+ if (kvm_get_mode() == KVM_MODE_NONE) {
+ kvm_info("KVM disabled from command line\n");
+ return -ENODEV;
+ }
+
+ err = kvm_sys_reg_table_init();
+ if (err) {
+ kvm_info("Error initializing system register tables");
+ return err;
+ }
+
+ in_hyp_mode = is_kernel_in_hyp_mode();
+
+ if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
+ cpus_have_final_cap(ARM64_WORKAROUND_1508412))
+ kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
+ "Only trusted guests should be used on this system.\n");
+
+ err = kvm_set_ipa_limit();
+ if (err)
+ return err;
+
+ err = kvm_arm_init_sve();
+ if (err)
+ return err;
+
+ err = kvm_arm_vmid_alloc_init();
+ if (err) {
+ kvm_err("Failed to initialize VMID allocator.\n");
+ return err;
+ }
+
+ if (!in_hyp_mode) {
+ err = init_hyp_mode();
+ if (err)
+ goto out_err;
+ }
+
+ err = kvm_init_vector_slots();
+ if (err) {
+ kvm_err("Cannot initialise vector slots\n");
+ goto out_hyp;
+ }
+
+ err = init_subsystems();
+ if (err)
+ goto out_hyp;
+
+ if (is_protected_kvm_enabled()) {
+ kvm_info("Protected nVHE mode initialized successfully\n");
+ } else if (in_hyp_mode) {
+ kvm_info("VHE mode initialized successfully\n");
+ } else {
+ kvm_info("Hyp mode initialized successfully\n");
+ }
+
+ /*
+ * FIXME: Do something reasonable if kvm_init() fails after pKVM
+ * hypervisor protection is finalized.
+ */
+ err = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE);
+ if (err)
+ goto out_subs;
+
+ kvm_arm_initialised = true;
+
+ return 0;
+
+out_subs:
+ teardown_subsystems();
+out_hyp:
+ if (!in_hyp_mode)
+ teardown_hyp_mode();
+out_err:
+ kvm_arm_vmid_alloc_free();
+ return err;
+}
+
+static int __init early_kvm_mode_cfg(char *arg)
+{
+ if (!arg)
+ return -EINVAL;
+
+ if (strcmp(arg, "none") == 0) {
+ kvm_mode = KVM_MODE_NONE;
+ return 0;
+ }
+
+ if (!is_hyp_mode_available()) {
+ pr_warn_once("KVM is not available. Ignoring kvm-arm.mode\n");
+ return 0;
+ }
+
+ if (strcmp(arg, "protected") == 0) {
+ if (!is_kernel_in_hyp_mode())
+ kvm_mode = KVM_MODE_PROTECTED;
+ else
+ pr_warn_once("Protected KVM not available with VHE\n");
+
+ return 0;
+ }
+
+ if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) {
+ kvm_mode = KVM_MODE_DEFAULT;
+ return 0;
+ }
+
+ if (strcmp(arg, "nested") == 0 && !WARN_ON(!is_kernel_in_hyp_mode())) {
+ kvm_mode = KVM_MODE_NV;
+ return 0;
+ }
+
+ return -EINVAL;
+}
+early_param("kvm-arm.mode", early_kvm_mode_cfg);
+
+enum kvm_mode kvm_get_mode(void)
+{
+ return kvm_mode;
+}
+
+module_init(kvm_arm_init);
diff --git a/arch/arm64/kvm/debug.c b/arch/arm64/kvm/debug.c
new file mode 100644
index 0000000000..8725291cb0
--- /dev/null
+++ b/arch/arm64/kvm/debug.c
@@ -0,0 +1,344 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Debug and Guest Debug support
+ *
+ * Copyright (C) 2015 - Linaro Ltd
+ * Author: Alex Bennée <alex.bennee@linaro.org>
+ */
+
+#include <linux/kvm_host.h>
+#include <linux/hw_breakpoint.h>
+
+#include <asm/debug-monitors.h>
+#include <asm/kvm_asm.h>
+#include <asm/kvm_arm.h>
+#include <asm/kvm_emulate.h>
+
+#include "trace.h"
+
+/* These are the bits of MDSCR_EL1 we may manipulate */
+#define MDSCR_EL1_DEBUG_MASK (DBG_MDSCR_SS | \
+ DBG_MDSCR_KDE | \
+ DBG_MDSCR_MDE)
+
+static DEFINE_PER_CPU(u64, mdcr_el2);
+
+/**
+ * save/restore_guest_debug_regs
+ *
+ * For some debug operations we need to tweak some guest registers. As
+ * a result we need to save the state of those registers before we
+ * make those modifications.
+ *
+ * Guest access to MDSCR_EL1 is trapped by the hypervisor and handled
+ * after we have restored the preserved value to the main context.
+ *
+ * When single-step is enabled by userspace, we tweak PSTATE.SS on every
+ * guest entry. Preserve PSTATE.SS so we can restore the original value
+ * for the vcpu after the single-step is disabled.
+ */
+static void save_guest_debug_regs(struct kvm_vcpu *vcpu)
+{
+ u64 val = vcpu_read_sys_reg(vcpu, MDSCR_EL1);
+
+ vcpu->arch.guest_debug_preserved.mdscr_el1 = val;
+
+ trace_kvm_arm_set_dreg32("Saved MDSCR_EL1",
+ vcpu->arch.guest_debug_preserved.mdscr_el1);
+
+ vcpu->arch.guest_debug_preserved.pstate_ss =
+ (*vcpu_cpsr(vcpu) & DBG_SPSR_SS);
+}
+
+static void restore_guest_debug_regs(struct kvm_vcpu *vcpu)
+{
+ u64 val = vcpu->arch.guest_debug_preserved.mdscr_el1;
+
+ vcpu_write_sys_reg(vcpu, val, MDSCR_EL1);
+
+ trace_kvm_arm_set_dreg32("Restored MDSCR_EL1",
+ vcpu_read_sys_reg(vcpu, MDSCR_EL1));
+
+ if (vcpu->arch.guest_debug_preserved.pstate_ss)
+ *vcpu_cpsr(vcpu) |= DBG_SPSR_SS;
+ else
+ *vcpu_cpsr(vcpu) &= ~DBG_SPSR_SS;
+}
+
+/**
+ * kvm_arm_init_debug - grab what we need for debug
+ *
+ * Currently the sole task of this function is to retrieve the initial
+ * value of mdcr_el2 so we can preserve MDCR_EL2.HPMN which has
+ * presumably been set-up by some knowledgeable bootcode.
+ *
+ * It is called once per-cpu during CPU hyp initialisation.
+ */
+
+void kvm_arm_init_debug(void)
+{
+ __this_cpu_write(mdcr_el2, kvm_call_hyp_ret(__kvm_get_mdcr_el2));
+}
+
+/**
+ * kvm_arm_setup_mdcr_el2 - configure vcpu mdcr_el2 value
+ *
+ * @vcpu: the vcpu pointer
+ *
+ * This ensures we will trap access to:
+ * - Performance monitors (MDCR_EL2_TPM/MDCR_EL2_TPMCR)
+ * - Debug ROM Address (MDCR_EL2_TDRA)
+ * - OS related registers (MDCR_EL2_TDOSA)
+ * - Statistical profiler (MDCR_EL2_TPMS/MDCR_EL2_E2PB)
+ * - Self-hosted Trace Filter controls (MDCR_EL2_TTRF)
+ * - Self-hosted Trace (MDCR_EL2_TTRF/MDCR_EL2_E2TB)
+ */
+static void kvm_arm_setup_mdcr_el2(struct kvm_vcpu *vcpu)
+{
+ /*
+ * This also clears MDCR_EL2_E2PB_MASK and MDCR_EL2_E2TB_MASK
+ * to disable guest access to the profiling and trace buffers
+ */
+ vcpu->arch.mdcr_el2 = __this_cpu_read(mdcr_el2) & MDCR_EL2_HPMN_MASK;
+ vcpu->arch.mdcr_el2 |= (MDCR_EL2_TPM |
+ MDCR_EL2_TPMS |
+ MDCR_EL2_TTRF |
+ MDCR_EL2_TPMCR |
+ MDCR_EL2_TDRA |
+ MDCR_EL2_TDOSA);
+
+ /* Is the VM being debugged by userspace? */
+ if (vcpu->guest_debug)
+ /* Route all software debug exceptions to EL2 */
+ vcpu->arch.mdcr_el2 |= MDCR_EL2_TDE;
+
+ /*
+ * Trap debug register access when one of the following is true:
+ * - Userspace is using the hardware to debug the guest
+ * (KVM_GUESTDBG_USE_HW is set).
+ * - The guest is not using debug (DEBUG_DIRTY clear).
+ * - The guest has enabled the OS Lock (debug exceptions are blocked).
+ */
+ if ((vcpu->guest_debug & KVM_GUESTDBG_USE_HW) ||
+ !vcpu_get_flag(vcpu, DEBUG_DIRTY) ||
+ kvm_vcpu_os_lock_enabled(vcpu))
+ vcpu->arch.mdcr_el2 |= MDCR_EL2_TDA;
+
+ trace_kvm_arm_set_dreg32("MDCR_EL2", vcpu->arch.mdcr_el2);
+}
+
+/**
+ * kvm_arm_vcpu_init_debug - setup vcpu debug traps
+ *
+ * @vcpu: the vcpu pointer
+ *
+ * Set vcpu initial mdcr_el2 value.
+ */
+void kvm_arm_vcpu_init_debug(struct kvm_vcpu *vcpu)
+{
+ preempt_disable();
+ kvm_arm_setup_mdcr_el2(vcpu);
+ preempt_enable();
+}
+
+/**
+ * kvm_arm_reset_debug_ptr - reset the debug ptr to point to the vcpu state
+ */
+
+void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu)
+{
+ vcpu->arch.debug_ptr = &vcpu->arch.vcpu_debug_state;
+}
+
+/**
+ * kvm_arm_setup_debug - set up debug related stuff
+ *
+ * @vcpu: the vcpu pointer
+ *
+ * This is called before each entry into the hypervisor to setup any
+ * debug related registers.
+ *
+ * Additionally, KVM only traps guest accesses to the debug registers if
+ * the guest is not actively using them (see the DEBUG_DIRTY
+ * flag on vcpu->arch.iflags). Since the guest must not interfere
+ * with the hardware state when debugging the guest, we must ensure that
+ * trapping is enabled whenever we are debugging the guest using the
+ * debug registers.
+ */
+
+void kvm_arm_setup_debug(struct kvm_vcpu *vcpu)
+{
+ unsigned long mdscr, orig_mdcr_el2 = vcpu->arch.mdcr_el2;
+
+ trace_kvm_arm_setup_debug(vcpu, vcpu->guest_debug);
+
+ kvm_arm_setup_mdcr_el2(vcpu);
+
+ /* Check if we need to use the debug registers. */
+ if (vcpu->guest_debug || kvm_vcpu_os_lock_enabled(vcpu)) {
+ /* Save guest debug state */
+ save_guest_debug_regs(vcpu);
+
+ /*
+ * Single Step (ARM ARM D2.12.3 The software step state
+ * machine)
+ *
+ * If we are doing Single Step we need to manipulate
+ * the guest's MDSCR_EL1.SS and PSTATE.SS. Once the
+ * step has occurred the hypervisor will trap the
+ * debug exception and we return to userspace.
+ *
+ * If the guest attempts to single step its userspace
+ * we would have to deal with a trapped exception
+ * while in the guest kernel. Because this would be
+ * hard to unwind we suppress the guest's ability to
+ * do so by masking MDSCR_EL.SS.
+ *
+ * This confuses guest debuggers which use
+ * single-step behind the scenes but everything
+ * returns to normal once the host is no longer
+ * debugging the system.
+ */
+ if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
+ /*
+ * If the software step state at the last guest exit
+ * was Active-pending, we don't set DBG_SPSR_SS so
+ * that the state is maintained (to not run another
+ * single-step until the pending Software Step
+ * exception is taken).
+ */
+ if (!vcpu_get_flag(vcpu, DBG_SS_ACTIVE_PENDING))
+ *vcpu_cpsr(vcpu) |= DBG_SPSR_SS;
+ else
+ *vcpu_cpsr(vcpu) &= ~DBG_SPSR_SS;
+
+ mdscr = vcpu_read_sys_reg(vcpu, MDSCR_EL1);
+ mdscr |= DBG_MDSCR_SS;
+ vcpu_write_sys_reg(vcpu, mdscr, MDSCR_EL1);
+ } else {
+ mdscr = vcpu_read_sys_reg(vcpu, MDSCR_EL1);
+ mdscr &= ~DBG_MDSCR_SS;
+ vcpu_write_sys_reg(vcpu, mdscr, MDSCR_EL1);
+ }
+
+ trace_kvm_arm_set_dreg32("SPSR_EL2", *vcpu_cpsr(vcpu));
+
+ /*
+ * HW Breakpoints and watchpoints
+ *
+ * We simply switch the debug_ptr to point to our new
+ * external_debug_state which has been populated by the
+ * debug ioctl. The existing DEBUG_DIRTY mechanism ensures
+ * the registers are updated on the world switch.
+ */
+ if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW) {
+ /* Enable breakpoints/watchpoints */
+ mdscr = vcpu_read_sys_reg(vcpu, MDSCR_EL1);
+ mdscr |= DBG_MDSCR_MDE;
+ vcpu_write_sys_reg(vcpu, mdscr, MDSCR_EL1);
+
+ vcpu->arch.debug_ptr = &vcpu->arch.external_debug_state;
+ vcpu_set_flag(vcpu, DEBUG_DIRTY);
+
+ trace_kvm_arm_set_regset("BKPTS", get_num_brps(),
+ &vcpu->arch.debug_ptr->dbg_bcr[0],
+ &vcpu->arch.debug_ptr->dbg_bvr[0]);
+
+ trace_kvm_arm_set_regset("WAPTS", get_num_wrps(),
+ &vcpu->arch.debug_ptr->dbg_wcr[0],
+ &vcpu->arch.debug_ptr->dbg_wvr[0]);
+
+ /*
+ * The OS Lock blocks debug exceptions in all ELs when it is
+ * enabled. If the guest has enabled the OS Lock, constrain its
+ * effects to the guest. Emulate the behavior by clearing
+ * MDSCR_EL1.MDE. In so doing, we ensure that host debug
+ * exceptions are unaffected by guest configuration of the OS
+ * Lock.
+ */
+ } else if (kvm_vcpu_os_lock_enabled(vcpu)) {
+ mdscr = vcpu_read_sys_reg(vcpu, MDSCR_EL1);
+ mdscr &= ~DBG_MDSCR_MDE;
+ vcpu_write_sys_reg(vcpu, mdscr, MDSCR_EL1);
+ }
+ }
+
+ BUG_ON(!vcpu->guest_debug &&
+ vcpu->arch.debug_ptr != &vcpu->arch.vcpu_debug_state);
+
+ /* If KDE or MDE are set, perform a full save/restore cycle. */
+ if (vcpu_read_sys_reg(vcpu, MDSCR_EL1) & (DBG_MDSCR_KDE | DBG_MDSCR_MDE))
+ vcpu_set_flag(vcpu, DEBUG_DIRTY);
+
+ /* Write mdcr_el2 changes since vcpu_load on VHE systems */
+ if (has_vhe() && orig_mdcr_el2 != vcpu->arch.mdcr_el2)
+ write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
+
+ trace_kvm_arm_set_dreg32("MDSCR_EL1", vcpu_read_sys_reg(vcpu, MDSCR_EL1));
+}
+
+void kvm_arm_clear_debug(struct kvm_vcpu *vcpu)
+{
+ trace_kvm_arm_clear_debug(vcpu->guest_debug);
+
+ /*
+ * Restore the guest's debug registers if we were using them.
+ */
+ if (vcpu->guest_debug || kvm_vcpu_os_lock_enabled(vcpu)) {
+ if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
+ if (!(*vcpu_cpsr(vcpu) & DBG_SPSR_SS))
+ /*
+ * Mark the vcpu as ACTIVE_PENDING
+ * until Software Step exception is taken.
+ */
+ vcpu_set_flag(vcpu, DBG_SS_ACTIVE_PENDING);
+ }
+
+ restore_guest_debug_regs(vcpu);
+
+ /*
+ * If we were using HW debug we need to restore the
+ * debug_ptr to the guest debug state.
+ */
+ if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW) {
+ kvm_arm_reset_debug_ptr(vcpu);
+
+ trace_kvm_arm_set_regset("BKPTS", get_num_brps(),
+ &vcpu->arch.debug_ptr->dbg_bcr[0],
+ &vcpu->arch.debug_ptr->dbg_bvr[0]);
+
+ trace_kvm_arm_set_regset("WAPTS", get_num_wrps(),
+ &vcpu->arch.debug_ptr->dbg_wcr[0],
+ &vcpu->arch.debug_ptr->dbg_wvr[0]);
+ }
+ }
+}
+
+void kvm_arch_vcpu_load_debug_state_flags(struct kvm_vcpu *vcpu)
+{
+ u64 dfr0;
+
+ /* For VHE, there is nothing to do */
+ if (has_vhe())
+ return;
+
+ dfr0 = read_sysreg(id_aa64dfr0_el1);
+ /*
+ * If SPE is present on this CPU and is available at current EL,
+ * we may need to check if the host state needs to be saved.
+ */
+ if (cpuid_feature_extract_unsigned_field(dfr0, ID_AA64DFR0_EL1_PMSVer_SHIFT) &&
+ !(read_sysreg_s(SYS_PMBIDR_EL1) & BIT(PMBIDR_EL1_P_SHIFT)))
+ vcpu_set_flag(vcpu, DEBUG_STATE_SAVE_SPE);
+
+ /* Check if we have TRBE implemented and available at the host */
+ if (cpuid_feature_extract_unsigned_field(dfr0, ID_AA64DFR0_EL1_TraceBuffer_SHIFT) &&
+ !(read_sysreg_s(SYS_TRBIDR_EL1) & TRBIDR_EL1_P))
+ vcpu_set_flag(vcpu, DEBUG_STATE_SAVE_TRBE);
+}
+
+void kvm_arch_vcpu_put_debug_state_flags(struct kvm_vcpu *vcpu)
+{
+ vcpu_clear_flag(vcpu, DEBUG_STATE_SAVE_SPE);
+ vcpu_clear_flag(vcpu, DEBUG_STATE_SAVE_TRBE);
+}
diff --git a/arch/arm64/kvm/emulate-nested.c b/arch/arm64/kvm/emulate-nested.c
new file mode 100644
index 0000000000..ee902ff2a5
--- /dev/null
+++ b/arch/arm64/kvm/emulate-nested.c
@@ -0,0 +1,2057 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2016 - Linaro and Columbia University
+ * Author: Jintack Lim <jintack.lim@linaro.org>
+ */
+
+#include <linux/kvm.h>
+#include <linux/kvm_host.h>
+
+#include <asm/kvm_emulate.h>
+#include <asm/kvm_nested.h>
+
+#include "hyp/include/hyp/adjust_pc.h"
+
+#include "trace.h"
+
+enum trap_behaviour {
+ BEHAVE_HANDLE_LOCALLY = 0,
+ BEHAVE_FORWARD_READ = BIT(0),
+ BEHAVE_FORWARD_WRITE = BIT(1),
+ BEHAVE_FORWARD_ANY = BEHAVE_FORWARD_READ | BEHAVE_FORWARD_WRITE,
+};
+
+struct trap_bits {
+ const enum vcpu_sysreg index;
+ const enum trap_behaviour behaviour;
+ const u64 value;
+ const u64 mask;
+};
+
+/* Coarse Grained Trap definitions */
+enum cgt_group_id {
+ /* Indicates no coarse trap control */
+ __RESERVED__,
+
+ /*
+ * The first batch of IDs denote coarse trapping that are used
+ * on their own instead of being part of a combination of
+ * trap controls.
+ */
+ CGT_HCR_TID1,
+ CGT_HCR_TID2,
+ CGT_HCR_TID3,
+ CGT_HCR_IMO,
+ CGT_HCR_FMO,
+ CGT_HCR_TIDCP,
+ CGT_HCR_TACR,
+ CGT_HCR_TSW,
+ CGT_HCR_TPC,
+ CGT_HCR_TPU,
+ CGT_HCR_TTLB,
+ CGT_HCR_TVM,
+ CGT_HCR_TDZ,
+ CGT_HCR_TRVM,
+ CGT_HCR_TLOR,
+ CGT_HCR_TERR,
+ CGT_HCR_APK,
+ CGT_HCR_NV,
+ CGT_HCR_NV_nNV2,
+ CGT_HCR_NV1_nNV2,
+ CGT_HCR_AT,
+ CGT_HCR_nFIEN,
+ CGT_HCR_TID4,
+ CGT_HCR_TICAB,
+ CGT_HCR_TOCU,
+ CGT_HCR_ENSCXT,
+ CGT_HCR_TTLBIS,
+ CGT_HCR_TTLBOS,
+
+ CGT_MDCR_TPMCR,
+ CGT_MDCR_TPM,
+ CGT_MDCR_TDE,
+ CGT_MDCR_TDA,
+ CGT_MDCR_TDOSA,
+ CGT_MDCR_TDRA,
+ CGT_MDCR_E2PB,
+ CGT_MDCR_TPMS,
+ CGT_MDCR_TTRF,
+ CGT_MDCR_E2TB,
+ CGT_MDCR_TDCC,
+
+ /*
+ * Anything after this point is a combination of coarse trap
+ * controls, which must all be evaluated to decide what to do.
+ */
+ __MULTIPLE_CONTROL_BITS__,
+ CGT_HCR_IMO_FMO = __MULTIPLE_CONTROL_BITS__,
+ CGT_HCR_TID2_TID4,
+ CGT_HCR_TTLB_TTLBIS,
+ CGT_HCR_TTLB_TTLBOS,
+ CGT_HCR_TVM_TRVM,
+ CGT_HCR_TPU_TICAB,
+ CGT_HCR_TPU_TOCU,
+ CGT_HCR_NV1_nNV2_ENSCXT,
+ CGT_MDCR_TPM_TPMCR,
+ CGT_MDCR_TDE_TDA,
+ CGT_MDCR_TDE_TDOSA,
+ CGT_MDCR_TDE_TDRA,
+ CGT_MDCR_TDCC_TDE_TDA,
+
+ /*
+ * Anything after this point requires a callback evaluating a
+ * complex trap condition. Ugly stuff.
+ */
+ __COMPLEX_CONDITIONS__,
+ CGT_CNTHCTL_EL1PCTEN = __COMPLEX_CONDITIONS__,
+ CGT_CNTHCTL_EL1PTEN,
+
+ /* Must be last */
+ __NR_CGT_GROUP_IDS__
+};
+
+static const struct trap_bits coarse_trap_bits[] = {
+ [CGT_HCR_TID1] = {
+ .index = HCR_EL2,
+ .value = HCR_TID1,
+ .mask = HCR_TID1,
+ .behaviour = BEHAVE_FORWARD_READ,
+ },
+ [CGT_HCR_TID2] = {
+ .index = HCR_EL2,
+ .value = HCR_TID2,
+ .mask = HCR_TID2,
+ .behaviour = BEHAVE_FORWARD_ANY,
+ },
+ [CGT_HCR_TID3] = {
+ .index = HCR_EL2,
+ .value = HCR_TID3,
+ .mask = HCR_TID3,
+ .behaviour = BEHAVE_FORWARD_READ,
+ },
+ [CGT_HCR_IMO] = {
+ .index = HCR_EL2,
+ .value = HCR_IMO,
+ .mask = HCR_IMO,
+ .behaviour = BEHAVE_FORWARD_WRITE,
+ },
+ [CGT_HCR_FMO] = {
+ .index = HCR_EL2,
+ .value = HCR_FMO,
+ .mask = HCR_FMO,
+ .behaviour = BEHAVE_FORWARD_WRITE,
+ },
+ [CGT_HCR_TIDCP] = {
+ .index = HCR_EL2,
+ .value = HCR_TIDCP,
+ .mask = HCR_TIDCP,
+ .behaviour = BEHAVE_FORWARD_ANY,
+ },
+ [CGT_HCR_TACR] = {
+ .index = HCR_EL2,
+ .value = HCR_TACR,
+ .mask = HCR_TACR,
+ .behaviour = BEHAVE_FORWARD_ANY,
+ },
+ [CGT_HCR_TSW] = {
+ .index = HCR_EL2,
+ .value = HCR_TSW,
+ .mask = HCR_TSW,
+ .behaviour = BEHAVE_FORWARD_ANY,
+ },
+ [CGT_HCR_TPC] = { /* Also called TCPC when FEAT_DPB is implemented */
+ .index = HCR_EL2,
+ .value = HCR_TPC,
+ .mask = HCR_TPC,
+ .behaviour = BEHAVE_FORWARD_ANY,
+ },
+ [CGT_HCR_TPU] = {
+ .index = HCR_EL2,
+ .value = HCR_TPU,
+ .mask = HCR_TPU,
+ .behaviour = BEHAVE_FORWARD_ANY,
+ },
+ [CGT_HCR_TTLB] = {
+ .index = HCR_EL2,
+ .value = HCR_TTLB,
+ .mask = HCR_TTLB,
+ .behaviour = BEHAVE_FORWARD_ANY,
+ },
+ [CGT_HCR_TVM] = {
+ .index = HCR_EL2,
+ .value = HCR_TVM,
+ .mask = HCR_TVM,
+ .behaviour = BEHAVE_FORWARD_WRITE,
+ },
+ [CGT_HCR_TDZ] = {
+ .index = HCR_EL2,
+ .value = HCR_TDZ,
+ .mask = HCR_TDZ,
+ .behaviour = BEHAVE_FORWARD_ANY,
+ },
+ [CGT_HCR_TRVM] = {
+ .index = HCR_EL2,
+ .value = HCR_TRVM,
+ .mask = HCR_TRVM,
+ .behaviour = BEHAVE_FORWARD_READ,
+ },
+ [CGT_HCR_TLOR] = {
+ .index = HCR_EL2,
+ .value = HCR_TLOR,
+ .mask = HCR_TLOR,
+ .behaviour = BEHAVE_FORWARD_ANY,
+ },
+ [CGT_HCR_TERR] = {
+ .index = HCR_EL2,
+ .value = HCR_TERR,
+ .mask = HCR_TERR,
+ .behaviour = BEHAVE_FORWARD_ANY,
+ },
+ [CGT_HCR_APK] = {
+ .index = HCR_EL2,
+ .value = 0,
+ .mask = HCR_APK,
+ .behaviour = BEHAVE_FORWARD_ANY,
+ },
+ [CGT_HCR_NV] = {
+ .index = HCR_EL2,
+ .value = HCR_NV,
+ .mask = HCR_NV,
+ .behaviour = BEHAVE_FORWARD_ANY,
+ },
+ [CGT_HCR_NV_nNV2] = {
+ .index = HCR_EL2,
+ .value = HCR_NV,
+ .mask = HCR_NV | HCR_NV2,
+ .behaviour = BEHAVE_FORWARD_ANY,
+ },
+ [CGT_HCR_NV1_nNV2] = {
+ .index = HCR_EL2,
+ .value = HCR_NV | HCR_NV1,
+ .mask = HCR_NV | HCR_NV1 | HCR_NV2,
+ .behaviour = BEHAVE_FORWARD_ANY,
+ },
+ [CGT_HCR_AT] = {
+ .index = HCR_EL2,
+ .value = HCR_AT,
+ .mask = HCR_AT,
+ .behaviour = BEHAVE_FORWARD_ANY,
+ },
+ [CGT_HCR_nFIEN] = {
+ .index = HCR_EL2,
+ .value = 0,
+ .mask = HCR_FIEN,
+ .behaviour = BEHAVE_FORWARD_ANY,
+ },
+ [CGT_HCR_TID4] = {
+ .index = HCR_EL2,
+ .value = HCR_TID4,
+ .mask = HCR_TID4,
+ .behaviour = BEHAVE_FORWARD_ANY,
+ },
+ [CGT_HCR_TICAB] = {
+ .index = HCR_EL2,
+ .value = HCR_TICAB,
+ .mask = HCR_TICAB,
+ .behaviour = BEHAVE_FORWARD_ANY,
+ },
+ [CGT_HCR_TOCU] = {
+ .index = HCR_EL2,
+ .value = HCR_TOCU,
+ .mask = HCR_TOCU,
+ .behaviour = BEHAVE_FORWARD_ANY,
+ },
+ [CGT_HCR_ENSCXT] = {
+ .index = HCR_EL2,
+ .value = 0,
+ .mask = HCR_ENSCXT,
+ .behaviour = BEHAVE_FORWARD_ANY,
+ },
+ [CGT_HCR_TTLBIS] = {
+ .index = HCR_EL2,
+ .value = HCR_TTLBIS,
+ .mask = HCR_TTLBIS,
+ .behaviour = BEHAVE_FORWARD_ANY,
+ },
+ [CGT_HCR_TTLBOS] = {
+ .index = HCR_EL2,
+ .value = HCR_TTLBOS,
+ .mask = HCR_TTLBOS,
+ .behaviour = BEHAVE_FORWARD_ANY,
+ },
+ [CGT_MDCR_TPMCR] = {
+ .index = MDCR_EL2,
+ .value = MDCR_EL2_TPMCR,
+ .mask = MDCR_EL2_TPMCR,
+ .behaviour = BEHAVE_FORWARD_ANY,
+ },
+ [CGT_MDCR_TPM] = {
+ .index = MDCR_EL2,
+ .value = MDCR_EL2_TPM,
+ .mask = MDCR_EL2_TPM,
+ .behaviour = BEHAVE_FORWARD_ANY,
+ },
+ [CGT_MDCR_TDE] = {
+ .index = MDCR_EL2,
+ .value = MDCR_EL2_TDE,
+ .mask = MDCR_EL2_TDE,
+ .behaviour = BEHAVE_FORWARD_ANY,
+ },
+ [CGT_MDCR_TDA] = {
+ .index = MDCR_EL2,
+ .value = MDCR_EL2_TDA,
+ .mask = MDCR_EL2_TDA,
+ .behaviour = BEHAVE_FORWARD_ANY,
+ },
+ [CGT_MDCR_TDOSA] = {
+ .index = MDCR_EL2,
+ .value = MDCR_EL2_TDOSA,
+ .mask = MDCR_EL2_TDOSA,
+ .behaviour = BEHAVE_FORWARD_ANY,
+ },
+ [CGT_MDCR_TDRA] = {
+ .index = MDCR_EL2,
+ .value = MDCR_EL2_TDRA,
+ .mask = MDCR_EL2_TDRA,
+ .behaviour = BEHAVE_FORWARD_ANY,
+ },
+ [CGT_MDCR_E2PB] = {
+ .index = MDCR_EL2,
+ .value = 0,
+ .mask = BIT(MDCR_EL2_E2PB_SHIFT),
+ .behaviour = BEHAVE_FORWARD_ANY,
+ },
+ [CGT_MDCR_TPMS] = {
+ .index = MDCR_EL2,
+ .value = MDCR_EL2_TPMS,
+ .mask = MDCR_EL2_TPMS,
+ .behaviour = BEHAVE_FORWARD_ANY,
+ },
+ [CGT_MDCR_TTRF] = {
+ .index = MDCR_EL2,
+ .value = MDCR_EL2_TTRF,
+ .mask = MDCR_EL2_TTRF,
+ .behaviour = BEHAVE_FORWARD_ANY,
+ },
+ [CGT_MDCR_E2TB] = {
+ .index = MDCR_EL2,
+ .value = 0,
+ .mask = BIT(MDCR_EL2_E2TB_SHIFT),
+ .behaviour = BEHAVE_FORWARD_ANY,
+ },
+ [CGT_MDCR_TDCC] = {
+ .index = MDCR_EL2,
+ .value = MDCR_EL2_TDCC,
+ .mask = MDCR_EL2_TDCC,
+ .behaviour = BEHAVE_FORWARD_ANY,
+ },
+};
+
+#define MCB(id, ...) \
+ [id - __MULTIPLE_CONTROL_BITS__] = \
+ (const enum cgt_group_id[]){ \
+ __VA_ARGS__, __RESERVED__ \
+ }
+
+static const enum cgt_group_id *coarse_control_combo[] = {
+ MCB(CGT_HCR_IMO_FMO, CGT_HCR_IMO, CGT_HCR_FMO),
+ MCB(CGT_HCR_TID2_TID4, CGT_HCR_TID2, CGT_HCR_TID4),
+ MCB(CGT_HCR_TTLB_TTLBIS, CGT_HCR_TTLB, CGT_HCR_TTLBIS),
+ MCB(CGT_HCR_TTLB_TTLBOS, CGT_HCR_TTLB, CGT_HCR_TTLBOS),
+ MCB(CGT_HCR_TVM_TRVM, CGT_HCR_TVM, CGT_HCR_TRVM),
+ MCB(CGT_HCR_TPU_TICAB, CGT_HCR_TPU, CGT_HCR_TICAB),
+ MCB(CGT_HCR_TPU_TOCU, CGT_HCR_TPU, CGT_HCR_TOCU),
+ MCB(CGT_HCR_NV1_nNV2_ENSCXT, CGT_HCR_NV1_nNV2, CGT_HCR_ENSCXT),
+ MCB(CGT_MDCR_TPM_TPMCR, CGT_MDCR_TPM, CGT_MDCR_TPMCR),
+ MCB(CGT_MDCR_TDE_TDA, CGT_MDCR_TDE, CGT_MDCR_TDA),
+ MCB(CGT_MDCR_TDE_TDOSA, CGT_MDCR_TDE, CGT_MDCR_TDOSA),
+ MCB(CGT_MDCR_TDE_TDRA, CGT_MDCR_TDE, CGT_MDCR_TDRA),
+ MCB(CGT_MDCR_TDCC_TDE_TDA, CGT_MDCR_TDCC, CGT_MDCR_TDE, CGT_MDCR_TDA),
+};
+
+typedef enum trap_behaviour (*complex_condition_check)(struct kvm_vcpu *);
+
+/*
+ * Warning, maximum confusion ahead.
+ *
+ * When E2H=0, CNTHCTL_EL2[1:0] are defined as EL1PCEN:EL1PCTEN
+ * When E2H=1, CNTHCTL_EL2[11:10] are defined as EL1PTEN:EL1PCTEN
+ *
+ * Note the single letter difference? Yet, the bits have the same
+ * function despite a different layout and a different name.
+ *
+ * We don't try to reconcile this mess. We just use the E2H=0 bits
+ * to generate something that is in the E2H=1 format, and live with
+ * it. You're welcome.
+ */
+static u64 get_sanitized_cnthctl(struct kvm_vcpu *vcpu)
+{
+ u64 val = __vcpu_sys_reg(vcpu, CNTHCTL_EL2);
+
+ if (!vcpu_el2_e2h_is_set(vcpu))
+ val = (val & (CNTHCTL_EL1PCEN | CNTHCTL_EL1PCTEN)) << 10;
+
+ return val & ((CNTHCTL_EL1PCEN | CNTHCTL_EL1PCTEN) << 10);
+}
+
+static enum trap_behaviour check_cnthctl_el1pcten(struct kvm_vcpu *vcpu)
+{
+ if (get_sanitized_cnthctl(vcpu) & (CNTHCTL_EL1PCTEN << 10))
+ return BEHAVE_HANDLE_LOCALLY;
+
+ return BEHAVE_FORWARD_ANY;
+}
+
+static enum trap_behaviour check_cnthctl_el1pten(struct kvm_vcpu *vcpu)
+{
+ if (get_sanitized_cnthctl(vcpu) & (CNTHCTL_EL1PCEN << 10))
+ return BEHAVE_HANDLE_LOCALLY;
+
+ return BEHAVE_FORWARD_ANY;
+}
+
+#define CCC(id, fn) \
+ [id - __COMPLEX_CONDITIONS__] = fn
+
+static const complex_condition_check ccc[] = {
+ CCC(CGT_CNTHCTL_EL1PCTEN, check_cnthctl_el1pcten),
+ CCC(CGT_CNTHCTL_EL1PTEN, check_cnthctl_el1pten),
+};
+
+/*
+ * Bit assignment for the trap controls. We use a 64bit word with the
+ * following layout for each trapped sysreg:
+ *
+ * [9:0] enum cgt_group_id (10 bits)
+ * [13:10] enum fgt_group_id (4 bits)
+ * [19:14] bit number in the FGT register (6 bits)
+ * [20] trap polarity (1 bit)
+ * [25:21] FG filter (5 bits)
+ * [62:26] Unused (37 bits)
+ * [63] RES0 - Must be zero, as lost on insertion in the xarray
+ */
+#define TC_CGT_BITS 10
+#define TC_FGT_BITS 4
+#define TC_FGF_BITS 5
+
+union trap_config {
+ u64 val;
+ struct {
+ unsigned long cgt:TC_CGT_BITS; /* Coarse Grained Trap id */
+ unsigned long fgt:TC_FGT_BITS; /* Fine Grained Trap id */
+ unsigned long bit:6; /* Bit number */
+ unsigned long pol:1; /* Polarity */
+ unsigned long fgf:TC_FGF_BITS; /* Fine Grained Filter */
+ unsigned long unused:37; /* Unused, should be zero */
+ unsigned long mbz:1; /* Must Be Zero */
+ };
+};
+
+struct encoding_to_trap_config {
+ const u32 encoding;
+ const u32 end;
+ const union trap_config tc;
+ const unsigned int line;
+};
+
+#define SR_RANGE_TRAP(sr_start, sr_end, trap_id) \
+ { \
+ .encoding = sr_start, \
+ .end = sr_end, \
+ .tc = { \
+ .cgt = trap_id, \
+ }, \
+ .line = __LINE__, \
+ }
+
+#define SR_TRAP(sr, trap_id) SR_RANGE_TRAP(sr, sr, trap_id)
+
+/*
+ * Map encoding to trap bits for exception reported with EC=0x18.
+ * These must only be evaluated when running a nested hypervisor, but
+ * that the current context is not a hypervisor context. When the
+ * trapped access matches one of the trap controls, the exception is
+ * re-injected in the nested hypervisor.
+ */
+static const struct encoding_to_trap_config encoding_to_cgt[] __initconst = {
+ SR_TRAP(SYS_REVIDR_EL1, CGT_HCR_TID1),
+ SR_TRAP(SYS_AIDR_EL1, CGT_HCR_TID1),
+ SR_TRAP(SYS_SMIDR_EL1, CGT_HCR_TID1),
+ SR_TRAP(SYS_CTR_EL0, CGT_HCR_TID2),
+ SR_TRAP(SYS_CCSIDR_EL1, CGT_HCR_TID2_TID4),
+ SR_TRAP(SYS_CCSIDR2_EL1, CGT_HCR_TID2_TID4),
+ SR_TRAP(SYS_CLIDR_EL1, CGT_HCR_TID2_TID4),
+ SR_TRAP(SYS_CSSELR_EL1, CGT_HCR_TID2_TID4),
+ SR_RANGE_TRAP(SYS_ID_PFR0_EL1,
+ sys_reg(3, 0, 0, 7, 7), CGT_HCR_TID3),
+ SR_TRAP(SYS_ICC_SGI0R_EL1, CGT_HCR_IMO_FMO),
+ SR_TRAP(SYS_ICC_ASGI1R_EL1, CGT_HCR_IMO_FMO),
+ SR_TRAP(SYS_ICC_SGI1R_EL1, CGT_HCR_IMO_FMO),
+ SR_RANGE_TRAP(sys_reg(3, 0, 11, 0, 0),
+ sys_reg(3, 0, 11, 15, 7), CGT_HCR_TIDCP),
+ SR_RANGE_TRAP(sys_reg(3, 1, 11, 0, 0),
+ sys_reg(3, 1, 11, 15, 7), CGT_HCR_TIDCP),
+ SR_RANGE_TRAP(sys_reg(3, 2, 11, 0, 0),
+ sys_reg(3, 2, 11, 15, 7), CGT_HCR_TIDCP),
+ SR_RANGE_TRAP(sys_reg(3, 3, 11, 0, 0),
+ sys_reg(3, 3, 11, 15, 7), CGT_HCR_TIDCP),
+ SR_RANGE_TRAP(sys_reg(3, 4, 11, 0, 0),
+ sys_reg(3, 4, 11, 15, 7), CGT_HCR_TIDCP),
+ SR_RANGE_TRAP(sys_reg(3, 5, 11, 0, 0),
+ sys_reg(3, 5, 11, 15, 7), CGT_HCR_TIDCP),
+ SR_RANGE_TRAP(sys_reg(3, 6, 11, 0, 0),
+ sys_reg(3, 6, 11, 15, 7), CGT_HCR_TIDCP),
+ SR_RANGE_TRAP(sys_reg(3, 7, 11, 0, 0),
+ sys_reg(3, 7, 11, 15, 7), CGT_HCR_TIDCP),
+ SR_RANGE_TRAP(sys_reg(3, 0, 15, 0, 0),
+ sys_reg(3, 0, 15, 15, 7), CGT_HCR_TIDCP),
+ SR_RANGE_TRAP(sys_reg(3, 1, 15, 0, 0),
+ sys_reg(3, 1, 15, 15, 7), CGT_HCR_TIDCP),
+ SR_RANGE_TRAP(sys_reg(3, 2, 15, 0, 0),
+ sys_reg(3, 2, 15, 15, 7), CGT_HCR_TIDCP),
+ SR_RANGE_TRAP(sys_reg(3, 3, 15, 0, 0),
+ sys_reg(3, 3, 15, 15, 7), CGT_HCR_TIDCP),
+ SR_RANGE_TRAP(sys_reg(3, 4, 15, 0, 0),
+ sys_reg(3, 4, 15, 15, 7), CGT_HCR_TIDCP),
+ SR_RANGE_TRAP(sys_reg(3, 5, 15, 0, 0),
+ sys_reg(3, 5, 15, 15, 7), CGT_HCR_TIDCP),
+ SR_RANGE_TRAP(sys_reg(3, 6, 15, 0, 0),
+ sys_reg(3, 6, 15, 15, 7), CGT_HCR_TIDCP),
+ SR_RANGE_TRAP(sys_reg(3, 7, 15, 0, 0),
+ sys_reg(3, 7, 15, 15, 7), CGT_HCR_TIDCP),
+ SR_TRAP(SYS_ACTLR_EL1, CGT_HCR_TACR),
+ SR_TRAP(SYS_DC_ISW, CGT_HCR_TSW),
+ SR_TRAP(SYS_DC_CSW, CGT_HCR_TSW),
+ SR_TRAP(SYS_DC_CISW, CGT_HCR_TSW),
+ SR_TRAP(SYS_DC_IGSW, CGT_HCR_TSW),
+ SR_TRAP(SYS_DC_IGDSW, CGT_HCR_TSW),
+ SR_TRAP(SYS_DC_CGSW, CGT_HCR_TSW),
+ SR_TRAP(SYS_DC_CGDSW, CGT_HCR_TSW),
+ SR_TRAP(SYS_DC_CIGSW, CGT_HCR_TSW),
+ SR_TRAP(SYS_DC_CIGDSW, CGT_HCR_TSW),
+ SR_TRAP(SYS_DC_CIVAC, CGT_HCR_TPC),
+ SR_TRAP(SYS_DC_CVAC, CGT_HCR_TPC),
+ SR_TRAP(SYS_DC_CVAP, CGT_HCR_TPC),
+ SR_TRAP(SYS_DC_CVADP, CGT_HCR_TPC),
+ SR_TRAP(SYS_DC_IVAC, CGT_HCR_TPC),
+ SR_TRAP(SYS_DC_CIGVAC, CGT_HCR_TPC),
+ SR_TRAP(SYS_DC_CIGDVAC, CGT_HCR_TPC),
+ SR_TRAP(SYS_DC_IGVAC, CGT_HCR_TPC),
+ SR_TRAP(SYS_DC_IGDVAC, CGT_HCR_TPC),
+ SR_TRAP(SYS_DC_CGVAC, CGT_HCR_TPC),
+ SR_TRAP(SYS_DC_CGDVAC, CGT_HCR_TPC),
+ SR_TRAP(SYS_DC_CGVAP, CGT_HCR_TPC),
+ SR_TRAP(SYS_DC_CGDVAP, CGT_HCR_TPC),
+ SR_TRAP(SYS_DC_CGVADP, CGT_HCR_TPC),
+ SR_TRAP(SYS_DC_CGDVADP, CGT_HCR_TPC),
+ SR_TRAP(SYS_IC_IVAU, CGT_HCR_TPU_TOCU),
+ SR_TRAP(SYS_IC_IALLU, CGT_HCR_TPU_TOCU),
+ SR_TRAP(SYS_IC_IALLUIS, CGT_HCR_TPU_TICAB),
+ SR_TRAP(SYS_DC_CVAU, CGT_HCR_TPU_TOCU),
+ SR_TRAP(OP_TLBI_RVAE1, CGT_HCR_TTLB),
+ SR_TRAP(OP_TLBI_RVAAE1, CGT_HCR_TTLB),
+ SR_TRAP(OP_TLBI_RVALE1, CGT_HCR_TTLB),
+ SR_TRAP(OP_TLBI_RVAALE1, CGT_HCR_TTLB),
+ SR_TRAP(OP_TLBI_VMALLE1, CGT_HCR_TTLB),
+ SR_TRAP(OP_TLBI_VAE1, CGT_HCR_TTLB),
+ SR_TRAP(OP_TLBI_ASIDE1, CGT_HCR_TTLB),
+ SR_TRAP(OP_TLBI_VAAE1, CGT_HCR_TTLB),
+ SR_TRAP(OP_TLBI_VALE1, CGT_HCR_TTLB),
+ SR_TRAP(OP_TLBI_VAALE1, CGT_HCR_TTLB),
+ SR_TRAP(OP_TLBI_RVAE1NXS, CGT_HCR_TTLB),
+ SR_TRAP(OP_TLBI_RVAAE1NXS, CGT_HCR_TTLB),
+ SR_TRAP(OP_TLBI_RVALE1NXS, CGT_HCR_TTLB),
+ SR_TRAP(OP_TLBI_RVAALE1NXS, CGT_HCR_TTLB),
+ SR_TRAP(OP_TLBI_VMALLE1NXS, CGT_HCR_TTLB),
+ SR_TRAP(OP_TLBI_VAE1NXS, CGT_HCR_TTLB),
+ SR_TRAP(OP_TLBI_ASIDE1NXS, CGT_HCR_TTLB),
+ SR_TRAP(OP_TLBI_VAAE1NXS, CGT_HCR_TTLB),
+ SR_TRAP(OP_TLBI_VALE1NXS, CGT_HCR_TTLB),
+ SR_TRAP(OP_TLBI_VAALE1NXS, CGT_HCR_TTLB),
+ SR_TRAP(OP_TLBI_RVAE1IS, CGT_HCR_TTLB_TTLBIS),
+ SR_TRAP(OP_TLBI_RVAAE1IS, CGT_HCR_TTLB_TTLBIS),
+ SR_TRAP(OP_TLBI_RVALE1IS, CGT_HCR_TTLB_TTLBIS),
+ SR_TRAP(OP_TLBI_RVAALE1IS, CGT_HCR_TTLB_TTLBIS),
+ SR_TRAP(OP_TLBI_VMALLE1IS, CGT_HCR_TTLB_TTLBIS),
+ SR_TRAP(OP_TLBI_VAE1IS, CGT_HCR_TTLB_TTLBIS),
+ SR_TRAP(OP_TLBI_ASIDE1IS, CGT_HCR_TTLB_TTLBIS),
+ SR_TRAP(OP_TLBI_VAAE1IS, CGT_HCR_TTLB_TTLBIS),
+ SR_TRAP(OP_TLBI_VALE1IS, CGT_HCR_TTLB_TTLBIS),
+ SR_TRAP(OP_TLBI_VAALE1IS, CGT_HCR_TTLB_TTLBIS),
+ SR_TRAP(OP_TLBI_RVAE1ISNXS, CGT_HCR_TTLB_TTLBIS),
+ SR_TRAP(OP_TLBI_RVAAE1ISNXS, CGT_HCR_TTLB_TTLBIS),
+ SR_TRAP(OP_TLBI_RVALE1ISNXS, CGT_HCR_TTLB_TTLBIS),
+ SR_TRAP(OP_TLBI_RVAALE1ISNXS, CGT_HCR_TTLB_TTLBIS),
+ SR_TRAP(OP_TLBI_VMALLE1ISNXS, CGT_HCR_TTLB_TTLBIS),
+ SR_TRAP(OP_TLBI_VAE1ISNXS, CGT_HCR_TTLB_TTLBIS),
+ SR_TRAP(OP_TLBI_ASIDE1ISNXS, CGT_HCR_TTLB_TTLBIS),
+ SR_TRAP(OP_TLBI_VAAE1ISNXS, CGT_HCR_TTLB_TTLBIS),
+ SR_TRAP(OP_TLBI_VALE1ISNXS, CGT_HCR_TTLB_TTLBIS),
+ SR_TRAP(OP_TLBI_VAALE1ISNXS, CGT_HCR_TTLB_TTLBIS),
+ SR_TRAP(OP_TLBI_VMALLE1OS, CGT_HCR_TTLB_TTLBOS),
+ SR_TRAP(OP_TLBI_VAE1OS, CGT_HCR_TTLB_TTLBOS),
+ SR_TRAP(OP_TLBI_ASIDE1OS, CGT_HCR_TTLB_TTLBOS),
+ SR_TRAP(OP_TLBI_VAAE1OS, CGT_HCR_TTLB_TTLBOS),
+ SR_TRAP(OP_TLBI_VALE1OS, CGT_HCR_TTLB_TTLBOS),
+ SR_TRAP(OP_TLBI_VAALE1OS, CGT_HCR_TTLB_TTLBOS),
+ SR_TRAP(OP_TLBI_RVAE1OS, CGT_HCR_TTLB_TTLBOS),
+ SR_TRAP(OP_TLBI_RVAAE1OS, CGT_HCR_TTLB_TTLBOS),
+ SR_TRAP(OP_TLBI_RVALE1OS, CGT_HCR_TTLB_TTLBOS),
+ SR_TRAP(OP_TLBI_RVAALE1OS, CGT_HCR_TTLB_TTLBOS),
+ SR_TRAP(OP_TLBI_VMALLE1OSNXS, CGT_HCR_TTLB_TTLBOS),
+ SR_TRAP(OP_TLBI_VAE1OSNXS, CGT_HCR_TTLB_TTLBOS),
+ SR_TRAP(OP_TLBI_ASIDE1OSNXS, CGT_HCR_TTLB_TTLBOS),
+ SR_TRAP(OP_TLBI_VAAE1OSNXS, CGT_HCR_TTLB_TTLBOS),
+ SR_TRAP(OP_TLBI_VALE1OSNXS, CGT_HCR_TTLB_TTLBOS),
+ SR_TRAP(OP_TLBI_VAALE1OSNXS, CGT_HCR_TTLB_TTLBOS),
+ SR_TRAP(OP_TLBI_RVAE1OSNXS, CGT_HCR_TTLB_TTLBOS),
+ SR_TRAP(OP_TLBI_RVAAE1OSNXS, CGT_HCR_TTLB_TTLBOS),
+ SR_TRAP(OP_TLBI_RVALE1OSNXS, CGT_HCR_TTLB_TTLBOS),
+ SR_TRAP(OP_TLBI_RVAALE1OSNXS, CGT_HCR_TTLB_TTLBOS),
+ SR_TRAP(SYS_SCTLR_EL1, CGT_HCR_TVM_TRVM),
+ SR_TRAP(SYS_TTBR0_EL1, CGT_HCR_TVM_TRVM),
+ SR_TRAP(SYS_TTBR1_EL1, CGT_HCR_TVM_TRVM),
+ SR_TRAP(SYS_TCR_EL1, CGT_HCR_TVM_TRVM),
+ SR_TRAP(SYS_ESR_EL1, CGT_HCR_TVM_TRVM),
+ SR_TRAP(SYS_FAR_EL1, CGT_HCR_TVM_TRVM),
+ SR_TRAP(SYS_AFSR0_EL1, CGT_HCR_TVM_TRVM),
+ SR_TRAP(SYS_AFSR1_EL1, CGT_HCR_TVM_TRVM),
+ SR_TRAP(SYS_MAIR_EL1, CGT_HCR_TVM_TRVM),
+ SR_TRAP(SYS_AMAIR_EL1, CGT_HCR_TVM_TRVM),
+ SR_TRAP(SYS_CONTEXTIDR_EL1, CGT_HCR_TVM_TRVM),
+ SR_TRAP(SYS_DC_ZVA, CGT_HCR_TDZ),
+ SR_TRAP(SYS_DC_GVA, CGT_HCR_TDZ),
+ SR_TRAP(SYS_DC_GZVA, CGT_HCR_TDZ),
+ SR_TRAP(SYS_LORSA_EL1, CGT_HCR_TLOR),
+ SR_TRAP(SYS_LOREA_EL1, CGT_HCR_TLOR),
+ SR_TRAP(SYS_LORN_EL1, CGT_HCR_TLOR),
+ SR_TRAP(SYS_LORC_EL1, CGT_HCR_TLOR),
+ SR_TRAP(SYS_LORID_EL1, CGT_HCR_TLOR),
+ SR_TRAP(SYS_ERRIDR_EL1, CGT_HCR_TERR),
+ SR_TRAP(SYS_ERRSELR_EL1, CGT_HCR_TERR),
+ SR_TRAP(SYS_ERXADDR_EL1, CGT_HCR_TERR),
+ SR_TRAP(SYS_ERXCTLR_EL1, CGT_HCR_TERR),
+ SR_TRAP(SYS_ERXFR_EL1, CGT_HCR_TERR),
+ SR_TRAP(SYS_ERXMISC0_EL1, CGT_HCR_TERR),
+ SR_TRAP(SYS_ERXMISC1_EL1, CGT_HCR_TERR),
+ SR_TRAP(SYS_ERXMISC2_EL1, CGT_HCR_TERR),
+ SR_TRAP(SYS_ERXMISC3_EL1, CGT_HCR_TERR),
+ SR_TRAP(SYS_ERXSTATUS_EL1, CGT_HCR_TERR),
+ SR_TRAP(SYS_APIAKEYLO_EL1, CGT_HCR_APK),
+ SR_TRAP(SYS_APIAKEYHI_EL1, CGT_HCR_APK),
+ SR_TRAP(SYS_APIBKEYLO_EL1, CGT_HCR_APK),
+ SR_TRAP(SYS_APIBKEYHI_EL1, CGT_HCR_APK),
+ SR_TRAP(SYS_APDAKEYLO_EL1, CGT_HCR_APK),
+ SR_TRAP(SYS_APDAKEYHI_EL1, CGT_HCR_APK),
+ SR_TRAP(SYS_APDBKEYLO_EL1, CGT_HCR_APK),
+ SR_TRAP(SYS_APDBKEYHI_EL1, CGT_HCR_APK),
+ SR_TRAP(SYS_APGAKEYLO_EL1, CGT_HCR_APK),
+ SR_TRAP(SYS_APGAKEYHI_EL1, CGT_HCR_APK),
+ /* All _EL2 registers */
+ SR_RANGE_TRAP(sys_reg(3, 4, 0, 0, 0),
+ sys_reg(3, 4, 3, 15, 7), CGT_HCR_NV),
+ /* Skip the SP_EL1 encoding... */
+ SR_TRAP(SYS_SPSR_EL2, CGT_HCR_NV),
+ SR_TRAP(SYS_ELR_EL2, CGT_HCR_NV),
+ SR_RANGE_TRAP(sys_reg(3, 4, 4, 1, 1),
+ sys_reg(3, 4, 10, 15, 7), CGT_HCR_NV),
+ SR_RANGE_TRAP(sys_reg(3, 4, 12, 0, 0),
+ sys_reg(3, 4, 14, 15, 7), CGT_HCR_NV),
+ /* All _EL02, _EL12 registers */
+ SR_RANGE_TRAP(sys_reg(3, 5, 0, 0, 0),
+ sys_reg(3, 5, 10, 15, 7), CGT_HCR_NV),
+ SR_RANGE_TRAP(sys_reg(3, 5, 12, 0, 0),
+ sys_reg(3, 5, 14, 15, 7), CGT_HCR_NV),
+ SR_TRAP(OP_AT_S1E2R, CGT_HCR_NV),
+ SR_TRAP(OP_AT_S1E2W, CGT_HCR_NV),
+ SR_TRAP(OP_AT_S12E1R, CGT_HCR_NV),
+ SR_TRAP(OP_AT_S12E1W, CGT_HCR_NV),
+ SR_TRAP(OP_AT_S12E0R, CGT_HCR_NV),
+ SR_TRAP(OP_AT_S12E0W, CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_IPAS2E1, CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_RIPAS2E1, CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_IPAS2LE1, CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_RIPAS2LE1, CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_RVAE2, CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_RVALE2, CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_ALLE2, CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_VAE2, CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_ALLE1, CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_VALE2, CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_VMALLS12E1, CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_IPAS2E1NXS, CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_RIPAS2E1NXS, CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_IPAS2LE1NXS, CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_RIPAS2LE1NXS, CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_RVAE2NXS, CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_RVALE2NXS, CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_ALLE2NXS, CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_VAE2NXS, CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_ALLE1NXS, CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_VALE2NXS, CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_VMALLS12E1NXS, CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_IPAS2E1IS, CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_RIPAS2E1IS, CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_IPAS2LE1IS, CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_RIPAS2LE1IS, CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_RVAE2IS, CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_RVALE2IS, CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_ALLE2IS, CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_VAE2IS, CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_ALLE1IS, CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_VALE2IS, CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_VMALLS12E1IS, CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_IPAS2E1ISNXS, CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_RIPAS2E1ISNXS, CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_IPAS2LE1ISNXS, CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_RIPAS2LE1ISNXS, CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_RVAE2ISNXS, CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_RVALE2ISNXS, CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_ALLE2ISNXS, CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_VAE2ISNXS, CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_ALLE1ISNXS, CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_VALE2ISNXS, CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_VMALLS12E1ISNXS,CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_ALLE2OS, CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_VAE2OS, CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_ALLE1OS, CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_VALE2OS, CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_VMALLS12E1OS, CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_IPAS2E1OS, CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_RIPAS2E1OS, CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_IPAS2LE1OS, CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_RIPAS2LE1OS, CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_RVAE2OS, CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_RVALE2OS, CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_ALLE2OSNXS, CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_VAE2OSNXS, CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_ALLE1OSNXS, CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_VALE2OSNXS, CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_VMALLS12E1OSNXS,CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_IPAS2E1OSNXS, CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_RIPAS2E1OSNXS, CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_IPAS2LE1OSNXS, CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_RIPAS2LE1OSNXS, CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_RVAE2OSNXS, CGT_HCR_NV),
+ SR_TRAP(OP_TLBI_RVALE2OSNXS, CGT_HCR_NV),
+ SR_TRAP(OP_CPP_RCTX, CGT_HCR_NV),
+ SR_TRAP(OP_DVP_RCTX, CGT_HCR_NV),
+ SR_TRAP(OP_CFP_RCTX, CGT_HCR_NV),
+ SR_TRAP(SYS_SP_EL1, CGT_HCR_NV_nNV2),
+ SR_TRAP(SYS_VBAR_EL1, CGT_HCR_NV1_nNV2),
+ SR_TRAP(SYS_ELR_EL1, CGT_HCR_NV1_nNV2),
+ SR_TRAP(SYS_SPSR_EL1, CGT_HCR_NV1_nNV2),
+ SR_TRAP(SYS_SCXTNUM_EL1, CGT_HCR_NV1_nNV2_ENSCXT),
+ SR_TRAP(SYS_SCXTNUM_EL0, CGT_HCR_ENSCXT),
+ SR_TRAP(OP_AT_S1E1R, CGT_HCR_AT),
+ SR_TRAP(OP_AT_S1E1W, CGT_HCR_AT),
+ SR_TRAP(OP_AT_S1E0R, CGT_HCR_AT),
+ SR_TRAP(OP_AT_S1E0W, CGT_HCR_AT),
+ SR_TRAP(OP_AT_S1E1RP, CGT_HCR_AT),
+ SR_TRAP(OP_AT_S1E1WP, CGT_HCR_AT),
+ SR_TRAP(SYS_ERXPFGF_EL1, CGT_HCR_nFIEN),
+ SR_TRAP(SYS_ERXPFGCTL_EL1, CGT_HCR_nFIEN),
+ SR_TRAP(SYS_ERXPFGCDN_EL1, CGT_HCR_nFIEN),
+ SR_TRAP(SYS_PMCR_EL0, CGT_MDCR_TPM_TPMCR),
+ SR_TRAP(SYS_PMCNTENSET_EL0, CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMCNTENCLR_EL0, CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMOVSSET_EL0, CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMOVSCLR_EL0, CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMCEID0_EL0, CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMCEID1_EL0, CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMXEVTYPER_EL0, CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMSWINC_EL0, CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMSELR_EL0, CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMXEVCNTR_EL0, CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMCCNTR_EL0, CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMUSERENR_EL0, CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMINTENSET_EL1, CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMINTENCLR_EL1, CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMMIR_EL1, CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMEVCNTRn_EL0(0), CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMEVCNTRn_EL0(1), CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMEVCNTRn_EL0(2), CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMEVCNTRn_EL0(3), CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMEVCNTRn_EL0(4), CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMEVCNTRn_EL0(5), CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMEVCNTRn_EL0(6), CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMEVCNTRn_EL0(7), CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMEVCNTRn_EL0(8), CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMEVCNTRn_EL0(9), CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMEVCNTRn_EL0(10), CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMEVCNTRn_EL0(11), CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMEVCNTRn_EL0(12), CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMEVCNTRn_EL0(13), CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMEVCNTRn_EL0(14), CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMEVCNTRn_EL0(15), CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMEVCNTRn_EL0(16), CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMEVCNTRn_EL0(17), CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMEVCNTRn_EL0(18), CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMEVCNTRn_EL0(19), CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMEVCNTRn_EL0(20), CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMEVCNTRn_EL0(21), CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMEVCNTRn_EL0(22), CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMEVCNTRn_EL0(23), CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMEVCNTRn_EL0(24), CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMEVCNTRn_EL0(25), CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMEVCNTRn_EL0(26), CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMEVCNTRn_EL0(27), CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMEVCNTRn_EL0(28), CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMEVCNTRn_EL0(29), CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMEVCNTRn_EL0(30), CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMEVTYPERn_EL0(0), CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMEVTYPERn_EL0(1), CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMEVTYPERn_EL0(2), CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMEVTYPERn_EL0(3), CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMEVTYPERn_EL0(4), CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMEVTYPERn_EL0(5), CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMEVTYPERn_EL0(6), CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMEVTYPERn_EL0(7), CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMEVTYPERn_EL0(8), CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMEVTYPERn_EL0(9), CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMEVTYPERn_EL0(10), CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMEVTYPERn_EL0(11), CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMEVTYPERn_EL0(12), CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMEVTYPERn_EL0(13), CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMEVTYPERn_EL0(14), CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMEVTYPERn_EL0(15), CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMEVTYPERn_EL0(16), CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMEVTYPERn_EL0(17), CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMEVTYPERn_EL0(18), CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMEVTYPERn_EL0(19), CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMEVTYPERn_EL0(20), CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMEVTYPERn_EL0(21), CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMEVTYPERn_EL0(22), CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMEVTYPERn_EL0(23), CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMEVTYPERn_EL0(24), CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMEVTYPERn_EL0(25), CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMEVTYPERn_EL0(26), CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMEVTYPERn_EL0(27), CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMEVTYPERn_EL0(28), CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMEVTYPERn_EL0(29), CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMEVTYPERn_EL0(30), CGT_MDCR_TPM),
+ SR_TRAP(SYS_PMCCFILTR_EL0, CGT_MDCR_TPM),
+ SR_TRAP(SYS_MDCCSR_EL0, CGT_MDCR_TDCC_TDE_TDA),
+ SR_TRAP(SYS_MDCCINT_EL1, CGT_MDCR_TDCC_TDE_TDA),
+ SR_TRAP(SYS_OSDTRRX_EL1, CGT_MDCR_TDCC_TDE_TDA),
+ SR_TRAP(SYS_OSDTRTX_EL1, CGT_MDCR_TDCC_TDE_TDA),
+ SR_TRAP(SYS_DBGDTR_EL0, CGT_MDCR_TDCC_TDE_TDA),
+ /*
+ * Also covers DBGDTRRX_EL0, which has the same encoding as
+ * SYS_DBGDTRTX_EL0...
+ */
+ SR_TRAP(SYS_DBGDTRTX_EL0, CGT_MDCR_TDCC_TDE_TDA),
+ SR_TRAP(SYS_MDSCR_EL1, CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_OSECCR_EL1, CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGBVRn_EL1(0), CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGBVRn_EL1(1), CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGBVRn_EL1(2), CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGBVRn_EL1(3), CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGBVRn_EL1(4), CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGBVRn_EL1(5), CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGBVRn_EL1(6), CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGBVRn_EL1(7), CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGBVRn_EL1(8), CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGBVRn_EL1(9), CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGBVRn_EL1(10), CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGBVRn_EL1(11), CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGBVRn_EL1(12), CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGBVRn_EL1(13), CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGBVRn_EL1(14), CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGBVRn_EL1(15), CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGBCRn_EL1(0), CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGBCRn_EL1(1), CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGBCRn_EL1(2), CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGBCRn_EL1(3), CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGBCRn_EL1(4), CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGBCRn_EL1(5), CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGBCRn_EL1(6), CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGBCRn_EL1(7), CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGBCRn_EL1(8), CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGBCRn_EL1(9), CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGBCRn_EL1(10), CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGBCRn_EL1(11), CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGBCRn_EL1(12), CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGBCRn_EL1(13), CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGBCRn_EL1(14), CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGBCRn_EL1(15), CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGWVRn_EL1(0), CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGWVRn_EL1(1), CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGWVRn_EL1(2), CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGWVRn_EL1(3), CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGWVRn_EL1(4), CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGWVRn_EL1(5), CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGWVRn_EL1(6), CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGWVRn_EL1(7), CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGWVRn_EL1(8), CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGWVRn_EL1(9), CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGWVRn_EL1(10), CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGWVRn_EL1(11), CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGWVRn_EL1(12), CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGWVRn_EL1(13), CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGWVRn_EL1(14), CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGWVRn_EL1(15), CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGWCRn_EL1(0), CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGWCRn_EL1(1), CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGWCRn_EL1(2), CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGWCRn_EL1(3), CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGWCRn_EL1(4), CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGWCRn_EL1(5), CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGWCRn_EL1(6), CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGWCRn_EL1(7), CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGWCRn_EL1(8), CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGWCRn_EL1(9), CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGWCRn_EL1(10), CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGWCRn_EL1(11), CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGWCRn_EL1(12), CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGWCRn_EL1(13), CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGWCRn_EL1(14), CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGCLAIMSET_EL1, CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGCLAIMCLR_EL1, CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_DBGAUTHSTATUS_EL1, CGT_MDCR_TDE_TDA),
+ SR_TRAP(SYS_OSLAR_EL1, CGT_MDCR_TDE_TDOSA),
+ SR_TRAP(SYS_OSLSR_EL1, CGT_MDCR_TDE_TDOSA),
+ SR_TRAP(SYS_OSDLR_EL1, CGT_MDCR_TDE_TDOSA),
+ SR_TRAP(SYS_DBGPRCR_EL1, CGT_MDCR_TDE_TDOSA),
+ SR_TRAP(SYS_MDRAR_EL1, CGT_MDCR_TDE_TDRA),
+ SR_TRAP(SYS_PMBLIMITR_EL1, CGT_MDCR_E2PB),
+ SR_TRAP(SYS_PMBPTR_EL1, CGT_MDCR_E2PB),
+ SR_TRAP(SYS_PMBSR_EL1, CGT_MDCR_E2PB),
+ SR_TRAP(SYS_PMSCR_EL1, CGT_MDCR_TPMS),
+ SR_TRAP(SYS_PMSEVFR_EL1, CGT_MDCR_TPMS),
+ SR_TRAP(SYS_PMSFCR_EL1, CGT_MDCR_TPMS),
+ SR_TRAP(SYS_PMSICR_EL1, CGT_MDCR_TPMS),
+ SR_TRAP(SYS_PMSIDR_EL1, CGT_MDCR_TPMS),
+ SR_TRAP(SYS_PMSIRR_EL1, CGT_MDCR_TPMS),
+ SR_TRAP(SYS_PMSLATFR_EL1, CGT_MDCR_TPMS),
+ SR_TRAP(SYS_PMSNEVFR_EL1, CGT_MDCR_TPMS),
+ SR_TRAP(SYS_TRFCR_EL1, CGT_MDCR_TTRF),
+ SR_TRAP(SYS_TRBBASER_EL1, CGT_MDCR_E2TB),
+ SR_TRAP(SYS_TRBLIMITR_EL1, CGT_MDCR_E2TB),
+ SR_TRAP(SYS_TRBMAR_EL1, CGT_MDCR_E2TB),
+ SR_TRAP(SYS_TRBPTR_EL1, CGT_MDCR_E2TB),
+ SR_TRAP(SYS_TRBSR_EL1, CGT_MDCR_E2TB),
+ SR_TRAP(SYS_TRBTRG_EL1, CGT_MDCR_E2TB),
+ SR_TRAP(SYS_CNTP_TVAL_EL0, CGT_CNTHCTL_EL1PTEN),
+ SR_TRAP(SYS_CNTP_CVAL_EL0, CGT_CNTHCTL_EL1PTEN),
+ SR_TRAP(SYS_CNTP_CTL_EL0, CGT_CNTHCTL_EL1PTEN),
+ SR_TRAP(SYS_CNTPCT_EL0, CGT_CNTHCTL_EL1PCTEN),
+ SR_TRAP(SYS_CNTPCTSS_EL0, CGT_CNTHCTL_EL1PCTEN),
+};
+
+static DEFINE_XARRAY(sr_forward_xa);
+
+enum fgt_group_id {
+ __NO_FGT_GROUP__,
+ HFGxTR_GROUP,
+ HDFGRTR_GROUP,
+ HDFGWTR_GROUP,
+ HFGITR_GROUP,
+
+ /* Must be last */
+ __NR_FGT_GROUP_IDS__
+};
+
+enum fg_filter_id {
+ __NO_FGF__,
+ HCRX_FGTnXS,
+
+ /* Must be last */
+ __NR_FG_FILTER_IDS__
+};
+
+#define SR_FGF(sr, g, b, p, f) \
+ { \
+ .encoding = sr, \
+ .end = sr, \
+ .tc = { \
+ .fgt = g ## _GROUP, \
+ .bit = g ## _EL2_ ## b ## _SHIFT, \
+ .pol = p, \
+ .fgf = f, \
+ }, \
+ .line = __LINE__, \
+ }
+
+#define SR_FGT(sr, g, b, p) SR_FGF(sr, g, b, p, __NO_FGF__)
+
+static const struct encoding_to_trap_config encoding_to_fgt[] __initconst = {
+ /* HFGRTR_EL2, HFGWTR_EL2 */
+ SR_FGT(SYS_PIR_EL1, HFGxTR, nPIR_EL1, 0),
+ SR_FGT(SYS_PIRE0_EL1, HFGxTR, nPIRE0_EL1, 0),
+ SR_FGT(SYS_TPIDR2_EL0, HFGxTR, nTPIDR2_EL0, 0),
+ SR_FGT(SYS_SMPRI_EL1, HFGxTR, nSMPRI_EL1, 0),
+ SR_FGT(SYS_ACCDATA_EL1, HFGxTR, nACCDATA_EL1, 0),
+ SR_FGT(SYS_ERXADDR_EL1, HFGxTR, ERXADDR_EL1, 1),
+ SR_FGT(SYS_ERXPFGCDN_EL1, HFGxTR, ERXPFGCDN_EL1, 1),
+ SR_FGT(SYS_ERXPFGCTL_EL1, HFGxTR, ERXPFGCTL_EL1, 1),
+ SR_FGT(SYS_ERXPFGF_EL1, HFGxTR, ERXPFGF_EL1, 1),
+ SR_FGT(SYS_ERXMISC0_EL1, HFGxTR, ERXMISCn_EL1, 1),
+ SR_FGT(SYS_ERXMISC1_EL1, HFGxTR, ERXMISCn_EL1, 1),
+ SR_FGT(SYS_ERXMISC2_EL1, HFGxTR, ERXMISCn_EL1, 1),
+ SR_FGT(SYS_ERXMISC3_EL1, HFGxTR, ERXMISCn_EL1, 1),
+ SR_FGT(SYS_ERXSTATUS_EL1, HFGxTR, ERXSTATUS_EL1, 1),
+ SR_FGT(SYS_ERXCTLR_EL1, HFGxTR, ERXCTLR_EL1, 1),
+ SR_FGT(SYS_ERXFR_EL1, HFGxTR, ERXFR_EL1, 1),
+ SR_FGT(SYS_ERRSELR_EL1, HFGxTR, ERRSELR_EL1, 1),
+ SR_FGT(SYS_ERRIDR_EL1, HFGxTR, ERRIDR_EL1, 1),
+ SR_FGT(SYS_ICC_IGRPEN0_EL1, HFGxTR, ICC_IGRPENn_EL1, 1),
+ SR_FGT(SYS_ICC_IGRPEN1_EL1, HFGxTR, ICC_IGRPENn_EL1, 1),
+ SR_FGT(SYS_VBAR_EL1, HFGxTR, VBAR_EL1, 1),
+ SR_FGT(SYS_TTBR1_EL1, HFGxTR, TTBR1_EL1, 1),
+ SR_FGT(SYS_TTBR0_EL1, HFGxTR, TTBR0_EL1, 1),
+ SR_FGT(SYS_TPIDR_EL0, HFGxTR, TPIDR_EL0, 1),
+ SR_FGT(SYS_TPIDRRO_EL0, HFGxTR, TPIDRRO_EL0, 1),
+ SR_FGT(SYS_TPIDR_EL1, HFGxTR, TPIDR_EL1, 1),
+ SR_FGT(SYS_TCR_EL1, HFGxTR, TCR_EL1, 1),
+ SR_FGT(SYS_SCXTNUM_EL0, HFGxTR, SCXTNUM_EL0, 1),
+ SR_FGT(SYS_SCXTNUM_EL1, HFGxTR, SCXTNUM_EL1, 1),
+ SR_FGT(SYS_SCTLR_EL1, HFGxTR, SCTLR_EL1, 1),
+ SR_FGT(SYS_REVIDR_EL1, HFGxTR, REVIDR_EL1, 1),
+ SR_FGT(SYS_PAR_EL1, HFGxTR, PAR_EL1, 1),
+ SR_FGT(SYS_MPIDR_EL1, HFGxTR, MPIDR_EL1, 1),
+ SR_FGT(SYS_MIDR_EL1, HFGxTR, MIDR_EL1, 1),
+ SR_FGT(SYS_MAIR_EL1, HFGxTR, MAIR_EL1, 1),
+ SR_FGT(SYS_LORSA_EL1, HFGxTR, LORSA_EL1, 1),
+ SR_FGT(SYS_LORN_EL1, HFGxTR, LORN_EL1, 1),
+ SR_FGT(SYS_LORID_EL1, HFGxTR, LORID_EL1, 1),
+ SR_FGT(SYS_LOREA_EL1, HFGxTR, LOREA_EL1, 1),
+ SR_FGT(SYS_LORC_EL1, HFGxTR, LORC_EL1, 1),
+ SR_FGT(SYS_ISR_EL1, HFGxTR, ISR_EL1, 1),
+ SR_FGT(SYS_FAR_EL1, HFGxTR, FAR_EL1, 1),
+ SR_FGT(SYS_ESR_EL1, HFGxTR, ESR_EL1, 1),
+ SR_FGT(SYS_DCZID_EL0, HFGxTR, DCZID_EL0, 1),
+ SR_FGT(SYS_CTR_EL0, HFGxTR, CTR_EL0, 1),
+ SR_FGT(SYS_CSSELR_EL1, HFGxTR, CSSELR_EL1, 1),
+ SR_FGT(SYS_CPACR_EL1, HFGxTR, CPACR_EL1, 1),
+ SR_FGT(SYS_CONTEXTIDR_EL1, HFGxTR, CONTEXTIDR_EL1, 1),
+ SR_FGT(SYS_CLIDR_EL1, HFGxTR, CLIDR_EL1, 1),
+ SR_FGT(SYS_CCSIDR_EL1, HFGxTR, CCSIDR_EL1, 1),
+ SR_FGT(SYS_APIBKEYLO_EL1, HFGxTR, APIBKey, 1),
+ SR_FGT(SYS_APIBKEYHI_EL1, HFGxTR, APIBKey, 1),
+ SR_FGT(SYS_APIAKEYLO_EL1, HFGxTR, APIAKey, 1),
+ SR_FGT(SYS_APIAKEYHI_EL1, HFGxTR, APIAKey, 1),
+ SR_FGT(SYS_APGAKEYLO_EL1, HFGxTR, APGAKey, 1),
+ SR_FGT(SYS_APGAKEYHI_EL1, HFGxTR, APGAKey, 1),
+ SR_FGT(SYS_APDBKEYLO_EL1, HFGxTR, APDBKey, 1),
+ SR_FGT(SYS_APDBKEYHI_EL1, HFGxTR, APDBKey, 1),
+ SR_FGT(SYS_APDAKEYLO_EL1, HFGxTR, APDAKey, 1),
+ SR_FGT(SYS_APDAKEYHI_EL1, HFGxTR, APDAKey, 1),
+ SR_FGT(SYS_AMAIR_EL1, HFGxTR, AMAIR_EL1, 1),
+ SR_FGT(SYS_AIDR_EL1, HFGxTR, AIDR_EL1, 1),
+ SR_FGT(SYS_AFSR1_EL1, HFGxTR, AFSR1_EL1, 1),
+ SR_FGT(SYS_AFSR0_EL1, HFGxTR, AFSR0_EL1, 1),
+ /* HFGITR_EL2 */
+ SR_FGT(OP_BRB_IALL, HFGITR, nBRBIALL, 0),
+ SR_FGT(OP_BRB_INJ, HFGITR, nBRBINJ, 0),
+ SR_FGT(SYS_DC_CVAC, HFGITR, DCCVAC, 1),
+ SR_FGT(SYS_DC_CGVAC, HFGITR, DCCVAC, 1),
+ SR_FGT(SYS_DC_CGDVAC, HFGITR, DCCVAC, 1),
+ SR_FGT(OP_CPP_RCTX, HFGITR, CPPRCTX, 1),
+ SR_FGT(OP_DVP_RCTX, HFGITR, DVPRCTX, 1),
+ SR_FGT(OP_CFP_RCTX, HFGITR, CFPRCTX, 1),
+ SR_FGT(OP_TLBI_VAALE1, HFGITR, TLBIVAALE1, 1),
+ SR_FGT(OP_TLBI_VALE1, HFGITR, TLBIVALE1, 1),
+ SR_FGT(OP_TLBI_VAAE1, HFGITR, TLBIVAAE1, 1),
+ SR_FGT(OP_TLBI_ASIDE1, HFGITR, TLBIASIDE1, 1),
+ SR_FGT(OP_TLBI_VAE1, HFGITR, TLBIVAE1, 1),
+ SR_FGT(OP_TLBI_VMALLE1, HFGITR, TLBIVMALLE1, 1),
+ SR_FGT(OP_TLBI_RVAALE1, HFGITR, TLBIRVAALE1, 1),
+ SR_FGT(OP_TLBI_RVALE1, HFGITR, TLBIRVALE1, 1),
+ SR_FGT(OP_TLBI_RVAAE1, HFGITR, TLBIRVAAE1, 1),
+ SR_FGT(OP_TLBI_RVAE1, HFGITR, TLBIRVAE1, 1),
+ SR_FGT(OP_TLBI_RVAALE1IS, HFGITR, TLBIRVAALE1IS, 1),
+ SR_FGT(OP_TLBI_RVALE1IS, HFGITR, TLBIRVALE1IS, 1),
+ SR_FGT(OP_TLBI_RVAAE1IS, HFGITR, TLBIRVAAE1IS, 1),
+ SR_FGT(OP_TLBI_RVAE1IS, HFGITR, TLBIRVAE1IS, 1),
+ SR_FGT(OP_TLBI_VAALE1IS, HFGITR, TLBIVAALE1IS, 1),
+ SR_FGT(OP_TLBI_VALE1IS, HFGITR, TLBIVALE1IS, 1),
+ SR_FGT(OP_TLBI_VAAE1IS, HFGITR, TLBIVAAE1IS, 1),
+ SR_FGT(OP_TLBI_ASIDE1IS, HFGITR, TLBIASIDE1IS, 1),
+ SR_FGT(OP_TLBI_VAE1IS, HFGITR, TLBIVAE1IS, 1),
+ SR_FGT(OP_TLBI_VMALLE1IS, HFGITR, TLBIVMALLE1IS, 1),
+ SR_FGT(OP_TLBI_RVAALE1OS, HFGITR, TLBIRVAALE1OS, 1),
+ SR_FGT(OP_TLBI_RVALE1OS, HFGITR, TLBIRVALE1OS, 1),
+ SR_FGT(OP_TLBI_RVAAE1OS, HFGITR, TLBIRVAAE1OS, 1),
+ SR_FGT(OP_TLBI_RVAE1OS, HFGITR, TLBIRVAE1OS, 1),
+ SR_FGT(OP_TLBI_VAALE1OS, HFGITR, TLBIVAALE1OS, 1),
+ SR_FGT(OP_TLBI_VALE1OS, HFGITR, TLBIVALE1OS, 1),
+ SR_FGT(OP_TLBI_VAAE1OS, HFGITR, TLBIVAAE1OS, 1),
+ SR_FGT(OP_TLBI_ASIDE1OS, HFGITR, TLBIASIDE1OS, 1),
+ SR_FGT(OP_TLBI_VAE1OS, HFGITR, TLBIVAE1OS, 1),
+ SR_FGT(OP_TLBI_VMALLE1OS, HFGITR, TLBIVMALLE1OS, 1),
+ /* nXS variants must be checked against HCRX_EL2.FGTnXS */
+ SR_FGF(OP_TLBI_VAALE1NXS, HFGITR, TLBIVAALE1, 1, HCRX_FGTnXS),
+ SR_FGF(OP_TLBI_VALE1NXS, HFGITR, TLBIVALE1, 1, HCRX_FGTnXS),
+ SR_FGF(OP_TLBI_VAAE1NXS, HFGITR, TLBIVAAE1, 1, HCRX_FGTnXS),
+ SR_FGF(OP_TLBI_ASIDE1NXS, HFGITR, TLBIASIDE1, 1, HCRX_FGTnXS),
+ SR_FGF(OP_TLBI_VAE1NXS, HFGITR, TLBIVAE1, 1, HCRX_FGTnXS),
+ SR_FGF(OP_TLBI_VMALLE1NXS, HFGITR, TLBIVMALLE1, 1, HCRX_FGTnXS),
+ SR_FGF(OP_TLBI_RVAALE1NXS, HFGITR, TLBIRVAALE1, 1, HCRX_FGTnXS),
+ SR_FGF(OP_TLBI_RVALE1NXS, HFGITR, TLBIRVALE1, 1, HCRX_FGTnXS),
+ SR_FGF(OP_TLBI_RVAAE1NXS, HFGITR, TLBIRVAAE1, 1, HCRX_FGTnXS),
+ SR_FGF(OP_TLBI_RVAE1NXS, HFGITR, TLBIRVAE1, 1, HCRX_FGTnXS),
+ SR_FGF(OP_TLBI_RVAALE1ISNXS, HFGITR, TLBIRVAALE1IS, 1, HCRX_FGTnXS),
+ SR_FGF(OP_TLBI_RVALE1ISNXS, HFGITR, TLBIRVALE1IS, 1, HCRX_FGTnXS),
+ SR_FGF(OP_TLBI_RVAAE1ISNXS, HFGITR, TLBIRVAAE1IS, 1, HCRX_FGTnXS),
+ SR_FGF(OP_TLBI_RVAE1ISNXS, HFGITR, TLBIRVAE1IS, 1, HCRX_FGTnXS),
+ SR_FGF(OP_TLBI_VAALE1ISNXS, HFGITR, TLBIVAALE1IS, 1, HCRX_FGTnXS),
+ SR_FGF(OP_TLBI_VALE1ISNXS, HFGITR, TLBIVALE1IS, 1, HCRX_FGTnXS),
+ SR_FGF(OP_TLBI_VAAE1ISNXS, HFGITR, TLBIVAAE1IS, 1, HCRX_FGTnXS),
+ SR_FGF(OP_TLBI_ASIDE1ISNXS, HFGITR, TLBIASIDE1IS, 1, HCRX_FGTnXS),
+ SR_FGF(OP_TLBI_VAE1ISNXS, HFGITR, TLBIVAE1IS, 1, HCRX_FGTnXS),
+ SR_FGF(OP_TLBI_VMALLE1ISNXS, HFGITR, TLBIVMALLE1IS, 1, HCRX_FGTnXS),
+ SR_FGF(OP_TLBI_RVAALE1OSNXS, HFGITR, TLBIRVAALE1OS, 1, HCRX_FGTnXS),
+ SR_FGF(OP_TLBI_RVALE1OSNXS, HFGITR, TLBIRVALE1OS, 1, HCRX_FGTnXS),
+ SR_FGF(OP_TLBI_RVAAE1OSNXS, HFGITR, TLBIRVAAE1OS, 1, HCRX_FGTnXS),
+ SR_FGF(OP_TLBI_RVAE1OSNXS, HFGITR, TLBIRVAE1OS, 1, HCRX_FGTnXS),
+ SR_FGF(OP_TLBI_VAALE1OSNXS, HFGITR, TLBIVAALE1OS, 1, HCRX_FGTnXS),
+ SR_FGF(OP_TLBI_VALE1OSNXS, HFGITR, TLBIVALE1OS, 1, HCRX_FGTnXS),
+ SR_FGF(OP_TLBI_VAAE1OSNXS, HFGITR, TLBIVAAE1OS, 1, HCRX_FGTnXS),
+ SR_FGF(OP_TLBI_ASIDE1OSNXS, HFGITR, TLBIASIDE1OS, 1, HCRX_FGTnXS),
+ SR_FGF(OP_TLBI_VAE1OSNXS, HFGITR, TLBIVAE1OS, 1, HCRX_FGTnXS),
+ SR_FGF(OP_TLBI_VMALLE1OSNXS, HFGITR, TLBIVMALLE1OS, 1, HCRX_FGTnXS),
+ SR_FGT(OP_AT_S1E1WP, HFGITR, ATS1E1WP, 1),
+ SR_FGT(OP_AT_S1E1RP, HFGITR, ATS1E1RP, 1),
+ SR_FGT(OP_AT_S1E0W, HFGITR, ATS1E0W, 1),
+ SR_FGT(OP_AT_S1E0R, HFGITR, ATS1E0R, 1),
+ SR_FGT(OP_AT_S1E1W, HFGITR, ATS1E1W, 1),
+ SR_FGT(OP_AT_S1E1R, HFGITR, ATS1E1R, 1),
+ SR_FGT(SYS_DC_ZVA, HFGITR, DCZVA, 1),
+ SR_FGT(SYS_DC_GVA, HFGITR, DCZVA, 1),
+ SR_FGT(SYS_DC_GZVA, HFGITR, DCZVA, 1),
+ SR_FGT(SYS_DC_CIVAC, HFGITR, DCCIVAC, 1),
+ SR_FGT(SYS_DC_CIGVAC, HFGITR, DCCIVAC, 1),
+ SR_FGT(SYS_DC_CIGDVAC, HFGITR, DCCIVAC, 1),
+ SR_FGT(SYS_DC_CVADP, HFGITR, DCCVADP, 1),
+ SR_FGT(SYS_DC_CGVADP, HFGITR, DCCVADP, 1),
+ SR_FGT(SYS_DC_CGDVADP, HFGITR, DCCVADP, 1),
+ SR_FGT(SYS_DC_CVAP, HFGITR, DCCVAP, 1),
+ SR_FGT(SYS_DC_CGVAP, HFGITR, DCCVAP, 1),
+ SR_FGT(SYS_DC_CGDVAP, HFGITR, DCCVAP, 1),
+ SR_FGT(SYS_DC_CVAU, HFGITR, DCCVAU, 1),
+ SR_FGT(SYS_DC_CISW, HFGITR, DCCISW, 1),
+ SR_FGT(SYS_DC_CIGSW, HFGITR, DCCISW, 1),
+ SR_FGT(SYS_DC_CIGDSW, HFGITR, DCCISW, 1),
+ SR_FGT(SYS_DC_CSW, HFGITR, DCCSW, 1),
+ SR_FGT(SYS_DC_CGSW, HFGITR, DCCSW, 1),
+ SR_FGT(SYS_DC_CGDSW, HFGITR, DCCSW, 1),
+ SR_FGT(SYS_DC_ISW, HFGITR, DCISW, 1),
+ SR_FGT(SYS_DC_IGSW, HFGITR, DCISW, 1),
+ SR_FGT(SYS_DC_IGDSW, HFGITR, DCISW, 1),
+ SR_FGT(SYS_DC_IVAC, HFGITR, DCIVAC, 1),
+ SR_FGT(SYS_DC_IGVAC, HFGITR, DCIVAC, 1),
+ SR_FGT(SYS_DC_IGDVAC, HFGITR, DCIVAC, 1),
+ SR_FGT(SYS_IC_IVAU, HFGITR, ICIVAU, 1),
+ SR_FGT(SYS_IC_IALLU, HFGITR, ICIALLU, 1),
+ SR_FGT(SYS_IC_IALLUIS, HFGITR, ICIALLUIS, 1),
+ /* HDFGRTR_EL2 */
+ SR_FGT(SYS_PMBIDR_EL1, HDFGRTR, PMBIDR_EL1, 1),
+ SR_FGT(SYS_PMSNEVFR_EL1, HDFGRTR, nPMSNEVFR_EL1, 0),
+ SR_FGT(SYS_BRBINF_EL1(0), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBINF_EL1(1), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBINF_EL1(2), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBINF_EL1(3), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBINF_EL1(4), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBINF_EL1(5), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBINF_EL1(6), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBINF_EL1(7), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBINF_EL1(8), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBINF_EL1(9), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBINF_EL1(10), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBINF_EL1(11), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBINF_EL1(12), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBINF_EL1(13), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBINF_EL1(14), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBINF_EL1(15), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBINF_EL1(16), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBINF_EL1(17), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBINF_EL1(18), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBINF_EL1(19), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBINF_EL1(20), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBINF_EL1(21), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBINF_EL1(22), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBINF_EL1(23), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBINF_EL1(24), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBINF_EL1(25), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBINF_EL1(26), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBINF_EL1(27), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBINF_EL1(28), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBINF_EL1(29), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBINF_EL1(30), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBINF_EL1(31), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBINFINJ_EL1, HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBSRC_EL1(0), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBSRC_EL1(1), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBSRC_EL1(2), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBSRC_EL1(3), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBSRC_EL1(4), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBSRC_EL1(5), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBSRC_EL1(6), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBSRC_EL1(7), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBSRC_EL1(8), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBSRC_EL1(9), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBSRC_EL1(10), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBSRC_EL1(11), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBSRC_EL1(12), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBSRC_EL1(13), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBSRC_EL1(14), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBSRC_EL1(15), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBSRC_EL1(16), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBSRC_EL1(17), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBSRC_EL1(18), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBSRC_EL1(19), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBSRC_EL1(20), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBSRC_EL1(21), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBSRC_EL1(22), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBSRC_EL1(23), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBSRC_EL1(24), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBSRC_EL1(25), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBSRC_EL1(26), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBSRC_EL1(27), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBSRC_EL1(28), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBSRC_EL1(29), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBSRC_EL1(30), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBSRC_EL1(31), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBSRCINJ_EL1, HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBTGT_EL1(0), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBTGT_EL1(1), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBTGT_EL1(2), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBTGT_EL1(3), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBTGT_EL1(4), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBTGT_EL1(5), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBTGT_EL1(6), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBTGT_EL1(7), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBTGT_EL1(8), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBTGT_EL1(9), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBTGT_EL1(10), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBTGT_EL1(11), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBTGT_EL1(12), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBTGT_EL1(13), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBTGT_EL1(14), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBTGT_EL1(15), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBTGT_EL1(16), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBTGT_EL1(17), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBTGT_EL1(18), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBTGT_EL1(19), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBTGT_EL1(20), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBTGT_EL1(21), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBTGT_EL1(22), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBTGT_EL1(23), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBTGT_EL1(24), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBTGT_EL1(25), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBTGT_EL1(26), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBTGT_EL1(27), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBTGT_EL1(28), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBTGT_EL1(29), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBTGT_EL1(30), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBTGT_EL1(31), HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBTGTINJ_EL1, HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBTS_EL1, HDFGRTR, nBRBDATA, 0),
+ SR_FGT(SYS_BRBCR_EL1, HDFGRTR, nBRBCTL, 0),
+ SR_FGT(SYS_BRBFCR_EL1, HDFGRTR, nBRBCTL, 0),
+ SR_FGT(SYS_BRBIDR0_EL1, HDFGRTR, nBRBIDR, 0),
+ SR_FGT(SYS_PMCEID0_EL0, HDFGRTR, PMCEIDn_EL0, 1),
+ SR_FGT(SYS_PMCEID1_EL0, HDFGRTR, PMCEIDn_EL0, 1),
+ SR_FGT(SYS_PMUSERENR_EL0, HDFGRTR, PMUSERENR_EL0, 1),
+ SR_FGT(SYS_TRBTRG_EL1, HDFGRTR, TRBTRG_EL1, 1),
+ SR_FGT(SYS_TRBSR_EL1, HDFGRTR, TRBSR_EL1, 1),
+ SR_FGT(SYS_TRBPTR_EL1, HDFGRTR, TRBPTR_EL1, 1),
+ SR_FGT(SYS_TRBMAR_EL1, HDFGRTR, TRBMAR_EL1, 1),
+ SR_FGT(SYS_TRBLIMITR_EL1, HDFGRTR, TRBLIMITR_EL1, 1),
+ SR_FGT(SYS_TRBIDR_EL1, HDFGRTR, TRBIDR_EL1, 1),
+ SR_FGT(SYS_TRBBASER_EL1, HDFGRTR, TRBBASER_EL1, 1),
+ SR_FGT(SYS_TRCVICTLR, HDFGRTR, TRCVICTLR, 1),
+ SR_FGT(SYS_TRCSTATR, HDFGRTR, TRCSTATR, 1),
+ SR_FGT(SYS_TRCSSCSR(0), HDFGRTR, TRCSSCSRn, 1),
+ SR_FGT(SYS_TRCSSCSR(1), HDFGRTR, TRCSSCSRn, 1),
+ SR_FGT(SYS_TRCSSCSR(2), HDFGRTR, TRCSSCSRn, 1),
+ SR_FGT(SYS_TRCSSCSR(3), HDFGRTR, TRCSSCSRn, 1),
+ SR_FGT(SYS_TRCSSCSR(4), HDFGRTR, TRCSSCSRn, 1),
+ SR_FGT(SYS_TRCSSCSR(5), HDFGRTR, TRCSSCSRn, 1),
+ SR_FGT(SYS_TRCSSCSR(6), HDFGRTR, TRCSSCSRn, 1),
+ SR_FGT(SYS_TRCSSCSR(7), HDFGRTR, TRCSSCSRn, 1),
+ SR_FGT(SYS_TRCSEQSTR, HDFGRTR, TRCSEQSTR, 1),
+ SR_FGT(SYS_TRCPRGCTLR, HDFGRTR, TRCPRGCTLR, 1),
+ SR_FGT(SYS_TRCOSLSR, HDFGRTR, TRCOSLSR, 1),
+ SR_FGT(SYS_TRCIMSPEC(0), HDFGRTR, TRCIMSPECn, 1),
+ SR_FGT(SYS_TRCIMSPEC(1), HDFGRTR, TRCIMSPECn, 1),
+ SR_FGT(SYS_TRCIMSPEC(2), HDFGRTR, TRCIMSPECn, 1),
+ SR_FGT(SYS_TRCIMSPEC(3), HDFGRTR, TRCIMSPECn, 1),
+ SR_FGT(SYS_TRCIMSPEC(4), HDFGRTR, TRCIMSPECn, 1),
+ SR_FGT(SYS_TRCIMSPEC(5), HDFGRTR, TRCIMSPECn, 1),
+ SR_FGT(SYS_TRCIMSPEC(6), HDFGRTR, TRCIMSPECn, 1),
+ SR_FGT(SYS_TRCIMSPEC(7), HDFGRTR, TRCIMSPECn, 1),
+ SR_FGT(SYS_TRCDEVARCH, HDFGRTR, TRCID, 1),
+ SR_FGT(SYS_TRCDEVID, HDFGRTR, TRCID, 1),
+ SR_FGT(SYS_TRCIDR0, HDFGRTR, TRCID, 1),
+ SR_FGT(SYS_TRCIDR1, HDFGRTR, TRCID, 1),
+ SR_FGT(SYS_TRCIDR2, HDFGRTR, TRCID, 1),
+ SR_FGT(SYS_TRCIDR3, HDFGRTR, TRCID, 1),
+ SR_FGT(SYS_TRCIDR4, HDFGRTR, TRCID, 1),
+ SR_FGT(SYS_TRCIDR5, HDFGRTR, TRCID, 1),
+ SR_FGT(SYS_TRCIDR6, HDFGRTR, TRCID, 1),
+ SR_FGT(SYS_TRCIDR7, HDFGRTR, TRCID, 1),
+ SR_FGT(SYS_TRCIDR8, HDFGRTR, TRCID, 1),
+ SR_FGT(SYS_TRCIDR9, HDFGRTR, TRCID, 1),
+ SR_FGT(SYS_TRCIDR10, HDFGRTR, TRCID, 1),
+ SR_FGT(SYS_TRCIDR11, HDFGRTR, TRCID, 1),
+ SR_FGT(SYS_TRCIDR12, HDFGRTR, TRCID, 1),
+ SR_FGT(SYS_TRCIDR13, HDFGRTR, TRCID, 1),
+ SR_FGT(SYS_TRCCNTVR(0), HDFGRTR, TRCCNTVRn, 1),
+ SR_FGT(SYS_TRCCNTVR(1), HDFGRTR, TRCCNTVRn, 1),
+ SR_FGT(SYS_TRCCNTVR(2), HDFGRTR, TRCCNTVRn, 1),
+ SR_FGT(SYS_TRCCNTVR(3), HDFGRTR, TRCCNTVRn, 1),
+ SR_FGT(SYS_TRCCLAIMCLR, HDFGRTR, TRCCLAIM, 1),
+ SR_FGT(SYS_TRCCLAIMSET, HDFGRTR, TRCCLAIM, 1),
+ SR_FGT(SYS_TRCAUXCTLR, HDFGRTR, TRCAUXCTLR, 1),
+ SR_FGT(SYS_TRCAUTHSTATUS, HDFGRTR, TRCAUTHSTATUS, 1),
+ SR_FGT(SYS_TRCACATR(0), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCACATR(1), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCACATR(2), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCACATR(3), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCACATR(4), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCACATR(5), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCACATR(6), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCACATR(7), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCACATR(8), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCACATR(9), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCACATR(10), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCACATR(11), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCACATR(12), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCACATR(13), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCACATR(14), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCACATR(15), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCACVR(0), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCACVR(1), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCACVR(2), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCACVR(3), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCACVR(4), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCACVR(5), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCACVR(6), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCACVR(7), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCACVR(8), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCACVR(9), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCACVR(10), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCACVR(11), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCACVR(12), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCACVR(13), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCACVR(14), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCACVR(15), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCBBCTLR, HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCCCCTLR, HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCCIDCCTLR0, HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCCIDCCTLR1, HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCCIDCVR(0), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCCIDCVR(1), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCCIDCVR(2), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCCIDCVR(3), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCCIDCVR(4), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCCIDCVR(5), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCCIDCVR(6), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCCIDCVR(7), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCCNTCTLR(0), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCCNTCTLR(1), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCCNTCTLR(2), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCCNTCTLR(3), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCCNTRLDVR(0), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCCNTRLDVR(1), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCCNTRLDVR(2), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCCNTRLDVR(3), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCCONFIGR, HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCEVENTCTL0R, HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCEVENTCTL1R, HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCEXTINSELR(0), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCEXTINSELR(1), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCEXTINSELR(2), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCEXTINSELR(3), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCQCTLR, HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCRSCTLR(2), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCRSCTLR(3), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCRSCTLR(4), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCRSCTLR(5), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCRSCTLR(6), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCRSCTLR(7), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCRSCTLR(8), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCRSCTLR(9), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCRSCTLR(10), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCRSCTLR(11), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCRSCTLR(12), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCRSCTLR(13), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCRSCTLR(14), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCRSCTLR(15), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCRSCTLR(16), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCRSCTLR(17), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCRSCTLR(18), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCRSCTLR(19), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCRSCTLR(20), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCRSCTLR(21), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCRSCTLR(22), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCRSCTLR(23), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCRSCTLR(24), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCRSCTLR(25), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCRSCTLR(26), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCRSCTLR(27), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCRSCTLR(28), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCRSCTLR(29), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCRSCTLR(30), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCRSCTLR(31), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCRSR, HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCSEQEVR(0), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCSEQEVR(1), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCSEQEVR(2), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCSEQRSTEVR, HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCSSCCR(0), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCSSCCR(1), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCSSCCR(2), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCSSCCR(3), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCSSCCR(4), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCSSCCR(5), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCSSCCR(6), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCSSCCR(7), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCSSPCICR(0), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCSSPCICR(1), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCSSPCICR(2), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCSSPCICR(3), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCSSPCICR(4), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCSSPCICR(5), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCSSPCICR(6), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCSSPCICR(7), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCSTALLCTLR, HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCSYNCPR, HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCTRACEIDR, HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCTSCTLR, HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCVIIECTLR, HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCVIPCSSCTLR, HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCVISSCTLR, HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCVMIDCCTLR0, HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCVMIDCCTLR1, HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCVMIDCVR(0), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCVMIDCVR(1), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCVMIDCVR(2), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCVMIDCVR(3), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCVMIDCVR(4), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCVMIDCVR(5), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCVMIDCVR(6), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_TRCVMIDCVR(7), HDFGRTR, TRC, 1),
+ SR_FGT(SYS_PMSLATFR_EL1, HDFGRTR, PMSLATFR_EL1, 1),
+ SR_FGT(SYS_PMSIRR_EL1, HDFGRTR, PMSIRR_EL1, 1),
+ SR_FGT(SYS_PMSIDR_EL1, HDFGRTR, PMSIDR_EL1, 1),
+ SR_FGT(SYS_PMSICR_EL1, HDFGRTR, PMSICR_EL1, 1),
+ SR_FGT(SYS_PMSFCR_EL1, HDFGRTR, PMSFCR_EL1, 1),
+ SR_FGT(SYS_PMSEVFR_EL1, HDFGRTR, PMSEVFR_EL1, 1),
+ SR_FGT(SYS_PMSCR_EL1, HDFGRTR, PMSCR_EL1, 1),
+ SR_FGT(SYS_PMBSR_EL1, HDFGRTR, PMBSR_EL1, 1),
+ SR_FGT(SYS_PMBPTR_EL1, HDFGRTR, PMBPTR_EL1, 1),
+ SR_FGT(SYS_PMBLIMITR_EL1, HDFGRTR, PMBLIMITR_EL1, 1),
+ SR_FGT(SYS_PMMIR_EL1, HDFGRTR, PMMIR_EL1, 1),
+ SR_FGT(SYS_PMSELR_EL0, HDFGRTR, PMSELR_EL0, 1),
+ SR_FGT(SYS_PMOVSCLR_EL0, HDFGRTR, PMOVS, 1),
+ SR_FGT(SYS_PMOVSSET_EL0, HDFGRTR, PMOVS, 1),
+ SR_FGT(SYS_PMINTENCLR_EL1, HDFGRTR, PMINTEN, 1),
+ SR_FGT(SYS_PMINTENSET_EL1, HDFGRTR, PMINTEN, 1),
+ SR_FGT(SYS_PMCNTENCLR_EL0, HDFGRTR, PMCNTEN, 1),
+ SR_FGT(SYS_PMCNTENSET_EL0, HDFGRTR, PMCNTEN, 1),
+ SR_FGT(SYS_PMCCNTR_EL0, HDFGRTR, PMCCNTR_EL0, 1),
+ SR_FGT(SYS_PMCCFILTR_EL0, HDFGRTR, PMCCFILTR_EL0, 1),
+ SR_FGT(SYS_PMEVTYPERn_EL0(0), HDFGRTR, PMEVTYPERn_EL0, 1),
+ SR_FGT(SYS_PMEVTYPERn_EL0(1), HDFGRTR, PMEVTYPERn_EL0, 1),
+ SR_FGT(SYS_PMEVTYPERn_EL0(2), HDFGRTR, PMEVTYPERn_EL0, 1),
+ SR_FGT(SYS_PMEVTYPERn_EL0(3), HDFGRTR, PMEVTYPERn_EL0, 1),
+ SR_FGT(SYS_PMEVTYPERn_EL0(4), HDFGRTR, PMEVTYPERn_EL0, 1),
+ SR_FGT(SYS_PMEVTYPERn_EL0(5), HDFGRTR, PMEVTYPERn_EL0, 1),
+ SR_FGT(SYS_PMEVTYPERn_EL0(6), HDFGRTR, PMEVTYPERn_EL0, 1),
+ SR_FGT(SYS_PMEVTYPERn_EL0(7), HDFGRTR, PMEVTYPERn_EL0, 1),
+ SR_FGT(SYS_PMEVTYPERn_EL0(8), HDFGRTR, PMEVTYPERn_EL0, 1),
+ SR_FGT(SYS_PMEVTYPERn_EL0(9), HDFGRTR, PMEVTYPERn_EL0, 1),
+ SR_FGT(SYS_PMEVTYPERn_EL0(10), HDFGRTR, PMEVTYPERn_EL0, 1),
+ SR_FGT(SYS_PMEVTYPERn_EL0(11), HDFGRTR, PMEVTYPERn_EL0, 1),
+ SR_FGT(SYS_PMEVTYPERn_EL0(12), HDFGRTR, PMEVTYPERn_EL0, 1),
+ SR_FGT(SYS_PMEVTYPERn_EL0(13), HDFGRTR, PMEVTYPERn_EL0, 1),
+ SR_FGT(SYS_PMEVTYPERn_EL0(14), HDFGRTR, PMEVTYPERn_EL0, 1),
+ SR_FGT(SYS_PMEVTYPERn_EL0(15), HDFGRTR, PMEVTYPERn_EL0, 1),
+ SR_FGT(SYS_PMEVTYPERn_EL0(16), HDFGRTR, PMEVTYPERn_EL0, 1),
+ SR_FGT(SYS_PMEVTYPERn_EL0(17), HDFGRTR, PMEVTYPERn_EL0, 1),
+ SR_FGT(SYS_PMEVTYPERn_EL0(18), HDFGRTR, PMEVTYPERn_EL0, 1),
+ SR_FGT(SYS_PMEVTYPERn_EL0(19), HDFGRTR, PMEVTYPERn_EL0, 1),
+ SR_FGT(SYS_PMEVTYPERn_EL0(20), HDFGRTR, PMEVTYPERn_EL0, 1),
+ SR_FGT(SYS_PMEVTYPERn_EL0(21), HDFGRTR, PMEVTYPERn_EL0, 1),
+ SR_FGT(SYS_PMEVTYPERn_EL0(22), HDFGRTR, PMEVTYPERn_EL0, 1),
+ SR_FGT(SYS_PMEVTYPERn_EL0(23), HDFGRTR, PMEVTYPERn_EL0, 1),
+ SR_FGT(SYS_PMEVTYPERn_EL0(24), HDFGRTR, PMEVTYPERn_EL0, 1),
+ SR_FGT(SYS_PMEVTYPERn_EL0(25), HDFGRTR, PMEVTYPERn_EL0, 1),
+ SR_FGT(SYS_PMEVTYPERn_EL0(26), HDFGRTR, PMEVTYPERn_EL0, 1),
+ SR_FGT(SYS_PMEVTYPERn_EL0(27), HDFGRTR, PMEVTYPERn_EL0, 1),
+ SR_FGT(SYS_PMEVTYPERn_EL0(28), HDFGRTR, PMEVTYPERn_EL0, 1),
+ SR_FGT(SYS_PMEVTYPERn_EL0(29), HDFGRTR, PMEVTYPERn_EL0, 1),
+ SR_FGT(SYS_PMEVTYPERn_EL0(30), HDFGRTR, PMEVTYPERn_EL0, 1),
+ SR_FGT(SYS_PMEVCNTRn_EL0(0), HDFGRTR, PMEVCNTRn_EL0, 1),
+ SR_FGT(SYS_PMEVCNTRn_EL0(1), HDFGRTR, PMEVCNTRn_EL0, 1),
+ SR_FGT(SYS_PMEVCNTRn_EL0(2), HDFGRTR, PMEVCNTRn_EL0, 1),
+ SR_FGT(SYS_PMEVCNTRn_EL0(3), HDFGRTR, PMEVCNTRn_EL0, 1),
+ SR_FGT(SYS_PMEVCNTRn_EL0(4), HDFGRTR, PMEVCNTRn_EL0, 1),
+ SR_FGT(SYS_PMEVCNTRn_EL0(5), HDFGRTR, PMEVCNTRn_EL0, 1),
+ SR_FGT(SYS_PMEVCNTRn_EL0(6), HDFGRTR, PMEVCNTRn_EL0, 1),
+ SR_FGT(SYS_PMEVCNTRn_EL0(7), HDFGRTR, PMEVCNTRn_EL0, 1),
+ SR_FGT(SYS_PMEVCNTRn_EL0(8), HDFGRTR, PMEVCNTRn_EL0, 1),
+ SR_FGT(SYS_PMEVCNTRn_EL0(9), HDFGRTR, PMEVCNTRn_EL0, 1),
+ SR_FGT(SYS_PMEVCNTRn_EL0(10), HDFGRTR, PMEVCNTRn_EL0, 1),
+ SR_FGT(SYS_PMEVCNTRn_EL0(11), HDFGRTR, PMEVCNTRn_EL0, 1),
+ SR_FGT(SYS_PMEVCNTRn_EL0(12), HDFGRTR, PMEVCNTRn_EL0, 1),
+ SR_FGT(SYS_PMEVCNTRn_EL0(13), HDFGRTR, PMEVCNTRn_EL0, 1),
+ SR_FGT(SYS_PMEVCNTRn_EL0(14), HDFGRTR, PMEVCNTRn_EL0, 1),
+ SR_FGT(SYS_PMEVCNTRn_EL0(15), HDFGRTR, PMEVCNTRn_EL0, 1),
+ SR_FGT(SYS_PMEVCNTRn_EL0(16), HDFGRTR, PMEVCNTRn_EL0, 1),
+ SR_FGT(SYS_PMEVCNTRn_EL0(17), HDFGRTR, PMEVCNTRn_EL0, 1),
+ SR_FGT(SYS_PMEVCNTRn_EL0(18), HDFGRTR, PMEVCNTRn_EL0, 1),
+ SR_FGT(SYS_PMEVCNTRn_EL0(19), HDFGRTR, PMEVCNTRn_EL0, 1),
+ SR_FGT(SYS_PMEVCNTRn_EL0(20), HDFGRTR, PMEVCNTRn_EL0, 1),
+ SR_FGT(SYS_PMEVCNTRn_EL0(21), HDFGRTR, PMEVCNTRn_EL0, 1),
+ SR_FGT(SYS_PMEVCNTRn_EL0(22), HDFGRTR, PMEVCNTRn_EL0, 1),
+ SR_FGT(SYS_PMEVCNTRn_EL0(23), HDFGRTR, PMEVCNTRn_EL0, 1),
+ SR_FGT(SYS_PMEVCNTRn_EL0(24), HDFGRTR, PMEVCNTRn_EL0, 1),
+ SR_FGT(SYS_PMEVCNTRn_EL0(25), HDFGRTR, PMEVCNTRn_EL0, 1),
+ SR_FGT(SYS_PMEVCNTRn_EL0(26), HDFGRTR, PMEVCNTRn_EL0, 1),
+ SR_FGT(SYS_PMEVCNTRn_EL0(27), HDFGRTR, PMEVCNTRn_EL0, 1),
+ SR_FGT(SYS_PMEVCNTRn_EL0(28), HDFGRTR, PMEVCNTRn_EL0, 1),
+ SR_FGT(SYS_PMEVCNTRn_EL0(29), HDFGRTR, PMEVCNTRn_EL0, 1),
+ SR_FGT(SYS_PMEVCNTRn_EL0(30), HDFGRTR, PMEVCNTRn_EL0, 1),
+ SR_FGT(SYS_OSDLR_EL1, HDFGRTR, OSDLR_EL1, 1),
+ SR_FGT(SYS_OSECCR_EL1, HDFGRTR, OSECCR_EL1, 1),
+ SR_FGT(SYS_OSLSR_EL1, HDFGRTR, OSLSR_EL1, 1),
+ SR_FGT(SYS_DBGPRCR_EL1, HDFGRTR, DBGPRCR_EL1, 1),
+ SR_FGT(SYS_DBGAUTHSTATUS_EL1, HDFGRTR, DBGAUTHSTATUS_EL1, 1),
+ SR_FGT(SYS_DBGCLAIMSET_EL1, HDFGRTR, DBGCLAIM, 1),
+ SR_FGT(SYS_DBGCLAIMCLR_EL1, HDFGRTR, DBGCLAIM, 1),
+ SR_FGT(SYS_MDSCR_EL1, HDFGRTR, MDSCR_EL1, 1),
+ /*
+ * The trap bits capture *64* debug registers per bit, but the
+ * ARM ARM only describes the encoding for the first 16, and
+ * we don't really support more than that anyway.
+ */
+ SR_FGT(SYS_DBGWVRn_EL1(0), HDFGRTR, DBGWVRn_EL1, 1),
+ SR_FGT(SYS_DBGWVRn_EL1(1), HDFGRTR, DBGWVRn_EL1, 1),
+ SR_FGT(SYS_DBGWVRn_EL1(2), HDFGRTR, DBGWVRn_EL1, 1),
+ SR_FGT(SYS_DBGWVRn_EL1(3), HDFGRTR, DBGWVRn_EL1, 1),
+ SR_FGT(SYS_DBGWVRn_EL1(4), HDFGRTR, DBGWVRn_EL1, 1),
+ SR_FGT(SYS_DBGWVRn_EL1(5), HDFGRTR, DBGWVRn_EL1, 1),
+ SR_FGT(SYS_DBGWVRn_EL1(6), HDFGRTR, DBGWVRn_EL1, 1),
+ SR_FGT(SYS_DBGWVRn_EL1(7), HDFGRTR, DBGWVRn_EL1, 1),
+ SR_FGT(SYS_DBGWVRn_EL1(8), HDFGRTR, DBGWVRn_EL1, 1),
+ SR_FGT(SYS_DBGWVRn_EL1(9), HDFGRTR, DBGWVRn_EL1, 1),
+ SR_FGT(SYS_DBGWVRn_EL1(10), HDFGRTR, DBGWVRn_EL1, 1),
+ SR_FGT(SYS_DBGWVRn_EL1(11), HDFGRTR, DBGWVRn_EL1, 1),
+ SR_FGT(SYS_DBGWVRn_EL1(12), HDFGRTR, DBGWVRn_EL1, 1),
+ SR_FGT(SYS_DBGWVRn_EL1(13), HDFGRTR, DBGWVRn_EL1, 1),
+ SR_FGT(SYS_DBGWVRn_EL1(14), HDFGRTR, DBGWVRn_EL1, 1),
+ SR_FGT(SYS_DBGWVRn_EL1(15), HDFGRTR, DBGWVRn_EL1, 1),
+ SR_FGT(SYS_DBGWCRn_EL1(0), HDFGRTR, DBGWCRn_EL1, 1),
+ SR_FGT(SYS_DBGWCRn_EL1(1), HDFGRTR, DBGWCRn_EL1, 1),
+ SR_FGT(SYS_DBGWCRn_EL1(2), HDFGRTR, DBGWCRn_EL1, 1),
+ SR_FGT(SYS_DBGWCRn_EL1(3), HDFGRTR, DBGWCRn_EL1, 1),
+ SR_FGT(SYS_DBGWCRn_EL1(4), HDFGRTR, DBGWCRn_EL1, 1),
+ SR_FGT(SYS_DBGWCRn_EL1(5), HDFGRTR, DBGWCRn_EL1, 1),
+ SR_FGT(SYS_DBGWCRn_EL1(6), HDFGRTR, DBGWCRn_EL1, 1),
+ SR_FGT(SYS_DBGWCRn_EL1(7), HDFGRTR, DBGWCRn_EL1, 1),
+ SR_FGT(SYS_DBGWCRn_EL1(8), HDFGRTR, DBGWCRn_EL1, 1),
+ SR_FGT(SYS_DBGWCRn_EL1(9), HDFGRTR, DBGWCRn_EL1, 1),
+ SR_FGT(SYS_DBGWCRn_EL1(10), HDFGRTR, DBGWCRn_EL1, 1),
+ SR_FGT(SYS_DBGWCRn_EL1(11), HDFGRTR, DBGWCRn_EL1, 1),
+ SR_FGT(SYS_DBGWCRn_EL1(12), HDFGRTR, DBGWCRn_EL1, 1),
+ SR_FGT(SYS_DBGWCRn_EL1(13), HDFGRTR, DBGWCRn_EL1, 1),
+ SR_FGT(SYS_DBGWCRn_EL1(14), HDFGRTR, DBGWCRn_EL1, 1),
+ SR_FGT(SYS_DBGWCRn_EL1(15), HDFGRTR, DBGWCRn_EL1, 1),
+ SR_FGT(SYS_DBGBVRn_EL1(0), HDFGRTR, DBGBVRn_EL1, 1),
+ SR_FGT(SYS_DBGBVRn_EL1(1), HDFGRTR, DBGBVRn_EL1, 1),
+ SR_FGT(SYS_DBGBVRn_EL1(2), HDFGRTR, DBGBVRn_EL1, 1),
+ SR_FGT(SYS_DBGBVRn_EL1(3), HDFGRTR, DBGBVRn_EL1, 1),
+ SR_FGT(SYS_DBGBVRn_EL1(4), HDFGRTR, DBGBVRn_EL1, 1),
+ SR_FGT(SYS_DBGBVRn_EL1(5), HDFGRTR, DBGBVRn_EL1, 1),
+ SR_FGT(SYS_DBGBVRn_EL1(6), HDFGRTR, DBGBVRn_EL1, 1),
+ SR_FGT(SYS_DBGBVRn_EL1(7), HDFGRTR, DBGBVRn_EL1, 1),
+ SR_FGT(SYS_DBGBVRn_EL1(8), HDFGRTR, DBGBVRn_EL1, 1),
+ SR_FGT(SYS_DBGBVRn_EL1(9), HDFGRTR, DBGBVRn_EL1, 1),
+ SR_FGT(SYS_DBGBVRn_EL1(10), HDFGRTR, DBGBVRn_EL1, 1),
+ SR_FGT(SYS_DBGBVRn_EL1(11), HDFGRTR, DBGBVRn_EL1, 1),
+ SR_FGT(SYS_DBGBVRn_EL1(12), HDFGRTR, DBGBVRn_EL1, 1),
+ SR_FGT(SYS_DBGBVRn_EL1(13), HDFGRTR, DBGBVRn_EL1, 1),
+ SR_FGT(SYS_DBGBVRn_EL1(14), HDFGRTR, DBGBVRn_EL1, 1),
+ SR_FGT(SYS_DBGBVRn_EL1(15), HDFGRTR, DBGBVRn_EL1, 1),
+ SR_FGT(SYS_DBGBCRn_EL1(0), HDFGRTR, DBGBCRn_EL1, 1),
+ SR_FGT(SYS_DBGBCRn_EL1(1), HDFGRTR, DBGBCRn_EL1, 1),
+ SR_FGT(SYS_DBGBCRn_EL1(2), HDFGRTR, DBGBCRn_EL1, 1),
+ SR_FGT(SYS_DBGBCRn_EL1(3), HDFGRTR, DBGBCRn_EL1, 1),
+ SR_FGT(SYS_DBGBCRn_EL1(4), HDFGRTR, DBGBCRn_EL1, 1),
+ SR_FGT(SYS_DBGBCRn_EL1(5), HDFGRTR, DBGBCRn_EL1, 1),
+ SR_FGT(SYS_DBGBCRn_EL1(6), HDFGRTR, DBGBCRn_EL1, 1),
+ SR_FGT(SYS_DBGBCRn_EL1(7), HDFGRTR, DBGBCRn_EL1, 1),
+ SR_FGT(SYS_DBGBCRn_EL1(8), HDFGRTR, DBGBCRn_EL1, 1),
+ SR_FGT(SYS_DBGBCRn_EL1(9), HDFGRTR, DBGBCRn_EL1, 1),
+ SR_FGT(SYS_DBGBCRn_EL1(10), HDFGRTR, DBGBCRn_EL1, 1),
+ SR_FGT(SYS_DBGBCRn_EL1(11), HDFGRTR, DBGBCRn_EL1, 1),
+ SR_FGT(SYS_DBGBCRn_EL1(12), HDFGRTR, DBGBCRn_EL1, 1),
+ SR_FGT(SYS_DBGBCRn_EL1(13), HDFGRTR, DBGBCRn_EL1, 1),
+ SR_FGT(SYS_DBGBCRn_EL1(14), HDFGRTR, DBGBCRn_EL1, 1),
+ SR_FGT(SYS_DBGBCRn_EL1(15), HDFGRTR, DBGBCRn_EL1, 1),
+ /*
+ * HDFGWTR_EL2
+ *
+ * Although HDFGRTR_EL2 and HDFGWTR_EL2 registers largely
+ * overlap in their bit assignment, there are a number of bits
+ * that are RES0 on one side, and an actual trap bit on the
+ * other. The policy chosen here is to describe all the
+ * read-side mappings, and only the write-side mappings that
+ * differ from the read side, and the trap handler will pick
+ * the correct shadow register based on the access type.
+ */
+ SR_FGT(SYS_TRFCR_EL1, HDFGWTR, TRFCR_EL1, 1),
+ SR_FGT(SYS_TRCOSLAR, HDFGWTR, TRCOSLAR, 1),
+ SR_FGT(SYS_PMCR_EL0, HDFGWTR, PMCR_EL0, 1),
+ SR_FGT(SYS_PMSWINC_EL0, HDFGWTR, PMSWINC_EL0, 1),
+ SR_FGT(SYS_OSLAR_EL1, HDFGWTR, OSLAR_EL1, 1),
+};
+
+static union trap_config get_trap_config(u32 sysreg)
+{
+ return (union trap_config) {
+ .val = xa_to_value(xa_load(&sr_forward_xa, sysreg)),
+ };
+}
+
+static __init void print_nv_trap_error(const struct encoding_to_trap_config *tc,
+ const char *type, int err)
+{
+ kvm_err("%s line %d encoding range "
+ "(%d, %d, %d, %d, %d) - (%d, %d, %d, %d, %d) (err=%d)\n",
+ type, tc->line,
+ sys_reg_Op0(tc->encoding), sys_reg_Op1(tc->encoding),
+ sys_reg_CRn(tc->encoding), sys_reg_CRm(tc->encoding),
+ sys_reg_Op2(tc->encoding),
+ sys_reg_Op0(tc->end), sys_reg_Op1(tc->end),
+ sys_reg_CRn(tc->end), sys_reg_CRm(tc->end),
+ sys_reg_Op2(tc->end),
+ err);
+}
+
+int __init populate_nv_trap_config(void)
+{
+ int ret = 0;
+
+ BUILD_BUG_ON(sizeof(union trap_config) != sizeof(void *));
+ BUILD_BUG_ON(__NR_CGT_GROUP_IDS__ > BIT(TC_CGT_BITS));
+ BUILD_BUG_ON(__NR_FGT_GROUP_IDS__ > BIT(TC_FGT_BITS));
+ BUILD_BUG_ON(__NR_FG_FILTER_IDS__ > BIT(TC_FGF_BITS));
+
+ for (int i = 0; i < ARRAY_SIZE(encoding_to_cgt); i++) {
+ const struct encoding_to_trap_config *cgt = &encoding_to_cgt[i];
+ void *prev;
+
+ if (cgt->tc.val & BIT(63)) {
+ kvm_err("CGT[%d] has MBZ bit set\n", i);
+ ret = -EINVAL;
+ }
+
+ if (cgt->encoding != cgt->end) {
+ prev = xa_store_range(&sr_forward_xa,
+ cgt->encoding, cgt->end,
+ xa_mk_value(cgt->tc.val),
+ GFP_KERNEL);
+ } else {
+ prev = xa_store(&sr_forward_xa, cgt->encoding,
+ xa_mk_value(cgt->tc.val), GFP_KERNEL);
+ if (prev && !xa_is_err(prev)) {
+ ret = -EINVAL;
+ print_nv_trap_error(cgt, "Duplicate CGT", ret);
+ }
+ }
+
+ if (xa_is_err(prev)) {
+ ret = xa_err(prev);
+ print_nv_trap_error(cgt, "Failed CGT insertion", ret);
+ }
+ }
+
+ kvm_info("nv: %ld coarse grained trap handlers\n",
+ ARRAY_SIZE(encoding_to_cgt));
+
+ if (!cpus_have_final_cap(ARM64_HAS_FGT))
+ goto check_mcb;
+
+ for (int i = 0; i < ARRAY_SIZE(encoding_to_fgt); i++) {
+ const struct encoding_to_trap_config *fgt = &encoding_to_fgt[i];
+ union trap_config tc;
+
+ if (fgt->tc.fgt >= __NR_FGT_GROUP_IDS__) {
+ ret = -EINVAL;
+ print_nv_trap_error(fgt, "Invalid FGT", ret);
+ }
+
+ tc = get_trap_config(fgt->encoding);
+
+ if (tc.fgt) {
+ ret = -EINVAL;
+ print_nv_trap_error(fgt, "Duplicate FGT", ret);
+ }
+
+ tc.val |= fgt->tc.val;
+ xa_store(&sr_forward_xa, fgt->encoding,
+ xa_mk_value(tc.val), GFP_KERNEL);
+ }
+
+ kvm_info("nv: %ld fine grained trap handlers\n",
+ ARRAY_SIZE(encoding_to_fgt));
+
+check_mcb:
+ for (int id = __MULTIPLE_CONTROL_BITS__; id < __COMPLEX_CONDITIONS__; id++) {
+ const enum cgt_group_id *cgids;
+
+ cgids = coarse_control_combo[id - __MULTIPLE_CONTROL_BITS__];
+
+ for (int i = 0; cgids[i] != __RESERVED__; i++) {
+ if (cgids[i] >= __MULTIPLE_CONTROL_BITS__) {
+ kvm_err("Recursive MCB %d/%d\n", id, cgids[i]);
+ ret = -EINVAL;
+ }
+ }
+ }
+
+ if (ret)
+ xa_destroy(&sr_forward_xa);
+
+ return ret;
+}
+
+static enum trap_behaviour get_behaviour(struct kvm_vcpu *vcpu,
+ const struct trap_bits *tb)
+{
+ enum trap_behaviour b = BEHAVE_HANDLE_LOCALLY;
+ u64 val;
+
+ val = __vcpu_sys_reg(vcpu, tb->index);
+ if ((val & tb->mask) == tb->value)
+ b |= tb->behaviour;
+
+ return b;
+}
+
+static enum trap_behaviour __compute_trap_behaviour(struct kvm_vcpu *vcpu,
+ const enum cgt_group_id id,
+ enum trap_behaviour b)
+{
+ switch (id) {
+ const enum cgt_group_id *cgids;
+
+ case __RESERVED__ ... __MULTIPLE_CONTROL_BITS__ - 1:
+ if (likely(id != __RESERVED__))
+ b |= get_behaviour(vcpu, &coarse_trap_bits[id]);
+ break;
+ case __MULTIPLE_CONTROL_BITS__ ... __COMPLEX_CONDITIONS__ - 1:
+ /* Yes, this is recursive. Don't do anything stupid. */
+ cgids = coarse_control_combo[id - __MULTIPLE_CONTROL_BITS__];
+ for (int i = 0; cgids[i] != __RESERVED__; i++)
+ b |= __compute_trap_behaviour(vcpu, cgids[i], b);
+ break;
+ default:
+ if (ARRAY_SIZE(ccc))
+ b |= ccc[id - __COMPLEX_CONDITIONS__](vcpu);
+ break;
+ }
+
+ return b;
+}
+
+static enum trap_behaviour compute_trap_behaviour(struct kvm_vcpu *vcpu,
+ const union trap_config tc)
+{
+ enum trap_behaviour b = BEHAVE_HANDLE_LOCALLY;
+
+ return __compute_trap_behaviour(vcpu, tc.cgt, b);
+}
+
+static bool check_fgt_bit(u64 val, const union trap_config tc)
+{
+ return ((val >> tc.bit) & 1) == tc.pol;
+}
+
+#define sanitised_sys_reg(vcpu, reg) \
+ ({ \
+ u64 __val; \
+ __val = __vcpu_sys_reg(vcpu, reg); \
+ __val &= ~__ ## reg ## _RES0; \
+ (__val); \
+ })
+
+bool __check_nv_sr_forward(struct kvm_vcpu *vcpu)
+{
+ union trap_config tc;
+ enum trap_behaviour b;
+ bool is_read;
+ u32 sysreg;
+ u64 esr, val;
+
+ if (!vcpu_has_nv(vcpu) || is_hyp_ctxt(vcpu))
+ return false;
+
+ esr = kvm_vcpu_get_esr(vcpu);
+ sysreg = esr_sys64_to_sysreg(esr);
+ is_read = (esr & ESR_ELx_SYS64_ISS_DIR_MASK) == ESR_ELx_SYS64_ISS_DIR_READ;
+
+ tc = get_trap_config(sysreg);
+
+ /*
+ * A value of 0 for the whole entry means that we know nothing
+ * for this sysreg, and that it cannot be re-injected into the
+ * nested hypervisor. In this situation, let's cut it short.
+ *
+ * Note that ultimately, we could also make use of the xarray
+ * to store the index of the sysreg in the local descriptor
+ * array, avoiding another search... Hint, hint...
+ */
+ if (!tc.val)
+ return false;
+
+ switch ((enum fgt_group_id)tc.fgt) {
+ case __NO_FGT_GROUP__:
+ break;
+
+ case HFGxTR_GROUP:
+ if (is_read)
+ val = sanitised_sys_reg(vcpu, HFGRTR_EL2);
+ else
+ val = sanitised_sys_reg(vcpu, HFGWTR_EL2);
+ break;
+
+ case HDFGRTR_GROUP:
+ case HDFGWTR_GROUP:
+ if (is_read)
+ val = sanitised_sys_reg(vcpu, HDFGRTR_EL2);
+ else
+ val = sanitised_sys_reg(vcpu, HDFGWTR_EL2);
+ break;
+
+ case HFGITR_GROUP:
+ val = sanitised_sys_reg(vcpu, HFGITR_EL2);
+ switch (tc.fgf) {
+ u64 tmp;
+
+ case __NO_FGF__:
+ break;
+
+ case HCRX_FGTnXS:
+ tmp = sanitised_sys_reg(vcpu, HCRX_EL2);
+ if (tmp & HCRX_EL2_FGTnXS)
+ tc.fgt = __NO_FGT_GROUP__;
+ }
+ break;
+
+ case __NR_FGT_GROUP_IDS__:
+ /* Something is really wrong, bail out */
+ WARN_ONCE(1, "__NR_FGT_GROUP_IDS__");
+ return false;
+ }
+
+ if (tc.fgt != __NO_FGT_GROUP__ && check_fgt_bit(val, tc))
+ goto inject;
+
+ b = compute_trap_behaviour(vcpu, tc);
+
+ if (((b & BEHAVE_FORWARD_READ) && is_read) ||
+ ((b & BEHAVE_FORWARD_WRITE) && !is_read))
+ goto inject;
+
+ return false;
+
+inject:
+ trace_kvm_forward_sysreg_trap(vcpu, sysreg, is_read);
+
+ kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
+ return true;
+}
+
+static u64 kvm_check_illegal_exception_return(struct kvm_vcpu *vcpu, u64 spsr)
+{
+ u64 mode = spsr & PSR_MODE_MASK;
+
+ /*
+ * Possible causes for an Illegal Exception Return from EL2:
+ * - trying to return to EL3
+ * - trying to return to an illegal M value
+ * - trying to return to a 32bit EL
+ * - trying to return to EL1 with HCR_EL2.TGE set
+ */
+ if (mode == PSR_MODE_EL3t || mode == PSR_MODE_EL3h ||
+ mode == 0b00001 || (mode & BIT(1)) ||
+ (spsr & PSR_MODE32_BIT) ||
+ (vcpu_el2_tge_is_set(vcpu) && (mode == PSR_MODE_EL1t ||
+ mode == PSR_MODE_EL1h))) {
+ /*
+ * The guest is playing with our nerves. Preserve EL, SP,
+ * masks, flags from the existing PSTATE, and set IL.
+ * The HW will then generate an Illegal State Exception
+ * immediately after ERET.
+ */
+ spsr = *vcpu_cpsr(vcpu);
+
+ spsr &= (PSR_D_BIT | PSR_A_BIT | PSR_I_BIT | PSR_F_BIT |
+ PSR_N_BIT | PSR_Z_BIT | PSR_C_BIT | PSR_V_BIT |
+ PSR_MODE_MASK | PSR_MODE32_BIT);
+ spsr |= PSR_IL_BIT;
+ }
+
+ return spsr;
+}
+
+void kvm_emulate_nested_eret(struct kvm_vcpu *vcpu)
+{
+ u64 spsr, elr, mode;
+ bool direct_eret;
+
+ /*
+ * Going through the whole put/load motions is a waste of time
+ * if this is a VHE guest hypervisor returning to its own
+ * userspace, or the hypervisor performing a local exception
+ * return. No need to save/restore registers, no need to
+ * switch S2 MMU. Just do the canonical ERET.
+ */
+ spsr = vcpu_read_sys_reg(vcpu, SPSR_EL2);
+ spsr = kvm_check_illegal_exception_return(vcpu, spsr);
+
+ mode = spsr & (PSR_MODE_MASK | PSR_MODE32_BIT);
+
+ direct_eret = (mode == PSR_MODE_EL0t &&
+ vcpu_el2_e2h_is_set(vcpu) &&
+ vcpu_el2_tge_is_set(vcpu));
+ direct_eret |= (mode == PSR_MODE_EL2h || mode == PSR_MODE_EL2t);
+
+ if (direct_eret) {
+ *vcpu_pc(vcpu) = vcpu_read_sys_reg(vcpu, ELR_EL2);
+ *vcpu_cpsr(vcpu) = spsr;
+ trace_kvm_nested_eret(vcpu, *vcpu_pc(vcpu), spsr);
+ return;
+ }
+
+ preempt_disable();
+ kvm_arch_vcpu_put(vcpu);
+
+ elr = __vcpu_sys_reg(vcpu, ELR_EL2);
+
+ trace_kvm_nested_eret(vcpu, elr, spsr);
+
+ /*
+ * Note that the current exception level is always the virtual EL2,
+ * since we set HCR_EL2.NV bit only when entering the virtual EL2.
+ */
+ *vcpu_pc(vcpu) = elr;
+ *vcpu_cpsr(vcpu) = spsr;
+
+ kvm_arch_vcpu_load(vcpu, smp_processor_id());
+ preempt_enable();
+}
+
+static void kvm_inject_el2_exception(struct kvm_vcpu *vcpu, u64 esr_el2,
+ enum exception_type type)
+{
+ trace_kvm_inject_nested_exception(vcpu, esr_el2, type);
+
+ switch (type) {
+ case except_type_sync:
+ kvm_pend_exception(vcpu, EXCEPT_AA64_EL2_SYNC);
+ vcpu_write_sys_reg(vcpu, esr_el2, ESR_EL2);
+ break;
+ case except_type_irq:
+ kvm_pend_exception(vcpu, EXCEPT_AA64_EL2_IRQ);
+ break;
+ default:
+ WARN_ONCE(1, "Unsupported EL2 exception injection %d\n", type);
+ }
+}
+
+/*
+ * Emulate taking an exception to EL2.
+ * See ARM ARM J8.1.2 AArch64.TakeException()
+ */
+static int kvm_inject_nested(struct kvm_vcpu *vcpu, u64 esr_el2,
+ enum exception_type type)
+{
+ u64 pstate, mode;
+ bool direct_inject;
+
+ if (!vcpu_has_nv(vcpu)) {
+ kvm_err("Unexpected call to %s for the non-nesting configuration\n",
+ __func__);
+ return -EINVAL;
+ }
+
+ /*
+ * As for ERET, we can avoid doing too much on the injection path by
+ * checking that we either took the exception from a VHE host
+ * userspace or from vEL2. In these cases, there is no change in
+ * translation regime (or anything else), so let's do as little as
+ * possible.
+ */
+ pstate = *vcpu_cpsr(vcpu);
+ mode = pstate & (PSR_MODE_MASK | PSR_MODE32_BIT);
+
+ direct_inject = (mode == PSR_MODE_EL0t &&
+ vcpu_el2_e2h_is_set(vcpu) &&
+ vcpu_el2_tge_is_set(vcpu));
+ direct_inject |= (mode == PSR_MODE_EL2h || mode == PSR_MODE_EL2t);
+
+ if (direct_inject) {
+ kvm_inject_el2_exception(vcpu, esr_el2, type);
+ return 1;
+ }
+
+ preempt_disable();
+
+ /*
+ * We may have an exception or PC update in the EL0/EL1 context.
+ * Commit it before entering EL2.
+ */
+ __kvm_adjust_pc(vcpu);
+
+ kvm_arch_vcpu_put(vcpu);
+
+ kvm_inject_el2_exception(vcpu, esr_el2, type);
+
+ /*
+ * A hard requirement is that a switch between EL1 and EL2
+ * contexts has to happen between a put/load, so that we can
+ * pick the correct timer and interrupt configuration, among
+ * other things.
+ *
+ * Make sure the exception actually took place before we load
+ * the new context.
+ */
+ __kvm_adjust_pc(vcpu);
+
+ kvm_arch_vcpu_load(vcpu, smp_processor_id());
+ preempt_enable();
+
+ return 1;
+}
+
+int kvm_inject_nested_sync(struct kvm_vcpu *vcpu, u64 esr_el2)
+{
+ return kvm_inject_nested(vcpu, esr_el2, except_type_sync);
+}
+
+int kvm_inject_nested_irq(struct kvm_vcpu *vcpu)
+{
+ /*
+ * Do not inject an irq if the:
+ * - Current exception level is EL2, and
+ * - virtual HCR_EL2.TGE == 0
+ * - virtual HCR_EL2.IMO == 0
+ *
+ * See Table D1-17 "Physical interrupt target and masking when EL3 is
+ * not implemented and EL2 is implemented" in ARM DDI 0487C.a.
+ */
+
+ if (vcpu_is_el2(vcpu) && !vcpu_el2_tge_is_set(vcpu) &&
+ !(__vcpu_sys_reg(vcpu, HCR_EL2) & HCR_IMO))
+ return 1;
+
+ /* esr_el2 value doesn't matter for exits due to irqs. */
+ return kvm_inject_nested(vcpu, 0, except_type_irq);
+}
diff --git a/arch/arm64/kvm/fpsimd.c b/arch/arm64/kvm/fpsimd.c
new file mode 100644
index 0000000000..8c1d0d4853
--- /dev/null
+++ b/arch/arm64/kvm/fpsimd.c
@@ -0,0 +1,224 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * arch/arm64/kvm/fpsimd.c: Guest/host FPSIMD context coordination helpers
+ *
+ * Copyright 2018 Arm Limited
+ * Author: Dave Martin <Dave.Martin@arm.com>
+ */
+#include <linux/irqflags.h>
+#include <linux/sched.h>
+#include <linux/kvm_host.h>
+#include <asm/fpsimd.h>
+#include <asm/kvm_asm.h>
+#include <asm/kvm_hyp.h>
+#include <asm/kvm_mmu.h>
+#include <asm/sysreg.h>
+
+void kvm_vcpu_unshare_task_fp(struct kvm_vcpu *vcpu)
+{
+ struct task_struct *p = vcpu->arch.parent_task;
+ struct user_fpsimd_state *fpsimd;
+
+ if (!is_protected_kvm_enabled() || !p)
+ return;
+
+ fpsimd = &p->thread.uw.fpsimd_state;
+ kvm_unshare_hyp(fpsimd, fpsimd + 1);
+ put_task_struct(p);
+}
+
+/*
+ * Called on entry to KVM_RUN unless this vcpu previously ran at least
+ * once and the most recent prior KVM_RUN for this vcpu was called from
+ * the same task as current (highly likely).
+ *
+ * This is guaranteed to execute before kvm_arch_vcpu_load_fp(vcpu),
+ * such that on entering hyp the relevant parts of current are already
+ * mapped.
+ */
+int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu)
+{
+ int ret;
+
+ struct user_fpsimd_state *fpsimd = &current->thread.uw.fpsimd_state;
+
+ kvm_vcpu_unshare_task_fp(vcpu);
+
+ /* Make sure the host task fpsimd state is visible to hyp: */
+ ret = kvm_share_hyp(fpsimd, fpsimd + 1);
+ if (ret)
+ return ret;
+
+ vcpu->arch.host_fpsimd_state = kern_hyp_va(fpsimd);
+
+ /*
+ * We need to keep current's task_struct pinned until its data has been
+ * unshared with the hypervisor to make sure it is not re-used by the
+ * kernel and donated to someone else while already shared -- see
+ * kvm_vcpu_unshare_task_fp() for the matching put_task_struct().
+ */
+ if (is_protected_kvm_enabled()) {
+ get_task_struct(current);
+ vcpu->arch.parent_task = current;
+ }
+
+ return 0;
+}
+
+/*
+ * Prepare vcpu for saving the host's FPSIMD state and loading the guest's.
+ * The actual loading is done by the FPSIMD access trap taken to hyp.
+ *
+ * Here, we just set the correct metadata to indicate that the FPSIMD
+ * state in the cpu regs (if any) belongs to current on the host.
+ */
+void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu)
+{
+ BUG_ON(!current->mm);
+
+ if (!system_supports_fpsimd())
+ return;
+
+ fpsimd_kvm_prepare();
+
+ /*
+ * We will check TIF_FOREIGN_FPSTATE just before entering the
+ * guest in kvm_arch_vcpu_ctxflush_fp() and override this to
+ * FP_STATE_FREE if the flag set.
+ */
+ vcpu->arch.fp_state = FP_STATE_HOST_OWNED;
+
+ vcpu_clear_flag(vcpu, HOST_SVE_ENABLED);
+ if (read_sysreg(cpacr_el1) & CPACR_EL1_ZEN_EL0EN)
+ vcpu_set_flag(vcpu, HOST_SVE_ENABLED);
+
+ if (system_supports_sme()) {
+ vcpu_clear_flag(vcpu, HOST_SME_ENABLED);
+ if (read_sysreg(cpacr_el1) & CPACR_EL1_SMEN_EL0EN)
+ vcpu_set_flag(vcpu, HOST_SME_ENABLED);
+
+ /*
+ * If PSTATE.SM is enabled then save any pending FP
+ * state and disable PSTATE.SM. If we leave PSTATE.SM
+ * enabled and the guest does not enable SME via
+ * CPACR_EL1.SMEN then operations that should be valid
+ * may generate SME traps from EL1 to EL1 which we
+ * can't intercept and which would confuse the guest.
+ *
+ * Do the same for PSTATE.ZA in the case where there
+ * is state in the registers which has not already
+ * been saved, this is very unlikely to happen.
+ */
+ if (read_sysreg_s(SYS_SVCR) & (SVCR_SM_MASK | SVCR_ZA_MASK)) {
+ vcpu->arch.fp_state = FP_STATE_FREE;
+ fpsimd_save_and_flush_cpu_state();
+ }
+ }
+}
+
+/*
+ * Called just before entering the guest once we are no longer preemptable
+ * and interrupts are disabled. If we have managed to run anything using
+ * FP while we were preemptible (such as off the back of an interrupt),
+ * then neither the host nor the guest own the FP hardware (and it was the
+ * responsibility of the code that used FP to save the existing state).
+ */
+void kvm_arch_vcpu_ctxflush_fp(struct kvm_vcpu *vcpu)
+{
+ if (test_thread_flag(TIF_FOREIGN_FPSTATE))
+ vcpu->arch.fp_state = FP_STATE_FREE;
+}
+
+/*
+ * Called just after exiting the guest. If the guest FPSIMD state
+ * was loaded, update the host's context tracking data mark the CPU
+ * FPSIMD regs as dirty and belonging to vcpu so that they will be
+ * written back if the kernel clobbers them due to kernel-mode NEON
+ * before re-entry into the guest.
+ */
+void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu)
+{
+ struct cpu_fp_state fp_state;
+
+ WARN_ON_ONCE(!irqs_disabled());
+
+ if (vcpu->arch.fp_state == FP_STATE_GUEST_OWNED) {
+
+ /*
+ * Currently we do not support SME guests so SVCR is
+ * always 0 and we just need a variable to point to.
+ */
+ fp_state.st = &vcpu->arch.ctxt.fp_regs;
+ fp_state.sve_state = vcpu->arch.sve_state;
+ fp_state.sve_vl = vcpu->arch.sve_max_vl;
+ fp_state.sme_state = NULL;
+ fp_state.svcr = &vcpu->arch.svcr;
+ fp_state.fp_type = &vcpu->arch.fp_type;
+
+ if (vcpu_has_sve(vcpu))
+ fp_state.to_save = FP_STATE_SVE;
+ else
+ fp_state.to_save = FP_STATE_FPSIMD;
+
+ fpsimd_bind_state_to_cpu(&fp_state);
+
+ clear_thread_flag(TIF_FOREIGN_FPSTATE);
+ }
+}
+
+/*
+ * Write back the vcpu FPSIMD regs if they are dirty, and invalidate the
+ * cpu FPSIMD regs so that they can't be spuriously reused if this vcpu
+ * disappears and another task or vcpu appears that recycles the same
+ * struct fpsimd_state.
+ */
+void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu)
+{
+ unsigned long flags;
+
+ local_irq_save(flags);
+
+ /*
+ * If we have VHE then the Hyp code will reset CPACR_EL1 to
+ * the default value and we need to reenable SME.
+ */
+ if (has_vhe() && system_supports_sme()) {
+ /* Also restore EL0 state seen on entry */
+ if (vcpu_get_flag(vcpu, HOST_SME_ENABLED))
+ sysreg_clear_set(CPACR_EL1, 0,
+ CPACR_EL1_SMEN_EL0EN |
+ CPACR_EL1_SMEN_EL1EN);
+ else
+ sysreg_clear_set(CPACR_EL1,
+ CPACR_EL1_SMEN_EL0EN,
+ CPACR_EL1_SMEN_EL1EN);
+ isb();
+ }
+
+ if (vcpu->arch.fp_state == FP_STATE_GUEST_OWNED) {
+ if (vcpu_has_sve(vcpu)) {
+ __vcpu_sys_reg(vcpu, ZCR_EL1) = read_sysreg_el1(SYS_ZCR);
+
+ /* Restore the VL that was saved when bound to the CPU */
+ if (!has_vhe())
+ sve_cond_update_zcr_vq(vcpu_sve_max_vq(vcpu) - 1,
+ SYS_ZCR_EL1);
+ }
+
+ fpsimd_save_and_flush_cpu_state();
+ } else if (has_vhe() && system_supports_sve()) {
+ /*
+ * The FPSIMD/SVE state in the CPU has not been touched, and we
+ * have SVE (and VHE): CPACR_EL1 (alias CPTR_EL2) has been
+ * reset by kvm_reset_cptr_el2() in the Hyp code, disabling SVE
+ * for EL0. To avoid spurious traps, restore the trap state
+ * seen by kvm_arch_vcpu_load_fp():
+ */
+ if (vcpu_get_flag(vcpu, HOST_SVE_ENABLED))
+ sysreg_clear_set(CPACR_EL1, 0, CPACR_EL1_ZEN_EL0EN);
+ else
+ sysreg_clear_set(CPACR_EL1, CPACR_EL1_ZEN_EL0EN, 0);
+ }
+
+ local_irq_restore(flags);
+}
diff --git a/arch/arm64/kvm/guest.c b/arch/arm64/kvm/guest.c
new file mode 100644
index 0000000000..a1710e5fa7
--- /dev/null
+++ b/arch/arm64/kvm/guest.c
@@ -0,0 +1,1106 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2012,2013 - ARM Ltd
+ * Author: Marc Zyngier <marc.zyngier@arm.com>
+ *
+ * Derived from arch/arm/kvm/guest.c:
+ * Copyright (C) 2012 - Virtual Open Systems and Columbia University
+ * Author: Christoffer Dall <c.dall@virtualopensystems.com>
+ */
+
+#include <linux/bits.h>
+#include <linux/errno.h>
+#include <linux/err.h>
+#include <linux/nospec.h>
+#include <linux/kvm_host.h>
+#include <linux/module.h>
+#include <linux/stddef.h>
+#include <linux/string.h>
+#include <linux/vmalloc.h>
+#include <linux/fs.h>
+#include <kvm/arm_hypercalls.h>
+#include <asm/cputype.h>
+#include <linux/uaccess.h>
+#include <asm/fpsimd.h>
+#include <asm/kvm.h>
+#include <asm/kvm_emulate.h>
+#include <asm/kvm_nested.h>
+#include <asm/sigcontext.h>
+
+#include "trace.h"
+
+const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
+ KVM_GENERIC_VM_STATS()
+};
+
+const struct kvm_stats_header kvm_vm_stats_header = {
+ .name_size = KVM_STATS_NAME_SIZE,
+ .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
+ .id_offset = sizeof(struct kvm_stats_header),
+ .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
+ .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
+ sizeof(kvm_vm_stats_desc),
+};
+
+const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
+ KVM_GENERIC_VCPU_STATS(),
+ STATS_DESC_COUNTER(VCPU, hvc_exit_stat),
+ STATS_DESC_COUNTER(VCPU, wfe_exit_stat),
+ STATS_DESC_COUNTER(VCPU, wfi_exit_stat),
+ STATS_DESC_COUNTER(VCPU, mmio_exit_user),
+ STATS_DESC_COUNTER(VCPU, mmio_exit_kernel),
+ STATS_DESC_COUNTER(VCPU, signal_exits),
+ STATS_DESC_COUNTER(VCPU, exits)
+};
+
+const struct kvm_stats_header kvm_vcpu_stats_header = {
+ .name_size = KVM_STATS_NAME_SIZE,
+ .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
+ .id_offset = sizeof(struct kvm_stats_header),
+ .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
+ .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
+ sizeof(kvm_vcpu_stats_desc),
+};
+
+static bool core_reg_offset_is_vreg(u64 off)
+{
+ return off >= KVM_REG_ARM_CORE_REG(fp_regs.vregs) &&
+ off < KVM_REG_ARM_CORE_REG(fp_regs.fpsr);
+}
+
+static u64 core_reg_offset_from_id(u64 id)
+{
+ return id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE);
+}
+
+static int core_reg_size_from_offset(const struct kvm_vcpu *vcpu, u64 off)
+{
+ int size;
+
+ switch (off) {
+ case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
+ KVM_REG_ARM_CORE_REG(regs.regs[30]):
+ case KVM_REG_ARM_CORE_REG(regs.sp):
+ case KVM_REG_ARM_CORE_REG(regs.pc):
+ case KVM_REG_ARM_CORE_REG(regs.pstate):
+ case KVM_REG_ARM_CORE_REG(sp_el1):
+ case KVM_REG_ARM_CORE_REG(elr_el1):
+ case KVM_REG_ARM_CORE_REG(spsr[0]) ...
+ KVM_REG_ARM_CORE_REG(spsr[KVM_NR_SPSR - 1]):
+ size = sizeof(__u64);
+ break;
+
+ case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
+ KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
+ size = sizeof(__uint128_t);
+ break;
+
+ case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
+ case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
+ size = sizeof(__u32);
+ break;
+
+ default:
+ return -EINVAL;
+ }
+
+ if (!IS_ALIGNED(off, size / sizeof(__u32)))
+ return -EINVAL;
+
+ /*
+ * The KVM_REG_ARM64_SVE regs must be used instead of
+ * KVM_REG_ARM_CORE for accessing the FPSIMD V-registers on
+ * SVE-enabled vcpus:
+ */
+ if (vcpu_has_sve(vcpu) && core_reg_offset_is_vreg(off))
+ return -EINVAL;
+
+ return size;
+}
+
+static void *core_reg_addr(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
+{
+ u64 off = core_reg_offset_from_id(reg->id);
+ int size = core_reg_size_from_offset(vcpu, off);
+
+ if (size < 0)
+ return NULL;
+
+ if (KVM_REG_SIZE(reg->id) != size)
+ return NULL;
+
+ switch (off) {
+ case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
+ KVM_REG_ARM_CORE_REG(regs.regs[30]):
+ off -= KVM_REG_ARM_CORE_REG(regs.regs[0]);
+ off /= 2;
+ return &vcpu->arch.ctxt.regs.regs[off];
+
+ case KVM_REG_ARM_CORE_REG(regs.sp):
+ return &vcpu->arch.ctxt.regs.sp;
+
+ case KVM_REG_ARM_CORE_REG(regs.pc):
+ return &vcpu->arch.ctxt.regs.pc;
+
+ case KVM_REG_ARM_CORE_REG(regs.pstate):
+ return &vcpu->arch.ctxt.regs.pstate;
+
+ case KVM_REG_ARM_CORE_REG(sp_el1):
+ return __ctxt_sys_reg(&vcpu->arch.ctxt, SP_EL1);
+
+ case KVM_REG_ARM_CORE_REG(elr_el1):
+ return __ctxt_sys_reg(&vcpu->arch.ctxt, ELR_EL1);
+
+ case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_EL1]):
+ return __ctxt_sys_reg(&vcpu->arch.ctxt, SPSR_EL1);
+
+ case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_ABT]):
+ return &vcpu->arch.ctxt.spsr_abt;
+
+ case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_UND]):
+ return &vcpu->arch.ctxt.spsr_und;
+
+ case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_IRQ]):
+ return &vcpu->arch.ctxt.spsr_irq;
+
+ case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_FIQ]):
+ return &vcpu->arch.ctxt.spsr_fiq;
+
+ case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
+ KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
+ off -= KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]);
+ off /= 4;
+ return &vcpu->arch.ctxt.fp_regs.vregs[off];
+
+ case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
+ return &vcpu->arch.ctxt.fp_regs.fpsr;
+
+ case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
+ return &vcpu->arch.ctxt.fp_regs.fpcr;
+
+ default:
+ return NULL;
+ }
+}
+
+static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
+{
+ /*
+ * Because the kvm_regs structure is a mix of 32, 64 and
+ * 128bit fields, we index it as if it was a 32bit
+ * array. Hence below, nr_regs is the number of entries, and
+ * off the index in the "array".
+ */
+ __u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
+ int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
+ void *addr;
+ u32 off;
+
+ /* Our ID is an index into the kvm_regs struct. */
+ off = core_reg_offset_from_id(reg->id);
+ if (off >= nr_regs ||
+ (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
+ return -ENOENT;
+
+ addr = core_reg_addr(vcpu, reg);
+ if (!addr)
+ return -EINVAL;
+
+ if (copy_to_user(uaddr, addr, KVM_REG_SIZE(reg->id)))
+ return -EFAULT;
+
+ return 0;
+}
+
+static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
+{
+ __u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
+ int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
+ __uint128_t tmp;
+ void *valp = &tmp, *addr;
+ u64 off;
+ int err = 0;
+
+ /* Our ID is an index into the kvm_regs struct. */
+ off = core_reg_offset_from_id(reg->id);
+ if (off >= nr_regs ||
+ (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
+ return -ENOENT;
+
+ addr = core_reg_addr(vcpu, reg);
+ if (!addr)
+ return -EINVAL;
+
+ if (KVM_REG_SIZE(reg->id) > sizeof(tmp))
+ return -EINVAL;
+
+ if (copy_from_user(valp, uaddr, KVM_REG_SIZE(reg->id))) {
+ err = -EFAULT;
+ goto out;
+ }
+
+ if (off == KVM_REG_ARM_CORE_REG(regs.pstate)) {
+ u64 mode = (*(u64 *)valp) & PSR_AA32_MODE_MASK;
+ switch (mode) {
+ case PSR_AA32_MODE_USR:
+ if (!kvm_supports_32bit_el0())
+ return -EINVAL;
+ break;
+ case PSR_AA32_MODE_FIQ:
+ case PSR_AA32_MODE_IRQ:
+ case PSR_AA32_MODE_SVC:
+ case PSR_AA32_MODE_ABT:
+ case PSR_AA32_MODE_UND:
+ if (!vcpu_el1_is_32bit(vcpu))
+ return -EINVAL;
+ break;
+ case PSR_MODE_EL2h:
+ case PSR_MODE_EL2t:
+ if (!vcpu_has_nv(vcpu))
+ return -EINVAL;
+ fallthrough;
+ case PSR_MODE_EL0t:
+ case PSR_MODE_EL1t:
+ case PSR_MODE_EL1h:
+ if (vcpu_el1_is_32bit(vcpu))
+ return -EINVAL;
+ break;
+ default:
+ err = -EINVAL;
+ goto out;
+ }
+ }
+
+ memcpy(addr, valp, KVM_REG_SIZE(reg->id));
+
+ if (*vcpu_cpsr(vcpu) & PSR_MODE32_BIT) {
+ int i, nr_reg;
+
+ switch (*vcpu_cpsr(vcpu)) {
+ /*
+ * Either we are dealing with user mode, and only the
+ * first 15 registers (+ PC) must be narrowed to 32bit.
+ * AArch32 r0-r14 conveniently map to AArch64 x0-x14.
+ */
+ case PSR_AA32_MODE_USR:
+ case PSR_AA32_MODE_SYS:
+ nr_reg = 15;
+ break;
+
+ /*
+ * Otherwise, this is a privileged mode, and *all* the
+ * registers must be narrowed to 32bit.
+ */
+ default:
+ nr_reg = 31;
+ break;
+ }
+
+ for (i = 0; i < nr_reg; i++)
+ vcpu_set_reg(vcpu, i, (u32)vcpu_get_reg(vcpu, i));
+
+ *vcpu_pc(vcpu) = (u32)*vcpu_pc(vcpu);
+ }
+out:
+ return err;
+}
+
+#define vq_word(vq) (((vq) - SVE_VQ_MIN) / 64)
+#define vq_mask(vq) ((u64)1 << ((vq) - SVE_VQ_MIN) % 64)
+#define vq_present(vqs, vq) (!!((vqs)[vq_word(vq)] & vq_mask(vq)))
+
+static int get_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
+{
+ unsigned int max_vq, vq;
+ u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
+
+ if (!vcpu_has_sve(vcpu))
+ return -ENOENT;
+
+ if (WARN_ON(!sve_vl_valid(vcpu->arch.sve_max_vl)))
+ return -EINVAL;
+
+ memset(vqs, 0, sizeof(vqs));
+
+ max_vq = vcpu_sve_max_vq(vcpu);
+ for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
+ if (sve_vq_available(vq))
+ vqs[vq_word(vq)] |= vq_mask(vq);
+
+ if (copy_to_user((void __user *)reg->addr, vqs, sizeof(vqs)))
+ return -EFAULT;
+
+ return 0;
+}
+
+static int set_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
+{
+ unsigned int max_vq, vq;
+ u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
+
+ if (!vcpu_has_sve(vcpu))
+ return -ENOENT;
+
+ if (kvm_arm_vcpu_sve_finalized(vcpu))
+ return -EPERM; /* too late! */
+
+ if (WARN_ON(vcpu->arch.sve_state))
+ return -EINVAL;
+
+ if (copy_from_user(vqs, (const void __user *)reg->addr, sizeof(vqs)))
+ return -EFAULT;
+
+ max_vq = 0;
+ for (vq = SVE_VQ_MIN; vq <= SVE_VQ_MAX; ++vq)
+ if (vq_present(vqs, vq))
+ max_vq = vq;
+
+ if (max_vq > sve_vq_from_vl(kvm_sve_max_vl))
+ return -EINVAL;
+
+ /*
+ * Vector lengths supported by the host can't currently be
+ * hidden from the guest individually: instead we can only set a
+ * maximum via ZCR_EL2.LEN. So, make sure the available vector
+ * lengths match the set requested exactly up to the requested
+ * maximum:
+ */
+ for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
+ if (vq_present(vqs, vq) != sve_vq_available(vq))
+ return -EINVAL;
+
+ /* Can't run with no vector lengths at all: */
+ if (max_vq < SVE_VQ_MIN)
+ return -EINVAL;
+
+ /* vcpu->arch.sve_state will be alloc'd by kvm_vcpu_finalize_sve() */
+ vcpu->arch.sve_max_vl = sve_vl_from_vq(max_vq);
+
+ return 0;
+}
+
+#define SVE_REG_SLICE_SHIFT 0
+#define SVE_REG_SLICE_BITS 5
+#define SVE_REG_ID_SHIFT (SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS)
+#define SVE_REG_ID_BITS 5
+
+#define SVE_REG_SLICE_MASK \
+ GENMASK(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS - 1, \
+ SVE_REG_SLICE_SHIFT)
+#define SVE_REG_ID_MASK \
+ GENMASK(SVE_REG_ID_SHIFT + SVE_REG_ID_BITS - 1, SVE_REG_ID_SHIFT)
+
+#define SVE_NUM_SLICES (1 << SVE_REG_SLICE_BITS)
+
+#define KVM_SVE_ZREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_ZREG(0, 0))
+#define KVM_SVE_PREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_PREG(0, 0))
+
+/*
+ * Number of register slices required to cover each whole SVE register.
+ * NOTE: Only the first slice every exists, for now.
+ * If you are tempted to modify this, you must also rework sve_reg_to_region()
+ * to match:
+ */
+#define vcpu_sve_slices(vcpu) 1
+
+/* Bounds of a single SVE register slice within vcpu->arch.sve_state */
+struct sve_state_reg_region {
+ unsigned int koffset; /* offset into sve_state in kernel memory */
+ unsigned int klen; /* length in kernel memory */
+ unsigned int upad; /* extra trailing padding in user memory */
+};
+
+/*
+ * Validate SVE register ID and get sanitised bounds for user/kernel SVE
+ * register copy
+ */
+static int sve_reg_to_region(struct sve_state_reg_region *region,
+ struct kvm_vcpu *vcpu,
+ const struct kvm_one_reg *reg)
+{
+ /* reg ID ranges for Z- registers */
+ const u64 zreg_id_min = KVM_REG_ARM64_SVE_ZREG(0, 0);
+ const u64 zreg_id_max = KVM_REG_ARM64_SVE_ZREG(SVE_NUM_ZREGS - 1,
+ SVE_NUM_SLICES - 1);
+
+ /* reg ID ranges for P- registers and FFR (which are contiguous) */
+ const u64 preg_id_min = KVM_REG_ARM64_SVE_PREG(0, 0);
+ const u64 preg_id_max = KVM_REG_ARM64_SVE_FFR(SVE_NUM_SLICES - 1);
+
+ unsigned int vq;
+ unsigned int reg_num;
+
+ unsigned int reqoffset, reqlen; /* User-requested offset and length */
+ unsigned int maxlen; /* Maximum permitted length */
+
+ size_t sve_state_size;
+
+ const u64 last_preg_id = KVM_REG_ARM64_SVE_PREG(SVE_NUM_PREGS - 1,
+ SVE_NUM_SLICES - 1);
+
+ /* Verify that the P-regs and FFR really do have contiguous IDs: */
+ BUILD_BUG_ON(KVM_REG_ARM64_SVE_FFR(0) != last_preg_id + 1);
+
+ /* Verify that we match the UAPI header: */
+ BUILD_BUG_ON(SVE_NUM_SLICES != KVM_ARM64_SVE_MAX_SLICES);
+
+ reg_num = (reg->id & SVE_REG_ID_MASK) >> SVE_REG_ID_SHIFT;
+
+ if (reg->id >= zreg_id_min && reg->id <= zreg_id_max) {
+ if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
+ return -ENOENT;
+
+ vq = vcpu_sve_max_vq(vcpu);
+
+ reqoffset = SVE_SIG_ZREG_OFFSET(vq, reg_num) -
+ SVE_SIG_REGS_OFFSET;
+ reqlen = KVM_SVE_ZREG_SIZE;
+ maxlen = SVE_SIG_ZREG_SIZE(vq);
+ } else if (reg->id >= preg_id_min && reg->id <= preg_id_max) {
+ if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
+ return -ENOENT;
+
+ vq = vcpu_sve_max_vq(vcpu);
+
+ reqoffset = SVE_SIG_PREG_OFFSET(vq, reg_num) -
+ SVE_SIG_REGS_OFFSET;
+ reqlen = KVM_SVE_PREG_SIZE;
+ maxlen = SVE_SIG_PREG_SIZE(vq);
+ } else {
+ return -EINVAL;
+ }
+
+ sve_state_size = vcpu_sve_state_size(vcpu);
+ if (WARN_ON(!sve_state_size))
+ return -EINVAL;
+
+ region->koffset = array_index_nospec(reqoffset, sve_state_size);
+ region->klen = min(maxlen, reqlen);
+ region->upad = reqlen - region->klen;
+
+ return 0;
+}
+
+static int get_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
+{
+ int ret;
+ struct sve_state_reg_region region;
+ char __user *uptr = (char __user *)reg->addr;
+
+ /* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
+ if (reg->id == KVM_REG_ARM64_SVE_VLS)
+ return get_sve_vls(vcpu, reg);
+
+ /* Try to interpret reg ID as an architectural SVE register... */
+ ret = sve_reg_to_region(&region, vcpu, reg);
+ if (ret)
+ return ret;
+
+ if (!kvm_arm_vcpu_sve_finalized(vcpu))
+ return -EPERM;
+
+ if (copy_to_user(uptr, vcpu->arch.sve_state + region.koffset,
+ region.klen) ||
+ clear_user(uptr + region.klen, region.upad))
+ return -EFAULT;
+
+ return 0;
+}
+
+static int set_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
+{
+ int ret;
+ struct sve_state_reg_region region;
+ const char __user *uptr = (const char __user *)reg->addr;
+
+ /* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
+ if (reg->id == KVM_REG_ARM64_SVE_VLS)
+ return set_sve_vls(vcpu, reg);
+
+ /* Try to interpret reg ID as an architectural SVE register... */
+ ret = sve_reg_to_region(&region, vcpu, reg);
+ if (ret)
+ return ret;
+
+ if (!kvm_arm_vcpu_sve_finalized(vcpu))
+ return -EPERM;
+
+ if (copy_from_user(vcpu->arch.sve_state + region.koffset, uptr,
+ region.klen))
+ return -EFAULT;
+
+ return 0;
+}
+
+int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
+{
+ return -EINVAL;
+}
+
+int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
+{
+ return -EINVAL;
+}
+
+static int copy_core_reg_indices(const struct kvm_vcpu *vcpu,
+ u64 __user *uindices)
+{
+ unsigned int i;
+ int n = 0;
+
+ for (i = 0; i < sizeof(struct kvm_regs) / sizeof(__u32); i++) {
+ u64 reg = KVM_REG_ARM64 | KVM_REG_ARM_CORE | i;
+ int size = core_reg_size_from_offset(vcpu, i);
+
+ if (size < 0)
+ continue;
+
+ switch (size) {
+ case sizeof(__u32):
+ reg |= KVM_REG_SIZE_U32;
+ break;
+
+ case sizeof(__u64):
+ reg |= KVM_REG_SIZE_U64;
+ break;
+
+ case sizeof(__uint128_t):
+ reg |= KVM_REG_SIZE_U128;
+ break;
+
+ default:
+ WARN_ON(1);
+ continue;
+ }
+
+ if (uindices) {
+ if (put_user(reg, uindices))
+ return -EFAULT;
+ uindices++;
+ }
+
+ n++;
+ }
+
+ return n;
+}
+
+static unsigned long num_core_regs(const struct kvm_vcpu *vcpu)
+{
+ return copy_core_reg_indices(vcpu, NULL);
+}
+
+static const u64 timer_reg_list[] = {
+ KVM_REG_ARM_TIMER_CTL,
+ KVM_REG_ARM_TIMER_CNT,
+ KVM_REG_ARM_TIMER_CVAL,
+ KVM_REG_ARM_PTIMER_CTL,
+ KVM_REG_ARM_PTIMER_CNT,
+ KVM_REG_ARM_PTIMER_CVAL,
+};
+
+#define NUM_TIMER_REGS ARRAY_SIZE(timer_reg_list)
+
+static bool is_timer_reg(u64 index)
+{
+ switch (index) {
+ case KVM_REG_ARM_TIMER_CTL:
+ case KVM_REG_ARM_TIMER_CNT:
+ case KVM_REG_ARM_TIMER_CVAL:
+ case KVM_REG_ARM_PTIMER_CTL:
+ case KVM_REG_ARM_PTIMER_CNT:
+ case KVM_REG_ARM_PTIMER_CVAL:
+ return true;
+ }
+ return false;
+}
+
+static int copy_timer_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
+{
+ for (int i = 0; i < NUM_TIMER_REGS; i++) {
+ if (put_user(timer_reg_list[i], uindices))
+ return -EFAULT;
+ uindices++;
+ }
+
+ return 0;
+}
+
+static int set_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
+{
+ void __user *uaddr = (void __user *)(long)reg->addr;
+ u64 val;
+ int ret;
+
+ ret = copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id));
+ if (ret != 0)
+ return -EFAULT;
+
+ return kvm_arm_timer_set_reg(vcpu, reg->id, val);
+}
+
+static int get_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
+{
+ void __user *uaddr = (void __user *)(long)reg->addr;
+ u64 val;
+
+ val = kvm_arm_timer_get_reg(vcpu, reg->id);
+ return copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)) ? -EFAULT : 0;
+}
+
+static unsigned long num_sve_regs(const struct kvm_vcpu *vcpu)
+{
+ const unsigned int slices = vcpu_sve_slices(vcpu);
+
+ if (!vcpu_has_sve(vcpu))
+ return 0;
+
+ /* Policed by KVM_GET_REG_LIST: */
+ WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
+
+ return slices * (SVE_NUM_PREGS + SVE_NUM_ZREGS + 1 /* FFR */)
+ + 1; /* KVM_REG_ARM64_SVE_VLS */
+}
+
+static int copy_sve_reg_indices(const struct kvm_vcpu *vcpu,
+ u64 __user *uindices)
+{
+ const unsigned int slices = vcpu_sve_slices(vcpu);
+ u64 reg;
+ unsigned int i, n;
+ int num_regs = 0;
+
+ if (!vcpu_has_sve(vcpu))
+ return 0;
+
+ /* Policed by KVM_GET_REG_LIST: */
+ WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
+
+ /*
+ * Enumerate this first, so that userspace can save/restore in
+ * the order reported by KVM_GET_REG_LIST:
+ */
+ reg = KVM_REG_ARM64_SVE_VLS;
+ if (put_user(reg, uindices++))
+ return -EFAULT;
+ ++num_regs;
+
+ for (i = 0; i < slices; i++) {
+ for (n = 0; n < SVE_NUM_ZREGS; n++) {
+ reg = KVM_REG_ARM64_SVE_ZREG(n, i);
+ if (put_user(reg, uindices++))
+ return -EFAULT;
+ num_regs++;
+ }
+
+ for (n = 0; n < SVE_NUM_PREGS; n++) {
+ reg = KVM_REG_ARM64_SVE_PREG(n, i);
+ if (put_user(reg, uindices++))
+ return -EFAULT;
+ num_regs++;
+ }
+
+ reg = KVM_REG_ARM64_SVE_FFR(i);
+ if (put_user(reg, uindices++))
+ return -EFAULT;
+ num_regs++;
+ }
+
+ return num_regs;
+}
+
+/**
+ * kvm_arm_num_regs - how many registers do we present via KVM_GET_ONE_REG
+ *
+ * This is for all registers.
+ */
+unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu)
+{
+ unsigned long res = 0;
+
+ res += num_core_regs(vcpu);
+ res += num_sve_regs(vcpu);
+ res += kvm_arm_num_sys_reg_descs(vcpu);
+ res += kvm_arm_get_fw_num_regs(vcpu);
+ res += NUM_TIMER_REGS;
+
+ return res;
+}
+
+/**
+ * kvm_arm_copy_reg_indices - get indices of all registers.
+ *
+ * We do core registers right here, then we append system regs.
+ */
+int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
+{
+ int ret;
+
+ ret = copy_core_reg_indices(vcpu, uindices);
+ if (ret < 0)
+ return ret;
+ uindices += ret;
+
+ ret = copy_sve_reg_indices(vcpu, uindices);
+ if (ret < 0)
+ return ret;
+ uindices += ret;
+
+ ret = kvm_arm_copy_fw_reg_indices(vcpu, uindices);
+ if (ret < 0)
+ return ret;
+ uindices += kvm_arm_get_fw_num_regs(vcpu);
+
+ ret = copy_timer_indices(vcpu, uindices);
+ if (ret < 0)
+ return ret;
+ uindices += NUM_TIMER_REGS;
+
+ return kvm_arm_copy_sys_reg_indices(vcpu, uindices);
+}
+
+int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
+{
+ /* We currently use nothing arch-specific in upper 32 bits */
+ if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
+ return -EINVAL;
+
+ switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
+ case KVM_REG_ARM_CORE: return get_core_reg(vcpu, reg);
+ case KVM_REG_ARM_FW:
+ case KVM_REG_ARM_FW_FEAT_BMAP:
+ return kvm_arm_get_fw_reg(vcpu, reg);
+ case KVM_REG_ARM64_SVE: return get_sve_reg(vcpu, reg);
+ }
+
+ if (is_timer_reg(reg->id))
+ return get_timer_reg(vcpu, reg);
+
+ return kvm_arm_sys_reg_get_reg(vcpu, reg);
+}
+
+int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
+{
+ /* We currently use nothing arch-specific in upper 32 bits */
+ if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
+ return -EINVAL;
+
+ switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
+ case KVM_REG_ARM_CORE: return set_core_reg(vcpu, reg);
+ case KVM_REG_ARM_FW:
+ case KVM_REG_ARM_FW_FEAT_BMAP:
+ return kvm_arm_set_fw_reg(vcpu, reg);
+ case KVM_REG_ARM64_SVE: return set_sve_reg(vcpu, reg);
+ }
+
+ if (is_timer_reg(reg->id))
+ return set_timer_reg(vcpu, reg);
+
+ return kvm_arm_sys_reg_set_reg(vcpu, reg);
+}
+
+int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
+ struct kvm_sregs *sregs)
+{
+ return -EINVAL;
+}
+
+int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
+ struct kvm_sregs *sregs)
+{
+ return -EINVAL;
+}
+
+int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
+ struct kvm_vcpu_events *events)
+{
+ events->exception.serror_pending = !!(vcpu->arch.hcr_el2 & HCR_VSE);
+ events->exception.serror_has_esr = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
+
+ if (events->exception.serror_pending && events->exception.serror_has_esr)
+ events->exception.serror_esr = vcpu_get_vsesr(vcpu);
+
+ /*
+ * We never return a pending ext_dabt here because we deliver it to
+ * the virtual CPU directly when setting the event and it's no longer
+ * 'pending' at this point.
+ */
+
+ return 0;
+}
+
+int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
+ struct kvm_vcpu_events *events)
+{
+ bool serror_pending = events->exception.serror_pending;
+ bool has_esr = events->exception.serror_has_esr;
+ bool ext_dabt_pending = events->exception.ext_dabt_pending;
+
+ if (serror_pending && has_esr) {
+ if (!cpus_have_const_cap(ARM64_HAS_RAS_EXTN))
+ return -EINVAL;
+
+ if (!((events->exception.serror_esr) & ~ESR_ELx_ISS_MASK))
+ kvm_set_sei_esr(vcpu, events->exception.serror_esr);
+ else
+ return -EINVAL;
+ } else if (serror_pending) {
+ kvm_inject_vabt(vcpu);
+ }
+
+ if (ext_dabt_pending)
+ kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
+
+ return 0;
+}
+
+u32 __attribute_const__ kvm_target_cpu(void)
+{
+ unsigned long implementor = read_cpuid_implementor();
+ unsigned long part_number = read_cpuid_part_number();
+
+ switch (implementor) {
+ case ARM_CPU_IMP_ARM:
+ switch (part_number) {
+ case ARM_CPU_PART_AEM_V8:
+ return KVM_ARM_TARGET_AEM_V8;
+ case ARM_CPU_PART_FOUNDATION:
+ return KVM_ARM_TARGET_FOUNDATION_V8;
+ case ARM_CPU_PART_CORTEX_A53:
+ return KVM_ARM_TARGET_CORTEX_A53;
+ case ARM_CPU_PART_CORTEX_A57:
+ return KVM_ARM_TARGET_CORTEX_A57;
+ }
+ break;
+ case ARM_CPU_IMP_APM:
+ switch (part_number) {
+ case APM_CPU_PART_XGENE:
+ return KVM_ARM_TARGET_XGENE_POTENZA;
+ }
+ break;
+ }
+
+ /* Return a default generic target */
+ return KVM_ARM_TARGET_GENERIC_V8;
+}
+
+int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
+{
+ return -EINVAL;
+}
+
+int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
+{
+ return -EINVAL;
+}
+
+int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
+ struct kvm_translation *tr)
+{
+ return -EINVAL;
+}
+
+/**
+ * kvm_arch_vcpu_ioctl_set_guest_debug - set up guest debugging
+ * @kvm: pointer to the KVM struct
+ * @kvm_guest_debug: the ioctl data buffer
+ *
+ * This sets up and enables the VM for guest debugging. Userspace
+ * passes in a control flag to enable different debug types and
+ * potentially other architecture specific information in the rest of
+ * the structure.
+ */
+int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
+ struct kvm_guest_debug *dbg)
+{
+ int ret = 0;
+
+ trace_kvm_set_guest_debug(vcpu, dbg->control);
+
+ if (dbg->control & ~KVM_GUESTDBG_VALID_MASK) {
+ ret = -EINVAL;
+ goto out;
+ }
+
+ if (dbg->control & KVM_GUESTDBG_ENABLE) {
+ vcpu->guest_debug = dbg->control;
+
+ /* Hardware assisted Break and Watch points */
+ if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW) {
+ vcpu->arch.external_debug_state = dbg->arch;
+ }
+
+ } else {
+ /* If not enabled clear all flags */
+ vcpu->guest_debug = 0;
+ vcpu_clear_flag(vcpu, DBG_SS_ACTIVE_PENDING);
+ }
+
+out:
+ return ret;
+}
+
+int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
+ struct kvm_device_attr *attr)
+{
+ int ret;
+
+ switch (attr->group) {
+ case KVM_ARM_VCPU_PMU_V3_CTRL:
+ mutex_lock(&vcpu->kvm->arch.config_lock);
+ ret = kvm_arm_pmu_v3_set_attr(vcpu, attr);
+ mutex_unlock(&vcpu->kvm->arch.config_lock);
+ break;
+ case KVM_ARM_VCPU_TIMER_CTRL:
+ ret = kvm_arm_timer_set_attr(vcpu, attr);
+ break;
+ case KVM_ARM_VCPU_PVTIME_CTRL:
+ ret = kvm_arm_pvtime_set_attr(vcpu, attr);
+ break;
+ default:
+ ret = -ENXIO;
+ break;
+ }
+
+ return ret;
+}
+
+int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
+ struct kvm_device_attr *attr)
+{
+ int ret;
+
+ switch (attr->group) {
+ case KVM_ARM_VCPU_PMU_V3_CTRL:
+ ret = kvm_arm_pmu_v3_get_attr(vcpu, attr);
+ break;
+ case KVM_ARM_VCPU_TIMER_CTRL:
+ ret = kvm_arm_timer_get_attr(vcpu, attr);
+ break;
+ case KVM_ARM_VCPU_PVTIME_CTRL:
+ ret = kvm_arm_pvtime_get_attr(vcpu, attr);
+ break;
+ default:
+ ret = -ENXIO;
+ break;
+ }
+
+ return ret;
+}
+
+int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
+ struct kvm_device_attr *attr)
+{
+ int ret;
+
+ switch (attr->group) {
+ case KVM_ARM_VCPU_PMU_V3_CTRL:
+ ret = kvm_arm_pmu_v3_has_attr(vcpu, attr);
+ break;
+ case KVM_ARM_VCPU_TIMER_CTRL:
+ ret = kvm_arm_timer_has_attr(vcpu, attr);
+ break;
+ case KVM_ARM_VCPU_PVTIME_CTRL:
+ ret = kvm_arm_pvtime_has_attr(vcpu, attr);
+ break;
+ default:
+ ret = -ENXIO;
+ break;
+ }
+
+ return ret;
+}
+
+int kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm,
+ struct kvm_arm_copy_mte_tags *copy_tags)
+{
+ gpa_t guest_ipa = copy_tags->guest_ipa;
+ size_t length = copy_tags->length;
+ void __user *tags = copy_tags->addr;
+ gpa_t gfn;
+ bool write = !(copy_tags->flags & KVM_ARM_TAGS_FROM_GUEST);
+ int ret = 0;
+
+ if (!kvm_has_mte(kvm))
+ return -EINVAL;
+
+ if (copy_tags->reserved[0] || copy_tags->reserved[1])
+ return -EINVAL;
+
+ if (copy_tags->flags & ~KVM_ARM_TAGS_FROM_GUEST)
+ return -EINVAL;
+
+ if (length & ~PAGE_MASK || guest_ipa & ~PAGE_MASK)
+ return -EINVAL;
+
+ /* Lengths above INT_MAX cannot be represented in the return value */
+ if (length > INT_MAX)
+ return -EINVAL;
+
+ gfn = gpa_to_gfn(guest_ipa);
+
+ mutex_lock(&kvm->slots_lock);
+
+ while (length > 0) {
+ kvm_pfn_t pfn = gfn_to_pfn_prot(kvm, gfn, write, NULL);
+ void *maddr;
+ unsigned long num_tags;
+ struct page *page;
+
+ if (is_error_noslot_pfn(pfn)) {
+ ret = -EFAULT;
+ goto out;
+ }
+
+ page = pfn_to_online_page(pfn);
+ if (!page) {
+ /* Reject ZONE_DEVICE memory */
+ ret = -EFAULT;
+ goto out;
+ }
+ maddr = page_address(page);
+
+ if (!write) {
+ if (page_mte_tagged(page))
+ num_tags = mte_copy_tags_to_user(tags, maddr,
+ MTE_GRANULES_PER_PAGE);
+ else
+ /* No tags in memory, so write zeros */
+ num_tags = MTE_GRANULES_PER_PAGE -
+ clear_user(tags, MTE_GRANULES_PER_PAGE);
+ kvm_release_pfn_clean(pfn);
+ } else {
+ /*
+ * Only locking to serialise with a concurrent
+ * set_pte_at() in the VMM but still overriding the
+ * tags, hence ignoring the return value.
+ */
+ try_page_mte_tagging(page);
+ num_tags = mte_copy_tags_from_user(maddr, tags,
+ MTE_GRANULES_PER_PAGE);
+
+ /* uaccess failed, don't leave stale tags */
+ if (num_tags != MTE_GRANULES_PER_PAGE)
+ mte_clear_page_tags(maddr);
+ set_page_mte_tagged(page);
+
+ kvm_release_pfn_dirty(pfn);
+ }
+
+ if (num_tags != MTE_GRANULES_PER_PAGE) {
+ ret = -EFAULT;
+ goto out;
+ }
+
+ gfn++;
+ tags += num_tags;
+ length -= PAGE_SIZE;
+ }
+
+out:
+ mutex_unlock(&kvm->slots_lock);
+ /* If some data has been copied report the number of bytes copied */
+ if (length != copy_tags->length)
+ return copy_tags->length - length;
+ return ret;
+}
diff --git a/arch/arm64/kvm/handle_exit.c b/arch/arm64/kvm/handle_exit.c
new file mode 100644
index 0000000000..617ae6dea5
--- /dev/null
+++ b/arch/arm64/kvm/handle_exit.c
@@ -0,0 +1,434 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2012,2013 - ARM Ltd
+ * Author: Marc Zyngier <marc.zyngier@arm.com>
+ *
+ * Derived from arch/arm/kvm/handle_exit.c:
+ * Copyright (C) 2012 - Virtual Open Systems and Columbia University
+ * Author: Christoffer Dall <c.dall@virtualopensystems.com>
+ */
+
+#include <linux/kvm.h>
+#include <linux/kvm_host.h>
+
+#include <asm/esr.h>
+#include <asm/exception.h>
+#include <asm/kvm_asm.h>
+#include <asm/kvm_emulate.h>
+#include <asm/kvm_mmu.h>
+#include <asm/kvm_nested.h>
+#include <asm/debug-monitors.h>
+#include <asm/stacktrace/nvhe.h>
+#include <asm/traps.h>
+
+#include <kvm/arm_hypercalls.h>
+
+#define CREATE_TRACE_POINTS
+#include "trace_handle_exit.h"
+
+typedef int (*exit_handle_fn)(struct kvm_vcpu *);
+
+static void kvm_handle_guest_serror(struct kvm_vcpu *vcpu, u64 esr)
+{
+ if (!arm64_is_ras_serror(esr) || arm64_is_fatal_ras_serror(NULL, esr))
+ kvm_inject_vabt(vcpu);
+}
+
+static int handle_hvc(struct kvm_vcpu *vcpu)
+{
+ trace_kvm_hvc_arm64(*vcpu_pc(vcpu), vcpu_get_reg(vcpu, 0),
+ kvm_vcpu_hvc_get_imm(vcpu));
+ vcpu->stat.hvc_exit_stat++;
+
+ /* Forward hvc instructions to the virtual EL2 if the guest has EL2. */
+ if (vcpu_has_nv(vcpu)) {
+ if (vcpu_read_sys_reg(vcpu, HCR_EL2) & HCR_HCD)
+ kvm_inject_undefined(vcpu);
+ else
+ kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
+
+ return 1;
+ }
+
+ return kvm_smccc_call_handler(vcpu);
+}
+
+static int handle_smc(struct kvm_vcpu *vcpu)
+{
+ /*
+ * "If an SMC instruction executed at Non-secure EL1 is
+ * trapped to EL2 because HCR_EL2.TSC is 1, the exception is a
+ * Trap exception, not a Secure Monitor Call exception [...]"
+ *
+ * We need to advance the PC after the trap, as it would
+ * otherwise return to the same address. Furthermore, pre-incrementing
+ * the PC before potentially exiting to userspace maintains the same
+ * abstraction for both SMCs and HVCs.
+ */
+ kvm_incr_pc(vcpu);
+
+ /*
+ * SMCs with a nonzero immediate are reserved according to DEN0028E 2.9
+ * "SMC and HVC immediate value".
+ */
+ if (kvm_vcpu_hvc_get_imm(vcpu)) {
+ vcpu_set_reg(vcpu, 0, ~0UL);
+ return 1;
+ }
+
+ /*
+ * If imm is zero then it is likely an SMCCC call.
+ *
+ * Note that on ARMv8.3, even if EL3 is not implemented, SMC executed
+ * at Non-secure EL1 is trapped to EL2 if HCR_EL2.TSC==1, rather than
+ * being treated as UNDEFINED.
+ */
+ return kvm_smccc_call_handler(vcpu);
+}
+
+/*
+ * Guest access to FP/ASIMD registers are routed to this handler only
+ * when the system doesn't support FP/ASIMD.
+ */
+static int handle_no_fpsimd(struct kvm_vcpu *vcpu)
+{
+ kvm_inject_undefined(vcpu);
+ return 1;
+}
+
+/**
+ * kvm_handle_wfx - handle a wait-for-interrupts or wait-for-event
+ * instruction executed by a guest
+ *
+ * @vcpu: the vcpu pointer
+ *
+ * WFE[T]: Yield the CPU and come back to this vcpu when the scheduler
+ * decides to.
+ * WFI: Simply call kvm_vcpu_halt(), which will halt execution of
+ * world-switches and schedule other host processes until there is an
+ * incoming IRQ or FIQ to the VM.
+ * WFIT: Same as WFI, with a timed wakeup implemented as a background timer
+ *
+ * WF{I,E}T can immediately return if the deadline has already expired.
+ */
+static int kvm_handle_wfx(struct kvm_vcpu *vcpu)
+{
+ u64 esr = kvm_vcpu_get_esr(vcpu);
+
+ if (esr & ESR_ELx_WFx_ISS_WFE) {
+ trace_kvm_wfx_arm64(*vcpu_pc(vcpu), true);
+ vcpu->stat.wfe_exit_stat++;
+ } else {
+ trace_kvm_wfx_arm64(*vcpu_pc(vcpu), false);
+ vcpu->stat.wfi_exit_stat++;
+ }
+
+ if (esr & ESR_ELx_WFx_ISS_WFxT) {
+ if (esr & ESR_ELx_WFx_ISS_RV) {
+ u64 val, now;
+
+ now = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_TIMER_CNT);
+ val = vcpu_get_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu));
+
+ if (now >= val)
+ goto out;
+ } else {
+ /* Treat WFxT as WFx if RN is invalid */
+ esr &= ~ESR_ELx_WFx_ISS_WFxT;
+ }
+ }
+
+ if (esr & ESR_ELx_WFx_ISS_WFE) {
+ kvm_vcpu_on_spin(vcpu, vcpu_mode_priv(vcpu));
+ } else {
+ if (esr & ESR_ELx_WFx_ISS_WFxT)
+ vcpu_set_flag(vcpu, IN_WFIT);
+
+ kvm_vcpu_wfi(vcpu);
+ }
+out:
+ kvm_incr_pc(vcpu);
+
+ return 1;
+}
+
+/**
+ * kvm_handle_guest_debug - handle a debug exception instruction
+ *
+ * @vcpu: the vcpu pointer
+ *
+ * We route all debug exceptions through the same handler. If both the
+ * guest and host are using the same debug facilities it will be up to
+ * userspace to re-inject the correct exception for guest delivery.
+ *
+ * @return: 0 (while setting vcpu->run->exit_reason)
+ */
+static int kvm_handle_guest_debug(struct kvm_vcpu *vcpu)
+{
+ struct kvm_run *run = vcpu->run;
+ u64 esr = kvm_vcpu_get_esr(vcpu);
+
+ run->exit_reason = KVM_EXIT_DEBUG;
+ run->debug.arch.hsr = lower_32_bits(esr);
+ run->debug.arch.hsr_high = upper_32_bits(esr);
+ run->flags = KVM_DEBUG_ARCH_HSR_HIGH_VALID;
+
+ switch (ESR_ELx_EC(esr)) {
+ case ESR_ELx_EC_WATCHPT_LOW:
+ run->debug.arch.far = vcpu->arch.fault.far_el2;
+ break;
+ case ESR_ELx_EC_SOFTSTP_LOW:
+ vcpu_clear_flag(vcpu, DBG_SS_ACTIVE_PENDING);
+ break;
+ }
+
+ return 0;
+}
+
+static int kvm_handle_unknown_ec(struct kvm_vcpu *vcpu)
+{
+ u64 esr = kvm_vcpu_get_esr(vcpu);
+
+ kvm_pr_unimpl("Unknown exception class: esr: %#016llx -- %s\n",
+ esr, esr_get_class_string(esr));
+
+ kvm_inject_undefined(vcpu);
+ return 1;
+}
+
+/*
+ * Guest access to SVE registers should be routed to this handler only
+ * when the system doesn't support SVE.
+ */
+static int handle_sve(struct kvm_vcpu *vcpu)
+{
+ kvm_inject_undefined(vcpu);
+ return 1;
+}
+
+/*
+ * Guest usage of a ptrauth instruction (which the guest EL1 did not turn into
+ * a NOP). If we get here, it is that we didn't fixup ptrauth on exit, and all
+ * that we can do is give the guest an UNDEF.
+ */
+static int kvm_handle_ptrauth(struct kvm_vcpu *vcpu)
+{
+ kvm_inject_undefined(vcpu);
+ return 1;
+}
+
+static int kvm_handle_eret(struct kvm_vcpu *vcpu)
+{
+ if (kvm_vcpu_get_esr(vcpu) & ESR_ELx_ERET_ISS_ERET)
+ return kvm_handle_ptrauth(vcpu);
+
+ /*
+ * If we got here, two possibilities:
+ *
+ * - the guest is in EL2, and we need to fully emulate ERET
+ *
+ * - the guest is in EL1, and we need to reinject the
+ * exception into the L1 hypervisor.
+ *
+ * If KVM ever traps ERET for its own use, we'll have to
+ * revisit this.
+ */
+ if (is_hyp_ctxt(vcpu))
+ kvm_emulate_nested_eret(vcpu);
+ else
+ kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
+
+ return 1;
+}
+
+static int handle_svc(struct kvm_vcpu *vcpu)
+{
+ /*
+ * So far, SVC traps only for NV via HFGITR_EL2. A SVC from a
+ * 32bit guest would be caught by vpcu_mode_is_bad_32bit(), so
+ * we should only have to deal with a 64 bit exception.
+ */
+ kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
+ return 1;
+}
+
+static exit_handle_fn arm_exit_handlers[] = {
+ [0 ... ESR_ELx_EC_MAX] = kvm_handle_unknown_ec,
+ [ESR_ELx_EC_WFx] = kvm_handle_wfx,
+ [ESR_ELx_EC_CP15_32] = kvm_handle_cp15_32,
+ [ESR_ELx_EC_CP15_64] = kvm_handle_cp15_64,
+ [ESR_ELx_EC_CP14_MR] = kvm_handle_cp14_32,
+ [ESR_ELx_EC_CP14_LS] = kvm_handle_cp14_load_store,
+ [ESR_ELx_EC_CP10_ID] = kvm_handle_cp10_id,
+ [ESR_ELx_EC_CP14_64] = kvm_handle_cp14_64,
+ [ESR_ELx_EC_HVC32] = handle_hvc,
+ [ESR_ELx_EC_SMC32] = handle_smc,
+ [ESR_ELx_EC_HVC64] = handle_hvc,
+ [ESR_ELx_EC_SMC64] = handle_smc,
+ [ESR_ELx_EC_SVC64] = handle_svc,
+ [ESR_ELx_EC_SYS64] = kvm_handle_sys_reg,
+ [ESR_ELx_EC_SVE] = handle_sve,
+ [ESR_ELx_EC_ERET] = kvm_handle_eret,
+ [ESR_ELx_EC_IABT_LOW] = kvm_handle_guest_abort,
+ [ESR_ELx_EC_DABT_LOW] = kvm_handle_guest_abort,
+ [ESR_ELx_EC_SOFTSTP_LOW]= kvm_handle_guest_debug,
+ [ESR_ELx_EC_WATCHPT_LOW]= kvm_handle_guest_debug,
+ [ESR_ELx_EC_BREAKPT_LOW]= kvm_handle_guest_debug,
+ [ESR_ELx_EC_BKPT32] = kvm_handle_guest_debug,
+ [ESR_ELx_EC_BRK64] = kvm_handle_guest_debug,
+ [ESR_ELx_EC_FP_ASIMD] = handle_no_fpsimd,
+ [ESR_ELx_EC_PAC] = kvm_handle_ptrauth,
+};
+
+static exit_handle_fn kvm_get_exit_handler(struct kvm_vcpu *vcpu)
+{
+ u64 esr = kvm_vcpu_get_esr(vcpu);
+ u8 esr_ec = ESR_ELx_EC(esr);
+
+ return arm_exit_handlers[esr_ec];
+}
+
+/*
+ * We may be single-stepping an emulated instruction. If the emulation
+ * has been completed in the kernel, we can return to userspace with a
+ * KVM_EXIT_DEBUG, otherwise userspace needs to complete its
+ * emulation first.
+ */
+static int handle_trap_exceptions(struct kvm_vcpu *vcpu)
+{
+ int handled;
+
+ /*
+ * See ARM ARM B1.14.1: "Hyp traps on instructions
+ * that fail their condition code check"
+ */
+ if (!kvm_condition_valid(vcpu)) {
+ kvm_incr_pc(vcpu);
+ handled = 1;
+ } else {
+ exit_handle_fn exit_handler;
+
+ exit_handler = kvm_get_exit_handler(vcpu);
+ handled = exit_handler(vcpu);
+ }
+
+ return handled;
+}
+
+/*
+ * Return > 0 to return to guest, < 0 on error, 0 (and set exit_reason) on
+ * proper exit to userspace.
+ */
+int handle_exit(struct kvm_vcpu *vcpu, int exception_index)
+{
+ struct kvm_run *run = vcpu->run;
+
+ if (ARM_SERROR_PENDING(exception_index)) {
+ /*
+ * The SError is handled by handle_exit_early(). If the guest
+ * survives it will re-execute the original instruction.
+ */
+ return 1;
+ }
+
+ exception_index = ARM_EXCEPTION_CODE(exception_index);
+
+ switch (exception_index) {
+ case ARM_EXCEPTION_IRQ:
+ return 1;
+ case ARM_EXCEPTION_EL1_SERROR:
+ return 1;
+ case ARM_EXCEPTION_TRAP:
+ return handle_trap_exceptions(vcpu);
+ case ARM_EXCEPTION_HYP_GONE:
+ /*
+ * EL2 has been reset to the hyp-stub. This happens when a guest
+ * is pre-emptied by kvm_reboot()'s shutdown call.
+ */
+ run->exit_reason = KVM_EXIT_FAIL_ENTRY;
+ return 0;
+ case ARM_EXCEPTION_IL:
+ /*
+ * We attempted an illegal exception return. Guest state must
+ * have been corrupted somehow. Give up.
+ */
+ run->exit_reason = KVM_EXIT_FAIL_ENTRY;
+ return -EINVAL;
+ default:
+ kvm_pr_unimpl("Unsupported exception type: %d",
+ exception_index);
+ run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
+ return 0;
+ }
+}
+
+/* For exit types that need handling before we can be preempted */
+void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index)
+{
+ if (ARM_SERROR_PENDING(exception_index)) {
+ if (this_cpu_has_cap(ARM64_HAS_RAS_EXTN)) {
+ u64 disr = kvm_vcpu_get_disr(vcpu);
+
+ kvm_handle_guest_serror(vcpu, disr_to_esr(disr));
+ } else {
+ kvm_inject_vabt(vcpu);
+ }
+
+ return;
+ }
+
+ exception_index = ARM_EXCEPTION_CODE(exception_index);
+
+ if (exception_index == ARM_EXCEPTION_EL1_SERROR)
+ kvm_handle_guest_serror(vcpu, kvm_vcpu_get_esr(vcpu));
+}
+
+void __noreturn __cold nvhe_hyp_panic_handler(u64 esr, u64 spsr,
+ u64 elr_virt, u64 elr_phys,
+ u64 par, uintptr_t vcpu,
+ u64 far, u64 hpfar) {
+ u64 elr_in_kimg = __phys_to_kimg(elr_phys);
+ u64 hyp_offset = elr_in_kimg - kaslr_offset() - elr_virt;
+ u64 mode = spsr & PSR_MODE_MASK;
+ u64 panic_addr = elr_virt + hyp_offset;
+
+ if (mode != PSR_MODE_EL2t && mode != PSR_MODE_EL2h) {
+ kvm_err("Invalid host exception to nVHE hyp!\n");
+ } else if (ESR_ELx_EC(esr) == ESR_ELx_EC_BRK64 &&
+ (esr & ESR_ELx_BRK64_ISS_COMMENT_MASK) == BUG_BRK_IMM) {
+ const char *file = NULL;
+ unsigned int line = 0;
+
+ /* All hyp bugs, including warnings, are treated as fatal. */
+ if (!is_protected_kvm_enabled() ||
+ IS_ENABLED(CONFIG_NVHE_EL2_DEBUG)) {
+ struct bug_entry *bug = find_bug(elr_in_kimg);
+
+ if (bug)
+ bug_get_file_line(bug, &file, &line);
+ }
+
+ if (file)
+ kvm_err("nVHE hyp BUG at: %s:%u!\n", file, line);
+ else
+ kvm_err("nVHE hyp BUG at: [<%016llx>] %pB!\n", panic_addr,
+ (void *)(panic_addr + kaslr_offset()));
+ } else {
+ kvm_err("nVHE hyp panic at: [<%016llx>] %pB!\n", panic_addr,
+ (void *)(panic_addr + kaslr_offset()));
+ }
+
+ /* Dump the nVHE hypervisor backtrace */
+ kvm_nvhe_dump_backtrace(hyp_offset);
+
+ /*
+ * Hyp has panicked and we're going to handle that by panicking the
+ * kernel. The kernel offset will be revealed in the panic so we're
+ * also safe to reveal the hyp offset as a debugging aid for translating
+ * hyp VAs to vmlinux addresses.
+ */
+ kvm_err("Hyp Offset: 0x%llx\n", hyp_offset);
+
+ panic("HYP panic:\nPS:%08llx PC:%016llx ESR:%016llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%016lx\n",
+ spsr, elr_virt, esr, far, hpfar, par, vcpu);
+}
diff --git a/arch/arm64/kvm/hyp/Makefile b/arch/arm64/kvm/hyp/Makefile
new file mode 100644
index 0000000000..a38dea6186
--- /dev/null
+++ b/arch/arm64/kvm/hyp/Makefile
@@ -0,0 +1,10 @@
+# SPDX-License-Identifier: GPL-2.0
+#
+# Makefile for Kernel-based Virtual Machine module, HYP part
+#
+
+incdir := $(srctree)/$(src)/include
+subdir-asflags-y := -I$(incdir)
+subdir-ccflags-y := -I$(incdir)
+
+obj-$(CONFIG_KVM) += vhe/ nvhe/ pgtable.o
diff --git a/arch/arm64/kvm/hyp/aarch32.c b/arch/arm64/kvm/hyp/aarch32.c
new file mode 100644
index 0000000000..f98cbe2626
--- /dev/null
+++ b/arch/arm64/kvm/hyp/aarch32.c
@@ -0,0 +1,140 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Hyp portion of the (not much of an) Emulation layer for 32bit guests.
+ *
+ * Copyright (C) 2012,2013 - ARM Ltd
+ * Author: Marc Zyngier <marc.zyngier@arm.com>
+ *
+ * based on arch/arm/kvm/emulate.c
+ * Copyright (C) 2012 - Virtual Open Systems and Columbia University
+ * Author: Christoffer Dall <c.dall@virtualopensystems.com>
+ */
+
+#include <linux/kvm_host.h>
+#include <asm/kvm_emulate.h>
+#include <asm/kvm_hyp.h>
+
+/*
+ * stolen from arch/arm/kernel/opcodes.c
+ *
+ * condition code lookup table
+ * index into the table is test code: EQ, NE, ... LT, GT, AL, NV
+ *
+ * bit position in short is condition code: NZCV
+ */
+static const unsigned short cc_map[16] = {
+ 0xF0F0, /* EQ == Z set */
+ 0x0F0F, /* NE */
+ 0xCCCC, /* CS == C set */
+ 0x3333, /* CC */
+ 0xFF00, /* MI == N set */
+ 0x00FF, /* PL */
+ 0xAAAA, /* VS == V set */
+ 0x5555, /* VC */
+ 0x0C0C, /* HI == C set && Z clear */
+ 0xF3F3, /* LS == C clear || Z set */
+ 0xAA55, /* GE == (N==V) */
+ 0x55AA, /* LT == (N!=V) */
+ 0x0A05, /* GT == (!Z && (N==V)) */
+ 0xF5FA, /* LE == (Z || (N!=V)) */
+ 0xFFFF, /* AL always */
+ 0 /* NV */
+};
+
+/*
+ * Check if a trapped instruction should have been executed or not.
+ */
+bool kvm_condition_valid32(const struct kvm_vcpu *vcpu)
+{
+ unsigned long cpsr;
+ u32 cpsr_cond;
+ int cond;
+
+ /* Top two bits non-zero? Unconditional. */
+ if (kvm_vcpu_get_esr(vcpu) >> 30)
+ return true;
+
+ /* Is condition field valid? */
+ cond = kvm_vcpu_get_condition(vcpu);
+ if (cond == 0xE)
+ return true;
+
+ cpsr = *vcpu_cpsr(vcpu);
+
+ if (cond < 0) {
+ /* This can happen in Thumb mode: examine IT state. */
+ unsigned long it;
+
+ it = ((cpsr >> 8) & 0xFC) | ((cpsr >> 25) & 0x3);
+
+ /* it == 0 => unconditional. */
+ if (it == 0)
+ return true;
+
+ /* The cond for this insn works out as the top 4 bits. */
+ cond = (it >> 4);
+ }
+
+ cpsr_cond = cpsr >> 28;
+
+ if (!((cc_map[cond] >> cpsr_cond) & 1))
+ return false;
+
+ return true;
+}
+
+/**
+ * adjust_itstate - adjust ITSTATE when emulating instructions in IT-block
+ * @vcpu: The VCPU pointer
+ *
+ * When exceptions occur while instructions are executed in Thumb IF-THEN
+ * blocks, the ITSTATE field of the CPSR is not advanced (updated), so we have
+ * to do this little bit of work manually. The fields map like this:
+ *
+ * IT[7:0] -> CPSR[26:25],CPSR[15:10]
+ */
+static void kvm_adjust_itstate(struct kvm_vcpu *vcpu)
+{
+ unsigned long itbits, cond;
+ unsigned long cpsr = *vcpu_cpsr(vcpu);
+ bool is_arm = !(cpsr & PSR_AA32_T_BIT);
+
+ if (is_arm || !(cpsr & PSR_AA32_IT_MASK))
+ return;
+
+ cond = (cpsr & 0xe000) >> 13;
+ itbits = (cpsr & 0x1c00) >> (10 - 2);
+ itbits |= (cpsr & (0x3 << 25)) >> 25;
+
+ /* Perform ITAdvance (see page A2-52 in ARM DDI 0406C) */
+ if ((itbits & 0x7) == 0)
+ itbits = cond = 0;
+ else
+ itbits = (itbits << 1) & 0x1f;
+
+ cpsr &= ~PSR_AA32_IT_MASK;
+ cpsr |= cond << 13;
+ cpsr |= (itbits & 0x1c) << (10 - 2);
+ cpsr |= (itbits & 0x3) << 25;
+ *vcpu_cpsr(vcpu) = cpsr;
+}
+
+/**
+ * kvm_skip_instr - skip a trapped instruction and proceed to the next
+ * @vcpu: The vcpu pointer
+ */
+void kvm_skip_instr32(struct kvm_vcpu *vcpu)
+{
+ u32 pc = *vcpu_pc(vcpu);
+ bool is_thumb;
+
+ is_thumb = !!(*vcpu_cpsr(vcpu) & PSR_AA32_T_BIT);
+ if (is_thumb && !kvm_vcpu_trap_il_is32bit(vcpu))
+ pc += 2;
+ else
+ pc += 4;
+
+ *vcpu_pc(vcpu) = pc;
+
+ kvm_adjust_itstate(vcpu);
+}
diff --git a/arch/arm64/kvm/hyp/entry.S b/arch/arm64/kvm/hyp/entry.S
new file mode 100644
index 0000000000..f3aa7738b4
--- /dev/null
+++ b/arch/arm64/kvm/hyp/entry.S
@@ -0,0 +1,215 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+/*
+ * Copyright (C) 2015 - ARM Ltd
+ * Author: Marc Zyngier <marc.zyngier@arm.com>
+ */
+
+#include <linux/linkage.h>
+
+#include <asm/alternative.h>
+#include <asm/assembler.h>
+#include <asm/fpsimdmacros.h>
+#include <asm/kvm.h>
+#include <asm/kvm_arm.h>
+#include <asm/kvm_asm.h>
+#include <asm/kvm_mmu.h>
+#include <asm/kvm_mte.h>
+#include <asm/kvm_ptrauth.h>
+
+ .text
+
+/*
+ * u64 __guest_enter(struct kvm_vcpu *vcpu);
+ */
+SYM_FUNC_START(__guest_enter)
+ // x0: vcpu
+ // x1-x17: clobbered by macros
+ // x29: guest context
+
+ adr_this_cpu x1, kvm_hyp_ctxt, x2
+
+ // Store the hyp regs
+ save_callee_saved_regs x1
+
+ // Save hyp's sp_el0
+ save_sp_el0 x1, x2
+
+ // Now the hyp state is stored if we have a pending RAS SError it must
+ // affect the host or hyp. If any asynchronous exception is pending we
+ // defer the guest entry. The DSB isn't necessary before v8.2 as any
+ // SError would be fatal.
+alternative_if ARM64_HAS_RAS_EXTN
+ dsb nshst
+ isb
+alternative_else_nop_endif
+ mrs x1, isr_el1
+ cbz x1, 1f
+ mov x0, #ARM_EXCEPTION_IRQ
+ ret
+
+1:
+ set_loaded_vcpu x0, x1, x2
+
+ add x29, x0, #VCPU_CONTEXT
+
+ // mte_switch_to_guest(g_ctxt, h_ctxt, tmp1)
+ mte_switch_to_guest x29, x1, x2
+
+ // Macro ptrauth_switch_to_guest format:
+ // ptrauth_switch_to_guest(guest cxt, tmp1, tmp2, tmp3)
+ // The below macro to restore guest keys is not implemented in C code
+ // as it may cause Pointer Authentication key signing mismatch errors
+ // when this feature is enabled for kernel code.
+ ptrauth_switch_to_guest x29, x0, x1, x2
+
+ // Restore the guest's sp_el0
+ restore_sp_el0 x29, x0
+
+ // Restore guest regs x0-x17
+ ldp x0, x1, [x29, #CPU_XREG_OFFSET(0)]
+ ldp x2, x3, [x29, #CPU_XREG_OFFSET(2)]
+ ldp x4, x5, [x29, #CPU_XREG_OFFSET(4)]
+ ldp x6, x7, [x29, #CPU_XREG_OFFSET(6)]
+ ldp x8, x9, [x29, #CPU_XREG_OFFSET(8)]
+ ldp x10, x11, [x29, #CPU_XREG_OFFSET(10)]
+ ldp x12, x13, [x29, #CPU_XREG_OFFSET(12)]
+ ldp x14, x15, [x29, #CPU_XREG_OFFSET(14)]
+ ldp x16, x17, [x29, #CPU_XREG_OFFSET(16)]
+
+ // Restore guest regs x18-x29, lr
+ restore_callee_saved_regs x29
+
+ // Do not touch any register after this!
+ eret
+ sb
+
+SYM_INNER_LABEL(__guest_exit_panic, SYM_L_GLOBAL)
+ // x2-x29,lr: vcpu regs
+ // vcpu x0-x1 on the stack
+
+ // If the hyp context is loaded, go straight to hyp_panic
+ get_loaded_vcpu x0, x1
+ cbnz x0, 1f
+ b hyp_panic
+
+1:
+ // The hyp context is saved so make sure it is restored to allow
+ // hyp_panic to run at hyp and, subsequently, panic to run in the host.
+ // This makes use of __guest_exit to avoid duplication but sets the
+ // return address to tail call into hyp_panic. As a side effect, the
+ // current state is saved to the guest context but it will only be
+ // accurate if the guest had been completely restored.
+ adr_this_cpu x0, kvm_hyp_ctxt, x1
+ adr_l x1, hyp_panic
+ str x1, [x0, #CPU_XREG_OFFSET(30)]
+
+ get_vcpu_ptr x1, x0
+
+SYM_INNER_LABEL(__guest_exit, SYM_L_GLOBAL)
+ // x0: return code
+ // x1: vcpu
+ // x2-x29,lr: vcpu regs
+ // vcpu x0-x1 on the stack
+
+ add x1, x1, #VCPU_CONTEXT
+
+ ALTERNATIVE(nop, SET_PSTATE_PAN(1), ARM64_HAS_PAN, CONFIG_ARM64_PAN)
+
+ // Store the guest regs x2 and x3
+ stp x2, x3, [x1, #CPU_XREG_OFFSET(2)]
+
+ // Retrieve the guest regs x0-x1 from the stack
+ ldp x2, x3, [sp], #16 // x0, x1
+
+ // Store the guest regs x0-x1 and x4-x17
+ stp x2, x3, [x1, #CPU_XREG_OFFSET(0)]
+ stp x4, x5, [x1, #CPU_XREG_OFFSET(4)]
+ stp x6, x7, [x1, #CPU_XREG_OFFSET(6)]
+ stp x8, x9, [x1, #CPU_XREG_OFFSET(8)]
+ stp x10, x11, [x1, #CPU_XREG_OFFSET(10)]
+ stp x12, x13, [x1, #CPU_XREG_OFFSET(12)]
+ stp x14, x15, [x1, #CPU_XREG_OFFSET(14)]
+ stp x16, x17, [x1, #CPU_XREG_OFFSET(16)]
+
+ // Store the guest regs x18-x29, lr
+ save_callee_saved_regs x1
+
+ // Store the guest's sp_el0
+ save_sp_el0 x1, x2
+
+ adr_this_cpu x2, kvm_hyp_ctxt, x3
+
+ // Macro ptrauth_switch_to_hyp format:
+ // ptrauth_switch_to_hyp(guest cxt, host cxt, tmp1, tmp2, tmp3)
+ // The below macro to save/restore keys is not implemented in C code
+ // as it may cause Pointer Authentication key signing mismatch errors
+ // when this feature is enabled for kernel code.
+ ptrauth_switch_to_hyp x1, x2, x3, x4, x5
+
+ // mte_switch_to_hyp(g_ctxt, h_ctxt, reg1)
+ mte_switch_to_hyp x1, x2, x3
+
+ // Restore hyp's sp_el0
+ restore_sp_el0 x2, x3
+
+ // Now restore the hyp regs
+ restore_callee_saved_regs x2
+
+ set_loaded_vcpu xzr, x2, x3
+
+alternative_if ARM64_HAS_RAS_EXTN
+ // If we have the RAS extensions we can consume a pending error
+ // without an unmask-SError and isb. The ESB-instruction consumed any
+ // pending guest error when we took the exception from the guest.
+ mrs_s x2, SYS_DISR_EL1
+ str x2, [x1, #(VCPU_FAULT_DISR - VCPU_CONTEXT)]
+ cbz x2, 1f
+ msr_s SYS_DISR_EL1, xzr
+ orr x0, x0, #(1<<ARM_EXIT_WITH_SERROR_BIT)
+1: ret
+alternative_else
+ dsb sy // Synchronize against in-flight ld/st
+ isb // Prevent an early read of side-effect free ISR
+ mrs x2, isr_el1
+ tbnz x2, #ISR_EL1_A_SHIFT, 2f
+ ret
+ nop
+2:
+alternative_endif
+ // We know we have a pending asynchronous abort, now is the
+ // time to flush it out. From your VAXorcist book, page 666:
+ // "Threaten me not, oh Evil one! For I speak with
+ // the power of DEC, and I command thee to show thyself!"
+ mrs x2, elr_el2
+ mrs x3, esr_el2
+ mrs x4, spsr_el2
+ mov x5, x0
+
+ msr daifclr, #4 // Unmask aborts
+
+ // This is our single instruction exception window. A pending
+ // SError is guaranteed to occur at the earliest when we unmask
+ // it, and at the latest just after the ISB.
+abort_guest_exit_start:
+
+ isb
+
+abort_guest_exit_end:
+
+ msr daifset, #4 // Mask aborts
+ ret
+
+ _kvm_extable abort_guest_exit_start, 9997f
+ _kvm_extable abort_guest_exit_end, 9997f
+9997:
+ msr daifset, #4 // Mask aborts
+ mov x0, #(1 << ARM_EXIT_WITH_SERROR_BIT)
+
+ // restore the EL1 exception context so that we can report some
+ // information. Merge the exception code with the SError pending bit.
+ msr elr_el2, x2
+ msr esr_el2, x3
+ msr spsr_el2, x4
+ orr x0, x0, x5
+1: ret
+SYM_FUNC_END(__guest_enter)
diff --git a/arch/arm64/kvm/hyp/exception.c b/arch/arm64/kvm/hyp/exception.c
new file mode 100644
index 0000000000..424a5107cd
--- /dev/null
+++ b/arch/arm64/kvm/hyp/exception.c
@@ -0,0 +1,375 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Fault injection for both 32 and 64bit guests.
+ *
+ * Copyright (C) 2012,2013 - ARM Ltd
+ * Author: Marc Zyngier <marc.zyngier@arm.com>
+ *
+ * Based on arch/arm/kvm/emulate.c
+ * Copyright (C) 2012 - Virtual Open Systems and Columbia University
+ * Author: Christoffer Dall <c.dall@virtualopensystems.com>
+ */
+
+#include <hyp/adjust_pc.h>
+#include <linux/kvm_host.h>
+#include <asm/kvm_emulate.h>
+#include <asm/kvm_mmu.h>
+#include <asm/kvm_nested.h>
+
+#if !defined (__KVM_NVHE_HYPERVISOR__) && !defined (__KVM_VHE_HYPERVISOR__)
+#error Hypervisor code only!
+#endif
+
+static inline u64 __vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
+{
+ u64 val;
+
+ if (unlikely(vcpu_has_nv(vcpu)))
+ return vcpu_read_sys_reg(vcpu, reg);
+ else if (__vcpu_read_sys_reg_from_cpu(reg, &val))
+ return val;
+
+ return __vcpu_sys_reg(vcpu, reg);
+}
+
+static inline void __vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
+{
+ if (unlikely(vcpu_has_nv(vcpu)))
+ vcpu_write_sys_reg(vcpu, val, reg);
+ else if (!__vcpu_write_sys_reg_to_cpu(val, reg))
+ __vcpu_sys_reg(vcpu, reg) = val;
+}
+
+static void __vcpu_write_spsr(struct kvm_vcpu *vcpu, unsigned long target_mode,
+ u64 val)
+{
+ if (unlikely(vcpu_has_nv(vcpu))) {
+ if (target_mode == PSR_MODE_EL1h)
+ vcpu_write_sys_reg(vcpu, val, SPSR_EL1);
+ else
+ vcpu_write_sys_reg(vcpu, val, SPSR_EL2);
+ } else if (has_vhe()) {
+ write_sysreg_el1(val, SYS_SPSR);
+ } else {
+ __vcpu_sys_reg(vcpu, SPSR_EL1) = val;
+ }
+}
+
+static void __vcpu_write_spsr_abt(struct kvm_vcpu *vcpu, u64 val)
+{
+ if (has_vhe())
+ write_sysreg(val, spsr_abt);
+ else
+ vcpu->arch.ctxt.spsr_abt = val;
+}
+
+static void __vcpu_write_spsr_und(struct kvm_vcpu *vcpu, u64 val)
+{
+ if (has_vhe())
+ write_sysreg(val, spsr_und);
+ else
+ vcpu->arch.ctxt.spsr_und = val;
+}
+
+/*
+ * This performs the exception entry at a given EL (@target_mode), stashing PC
+ * and PSTATE into ELR and SPSR respectively, and compute the new PC/PSTATE.
+ * The EL passed to this function *must* be a non-secure, privileged mode with
+ * bit 0 being set (PSTATE.SP == 1).
+ *
+ * When an exception is taken, most PSTATE fields are left unchanged in the
+ * handler. However, some are explicitly overridden (e.g. M[4:0]). Luckily all
+ * of the inherited bits have the same position in the AArch64/AArch32 SPSR_ELx
+ * layouts, so we don't need to shuffle these for exceptions from AArch32 EL0.
+ *
+ * For the SPSR_ELx layout for AArch64, see ARM DDI 0487E.a page C5-429.
+ * For the SPSR_ELx layout for AArch32, see ARM DDI 0487E.a page C5-426.
+ *
+ * Here we manipulate the fields in order of the AArch64 SPSR_ELx layout, from
+ * MSB to LSB.
+ */
+static void enter_exception64(struct kvm_vcpu *vcpu, unsigned long target_mode,
+ enum exception_type type)
+{
+ unsigned long sctlr, vbar, old, new, mode;
+ u64 exc_offset;
+
+ mode = *vcpu_cpsr(vcpu) & (PSR_MODE_MASK | PSR_MODE32_BIT);
+
+ if (mode == target_mode)
+ exc_offset = CURRENT_EL_SP_ELx_VECTOR;
+ else if ((mode | PSR_MODE_THREAD_BIT) == target_mode)
+ exc_offset = CURRENT_EL_SP_EL0_VECTOR;
+ else if (!(mode & PSR_MODE32_BIT))
+ exc_offset = LOWER_EL_AArch64_VECTOR;
+ else
+ exc_offset = LOWER_EL_AArch32_VECTOR;
+
+ switch (target_mode) {
+ case PSR_MODE_EL1h:
+ vbar = __vcpu_read_sys_reg(vcpu, VBAR_EL1);
+ sctlr = __vcpu_read_sys_reg(vcpu, SCTLR_EL1);
+ __vcpu_write_sys_reg(vcpu, *vcpu_pc(vcpu), ELR_EL1);
+ break;
+ case PSR_MODE_EL2h:
+ vbar = __vcpu_read_sys_reg(vcpu, VBAR_EL2);
+ sctlr = __vcpu_read_sys_reg(vcpu, SCTLR_EL2);
+ __vcpu_write_sys_reg(vcpu, *vcpu_pc(vcpu), ELR_EL2);
+ break;
+ default:
+ /* Don't do that */
+ BUG();
+ }
+
+ *vcpu_pc(vcpu) = vbar + exc_offset + type;
+
+ old = *vcpu_cpsr(vcpu);
+ new = 0;
+
+ new |= (old & PSR_N_BIT);
+ new |= (old & PSR_Z_BIT);
+ new |= (old & PSR_C_BIT);
+ new |= (old & PSR_V_BIT);
+
+ if (kvm_has_mte(kern_hyp_va(vcpu->kvm)))
+ new |= PSR_TCO_BIT;
+
+ new |= (old & PSR_DIT_BIT);
+
+ // PSTATE.UAO is set to zero upon any exception to AArch64
+ // See ARM DDI 0487E.a, page D5-2579.
+
+ // PSTATE.PAN is unchanged unless SCTLR_ELx.SPAN == 0b0
+ // SCTLR_ELx.SPAN is RES1 when ARMv8.1-PAN is not implemented
+ // See ARM DDI 0487E.a, page D5-2578.
+ new |= (old & PSR_PAN_BIT);
+ if (!(sctlr & SCTLR_EL1_SPAN))
+ new |= PSR_PAN_BIT;
+
+ // PSTATE.SS is set to zero upon any exception to AArch64
+ // See ARM DDI 0487E.a, page D2-2452.
+
+ // PSTATE.IL is set to zero upon any exception to AArch64
+ // See ARM DDI 0487E.a, page D1-2306.
+
+ // PSTATE.SSBS is set to SCTLR_ELx.DSSBS upon any exception to AArch64
+ // See ARM DDI 0487E.a, page D13-3258
+ if (sctlr & SCTLR_ELx_DSSBS)
+ new |= PSR_SSBS_BIT;
+
+ // PSTATE.BTYPE is set to zero upon any exception to AArch64
+ // See ARM DDI 0487E.a, pages D1-2293 to D1-2294.
+
+ new |= PSR_D_BIT;
+ new |= PSR_A_BIT;
+ new |= PSR_I_BIT;
+ new |= PSR_F_BIT;
+
+ new |= target_mode;
+
+ *vcpu_cpsr(vcpu) = new;
+ __vcpu_write_spsr(vcpu, target_mode, old);
+}
+
+/*
+ * When an exception is taken, most CPSR fields are left unchanged in the
+ * handler. However, some are explicitly overridden (e.g. M[4:0]).
+ *
+ * The SPSR/SPSR_ELx layouts differ, and the below is intended to work with
+ * either format. Note: SPSR.J bit doesn't exist in SPSR_ELx, but this bit was
+ * obsoleted by the ARMv7 virtualization extensions and is RES0.
+ *
+ * For the SPSR layout seen from AArch32, see:
+ * - ARM DDI 0406C.d, page B1-1148
+ * - ARM DDI 0487E.a, page G8-6264
+ *
+ * For the SPSR_ELx layout for AArch32 seen from AArch64, see:
+ * - ARM DDI 0487E.a, page C5-426
+ *
+ * Here we manipulate the fields in order of the AArch32 SPSR_ELx layout, from
+ * MSB to LSB.
+ */
+static unsigned long get_except32_cpsr(struct kvm_vcpu *vcpu, u32 mode)
+{
+ u32 sctlr = __vcpu_read_sys_reg(vcpu, SCTLR_EL1);
+ unsigned long old, new;
+
+ old = *vcpu_cpsr(vcpu);
+ new = 0;
+
+ new |= (old & PSR_AA32_N_BIT);
+ new |= (old & PSR_AA32_Z_BIT);
+ new |= (old & PSR_AA32_C_BIT);
+ new |= (old & PSR_AA32_V_BIT);
+ new |= (old & PSR_AA32_Q_BIT);
+
+ // CPSR.IT[7:0] are set to zero upon any exception
+ // See ARM DDI 0487E.a, section G1.12.3
+ // See ARM DDI 0406C.d, section B1.8.3
+
+ new |= (old & PSR_AA32_DIT_BIT);
+
+ // CPSR.SSBS is set to SCTLR.DSSBS upon any exception
+ // See ARM DDI 0487E.a, page G8-6244
+ if (sctlr & BIT(31))
+ new |= PSR_AA32_SSBS_BIT;
+
+ // CPSR.PAN is unchanged unless SCTLR.SPAN == 0b0
+ // SCTLR.SPAN is RES1 when ARMv8.1-PAN is not implemented
+ // See ARM DDI 0487E.a, page G8-6246
+ new |= (old & PSR_AA32_PAN_BIT);
+ if (!(sctlr & BIT(23)))
+ new |= PSR_AA32_PAN_BIT;
+
+ // SS does not exist in AArch32, so ignore
+
+ // CPSR.IL is set to zero upon any exception
+ // See ARM DDI 0487E.a, page G1-5527
+
+ new |= (old & PSR_AA32_GE_MASK);
+
+ // CPSR.IT[7:0] are set to zero upon any exception
+ // See prior comment above
+
+ // CPSR.E is set to SCTLR.EE upon any exception
+ // See ARM DDI 0487E.a, page G8-6245
+ // See ARM DDI 0406C.d, page B4-1701
+ if (sctlr & BIT(25))
+ new |= PSR_AA32_E_BIT;
+
+ // CPSR.A is unchanged upon an exception to Undefined, Supervisor
+ // CPSR.A is set upon an exception to other modes
+ // See ARM DDI 0487E.a, pages G1-5515 to G1-5516
+ // See ARM DDI 0406C.d, page B1-1182
+ new |= (old & PSR_AA32_A_BIT);
+ if (mode != PSR_AA32_MODE_UND && mode != PSR_AA32_MODE_SVC)
+ new |= PSR_AA32_A_BIT;
+
+ // CPSR.I is set upon any exception
+ // See ARM DDI 0487E.a, pages G1-5515 to G1-5516
+ // See ARM DDI 0406C.d, page B1-1182
+ new |= PSR_AA32_I_BIT;
+
+ // CPSR.F is set upon an exception to FIQ
+ // CPSR.F is unchanged upon an exception to other modes
+ // See ARM DDI 0487E.a, pages G1-5515 to G1-5516
+ // See ARM DDI 0406C.d, page B1-1182
+ new |= (old & PSR_AA32_F_BIT);
+ if (mode == PSR_AA32_MODE_FIQ)
+ new |= PSR_AA32_F_BIT;
+
+ // CPSR.T is set to SCTLR.TE upon any exception
+ // See ARM DDI 0487E.a, page G8-5514
+ // See ARM DDI 0406C.d, page B1-1181
+ if (sctlr & BIT(30))
+ new |= PSR_AA32_T_BIT;
+
+ new |= mode;
+
+ return new;
+}
+
+/*
+ * Table taken from ARMv8 ARM DDI0487B-B, table G1-10.
+ */
+static const u8 return_offsets[8][2] = {
+ [0] = { 0, 0 }, /* Reset, unused */
+ [1] = { 4, 2 }, /* Undefined */
+ [2] = { 0, 0 }, /* SVC, unused */
+ [3] = { 4, 4 }, /* Prefetch abort */
+ [4] = { 8, 8 }, /* Data abort */
+ [5] = { 0, 0 }, /* HVC, unused */
+ [6] = { 4, 4 }, /* IRQ, unused */
+ [7] = { 4, 4 }, /* FIQ, unused */
+};
+
+static void enter_exception32(struct kvm_vcpu *vcpu, u32 mode, u32 vect_offset)
+{
+ unsigned long spsr = *vcpu_cpsr(vcpu);
+ bool is_thumb = (spsr & PSR_AA32_T_BIT);
+ u32 sctlr = __vcpu_read_sys_reg(vcpu, SCTLR_EL1);
+ u32 return_address;
+
+ *vcpu_cpsr(vcpu) = get_except32_cpsr(vcpu, mode);
+ return_address = *vcpu_pc(vcpu);
+ return_address += return_offsets[vect_offset >> 2][is_thumb];
+
+ /* KVM only enters the ABT and UND modes, so only deal with those */
+ switch(mode) {
+ case PSR_AA32_MODE_ABT:
+ __vcpu_write_spsr_abt(vcpu, host_spsr_to_spsr32(spsr));
+ vcpu_gp_regs(vcpu)->compat_lr_abt = return_address;
+ break;
+
+ case PSR_AA32_MODE_UND:
+ __vcpu_write_spsr_und(vcpu, host_spsr_to_spsr32(spsr));
+ vcpu_gp_regs(vcpu)->compat_lr_und = return_address;
+ break;
+ }
+
+ /* Branch to exception vector */
+ if (sctlr & (1 << 13))
+ vect_offset += 0xffff0000;
+ else /* always have security exceptions */
+ vect_offset += __vcpu_read_sys_reg(vcpu, VBAR_EL1);
+
+ *vcpu_pc(vcpu) = vect_offset;
+}
+
+static void kvm_inject_exception(struct kvm_vcpu *vcpu)
+{
+ if (vcpu_el1_is_32bit(vcpu)) {
+ switch (vcpu_get_flag(vcpu, EXCEPT_MASK)) {
+ case unpack_vcpu_flag(EXCEPT_AA32_UND):
+ enter_exception32(vcpu, PSR_AA32_MODE_UND, 4);
+ break;
+ case unpack_vcpu_flag(EXCEPT_AA32_IABT):
+ enter_exception32(vcpu, PSR_AA32_MODE_ABT, 12);
+ break;
+ case unpack_vcpu_flag(EXCEPT_AA32_DABT):
+ enter_exception32(vcpu, PSR_AA32_MODE_ABT, 16);
+ break;
+ default:
+ /* Err... */
+ break;
+ }
+ } else {
+ switch (vcpu_get_flag(vcpu, EXCEPT_MASK)) {
+ case unpack_vcpu_flag(EXCEPT_AA64_EL1_SYNC):
+ enter_exception64(vcpu, PSR_MODE_EL1h, except_type_sync);
+ break;
+
+ case unpack_vcpu_flag(EXCEPT_AA64_EL2_SYNC):
+ enter_exception64(vcpu, PSR_MODE_EL2h, except_type_sync);
+ break;
+
+ case unpack_vcpu_flag(EXCEPT_AA64_EL2_IRQ):
+ enter_exception64(vcpu, PSR_MODE_EL2h, except_type_irq);
+ break;
+
+ default:
+ /*
+ * Only EL1_SYNC and EL2_{SYNC,IRQ} makes
+ * sense so far. Everything else gets silently
+ * ignored.
+ */
+ break;
+ }
+ }
+}
+
+/*
+ * Adjust the guest PC (and potentially exception state) depending on
+ * flags provided by the emulation code.
+ */
+void __kvm_adjust_pc(struct kvm_vcpu *vcpu)
+{
+ if (vcpu_get_flag(vcpu, PENDING_EXCEPTION)) {
+ kvm_inject_exception(vcpu);
+ vcpu_clear_flag(vcpu, PENDING_EXCEPTION);
+ vcpu_clear_flag(vcpu, EXCEPT_MASK);
+ } else if (vcpu_get_flag(vcpu, INCREMENT_PC)) {
+ kvm_skip_instr(vcpu);
+ vcpu_clear_flag(vcpu, INCREMENT_PC);
+ }
+}
diff --git a/arch/arm64/kvm/hyp/fpsimd.S b/arch/arm64/kvm/hyp/fpsimd.S
new file mode 100644
index 0000000000..61e6f3ba7b
--- /dev/null
+++ b/arch/arm64/kvm/hyp/fpsimd.S
@@ -0,0 +1,27 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+/*
+ * Copyright (C) 2015 - ARM Ltd
+ * Author: Marc Zyngier <marc.zyngier@arm.com>
+ */
+
+#include <linux/linkage.h>
+
+#include <asm/fpsimdmacros.h>
+
+ .text
+
+SYM_FUNC_START(__fpsimd_save_state)
+ fpsimd_save x0, 1
+ ret
+SYM_FUNC_END(__fpsimd_save_state)
+
+SYM_FUNC_START(__fpsimd_restore_state)
+ fpsimd_restore x0, 1
+ ret
+SYM_FUNC_END(__fpsimd_restore_state)
+
+SYM_FUNC_START(__sve_restore_state)
+ mov x2, #1
+ sve_load 0, x1, x2, 3
+ ret
+SYM_FUNC_END(__sve_restore_state)
diff --git a/arch/arm64/kvm/hyp/hyp-constants.c b/arch/arm64/kvm/hyp/hyp-constants.c
new file mode 100644
index 0000000000..b257a3b4bf
--- /dev/null
+++ b/arch/arm64/kvm/hyp/hyp-constants.c
@@ -0,0 +1,13 @@
+// SPDX-License-Identifier: GPL-2.0-only
+
+#include <linux/kbuild.h>
+#include <nvhe/memory.h>
+#include <nvhe/pkvm.h>
+
+int main(void)
+{
+ DEFINE(STRUCT_HYP_PAGE_SIZE, sizeof(struct hyp_page));
+ DEFINE(PKVM_HYP_VM_SIZE, sizeof(struct pkvm_hyp_vm));
+ DEFINE(PKVM_HYP_VCPU_SIZE, sizeof(struct pkvm_hyp_vcpu));
+ return 0;
+}
diff --git a/arch/arm64/kvm/hyp/hyp-entry.S b/arch/arm64/kvm/hyp/hyp-entry.S
new file mode 100644
index 0000000000..03f97d7198
--- /dev/null
+++ b/arch/arm64/kvm/hyp/hyp-entry.S
@@ -0,0 +1,264 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+/*
+ * Copyright (C) 2015-2018 - ARM Ltd
+ * Author: Marc Zyngier <marc.zyngier@arm.com>
+ */
+
+#include <linux/arm-smccc.h>
+#include <linux/linkage.h>
+
+#include <asm/alternative.h>
+#include <asm/assembler.h>
+#include <asm/cpufeature.h>
+#include <asm/kvm_arm.h>
+#include <asm/kvm_asm.h>
+#include <asm/mmu.h>
+#include <asm/spectre.h>
+
+.macro save_caller_saved_regs_vect
+ /* x0 and x1 were saved in the vector entry */
+ stp x2, x3, [sp, #-16]!
+ stp x4, x5, [sp, #-16]!
+ stp x6, x7, [sp, #-16]!
+ stp x8, x9, [sp, #-16]!
+ stp x10, x11, [sp, #-16]!
+ stp x12, x13, [sp, #-16]!
+ stp x14, x15, [sp, #-16]!
+ stp x16, x17, [sp, #-16]!
+.endm
+
+.macro restore_caller_saved_regs_vect
+ ldp x16, x17, [sp], #16
+ ldp x14, x15, [sp], #16
+ ldp x12, x13, [sp], #16
+ ldp x10, x11, [sp], #16
+ ldp x8, x9, [sp], #16
+ ldp x6, x7, [sp], #16
+ ldp x4, x5, [sp], #16
+ ldp x2, x3, [sp], #16
+ ldp x0, x1, [sp], #16
+.endm
+
+ .text
+
+el1_sync: // Guest trapped into EL2
+
+ mrs x0, esr_el2
+ ubfx x0, x0, #ESR_ELx_EC_SHIFT, #ESR_ELx_EC_WIDTH
+ cmp x0, #ESR_ELx_EC_HVC64
+ ccmp x0, #ESR_ELx_EC_HVC32, #4, ne
+ b.ne el1_trap
+
+ /*
+ * Fastest possible path for ARM_SMCCC_ARCH_WORKAROUND_1.
+ * The workaround has already been applied on the host,
+ * so let's quickly get back to the guest. We don't bother
+ * restoring x1, as it can be clobbered anyway.
+ */
+ ldr x1, [sp] // Guest's x0
+ eor w1, w1, #ARM_SMCCC_ARCH_WORKAROUND_1
+ cbz w1, wa_epilogue
+
+ /* ARM_SMCCC_ARCH_WORKAROUND_2 handling */
+ eor w1, w1, #(ARM_SMCCC_ARCH_WORKAROUND_1 ^ \
+ ARM_SMCCC_ARCH_WORKAROUND_2)
+ cbz w1, wa_epilogue
+
+ eor w1, w1, #(ARM_SMCCC_ARCH_WORKAROUND_2 ^ \
+ ARM_SMCCC_ARCH_WORKAROUND_3)
+ cbnz w1, el1_trap
+
+wa_epilogue:
+ mov x0, xzr
+ add sp, sp, #16
+ eret
+ sb
+
+el1_trap:
+ get_vcpu_ptr x1, x0
+ mov x0, #ARM_EXCEPTION_TRAP
+ b __guest_exit
+
+el1_irq:
+el1_fiq:
+ get_vcpu_ptr x1, x0
+ mov x0, #ARM_EXCEPTION_IRQ
+ b __guest_exit
+
+el1_error:
+ get_vcpu_ptr x1, x0
+ mov x0, #ARM_EXCEPTION_EL1_SERROR
+ b __guest_exit
+
+el2_sync:
+ /* Check for illegal exception return */
+ mrs x0, spsr_el2
+ tbnz x0, #20, 1f
+
+ save_caller_saved_regs_vect
+ stp x29, x30, [sp, #-16]!
+ bl kvm_unexpected_el2_exception
+ ldp x29, x30, [sp], #16
+ restore_caller_saved_regs_vect
+
+ eret
+
+1:
+ /* Let's attempt a recovery from the illegal exception return */
+ get_vcpu_ptr x1, x0
+ mov x0, #ARM_EXCEPTION_IL
+ b __guest_exit
+
+
+el2_error:
+ save_caller_saved_regs_vect
+ stp x29, x30, [sp, #-16]!
+
+ bl kvm_unexpected_el2_exception
+
+ ldp x29, x30, [sp], #16
+ restore_caller_saved_regs_vect
+
+ eret
+ sb
+
+.macro invalid_vector label, target = __guest_exit_panic
+ .align 2
+SYM_CODE_START_LOCAL(\label)
+ b \target
+SYM_CODE_END(\label)
+.endm
+
+ /* None of these should ever happen */
+ invalid_vector el2t_sync_invalid
+ invalid_vector el2t_irq_invalid
+ invalid_vector el2t_fiq_invalid
+ invalid_vector el2t_error_invalid
+ invalid_vector el2h_irq_invalid
+ invalid_vector el2h_fiq_invalid
+
+ .ltorg
+
+ .align 11
+
+.macro check_preamble_length start, end
+/* kvm_patch_vector_branch() generates code that jumps over the preamble. */
+.if ((\end-\start) != KVM_VECTOR_PREAMBLE)
+ .error "KVM vector preamble length mismatch"
+.endif
+.endm
+
+.macro valid_vect target
+ .align 7
+661:
+ esb
+ stp x0, x1, [sp, #-16]!
+662:
+ /*
+ * spectre vectors __bp_harden_hyp_vecs generate br instructions at runtime
+ * that jump at offset 8 at __kvm_hyp_vector.
+ * As hyp .text is guarded section, it needs bti j.
+ */
+ bti j
+ b \target
+
+check_preamble_length 661b, 662b
+.endm
+
+.macro invalid_vect target
+ .align 7
+661:
+ nop
+ stp x0, x1, [sp, #-16]!
+662:
+ /* Check valid_vect */
+ bti j
+ b \target
+
+check_preamble_length 661b, 662b
+.endm
+
+SYM_CODE_START(__kvm_hyp_vector)
+ invalid_vect el2t_sync_invalid // Synchronous EL2t
+ invalid_vect el2t_irq_invalid // IRQ EL2t
+ invalid_vect el2t_fiq_invalid // FIQ EL2t
+ invalid_vect el2t_error_invalid // Error EL2t
+
+ valid_vect el2_sync // Synchronous EL2h
+ invalid_vect el2h_irq_invalid // IRQ EL2h
+ invalid_vect el2h_fiq_invalid // FIQ EL2h
+ valid_vect el2_error // Error EL2h
+
+ valid_vect el1_sync // Synchronous 64-bit EL1
+ valid_vect el1_irq // IRQ 64-bit EL1
+ valid_vect el1_fiq // FIQ 64-bit EL1
+ valid_vect el1_error // Error 64-bit EL1
+
+ valid_vect el1_sync // Synchronous 32-bit EL1
+ valid_vect el1_irq // IRQ 32-bit EL1
+ valid_vect el1_fiq // FIQ 32-bit EL1
+ valid_vect el1_error // Error 32-bit EL1
+SYM_CODE_END(__kvm_hyp_vector)
+
+.macro spectrev2_smccc_wa1_smc
+ sub sp, sp, #(8 * 4)
+ stp x2, x3, [sp, #(8 * 0)]
+ stp x0, x1, [sp, #(8 * 2)]
+ alternative_cb ARM64_ALWAYS_SYSTEM, spectre_bhb_patch_wa3
+ /* Patched to mov WA3 when supported */
+ mov w0, #ARM_SMCCC_ARCH_WORKAROUND_1
+ alternative_cb_end
+ smc #0
+ ldp x2, x3, [sp, #(8 * 0)]
+ add sp, sp, #(8 * 2)
+.endm
+
+.macro hyp_ventry indirect, spectrev2
+ .align 7
+1: esb
+ .if \spectrev2 != 0
+ spectrev2_smccc_wa1_smc
+ .else
+ stp x0, x1, [sp, #-16]!
+ mitigate_spectre_bhb_loop x0
+ mitigate_spectre_bhb_clear_insn
+ .endif
+ .if \indirect != 0
+ alternative_cb ARM64_ALWAYS_SYSTEM, kvm_patch_vector_branch
+ /*
+ * For ARM64_SPECTRE_V3A configurations, these NOPs get replaced with:
+ *
+ * movz x0, #(addr & 0xffff)
+ * movk x0, #((addr >> 16) & 0xffff), lsl #16
+ * movk x0, #((addr >> 32) & 0xffff), lsl #32
+ * br x0
+ *
+ * Where:
+ * addr = kern_hyp_va(__kvm_hyp_vector) + vector-offset + KVM_VECTOR_PREAMBLE.
+ * See kvm_patch_vector_branch for details.
+ */
+ nop
+ nop
+ nop
+ nop
+ alternative_cb_end
+ .endif
+ b __kvm_hyp_vector + (1b - 0b + KVM_VECTOR_PREAMBLE)
+.endm
+
+.macro generate_vectors indirect, spectrev2
+0:
+ .rept 16
+ hyp_ventry \indirect, \spectrev2
+ .endr
+ .org 0b + SZ_2K // Safety measure
+.endm
+
+ .align 11
+SYM_CODE_START(__bp_harden_hyp_vecs)
+ generate_vectors indirect = 0, spectrev2 = 1 // HYP_VECTOR_SPECTRE_DIRECT
+ generate_vectors indirect = 1, spectrev2 = 0 // HYP_VECTOR_INDIRECT
+ generate_vectors indirect = 1, spectrev2 = 1 // HYP_VECTOR_SPECTRE_INDIRECT
+1: .org __bp_harden_hyp_vecs + __BP_HARDEN_HYP_VECS_SZ
+ .org 1b
+SYM_CODE_END(__bp_harden_hyp_vecs)
diff --git a/arch/arm64/kvm/hyp/include/hyp/adjust_pc.h b/arch/arm64/kvm/hyp/include/hyp/adjust_pc.h
new file mode 100644
index 0000000000..4fdfeabefe
--- /dev/null
+++ b/arch/arm64/kvm/hyp/include/hyp/adjust_pc.h
@@ -0,0 +1,53 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Guest PC manipulation helpers
+ *
+ * Copyright (C) 2012,2013 - ARM Ltd
+ * Copyright (C) 2020 - Google LLC
+ * Author: Marc Zyngier <maz@kernel.org>
+ */
+
+#ifndef __ARM64_KVM_HYP_ADJUST_PC_H__
+#define __ARM64_KVM_HYP_ADJUST_PC_H__
+
+#include <asm/kvm_emulate.h>
+#include <asm/kvm_host.h>
+
+static inline void kvm_skip_instr(struct kvm_vcpu *vcpu)
+{
+ if (vcpu_mode_is_32bit(vcpu)) {
+ kvm_skip_instr32(vcpu);
+ } else {
+ *vcpu_pc(vcpu) += 4;
+ *vcpu_cpsr(vcpu) &= ~PSR_BTYPE_MASK;
+ }
+
+ /* advance the singlestep state machine */
+ *vcpu_cpsr(vcpu) &= ~DBG_SPSR_SS;
+}
+
+/*
+ * Skip an instruction which has been emulated at hyp while most guest sysregs
+ * are live.
+ */
+static inline void __kvm_skip_instr(struct kvm_vcpu *vcpu)
+{
+ *vcpu_pc(vcpu) = read_sysreg_el2(SYS_ELR);
+ vcpu_gp_regs(vcpu)->pstate = read_sysreg_el2(SYS_SPSR);
+
+ kvm_skip_instr(vcpu);
+
+ write_sysreg_el2(vcpu_gp_regs(vcpu)->pstate, SYS_SPSR);
+ write_sysreg_el2(*vcpu_pc(vcpu), SYS_ELR);
+}
+
+/*
+ * Skip an instruction while host sysregs are live.
+ * Assumes host is always 64-bit.
+ */
+static inline void kvm_skip_host_instr(void)
+{
+ write_sysreg_el2(read_sysreg_el2(SYS_ELR) + 4, SYS_ELR);
+}
+
+#endif
diff --git a/arch/arm64/kvm/hyp/include/hyp/debug-sr.h b/arch/arm64/kvm/hyp/include/hyp/debug-sr.h
new file mode 100644
index 0000000000..961bbef104
--- /dev/null
+++ b/arch/arm64/kvm/hyp/include/hyp/debug-sr.h
@@ -0,0 +1,168 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2015 - ARM Ltd
+ * Author: Marc Zyngier <marc.zyngier@arm.com>
+ */
+
+#ifndef __ARM64_KVM_HYP_DEBUG_SR_H__
+#define __ARM64_KVM_HYP_DEBUG_SR_H__
+
+#include <linux/compiler.h>
+#include <linux/kvm_host.h>
+
+#include <asm/debug-monitors.h>
+#include <asm/kvm_asm.h>
+#include <asm/kvm_hyp.h>
+#include <asm/kvm_mmu.h>
+
+#define read_debug(r,n) read_sysreg(r##n##_el1)
+#define write_debug(v,r,n) write_sysreg(v, r##n##_el1)
+
+#define save_debug(ptr,reg,nr) \
+ switch (nr) { \
+ case 15: ptr[15] = read_debug(reg, 15); \
+ fallthrough; \
+ case 14: ptr[14] = read_debug(reg, 14); \
+ fallthrough; \
+ case 13: ptr[13] = read_debug(reg, 13); \
+ fallthrough; \
+ case 12: ptr[12] = read_debug(reg, 12); \
+ fallthrough; \
+ case 11: ptr[11] = read_debug(reg, 11); \
+ fallthrough; \
+ case 10: ptr[10] = read_debug(reg, 10); \
+ fallthrough; \
+ case 9: ptr[9] = read_debug(reg, 9); \
+ fallthrough; \
+ case 8: ptr[8] = read_debug(reg, 8); \
+ fallthrough; \
+ case 7: ptr[7] = read_debug(reg, 7); \
+ fallthrough; \
+ case 6: ptr[6] = read_debug(reg, 6); \
+ fallthrough; \
+ case 5: ptr[5] = read_debug(reg, 5); \
+ fallthrough; \
+ case 4: ptr[4] = read_debug(reg, 4); \
+ fallthrough; \
+ case 3: ptr[3] = read_debug(reg, 3); \
+ fallthrough; \
+ case 2: ptr[2] = read_debug(reg, 2); \
+ fallthrough; \
+ case 1: ptr[1] = read_debug(reg, 1); \
+ fallthrough; \
+ default: ptr[0] = read_debug(reg, 0); \
+ }
+
+#define restore_debug(ptr,reg,nr) \
+ switch (nr) { \
+ case 15: write_debug(ptr[15], reg, 15); \
+ fallthrough; \
+ case 14: write_debug(ptr[14], reg, 14); \
+ fallthrough; \
+ case 13: write_debug(ptr[13], reg, 13); \
+ fallthrough; \
+ case 12: write_debug(ptr[12], reg, 12); \
+ fallthrough; \
+ case 11: write_debug(ptr[11], reg, 11); \
+ fallthrough; \
+ case 10: write_debug(ptr[10], reg, 10); \
+ fallthrough; \
+ case 9: write_debug(ptr[9], reg, 9); \
+ fallthrough; \
+ case 8: write_debug(ptr[8], reg, 8); \
+ fallthrough; \
+ case 7: write_debug(ptr[7], reg, 7); \
+ fallthrough; \
+ case 6: write_debug(ptr[6], reg, 6); \
+ fallthrough; \
+ case 5: write_debug(ptr[5], reg, 5); \
+ fallthrough; \
+ case 4: write_debug(ptr[4], reg, 4); \
+ fallthrough; \
+ case 3: write_debug(ptr[3], reg, 3); \
+ fallthrough; \
+ case 2: write_debug(ptr[2], reg, 2); \
+ fallthrough; \
+ case 1: write_debug(ptr[1], reg, 1); \
+ fallthrough; \
+ default: write_debug(ptr[0], reg, 0); \
+ }
+
+static void __debug_save_state(struct kvm_guest_debug_arch *dbg,
+ struct kvm_cpu_context *ctxt)
+{
+ u64 aa64dfr0;
+ int brps, wrps;
+
+ aa64dfr0 = read_sysreg(id_aa64dfr0_el1);
+ brps = (aa64dfr0 >> 12) & 0xf;
+ wrps = (aa64dfr0 >> 20) & 0xf;
+
+ save_debug(dbg->dbg_bcr, dbgbcr, brps);
+ save_debug(dbg->dbg_bvr, dbgbvr, brps);
+ save_debug(dbg->dbg_wcr, dbgwcr, wrps);
+ save_debug(dbg->dbg_wvr, dbgwvr, wrps);
+
+ ctxt_sys_reg(ctxt, MDCCINT_EL1) = read_sysreg(mdccint_el1);
+}
+
+static void __debug_restore_state(struct kvm_guest_debug_arch *dbg,
+ struct kvm_cpu_context *ctxt)
+{
+ u64 aa64dfr0;
+ int brps, wrps;
+
+ aa64dfr0 = read_sysreg(id_aa64dfr0_el1);
+
+ brps = (aa64dfr0 >> 12) & 0xf;
+ wrps = (aa64dfr0 >> 20) & 0xf;
+
+ restore_debug(dbg->dbg_bcr, dbgbcr, brps);
+ restore_debug(dbg->dbg_bvr, dbgbvr, brps);
+ restore_debug(dbg->dbg_wcr, dbgwcr, wrps);
+ restore_debug(dbg->dbg_wvr, dbgwvr, wrps);
+
+ write_sysreg(ctxt_sys_reg(ctxt, MDCCINT_EL1), mdccint_el1);
+}
+
+static inline void __debug_switch_to_guest_common(struct kvm_vcpu *vcpu)
+{
+ struct kvm_cpu_context *host_ctxt;
+ struct kvm_cpu_context *guest_ctxt;
+ struct kvm_guest_debug_arch *host_dbg;
+ struct kvm_guest_debug_arch *guest_dbg;
+
+ if (!vcpu_get_flag(vcpu, DEBUG_DIRTY))
+ return;
+
+ host_ctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt;
+ guest_ctxt = &vcpu->arch.ctxt;
+ host_dbg = &vcpu->arch.host_debug_state.regs;
+ guest_dbg = kern_hyp_va(vcpu->arch.debug_ptr);
+
+ __debug_save_state(host_dbg, host_ctxt);
+ __debug_restore_state(guest_dbg, guest_ctxt);
+}
+
+static inline void __debug_switch_to_host_common(struct kvm_vcpu *vcpu)
+{
+ struct kvm_cpu_context *host_ctxt;
+ struct kvm_cpu_context *guest_ctxt;
+ struct kvm_guest_debug_arch *host_dbg;
+ struct kvm_guest_debug_arch *guest_dbg;
+
+ if (!vcpu_get_flag(vcpu, DEBUG_DIRTY))
+ return;
+
+ host_ctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt;
+ guest_ctxt = &vcpu->arch.ctxt;
+ host_dbg = &vcpu->arch.host_debug_state.regs;
+ guest_dbg = kern_hyp_va(vcpu->arch.debug_ptr);
+
+ __debug_save_state(guest_dbg, guest_ctxt);
+ __debug_restore_state(host_dbg, host_ctxt);
+
+ vcpu_clear_flag(vcpu, DEBUG_DIRTY);
+}
+
+#endif /* __ARM64_KVM_HYP_DEBUG_SR_H__ */
diff --git a/arch/arm64/kvm/hyp/include/hyp/fault.h b/arch/arm64/kvm/hyp/include/hyp/fault.h
new file mode 100644
index 0000000000..9ddcfe2c3e
--- /dev/null
+++ b/arch/arm64/kvm/hyp/include/hyp/fault.h
@@ -0,0 +1,75 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2015 - ARM Ltd
+ * Author: Marc Zyngier <marc.zyngier@arm.com>
+ */
+
+#ifndef __ARM64_KVM_HYP_FAULT_H__
+#define __ARM64_KVM_HYP_FAULT_H__
+
+#include <asm/kvm_asm.h>
+#include <asm/kvm_emulate.h>
+#include <asm/kvm_hyp.h>
+#include <asm/kvm_mmu.h>
+
+static inline bool __translate_far_to_hpfar(u64 far, u64 *hpfar)
+{
+ u64 par, tmp;
+
+ /*
+ * Resolve the IPA the hard way using the guest VA.
+ *
+ * Stage-1 translation already validated the memory access
+ * rights. As such, we can use the EL1 translation regime, and
+ * don't have to distinguish between EL0 and EL1 access.
+ *
+ * We do need to save/restore PAR_EL1 though, as we haven't
+ * saved the guest context yet, and we may return early...
+ */
+ par = read_sysreg_par();
+ if (!__kvm_at("s1e1r", far))
+ tmp = read_sysreg_par();
+ else
+ tmp = SYS_PAR_EL1_F; /* back to the guest */
+ write_sysreg(par, par_el1);
+
+ if (unlikely(tmp & SYS_PAR_EL1_F))
+ return false; /* Translation failed, back to guest */
+
+ /* Convert PAR to HPFAR format */
+ *hpfar = PAR_TO_HPFAR(tmp);
+ return true;
+}
+
+static inline bool __get_fault_info(u64 esr, struct kvm_vcpu_fault_info *fault)
+{
+ u64 hpfar, far;
+
+ far = read_sysreg_el2(SYS_FAR);
+
+ /*
+ * The HPFAR can be invalid if the stage 2 fault did not
+ * happen during a stage 1 page table walk (the ESR_EL2.S1PTW
+ * bit is clear) and one of the two following cases are true:
+ * 1. The fault was due to a permission fault
+ * 2. The processor carries errata 834220
+ *
+ * Therefore, for all non S1PTW faults where we either have a
+ * permission fault or the errata workaround is enabled, we
+ * resolve the IPA using the AT instruction.
+ */
+ if (!(esr & ESR_ELx_S1PTW) &&
+ (cpus_have_final_cap(ARM64_WORKAROUND_834220) ||
+ (esr & ESR_ELx_FSC_TYPE) == ESR_ELx_FSC_PERM)) {
+ if (!__translate_far_to_hpfar(far, &hpfar))
+ return false;
+ } else {
+ hpfar = read_sysreg(hpfar_el2);
+ }
+
+ fault->far_el2 = far;
+ fault->hpfar_el2 = hpfar;
+ return true;
+}
+
+#endif
diff --git a/arch/arm64/kvm/hyp/include/hyp/switch.h b/arch/arm64/kvm/hyp/include/hyp/switch.h
new file mode 100644
index 0000000000..9cfe6bd1db
--- /dev/null
+++ b/arch/arm64/kvm/hyp/include/hyp/switch.h
@@ -0,0 +1,727 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2015 - ARM Ltd
+ * Author: Marc Zyngier <marc.zyngier@arm.com>
+ */
+
+#ifndef __ARM64_KVM_HYP_SWITCH_H__
+#define __ARM64_KVM_HYP_SWITCH_H__
+
+#include <hyp/adjust_pc.h>
+#include <hyp/fault.h>
+
+#include <linux/arm-smccc.h>
+#include <linux/kvm_host.h>
+#include <linux/types.h>
+#include <linux/jump_label.h>
+#include <uapi/linux/psci.h>
+
+#include <kvm/arm_psci.h>
+
+#include <asm/barrier.h>
+#include <asm/cpufeature.h>
+#include <asm/extable.h>
+#include <asm/kprobes.h>
+#include <asm/kvm_asm.h>
+#include <asm/kvm_emulate.h>
+#include <asm/kvm_hyp.h>
+#include <asm/kvm_mmu.h>
+#include <asm/kvm_nested.h>
+#include <asm/fpsimd.h>
+#include <asm/debug-monitors.h>
+#include <asm/processor.h>
+
+struct kvm_exception_table_entry {
+ int insn, fixup;
+};
+
+extern struct kvm_exception_table_entry __start___kvm_ex_table;
+extern struct kvm_exception_table_entry __stop___kvm_ex_table;
+
+/* Check whether the FP regs are owned by the guest */
+static inline bool guest_owns_fp_regs(struct kvm_vcpu *vcpu)
+{
+ return vcpu->arch.fp_state == FP_STATE_GUEST_OWNED;
+}
+
+/* Save the 32-bit only FPSIMD system register state */
+static inline void __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu)
+{
+ if (!vcpu_el1_is_32bit(vcpu))
+ return;
+
+ __vcpu_sys_reg(vcpu, FPEXC32_EL2) = read_sysreg(fpexc32_el2);
+}
+
+static inline void __activate_traps_fpsimd32(struct kvm_vcpu *vcpu)
+{
+ /*
+ * We are about to set CPTR_EL2.TFP to trap all floating point
+ * register accesses to EL2, however, the ARM ARM clearly states that
+ * traps are only taken to EL2 if the operation would not otherwise
+ * trap to EL1. Therefore, always make sure that for 32-bit guests,
+ * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
+ * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to
+ * it will cause an exception.
+ */
+ if (vcpu_el1_is_32bit(vcpu) && system_supports_fpsimd()) {
+ write_sysreg(1 << 30, fpexc32_el2);
+ isb();
+ }
+}
+
+#define compute_clr_set(vcpu, reg, clr, set) \
+ do { \
+ u64 hfg; \
+ hfg = __vcpu_sys_reg(vcpu, reg) & ~__ ## reg ## _RES0; \
+ set |= hfg & __ ## reg ## _MASK; \
+ clr |= ~hfg & __ ## reg ## _nMASK; \
+ } while(0)
+
+
+static inline void __activate_traps_hfgxtr(struct kvm_vcpu *vcpu)
+{
+ struct kvm_cpu_context *hctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt;
+ u64 r_clr = 0, w_clr = 0, r_set = 0, w_set = 0, tmp;
+ u64 r_val, w_val;
+
+ if (!cpus_have_final_cap(ARM64_HAS_FGT))
+ return;
+
+ ctxt_sys_reg(hctxt, HFGRTR_EL2) = read_sysreg_s(SYS_HFGRTR_EL2);
+ ctxt_sys_reg(hctxt, HFGWTR_EL2) = read_sysreg_s(SYS_HFGWTR_EL2);
+
+ if (cpus_have_final_cap(ARM64_SME)) {
+ tmp = HFGxTR_EL2_nSMPRI_EL1_MASK | HFGxTR_EL2_nTPIDR2_EL0_MASK;
+
+ r_clr |= tmp;
+ w_clr |= tmp;
+ }
+
+ /*
+ * Trap guest writes to TCR_EL1 to prevent it from enabling HA or HD.
+ */
+ if (cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38))
+ w_set |= HFGxTR_EL2_TCR_EL1_MASK;
+
+ if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) {
+ compute_clr_set(vcpu, HFGRTR_EL2, r_clr, r_set);
+ compute_clr_set(vcpu, HFGWTR_EL2, w_clr, w_set);
+ }
+
+ /* The default is not to trap anything but ACCDATA_EL1 */
+ r_val = __HFGRTR_EL2_nMASK & ~HFGxTR_EL2_nACCDATA_EL1;
+ r_val |= r_set;
+ r_val &= ~r_clr;
+
+ w_val = __HFGWTR_EL2_nMASK & ~HFGxTR_EL2_nACCDATA_EL1;
+ w_val |= w_set;
+ w_val &= ~w_clr;
+
+ write_sysreg_s(r_val, SYS_HFGRTR_EL2);
+ write_sysreg_s(w_val, SYS_HFGWTR_EL2);
+
+ if (!vcpu_has_nv(vcpu) || is_hyp_ctxt(vcpu))
+ return;
+
+ ctxt_sys_reg(hctxt, HFGITR_EL2) = read_sysreg_s(SYS_HFGITR_EL2);
+
+ r_set = r_clr = 0;
+ compute_clr_set(vcpu, HFGITR_EL2, r_clr, r_set);
+ r_val = __HFGITR_EL2_nMASK;
+ r_val |= r_set;
+ r_val &= ~r_clr;
+
+ write_sysreg_s(r_val, SYS_HFGITR_EL2);
+
+ ctxt_sys_reg(hctxt, HDFGRTR_EL2) = read_sysreg_s(SYS_HDFGRTR_EL2);
+ ctxt_sys_reg(hctxt, HDFGWTR_EL2) = read_sysreg_s(SYS_HDFGWTR_EL2);
+
+ r_clr = r_set = w_clr = w_set = 0;
+
+ compute_clr_set(vcpu, HDFGRTR_EL2, r_clr, r_set);
+ compute_clr_set(vcpu, HDFGWTR_EL2, w_clr, w_set);
+
+ r_val = __HDFGRTR_EL2_nMASK;
+ r_val |= r_set;
+ r_val &= ~r_clr;
+
+ w_val = __HDFGWTR_EL2_nMASK;
+ w_val |= w_set;
+ w_val &= ~w_clr;
+
+ write_sysreg_s(r_val, SYS_HDFGRTR_EL2);
+ write_sysreg_s(w_val, SYS_HDFGWTR_EL2);
+}
+
+static inline void __deactivate_traps_hfgxtr(struct kvm_vcpu *vcpu)
+{
+ struct kvm_cpu_context *hctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt;
+
+ if (!cpus_have_final_cap(ARM64_HAS_FGT))
+ return;
+
+ write_sysreg_s(ctxt_sys_reg(hctxt, HFGRTR_EL2), SYS_HFGRTR_EL2);
+ write_sysreg_s(ctxt_sys_reg(hctxt, HFGWTR_EL2), SYS_HFGWTR_EL2);
+
+ if (!vcpu_has_nv(vcpu) || is_hyp_ctxt(vcpu))
+ return;
+
+ write_sysreg_s(ctxt_sys_reg(hctxt, HFGITR_EL2), SYS_HFGITR_EL2);
+ write_sysreg_s(ctxt_sys_reg(hctxt, HDFGRTR_EL2), SYS_HDFGRTR_EL2);
+ write_sysreg_s(ctxt_sys_reg(hctxt, HDFGWTR_EL2), SYS_HDFGWTR_EL2);
+}
+
+static inline void __activate_traps_common(struct kvm_vcpu *vcpu)
+{
+ /* Trap on AArch32 cp15 c15 (impdef sysregs) accesses (EL1 or EL0) */
+ write_sysreg(1 << 15, hstr_el2);
+
+ /*
+ * Make sure we trap PMU access from EL0 to EL2. Also sanitize
+ * PMSELR_EL0 to make sure it never contains the cycle
+ * counter, which could make a PMXEVCNTR_EL0 access UNDEF at
+ * EL1 instead of being trapped to EL2.
+ */
+ if (kvm_arm_support_pmu_v3()) {
+ struct kvm_cpu_context *hctxt;
+
+ write_sysreg(0, pmselr_el0);
+
+ hctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt;
+ ctxt_sys_reg(hctxt, PMUSERENR_EL0) = read_sysreg(pmuserenr_el0);
+ write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
+ vcpu_set_flag(vcpu, PMUSERENR_ON_CPU);
+ }
+
+ vcpu->arch.mdcr_el2_host = read_sysreg(mdcr_el2);
+ write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
+
+ if (cpus_have_final_cap(ARM64_HAS_HCX)) {
+ u64 hcrx = HCRX_GUEST_FLAGS;
+ if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) {
+ u64 clr = 0, set = 0;
+
+ compute_clr_set(vcpu, HCRX_EL2, clr, set);
+
+ hcrx |= set;
+ hcrx &= ~clr;
+ }
+
+ write_sysreg_s(hcrx, SYS_HCRX_EL2);
+ }
+
+ __activate_traps_hfgxtr(vcpu);
+}
+
+static inline void __deactivate_traps_common(struct kvm_vcpu *vcpu)
+{
+ write_sysreg(vcpu->arch.mdcr_el2_host, mdcr_el2);
+
+ write_sysreg(0, hstr_el2);
+ if (kvm_arm_support_pmu_v3()) {
+ struct kvm_cpu_context *hctxt;
+
+ hctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt;
+ write_sysreg(ctxt_sys_reg(hctxt, PMUSERENR_EL0), pmuserenr_el0);
+ vcpu_clear_flag(vcpu, PMUSERENR_ON_CPU);
+ }
+
+ if (cpus_have_final_cap(ARM64_HAS_HCX))
+ write_sysreg_s(HCRX_HOST_FLAGS, SYS_HCRX_EL2);
+
+ __deactivate_traps_hfgxtr(vcpu);
+}
+
+static inline void ___activate_traps(struct kvm_vcpu *vcpu)
+{
+ u64 hcr = vcpu->arch.hcr_el2;
+
+ if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM))
+ hcr |= HCR_TVM;
+
+ write_sysreg(hcr, hcr_el2);
+
+ if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN) && (hcr & HCR_VSE))
+ write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2);
+}
+
+static inline void ___deactivate_traps(struct kvm_vcpu *vcpu)
+{
+ /*
+ * If we pended a virtual abort, preserve it until it gets
+ * cleared. See D1.14.3 (Virtual Interrupts) for details, but
+ * the crucial bit is "On taking a vSError interrupt,
+ * HCR_EL2.VSE is cleared to 0."
+ */
+ if (vcpu->arch.hcr_el2 & HCR_VSE) {
+ vcpu->arch.hcr_el2 &= ~HCR_VSE;
+ vcpu->arch.hcr_el2 |= read_sysreg(hcr_el2) & HCR_VSE;
+ }
+}
+
+static inline bool __populate_fault_info(struct kvm_vcpu *vcpu)
+{
+ return __get_fault_info(vcpu->arch.fault.esr_el2, &vcpu->arch.fault);
+}
+
+static inline void __hyp_sve_restore_guest(struct kvm_vcpu *vcpu)
+{
+ sve_cond_update_zcr_vq(vcpu_sve_max_vq(vcpu) - 1, SYS_ZCR_EL2);
+ __sve_restore_state(vcpu_sve_pffr(vcpu),
+ &vcpu->arch.ctxt.fp_regs.fpsr);
+ write_sysreg_el1(__vcpu_sys_reg(vcpu, ZCR_EL1), SYS_ZCR);
+}
+
+/*
+ * We trap the first access to the FP/SIMD to save the host context and
+ * restore the guest context lazily.
+ * If FP/SIMD is not implemented, handle the trap and inject an undefined
+ * instruction exception to the guest. Similarly for trapped SVE accesses.
+ */
+static bool kvm_hyp_handle_fpsimd(struct kvm_vcpu *vcpu, u64 *exit_code)
+{
+ bool sve_guest;
+ u8 esr_ec;
+ u64 reg;
+
+ if (!system_supports_fpsimd())
+ return false;
+
+ sve_guest = vcpu_has_sve(vcpu);
+ esr_ec = kvm_vcpu_trap_get_class(vcpu);
+
+ /* Only handle traps the vCPU can support here: */
+ switch (esr_ec) {
+ case ESR_ELx_EC_FP_ASIMD:
+ break;
+ case ESR_ELx_EC_SVE:
+ if (!sve_guest)
+ return false;
+ break;
+ default:
+ return false;
+ }
+
+ /* Valid trap. Switch the context: */
+
+ /* First disable enough traps to allow us to update the registers */
+ if (has_vhe() || has_hvhe()) {
+ reg = CPACR_EL1_FPEN_EL0EN | CPACR_EL1_FPEN_EL1EN;
+ if (sve_guest)
+ reg |= CPACR_EL1_ZEN_EL0EN | CPACR_EL1_ZEN_EL1EN;
+
+ sysreg_clear_set(cpacr_el1, 0, reg);
+ } else {
+ reg = CPTR_EL2_TFP;
+ if (sve_guest)
+ reg |= CPTR_EL2_TZ;
+
+ sysreg_clear_set(cptr_el2, reg, 0);
+ }
+ isb();
+
+ /* Write out the host state if it's in the registers */
+ if (vcpu->arch.fp_state == FP_STATE_HOST_OWNED)
+ __fpsimd_save_state(vcpu->arch.host_fpsimd_state);
+
+ /* Restore the guest state */
+ if (sve_guest)
+ __hyp_sve_restore_guest(vcpu);
+ else
+ __fpsimd_restore_state(&vcpu->arch.ctxt.fp_regs);
+
+ /* Skip restoring fpexc32 for AArch64 guests */
+ if (!(read_sysreg(hcr_el2) & HCR_RW))
+ write_sysreg(__vcpu_sys_reg(vcpu, FPEXC32_EL2), fpexc32_el2);
+
+ vcpu->arch.fp_state = FP_STATE_GUEST_OWNED;
+
+ return true;
+}
+
+static inline bool handle_tx2_tvm(struct kvm_vcpu *vcpu)
+{
+ u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu));
+ int rt = kvm_vcpu_sys_get_rt(vcpu);
+ u64 val = vcpu_get_reg(vcpu, rt);
+
+ /*
+ * The normal sysreg handling code expects to see the traps,
+ * let's not do anything here.
+ */
+ if (vcpu->arch.hcr_el2 & HCR_TVM)
+ return false;
+
+ switch (sysreg) {
+ case SYS_SCTLR_EL1:
+ write_sysreg_el1(val, SYS_SCTLR);
+ break;
+ case SYS_TTBR0_EL1:
+ write_sysreg_el1(val, SYS_TTBR0);
+ break;
+ case SYS_TTBR1_EL1:
+ write_sysreg_el1(val, SYS_TTBR1);
+ break;
+ case SYS_TCR_EL1:
+ write_sysreg_el1(val, SYS_TCR);
+ break;
+ case SYS_ESR_EL1:
+ write_sysreg_el1(val, SYS_ESR);
+ break;
+ case SYS_FAR_EL1:
+ write_sysreg_el1(val, SYS_FAR);
+ break;
+ case SYS_AFSR0_EL1:
+ write_sysreg_el1(val, SYS_AFSR0);
+ break;
+ case SYS_AFSR1_EL1:
+ write_sysreg_el1(val, SYS_AFSR1);
+ break;
+ case SYS_MAIR_EL1:
+ write_sysreg_el1(val, SYS_MAIR);
+ break;
+ case SYS_AMAIR_EL1:
+ write_sysreg_el1(val, SYS_AMAIR);
+ break;
+ case SYS_CONTEXTIDR_EL1:
+ write_sysreg_el1(val, SYS_CONTEXTIDR);
+ break;
+ default:
+ return false;
+ }
+
+ __kvm_skip_instr(vcpu);
+ return true;
+}
+
+static inline bool esr_is_ptrauth_trap(u64 esr)
+{
+ switch (esr_sys64_to_sysreg(esr)) {
+ case SYS_APIAKEYLO_EL1:
+ case SYS_APIAKEYHI_EL1:
+ case SYS_APIBKEYLO_EL1:
+ case SYS_APIBKEYHI_EL1:
+ case SYS_APDAKEYLO_EL1:
+ case SYS_APDAKEYHI_EL1:
+ case SYS_APDBKEYLO_EL1:
+ case SYS_APDBKEYHI_EL1:
+ case SYS_APGAKEYLO_EL1:
+ case SYS_APGAKEYHI_EL1:
+ return true;
+ }
+
+ return false;
+}
+
+#define __ptrauth_save_key(ctxt, key) \
+ do { \
+ u64 __val; \
+ __val = read_sysreg_s(SYS_ ## key ## KEYLO_EL1); \
+ ctxt_sys_reg(ctxt, key ## KEYLO_EL1) = __val; \
+ __val = read_sysreg_s(SYS_ ## key ## KEYHI_EL1); \
+ ctxt_sys_reg(ctxt, key ## KEYHI_EL1) = __val; \
+} while(0)
+
+DECLARE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
+
+static bool kvm_hyp_handle_ptrauth(struct kvm_vcpu *vcpu, u64 *exit_code)
+{
+ struct kvm_cpu_context *ctxt;
+ u64 val;
+
+ if (!vcpu_has_ptrauth(vcpu))
+ return false;
+
+ ctxt = this_cpu_ptr(&kvm_hyp_ctxt);
+ __ptrauth_save_key(ctxt, APIA);
+ __ptrauth_save_key(ctxt, APIB);
+ __ptrauth_save_key(ctxt, APDA);
+ __ptrauth_save_key(ctxt, APDB);
+ __ptrauth_save_key(ctxt, APGA);
+
+ vcpu_ptrauth_enable(vcpu);
+
+ val = read_sysreg(hcr_el2);
+ val |= (HCR_API | HCR_APK);
+ write_sysreg(val, hcr_el2);
+
+ return true;
+}
+
+static bool kvm_hyp_handle_cntpct(struct kvm_vcpu *vcpu)
+{
+ struct arch_timer_context *ctxt;
+ u32 sysreg;
+ u64 val;
+
+ /*
+ * We only get here for 64bit guests, 32bit guests will hit
+ * the long and winding road all the way to the standard
+ * handling. Yes, it sucks to be irrelevant.
+ */
+ sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu));
+
+ switch (sysreg) {
+ case SYS_CNTPCT_EL0:
+ case SYS_CNTPCTSS_EL0:
+ if (vcpu_has_nv(vcpu)) {
+ if (is_hyp_ctxt(vcpu)) {
+ ctxt = vcpu_hptimer(vcpu);
+ break;
+ }
+
+ /* Check for guest hypervisor trapping */
+ val = __vcpu_sys_reg(vcpu, CNTHCTL_EL2);
+ if (!vcpu_el2_e2h_is_set(vcpu))
+ val = (val & CNTHCTL_EL1PCTEN) << 10;
+
+ if (!(val & (CNTHCTL_EL1PCTEN << 10)))
+ return false;
+ }
+
+ ctxt = vcpu_ptimer(vcpu);
+ break;
+ default:
+ return false;
+ }
+
+ val = arch_timer_read_cntpct_el0();
+
+ if (ctxt->offset.vm_offset)
+ val -= *kern_hyp_va(ctxt->offset.vm_offset);
+ if (ctxt->offset.vcpu_offset)
+ val -= *kern_hyp_va(ctxt->offset.vcpu_offset);
+
+ vcpu_set_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu), val);
+ __kvm_skip_instr(vcpu);
+ return true;
+}
+
+static bool handle_ampere1_tcr(struct kvm_vcpu *vcpu)
+{
+ u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu));
+ int rt = kvm_vcpu_sys_get_rt(vcpu);
+ u64 val = vcpu_get_reg(vcpu, rt);
+
+ if (sysreg != SYS_TCR_EL1)
+ return false;
+
+ /*
+ * Affected parts do not advertise support for hardware Access Flag /
+ * Dirty state management in ID_AA64MMFR1_EL1.HAFDBS, but the underlying
+ * control bits are still functional. The architecture requires these be
+ * RES0 on systems that do not implement FEAT_HAFDBS.
+ *
+ * Uphold the requirements of the architecture by masking guest writes
+ * to TCR_EL1.{HA,HD} here.
+ */
+ val &= ~(TCR_HD | TCR_HA);
+ write_sysreg_el1(val, SYS_TCR);
+ __kvm_skip_instr(vcpu);
+ return true;
+}
+
+static bool kvm_hyp_handle_sysreg(struct kvm_vcpu *vcpu, u64 *exit_code)
+{
+ if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM) &&
+ handle_tx2_tvm(vcpu))
+ return true;
+
+ if (cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38) &&
+ handle_ampere1_tcr(vcpu))
+ return true;
+
+ if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
+ __vgic_v3_perform_cpuif_access(vcpu) == 1)
+ return true;
+
+ if (esr_is_ptrauth_trap(kvm_vcpu_get_esr(vcpu)))
+ return kvm_hyp_handle_ptrauth(vcpu, exit_code);
+
+ if (kvm_hyp_handle_cntpct(vcpu))
+ return true;
+
+ return false;
+}
+
+static bool kvm_hyp_handle_cp15_32(struct kvm_vcpu *vcpu, u64 *exit_code)
+{
+ if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
+ __vgic_v3_perform_cpuif_access(vcpu) == 1)
+ return true;
+
+ return false;
+}
+
+static bool kvm_hyp_handle_memory_fault(struct kvm_vcpu *vcpu, u64 *exit_code)
+{
+ if (!__populate_fault_info(vcpu))
+ return true;
+
+ return false;
+}
+static bool kvm_hyp_handle_iabt_low(struct kvm_vcpu *vcpu, u64 *exit_code)
+ __alias(kvm_hyp_handle_memory_fault);
+static bool kvm_hyp_handle_watchpt_low(struct kvm_vcpu *vcpu, u64 *exit_code)
+ __alias(kvm_hyp_handle_memory_fault);
+
+static bool kvm_hyp_handle_dabt_low(struct kvm_vcpu *vcpu, u64 *exit_code)
+{
+ if (kvm_hyp_handle_memory_fault(vcpu, exit_code))
+ return true;
+
+ if (static_branch_unlikely(&vgic_v2_cpuif_trap)) {
+ bool valid;
+
+ valid = kvm_vcpu_trap_get_fault_type(vcpu) == ESR_ELx_FSC_FAULT &&
+ kvm_vcpu_dabt_isvalid(vcpu) &&
+ !kvm_vcpu_abt_issea(vcpu) &&
+ !kvm_vcpu_abt_iss1tw(vcpu);
+
+ if (valid) {
+ int ret = __vgic_v2_perform_cpuif_access(vcpu);
+
+ if (ret == 1)
+ return true;
+
+ /* Promote an illegal access to an SError.*/
+ if (ret == -1)
+ *exit_code = ARM_EXCEPTION_EL1_SERROR;
+ }
+ }
+
+ return false;
+}
+
+typedef bool (*exit_handler_fn)(struct kvm_vcpu *, u64 *);
+
+static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu);
+
+static void early_exit_filter(struct kvm_vcpu *vcpu, u64 *exit_code);
+
+/*
+ * Allow the hypervisor to handle the exit with an exit handler if it has one.
+ *
+ * Returns true if the hypervisor handled the exit, and control should go back
+ * to the guest, or false if it hasn't.
+ */
+static inline bool kvm_hyp_handle_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
+{
+ const exit_handler_fn *handlers = kvm_get_exit_handler_array(vcpu);
+ exit_handler_fn fn;
+
+ fn = handlers[kvm_vcpu_trap_get_class(vcpu)];
+
+ if (fn)
+ return fn(vcpu, exit_code);
+
+ return false;
+}
+
+static inline void synchronize_vcpu_pstate(struct kvm_vcpu *vcpu, u64 *exit_code)
+{
+ /*
+ * Check for the conditions of Cortex-A510's #2077057. When these occur
+ * SPSR_EL2 can't be trusted, but isn't needed either as it is
+ * unchanged from the value in vcpu_gp_regs(vcpu)->pstate.
+ * Are we single-stepping the guest, and took a PAC exception from the
+ * active-not-pending state?
+ */
+ if (cpus_have_final_cap(ARM64_WORKAROUND_2077057) &&
+ vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
+ *vcpu_cpsr(vcpu) & DBG_SPSR_SS &&
+ ESR_ELx_EC(read_sysreg_el2(SYS_ESR)) == ESR_ELx_EC_PAC)
+ write_sysreg_el2(*vcpu_cpsr(vcpu), SYS_SPSR);
+
+ vcpu->arch.ctxt.regs.pstate = read_sysreg_el2(SYS_SPSR);
+}
+
+/*
+ * Return true when we were able to fixup the guest exit and should return to
+ * the guest, false when we should restore the host state and return to the
+ * main run loop.
+ */
+static inline bool fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
+{
+ /*
+ * Save PSTATE early so that we can evaluate the vcpu mode
+ * early on.
+ */
+ synchronize_vcpu_pstate(vcpu, exit_code);
+
+ /*
+ * Check whether we want to repaint the state one way or
+ * another.
+ */
+ early_exit_filter(vcpu, exit_code);
+
+ if (ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ)
+ vcpu->arch.fault.esr_el2 = read_sysreg_el2(SYS_ESR);
+
+ if (ARM_SERROR_PENDING(*exit_code) &&
+ ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ) {
+ u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
+
+ /*
+ * HVC already have an adjusted PC, which we need to
+ * correct in order to return to after having injected
+ * the SError.
+ *
+ * SMC, on the other hand, is *trapped*, meaning its
+ * preferred return address is the SMC itself.
+ */
+ if (esr_ec == ESR_ELx_EC_HVC32 || esr_ec == ESR_ELx_EC_HVC64)
+ write_sysreg_el2(read_sysreg_el2(SYS_ELR) - 4, SYS_ELR);
+ }
+
+ /*
+ * We're using the raw exception code in order to only process
+ * the trap if no SError is pending. We will come back to the
+ * same PC once the SError has been injected, and replay the
+ * trapping instruction.
+ */
+ if (*exit_code != ARM_EXCEPTION_TRAP)
+ goto exit;
+
+ /* Check if there's an exit handler and allow it to handle the exit. */
+ if (kvm_hyp_handle_exit(vcpu, exit_code))
+ goto guest;
+exit:
+ /* Return to the host kernel and handle the exit */
+ return false;
+
+guest:
+ /* Re-enter the guest */
+ asm(ALTERNATIVE("nop", "dmb sy", ARM64_WORKAROUND_1508412));
+ return true;
+}
+
+static inline void __kvm_unexpected_el2_exception(void)
+{
+ extern char __guest_exit_panic[];
+ unsigned long addr, fixup;
+ struct kvm_exception_table_entry *entry, *end;
+ unsigned long elr_el2 = read_sysreg(elr_el2);
+
+ entry = &__start___kvm_ex_table;
+ end = &__stop___kvm_ex_table;
+
+ while (entry < end) {
+ addr = (unsigned long)&entry->insn + entry->insn;
+ fixup = (unsigned long)&entry->fixup + entry->fixup;
+
+ if (addr != elr_el2) {
+ entry++;
+ continue;
+ }
+
+ write_sysreg(fixup, elr_el2);
+ return;
+ }
+
+ /* Trigger a panic after restoring the hyp context. */
+ write_sysreg(__guest_exit_panic, elr_el2);
+}
+
+#endif /* __ARM64_KVM_HYP_SWITCH_H__ */
diff --git a/arch/arm64/kvm/hyp/include/hyp/sysreg-sr.h b/arch/arm64/kvm/hyp/include/hyp/sysreg-sr.h
new file mode 100644
index 0000000000..bb6b571ec6
--- /dev/null
+++ b/arch/arm64/kvm/hyp/include/hyp/sysreg-sr.h
@@ -0,0 +1,246 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2012-2015 - ARM Ltd
+ * Author: Marc Zyngier <marc.zyngier@arm.com>
+ */
+
+#ifndef __ARM64_KVM_HYP_SYSREG_SR_H__
+#define __ARM64_KVM_HYP_SYSREG_SR_H__
+
+#include <linux/compiler.h>
+#include <linux/kvm_host.h>
+
+#include <asm/kprobes.h>
+#include <asm/kvm_asm.h>
+#include <asm/kvm_emulate.h>
+#include <asm/kvm_hyp.h>
+#include <asm/kvm_mmu.h>
+
+static inline void __sysreg_save_common_state(struct kvm_cpu_context *ctxt)
+{
+ ctxt_sys_reg(ctxt, MDSCR_EL1) = read_sysreg(mdscr_el1);
+}
+
+static inline void __sysreg_save_user_state(struct kvm_cpu_context *ctxt)
+{
+ ctxt_sys_reg(ctxt, TPIDR_EL0) = read_sysreg(tpidr_el0);
+ ctxt_sys_reg(ctxt, TPIDRRO_EL0) = read_sysreg(tpidrro_el0);
+}
+
+static inline bool ctxt_has_mte(struct kvm_cpu_context *ctxt)
+{
+ struct kvm_vcpu *vcpu = ctxt->__hyp_running_vcpu;
+
+ if (!vcpu)
+ vcpu = container_of(ctxt, struct kvm_vcpu, arch.ctxt);
+
+ return kvm_has_mte(kern_hyp_va(vcpu->kvm));
+}
+
+static inline void __sysreg_save_el1_state(struct kvm_cpu_context *ctxt)
+{
+ ctxt_sys_reg(ctxt, SCTLR_EL1) = read_sysreg_el1(SYS_SCTLR);
+ ctxt_sys_reg(ctxt, CPACR_EL1) = read_sysreg_el1(SYS_CPACR);
+ ctxt_sys_reg(ctxt, TTBR0_EL1) = read_sysreg_el1(SYS_TTBR0);
+ ctxt_sys_reg(ctxt, TTBR1_EL1) = read_sysreg_el1(SYS_TTBR1);
+ ctxt_sys_reg(ctxt, TCR_EL1) = read_sysreg_el1(SYS_TCR);
+ if (cpus_have_final_cap(ARM64_HAS_TCR2))
+ ctxt_sys_reg(ctxt, TCR2_EL1) = read_sysreg_el1(SYS_TCR2);
+ ctxt_sys_reg(ctxt, ESR_EL1) = read_sysreg_el1(SYS_ESR);
+ ctxt_sys_reg(ctxt, AFSR0_EL1) = read_sysreg_el1(SYS_AFSR0);
+ ctxt_sys_reg(ctxt, AFSR1_EL1) = read_sysreg_el1(SYS_AFSR1);
+ ctxt_sys_reg(ctxt, FAR_EL1) = read_sysreg_el1(SYS_FAR);
+ ctxt_sys_reg(ctxt, MAIR_EL1) = read_sysreg_el1(SYS_MAIR);
+ ctxt_sys_reg(ctxt, VBAR_EL1) = read_sysreg_el1(SYS_VBAR);
+ ctxt_sys_reg(ctxt, CONTEXTIDR_EL1) = read_sysreg_el1(SYS_CONTEXTIDR);
+ ctxt_sys_reg(ctxt, AMAIR_EL1) = read_sysreg_el1(SYS_AMAIR);
+ ctxt_sys_reg(ctxt, CNTKCTL_EL1) = read_sysreg_el1(SYS_CNTKCTL);
+ if (cpus_have_final_cap(ARM64_HAS_S1PIE)) {
+ ctxt_sys_reg(ctxt, PIR_EL1) = read_sysreg_el1(SYS_PIR);
+ ctxt_sys_reg(ctxt, PIRE0_EL1) = read_sysreg_el1(SYS_PIRE0);
+ }
+ ctxt_sys_reg(ctxt, PAR_EL1) = read_sysreg_par();
+ ctxt_sys_reg(ctxt, TPIDR_EL1) = read_sysreg(tpidr_el1);
+
+ if (ctxt_has_mte(ctxt)) {
+ ctxt_sys_reg(ctxt, TFSR_EL1) = read_sysreg_el1(SYS_TFSR);
+ ctxt_sys_reg(ctxt, TFSRE0_EL1) = read_sysreg_s(SYS_TFSRE0_EL1);
+ }
+
+ ctxt_sys_reg(ctxt, SP_EL1) = read_sysreg(sp_el1);
+ ctxt_sys_reg(ctxt, ELR_EL1) = read_sysreg_el1(SYS_ELR);
+ ctxt_sys_reg(ctxt, SPSR_EL1) = read_sysreg_el1(SYS_SPSR);
+}
+
+static inline void __sysreg_save_el2_return_state(struct kvm_cpu_context *ctxt)
+{
+ ctxt->regs.pc = read_sysreg_el2(SYS_ELR);
+ /*
+ * Guest PSTATE gets saved at guest fixup time in all
+ * cases. We still need to handle the nVHE host side here.
+ */
+ if (!has_vhe() && ctxt->__hyp_running_vcpu)
+ ctxt->regs.pstate = read_sysreg_el2(SYS_SPSR);
+
+ if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN))
+ ctxt_sys_reg(ctxt, DISR_EL1) = read_sysreg_s(SYS_VDISR_EL2);
+}
+
+static inline void __sysreg_restore_common_state(struct kvm_cpu_context *ctxt)
+{
+ write_sysreg(ctxt_sys_reg(ctxt, MDSCR_EL1), mdscr_el1);
+}
+
+static inline void __sysreg_restore_user_state(struct kvm_cpu_context *ctxt)
+{
+ write_sysreg(ctxt_sys_reg(ctxt, TPIDR_EL0), tpidr_el0);
+ write_sysreg(ctxt_sys_reg(ctxt, TPIDRRO_EL0), tpidrro_el0);
+}
+
+static inline void __sysreg_restore_el1_state(struct kvm_cpu_context *ctxt)
+{
+ write_sysreg(ctxt_sys_reg(ctxt, MPIDR_EL1), vmpidr_el2);
+
+ if (has_vhe() ||
+ !cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
+ write_sysreg_el1(ctxt_sys_reg(ctxt, SCTLR_EL1), SYS_SCTLR);
+ write_sysreg_el1(ctxt_sys_reg(ctxt, TCR_EL1), SYS_TCR);
+ } else if (!ctxt->__hyp_running_vcpu) {
+ /*
+ * Must only be done for guest registers, hence the context
+ * test. We're coming from the host, so SCTLR.M is already
+ * set. Pairs with nVHE's __activate_traps().
+ */
+ write_sysreg_el1((ctxt_sys_reg(ctxt, TCR_EL1) |
+ TCR_EPD1_MASK | TCR_EPD0_MASK),
+ SYS_TCR);
+ isb();
+ }
+
+ write_sysreg_el1(ctxt_sys_reg(ctxt, CPACR_EL1), SYS_CPACR);
+ write_sysreg_el1(ctxt_sys_reg(ctxt, TTBR0_EL1), SYS_TTBR0);
+ write_sysreg_el1(ctxt_sys_reg(ctxt, TTBR1_EL1), SYS_TTBR1);
+ if (cpus_have_final_cap(ARM64_HAS_TCR2))
+ write_sysreg_el1(ctxt_sys_reg(ctxt, TCR2_EL1), SYS_TCR2);
+ write_sysreg_el1(ctxt_sys_reg(ctxt, ESR_EL1), SYS_ESR);
+ write_sysreg_el1(ctxt_sys_reg(ctxt, AFSR0_EL1), SYS_AFSR0);
+ write_sysreg_el1(ctxt_sys_reg(ctxt, AFSR1_EL1), SYS_AFSR1);
+ write_sysreg_el1(ctxt_sys_reg(ctxt, FAR_EL1), SYS_FAR);
+ write_sysreg_el1(ctxt_sys_reg(ctxt, MAIR_EL1), SYS_MAIR);
+ write_sysreg_el1(ctxt_sys_reg(ctxt, VBAR_EL1), SYS_VBAR);
+ write_sysreg_el1(ctxt_sys_reg(ctxt, CONTEXTIDR_EL1), SYS_CONTEXTIDR);
+ write_sysreg_el1(ctxt_sys_reg(ctxt, AMAIR_EL1), SYS_AMAIR);
+ write_sysreg_el1(ctxt_sys_reg(ctxt, CNTKCTL_EL1), SYS_CNTKCTL);
+ if (cpus_have_final_cap(ARM64_HAS_S1PIE)) {
+ write_sysreg_el1(ctxt_sys_reg(ctxt, PIR_EL1), SYS_PIR);
+ write_sysreg_el1(ctxt_sys_reg(ctxt, PIRE0_EL1), SYS_PIRE0);
+ }
+ write_sysreg(ctxt_sys_reg(ctxt, PAR_EL1), par_el1);
+ write_sysreg(ctxt_sys_reg(ctxt, TPIDR_EL1), tpidr_el1);
+
+ if (ctxt_has_mte(ctxt)) {
+ write_sysreg_el1(ctxt_sys_reg(ctxt, TFSR_EL1), SYS_TFSR);
+ write_sysreg_s(ctxt_sys_reg(ctxt, TFSRE0_EL1), SYS_TFSRE0_EL1);
+ }
+
+ if (!has_vhe() &&
+ cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT) &&
+ ctxt->__hyp_running_vcpu) {
+ /*
+ * Must only be done for host registers, hence the context
+ * test. Pairs with nVHE's __deactivate_traps().
+ */
+ isb();
+ /*
+ * At this stage, and thanks to the above isb(), S2 is
+ * deconfigured and disabled. We can now restore the host's
+ * S1 configuration: SCTLR, and only then TCR.
+ */
+ write_sysreg_el1(ctxt_sys_reg(ctxt, SCTLR_EL1), SYS_SCTLR);
+ isb();
+ write_sysreg_el1(ctxt_sys_reg(ctxt, TCR_EL1), SYS_TCR);
+ }
+
+ write_sysreg(ctxt_sys_reg(ctxt, SP_EL1), sp_el1);
+ write_sysreg_el1(ctxt_sys_reg(ctxt, ELR_EL1), SYS_ELR);
+ write_sysreg_el1(ctxt_sys_reg(ctxt, SPSR_EL1), SYS_SPSR);
+}
+
+/* Read the VCPU state's PSTATE, but translate (v)EL2 to EL1. */
+static inline u64 to_hw_pstate(const struct kvm_cpu_context *ctxt)
+{
+ u64 mode = ctxt->regs.pstate & (PSR_MODE_MASK | PSR_MODE32_BIT);
+
+ switch (mode) {
+ case PSR_MODE_EL2t:
+ mode = PSR_MODE_EL1t;
+ break;
+ case PSR_MODE_EL2h:
+ mode = PSR_MODE_EL1h;
+ break;
+ }
+
+ return (ctxt->regs.pstate & ~(PSR_MODE_MASK | PSR_MODE32_BIT)) | mode;
+}
+
+static inline void __sysreg_restore_el2_return_state(struct kvm_cpu_context *ctxt)
+{
+ u64 pstate = to_hw_pstate(ctxt);
+ u64 mode = pstate & PSR_AA32_MODE_MASK;
+
+ /*
+ * Safety check to ensure we're setting the CPU up to enter the guest
+ * in a less privileged mode.
+ *
+ * If we are attempting a return to EL2 or higher in AArch64 state,
+ * program SPSR_EL2 with M=EL2h and the IL bit set which ensures that
+ * we'll take an illegal exception state exception immediately after
+ * the ERET to the guest. Attempts to return to AArch32 Hyp will
+ * result in an illegal exception return because EL2's execution state
+ * is determined by SCR_EL3.RW.
+ */
+ if (!(mode & PSR_MODE32_BIT) && mode >= PSR_MODE_EL2t)
+ pstate = PSR_MODE_EL2h | PSR_IL_BIT;
+
+ write_sysreg_el2(ctxt->regs.pc, SYS_ELR);
+ write_sysreg_el2(pstate, SYS_SPSR);
+
+ if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN))
+ write_sysreg_s(ctxt_sys_reg(ctxt, DISR_EL1), SYS_VDISR_EL2);
+}
+
+static inline void __sysreg32_save_state(struct kvm_vcpu *vcpu)
+{
+ if (!vcpu_el1_is_32bit(vcpu))
+ return;
+
+ vcpu->arch.ctxt.spsr_abt = read_sysreg(spsr_abt);
+ vcpu->arch.ctxt.spsr_und = read_sysreg(spsr_und);
+ vcpu->arch.ctxt.spsr_irq = read_sysreg(spsr_irq);
+ vcpu->arch.ctxt.spsr_fiq = read_sysreg(spsr_fiq);
+
+ __vcpu_sys_reg(vcpu, DACR32_EL2) = read_sysreg(dacr32_el2);
+ __vcpu_sys_reg(vcpu, IFSR32_EL2) = read_sysreg(ifsr32_el2);
+
+ if (has_vhe() || vcpu_get_flag(vcpu, DEBUG_DIRTY))
+ __vcpu_sys_reg(vcpu, DBGVCR32_EL2) = read_sysreg(dbgvcr32_el2);
+}
+
+static inline void __sysreg32_restore_state(struct kvm_vcpu *vcpu)
+{
+ if (!vcpu_el1_is_32bit(vcpu))
+ return;
+
+ write_sysreg(vcpu->arch.ctxt.spsr_abt, spsr_abt);
+ write_sysreg(vcpu->arch.ctxt.spsr_und, spsr_und);
+ write_sysreg(vcpu->arch.ctxt.spsr_irq, spsr_irq);
+ write_sysreg(vcpu->arch.ctxt.spsr_fiq, spsr_fiq);
+
+ write_sysreg(__vcpu_sys_reg(vcpu, DACR32_EL2), dacr32_el2);
+ write_sysreg(__vcpu_sys_reg(vcpu, IFSR32_EL2), ifsr32_el2);
+
+ if (has_vhe() || vcpu_get_flag(vcpu, DEBUG_DIRTY))
+ write_sysreg(__vcpu_sys_reg(vcpu, DBGVCR32_EL2), dbgvcr32_el2);
+}
+
+#endif /* __ARM64_KVM_HYP_SYSREG_SR_H__ */
diff --git a/arch/arm64/kvm/hyp/include/nvhe/early_alloc.h b/arch/arm64/kvm/hyp/include/nvhe/early_alloc.h
new file mode 100644
index 0000000000..dc61aaa56f
--- /dev/null
+++ b/arch/arm64/kvm/hyp/include/nvhe/early_alloc.h
@@ -0,0 +1,14 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+#ifndef __KVM_HYP_EARLY_ALLOC_H
+#define __KVM_HYP_EARLY_ALLOC_H
+
+#include <asm/kvm_pgtable.h>
+
+void hyp_early_alloc_init(void *virt, unsigned long size);
+unsigned long hyp_early_alloc_nr_used_pages(void);
+void *hyp_early_alloc_page(void *arg);
+void *hyp_early_alloc_contig(unsigned int nr_pages);
+
+extern struct kvm_pgtable_mm_ops hyp_early_alloc_mm_ops;
+
+#endif /* __KVM_HYP_EARLY_ALLOC_H */
diff --git a/arch/arm64/kvm/hyp/include/nvhe/ffa.h b/arch/arm64/kvm/hyp/include/nvhe/ffa.h
new file mode 100644
index 0000000000..d9fd5e6c7d
--- /dev/null
+++ b/arch/arm64/kvm/hyp/include/nvhe/ffa.h
@@ -0,0 +1,17 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+/*
+ * Copyright (C) 2022 - Google LLC
+ * Author: Andrew Walbran <qwandor@google.com>
+ */
+#ifndef __KVM_HYP_FFA_H
+#define __KVM_HYP_FFA_H
+
+#include <asm/kvm_host.h>
+
+#define FFA_MIN_FUNC_NUM 0x60
+#define FFA_MAX_FUNC_NUM 0x7F
+
+int hyp_ffa_init(void *pages);
+bool kvm_host_ffa_handler(struct kvm_cpu_context *host_ctxt, u32 func_id);
+
+#endif /* __KVM_HYP_FFA_H */
diff --git a/arch/arm64/kvm/hyp/include/nvhe/fixed_config.h b/arch/arm64/kvm/hyp/include/nvhe/fixed_config.h
new file mode 100644
index 0000000000..37440e1dda
--- /dev/null
+++ b/arch/arm64/kvm/hyp/include/nvhe/fixed_config.h
@@ -0,0 +1,208 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+/*
+ * Copyright (C) 2021 Google LLC
+ * Author: Fuad Tabba <tabba@google.com>
+ */
+
+#ifndef __ARM64_KVM_FIXED_CONFIG_H__
+#define __ARM64_KVM_FIXED_CONFIG_H__
+
+#include <asm/sysreg.h>
+
+/*
+ * This file contains definitions for features to be allowed or restricted for
+ * guest virtual machines, depending on the mode KVM is running in and on the
+ * type of guest that is running.
+ *
+ * The ALLOW masks represent a bitmask of feature fields that are allowed
+ * without any restrictions as long as they are supported by the system.
+ *
+ * The RESTRICT_UNSIGNED masks, if present, represent unsigned fields for
+ * features that are restricted to support at most the specified feature.
+ *
+ * If a feature field is not present in either, than it is not supported.
+ *
+ * The approach taken for protected VMs is to allow features that are:
+ * - Needed by common Linux distributions (e.g., floating point)
+ * - Trivial to support, e.g., supporting the feature does not introduce or
+ * require tracking of additional state in KVM
+ * - Cannot be trapped or prevent the guest from using anyway
+ */
+
+/*
+ * Allow for protected VMs:
+ * - Floating-point and Advanced SIMD
+ * - Data Independent Timing
+ * - Spectre/Meltdown Mitigation
+ */
+#define PVM_ID_AA64PFR0_ALLOW (\
+ ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_FP) | \
+ ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_AdvSIMD) | \
+ ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_DIT) | \
+ ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2) | \
+ ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3) \
+ )
+
+/*
+ * Restrict to the following *unsigned* features for protected VMs:
+ * - AArch64 guests only (no support for AArch32 guests):
+ * AArch32 adds complexity in trap handling, emulation, condition codes,
+ * etc...
+ * - RAS (v1)
+ * Supported by KVM
+ */
+#define PVM_ID_AA64PFR0_RESTRICT_UNSIGNED (\
+ FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_EL0), ID_AA64PFR0_EL1_ELx_64BIT_ONLY) | \
+ FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_EL1), ID_AA64PFR0_EL1_ELx_64BIT_ONLY) | \
+ FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_EL2), ID_AA64PFR0_EL1_ELx_64BIT_ONLY) | \
+ FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_EL3), ID_AA64PFR0_EL1_ELx_64BIT_ONLY) | \
+ FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_RAS), ID_AA64PFR0_EL1_RAS_IMP) \
+ )
+
+/*
+ * Allow for protected VMs:
+ * - Branch Target Identification
+ * - Speculative Store Bypassing
+ */
+#define PVM_ID_AA64PFR1_ALLOW (\
+ ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_BT) | \
+ ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_SSBS) \
+ )
+
+/*
+ * Allow for protected VMs:
+ * - Mixed-endian
+ * - Distinction between Secure and Non-secure Memory
+ * - Mixed-endian at EL0 only
+ * - Non-context synchronizing exception entry and exit
+ */
+#define PVM_ID_AA64MMFR0_ALLOW (\
+ ARM64_FEATURE_MASK(ID_AA64MMFR0_EL1_BIGEND) | \
+ ARM64_FEATURE_MASK(ID_AA64MMFR0_EL1_SNSMEM) | \
+ ARM64_FEATURE_MASK(ID_AA64MMFR0_EL1_BIGENDEL0) | \
+ ARM64_FEATURE_MASK(ID_AA64MMFR0_EL1_EXS) \
+ )
+
+/*
+ * Restrict to the following *unsigned* features for protected VMs:
+ * - 40-bit IPA
+ * - 16-bit ASID
+ */
+#define PVM_ID_AA64MMFR0_RESTRICT_UNSIGNED (\
+ FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64MMFR0_EL1_PARANGE), ID_AA64MMFR0_EL1_PARANGE_40) | \
+ FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64MMFR0_EL1_ASIDBITS), ID_AA64MMFR0_EL1_ASIDBITS_16) \
+ )
+
+/*
+ * Allow for protected VMs:
+ * - Hardware translation table updates to Access flag and Dirty state
+ * - Number of VMID bits from CPU
+ * - Hierarchical Permission Disables
+ * - Privileged Access Never
+ * - SError interrupt exceptions from speculative reads
+ * - Enhanced Translation Synchronization
+ */
+#define PVM_ID_AA64MMFR1_ALLOW (\
+ ARM64_FEATURE_MASK(ID_AA64MMFR1_EL1_HAFDBS) | \
+ ARM64_FEATURE_MASK(ID_AA64MMFR1_EL1_VMIDBits) | \
+ ARM64_FEATURE_MASK(ID_AA64MMFR1_EL1_HPDS) | \
+ ARM64_FEATURE_MASK(ID_AA64MMFR1_EL1_PAN) | \
+ ARM64_FEATURE_MASK(ID_AA64MMFR1_EL1_SpecSEI) | \
+ ARM64_FEATURE_MASK(ID_AA64MMFR1_EL1_ETS) \
+ )
+
+/*
+ * Allow for protected VMs:
+ * - Common not Private translations
+ * - User Access Override
+ * - IESB bit in the SCTLR_ELx registers
+ * - Unaligned single-copy atomicity and atomic functions
+ * - ESR_ELx.EC value on an exception by read access to feature ID space
+ * - TTL field in address operations.
+ * - Break-before-make sequences when changing translation block size
+ * - E0PDx mechanism
+ */
+#define PVM_ID_AA64MMFR2_ALLOW (\
+ ARM64_FEATURE_MASK(ID_AA64MMFR2_EL1_CnP) | \
+ ARM64_FEATURE_MASK(ID_AA64MMFR2_EL1_UAO) | \
+ ARM64_FEATURE_MASK(ID_AA64MMFR2_EL1_IESB) | \
+ ARM64_FEATURE_MASK(ID_AA64MMFR2_EL1_AT) | \
+ ARM64_FEATURE_MASK(ID_AA64MMFR2_EL1_IDS) | \
+ ARM64_FEATURE_MASK(ID_AA64MMFR2_EL1_TTL) | \
+ ARM64_FEATURE_MASK(ID_AA64MMFR2_EL1_BBM) | \
+ ARM64_FEATURE_MASK(ID_AA64MMFR2_EL1_E0PD) \
+ )
+
+/*
+ * No support for Scalable Vectors for protected VMs:
+ * Requires additional support from KVM, e.g., context-switching and
+ * trapping at EL2
+ */
+#define PVM_ID_AA64ZFR0_ALLOW (0ULL)
+
+/*
+ * No support for debug, including breakpoints, and watchpoints for protected
+ * VMs:
+ * The Arm architecture mandates support for at least the Armv8 debug
+ * architecture, which would include at least 2 hardware breakpoints and
+ * watchpoints. Providing that support to protected guests adds
+ * considerable state and complexity. Therefore, the reserved value of 0 is
+ * used for debug-related fields.
+ */
+#define PVM_ID_AA64DFR0_ALLOW (0ULL)
+#define PVM_ID_AA64DFR1_ALLOW (0ULL)
+
+/*
+ * No support for implementation defined features.
+ */
+#define PVM_ID_AA64AFR0_ALLOW (0ULL)
+#define PVM_ID_AA64AFR1_ALLOW (0ULL)
+
+/*
+ * No restrictions on instructions implemented in AArch64.
+ */
+#define PVM_ID_AA64ISAR0_ALLOW (\
+ ARM64_FEATURE_MASK(ID_AA64ISAR0_EL1_AES) | \
+ ARM64_FEATURE_MASK(ID_AA64ISAR0_EL1_SHA1) | \
+ ARM64_FEATURE_MASK(ID_AA64ISAR0_EL1_SHA2) | \
+ ARM64_FEATURE_MASK(ID_AA64ISAR0_EL1_CRC32) | \
+ ARM64_FEATURE_MASK(ID_AA64ISAR0_EL1_ATOMIC) | \
+ ARM64_FEATURE_MASK(ID_AA64ISAR0_EL1_RDM) | \
+ ARM64_FEATURE_MASK(ID_AA64ISAR0_EL1_SHA3) | \
+ ARM64_FEATURE_MASK(ID_AA64ISAR0_EL1_SM3) | \
+ ARM64_FEATURE_MASK(ID_AA64ISAR0_EL1_SM4) | \
+ ARM64_FEATURE_MASK(ID_AA64ISAR0_EL1_DP) | \
+ ARM64_FEATURE_MASK(ID_AA64ISAR0_EL1_FHM) | \
+ ARM64_FEATURE_MASK(ID_AA64ISAR0_EL1_TS) | \
+ ARM64_FEATURE_MASK(ID_AA64ISAR0_EL1_TLB) | \
+ ARM64_FEATURE_MASK(ID_AA64ISAR0_EL1_RNDR) \
+ )
+
+#define PVM_ID_AA64ISAR1_ALLOW (\
+ ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_DPB) | \
+ ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_APA) | \
+ ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_API) | \
+ ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_JSCVT) | \
+ ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_FCMA) | \
+ ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_LRCPC) | \
+ ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPA) | \
+ ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPI) | \
+ ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_FRINTTS) | \
+ ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_SB) | \
+ ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_SPECRES) | \
+ ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_BF16) | \
+ ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_DGH) | \
+ ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_I8MM) \
+ )
+
+#define PVM_ID_AA64ISAR2_ALLOW (\
+ ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_GPA3) | \
+ ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_APA3) \
+ )
+
+u64 pvm_read_id_reg(const struct kvm_vcpu *vcpu, u32 id);
+bool kvm_handle_pvm_sysreg(struct kvm_vcpu *vcpu, u64 *exit_code);
+bool kvm_handle_pvm_restricted(struct kvm_vcpu *vcpu, u64 *exit_code);
+int kvm_check_pvm_sysreg_table(void);
+
+#endif /* __ARM64_KVM_FIXED_CONFIG_H__ */
diff --git a/arch/arm64/kvm/hyp/include/nvhe/gfp.h b/arch/arm64/kvm/hyp/include/nvhe/gfp.h
new file mode 100644
index 0000000000..fe5472a184
--- /dev/null
+++ b/arch/arm64/kvm/hyp/include/nvhe/gfp.h
@@ -0,0 +1,34 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+#ifndef __KVM_HYP_GFP_H
+#define __KVM_HYP_GFP_H
+
+#include <linux/list.h>
+
+#include <nvhe/memory.h>
+#include <nvhe/spinlock.h>
+
+#define HYP_NO_ORDER USHRT_MAX
+
+struct hyp_pool {
+ /*
+ * Spinlock protecting concurrent changes to the memory pool as well as
+ * the struct hyp_page of the pool's pages until we have a proper atomic
+ * API at EL2.
+ */
+ hyp_spinlock_t lock;
+ struct list_head free_area[MAX_ORDER + 1];
+ phys_addr_t range_start;
+ phys_addr_t range_end;
+ unsigned short max_order;
+};
+
+/* Allocation */
+void *hyp_alloc_pages(struct hyp_pool *pool, unsigned short order);
+void hyp_split_page(struct hyp_page *page);
+void hyp_get_page(struct hyp_pool *pool, void *addr);
+void hyp_put_page(struct hyp_pool *pool, void *addr);
+
+/* Used pages cannot be freed */
+int hyp_pool_init(struct hyp_pool *pool, u64 pfn, unsigned int nr_pages,
+ unsigned int reserved_pages);
+#endif /* __KVM_HYP_GFP_H */
diff --git a/arch/arm64/kvm/hyp/include/nvhe/mem_protect.h b/arch/arm64/kvm/hyp/include/nvhe/mem_protect.h
new file mode 100644
index 0000000000..0972faccc2
--- /dev/null
+++ b/arch/arm64/kvm/hyp/include/nvhe/mem_protect.h
@@ -0,0 +1,93 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+/*
+ * Copyright (C) 2020 Google LLC
+ * Author: Quentin Perret <qperret@google.com>
+ */
+
+#ifndef __KVM_NVHE_MEM_PROTECT__
+#define __KVM_NVHE_MEM_PROTECT__
+#include <linux/kvm_host.h>
+#include <asm/kvm_hyp.h>
+#include <asm/kvm_mmu.h>
+#include <asm/kvm_pgtable.h>
+#include <asm/virt.h>
+#include <nvhe/pkvm.h>
+#include <nvhe/spinlock.h>
+
+/*
+ * SW bits 0-1 are reserved to track the memory ownership state of each page:
+ * 00: The page is owned exclusively by the page-table owner.
+ * 01: The page is owned by the page-table owner, but is shared
+ * with another entity.
+ * 10: The page is shared with, but not owned by the page-table owner.
+ * 11: Reserved for future use (lending).
+ */
+enum pkvm_page_state {
+ PKVM_PAGE_OWNED = 0ULL,
+ PKVM_PAGE_SHARED_OWNED = KVM_PGTABLE_PROT_SW0,
+ PKVM_PAGE_SHARED_BORROWED = KVM_PGTABLE_PROT_SW1,
+ __PKVM_PAGE_RESERVED = KVM_PGTABLE_PROT_SW0 |
+ KVM_PGTABLE_PROT_SW1,
+
+ /* Meta-states which aren't encoded directly in the PTE's SW bits */
+ PKVM_NOPAGE,
+};
+
+#define PKVM_PAGE_STATE_PROT_MASK (KVM_PGTABLE_PROT_SW0 | KVM_PGTABLE_PROT_SW1)
+static inline enum kvm_pgtable_prot pkvm_mkstate(enum kvm_pgtable_prot prot,
+ enum pkvm_page_state state)
+{
+ return (prot & ~PKVM_PAGE_STATE_PROT_MASK) | state;
+}
+
+static inline enum pkvm_page_state pkvm_getstate(enum kvm_pgtable_prot prot)
+{
+ return prot & PKVM_PAGE_STATE_PROT_MASK;
+}
+
+struct host_mmu {
+ struct kvm_arch arch;
+ struct kvm_pgtable pgt;
+ struct kvm_pgtable_mm_ops mm_ops;
+ hyp_spinlock_t lock;
+};
+extern struct host_mmu host_mmu;
+
+/* This corresponds to page-table locking order */
+enum pkvm_component_id {
+ PKVM_ID_HOST,
+ PKVM_ID_HYP,
+ PKVM_ID_FFA,
+};
+
+extern unsigned long hyp_nr_cpus;
+
+int __pkvm_prot_finalize(void);
+int __pkvm_host_share_hyp(u64 pfn);
+int __pkvm_host_unshare_hyp(u64 pfn);
+int __pkvm_host_donate_hyp(u64 pfn, u64 nr_pages);
+int __pkvm_hyp_donate_host(u64 pfn, u64 nr_pages);
+int __pkvm_host_share_ffa(u64 pfn, u64 nr_pages);
+int __pkvm_host_unshare_ffa(u64 pfn, u64 nr_pages);
+
+bool addr_is_memory(phys_addr_t phys);
+int host_stage2_idmap_locked(phys_addr_t addr, u64 size, enum kvm_pgtable_prot prot);
+int host_stage2_set_owner_locked(phys_addr_t addr, u64 size, u8 owner_id);
+int kvm_host_prepare_stage2(void *pgt_pool_base);
+int kvm_guest_prepare_stage2(struct pkvm_hyp_vm *vm, void *pgd);
+void handle_host_mem_abort(struct kvm_cpu_context *host_ctxt);
+
+int hyp_pin_shared_mem(void *from, void *to);
+void hyp_unpin_shared_mem(void *from, void *to);
+void reclaim_guest_pages(struct pkvm_hyp_vm *vm, struct kvm_hyp_memcache *mc);
+int refill_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages,
+ struct kvm_hyp_memcache *host_mc);
+
+static __always_inline void __load_host_stage2(void)
+{
+ if (static_branch_likely(&kvm_protected_mode_initialized))
+ __load_stage2(&host_mmu.arch.mmu, &host_mmu.arch);
+ else
+ write_sysreg(0, vttbr_el2);
+}
+#endif /* __KVM_NVHE_MEM_PROTECT__ */
diff --git a/arch/arm64/kvm/hyp/include/nvhe/memory.h b/arch/arm64/kvm/hyp/include/nvhe/memory.h
new file mode 100644
index 0000000000..ab205c4d67
--- /dev/null
+++ b/arch/arm64/kvm/hyp/include/nvhe/memory.h
@@ -0,0 +1,75 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+#ifndef __KVM_HYP_MEMORY_H
+#define __KVM_HYP_MEMORY_H
+
+#include <asm/kvm_mmu.h>
+#include <asm/page.h>
+
+#include <linux/types.h>
+
+struct hyp_page {
+ unsigned short refcount;
+ unsigned short order;
+};
+
+extern u64 __hyp_vmemmap;
+#define hyp_vmemmap ((struct hyp_page *)__hyp_vmemmap)
+
+#define __hyp_va(phys) ((void *)((phys_addr_t)(phys) - hyp_physvirt_offset))
+
+static inline void *hyp_phys_to_virt(phys_addr_t phys)
+{
+ return __hyp_va(phys);
+}
+
+static inline phys_addr_t hyp_virt_to_phys(void *addr)
+{
+ return __hyp_pa(addr);
+}
+
+#define hyp_phys_to_pfn(phys) ((phys) >> PAGE_SHIFT)
+#define hyp_pfn_to_phys(pfn) ((phys_addr_t)((pfn) << PAGE_SHIFT))
+#define hyp_phys_to_page(phys) (&hyp_vmemmap[hyp_phys_to_pfn(phys)])
+#define hyp_virt_to_page(virt) hyp_phys_to_page(__hyp_pa(virt))
+#define hyp_virt_to_pfn(virt) hyp_phys_to_pfn(__hyp_pa(virt))
+
+#define hyp_page_to_pfn(page) ((struct hyp_page *)(page) - hyp_vmemmap)
+#define hyp_page_to_phys(page) hyp_pfn_to_phys((hyp_page_to_pfn(page)))
+#define hyp_page_to_virt(page) __hyp_va(hyp_page_to_phys(page))
+#define hyp_page_to_pool(page) (((struct hyp_page *)page)->pool)
+
+/*
+ * Refcounting for 'struct hyp_page'.
+ * hyp_pool::lock must be held if atomic access to the refcount is required.
+ */
+static inline int hyp_page_count(void *addr)
+{
+ struct hyp_page *p = hyp_virt_to_page(addr);
+
+ return p->refcount;
+}
+
+static inline void hyp_page_ref_inc(struct hyp_page *p)
+{
+ BUG_ON(p->refcount == USHRT_MAX);
+ p->refcount++;
+}
+
+static inline void hyp_page_ref_dec(struct hyp_page *p)
+{
+ BUG_ON(!p->refcount);
+ p->refcount--;
+}
+
+static inline int hyp_page_ref_dec_and_test(struct hyp_page *p)
+{
+ hyp_page_ref_dec(p);
+ return (p->refcount == 0);
+}
+
+static inline void hyp_set_page_refcounted(struct hyp_page *p)
+{
+ BUG_ON(p->refcount);
+ p->refcount = 1;
+}
+#endif /* __KVM_HYP_MEMORY_H */
diff --git a/arch/arm64/kvm/hyp/include/nvhe/mm.h b/arch/arm64/kvm/hyp/include/nvhe/mm.h
new file mode 100644
index 0000000000..230e4f2527
--- /dev/null
+++ b/arch/arm64/kvm/hyp/include/nvhe/mm.h
@@ -0,0 +1,32 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+#ifndef __KVM_HYP_MM_H
+#define __KVM_HYP_MM_H
+
+#include <asm/kvm_pgtable.h>
+#include <asm/spectre.h>
+#include <linux/memblock.h>
+#include <linux/types.h>
+
+#include <nvhe/memory.h>
+#include <nvhe/spinlock.h>
+
+extern struct kvm_pgtable pkvm_pgtable;
+extern hyp_spinlock_t pkvm_pgd_lock;
+
+int hyp_create_pcpu_fixmap(void);
+void *hyp_fixmap_map(phys_addr_t phys);
+void hyp_fixmap_unmap(void);
+
+int hyp_create_idmap(u32 hyp_va_bits);
+int hyp_map_vectors(void);
+int hyp_back_vmemmap(phys_addr_t back);
+int pkvm_cpu_set_vector(enum arm64_hyp_spectre_vector slot);
+int pkvm_create_mappings(void *from, void *to, enum kvm_pgtable_prot prot);
+int pkvm_create_mappings_locked(void *from, void *to, enum kvm_pgtable_prot prot);
+int __pkvm_create_private_mapping(phys_addr_t phys, size_t size,
+ enum kvm_pgtable_prot prot,
+ unsigned long *haddr);
+int pkvm_create_stack(phys_addr_t phys, unsigned long *haddr);
+int pkvm_alloc_private_va_range(size_t size, unsigned long *haddr);
+
+#endif /* __KVM_HYP_MM_H */
diff --git a/arch/arm64/kvm/hyp/include/nvhe/pkvm.h b/arch/arm64/kvm/hyp/include/nvhe/pkvm.h
new file mode 100644
index 0000000000..82b3d62538
--- /dev/null
+++ b/arch/arm64/kvm/hyp/include/nvhe/pkvm.h
@@ -0,0 +1,68 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+/*
+ * Copyright (C) 2021 Google LLC
+ * Author: Fuad Tabba <tabba@google.com>
+ */
+
+#ifndef __ARM64_KVM_NVHE_PKVM_H__
+#define __ARM64_KVM_NVHE_PKVM_H__
+
+#include <asm/kvm_pkvm.h>
+
+#include <nvhe/gfp.h>
+#include <nvhe/spinlock.h>
+
+/*
+ * Holds the relevant data for maintaining the vcpu state completely at hyp.
+ */
+struct pkvm_hyp_vcpu {
+ struct kvm_vcpu vcpu;
+
+ /* Backpointer to the host's (untrusted) vCPU instance. */
+ struct kvm_vcpu *host_vcpu;
+};
+
+/*
+ * Holds the relevant data for running a protected vm.
+ */
+struct pkvm_hyp_vm {
+ struct kvm kvm;
+
+ /* Backpointer to the host's (untrusted) KVM instance. */
+ struct kvm *host_kvm;
+
+ /* The guest's stage-2 page-table managed by the hypervisor. */
+ struct kvm_pgtable pgt;
+ struct kvm_pgtable_mm_ops mm_ops;
+ struct hyp_pool pool;
+ hyp_spinlock_t lock;
+
+ /*
+ * The number of vcpus initialized and ready to run.
+ * Modifying this is protected by 'vm_table_lock'.
+ */
+ unsigned int nr_vcpus;
+
+ /* Array of the hyp vCPU structures for this VM. */
+ struct pkvm_hyp_vcpu *vcpus[];
+};
+
+static inline struct pkvm_hyp_vm *
+pkvm_hyp_vcpu_to_hyp_vm(struct pkvm_hyp_vcpu *hyp_vcpu)
+{
+ return container_of(hyp_vcpu->vcpu.kvm, struct pkvm_hyp_vm, kvm);
+}
+
+void pkvm_hyp_vm_table_init(void *tbl);
+
+int __pkvm_init_vm(struct kvm *host_kvm, unsigned long vm_hva,
+ unsigned long pgd_hva);
+int __pkvm_init_vcpu(pkvm_handle_t handle, struct kvm_vcpu *host_vcpu,
+ unsigned long vcpu_hva);
+int __pkvm_teardown_vm(pkvm_handle_t handle);
+
+struct pkvm_hyp_vcpu *pkvm_load_hyp_vcpu(pkvm_handle_t handle,
+ unsigned int vcpu_idx);
+void pkvm_put_hyp_vcpu(struct pkvm_hyp_vcpu *hyp_vcpu);
+
+#endif /* __ARM64_KVM_NVHE_PKVM_H__ */
diff --git a/arch/arm64/kvm/hyp/include/nvhe/spinlock.h b/arch/arm64/kvm/hyp/include/nvhe/spinlock.h
new file mode 100644
index 0000000000..7c7ea8c554
--- /dev/null
+++ b/arch/arm64/kvm/hyp/include/nvhe/spinlock.h
@@ -0,0 +1,125 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+/*
+ * A stand-alone ticket spinlock implementation for use by the non-VHE
+ * KVM hypervisor code running at EL2.
+ *
+ * Copyright (C) 2020 Google LLC
+ * Author: Will Deacon <will@kernel.org>
+ *
+ * Heavily based on the implementation removed by c11090474d70 which was:
+ * Copyright (C) 2012 ARM Ltd.
+ */
+
+#ifndef __ARM64_KVM_NVHE_SPINLOCK_H__
+#define __ARM64_KVM_NVHE_SPINLOCK_H__
+
+#include <asm/alternative.h>
+#include <asm/lse.h>
+#include <asm/rwonce.h>
+
+typedef union hyp_spinlock {
+ u32 __val;
+ struct {
+#ifdef __AARCH64EB__
+ u16 next, owner;
+#else
+ u16 owner, next;
+#endif
+ };
+} hyp_spinlock_t;
+
+#define __HYP_SPIN_LOCK_INITIALIZER \
+ { .__val = 0 }
+
+#define __HYP_SPIN_LOCK_UNLOCKED \
+ ((hyp_spinlock_t) __HYP_SPIN_LOCK_INITIALIZER)
+
+#define DEFINE_HYP_SPINLOCK(x) hyp_spinlock_t x = __HYP_SPIN_LOCK_UNLOCKED
+
+#define hyp_spin_lock_init(l) \
+do { \
+ *(l) = __HYP_SPIN_LOCK_UNLOCKED; \
+} while (0)
+
+static inline void hyp_spin_lock(hyp_spinlock_t *lock)
+{
+ u32 tmp;
+ hyp_spinlock_t lockval, newval;
+
+ asm volatile(
+ /* Atomically increment the next ticket. */
+ ARM64_LSE_ATOMIC_INSN(
+ /* LL/SC */
+" prfm pstl1strm, %3\n"
+"1: ldaxr %w0, %3\n"
+" add %w1, %w0, #(1 << 16)\n"
+" stxr %w2, %w1, %3\n"
+" cbnz %w2, 1b\n",
+ /* LSE atomics */
+" mov %w2, #(1 << 16)\n"
+" ldadda %w2, %w0, %3\n"
+ __nops(3))
+
+ /* Did we get the lock? */
+" eor %w1, %w0, %w0, ror #16\n"
+" cbz %w1, 3f\n"
+ /*
+ * No: spin on the owner. Send a local event to avoid missing an
+ * unlock before the exclusive load.
+ */
+" sevl\n"
+"2: wfe\n"
+" ldaxrh %w2, %4\n"
+" eor %w1, %w2, %w0, lsr #16\n"
+" cbnz %w1, 2b\n"
+ /* We got the lock. Critical section starts here. */
+"3:"
+ : "=&r" (lockval), "=&r" (newval), "=&r" (tmp), "+Q" (*lock)
+ : "Q" (lock->owner)
+ : "memory");
+}
+
+static inline void hyp_spin_unlock(hyp_spinlock_t *lock)
+{
+ u64 tmp;
+
+ asm volatile(
+ ARM64_LSE_ATOMIC_INSN(
+ /* LL/SC */
+ " ldrh %w1, %0\n"
+ " add %w1, %w1, #1\n"
+ " stlrh %w1, %0",
+ /* LSE atomics */
+ " mov %w1, #1\n"
+ " staddlh %w1, %0\n"
+ __nops(1))
+ : "=Q" (lock->owner), "=&r" (tmp)
+ :
+ : "memory");
+}
+
+static inline bool hyp_spin_is_locked(hyp_spinlock_t *lock)
+{
+ hyp_spinlock_t lockval = READ_ONCE(*lock);
+
+ return lockval.owner != lockval.next;
+}
+
+#ifdef CONFIG_NVHE_EL2_DEBUG
+static inline void hyp_assert_lock_held(hyp_spinlock_t *lock)
+{
+ /*
+ * The __pkvm_init() path accesses protected data-structures without
+ * holding locks as the other CPUs are guaranteed to not enter EL2
+ * concurrently at this point in time. The point by which EL2 is
+ * initialized on all CPUs is reflected in the pkvm static key, so
+ * wait until it is set before checking the lock state.
+ */
+ if (static_branch_likely(&kvm_protected_mode_initialized))
+ BUG_ON(!hyp_spin_is_locked(lock));
+}
+#else
+static inline void hyp_assert_lock_held(hyp_spinlock_t *lock) { }
+#endif
+
+#endif /* __ARM64_KVM_NVHE_SPINLOCK_H__ */
diff --git a/arch/arm64/kvm/hyp/include/nvhe/trap_handler.h b/arch/arm64/kvm/hyp/include/nvhe/trap_handler.h
new file mode 100644
index 0000000000..45a84f0ade
--- /dev/null
+++ b/arch/arm64/kvm/hyp/include/nvhe/trap_handler.h
@@ -0,0 +1,20 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+/*
+ * Trap handler helpers.
+ *
+ * Copyright (C) 2020 - Google LLC
+ * Author: Marc Zyngier <maz@kernel.org>
+ */
+
+#ifndef __ARM64_KVM_NVHE_TRAP_HANDLER_H__
+#define __ARM64_KVM_NVHE_TRAP_HANDLER_H__
+
+#include <asm/kvm_host.h>
+
+#define cpu_reg(ctxt, r) (ctxt)->regs.regs[r]
+#define DECLARE_REG(type, name, ctxt, reg) \
+ type name = (type)cpu_reg(ctxt, (reg))
+
+void __pkvm_vcpu_init_traps(struct kvm_vcpu *vcpu);
+
+#endif /* __ARM64_KVM_NVHE_TRAP_HANDLER_H__ */
diff --git a/arch/arm64/kvm/hyp/nvhe/.gitignore b/arch/arm64/kvm/hyp/nvhe/.gitignore
new file mode 100644
index 0000000000..5b6c43cc96
--- /dev/null
+++ b/arch/arm64/kvm/hyp/nvhe/.gitignore
@@ -0,0 +1,4 @@
+# SPDX-License-Identifier: GPL-2.0-only
+gen-hyprel
+hyp.lds
+hyp-reloc.S
diff --git a/arch/arm64/kvm/hyp/nvhe/Makefile b/arch/arm64/kvm/hyp/nvhe/Makefile
new file mode 100644
index 0000000000..2250253a64
--- /dev/null
+++ b/arch/arm64/kvm/hyp/nvhe/Makefile
@@ -0,0 +1,112 @@
+# SPDX-License-Identifier: GPL-2.0
+#
+# Makefile for Kernel-based Virtual Machine module, HYP/nVHE part
+#
+
+asflags-y := -D__KVM_NVHE_HYPERVISOR__ -D__DISABLE_EXPORTS
+
+# Tracepoint and MMIO logging symbols should not be visible at nVHE KVM as
+# there is no way to execute them and any such MMIO access from nVHE KVM
+# will explode instantly (Words of Marc Zyngier). So introduce a generic flag
+# __DISABLE_TRACE_MMIO__ to disable MMIO tracing for nVHE KVM.
+ccflags-y := -D__KVM_NVHE_HYPERVISOR__ -D__DISABLE_EXPORTS -D__DISABLE_TRACE_MMIO__
+ccflags-y += -fno-stack-protector \
+ -DDISABLE_BRANCH_PROFILING \
+ $(DISABLE_STACKLEAK_PLUGIN)
+
+hostprogs := gen-hyprel
+HOST_EXTRACFLAGS += -I$(objtree)/include
+
+lib-objs := clear_page.o copy_page.o memcpy.o memset.o
+lib-objs := $(addprefix ../../../lib/, $(lib-objs))
+
+hyp-obj-y := timer-sr.o sysreg-sr.o debug-sr.o switch.o tlb.o hyp-init.o host.o \
+ hyp-main.o hyp-smp.o psci-relay.o early_alloc.o page_alloc.o \
+ cache.o setup.o mm.o mem_protect.o sys_regs.o pkvm.o stacktrace.o ffa.o
+hyp-obj-y += ../vgic-v3-sr.o ../aarch32.o ../vgic-v2-cpuif-proxy.o ../entry.o \
+ ../fpsimd.o ../hyp-entry.o ../exception.o ../pgtable.o
+hyp-obj-$(CONFIG_LIST_HARDENED) += list_debug.o
+hyp-obj-y += $(lib-objs)
+
+##
+## Build rules for compiling nVHE hyp code
+## Output of this folder is `kvm_nvhe.o`, a partially linked object
+## file containing all nVHE hyp code and data.
+##
+
+hyp-obj := $(patsubst %.o,%.nvhe.o,$(hyp-obj-y))
+obj-y := kvm_nvhe.o
+targets += $(hyp-obj) kvm_nvhe.tmp.o kvm_nvhe.rel.o hyp.lds hyp-reloc.S hyp-reloc.o
+
+# 1) Compile all source files to `.nvhe.o` object files. The file extension
+# avoids file name clashes for files shared with VHE.
+$(obj)/%.nvhe.o: $(src)/%.c FORCE
+ $(call if_changed_rule,cc_o_c)
+$(obj)/%.nvhe.o: $(src)/%.S FORCE
+ $(call if_changed_rule,as_o_S)
+
+# 2) Compile linker script.
+$(obj)/hyp.lds: $(src)/hyp.lds.S FORCE
+ $(call if_changed_dep,cpp_lds_S)
+
+# 3) Partially link all '.nvhe.o' files and apply the linker script.
+# Prefixes names of ELF sections with '.hyp', eg. '.hyp.text'.
+# Note: The following rule assumes that the 'ld' rule puts LDFLAGS before
+# the list of dependencies to form '-T $(obj)/hyp.lds'. This is to
+# keep the dependency on the target while avoiding an error from
+# GNU ld if the linker script is passed to it twice.
+LDFLAGS_kvm_nvhe.tmp.o := -r -T
+$(obj)/kvm_nvhe.tmp.o: $(obj)/hyp.lds $(addprefix $(obj)/,$(hyp-obj)) FORCE
+ $(call if_changed,ld)
+
+# 4) Generate list of hyp code/data positions that need to be relocated at
+# runtime. Because the hypervisor is part of the kernel binary, relocations
+# produce a kernel VA. We enumerate relocations targeting hyp at build time
+# and convert the kernel VAs at those positions to hyp VAs.
+$(obj)/hyp-reloc.S: $(obj)/kvm_nvhe.tmp.o $(obj)/gen-hyprel FORCE
+ $(call if_changed,hyprel)
+
+# 5) Compile hyp-reloc.S and link it into the existing partially linked object.
+# The object file now contains a section with pointers to hyp positions that
+# will contain kernel VAs at runtime. These pointers have relocations on them
+# so that they get updated as the hyp object is linked into `vmlinux`.
+LDFLAGS_kvm_nvhe.rel.o := -r
+$(obj)/kvm_nvhe.rel.o: $(obj)/kvm_nvhe.tmp.o $(obj)/hyp-reloc.o FORCE
+ $(call if_changed,ld)
+
+# 6) Produce the final 'kvm_nvhe.o', ready to be linked into 'vmlinux'.
+# Prefixes names of ELF symbols with '__kvm_nvhe_'.
+$(obj)/kvm_nvhe.o: $(obj)/kvm_nvhe.rel.o FORCE
+ $(call if_changed,hypcopy)
+
+# The HYPREL command calls `gen-hyprel` to generate an assembly file with
+# a list of relocations targeting hyp code/data.
+quiet_cmd_hyprel = HYPREL $@
+ cmd_hyprel = $(obj)/gen-hyprel $< > $@
+
+# The HYPCOPY command uses `objcopy` to prefix all ELF symbol names
+# to avoid clashes with VHE code/data.
+quiet_cmd_hypcopy = HYPCOPY $@
+ cmd_hypcopy = $(OBJCOPY) --prefix-symbols=__kvm_nvhe_ $< $@
+
+# Remove ftrace, Shadow Call Stack, and CFI CFLAGS.
+# This is equivalent to the 'notrace', '__noscs', and '__nocfi' annotations.
+KBUILD_CFLAGS := $(filter-out $(CC_FLAGS_FTRACE) $(CC_FLAGS_SCS) $(CC_FLAGS_CFI), $(KBUILD_CFLAGS))
+# Starting from 13.0.0 llvm emits SHT_REL section '.llvm.call-graph-profile'
+# when profile optimization is applied. gen-hyprel does not support SHT_REL and
+# causes a build failure. Remove profile optimization flags.
+KBUILD_CFLAGS := $(filter-out -fprofile-sample-use=% -fprofile-use=%, $(KBUILD_CFLAGS))
+KBUILD_CFLAGS += -fno-asynchronous-unwind-tables -fno-unwind-tables
+
+# KVM nVHE code is run at a different exception code with a different map, so
+# compiler instrumentation that inserts callbacks or checks into the code may
+# cause crashes. Just disable it.
+GCOV_PROFILE := n
+KASAN_SANITIZE := n
+KCSAN_SANITIZE := n
+UBSAN_SANITIZE := n
+KCOV_INSTRUMENT := n
+
+# Skip objtool checking for this directory because nVHE code is compiled with
+# non-standard build rules.
+OBJECT_FILES_NON_STANDARD := y
diff --git a/arch/arm64/kvm/hyp/nvhe/cache.S b/arch/arm64/kvm/hyp/nvhe/cache.S
new file mode 100644
index 0000000000..85936c17ae
--- /dev/null
+++ b/arch/arm64/kvm/hyp/nvhe/cache.S
@@ -0,0 +1,25 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+/*
+ * Code copied from arch/arm64/mm/cache.S.
+ */
+
+#include <linux/linkage.h>
+#include <asm/assembler.h>
+#include <asm/alternative.h>
+
+SYM_FUNC_START(__pi_dcache_clean_inval_poc)
+ dcache_by_line_op civac, sy, x0, x1, x2, x3
+ ret
+SYM_FUNC_END(__pi_dcache_clean_inval_poc)
+SYM_FUNC_ALIAS(dcache_clean_inval_poc, __pi_dcache_clean_inval_poc)
+
+SYM_FUNC_START(__pi_icache_inval_pou)
+alternative_if ARM64_HAS_CACHE_DIC
+ isb
+ ret
+alternative_else_nop_endif
+
+ invalidate_icache_by_line x0, x1, x2, x3
+ ret
+SYM_FUNC_END(__pi_icache_inval_pou)
+SYM_FUNC_ALIAS(icache_inval_pou, __pi_icache_inval_pou)
diff --git a/arch/arm64/kvm/hyp/nvhe/debug-sr.c b/arch/arm64/kvm/hyp/nvhe/debug-sr.c
new file mode 100644
index 0000000000..4558c02eb3
--- /dev/null
+++ b/arch/arm64/kvm/hyp/nvhe/debug-sr.c
@@ -0,0 +1,113 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2015 - ARM Ltd
+ * Author: Marc Zyngier <marc.zyngier@arm.com>
+ */
+
+#include <hyp/debug-sr.h>
+
+#include <linux/compiler.h>
+#include <linux/kvm_host.h>
+
+#include <asm/debug-monitors.h>
+#include <asm/kvm_asm.h>
+#include <asm/kvm_hyp.h>
+#include <asm/kvm_mmu.h>
+
+static void __debug_save_spe(u64 *pmscr_el1)
+{
+ u64 reg;
+
+ /* Clear pmscr in case of early return */
+ *pmscr_el1 = 0;
+
+ /*
+ * At this point, we know that this CPU implements
+ * SPE and is available to the host.
+ * Check if the host is actually using it ?
+ */
+ reg = read_sysreg_s(SYS_PMBLIMITR_EL1);
+ if (!(reg & BIT(PMBLIMITR_EL1_E_SHIFT)))
+ return;
+
+ /* Yes; save the control register and disable data generation */
+ *pmscr_el1 = read_sysreg_s(SYS_PMSCR_EL1);
+ write_sysreg_s(0, SYS_PMSCR_EL1);
+ isb();
+
+ /* Now drain all buffered data to memory */
+ psb_csync();
+}
+
+static void __debug_restore_spe(u64 pmscr_el1)
+{
+ if (!pmscr_el1)
+ return;
+
+ /* The host page table is installed, but not yet synchronised */
+ isb();
+
+ /* Re-enable data generation */
+ write_sysreg_s(pmscr_el1, SYS_PMSCR_EL1);
+}
+
+static void __debug_save_trace(u64 *trfcr_el1)
+{
+ *trfcr_el1 = 0;
+
+ /* Check if the TRBE is enabled */
+ if (!(read_sysreg_s(SYS_TRBLIMITR_EL1) & TRBLIMITR_EL1_E))
+ return;
+ /*
+ * Prohibit trace generation while we are in guest.
+ * Since access to TRFCR_EL1 is trapped, the guest can't
+ * modify the filtering set by the host.
+ */
+ *trfcr_el1 = read_sysreg_s(SYS_TRFCR_EL1);
+ write_sysreg_s(0, SYS_TRFCR_EL1);
+ isb();
+ /* Drain the trace buffer to memory */
+ tsb_csync();
+}
+
+static void __debug_restore_trace(u64 trfcr_el1)
+{
+ if (!trfcr_el1)
+ return;
+
+ /* Restore trace filter controls */
+ write_sysreg_s(trfcr_el1, SYS_TRFCR_EL1);
+}
+
+void __debug_save_host_buffers_nvhe(struct kvm_vcpu *vcpu)
+{
+ /* Disable and flush SPE data generation */
+ if (vcpu_get_flag(vcpu, DEBUG_STATE_SAVE_SPE))
+ __debug_save_spe(&vcpu->arch.host_debug_state.pmscr_el1);
+ /* Disable and flush Self-Hosted Trace generation */
+ if (vcpu_get_flag(vcpu, DEBUG_STATE_SAVE_TRBE))
+ __debug_save_trace(&vcpu->arch.host_debug_state.trfcr_el1);
+}
+
+void __debug_switch_to_guest(struct kvm_vcpu *vcpu)
+{
+ __debug_switch_to_guest_common(vcpu);
+}
+
+void __debug_restore_host_buffers_nvhe(struct kvm_vcpu *vcpu)
+{
+ if (vcpu_get_flag(vcpu, DEBUG_STATE_SAVE_SPE))
+ __debug_restore_spe(vcpu->arch.host_debug_state.pmscr_el1);
+ if (vcpu_get_flag(vcpu, DEBUG_STATE_SAVE_TRBE))
+ __debug_restore_trace(vcpu->arch.host_debug_state.trfcr_el1);
+}
+
+void __debug_switch_to_host(struct kvm_vcpu *vcpu)
+{
+ __debug_switch_to_host_common(vcpu);
+}
+
+u64 __kvm_get_mdcr_el2(void)
+{
+ return read_sysreg(mdcr_el2);
+}
diff --git a/arch/arm64/kvm/hyp/nvhe/early_alloc.c b/arch/arm64/kvm/hyp/nvhe/early_alloc.c
new file mode 100644
index 0000000000..00de04153c
--- /dev/null
+++ b/arch/arm64/kvm/hyp/nvhe/early_alloc.c
@@ -0,0 +1,59 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2020 Google LLC
+ * Author: Quentin Perret <qperret@google.com>
+ */
+
+#include <asm/kvm_pgtable.h>
+
+#include <nvhe/early_alloc.h>
+#include <nvhe/memory.h>
+
+struct kvm_pgtable_mm_ops hyp_early_alloc_mm_ops;
+s64 __ro_after_init hyp_physvirt_offset;
+
+static unsigned long base;
+static unsigned long end;
+static unsigned long cur;
+
+unsigned long hyp_early_alloc_nr_used_pages(void)
+{
+ return (cur - base) >> PAGE_SHIFT;
+}
+
+void *hyp_early_alloc_contig(unsigned int nr_pages)
+{
+ unsigned long size = (nr_pages << PAGE_SHIFT);
+ void *ret = (void *)cur;
+
+ if (!nr_pages)
+ return NULL;
+
+ if (end - cur < size)
+ return NULL;
+
+ cur += size;
+ memset(ret, 0, size);
+
+ return ret;
+}
+
+void *hyp_early_alloc_page(void *arg)
+{
+ return hyp_early_alloc_contig(1);
+}
+
+static void hyp_early_alloc_get_page(void *addr) { }
+static void hyp_early_alloc_put_page(void *addr) { }
+
+void hyp_early_alloc_init(void *virt, unsigned long size)
+{
+ base = cur = (unsigned long)virt;
+ end = base + size;
+
+ hyp_early_alloc_mm_ops.zalloc_page = hyp_early_alloc_page;
+ hyp_early_alloc_mm_ops.phys_to_virt = hyp_phys_to_virt;
+ hyp_early_alloc_mm_ops.virt_to_phys = hyp_virt_to_phys;
+ hyp_early_alloc_mm_ops.get_page = hyp_early_alloc_get_page;
+ hyp_early_alloc_mm_ops.put_page = hyp_early_alloc_put_page;
+}
diff --git a/arch/arm64/kvm/hyp/nvhe/ffa.c b/arch/arm64/kvm/hyp/nvhe/ffa.c
new file mode 100644
index 0000000000..6e4dba9ead
--- /dev/null
+++ b/arch/arm64/kvm/hyp/nvhe/ffa.c
@@ -0,0 +1,774 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * FF-A v1.0 proxy to filter out invalid memory-sharing SMC calls issued by
+ * the host. FF-A is a slightly more palatable abbreviation of "Arm Firmware
+ * Framework for Arm A-profile", which is specified by Arm in document
+ * number DEN0077.
+ *
+ * Copyright (C) 2022 - Google LLC
+ * Author: Andrew Walbran <qwandor@google.com>
+ *
+ * This driver hooks into the SMC trapping logic for the host and intercepts
+ * all calls falling within the FF-A range. Each call is either:
+ *
+ * - Forwarded on unmodified to the SPMD at EL3
+ * - Rejected as "unsupported"
+ * - Accompanied by a host stage-2 page-table check/update and reissued
+ *
+ * Consequently, any attempts by the host to make guest memory pages
+ * accessible to the secure world using FF-A will be detected either here
+ * (in the case that the memory is already owned by the guest) or during
+ * donation to the guest (in the case that the memory was previously shared
+ * with the secure world).
+ *
+ * To allow the rolling-back of page-table updates and FF-A calls in the
+ * event of failure, operations involving the RXTX buffers are locked for
+ * the duration and are therefore serialised.
+ */
+
+#include <linux/arm-smccc.h>
+#include <linux/arm_ffa.h>
+#include <asm/kvm_pkvm.h>
+
+#include <nvhe/ffa.h>
+#include <nvhe/mem_protect.h>
+#include <nvhe/memory.h>
+#include <nvhe/trap_handler.h>
+#include <nvhe/spinlock.h>
+
+/*
+ * "ID value 0 must be returned at the Non-secure physical FF-A instance"
+ * We share this ID with the host.
+ */
+#define HOST_FFA_ID 0
+
+/*
+ * A buffer to hold the maximum descriptor size we can see from the host,
+ * which is required when the SPMD returns a fragmented FFA_MEM_RETRIEVE_RESP
+ * when resolving the handle on the reclaim path.
+ */
+struct kvm_ffa_descriptor_buffer {
+ void *buf;
+ size_t len;
+};
+
+static struct kvm_ffa_descriptor_buffer ffa_desc_buf;
+
+struct kvm_ffa_buffers {
+ hyp_spinlock_t lock;
+ void *tx;
+ void *rx;
+};
+
+/*
+ * Note that we don't currently lock these buffers explicitly, instead
+ * relying on the locking of the host FFA buffers as we only have one
+ * client.
+ */
+static struct kvm_ffa_buffers hyp_buffers;
+static struct kvm_ffa_buffers host_buffers;
+
+static void ffa_to_smccc_error(struct arm_smccc_res *res, u64 ffa_errno)
+{
+ *res = (struct arm_smccc_res) {
+ .a0 = FFA_ERROR,
+ .a2 = ffa_errno,
+ };
+}
+
+static void ffa_to_smccc_res_prop(struct arm_smccc_res *res, int ret, u64 prop)
+{
+ if (ret == FFA_RET_SUCCESS) {
+ *res = (struct arm_smccc_res) { .a0 = FFA_SUCCESS,
+ .a2 = prop };
+ } else {
+ ffa_to_smccc_error(res, ret);
+ }
+}
+
+static void ffa_to_smccc_res(struct arm_smccc_res *res, int ret)
+{
+ ffa_to_smccc_res_prop(res, ret, 0);
+}
+
+static void ffa_set_retval(struct kvm_cpu_context *ctxt,
+ struct arm_smccc_res *res)
+{
+ cpu_reg(ctxt, 0) = res->a0;
+ cpu_reg(ctxt, 1) = res->a1;
+ cpu_reg(ctxt, 2) = res->a2;
+ cpu_reg(ctxt, 3) = res->a3;
+}
+
+static bool is_ffa_call(u64 func_id)
+{
+ return ARM_SMCCC_IS_FAST_CALL(func_id) &&
+ ARM_SMCCC_OWNER_NUM(func_id) == ARM_SMCCC_OWNER_STANDARD &&
+ ARM_SMCCC_FUNC_NUM(func_id) >= FFA_MIN_FUNC_NUM &&
+ ARM_SMCCC_FUNC_NUM(func_id) <= FFA_MAX_FUNC_NUM;
+}
+
+static int ffa_map_hyp_buffers(u64 ffa_page_count)
+{
+ struct arm_smccc_res res;
+
+ arm_smccc_1_1_smc(FFA_FN64_RXTX_MAP,
+ hyp_virt_to_phys(hyp_buffers.tx),
+ hyp_virt_to_phys(hyp_buffers.rx),
+ ffa_page_count,
+ 0, 0, 0, 0,
+ &res);
+
+ return res.a0 == FFA_SUCCESS ? FFA_RET_SUCCESS : res.a2;
+}
+
+static int ffa_unmap_hyp_buffers(void)
+{
+ struct arm_smccc_res res;
+
+ arm_smccc_1_1_smc(FFA_RXTX_UNMAP,
+ HOST_FFA_ID,
+ 0, 0, 0, 0, 0, 0,
+ &res);
+
+ return res.a0 == FFA_SUCCESS ? FFA_RET_SUCCESS : res.a2;
+}
+
+static void ffa_mem_frag_tx(struct arm_smccc_res *res, u32 handle_lo,
+ u32 handle_hi, u32 fraglen, u32 endpoint_id)
+{
+ arm_smccc_1_1_smc(FFA_MEM_FRAG_TX,
+ handle_lo, handle_hi, fraglen, endpoint_id,
+ 0, 0, 0,
+ res);
+}
+
+static void ffa_mem_frag_rx(struct arm_smccc_res *res, u32 handle_lo,
+ u32 handle_hi, u32 fragoff)
+{
+ arm_smccc_1_1_smc(FFA_MEM_FRAG_RX,
+ handle_lo, handle_hi, fragoff, HOST_FFA_ID,
+ 0, 0, 0,
+ res);
+}
+
+static void ffa_mem_xfer(struct arm_smccc_res *res, u64 func_id, u32 len,
+ u32 fraglen)
+{
+ arm_smccc_1_1_smc(func_id, len, fraglen,
+ 0, 0, 0, 0, 0,
+ res);
+}
+
+static void ffa_mem_reclaim(struct arm_smccc_res *res, u32 handle_lo,
+ u32 handle_hi, u32 flags)
+{
+ arm_smccc_1_1_smc(FFA_MEM_RECLAIM,
+ handle_lo, handle_hi, flags,
+ 0, 0, 0, 0,
+ res);
+}
+
+static void ffa_retrieve_req(struct arm_smccc_res *res, u32 len)
+{
+ arm_smccc_1_1_smc(FFA_FN64_MEM_RETRIEVE_REQ,
+ len, len,
+ 0, 0, 0, 0, 0,
+ res);
+}
+
+static void do_ffa_rxtx_map(struct arm_smccc_res *res,
+ struct kvm_cpu_context *ctxt)
+{
+ DECLARE_REG(phys_addr_t, tx, ctxt, 1);
+ DECLARE_REG(phys_addr_t, rx, ctxt, 2);
+ DECLARE_REG(u32, npages, ctxt, 3);
+ int ret = 0;
+ void *rx_virt, *tx_virt;
+
+ if (npages != (KVM_FFA_MBOX_NR_PAGES * PAGE_SIZE) / FFA_PAGE_SIZE) {
+ ret = FFA_RET_INVALID_PARAMETERS;
+ goto out;
+ }
+
+ if (!PAGE_ALIGNED(tx) || !PAGE_ALIGNED(rx)) {
+ ret = FFA_RET_INVALID_PARAMETERS;
+ goto out;
+ }
+
+ hyp_spin_lock(&host_buffers.lock);
+ if (host_buffers.tx) {
+ ret = FFA_RET_DENIED;
+ goto out_unlock;
+ }
+
+ /*
+ * Map our hypervisor buffers into the SPMD before mapping and
+ * pinning the host buffers in our own address space.
+ */
+ ret = ffa_map_hyp_buffers(npages);
+ if (ret)
+ goto out_unlock;
+
+ ret = __pkvm_host_share_hyp(hyp_phys_to_pfn(tx));
+ if (ret) {
+ ret = FFA_RET_INVALID_PARAMETERS;
+ goto err_unmap;
+ }
+
+ ret = __pkvm_host_share_hyp(hyp_phys_to_pfn(rx));
+ if (ret) {
+ ret = FFA_RET_INVALID_PARAMETERS;
+ goto err_unshare_tx;
+ }
+
+ tx_virt = hyp_phys_to_virt(tx);
+ ret = hyp_pin_shared_mem(tx_virt, tx_virt + 1);
+ if (ret) {
+ ret = FFA_RET_INVALID_PARAMETERS;
+ goto err_unshare_rx;
+ }
+
+ rx_virt = hyp_phys_to_virt(rx);
+ ret = hyp_pin_shared_mem(rx_virt, rx_virt + 1);
+ if (ret) {
+ ret = FFA_RET_INVALID_PARAMETERS;
+ goto err_unpin_tx;
+ }
+
+ host_buffers.tx = tx_virt;
+ host_buffers.rx = rx_virt;
+
+out_unlock:
+ hyp_spin_unlock(&host_buffers.lock);
+out:
+ ffa_to_smccc_res(res, ret);
+ return;
+
+err_unpin_tx:
+ hyp_unpin_shared_mem(tx_virt, tx_virt + 1);
+err_unshare_rx:
+ __pkvm_host_unshare_hyp(hyp_phys_to_pfn(rx));
+err_unshare_tx:
+ __pkvm_host_unshare_hyp(hyp_phys_to_pfn(tx));
+err_unmap:
+ ffa_unmap_hyp_buffers();
+ goto out_unlock;
+}
+
+static void do_ffa_rxtx_unmap(struct arm_smccc_res *res,
+ struct kvm_cpu_context *ctxt)
+{
+ DECLARE_REG(u32, id, ctxt, 1);
+ int ret = 0;
+
+ if (id != HOST_FFA_ID) {
+ ret = FFA_RET_INVALID_PARAMETERS;
+ goto out;
+ }
+
+ hyp_spin_lock(&host_buffers.lock);
+ if (!host_buffers.tx) {
+ ret = FFA_RET_INVALID_PARAMETERS;
+ goto out_unlock;
+ }
+
+ hyp_unpin_shared_mem(host_buffers.tx, host_buffers.tx + 1);
+ WARN_ON(__pkvm_host_unshare_hyp(hyp_virt_to_pfn(host_buffers.tx)));
+ host_buffers.tx = NULL;
+
+ hyp_unpin_shared_mem(host_buffers.rx, host_buffers.rx + 1);
+ WARN_ON(__pkvm_host_unshare_hyp(hyp_virt_to_pfn(host_buffers.rx)));
+ host_buffers.rx = NULL;
+
+ ffa_unmap_hyp_buffers();
+
+out_unlock:
+ hyp_spin_unlock(&host_buffers.lock);
+out:
+ ffa_to_smccc_res(res, ret);
+}
+
+static u32 __ffa_host_share_ranges(struct ffa_mem_region_addr_range *ranges,
+ u32 nranges)
+{
+ u32 i;
+
+ for (i = 0; i < nranges; ++i) {
+ struct ffa_mem_region_addr_range *range = &ranges[i];
+ u64 sz = (u64)range->pg_cnt * FFA_PAGE_SIZE;
+ u64 pfn = hyp_phys_to_pfn(range->address);
+
+ if (!PAGE_ALIGNED(sz))
+ break;
+
+ if (__pkvm_host_share_ffa(pfn, sz / PAGE_SIZE))
+ break;
+ }
+
+ return i;
+}
+
+static u32 __ffa_host_unshare_ranges(struct ffa_mem_region_addr_range *ranges,
+ u32 nranges)
+{
+ u32 i;
+
+ for (i = 0; i < nranges; ++i) {
+ struct ffa_mem_region_addr_range *range = &ranges[i];
+ u64 sz = (u64)range->pg_cnt * FFA_PAGE_SIZE;
+ u64 pfn = hyp_phys_to_pfn(range->address);
+
+ if (!PAGE_ALIGNED(sz))
+ break;
+
+ if (__pkvm_host_unshare_ffa(pfn, sz / PAGE_SIZE))
+ break;
+ }
+
+ return i;
+}
+
+static int ffa_host_share_ranges(struct ffa_mem_region_addr_range *ranges,
+ u32 nranges)
+{
+ u32 nshared = __ffa_host_share_ranges(ranges, nranges);
+ int ret = 0;
+
+ if (nshared != nranges) {
+ WARN_ON(__ffa_host_unshare_ranges(ranges, nshared) != nshared);
+ ret = FFA_RET_DENIED;
+ }
+
+ return ret;
+}
+
+static int ffa_host_unshare_ranges(struct ffa_mem_region_addr_range *ranges,
+ u32 nranges)
+{
+ u32 nunshared = __ffa_host_unshare_ranges(ranges, nranges);
+ int ret = 0;
+
+ if (nunshared != nranges) {
+ WARN_ON(__ffa_host_share_ranges(ranges, nunshared) != nunshared);
+ ret = FFA_RET_DENIED;
+ }
+
+ return ret;
+}
+
+static void do_ffa_mem_frag_tx(struct arm_smccc_res *res,
+ struct kvm_cpu_context *ctxt)
+{
+ DECLARE_REG(u32, handle_lo, ctxt, 1);
+ DECLARE_REG(u32, handle_hi, ctxt, 2);
+ DECLARE_REG(u32, fraglen, ctxt, 3);
+ DECLARE_REG(u32, endpoint_id, ctxt, 4);
+ struct ffa_mem_region_addr_range *buf;
+ int ret = FFA_RET_INVALID_PARAMETERS;
+ u32 nr_ranges;
+
+ if (fraglen > KVM_FFA_MBOX_NR_PAGES * PAGE_SIZE)
+ goto out;
+
+ if (fraglen % sizeof(*buf))
+ goto out;
+
+ hyp_spin_lock(&host_buffers.lock);
+ if (!host_buffers.tx)
+ goto out_unlock;
+
+ buf = hyp_buffers.tx;
+ memcpy(buf, host_buffers.tx, fraglen);
+ nr_ranges = fraglen / sizeof(*buf);
+
+ ret = ffa_host_share_ranges(buf, nr_ranges);
+ if (ret) {
+ /*
+ * We're effectively aborting the transaction, so we need
+ * to restore the global state back to what it was prior to
+ * transmission of the first fragment.
+ */
+ ffa_mem_reclaim(res, handle_lo, handle_hi, 0);
+ WARN_ON(res->a0 != FFA_SUCCESS);
+ goto out_unlock;
+ }
+
+ ffa_mem_frag_tx(res, handle_lo, handle_hi, fraglen, endpoint_id);
+ if (res->a0 != FFA_SUCCESS && res->a0 != FFA_MEM_FRAG_RX)
+ WARN_ON(ffa_host_unshare_ranges(buf, nr_ranges));
+
+out_unlock:
+ hyp_spin_unlock(&host_buffers.lock);
+out:
+ if (ret)
+ ffa_to_smccc_res(res, ret);
+
+ /*
+ * If for any reason this did not succeed, we're in trouble as we have
+ * now lost the content of the previous fragments and we can't rollback
+ * the host stage-2 changes. The pages previously marked as shared will
+ * remain stuck in that state forever, hence preventing the host from
+ * sharing/donating them again and may possibly lead to subsequent
+ * failures, but this will not compromise confidentiality.
+ */
+ return;
+}
+
+static __always_inline void do_ffa_mem_xfer(const u64 func_id,
+ struct arm_smccc_res *res,
+ struct kvm_cpu_context *ctxt)
+{
+ DECLARE_REG(u32, len, ctxt, 1);
+ DECLARE_REG(u32, fraglen, ctxt, 2);
+ DECLARE_REG(u64, addr_mbz, ctxt, 3);
+ DECLARE_REG(u32, npages_mbz, ctxt, 4);
+ struct ffa_composite_mem_region *reg;
+ struct ffa_mem_region *buf;
+ u32 offset, nr_ranges;
+ int ret = 0;
+
+ BUILD_BUG_ON(func_id != FFA_FN64_MEM_SHARE &&
+ func_id != FFA_FN64_MEM_LEND);
+
+ if (addr_mbz || npages_mbz || fraglen > len ||
+ fraglen > KVM_FFA_MBOX_NR_PAGES * PAGE_SIZE) {
+ ret = FFA_RET_INVALID_PARAMETERS;
+ goto out;
+ }
+
+ if (fraglen < sizeof(struct ffa_mem_region) +
+ sizeof(struct ffa_mem_region_attributes)) {
+ ret = FFA_RET_INVALID_PARAMETERS;
+ goto out;
+ }
+
+ hyp_spin_lock(&host_buffers.lock);
+ if (!host_buffers.tx) {
+ ret = FFA_RET_INVALID_PARAMETERS;
+ goto out_unlock;
+ }
+
+ buf = hyp_buffers.tx;
+ memcpy(buf, host_buffers.tx, fraglen);
+
+ offset = buf->ep_mem_access[0].composite_off;
+ if (!offset || buf->ep_count != 1 || buf->sender_id != HOST_FFA_ID) {
+ ret = FFA_RET_INVALID_PARAMETERS;
+ goto out_unlock;
+ }
+
+ if (fraglen < offset + sizeof(struct ffa_composite_mem_region)) {
+ ret = FFA_RET_INVALID_PARAMETERS;
+ goto out_unlock;
+ }
+
+ reg = (void *)buf + offset;
+ nr_ranges = ((void *)buf + fraglen) - (void *)reg->constituents;
+ if (nr_ranges % sizeof(reg->constituents[0])) {
+ ret = FFA_RET_INVALID_PARAMETERS;
+ goto out_unlock;
+ }
+
+ nr_ranges /= sizeof(reg->constituents[0]);
+ ret = ffa_host_share_ranges(reg->constituents, nr_ranges);
+ if (ret)
+ goto out_unlock;
+
+ ffa_mem_xfer(res, func_id, len, fraglen);
+ if (fraglen != len) {
+ if (res->a0 != FFA_MEM_FRAG_RX)
+ goto err_unshare;
+
+ if (res->a3 != fraglen)
+ goto err_unshare;
+ } else if (res->a0 != FFA_SUCCESS) {
+ goto err_unshare;
+ }
+
+out_unlock:
+ hyp_spin_unlock(&host_buffers.lock);
+out:
+ if (ret)
+ ffa_to_smccc_res(res, ret);
+ return;
+
+err_unshare:
+ WARN_ON(ffa_host_unshare_ranges(reg->constituents, nr_ranges));
+ goto out_unlock;
+}
+
+static void do_ffa_mem_reclaim(struct arm_smccc_res *res,
+ struct kvm_cpu_context *ctxt)
+{
+ DECLARE_REG(u32, handle_lo, ctxt, 1);
+ DECLARE_REG(u32, handle_hi, ctxt, 2);
+ DECLARE_REG(u32, flags, ctxt, 3);
+ struct ffa_composite_mem_region *reg;
+ u32 offset, len, fraglen, fragoff;
+ struct ffa_mem_region *buf;
+ int ret = 0;
+ u64 handle;
+
+ handle = PACK_HANDLE(handle_lo, handle_hi);
+
+ hyp_spin_lock(&host_buffers.lock);
+
+ buf = hyp_buffers.tx;
+ *buf = (struct ffa_mem_region) {
+ .sender_id = HOST_FFA_ID,
+ .handle = handle,
+ };
+
+ ffa_retrieve_req(res, sizeof(*buf));
+ buf = hyp_buffers.rx;
+ if (res->a0 != FFA_MEM_RETRIEVE_RESP)
+ goto out_unlock;
+
+ len = res->a1;
+ fraglen = res->a2;
+
+ offset = buf->ep_mem_access[0].composite_off;
+ /*
+ * We can trust the SPMD to get this right, but let's at least
+ * check that we end up with something that doesn't look _completely_
+ * bogus.
+ */
+ if (WARN_ON(offset > len ||
+ fraglen > KVM_FFA_MBOX_NR_PAGES * PAGE_SIZE)) {
+ ret = FFA_RET_ABORTED;
+ goto out_unlock;
+ }
+
+ if (len > ffa_desc_buf.len) {
+ ret = FFA_RET_NO_MEMORY;
+ goto out_unlock;
+ }
+
+ buf = ffa_desc_buf.buf;
+ memcpy(buf, hyp_buffers.rx, fraglen);
+
+ for (fragoff = fraglen; fragoff < len; fragoff += fraglen) {
+ ffa_mem_frag_rx(res, handle_lo, handle_hi, fragoff);
+ if (res->a0 != FFA_MEM_FRAG_TX) {
+ ret = FFA_RET_INVALID_PARAMETERS;
+ goto out_unlock;
+ }
+
+ fraglen = res->a3;
+ memcpy((void *)buf + fragoff, hyp_buffers.rx, fraglen);
+ }
+
+ ffa_mem_reclaim(res, handle_lo, handle_hi, flags);
+ if (res->a0 != FFA_SUCCESS)
+ goto out_unlock;
+
+ reg = (void *)buf + offset;
+ /* If the SPMD was happy, then we should be too. */
+ WARN_ON(ffa_host_unshare_ranges(reg->constituents,
+ reg->addr_range_cnt));
+out_unlock:
+ hyp_spin_unlock(&host_buffers.lock);
+
+ if (ret)
+ ffa_to_smccc_res(res, ret);
+}
+
+/*
+ * Is a given FFA function supported, either by forwarding on directly
+ * or by handling at EL2?
+ */
+static bool ffa_call_supported(u64 func_id)
+{
+ switch (func_id) {
+ /* Unsupported memory management calls */
+ case FFA_FN64_MEM_RETRIEVE_REQ:
+ case FFA_MEM_RETRIEVE_RESP:
+ case FFA_MEM_RELINQUISH:
+ case FFA_MEM_OP_PAUSE:
+ case FFA_MEM_OP_RESUME:
+ case FFA_MEM_FRAG_RX:
+ case FFA_FN64_MEM_DONATE:
+ /* Indirect message passing via RX/TX buffers */
+ case FFA_MSG_SEND:
+ case FFA_MSG_POLL:
+ case FFA_MSG_WAIT:
+ /* 32-bit variants of 64-bit calls */
+ case FFA_MSG_SEND_DIRECT_REQ:
+ case FFA_MSG_SEND_DIRECT_RESP:
+ case FFA_RXTX_MAP:
+ case FFA_MEM_DONATE:
+ case FFA_MEM_RETRIEVE_REQ:
+ return false;
+ }
+
+ return true;
+}
+
+static bool do_ffa_features(struct arm_smccc_res *res,
+ struct kvm_cpu_context *ctxt)
+{
+ DECLARE_REG(u32, id, ctxt, 1);
+ u64 prop = 0;
+ int ret = 0;
+
+ if (!ffa_call_supported(id)) {
+ ret = FFA_RET_NOT_SUPPORTED;
+ goto out_handled;
+ }
+
+ switch (id) {
+ case FFA_MEM_SHARE:
+ case FFA_FN64_MEM_SHARE:
+ case FFA_MEM_LEND:
+ case FFA_FN64_MEM_LEND:
+ ret = FFA_RET_SUCCESS;
+ prop = 0; /* No support for dynamic buffers */
+ goto out_handled;
+ default:
+ return false;
+ }
+
+out_handled:
+ ffa_to_smccc_res_prop(res, ret, prop);
+ return true;
+}
+
+bool kvm_host_ffa_handler(struct kvm_cpu_context *host_ctxt, u32 func_id)
+{
+ struct arm_smccc_res res;
+
+ /*
+ * There's no way we can tell what a non-standard SMC call might
+ * be up to. Ideally, we would terminate these here and return
+ * an error to the host, but sadly devices make use of custom
+ * firmware calls for things like power management, debugging,
+ * RNG access and crash reporting.
+ *
+ * Given that the architecture requires us to trust EL3 anyway,
+ * we forward unrecognised calls on under the assumption that
+ * the firmware doesn't expose a mechanism to access arbitrary
+ * non-secure memory. Short of a per-device table of SMCs, this
+ * is the best we can do.
+ */
+ if (!is_ffa_call(func_id))
+ return false;
+
+ switch (func_id) {
+ case FFA_FEATURES:
+ if (!do_ffa_features(&res, host_ctxt))
+ return false;
+ goto out_handled;
+ /* Memory management */
+ case FFA_FN64_RXTX_MAP:
+ do_ffa_rxtx_map(&res, host_ctxt);
+ goto out_handled;
+ case FFA_RXTX_UNMAP:
+ do_ffa_rxtx_unmap(&res, host_ctxt);
+ goto out_handled;
+ case FFA_MEM_SHARE:
+ case FFA_FN64_MEM_SHARE:
+ do_ffa_mem_xfer(FFA_FN64_MEM_SHARE, &res, host_ctxt);
+ goto out_handled;
+ case FFA_MEM_RECLAIM:
+ do_ffa_mem_reclaim(&res, host_ctxt);
+ goto out_handled;
+ case FFA_MEM_LEND:
+ case FFA_FN64_MEM_LEND:
+ do_ffa_mem_xfer(FFA_FN64_MEM_LEND, &res, host_ctxt);
+ goto out_handled;
+ case FFA_MEM_FRAG_TX:
+ do_ffa_mem_frag_tx(&res, host_ctxt);
+ goto out_handled;
+ }
+
+ if (ffa_call_supported(func_id))
+ return false; /* Pass through */
+
+ ffa_to_smccc_error(&res, FFA_RET_NOT_SUPPORTED);
+out_handled:
+ ffa_set_retval(host_ctxt, &res);
+ return true;
+}
+
+int hyp_ffa_init(void *pages)
+{
+ struct arm_smccc_res res;
+ size_t min_rxtx_sz;
+ void *tx, *rx;
+
+ if (kvm_host_psci_config.smccc_version < ARM_SMCCC_VERSION_1_2)
+ return 0;
+
+ arm_smccc_1_1_smc(FFA_VERSION, FFA_VERSION_1_0, 0, 0, 0, 0, 0, 0, &res);
+ if (res.a0 == FFA_RET_NOT_SUPPORTED)
+ return 0;
+
+ /*
+ * Firmware returns the maximum supported version of the FF-A
+ * implementation. Check that the returned version is
+ * backwards-compatible with the hyp according to the rules in DEN0077A
+ * v1.1 REL0 13.2.1.
+ *
+ * Of course, things are never simple when dealing with firmware. v1.1
+ * broke ABI with v1.0 on several structures, which is itself
+ * incompatible with the aforementioned versioning scheme. The
+ * expectation is that v1.x implementations that do not support the v1.0
+ * ABI return NOT_SUPPORTED rather than a version number, according to
+ * DEN0077A v1.1 REL0 18.6.4.
+ */
+ if (FFA_MAJOR_VERSION(res.a0) != 1)
+ return -EOPNOTSUPP;
+
+ arm_smccc_1_1_smc(FFA_ID_GET, 0, 0, 0, 0, 0, 0, 0, &res);
+ if (res.a0 != FFA_SUCCESS)
+ return -EOPNOTSUPP;
+
+ if (res.a2 != HOST_FFA_ID)
+ return -EINVAL;
+
+ arm_smccc_1_1_smc(FFA_FEATURES, FFA_FN64_RXTX_MAP,
+ 0, 0, 0, 0, 0, 0, &res);
+ if (res.a0 != FFA_SUCCESS)
+ return -EOPNOTSUPP;
+
+ switch (res.a2) {
+ case FFA_FEAT_RXTX_MIN_SZ_4K:
+ min_rxtx_sz = SZ_4K;
+ break;
+ case FFA_FEAT_RXTX_MIN_SZ_16K:
+ min_rxtx_sz = SZ_16K;
+ break;
+ case FFA_FEAT_RXTX_MIN_SZ_64K:
+ min_rxtx_sz = SZ_64K;
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ if (min_rxtx_sz > PAGE_SIZE)
+ return -EOPNOTSUPP;
+
+ tx = pages;
+ pages += KVM_FFA_MBOX_NR_PAGES * PAGE_SIZE;
+ rx = pages;
+ pages += KVM_FFA_MBOX_NR_PAGES * PAGE_SIZE;
+
+ ffa_desc_buf = (struct kvm_ffa_descriptor_buffer) {
+ .buf = pages,
+ .len = PAGE_SIZE *
+ (hyp_ffa_proxy_pages() - (2 * KVM_FFA_MBOX_NR_PAGES)),
+ };
+
+ hyp_buffers = (struct kvm_ffa_buffers) {
+ .lock = __HYP_SPIN_LOCK_UNLOCKED,
+ .tx = tx,
+ .rx = rx,
+ };
+
+ host_buffers = (struct kvm_ffa_buffers) {
+ .lock = __HYP_SPIN_LOCK_UNLOCKED,
+ };
+
+ return 0;
+}
diff --git a/arch/arm64/kvm/hyp/nvhe/gen-hyprel.c b/arch/arm64/kvm/hyp/nvhe/gen-hyprel.c
new file mode 100644
index 0000000000..6bc88a756c
--- /dev/null
+++ b/arch/arm64/kvm/hyp/nvhe/gen-hyprel.c
@@ -0,0 +1,456 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2020 - Google LLC
+ * Author: David Brazdil <dbrazdil@google.com>
+ *
+ * Generates relocation information used by the kernel to convert
+ * absolute addresses in hyp data from kernel VAs to hyp VAs.
+ *
+ * This is necessary because hyp code is linked into the same binary
+ * as the kernel but executes under different memory mappings.
+ * If the compiler used absolute addressing, those addresses need to
+ * be converted before they are used by hyp code.
+ *
+ * The input of this program is the relocatable ELF object containing
+ * all hyp code/data, not yet linked into vmlinux. Hyp section names
+ * should have been prefixed with `.hyp` at this point.
+ *
+ * The output (printed to stdout) is an assembly file containing
+ * an array of 32-bit integers and static relocations that instruct
+ * the linker of `vmlinux` to populate the array entries with offsets
+ * to positions in the kernel binary containing VAs used by hyp code.
+ *
+ * Note that dynamic relocations could be used for the same purpose.
+ * However, those are only generated if CONFIG_RELOCATABLE=y.
+ */
+
+#include <elf.h>
+#include <endian.h>
+#include <errno.h>
+#include <fcntl.h>
+#include <stdbool.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <sys/mman.h>
+#include <sys/types.h>
+#include <sys/stat.h>
+#include <unistd.h>
+
+#include <generated/autoconf.h>
+
+#define HYP_SECTION_PREFIX ".hyp"
+#define HYP_RELOC_SECTION ".hyp.reloc"
+#define HYP_SECTION_SYMBOL_PREFIX "__hyp_section_"
+
+/*
+ * AArch64 relocation type constants.
+ * Included in case these are not defined in the host toolchain.
+ */
+#ifndef R_AARCH64_ABS64
+#define R_AARCH64_ABS64 257
+#endif
+#ifndef R_AARCH64_PREL64
+#define R_AARCH64_PREL64 260
+#endif
+#ifndef R_AARCH64_PREL32
+#define R_AARCH64_PREL32 261
+#endif
+#ifndef R_AARCH64_PREL16
+#define R_AARCH64_PREL16 262
+#endif
+#ifndef R_AARCH64_PLT32
+#define R_AARCH64_PLT32 314
+#endif
+#ifndef R_AARCH64_LD_PREL_LO19
+#define R_AARCH64_LD_PREL_LO19 273
+#endif
+#ifndef R_AARCH64_ADR_PREL_LO21
+#define R_AARCH64_ADR_PREL_LO21 274
+#endif
+#ifndef R_AARCH64_ADR_PREL_PG_HI21
+#define R_AARCH64_ADR_PREL_PG_HI21 275
+#endif
+#ifndef R_AARCH64_ADR_PREL_PG_HI21_NC
+#define R_AARCH64_ADR_PREL_PG_HI21_NC 276
+#endif
+#ifndef R_AARCH64_ADD_ABS_LO12_NC
+#define R_AARCH64_ADD_ABS_LO12_NC 277
+#endif
+#ifndef R_AARCH64_LDST8_ABS_LO12_NC
+#define R_AARCH64_LDST8_ABS_LO12_NC 278
+#endif
+#ifndef R_AARCH64_TSTBR14
+#define R_AARCH64_TSTBR14 279
+#endif
+#ifndef R_AARCH64_CONDBR19
+#define R_AARCH64_CONDBR19 280
+#endif
+#ifndef R_AARCH64_JUMP26
+#define R_AARCH64_JUMP26 282
+#endif
+#ifndef R_AARCH64_CALL26
+#define R_AARCH64_CALL26 283
+#endif
+#ifndef R_AARCH64_LDST16_ABS_LO12_NC
+#define R_AARCH64_LDST16_ABS_LO12_NC 284
+#endif
+#ifndef R_AARCH64_LDST32_ABS_LO12_NC
+#define R_AARCH64_LDST32_ABS_LO12_NC 285
+#endif
+#ifndef R_AARCH64_LDST64_ABS_LO12_NC
+#define R_AARCH64_LDST64_ABS_LO12_NC 286
+#endif
+#ifndef R_AARCH64_MOVW_PREL_G0
+#define R_AARCH64_MOVW_PREL_G0 287
+#endif
+#ifndef R_AARCH64_MOVW_PREL_G0_NC
+#define R_AARCH64_MOVW_PREL_G0_NC 288
+#endif
+#ifndef R_AARCH64_MOVW_PREL_G1
+#define R_AARCH64_MOVW_PREL_G1 289
+#endif
+#ifndef R_AARCH64_MOVW_PREL_G1_NC
+#define R_AARCH64_MOVW_PREL_G1_NC 290
+#endif
+#ifndef R_AARCH64_MOVW_PREL_G2
+#define R_AARCH64_MOVW_PREL_G2 291
+#endif
+#ifndef R_AARCH64_MOVW_PREL_G2_NC
+#define R_AARCH64_MOVW_PREL_G2_NC 292
+#endif
+#ifndef R_AARCH64_MOVW_PREL_G3
+#define R_AARCH64_MOVW_PREL_G3 293
+#endif
+#ifndef R_AARCH64_LDST128_ABS_LO12_NC
+#define R_AARCH64_LDST128_ABS_LO12_NC 299
+#endif
+
+/* Global state of the processed ELF. */
+static struct {
+ const char *path;
+ char *begin;
+ size_t size;
+ Elf64_Ehdr *ehdr;
+ Elf64_Shdr *sh_table;
+ const char *sh_string;
+} elf;
+
+#if defined(CONFIG_CPU_LITTLE_ENDIAN)
+
+#define elf16toh(x) le16toh(x)
+#define elf32toh(x) le32toh(x)
+#define elf64toh(x) le64toh(x)
+
+#define ELFENDIAN ELFDATA2LSB
+
+#elif defined(CONFIG_CPU_BIG_ENDIAN)
+
+#define elf16toh(x) be16toh(x)
+#define elf32toh(x) be32toh(x)
+#define elf64toh(x) be64toh(x)
+
+#define ELFENDIAN ELFDATA2MSB
+
+#else
+
+#error PDP-endian sadly unsupported...
+
+#endif
+
+#define fatal_error(fmt, ...) \
+ ({ \
+ fprintf(stderr, "error: %s: " fmt "\n", \
+ elf.path, ## __VA_ARGS__); \
+ exit(EXIT_FAILURE); \
+ __builtin_unreachable(); \
+ })
+
+#define fatal_perror(msg) \
+ ({ \
+ fprintf(stderr, "error: %s: " msg ": %s\n", \
+ elf.path, strerror(errno)); \
+ exit(EXIT_FAILURE); \
+ __builtin_unreachable(); \
+ })
+
+#define assert_op(lhs, rhs, fmt, op) \
+ ({ \
+ typeof(lhs) _lhs = (lhs); \
+ typeof(rhs) _rhs = (rhs); \
+ \
+ if (!(_lhs op _rhs)) { \
+ fatal_error("assertion " #lhs " " #op " " #rhs \
+ " failed (lhs=" fmt ", rhs=" fmt \
+ ", line=%d)", _lhs, _rhs, __LINE__); \
+ } \
+ })
+
+#define assert_eq(lhs, rhs, fmt) assert_op(lhs, rhs, fmt, ==)
+#define assert_ne(lhs, rhs, fmt) assert_op(lhs, rhs, fmt, !=)
+#define assert_lt(lhs, rhs, fmt) assert_op(lhs, rhs, fmt, <)
+#define assert_ge(lhs, rhs, fmt) assert_op(lhs, rhs, fmt, >=)
+
+/*
+ * Return a pointer of a given type at a given offset from
+ * the beginning of the ELF file.
+ */
+#define elf_ptr(type, off) ((type *)(elf.begin + (off)))
+
+/* Iterate over all sections in the ELF. */
+#define for_each_section(var) \
+ for (var = elf.sh_table; var < elf.sh_table + elf16toh(elf.ehdr->e_shnum); ++var)
+
+/* Iterate over all Elf64_Rela relocations in a given section. */
+#define for_each_rela(shdr, var) \
+ for (var = elf_ptr(Elf64_Rela, elf64toh(shdr->sh_offset)); \
+ var < elf_ptr(Elf64_Rela, elf64toh(shdr->sh_offset) + elf64toh(shdr->sh_size)); var++)
+
+/* True if a string starts with a given prefix. */
+static inline bool starts_with(const char *str, const char *prefix)
+{
+ return memcmp(str, prefix, strlen(prefix)) == 0;
+}
+
+/* Returns a string containing the name of a given section. */
+static inline const char *section_name(Elf64_Shdr *shdr)
+{
+ return elf.sh_string + elf32toh(shdr->sh_name);
+}
+
+/* Returns a pointer to the first byte of section data. */
+static inline const char *section_begin(Elf64_Shdr *shdr)
+{
+ return elf_ptr(char, elf64toh(shdr->sh_offset));
+}
+
+/* Find a section by its offset from the beginning of the file. */
+static inline Elf64_Shdr *section_by_off(Elf64_Off off)
+{
+ assert_ne(off, 0UL, "%lu");
+ return elf_ptr(Elf64_Shdr, off);
+}
+
+/* Find a section by its index. */
+static inline Elf64_Shdr *section_by_idx(uint16_t idx)
+{
+ assert_ne(idx, SHN_UNDEF, "%u");
+ return &elf.sh_table[idx];
+}
+
+/*
+ * Memory-map the given ELF file, perform sanity checks, and
+ * populate global state.
+ */
+static void init_elf(const char *path)
+{
+ int fd, ret;
+ struct stat stat;
+
+ /* Store path in the global struct for error printing. */
+ elf.path = path;
+
+ /* Open the ELF file. */
+ fd = open(path, O_RDONLY);
+ if (fd < 0)
+ fatal_perror("Could not open ELF file");
+
+ /* Get status of ELF file to obtain its size. */
+ ret = fstat(fd, &stat);
+ if (ret < 0) {
+ close(fd);
+ fatal_perror("Could not get status of ELF file");
+ }
+
+ /* mmap() the entire ELF file read-only at an arbitrary address. */
+ elf.begin = mmap(0, stat.st_size, PROT_READ, MAP_PRIVATE, fd, 0);
+ if (elf.begin == MAP_FAILED) {
+ close(fd);
+ fatal_perror("Could not mmap ELF file");
+ }
+
+ /* mmap() was successful, close the FD. */
+ close(fd);
+
+ /* Get pointer to the ELF header. */
+ assert_ge(stat.st_size, sizeof(*elf.ehdr), "%lu");
+ elf.ehdr = elf_ptr(Elf64_Ehdr, 0);
+
+ /* Check the ELF magic. */
+ assert_eq(elf.ehdr->e_ident[EI_MAG0], ELFMAG0, "0x%x");
+ assert_eq(elf.ehdr->e_ident[EI_MAG1], ELFMAG1, "0x%x");
+ assert_eq(elf.ehdr->e_ident[EI_MAG2], ELFMAG2, "0x%x");
+ assert_eq(elf.ehdr->e_ident[EI_MAG3], ELFMAG3, "0x%x");
+
+ /* Sanity check that this is an ELF64 relocatable object for AArch64. */
+ assert_eq(elf.ehdr->e_ident[EI_CLASS], ELFCLASS64, "%u");
+ assert_eq(elf.ehdr->e_ident[EI_DATA], ELFENDIAN, "%u");
+ assert_eq(elf16toh(elf.ehdr->e_type), ET_REL, "%u");
+ assert_eq(elf16toh(elf.ehdr->e_machine), EM_AARCH64, "%u");
+
+ /* Populate fields of the global struct. */
+ elf.sh_table = section_by_off(elf64toh(elf.ehdr->e_shoff));
+ elf.sh_string = section_begin(section_by_idx(elf16toh(elf.ehdr->e_shstrndx)));
+}
+
+/* Print the prologue of the output ASM file. */
+static void emit_prologue(void)
+{
+ printf(".data\n"
+ ".pushsection " HYP_RELOC_SECTION ", \"a\"\n");
+}
+
+/* Print ASM statements needed as a prologue to a processed hyp section. */
+static void emit_section_prologue(const char *sh_orig_name)
+{
+ /* Declare the hyp section symbol. */
+ printf(".global %s%s\n", HYP_SECTION_SYMBOL_PREFIX, sh_orig_name);
+}
+
+/*
+ * Print ASM statements to create a hyp relocation entry for a given
+ * R_AARCH64_ABS64 relocation.
+ *
+ * The linker of vmlinux will populate the position given by `rela` with
+ * an absolute 64-bit kernel VA. If the kernel is relocatable, it will
+ * also generate a dynamic relocation entry so that the kernel can shift
+ * the address at runtime for KASLR.
+ *
+ * Emit a 32-bit offset from the current address to the position given
+ * by `rela`. This way the kernel can iterate over all kernel VAs used
+ * by hyp at runtime and convert them to hyp VAs. However, that offset
+ * will not be known until linking of `vmlinux`, so emit a PREL32
+ * relocation referencing a symbol that the hyp linker script put at
+ * the beginning of the relocated section + the offset from `rela`.
+ */
+static void emit_rela_abs64(Elf64_Rela *rela, const char *sh_orig_name)
+{
+ /* Offset of this reloc from the beginning of HYP_RELOC_SECTION. */
+ static size_t reloc_offset;
+
+ /* Create storage for the 32-bit offset. */
+ printf(".word 0\n");
+
+ /*
+ * Create a PREL32 relocation which instructs the linker of `vmlinux`
+ * to insert offset to position <base> + <offset>, where <base> is
+ * a symbol at the beginning of the relocated section, and <offset>
+ * is `rela->r_offset`.
+ */
+ printf(".reloc %lu, R_AARCH64_PREL32, %s%s + 0x%lx\n",
+ reloc_offset, HYP_SECTION_SYMBOL_PREFIX, sh_orig_name,
+ elf64toh(rela->r_offset));
+
+ reloc_offset += 4;
+}
+
+/* Print the epilogue of the output ASM file. */
+static void emit_epilogue(void)
+{
+ printf(".popsection\n");
+}
+
+/*
+ * Iterate over all RELA relocations in a given section and emit
+ * hyp relocation data for all absolute addresses in hyp code/data.
+ *
+ * Static relocations that generate PC-relative-addressing are ignored.
+ * Failure is reported for unexpected relocation types.
+ */
+static void emit_rela_section(Elf64_Shdr *sh_rela)
+{
+ Elf64_Shdr *sh_orig = &elf.sh_table[elf32toh(sh_rela->sh_info)];
+ const char *sh_orig_name = section_name(sh_orig);
+ Elf64_Rela *rela;
+
+ /* Skip all non-hyp sections. */
+ if (!starts_with(sh_orig_name, HYP_SECTION_PREFIX))
+ return;
+
+ emit_section_prologue(sh_orig_name);
+
+ for_each_rela(sh_rela, rela) {
+ uint32_t type = (uint32_t)elf64toh(rela->r_info);
+
+ /* Check that rela points inside the relocated section. */
+ assert_lt(elf64toh(rela->r_offset), elf64toh(sh_orig->sh_size), "0x%lx");
+
+ switch (type) {
+ /*
+ * Data relocations to generate absolute addressing.
+ * Emit a hyp relocation.
+ */
+ case R_AARCH64_ABS64:
+ emit_rela_abs64(rela, sh_orig_name);
+ break;
+ /* Allow position-relative data relocations. */
+ case R_AARCH64_PREL64:
+ case R_AARCH64_PREL32:
+ case R_AARCH64_PREL16:
+ case R_AARCH64_PLT32:
+ break;
+ /* Allow relocations to generate PC-relative addressing. */
+ case R_AARCH64_LD_PREL_LO19:
+ case R_AARCH64_ADR_PREL_LO21:
+ case R_AARCH64_ADR_PREL_PG_HI21:
+ case R_AARCH64_ADR_PREL_PG_HI21_NC:
+ case R_AARCH64_ADD_ABS_LO12_NC:
+ case R_AARCH64_LDST8_ABS_LO12_NC:
+ case R_AARCH64_LDST16_ABS_LO12_NC:
+ case R_AARCH64_LDST32_ABS_LO12_NC:
+ case R_AARCH64_LDST64_ABS_LO12_NC:
+ case R_AARCH64_LDST128_ABS_LO12_NC:
+ break;
+ /* Allow relative relocations for control-flow instructions. */
+ case R_AARCH64_TSTBR14:
+ case R_AARCH64_CONDBR19:
+ case R_AARCH64_JUMP26:
+ case R_AARCH64_CALL26:
+ break;
+ /* Allow group relocations to create PC-relative offset inline. */
+ case R_AARCH64_MOVW_PREL_G0:
+ case R_AARCH64_MOVW_PREL_G0_NC:
+ case R_AARCH64_MOVW_PREL_G1:
+ case R_AARCH64_MOVW_PREL_G1_NC:
+ case R_AARCH64_MOVW_PREL_G2:
+ case R_AARCH64_MOVW_PREL_G2_NC:
+ case R_AARCH64_MOVW_PREL_G3:
+ break;
+ default:
+ fatal_error("Unexpected RELA type %u", type);
+ }
+ }
+}
+
+/* Iterate over all sections and emit hyp relocation data for RELA sections. */
+static void emit_all_relocs(void)
+{
+ Elf64_Shdr *shdr;
+
+ for_each_section(shdr) {
+ switch (elf32toh(shdr->sh_type)) {
+ case SHT_REL:
+ fatal_error("Unexpected SHT_REL section \"%s\"",
+ section_name(shdr));
+ case SHT_RELA:
+ emit_rela_section(shdr);
+ break;
+ }
+ }
+}
+
+int main(int argc, const char **argv)
+{
+ if (argc != 2) {
+ fprintf(stderr, "Usage: %s <elf_input>\n", argv[0]);
+ return EXIT_FAILURE;
+ }
+
+ init_elf(argv[1]);
+
+ emit_prologue();
+ emit_all_relocs();
+ emit_epilogue();
+
+ return EXIT_SUCCESS;
+}
diff --git a/arch/arm64/kvm/hyp/nvhe/host.S b/arch/arm64/kvm/hyp/nvhe/host.S
new file mode 100644
index 0000000000..7693a6757c
--- /dev/null
+++ b/arch/arm64/kvm/hyp/nvhe/host.S
@@ -0,0 +1,309 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+/*
+ * Copyright (C) 2020 - Google Inc
+ * Author: Andrew Scull <ascull@google.com>
+ */
+
+#include <linux/linkage.h>
+
+#include <asm/assembler.h>
+#include <asm/kvm_arm.h>
+#include <asm/kvm_asm.h>
+#include <asm/kvm_mmu.h>
+#include <asm/kvm_ptrauth.h>
+
+ .text
+
+SYM_FUNC_START(__host_exit)
+ get_host_ctxt x0, x1
+
+ /* Store the host regs x2 and x3 */
+ stp x2, x3, [x0, #CPU_XREG_OFFSET(2)]
+
+ /* Retrieve the host regs x0-x1 from the stack */
+ ldp x2, x3, [sp], #16 // x0, x1
+
+ /* Store the host regs x0-x1 and x4-x17 */
+ stp x2, x3, [x0, #CPU_XREG_OFFSET(0)]
+ stp x4, x5, [x0, #CPU_XREG_OFFSET(4)]
+ stp x6, x7, [x0, #CPU_XREG_OFFSET(6)]
+ stp x8, x9, [x0, #CPU_XREG_OFFSET(8)]
+ stp x10, x11, [x0, #CPU_XREG_OFFSET(10)]
+ stp x12, x13, [x0, #CPU_XREG_OFFSET(12)]
+ stp x14, x15, [x0, #CPU_XREG_OFFSET(14)]
+ stp x16, x17, [x0, #CPU_XREG_OFFSET(16)]
+
+ /* Store the host regs x18-x29, lr */
+ save_callee_saved_regs x0
+
+ /* Save the host context pointer in x29 across the function call */
+ mov x29, x0
+
+#ifdef CONFIG_ARM64_PTR_AUTH_KERNEL
+alternative_if_not ARM64_HAS_ADDRESS_AUTH
+b __skip_pauth_save
+alternative_else_nop_endif
+
+alternative_if ARM64_KVM_PROTECTED_MODE
+ /* Save kernel ptrauth keys. */
+ add x18, x29, #CPU_APIAKEYLO_EL1
+ ptrauth_save_state x18, x19, x20
+
+ /* Use hyp keys. */
+ adr_this_cpu x18, kvm_hyp_ctxt, x19
+ add x18, x18, #CPU_APIAKEYLO_EL1
+ ptrauth_restore_state x18, x19, x20
+ isb
+alternative_else_nop_endif
+__skip_pauth_save:
+#endif /* CONFIG_ARM64_PTR_AUTH_KERNEL */
+
+ bl handle_trap
+
+__host_enter_restore_full:
+ /* Restore kernel keys. */
+#ifdef CONFIG_ARM64_PTR_AUTH_KERNEL
+alternative_if_not ARM64_HAS_ADDRESS_AUTH
+b __skip_pauth_restore
+alternative_else_nop_endif
+
+alternative_if ARM64_KVM_PROTECTED_MODE
+ add x18, x29, #CPU_APIAKEYLO_EL1
+ ptrauth_restore_state x18, x19, x20
+alternative_else_nop_endif
+__skip_pauth_restore:
+#endif /* CONFIG_ARM64_PTR_AUTH_KERNEL */
+
+ /* Restore host regs x0-x17 */
+ ldp x0, x1, [x29, #CPU_XREG_OFFSET(0)]
+ ldp x2, x3, [x29, #CPU_XREG_OFFSET(2)]
+ ldp x4, x5, [x29, #CPU_XREG_OFFSET(4)]
+ ldp x6, x7, [x29, #CPU_XREG_OFFSET(6)]
+
+ /* x0-7 are use for panic arguments */
+__host_enter_for_panic:
+ ldp x8, x9, [x29, #CPU_XREG_OFFSET(8)]
+ ldp x10, x11, [x29, #CPU_XREG_OFFSET(10)]
+ ldp x12, x13, [x29, #CPU_XREG_OFFSET(12)]
+ ldp x14, x15, [x29, #CPU_XREG_OFFSET(14)]
+ ldp x16, x17, [x29, #CPU_XREG_OFFSET(16)]
+
+ /* Restore host regs x18-x29, lr */
+ restore_callee_saved_regs x29
+
+ /* Do not touch any register after this! */
+__host_enter_without_restoring:
+ eret
+ sb
+SYM_FUNC_END(__host_exit)
+
+/*
+ * void __noreturn __host_enter(struct kvm_cpu_context *host_ctxt);
+ */
+SYM_FUNC_START(__host_enter)
+ mov x29, x0
+ b __host_enter_restore_full
+SYM_FUNC_END(__host_enter)
+
+/*
+ * void __noreturn __hyp_do_panic(struct kvm_cpu_context *host_ctxt, u64 spsr,
+ * u64 elr, u64 par);
+ */
+SYM_FUNC_START(__hyp_do_panic)
+ /* Prepare and exit to the host's panic funciton. */
+ mov lr, #(PSR_F_BIT | PSR_I_BIT | PSR_A_BIT | PSR_D_BIT |\
+ PSR_MODE_EL1h)
+ msr spsr_el2, lr
+ adr_l lr, nvhe_hyp_panic_handler
+ hyp_kimg_va lr, x6
+ msr elr_el2, lr
+
+ mov x29, x0
+
+#ifdef CONFIG_NVHE_EL2_DEBUG
+ /* Ensure host stage-2 is disabled */
+ mrs x0, hcr_el2
+ bic x0, x0, #HCR_VM
+ msr hcr_el2, x0
+ isb
+ tlbi vmalls12e1
+ dsb nsh
+#endif
+
+ /* Load the panic arguments into x0-7 */
+ mrs x0, esr_el2
+ mov x4, x3
+ mov x3, x2
+ hyp_pa x3, x6
+ get_vcpu_ptr x5, x6
+ mrs x6, far_el2
+ mrs x7, hpfar_el2
+
+ /* Enter the host, conditionally restoring the host context. */
+ cbz x29, __host_enter_without_restoring
+ b __host_enter_for_panic
+SYM_FUNC_END(__hyp_do_panic)
+
+SYM_FUNC_START(__host_hvc)
+ ldp x0, x1, [sp] // Don't fixup the stack yet
+
+ /* No stub for you, sonny Jim */
+alternative_if ARM64_KVM_PROTECTED_MODE
+ b __host_exit
+alternative_else_nop_endif
+
+ /* Check for a stub HVC call */
+ cmp x0, #HVC_STUB_HCALL_NR
+ b.hs __host_exit
+
+ add sp, sp, #16
+ /*
+ * Compute the idmap address of __kvm_handle_stub_hvc and
+ * jump there.
+ *
+ * Preserve x0-x4, which may contain stub parameters.
+ */
+ adr_l x5, __kvm_handle_stub_hvc
+ hyp_pa x5, x6
+ br x5
+SYM_FUNC_END(__host_hvc)
+
+.macro host_el1_sync_vect
+ .align 7
+.L__vect_start\@:
+ stp x0, x1, [sp, #-16]!
+ mrs x0, esr_el2
+ ubfx x0, x0, #ESR_ELx_EC_SHIFT, #ESR_ELx_EC_WIDTH
+ cmp x0, #ESR_ELx_EC_HVC64
+ b.eq __host_hvc
+ b __host_exit
+.L__vect_end\@:
+.if ((.L__vect_end\@ - .L__vect_start\@) > 0x80)
+ .error "host_el1_sync_vect larger than vector entry"
+.endif
+.endm
+
+.macro invalid_host_el2_vect
+ .align 7
+
+ /*
+ * Test whether the SP has overflowed, without corrupting a GPR.
+ * nVHE hypervisor stacks are aligned so that the PAGE_SHIFT bit
+ * of SP should always be 1.
+ */
+ add sp, sp, x0 // sp' = sp + x0
+ sub x0, sp, x0 // x0' = sp' - x0 = (sp + x0) - x0 = sp
+ tbz x0, #PAGE_SHIFT, .L__hyp_sp_overflow\@
+ sub x0, sp, x0 // x0'' = sp' - x0' = (sp + x0) - sp = x0
+ sub sp, sp, x0 // sp'' = sp' - x0 = (sp + x0) - x0 = sp
+
+ /* If a guest is loaded, panic out of it. */
+ stp x0, x1, [sp, #-16]!
+ get_loaded_vcpu x0, x1
+ cbnz x0, __guest_exit_panic
+ add sp, sp, #16
+
+ /*
+ * The panic may not be clean if the exception is taken before the host
+ * context has been saved by __host_exit or after the hyp context has
+ * been partially clobbered by __host_enter.
+ */
+ b hyp_panic
+
+.L__hyp_sp_overflow\@:
+ /* Switch to the overflow stack */
+ adr_this_cpu sp, overflow_stack + OVERFLOW_STACK_SIZE, x0
+
+ b hyp_panic_bad_stack
+ ASM_BUG()
+.endm
+
+.macro invalid_host_el1_vect
+ .align 7
+ mov x0, xzr /* restore_host = false */
+ mrs x1, spsr_el2
+ mrs x2, elr_el2
+ mrs x3, par_el1
+ b __hyp_do_panic
+.endm
+
+/*
+ * The host vector does not use an ESB instruction in order to avoid consuming
+ * SErrors that should only be consumed by the host. Guest entry is deferred by
+ * __guest_enter if there are any pending asynchronous exceptions so hyp will
+ * always return to the host without having consumerd host SErrors.
+ *
+ * CONFIG_KVM_INDIRECT_VECTORS is not applied to the host vectors because the
+ * host knows about the EL2 vectors already, and there is no point in hiding
+ * them.
+ */
+ .align 11
+SYM_CODE_START(__kvm_hyp_host_vector)
+ invalid_host_el2_vect // Synchronous EL2t
+ invalid_host_el2_vect // IRQ EL2t
+ invalid_host_el2_vect // FIQ EL2t
+ invalid_host_el2_vect // Error EL2t
+
+ invalid_host_el2_vect // Synchronous EL2h
+ invalid_host_el2_vect // IRQ EL2h
+ invalid_host_el2_vect // FIQ EL2h
+ invalid_host_el2_vect // Error EL2h
+
+ host_el1_sync_vect // Synchronous 64-bit EL1/EL0
+ invalid_host_el1_vect // IRQ 64-bit EL1/EL0
+ invalid_host_el1_vect // FIQ 64-bit EL1/EL0
+ invalid_host_el1_vect // Error 64-bit EL1/EL0
+
+ host_el1_sync_vect // Synchronous 32-bit EL1/EL0
+ invalid_host_el1_vect // IRQ 32-bit EL1/EL0
+ invalid_host_el1_vect // FIQ 32-bit EL1/EL0
+ invalid_host_el1_vect // Error 32-bit EL1/EL0
+SYM_CODE_END(__kvm_hyp_host_vector)
+
+/*
+ * Forward SMC with arguments in struct kvm_cpu_context, and
+ * store the result into the same struct. Assumes SMCCC 1.2 or older.
+ *
+ * x0: struct kvm_cpu_context*
+ */
+SYM_CODE_START(__kvm_hyp_host_forward_smc)
+ /*
+ * Use x18 to keep the pointer to the host context because
+ * x18 is callee-saved in SMCCC but not in AAPCS64.
+ */
+ mov x18, x0
+
+ ldp x0, x1, [x18, #CPU_XREG_OFFSET(0)]
+ ldp x2, x3, [x18, #CPU_XREG_OFFSET(2)]
+ ldp x4, x5, [x18, #CPU_XREG_OFFSET(4)]
+ ldp x6, x7, [x18, #CPU_XREG_OFFSET(6)]
+ ldp x8, x9, [x18, #CPU_XREG_OFFSET(8)]
+ ldp x10, x11, [x18, #CPU_XREG_OFFSET(10)]
+ ldp x12, x13, [x18, #CPU_XREG_OFFSET(12)]
+ ldp x14, x15, [x18, #CPU_XREG_OFFSET(14)]
+ ldp x16, x17, [x18, #CPU_XREG_OFFSET(16)]
+
+ smc #0
+
+ stp x0, x1, [x18, #CPU_XREG_OFFSET(0)]
+ stp x2, x3, [x18, #CPU_XREG_OFFSET(2)]
+ stp x4, x5, [x18, #CPU_XREG_OFFSET(4)]
+ stp x6, x7, [x18, #CPU_XREG_OFFSET(6)]
+ stp x8, x9, [x18, #CPU_XREG_OFFSET(8)]
+ stp x10, x11, [x18, #CPU_XREG_OFFSET(10)]
+ stp x12, x13, [x18, #CPU_XREG_OFFSET(12)]
+ stp x14, x15, [x18, #CPU_XREG_OFFSET(14)]
+ stp x16, x17, [x18, #CPU_XREG_OFFSET(16)]
+
+ ret
+SYM_CODE_END(__kvm_hyp_host_forward_smc)
+
+/*
+ * kvm_host_psci_cpu_entry is called through br instruction, which requires
+ * bti j instruction as compilers (gcc and llvm) doesn't insert bti j for external
+ * functions, but bti c instead.
+ */
+SYM_CODE_START(kvm_host_psci_cpu_entry)
+ bti j
+ b __kvm_host_psci_cpu_entry
+SYM_CODE_END(kvm_host_psci_cpu_entry)
diff --git a/arch/arm64/kvm/hyp/nvhe/hyp-init.S b/arch/arm64/kvm/hyp/nvhe/hyp-init.S
new file mode 100644
index 0000000000..1cc06e6797
--- /dev/null
+++ b/arch/arm64/kvm/hyp/nvhe/hyp-init.S
@@ -0,0 +1,299 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+/*
+ * Copyright (C) 2012,2013 - ARM Ltd
+ * Author: Marc Zyngier <marc.zyngier@arm.com>
+ */
+
+#include <linux/arm-smccc.h>
+#include <linux/linkage.h>
+
+#include <asm/alternative.h>
+#include <asm/assembler.h>
+#include <asm/el2_setup.h>
+#include <asm/kvm_arm.h>
+#include <asm/kvm_asm.h>
+#include <asm/kvm_mmu.h>
+#include <asm/pgtable-hwdef.h>
+#include <asm/sysreg.h>
+#include <asm/virt.h>
+
+ .text
+ .pushsection .idmap.text, "ax"
+
+ .align 11
+
+SYM_CODE_START(__kvm_hyp_init)
+ ventry __invalid // Synchronous EL2t
+ ventry __invalid // IRQ EL2t
+ ventry __invalid // FIQ EL2t
+ ventry __invalid // Error EL2t
+
+ ventry __invalid // Synchronous EL2h
+ ventry __invalid // IRQ EL2h
+ ventry __invalid // FIQ EL2h
+ ventry __invalid // Error EL2h
+
+ ventry __do_hyp_init // Synchronous 64-bit EL1
+ ventry __invalid // IRQ 64-bit EL1
+ ventry __invalid // FIQ 64-bit EL1
+ ventry __invalid // Error 64-bit EL1
+
+ ventry __invalid // Synchronous 32-bit EL1
+ ventry __invalid // IRQ 32-bit EL1
+ ventry __invalid // FIQ 32-bit EL1
+ ventry __invalid // Error 32-bit EL1
+
+__invalid:
+ b .
+
+ /*
+ * Only uses x0..x3 so as to not clobber callee-saved SMCCC registers.
+ *
+ * x0: SMCCC function ID
+ * x1: struct kvm_nvhe_init_params PA
+ */
+__do_hyp_init:
+ /* Check for a stub HVC call */
+ cmp x0, #HVC_STUB_HCALL_NR
+ b.lo __kvm_handle_stub_hvc
+
+ bic x0, x0, #ARM_SMCCC_CALL_HINTS
+ mov x3, #KVM_HOST_SMCCC_FUNC(__kvm_hyp_init)
+ cmp x0, x3
+ b.eq 1f
+
+ mov x0, #SMCCC_RET_NOT_SUPPORTED
+ eret
+
+1: mov x0, x1
+ mov x3, lr
+ bl ___kvm_hyp_init // Clobbers x0..x2
+ mov lr, x3
+
+ /* Hello, World! */
+ mov x0, #SMCCC_RET_SUCCESS
+ eret
+SYM_CODE_END(__kvm_hyp_init)
+
+/*
+ * Initialize the hypervisor in EL2.
+ *
+ * Only uses x0..x2 so as to not clobber callee-saved SMCCC registers
+ * and leave x3 for the caller.
+ *
+ * x0: struct kvm_nvhe_init_params PA
+ */
+SYM_CODE_START_LOCAL(___kvm_hyp_init)
+ ldr x1, [x0, #NVHE_INIT_STACK_HYP_VA]
+ mov sp, x1
+
+ ldr x1, [x0, #NVHE_INIT_MAIR_EL2]
+ msr mair_el2, x1
+
+ ldr x1, [x0, #NVHE_INIT_HCR_EL2]
+ msr hcr_el2, x1
+
+ mov x2, #HCR_E2H
+ and x2, x1, x2
+ cbz x2, 1f
+
+ // hVHE: Replay the EL2 setup to account for the E2H bit
+ // TPIDR_EL2 is used to preserve x0 across the macro maze...
+ isb
+ msr tpidr_el2, x0
+ init_el2_state
+ finalise_el2_state
+ mrs x0, tpidr_el2
+
+1:
+ ldr x1, [x0, #NVHE_INIT_TPIDR_EL2]
+ msr tpidr_el2, x1
+
+ ldr x1, [x0, #NVHE_INIT_VTTBR]
+ msr vttbr_el2, x1
+
+ ldr x1, [x0, #NVHE_INIT_VTCR]
+ msr vtcr_el2, x1
+
+ ldr x1, [x0, #NVHE_INIT_PGD_PA]
+ phys_to_ttbr x2, x1
+alternative_if ARM64_HAS_CNP
+ orr x2, x2, #TTBR_CNP_BIT
+alternative_else_nop_endif
+ msr ttbr0_el2, x2
+
+ /*
+ * Set the PS bits in TCR_EL2.
+ */
+ ldr x0, [x0, #NVHE_INIT_TCR_EL2]
+ tcr_compute_pa_size x0, #TCR_EL2_PS_SHIFT, x1, x2
+ msr tcr_el2, x0
+
+ isb
+
+ /* Invalidate the stale TLBs from Bootloader */
+ tlbi alle2
+ tlbi vmalls12e1
+ dsb sy
+
+ mov_q x0, INIT_SCTLR_EL2_MMU_ON
+alternative_if ARM64_HAS_ADDRESS_AUTH
+ mov_q x1, (SCTLR_ELx_ENIA | SCTLR_ELx_ENIB | \
+ SCTLR_ELx_ENDA | SCTLR_ELx_ENDB)
+ orr x0, x0, x1
+alternative_else_nop_endif
+
+#ifdef CONFIG_ARM64_BTI_KERNEL
+alternative_if ARM64_BTI
+ orr x0, x0, #SCTLR_EL2_BT
+alternative_else_nop_endif
+#endif /* CONFIG_ARM64_BTI_KERNEL */
+
+ msr sctlr_el2, x0
+ isb
+
+ /* Set the host vector */
+ ldr x0, =__kvm_hyp_host_vector
+ msr vbar_el2, x0
+
+ ret
+SYM_CODE_END(___kvm_hyp_init)
+
+/*
+ * PSCI CPU_ON entry point
+ *
+ * x0: struct kvm_nvhe_init_params PA
+ */
+SYM_CODE_START(kvm_hyp_cpu_entry)
+ mov x1, #1 // is_cpu_on = true
+ b __kvm_hyp_init_cpu
+SYM_CODE_END(kvm_hyp_cpu_entry)
+
+/*
+ * PSCI CPU_SUSPEND / SYSTEM_SUSPEND entry point
+ *
+ * x0: struct kvm_nvhe_init_params PA
+ */
+SYM_CODE_START(kvm_hyp_cpu_resume)
+ mov x1, #0 // is_cpu_on = false
+ b __kvm_hyp_init_cpu
+SYM_CODE_END(kvm_hyp_cpu_resume)
+
+/*
+ * Common code for CPU entry points. Initializes EL2 state and
+ * installs the hypervisor before handing over to a C handler.
+ *
+ * x0: struct kvm_nvhe_init_params PA
+ * x1: bool is_cpu_on
+ */
+SYM_CODE_START_LOCAL(__kvm_hyp_init_cpu)
+ mov x28, x0 // Stash arguments
+ mov x29, x1
+
+ /* Check that the core was booted in EL2. */
+ mrs x0, CurrentEL
+ cmp x0, #CurrentEL_EL2
+ b.eq 2f
+
+ /* The core booted in EL1. KVM cannot be initialized on it. */
+1: wfe
+ wfi
+ b 1b
+
+2: msr SPsel, #1 // We want to use SP_EL{1,2}
+
+ /* Initialize EL2 CPU state to sane values. */
+ init_el2_state // Clobbers x0..x2
+ finalise_el2_state
+ __init_el2_nvhe_prepare_eret
+
+ /* Enable MMU, set vectors and stack. */
+ mov x0, x28
+ bl ___kvm_hyp_init // Clobbers x0..x2
+
+ /* Leave idmap. */
+ mov x0, x29
+ ldr x1, =kvm_host_psci_cpu_entry
+ br x1
+SYM_CODE_END(__kvm_hyp_init_cpu)
+
+SYM_CODE_START(__kvm_handle_stub_hvc)
+ /*
+ * __kvm_handle_stub_hvc called from __host_hvc through branch instruction(br) so
+ * we need bti j at beginning.
+ */
+ bti j
+ cmp x0, #HVC_SOFT_RESTART
+ b.ne 1f
+
+ /* This is where we're about to jump, staying at EL2 */
+ msr elr_el2, x1
+ mov x0, #(PSR_F_BIT | PSR_I_BIT | PSR_A_BIT | PSR_D_BIT | PSR_MODE_EL2h)
+ msr spsr_el2, x0
+
+ /* Shuffle the arguments, and don't come back */
+ mov x0, x2
+ mov x1, x3
+ mov x2, x4
+ b reset
+
+1: cmp x0, #HVC_RESET_VECTORS
+ b.ne 1f
+
+ /*
+ * Set the HVC_RESET_VECTORS return code before entering the common
+ * path so that we do not clobber x0-x2 in case we are coming via
+ * HVC_SOFT_RESTART.
+ */
+ mov x0, xzr
+reset:
+ /* Reset kvm back to the hyp stub. */
+ mov_q x5, INIT_SCTLR_EL2_MMU_OFF
+ pre_disable_mmu_workaround
+ msr sctlr_el2, x5
+ isb
+
+alternative_if ARM64_KVM_PROTECTED_MODE
+ mov_q x5, HCR_HOST_NVHE_FLAGS
+ msr hcr_el2, x5
+alternative_else_nop_endif
+
+ /* Install stub vectors */
+ adr_l x5, __hyp_stub_vectors
+ msr vbar_el2, x5
+ eret
+
+1: /* Bad stub call */
+ mov_q x0, HVC_STUB_ERR
+ eret
+
+SYM_CODE_END(__kvm_handle_stub_hvc)
+
+SYM_FUNC_START(__pkvm_init_switch_pgd)
+ /* Turn the MMU off */
+ pre_disable_mmu_workaround
+ mrs x2, sctlr_el2
+ bic x3, x2, #SCTLR_ELx_M
+ msr sctlr_el2, x3
+ isb
+
+ tlbi alle2
+
+ /* Install the new pgtables */
+ ldr x3, [x0, #NVHE_INIT_PGD_PA]
+ phys_to_ttbr x4, x3
+alternative_if ARM64_HAS_CNP
+ orr x4, x4, #TTBR_CNP_BIT
+alternative_else_nop_endif
+ msr ttbr0_el2, x4
+
+ /* Set the new stack pointer */
+ ldr x0, [x0, #NVHE_INIT_STACK_HYP_VA]
+ mov sp, x0
+
+ /* And turn the MMU back on! */
+ set_sctlr_el2 x2
+ ret x1
+SYM_FUNC_END(__pkvm_init_switch_pgd)
+
+ .popsection
diff --git a/arch/arm64/kvm/hyp/nvhe/hyp-main.c b/arch/arm64/kvm/hyp/nvhe/hyp-main.c
new file mode 100644
index 0000000000..2385fd03ed
--- /dev/null
+++ b/arch/arm64/kvm/hyp/nvhe/hyp-main.c
@@ -0,0 +1,438 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2020 - Google Inc
+ * Author: Andrew Scull <ascull@google.com>
+ */
+
+#include <hyp/adjust_pc.h>
+
+#include <asm/pgtable-types.h>
+#include <asm/kvm_asm.h>
+#include <asm/kvm_emulate.h>
+#include <asm/kvm_host.h>
+#include <asm/kvm_hyp.h>
+#include <asm/kvm_mmu.h>
+
+#include <nvhe/ffa.h>
+#include <nvhe/mem_protect.h>
+#include <nvhe/mm.h>
+#include <nvhe/pkvm.h>
+#include <nvhe/trap_handler.h>
+
+DEFINE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
+
+void __kvm_hyp_host_forward_smc(struct kvm_cpu_context *host_ctxt);
+
+static void flush_hyp_vcpu(struct pkvm_hyp_vcpu *hyp_vcpu)
+{
+ struct kvm_vcpu *host_vcpu = hyp_vcpu->host_vcpu;
+
+ hyp_vcpu->vcpu.arch.ctxt = host_vcpu->arch.ctxt;
+
+ hyp_vcpu->vcpu.arch.sve_state = kern_hyp_va(host_vcpu->arch.sve_state);
+ hyp_vcpu->vcpu.arch.sve_max_vl = host_vcpu->arch.sve_max_vl;
+
+ hyp_vcpu->vcpu.arch.hw_mmu = host_vcpu->arch.hw_mmu;
+
+ hyp_vcpu->vcpu.arch.hcr_el2 = host_vcpu->arch.hcr_el2;
+ hyp_vcpu->vcpu.arch.mdcr_el2 = host_vcpu->arch.mdcr_el2;
+ hyp_vcpu->vcpu.arch.cptr_el2 = host_vcpu->arch.cptr_el2;
+
+ hyp_vcpu->vcpu.arch.iflags = host_vcpu->arch.iflags;
+ hyp_vcpu->vcpu.arch.fp_state = host_vcpu->arch.fp_state;
+
+ hyp_vcpu->vcpu.arch.debug_ptr = kern_hyp_va(host_vcpu->arch.debug_ptr);
+ hyp_vcpu->vcpu.arch.host_fpsimd_state = host_vcpu->arch.host_fpsimd_state;
+
+ hyp_vcpu->vcpu.arch.vsesr_el2 = host_vcpu->arch.vsesr_el2;
+
+ hyp_vcpu->vcpu.arch.vgic_cpu.vgic_v3 = host_vcpu->arch.vgic_cpu.vgic_v3;
+}
+
+static void sync_hyp_vcpu(struct pkvm_hyp_vcpu *hyp_vcpu)
+{
+ struct kvm_vcpu *host_vcpu = hyp_vcpu->host_vcpu;
+ struct vgic_v3_cpu_if *hyp_cpu_if = &hyp_vcpu->vcpu.arch.vgic_cpu.vgic_v3;
+ struct vgic_v3_cpu_if *host_cpu_if = &host_vcpu->arch.vgic_cpu.vgic_v3;
+ unsigned int i;
+
+ host_vcpu->arch.ctxt = hyp_vcpu->vcpu.arch.ctxt;
+
+ host_vcpu->arch.hcr_el2 = hyp_vcpu->vcpu.arch.hcr_el2;
+ host_vcpu->arch.cptr_el2 = hyp_vcpu->vcpu.arch.cptr_el2;
+
+ host_vcpu->arch.fault = hyp_vcpu->vcpu.arch.fault;
+
+ host_vcpu->arch.iflags = hyp_vcpu->vcpu.arch.iflags;
+ host_vcpu->arch.fp_state = hyp_vcpu->vcpu.arch.fp_state;
+
+ host_cpu_if->vgic_hcr = hyp_cpu_if->vgic_hcr;
+ for (i = 0; i < hyp_cpu_if->used_lrs; ++i)
+ host_cpu_if->vgic_lr[i] = hyp_cpu_if->vgic_lr[i];
+}
+
+static void handle___kvm_vcpu_run(struct kvm_cpu_context *host_ctxt)
+{
+ DECLARE_REG(struct kvm_vcpu *, host_vcpu, host_ctxt, 1);
+ int ret;
+
+ host_vcpu = kern_hyp_va(host_vcpu);
+
+ if (unlikely(is_protected_kvm_enabled())) {
+ struct pkvm_hyp_vcpu *hyp_vcpu;
+ struct kvm *host_kvm;
+
+ host_kvm = kern_hyp_va(host_vcpu->kvm);
+ hyp_vcpu = pkvm_load_hyp_vcpu(host_kvm->arch.pkvm.handle,
+ host_vcpu->vcpu_idx);
+ if (!hyp_vcpu) {
+ ret = -EINVAL;
+ goto out;
+ }
+
+ flush_hyp_vcpu(hyp_vcpu);
+
+ ret = __kvm_vcpu_run(&hyp_vcpu->vcpu);
+
+ sync_hyp_vcpu(hyp_vcpu);
+ pkvm_put_hyp_vcpu(hyp_vcpu);
+ } else {
+ /* The host is fully trusted, run its vCPU directly. */
+ ret = __kvm_vcpu_run(host_vcpu);
+ }
+
+out:
+ cpu_reg(host_ctxt, 1) = ret;
+}
+
+static void handle___kvm_adjust_pc(struct kvm_cpu_context *host_ctxt)
+{
+ DECLARE_REG(struct kvm_vcpu *, vcpu, host_ctxt, 1);
+
+ __kvm_adjust_pc(kern_hyp_va(vcpu));
+}
+
+static void handle___kvm_flush_vm_context(struct kvm_cpu_context *host_ctxt)
+{
+ __kvm_flush_vm_context();
+}
+
+static void handle___kvm_tlb_flush_vmid_ipa(struct kvm_cpu_context *host_ctxt)
+{
+ DECLARE_REG(struct kvm_s2_mmu *, mmu, host_ctxt, 1);
+ DECLARE_REG(phys_addr_t, ipa, host_ctxt, 2);
+ DECLARE_REG(int, level, host_ctxt, 3);
+
+ __kvm_tlb_flush_vmid_ipa(kern_hyp_va(mmu), ipa, level);
+}
+
+static void handle___kvm_tlb_flush_vmid_ipa_nsh(struct kvm_cpu_context *host_ctxt)
+{
+ DECLARE_REG(struct kvm_s2_mmu *, mmu, host_ctxt, 1);
+ DECLARE_REG(phys_addr_t, ipa, host_ctxt, 2);
+ DECLARE_REG(int, level, host_ctxt, 3);
+
+ __kvm_tlb_flush_vmid_ipa_nsh(kern_hyp_va(mmu), ipa, level);
+}
+
+static void
+handle___kvm_tlb_flush_vmid_range(struct kvm_cpu_context *host_ctxt)
+{
+ DECLARE_REG(struct kvm_s2_mmu *, mmu, host_ctxt, 1);
+ DECLARE_REG(phys_addr_t, start, host_ctxt, 2);
+ DECLARE_REG(unsigned long, pages, host_ctxt, 3);
+
+ __kvm_tlb_flush_vmid_range(kern_hyp_va(mmu), start, pages);
+}
+
+static void handle___kvm_tlb_flush_vmid(struct kvm_cpu_context *host_ctxt)
+{
+ DECLARE_REG(struct kvm_s2_mmu *, mmu, host_ctxt, 1);
+
+ __kvm_tlb_flush_vmid(kern_hyp_va(mmu));
+}
+
+static void handle___kvm_flush_cpu_context(struct kvm_cpu_context *host_ctxt)
+{
+ DECLARE_REG(struct kvm_s2_mmu *, mmu, host_ctxt, 1);
+
+ __kvm_flush_cpu_context(kern_hyp_va(mmu));
+}
+
+static void handle___kvm_timer_set_cntvoff(struct kvm_cpu_context *host_ctxt)
+{
+ __kvm_timer_set_cntvoff(cpu_reg(host_ctxt, 1));
+}
+
+static void handle___kvm_enable_ssbs(struct kvm_cpu_context *host_ctxt)
+{
+ u64 tmp;
+
+ tmp = read_sysreg_el2(SYS_SCTLR);
+ tmp |= SCTLR_ELx_DSSBS;
+ write_sysreg_el2(tmp, SYS_SCTLR);
+}
+
+static void handle___vgic_v3_get_gic_config(struct kvm_cpu_context *host_ctxt)
+{
+ cpu_reg(host_ctxt, 1) = __vgic_v3_get_gic_config();
+}
+
+static void handle___vgic_v3_read_vmcr(struct kvm_cpu_context *host_ctxt)
+{
+ cpu_reg(host_ctxt, 1) = __vgic_v3_read_vmcr();
+}
+
+static void handle___vgic_v3_write_vmcr(struct kvm_cpu_context *host_ctxt)
+{
+ __vgic_v3_write_vmcr(cpu_reg(host_ctxt, 1));
+}
+
+static void handle___vgic_v3_init_lrs(struct kvm_cpu_context *host_ctxt)
+{
+ __vgic_v3_init_lrs();
+}
+
+static void handle___kvm_get_mdcr_el2(struct kvm_cpu_context *host_ctxt)
+{
+ cpu_reg(host_ctxt, 1) = __kvm_get_mdcr_el2();
+}
+
+static void handle___vgic_v3_save_aprs(struct kvm_cpu_context *host_ctxt)
+{
+ DECLARE_REG(struct vgic_v3_cpu_if *, cpu_if, host_ctxt, 1);
+
+ __vgic_v3_save_aprs(kern_hyp_va(cpu_if));
+}
+
+static void handle___vgic_v3_restore_aprs(struct kvm_cpu_context *host_ctxt)
+{
+ DECLARE_REG(struct vgic_v3_cpu_if *, cpu_if, host_ctxt, 1);
+
+ __vgic_v3_restore_aprs(kern_hyp_va(cpu_if));
+}
+
+static void handle___pkvm_init(struct kvm_cpu_context *host_ctxt)
+{
+ DECLARE_REG(phys_addr_t, phys, host_ctxt, 1);
+ DECLARE_REG(unsigned long, size, host_ctxt, 2);
+ DECLARE_REG(unsigned long, nr_cpus, host_ctxt, 3);
+ DECLARE_REG(unsigned long *, per_cpu_base, host_ctxt, 4);
+ DECLARE_REG(u32, hyp_va_bits, host_ctxt, 5);
+
+ /*
+ * __pkvm_init() will return only if an error occurred, otherwise it
+ * will tail-call in __pkvm_init_finalise() which will have to deal
+ * with the host context directly.
+ */
+ cpu_reg(host_ctxt, 1) = __pkvm_init(phys, size, nr_cpus, per_cpu_base,
+ hyp_va_bits);
+}
+
+static void handle___pkvm_cpu_set_vector(struct kvm_cpu_context *host_ctxt)
+{
+ DECLARE_REG(enum arm64_hyp_spectre_vector, slot, host_ctxt, 1);
+
+ cpu_reg(host_ctxt, 1) = pkvm_cpu_set_vector(slot);
+}
+
+static void handle___pkvm_host_share_hyp(struct kvm_cpu_context *host_ctxt)
+{
+ DECLARE_REG(u64, pfn, host_ctxt, 1);
+
+ cpu_reg(host_ctxt, 1) = __pkvm_host_share_hyp(pfn);
+}
+
+static void handle___pkvm_host_unshare_hyp(struct kvm_cpu_context *host_ctxt)
+{
+ DECLARE_REG(u64, pfn, host_ctxt, 1);
+
+ cpu_reg(host_ctxt, 1) = __pkvm_host_unshare_hyp(pfn);
+}
+
+static void handle___pkvm_create_private_mapping(struct kvm_cpu_context *host_ctxt)
+{
+ DECLARE_REG(phys_addr_t, phys, host_ctxt, 1);
+ DECLARE_REG(size_t, size, host_ctxt, 2);
+ DECLARE_REG(enum kvm_pgtable_prot, prot, host_ctxt, 3);
+
+ /*
+ * __pkvm_create_private_mapping() populates a pointer with the
+ * hypervisor start address of the allocation.
+ *
+ * However, handle___pkvm_create_private_mapping() hypercall crosses the
+ * EL1/EL2 boundary so the pointer would not be valid in this context.
+ *
+ * Instead pass the allocation address as the return value (or return
+ * ERR_PTR() on failure).
+ */
+ unsigned long haddr;
+ int err = __pkvm_create_private_mapping(phys, size, prot, &haddr);
+
+ if (err)
+ haddr = (unsigned long)ERR_PTR(err);
+
+ cpu_reg(host_ctxt, 1) = haddr;
+}
+
+static void handle___pkvm_prot_finalize(struct kvm_cpu_context *host_ctxt)
+{
+ cpu_reg(host_ctxt, 1) = __pkvm_prot_finalize();
+}
+
+static void handle___pkvm_vcpu_init_traps(struct kvm_cpu_context *host_ctxt)
+{
+ DECLARE_REG(struct kvm_vcpu *, vcpu, host_ctxt, 1);
+
+ __pkvm_vcpu_init_traps(kern_hyp_va(vcpu));
+}
+
+static void handle___pkvm_init_vm(struct kvm_cpu_context *host_ctxt)
+{
+ DECLARE_REG(struct kvm *, host_kvm, host_ctxt, 1);
+ DECLARE_REG(unsigned long, vm_hva, host_ctxt, 2);
+ DECLARE_REG(unsigned long, pgd_hva, host_ctxt, 3);
+
+ host_kvm = kern_hyp_va(host_kvm);
+ cpu_reg(host_ctxt, 1) = __pkvm_init_vm(host_kvm, vm_hva, pgd_hva);
+}
+
+static void handle___pkvm_init_vcpu(struct kvm_cpu_context *host_ctxt)
+{
+ DECLARE_REG(pkvm_handle_t, handle, host_ctxt, 1);
+ DECLARE_REG(struct kvm_vcpu *, host_vcpu, host_ctxt, 2);
+ DECLARE_REG(unsigned long, vcpu_hva, host_ctxt, 3);
+
+ host_vcpu = kern_hyp_va(host_vcpu);
+ cpu_reg(host_ctxt, 1) = __pkvm_init_vcpu(handle, host_vcpu, vcpu_hva);
+}
+
+static void handle___pkvm_teardown_vm(struct kvm_cpu_context *host_ctxt)
+{
+ DECLARE_REG(pkvm_handle_t, handle, host_ctxt, 1);
+
+ cpu_reg(host_ctxt, 1) = __pkvm_teardown_vm(handle);
+}
+
+typedef void (*hcall_t)(struct kvm_cpu_context *);
+
+#define HANDLE_FUNC(x) [__KVM_HOST_SMCCC_FUNC_##x] = (hcall_t)handle_##x
+
+static const hcall_t host_hcall[] = {
+ /* ___kvm_hyp_init */
+ HANDLE_FUNC(__kvm_get_mdcr_el2),
+ HANDLE_FUNC(__pkvm_init),
+ HANDLE_FUNC(__pkvm_create_private_mapping),
+ HANDLE_FUNC(__pkvm_cpu_set_vector),
+ HANDLE_FUNC(__kvm_enable_ssbs),
+ HANDLE_FUNC(__vgic_v3_init_lrs),
+ HANDLE_FUNC(__vgic_v3_get_gic_config),
+ HANDLE_FUNC(__pkvm_prot_finalize),
+
+ HANDLE_FUNC(__pkvm_host_share_hyp),
+ HANDLE_FUNC(__pkvm_host_unshare_hyp),
+ HANDLE_FUNC(__kvm_adjust_pc),
+ HANDLE_FUNC(__kvm_vcpu_run),
+ HANDLE_FUNC(__kvm_flush_vm_context),
+ HANDLE_FUNC(__kvm_tlb_flush_vmid_ipa),
+ HANDLE_FUNC(__kvm_tlb_flush_vmid_ipa_nsh),
+ HANDLE_FUNC(__kvm_tlb_flush_vmid),
+ HANDLE_FUNC(__kvm_tlb_flush_vmid_range),
+ HANDLE_FUNC(__kvm_flush_cpu_context),
+ HANDLE_FUNC(__kvm_timer_set_cntvoff),
+ HANDLE_FUNC(__vgic_v3_read_vmcr),
+ HANDLE_FUNC(__vgic_v3_write_vmcr),
+ HANDLE_FUNC(__vgic_v3_save_aprs),
+ HANDLE_FUNC(__vgic_v3_restore_aprs),
+ HANDLE_FUNC(__pkvm_vcpu_init_traps),
+ HANDLE_FUNC(__pkvm_init_vm),
+ HANDLE_FUNC(__pkvm_init_vcpu),
+ HANDLE_FUNC(__pkvm_teardown_vm),
+};
+
+static void handle_host_hcall(struct kvm_cpu_context *host_ctxt)
+{
+ DECLARE_REG(unsigned long, id, host_ctxt, 0);
+ unsigned long hcall_min = 0;
+ hcall_t hfn;
+
+ /*
+ * If pKVM has been initialised then reject any calls to the
+ * early "privileged" hypercalls. Note that we cannot reject
+ * calls to __pkvm_prot_finalize for two reasons: (1) The static
+ * key used to determine initialisation must be toggled prior to
+ * finalisation and (2) finalisation is performed on a per-CPU
+ * basis. This is all fine, however, since __pkvm_prot_finalize
+ * returns -EPERM after the first call for a given CPU.
+ */
+ if (static_branch_unlikely(&kvm_protected_mode_initialized))
+ hcall_min = __KVM_HOST_SMCCC_FUNC___pkvm_prot_finalize;
+
+ id &= ~ARM_SMCCC_CALL_HINTS;
+ id -= KVM_HOST_SMCCC_ID(0);
+
+ if (unlikely(id < hcall_min || id >= ARRAY_SIZE(host_hcall)))
+ goto inval;
+
+ hfn = host_hcall[id];
+ if (unlikely(!hfn))
+ goto inval;
+
+ cpu_reg(host_ctxt, 0) = SMCCC_RET_SUCCESS;
+ hfn(host_ctxt);
+
+ return;
+inval:
+ cpu_reg(host_ctxt, 0) = SMCCC_RET_NOT_SUPPORTED;
+}
+
+static void default_host_smc_handler(struct kvm_cpu_context *host_ctxt)
+{
+ __kvm_hyp_host_forward_smc(host_ctxt);
+}
+
+static void handle_host_smc(struct kvm_cpu_context *host_ctxt)
+{
+ DECLARE_REG(u64, func_id, host_ctxt, 0);
+ bool handled;
+
+ func_id &= ~ARM_SMCCC_CALL_HINTS;
+
+ handled = kvm_host_psci_handler(host_ctxt, func_id);
+ if (!handled)
+ handled = kvm_host_ffa_handler(host_ctxt, func_id);
+ if (!handled)
+ default_host_smc_handler(host_ctxt);
+
+ /* SMC was trapped, move ELR past the current PC. */
+ kvm_skip_host_instr();
+}
+
+void handle_trap(struct kvm_cpu_context *host_ctxt)
+{
+ u64 esr = read_sysreg_el2(SYS_ESR);
+
+ switch (ESR_ELx_EC(esr)) {
+ case ESR_ELx_EC_HVC64:
+ handle_host_hcall(host_ctxt);
+ break;
+ case ESR_ELx_EC_SMC64:
+ handle_host_smc(host_ctxt);
+ break;
+ case ESR_ELx_EC_SVE:
+ if (has_hvhe())
+ sysreg_clear_set(cpacr_el1, 0, (CPACR_EL1_ZEN_EL1EN |
+ CPACR_EL1_ZEN_EL0EN));
+ else
+ sysreg_clear_set(cptr_el2, CPTR_EL2_TZ, 0);
+ isb();
+ sve_cond_update_zcr_vq(ZCR_ELx_LEN_MASK, SYS_ZCR_EL2);
+ break;
+ case ESR_ELx_EC_IABT_LOW:
+ case ESR_ELx_EC_DABT_LOW:
+ handle_host_mem_abort(host_ctxt);
+ break;
+ default:
+ BUG();
+ }
+}
diff --git a/arch/arm64/kvm/hyp/nvhe/hyp-smp.c b/arch/arm64/kvm/hyp/nvhe/hyp-smp.c
new file mode 100644
index 0000000000..04d194583f
--- /dev/null
+++ b/arch/arm64/kvm/hyp/nvhe/hyp-smp.c
@@ -0,0 +1,40 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2020 - Google LLC
+ * Author: David Brazdil <dbrazdil@google.com>
+ */
+
+#include <asm/kvm_asm.h>
+#include <asm/kvm_hyp.h>
+#include <asm/kvm_mmu.h>
+
+/*
+ * nVHE copy of data structures tracking available CPU cores.
+ * Only entries for CPUs that were online at KVM init are populated.
+ * Other CPUs should not be allowed to boot because their features were
+ * not checked against the finalized system capabilities.
+ */
+u64 __ro_after_init hyp_cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = INVALID_HWID };
+
+u64 cpu_logical_map(unsigned int cpu)
+{
+ BUG_ON(cpu >= ARRAY_SIZE(hyp_cpu_logical_map));
+
+ return hyp_cpu_logical_map[cpu];
+}
+
+unsigned long __ro_after_init kvm_arm_hyp_percpu_base[NR_CPUS];
+
+unsigned long __hyp_per_cpu_offset(unsigned int cpu)
+{
+ unsigned long *cpu_base_array;
+ unsigned long this_cpu_base;
+ unsigned long elf_base;
+
+ BUG_ON(cpu >= ARRAY_SIZE(kvm_arm_hyp_percpu_base));
+
+ cpu_base_array = (unsigned long *)&kvm_arm_hyp_percpu_base;
+ this_cpu_base = kern_hyp_va(cpu_base_array[cpu]);
+ elf_base = (unsigned long)&__per_cpu_start;
+ return this_cpu_base - elf_base;
+}
diff --git a/arch/arm64/kvm/hyp/nvhe/hyp.lds.S b/arch/arm64/kvm/hyp/nvhe/hyp.lds.S
new file mode 100644
index 0000000000..f4562f417d
--- /dev/null
+++ b/arch/arm64/kvm/hyp/nvhe/hyp.lds.S
@@ -0,0 +1,29 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+/*
+ * Copyright (C) 2020 Google LLC.
+ * Written by David Brazdil <dbrazdil@google.com>
+ *
+ * Linker script used for partial linking of nVHE EL2 object files.
+ */
+
+#include <asm/hyp_image.h>
+#include <asm-generic/vmlinux.lds.h>
+#include <asm/cache.h>
+#include <asm/memory.h>
+
+SECTIONS {
+ HYP_SECTION(.idmap.text)
+ HYP_SECTION(.text)
+ HYP_SECTION(.data..ro_after_init)
+ HYP_SECTION(.rodata)
+
+ /*
+ * .hyp..data..percpu needs to be page aligned to maintain the same
+ * alignment for when linking into vmlinux.
+ */
+ . = ALIGN(PAGE_SIZE);
+ BEGIN_HYP_SECTION(.data..percpu)
+ PERCPU_INPUT(L1_CACHE_BYTES)
+ END_HYP_SECTION
+ HYP_SECTION(.bss)
+}
diff --git a/arch/arm64/kvm/hyp/nvhe/list_debug.c b/arch/arm64/kvm/hyp/nvhe/list_debug.c
new file mode 100644
index 0000000000..46a2d4f2b3
--- /dev/null
+++ b/arch/arm64/kvm/hyp/nvhe/list_debug.c
@@ -0,0 +1,56 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2022 - Google LLC
+ * Author: Keir Fraser <keirf@google.com>
+ */
+
+#include <linux/list.h>
+#include <linux/bug.h>
+
+static inline __must_check bool nvhe_check_data_corruption(bool v)
+{
+ return v;
+}
+
+#define NVHE_CHECK_DATA_CORRUPTION(condition) \
+ nvhe_check_data_corruption(({ \
+ bool corruption = unlikely(condition); \
+ if (corruption) { \
+ if (IS_ENABLED(CONFIG_BUG_ON_DATA_CORRUPTION)) { \
+ BUG_ON(1); \
+ } else \
+ WARN_ON(1); \
+ } \
+ corruption; \
+ }))
+
+/* The predicates checked here are taken from lib/list_debug.c. */
+
+__list_valid_slowpath
+bool __list_add_valid_or_report(struct list_head *new, struct list_head *prev,
+ struct list_head *next)
+{
+ if (NVHE_CHECK_DATA_CORRUPTION(next->prev != prev) ||
+ NVHE_CHECK_DATA_CORRUPTION(prev->next != next) ||
+ NVHE_CHECK_DATA_CORRUPTION(new == prev || new == next))
+ return false;
+
+ return true;
+}
+
+__list_valid_slowpath
+bool __list_del_entry_valid_or_report(struct list_head *entry)
+{
+ struct list_head *prev, *next;
+
+ prev = entry->prev;
+ next = entry->next;
+
+ if (NVHE_CHECK_DATA_CORRUPTION(next == LIST_POISON1) ||
+ NVHE_CHECK_DATA_CORRUPTION(prev == LIST_POISON2) ||
+ NVHE_CHECK_DATA_CORRUPTION(prev->next != entry) ||
+ NVHE_CHECK_DATA_CORRUPTION(next->prev != entry))
+ return false;
+
+ return true;
+}
diff --git a/arch/arm64/kvm/hyp/nvhe/mem_protect.c b/arch/arm64/kvm/hyp/nvhe/mem_protect.c
new file mode 100644
index 0000000000..9d70344127
--- /dev/null
+++ b/arch/arm64/kvm/hyp/nvhe/mem_protect.c
@@ -0,0 +1,1305 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2020 Google LLC
+ * Author: Quentin Perret <qperret@google.com>
+ */
+
+#include <linux/kvm_host.h>
+#include <asm/kvm_emulate.h>
+#include <asm/kvm_hyp.h>
+#include <asm/kvm_mmu.h>
+#include <asm/kvm_pgtable.h>
+#include <asm/kvm_pkvm.h>
+#include <asm/stage2_pgtable.h>
+
+#include <hyp/fault.h>
+
+#include <nvhe/gfp.h>
+#include <nvhe/memory.h>
+#include <nvhe/mem_protect.h>
+#include <nvhe/mm.h>
+
+#define KVM_HOST_S2_FLAGS (KVM_PGTABLE_S2_NOFWB | KVM_PGTABLE_S2_IDMAP)
+
+struct host_mmu host_mmu;
+
+static struct hyp_pool host_s2_pool;
+
+static DEFINE_PER_CPU(struct pkvm_hyp_vm *, __current_vm);
+#define current_vm (*this_cpu_ptr(&__current_vm))
+
+static void guest_lock_component(struct pkvm_hyp_vm *vm)
+{
+ hyp_spin_lock(&vm->lock);
+ current_vm = vm;
+}
+
+static void guest_unlock_component(struct pkvm_hyp_vm *vm)
+{
+ current_vm = NULL;
+ hyp_spin_unlock(&vm->lock);
+}
+
+static void host_lock_component(void)
+{
+ hyp_spin_lock(&host_mmu.lock);
+}
+
+static void host_unlock_component(void)
+{
+ hyp_spin_unlock(&host_mmu.lock);
+}
+
+static void hyp_lock_component(void)
+{
+ hyp_spin_lock(&pkvm_pgd_lock);
+}
+
+static void hyp_unlock_component(void)
+{
+ hyp_spin_unlock(&pkvm_pgd_lock);
+}
+
+static void *host_s2_zalloc_pages_exact(size_t size)
+{
+ void *addr = hyp_alloc_pages(&host_s2_pool, get_order(size));
+
+ hyp_split_page(hyp_virt_to_page(addr));
+
+ /*
+ * The size of concatenated PGDs is always a power of two of PAGE_SIZE,
+ * so there should be no need to free any of the tail pages to make the
+ * allocation exact.
+ */
+ WARN_ON(size != (PAGE_SIZE << get_order(size)));
+
+ return addr;
+}
+
+static void *host_s2_zalloc_page(void *pool)
+{
+ return hyp_alloc_pages(pool, 0);
+}
+
+static void host_s2_get_page(void *addr)
+{
+ hyp_get_page(&host_s2_pool, addr);
+}
+
+static void host_s2_put_page(void *addr)
+{
+ hyp_put_page(&host_s2_pool, addr);
+}
+
+static void host_s2_free_unlinked_table(void *addr, u32 level)
+{
+ kvm_pgtable_stage2_free_unlinked(&host_mmu.mm_ops, addr, level);
+}
+
+static int prepare_s2_pool(void *pgt_pool_base)
+{
+ unsigned long nr_pages, pfn;
+ int ret;
+
+ pfn = hyp_virt_to_pfn(pgt_pool_base);
+ nr_pages = host_s2_pgtable_pages();
+ ret = hyp_pool_init(&host_s2_pool, pfn, nr_pages, 0);
+ if (ret)
+ return ret;
+
+ host_mmu.mm_ops = (struct kvm_pgtable_mm_ops) {
+ .zalloc_pages_exact = host_s2_zalloc_pages_exact,
+ .zalloc_page = host_s2_zalloc_page,
+ .free_unlinked_table = host_s2_free_unlinked_table,
+ .phys_to_virt = hyp_phys_to_virt,
+ .virt_to_phys = hyp_virt_to_phys,
+ .page_count = hyp_page_count,
+ .get_page = host_s2_get_page,
+ .put_page = host_s2_put_page,
+ };
+
+ return 0;
+}
+
+static void prepare_host_vtcr(void)
+{
+ u32 parange, phys_shift;
+
+ /* The host stage 2 is id-mapped, so use parange for T0SZ */
+ parange = kvm_get_parange(id_aa64mmfr0_el1_sys_val);
+ phys_shift = id_aa64mmfr0_parange_to_phys_shift(parange);
+
+ host_mmu.arch.vtcr = kvm_get_vtcr(id_aa64mmfr0_el1_sys_val,
+ id_aa64mmfr1_el1_sys_val, phys_shift);
+}
+
+static bool host_stage2_force_pte_cb(u64 addr, u64 end, enum kvm_pgtable_prot prot);
+
+int kvm_host_prepare_stage2(void *pgt_pool_base)
+{
+ struct kvm_s2_mmu *mmu = &host_mmu.arch.mmu;
+ int ret;
+
+ prepare_host_vtcr();
+ hyp_spin_lock_init(&host_mmu.lock);
+ mmu->arch = &host_mmu.arch;
+
+ ret = prepare_s2_pool(pgt_pool_base);
+ if (ret)
+ return ret;
+
+ ret = __kvm_pgtable_stage2_init(&host_mmu.pgt, mmu,
+ &host_mmu.mm_ops, KVM_HOST_S2_FLAGS,
+ host_stage2_force_pte_cb);
+ if (ret)
+ return ret;
+
+ mmu->pgd_phys = __hyp_pa(host_mmu.pgt.pgd);
+ mmu->pgt = &host_mmu.pgt;
+ atomic64_set(&mmu->vmid.id, 0);
+
+ return 0;
+}
+
+static bool guest_stage2_force_pte_cb(u64 addr, u64 end,
+ enum kvm_pgtable_prot prot)
+{
+ return true;
+}
+
+static void *guest_s2_zalloc_pages_exact(size_t size)
+{
+ void *addr = hyp_alloc_pages(&current_vm->pool, get_order(size));
+
+ WARN_ON(size != (PAGE_SIZE << get_order(size)));
+ hyp_split_page(hyp_virt_to_page(addr));
+
+ return addr;
+}
+
+static void guest_s2_free_pages_exact(void *addr, unsigned long size)
+{
+ u8 order = get_order(size);
+ unsigned int i;
+
+ for (i = 0; i < (1 << order); i++)
+ hyp_put_page(&current_vm->pool, addr + (i * PAGE_SIZE));
+}
+
+static void *guest_s2_zalloc_page(void *mc)
+{
+ struct hyp_page *p;
+ void *addr;
+
+ addr = hyp_alloc_pages(&current_vm->pool, 0);
+ if (addr)
+ return addr;
+
+ addr = pop_hyp_memcache(mc, hyp_phys_to_virt);
+ if (!addr)
+ return addr;
+
+ memset(addr, 0, PAGE_SIZE);
+ p = hyp_virt_to_page(addr);
+ memset(p, 0, sizeof(*p));
+ p->refcount = 1;
+
+ return addr;
+}
+
+static void guest_s2_get_page(void *addr)
+{
+ hyp_get_page(&current_vm->pool, addr);
+}
+
+static void guest_s2_put_page(void *addr)
+{
+ hyp_put_page(&current_vm->pool, addr);
+}
+
+static void clean_dcache_guest_page(void *va, size_t size)
+{
+ __clean_dcache_guest_page(hyp_fixmap_map(__hyp_pa(va)), size);
+ hyp_fixmap_unmap();
+}
+
+static void invalidate_icache_guest_page(void *va, size_t size)
+{
+ __invalidate_icache_guest_page(hyp_fixmap_map(__hyp_pa(va)), size);
+ hyp_fixmap_unmap();
+}
+
+int kvm_guest_prepare_stage2(struct pkvm_hyp_vm *vm, void *pgd)
+{
+ struct kvm_s2_mmu *mmu = &vm->kvm.arch.mmu;
+ unsigned long nr_pages;
+ int ret;
+
+ nr_pages = kvm_pgtable_stage2_pgd_size(vm->kvm.arch.vtcr) >> PAGE_SHIFT;
+ ret = hyp_pool_init(&vm->pool, hyp_virt_to_pfn(pgd), nr_pages, 0);
+ if (ret)
+ return ret;
+
+ hyp_spin_lock_init(&vm->lock);
+ vm->mm_ops = (struct kvm_pgtable_mm_ops) {
+ .zalloc_pages_exact = guest_s2_zalloc_pages_exact,
+ .free_pages_exact = guest_s2_free_pages_exact,
+ .zalloc_page = guest_s2_zalloc_page,
+ .phys_to_virt = hyp_phys_to_virt,
+ .virt_to_phys = hyp_virt_to_phys,
+ .page_count = hyp_page_count,
+ .get_page = guest_s2_get_page,
+ .put_page = guest_s2_put_page,
+ .dcache_clean_inval_poc = clean_dcache_guest_page,
+ .icache_inval_pou = invalidate_icache_guest_page,
+ };
+
+ guest_lock_component(vm);
+ ret = __kvm_pgtable_stage2_init(mmu->pgt, mmu, &vm->mm_ops, 0,
+ guest_stage2_force_pte_cb);
+ guest_unlock_component(vm);
+ if (ret)
+ return ret;
+
+ vm->kvm.arch.mmu.pgd_phys = __hyp_pa(vm->pgt.pgd);
+
+ return 0;
+}
+
+void reclaim_guest_pages(struct pkvm_hyp_vm *vm, struct kvm_hyp_memcache *mc)
+{
+ void *addr;
+
+ /* Dump all pgtable pages in the hyp_pool */
+ guest_lock_component(vm);
+ kvm_pgtable_stage2_destroy(&vm->pgt);
+ vm->kvm.arch.mmu.pgd_phys = 0ULL;
+ guest_unlock_component(vm);
+
+ /* Drain the hyp_pool into the memcache */
+ addr = hyp_alloc_pages(&vm->pool, 0);
+ while (addr) {
+ memset(hyp_virt_to_page(addr), 0, sizeof(struct hyp_page));
+ push_hyp_memcache(mc, addr, hyp_virt_to_phys);
+ WARN_ON(__pkvm_hyp_donate_host(hyp_virt_to_pfn(addr), 1));
+ addr = hyp_alloc_pages(&vm->pool, 0);
+ }
+}
+
+int __pkvm_prot_finalize(void)
+{
+ struct kvm_s2_mmu *mmu = &host_mmu.arch.mmu;
+ struct kvm_nvhe_init_params *params = this_cpu_ptr(&kvm_init_params);
+
+ if (params->hcr_el2 & HCR_VM)
+ return -EPERM;
+
+ params->vttbr = kvm_get_vttbr(mmu);
+ params->vtcr = host_mmu.arch.vtcr;
+ params->hcr_el2 |= HCR_VM;
+
+ /*
+ * The CMO below not only cleans the updated params to the
+ * PoC, but also provides the DSB that ensures ongoing
+ * page-table walks that have started before we trapped to EL2
+ * have completed.
+ */
+ kvm_flush_dcache_to_poc(params, sizeof(*params));
+
+ write_sysreg(params->hcr_el2, hcr_el2);
+ __load_stage2(&host_mmu.arch.mmu, &host_mmu.arch);
+
+ /*
+ * Make sure to have an ISB before the TLB maintenance below but only
+ * when __load_stage2() doesn't include one already.
+ */
+ asm(ALTERNATIVE("isb", "nop", ARM64_WORKAROUND_SPECULATIVE_AT));
+
+ /* Invalidate stale HCR bits that may be cached in TLBs */
+ __tlbi(vmalls12e1);
+ dsb(nsh);
+ isb();
+
+ return 0;
+}
+
+static int host_stage2_unmap_dev_all(void)
+{
+ struct kvm_pgtable *pgt = &host_mmu.pgt;
+ struct memblock_region *reg;
+ u64 addr = 0;
+ int i, ret;
+
+ /* Unmap all non-memory regions to recycle the pages */
+ for (i = 0; i < hyp_memblock_nr; i++, addr = reg->base + reg->size) {
+ reg = &hyp_memory[i];
+ ret = kvm_pgtable_stage2_unmap(pgt, addr, reg->base - addr);
+ if (ret)
+ return ret;
+ }
+ return kvm_pgtable_stage2_unmap(pgt, addr, BIT(pgt->ia_bits) - addr);
+}
+
+struct kvm_mem_range {
+ u64 start;
+ u64 end;
+};
+
+static struct memblock_region *find_mem_range(phys_addr_t addr, struct kvm_mem_range *range)
+{
+ int cur, left = 0, right = hyp_memblock_nr;
+ struct memblock_region *reg;
+ phys_addr_t end;
+
+ range->start = 0;
+ range->end = ULONG_MAX;
+
+ /* The list of memblock regions is sorted, binary search it */
+ while (left < right) {
+ cur = (left + right) >> 1;
+ reg = &hyp_memory[cur];
+ end = reg->base + reg->size;
+ if (addr < reg->base) {
+ right = cur;
+ range->end = reg->base;
+ } else if (addr >= end) {
+ left = cur + 1;
+ range->start = end;
+ } else {
+ range->start = reg->base;
+ range->end = end;
+ return reg;
+ }
+ }
+
+ return NULL;
+}
+
+bool addr_is_memory(phys_addr_t phys)
+{
+ struct kvm_mem_range range;
+
+ return !!find_mem_range(phys, &range);
+}
+
+static bool addr_is_allowed_memory(phys_addr_t phys)
+{
+ struct memblock_region *reg;
+ struct kvm_mem_range range;
+
+ reg = find_mem_range(phys, &range);
+
+ return reg && !(reg->flags & MEMBLOCK_NOMAP);
+}
+
+static bool is_in_mem_range(u64 addr, struct kvm_mem_range *range)
+{
+ return range->start <= addr && addr < range->end;
+}
+
+static bool range_is_memory(u64 start, u64 end)
+{
+ struct kvm_mem_range r;
+
+ if (!find_mem_range(start, &r))
+ return false;
+
+ return is_in_mem_range(end - 1, &r);
+}
+
+static inline int __host_stage2_idmap(u64 start, u64 end,
+ enum kvm_pgtable_prot prot)
+{
+ return kvm_pgtable_stage2_map(&host_mmu.pgt, start, end - start, start,
+ prot, &host_s2_pool, 0);
+}
+
+/*
+ * The pool has been provided with enough pages to cover all of memory with
+ * page granularity, but it is difficult to know how much of the MMIO range
+ * we will need to cover upfront, so we may need to 'recycle' the pages if we
+ * run out.
+ */
+#define host_stage2_try(fn, ...) \
+ ({ \
+ int __ret; \
+ hyp_assert_lock_held(&host_mmu.lock); \
+ __ret = fn(__VA_ARGS__); \
+ if (__ret == -ENOMEM) { \
+ __ret = host_stage2_unmap_dev_all(); \
+ if (!__ret) \
+ __ret = fn(__VA_ARGS__); \
+ } \
+ __ret; \
+ })
+
+static inline bool range_included(struct kvm_mem_range *child,
+ struct kvm_mem_range *parent)
+{
+ return parent->start <= child->start && child->end <= parent->end;
+}
+
+static int host_stage2_adjust_range(u64 addr, struct kvm_mem_range *range)
+{
+ struct kvm_mem_range cur;
+ kvm_pte_t pte;
+ u32 level;
+ int ret;
+
+ hyp_assert_lock_held(&host_mmu.lock);
+ ret = kvm_pgtable_get_leaf(&host_mmu.pgt, addr, &pte, &level);
+ if (ret)
+ return ret;
+
+ if (kvm_pte_valid(pte))
+ return -EAGAIN;
+
+ if (pte)
+ return -EPERM;
+
+ do {
+ u64 granule = kvm_granule_size(level);
+ cur.start = ALIGN_DOWN(addr, granule);
+ cur.end = cur.start + granule;
+ level++;
+ } while ((level < KVM_PGTABLE_MAX_LEVELS) &&
+ !(kvm_level_supports_block_mapping(level) &&
+ range_included(&cur, range)));
+
+ *range = cur;
+
+ return 0;
+}
+
+int host_stage2_idmap_locked(phys_addr_t addr, u64 size,
+ enum kvm_pgtable_prot prot)
+{
+ return host_stage2_try(__host_stage2_idmap, addr, addr + size, prot);
+}
+
+int host_stage2_set_owner_locked(phys_addr_t addr, u64 size, u8 owner_id)
+{
+ return host_stage2_try(kvm_pgtable_stage2_set_owner, &host_mmu.pgt,
+ addr, size, &host_s2_pool, owner_id);
+}
+
+static bool host_stage2_force_pte_cb(u64 addr, u64 end, enum kvm_pgtable_prot prot)
+{
+ /*
+ * Block mappings must be used with care in the host stage-2 as a
+ * kvm_pgtable_stage2_map() operation targeting a page in the range of
+ * an existing block will delete the block under the assumption that
+ * mappings in the rest of the block range can always be rebuilt lazily.
+ * That assumption is correct for the host stage-2 with RWX mappings
+ * targeting memory or RW mappings targeting MMIO ranges (see
+ * host_stage2_idmap() below which implements some of the host memory
+ * abort logic). However, this is not safe for any other mappings where
+ * the host stage-2 page-table is in fact the only place where this
+ * state is stored. In all those cases, it is safer to use page-level
+ * mappings, hence avoiding to lose the state because of side-effects in
+ * kvm_pgtable_stage2_map().
+ */
+ if (range_is_memory(addr, end))
+ return prot != PKVM_HOST_MEM_PROT;
+ else
+ return prot != PKVM_HOST_MMIO_PROT;
+}
+
+static int host_stage2_idmap(u64 addr)
+{
+ struct kvm_mem_range range;
+ bool is_memory = !!find_mem_range(addr, &range);
+ enum kvm_pgtable_prot prot;
+ int ret;
+
+ prot = is_memory ? PKVM_HOST_MEM_PROT : PKVM_HOST_MMIO_PROT;
+
+ host_lock_component();
+ ret = host_stage2_adjust_range(addr, &range);
+ if (ret)
+ goto unlock;
+
+ ret = host_stage2_idmap_locked(range.start, range.end - range.start, prot);
+unlock:
+ host_unlock_component();
+
+ return ret;
+}
+
+void handle_host_mem_abort(struct kvm_cpu_context *host_ctxt)
+{
+ struct kvm_vcpu_fault_info fault;
+ u64 esr, addr;
+ int ret = 0;
+
+ esr = read_sysreg_el2(SYS_ESR);
+ BUG_ON(!__get_fault_info(esr, &fault));
+
+ addr = (fault.hpfar_el2 & HPFAR_MASK) << 8;
+ ret = host_stage2_idmap(addr);
+ BUG_ON(ret && ret != -EAGAIN);
+}
+
+struct pkvm_mem_transition {
+ u64 nr_pages;
+
+ struct {
+ enum pkvm_component_id id;
+ /* Address in the initiator's address space */
+ u64 addr;
+
+ union {
+ struct {
+ /* Address in the completer's address space */
+ u64 completer_addr;
+ } host;
+ struct {
+ u64 completer_addr;
+ } hyp;
+ };
+ } initiator;
+
+ struct {
+ enum pkvm_component_id id;
+ } completer;
+};
+
+struct pkvm_mem_share {
+ const struct pkvm_mem_transition tx;
+ const enum kvm_pgtable_prot completer_prot;
+};
+
+struct pkvm_mem_donation {
+ const struct pkvm_mem_transition tx;
+};
+
+struct check_walk_data {
+ enum pkvm_page_state desired;
+ enum pkvm_page_state (*get_page_state)(kvm_pte_t pte, u64 addr);
+};
+
+static int __check_page_state_visitor(const struct kvm_pgtable_visit_ctx *ctx,
+ enum kvm_pgtable_walk_flags visit)
+{
+ struct check_walk_data *d = ctx->arg;
+
+ return d->get_page_state(ctx->old, ctx->addr) == d->desired ? 0 : -EPERM;
+}
+
+static int check_page_state_range(struct kvm_pgtable *pgt, u64 addr, u64 size,
+ struct check_walk_data *data)
+{
+ struct kvm_pgtable_walker walker = {
+ .cb = __check_page_state_visitor,
+ .arg = data,
+ .flags = KVM_PGTABLE_WALK_LEAF,
+ };
+
+ return kvm_pgtable_walk(pgt, addr, size, &walker);
+}
+
+static enum pkvm_page_state host_get_page_state(kvm_pte_t pte, u64 addr)
+{
+ if (!addr_is_allowed_memory(addr))
+ return PKVM_NOPAGE;
+
+ if (!kvm_pte_valid(pte) && pte)
+ return PKVM_NOPAGE;
+
+ return pkvm_getstate(kvm_pgtable_stage2_pte_prot(pte));
+}
+
+static int __host_check_page_state_range(u64 addr, u64 size,
+ enum pkvm_page_state state)
+{
+ struct check_walk_data d = {
+ .desired = state,
+ .get_page_state = host_get_page_state,
+ };
+
+ hyp_assert_lock_held(&host_mmu.lock);
+ return check_page_state_range(&host_mmu.pgt, addr, size, &d);
+}
+
+static int __host_set_page_state_range(u64 addr, u64 size,
+ enum pkvm_page_state state)
+{
+ enum kvm_pgtable_prot prot = pkvm_mkstate(PKVM_HOST_MEM_PROT, state);
+
+ return host_stage2_idmap_locked(addr, size, prot);
+}
+
+static int host_request_owned_transition(u64 *completer_addr,
+ const struct pkvm_mem_transition *tx)
+{
+ u64 size = tx->nr_pages * PAGE_SIZE;
+ u64 addr = tx->initiator.addr;
+
+ *completer_addr = tx->initiator.host.completer_addr;
+ return __host_check_page_state_range(addr, size, PKVM_PAGE_OWNED);
+}
+
+static int host_request_unshare(u64 *completer_addr,
+ const struct pkvm_mem_transition *tx)
+{
+ u64 size = tx->nr_pages * PAGE_SIZE;
+ u64 addr = tx->initiator.addr;
+
+ *completer_addr = tx->initiator.host.completer_addr;
+ return __host_check_page_state_range(addr, size, PKVM_PAGE_SHARED_OWNED);
+}
+
+static int host_initiate_share(u64 *completer_addr,
+ const struct pkvm_mem_transition *tx)
+{
+ u64 size = tx->nr_pages * PAGE_SIZE;
+ u64 addr = tx->initiator.addr;
+
+ *completer_addr = tx->initiator.host.completer_addr;
+ return __host_set_page_state_range(addr, size, PKVM_PAGE_SHARED_OWNED);
+}
+
+static int host_initiate_unshare(u64 *completer_addr,
+ const struct pkvm_mem_transition *tx)
+{
+ u64 size = tx->nr_pages * PAGE_SIZE;
+ u64 addr = tx->initiator.addr;
+
+ *completer_addr = tx->initiator.host.completer_addr;
+ return __host_set_page_state_range(addr, size, PKVM_PAGE_OWNED);
+}
+
+static int host_initiate_donation(u64 *completer_addr,
+ const struct pkvm_mem_transition *tx)
+{
+ u8 owner_id = tx->completer.id;
+ u64 size = tx->nr_pages * PAGE_SIZE;
+
+ *completer_addr = tx->initiator.host.completer_addr;
+ return host_stage2_set_owner_locked(tx->initiator.addr, size, owner_id);
+}
+
+static bool __host_ack_skip_pgtable_check(const struct pkvm_mem_transition *tx)
+{
+ return !(IS_ENABLED(CONFIG_NVHE_EL2_DEBUG) ||
+ tx->initiator.id != PKVM_ID_HYP);
+}
+
+static int __host_ack_transition(u64 addr, const struct pkvm_mem_transition *tx,
+ enum pkvm_page_state state)
+{
+ u64 size = tx->nr_pages * PAGE_SIZE;
+
+ if (__host_ack_skip_pgtable_check(tx))
+ return 0;
+
+ return __host_check_page_state_range(addr, size, state);
+}
+
+static int host_ack_donation(u64 addr, const struct pkvm_mem_transition *tx)
+{
+ return __host_ack_transition(addr, tx, PKVM_NOPAGE);
+}
+
+static int host_complete_donation(u64 addr, const struct pkvm_mem_transition *tx)
+{
+ u64 size = tx->nr_pages * PAGE_SIZE;
+ u8 host_id = tx->completer.id;
+
+ return host_stage2_set_owner_locked(addr, size, host_id);
+}
+
+static enum pkvm_page_state hyp_get_page_state(kvm_pte_t pte, u64 addr)
+{
+ if (!kvm_pte_valid(pte))
+ return PKVM_NOPAGE;
+
+ return pkvm_getstate(kvm_pgtable_hyp_pte_prot(pte));
+}
+
+static int __hyp_check_page_state_range(u64 addr, u64 size,
+ enum pkvm_page_state state)
+{
+ struct check_walk_data d = {
+ .desired = state,
+ .get_page_state = hyp_get_page_state,
+ };
+
+ hyp_assert_lock_held(&pkvm_pgd_lock);
+ return check_page_state_range(&pkvm_pgtable, addr, size, &d);
+}
+
+static int hyp_request_donation(u64 *completer_addr,
+ const struct pkvm_mem_transition *tx)
+{
+ u64 size = tx->nr_pages * PAGE_SIZE;
+ u64 addr = tx->initiator.addr;
+
+ *completer_addr = tx->initiator.hyp.completer_addr;
+ return __hyp_check_page_state_range(addr, size, PKVM_PAGE_OWNED);
+}
+
+static int hyp_initiate_donation(u64 *completer_addr,
+ const struct pkvm_mem_transition *tx)
+{
+ u64 size = tx->nr_pages * PAGE_SIZE;
+ int ret;
+
+ *completer_addr = tx->initiator.hyp.completer_addr;
+ ret = kvm_pgtable_hyp_unmap(&pkvm_pgtable, tx->initiator.addr, size);
+ return (ret != size) ? -EFAULT : 0;
+}
+
+static bool __hyp_ack_skip_pgtable_check(const struct pkvm_mem_transition *tx)
+{
+ return !(IS_ENABLED(CONFIG_NVHE_EL2_DEBUG) ||
+ tx->initiator.id != PKVM_ID_HOST);
+}
+
+static int hyp_ack_share(u64 addr, const struct pkvm_mem_transition *tx,
+ enum kvm_pgtable_prot perms)
+{
+ u64 size = tx->nr_pages * PAGE_SIZE;
+
+ if (perms != PAGE_HYP)
+ return -EPERM;
+
+ if (__hyp_ack_skip_pgtable_check(tx))
+ return 0;
+
+ return __hyp_check_page_state_range(addr, size, PKVM_NOPAGE);
+}
+
+static int hyp_ack_unshare(u64 addr, const struct pkvm_mem_transition *tx)
+{
+ u64 size = tx->nr_pages * PAGE_SIZE;
+
+ if (tx->initiator.id == PKVM_ID_HOST && hyp_page_count((void *)addr))
+ return -EBUSY;
+
+ if (__hyp_ack_skip_pgtable_check(tx))
+ return 0;
+
+ return __hyp_check_page_state_range(addr, size,
+ PKVM_PAGE_SHARED_BORROWED);
+}
+
+static int hyp_ack_donation(u64 addr, const struct pkvm_mem_transition *tx)
+{
+ u64 size = tx->nr_pages * PAGE_SIZE;
+
+ if (__hyp_ack_skip_pgtable_check(tx))
+ return 0;
+
+ return __hyp_check_page_state_range(addr, size, PKVM_NOPAGE);
+}
+
+static int hyp_complete_share(u64 addr, const struct pkvm_mem_transition *tx,
+ enum kvm_pgtable_prot perms)
+{
+ void *start = (void *)addr, *end = start + (tx->nr_pages * PAGE_SIZE);
+ enum kvm_pgtable_prot prot;
+
+ prot = pkvm_mkstate(perms, PKVM_PAGE_SHARED_BORROWED);
+ return pkvm_create_mappings_locked(start, end, prot);
+}
+
+static int hyp_complete_unshare(u64 addr, const struct pkvm_mem_transition *tx)
+{
+ u64 size = tx->nr_pages * PAGE_SIZE;
+ int ret = kvm_pgtable_hyp_unmap(&pkvm_pgtable, addr, size);
+
+ return (ret != size) ? -EFAULT : 0;
+}
+
+static int hyp_complete_donation(u64 addr,
+ const struct pkvm_mem_transition *tx)
+{
+ void *start = (void *)addr, *end = start + (tx->nr_pages * PAGE_SIZE);
+ enum kvm_pgtable_prot prot = pkvm_mkstate(PAGE_HYP, PKVM_PAGE_OWNED);
+
+ return pkvm_create_mappings_locked(start, end, prot);
+}
+
+static int check_share(struct pkvm_mem_share *share)
+{
+ const struct pkvm_mem_transition *tx = &share->tx;
+ u64 completer_addr;
+ int ret;
+
+ switch (tx->initiator.id) {
+ case PKVM_ID_HOST:
+ ret = host_request_owned_transition(&completer_addr, tx);
+ break;
+ default:
+ ret = -EINVAL;
+ }
+
+ if (ret)
+ return ret;
+
+ switch (tx->completer.id) {
+ case PKVM_ID_HYP:
+ ret = hyp_ack_share(completer_addr, tx, share->completer_prot);
+ break;
+ case PKVM_ID_FFA:
+ /*
+ * We only check the host; the secure side will check the other
+ * end when we forward the FFA call.
+ */
+ ret = 0;
+ break;
+ default:
+ ret = -EINVAL;
+ }
+
+ return ret;
+}
+
+static int __do_share(struct pkvm_mem_share *share)
+{
+ const struct pkvm_mem_transition *tx = &share->tx;
+ u64 completer_addr;
+ int ret;
+
+ switch (tx->initiator.id) {
+ case PKVM_ID_HOST:
+ ret = host_initiate_share(&completer_addr, tx);
+ break;
+ default:
+ ret = -EINVAL;
+ }
+
+ if (ret)
+ return ret;
+
+ switch (tx->completer.id) {
+ case PKVM_ID_HYP:
+ ret = hyp_complete_share(completer_addr, tx, share->completer_prot);
+ break;
+ case PKVM_ID_FFA:
+ /*
+ * We're not responsible for any secure page-tables, so there's
+ * nothing to do here.
+ */
+ ret = 0;
+ break;
+ default:
+ ret = -EINVAL;
+ }
+
+ return ret;
+}
+
+/*
+ * do_share():
+ *
+ * The page owner grants access to another component with a given set
+ * of permissions.
+ *
+ * Initiator: OWNED => SHARED_OWNED
+ * Completer: NOPAGE => SHARED_BORROWED
+ */
+static int do_share(struct pkvm_mem_share *share)
+{
+ int ret;
+
+ ret = check_share(share);
+ if (ret)
+ return ret;
+
+ return WARN_ON(__do_share(share));
+}
+
+static int check_unshare(struct pkvm_mem_share *share)
+{
+ const struct pkvm_mem_transition *tx = &share->tx;
+ u64 completer_addr;
+ int ret;
+
+ switch (tx->initiator.id) {
+ case PKVM_ID_HOST:
+ ret = host_request_unshare(&completer_addr, tx);
+ break;
+ default:
+ ret = -EINVAL;
+ }
+
+ if (ret)
+ return ret;
+
+ switch (tx->completer.id) {
+ case PKVM_ID_HYP:
+ ret = hyp_ack_unshare(completer_addr, tx);
+ break;
+ case PKVM_ID_FFA:
+ /* See check_share() */
+ ret = 0;
+ break;
+ default:
+ ret = -EINVAL;
+ }
+
+ return ret;
+}
+
+static int __do_unshare(struct pkvm_mem_share *share)
+{
+ const struct pkvm_mem_transition *tx = &share->tx;
+ u64 completer_addr;
+ int ret;
+
+ switch (tx->initiator.id) {
+ case PKVM_ID_HOST:
+ ret = host_initiate_unshare(&completer_addr, tx);
+ break;
+ default:
+ ret = -EINVAL;
+ }
+
+ if (ret)
+ return ret;
+
+ switch (tx->completer.id) {
+ case PKVM_ID_HYP:
+ ret = hyp_complete_unshare(completer_addr, tx);
+ break;
+ case PKVM_ID_FFA:
+ /* See __do_share() */
+ ret = 0;
+ break;
+ default:
+ ret = -EINVAL;
+ }
+
+ return ret;
+}
+
+/*
+ * do_unshare():
+ *
+ * The page owner revokes access from another component for a range of
+ * pages which were previously shared using do_share().
+ *
+ * Initiator: SHARED_OWNED => OWNED
+ * Completer: SHARED_BORROWED => NOPAGE
+ */
+static int do_unshare(struct pkvm_mem_share *share)
+{
+ int ret;
+
+ ret = check_unshare(share);
+ if (ret)
+ return ret;
+
+ return WARN_ON(__do_unshare(share));
+}
+
+static int check_donation(struct pkvm_mem_donation *donation)
+{
+ const struct pkvm_mem_transition *tx = &donation->tx;
+ u64 completer_addr;
+ int ret;
+
+ switch (tx->initiator.id) {
+ case PKVM_ID_HOST:
+ ret = host_request_owned_transition(&completer_addr, tx);
+ break;
+ case PKVM_ID_HYP:
+ ret = hyp_request_donation(&completer_addr, tx);
+ break;
+ default:
+ ret = -EINVAL;
+ }
+
+ if (ret)
+ return ret;
+
+ switch (tx->completer.id) {
+ case PKVM_ID_HOST:
+ ret = host_ack_donation(completer_addr, tx);
+ break;
+ case PKVM_ID_HYP:
+ ret = hyp_ack_donation(completer_addr, tx);
+ break;
+ default:
+ ret = -EINVAL;
+ }
+
+ return ret;
+}
+
+static int __do_donate(struct pkvm_mem_donation *donation)
+{
+ const struct pkvm_mem_transition *tx = &donation->tx;
+ u64 completer_addr;
+ int ret;
+
+ switch (tx->initiator.id) {
+ case PKVM_ID_HOST:
+ ret = host_initiate_donation(&completer_addr, tx);
+ break;
+ case PKVM_ID_HYP:
+ ret = hyp_initiate_donation(&completer_addr, tx);
+ break;
+ default:
+ ret = -EINVAL;
+ }
+
+ if (ret)
+ return ret;
+
+ switch (tx->completer.id) {
+ case PKVM_ID_HOST:
+ ret = host_complete_donation(completer_addr, tx);
+ break;
+ case PKVM_ID_HYP:
+ ret = hyp_complete_donation(completer_addr, tx);
+ break;
+ default:
+ ret = -EINVAL;
+ }
+
+ return ret;
+}
+
+/*
+ * do_donate():
+ *
+ * The page owner transfers ownership to another component, losing access
+ * as a consequence.
+ *
+ * Initiator: OWNED => NOPAGE
+ * Completer: NOPAGE => OWNED
+ */
+static int do_donate(struct pkvm_mem_donation *donation)
+{
+ int ret;
+
+ ret = check_donation(donation);
+ if (ret)
+ return ret;
+
+ return WARN_ON(__do_donate(donation));
+}
+
+int __pkvm_host_share_hyp(u64 pfn)
+{
+ int ret;
+ u64 host_addr = hyp_pfn_to_phys(pfn);
+ u64 hyp_addr = (u64)__hyp_va(host_addr);
+ struct pkvm_mem_share share = {
+ .tx = {
+ .nr_pages = 1,
+ .initiator = {
+ .id = PKVM_ID_HOST,
+ .addr = host_addr,
+ .host = {
+ .completer_addr = hyp_addr,
+ },
+ },
+ .completer = {
+ .id = PKVM_ID_HYP,
+ },
+ },
+ .completer_prot = PAGE_HYP,
+ };
+
+ host_lock_component();
+ hyp_lock_component();
+
+ ret = do_share(&share);
+
+ hyp_unlock_component();
+ host_unlock_component();
+
+ return ret;
+}
+
+int __pkvm_host_unshare_hyp(u64 pfn)
+{
+ int ret;
+ u64 host_addr = hyp_pfn_to_phys(pfn);
+ u64 hyp_addr = (u64)__hyp_va(host_addr);
+ struct pkvm_mem_share share = {
+ .tx = {
+ .nr_pages = 1,
+ .initiator = {
+ .id = PKVM_ID_HOST,
+ .addr = host_addr,
+ .host = {
+ .completer_addr = hyp_addr,
+ },
+ },
+ .completer = {
+ .id = PKVM_ID_HYP,
+ },
+ },
+ .completer_prot = PAGE_HYP,
+ };
+
+ host_lock_component();
+ hyp_lock_component();
+
+ ret = do_unshare(&share);
+
+ hyp_unlock_component();
+ host_unlock_component();
+
+ return ret;
+}
+
+int __pkvm_host_donate_hyp(u64 pfn, u64 nr_pages)
+{
+ int ret;
+ u64 host_addr = hyp_pfn_to_phys(pfn);
+ u64 hyp_addr = (u64)__hyp_va(host_addr);
+ struct pkvm_mem_donation donation = {
+ .tx = {
+ .nr_pages = nr_pages,
+ .initiator = {
+ .id = PKVM_ID_HOST,
+ .addr = host_addr,
+ .host = {
+ .completer_addr = hyp_addr,
+ },
+ },
+ .completer = {
+ .id = PKVM_ID_HYP,
+ },
+ },
+ };
+
+ host_lock_component();
+ hyp_lock_component();
+
+ ret = do_donate(&donation);
+
+ hyp_unlock_component();
+ host_unlock_component();
+
+ return ret;
+}
+
+int __pkvm_hyp_donate_host(u64 pfn, u64 nr_pages)
+{
+ int ret;
+ u64 host_addr = hyp_pfn_to_phys(pfn);
+ u64 hyp_addr = (u64)__hyp_va(host_addr);
+ struct pkvm_mem_donation donation = {
+ .tx = {
+ .nr_pages = nr_pages,
+ .initiator = {
+ .id = PKVM_ID_HYP,
+ .addr = hyp_addr,
+ .hyp = {
+ .completer_addr = host_addr,
+ },
+ },
+ .completer = {
+ .id = PKVM_ID_HOST,
+ },
+ },
+ };
+
+ host_lock_component();
+ hyp_lock_component();
+
+ ret = do_donate(&donation);
+
+ hyp_unlock_component();
+ host_unlock_component();
+
+ return ret;
+}
+
+int hyp_pin_shared_mem(void *from, void *to)
+{
+ u64 cur, start = ALIGN_DOWN((u64)from, PAGE_SIZE);
+ u64 end = PAGE_ALIGN((u64)to);
+ u64 size = end - start;
+ int ret;
+
+ host_lock_component();
+ hyp_lock_component();
+
+ ret = __host_check_page_state_range(__hyp_pa(start), size,
+ PKVM_PAGE_SHARED_OWNED);
+ if (ret)
+ goto unlock;
+
+ ret = __hyp_check_page_state_range(start, size,
+ PKVM_PAGE_SHARED_BORROWED);
+ if (ret)
+ goto unlock;
+
+ for (cur = start; cur < end; cur += PAGE_SIZE)
+ hyp_page_ref_inc(hyp_virt_to_page(cur));
+
+unlock:
+ hyp_unlock_component();
+ host_unlock_component();
+
+ return ret;
+}
+
+void hyp_unpin_shared_mem(void *from, void *to)
+{
+ u64 cur, start = ALIGN_DOWN((u64)from, PAGE_SIZE);
+ u64 end = PAGE_ALIGN((u64)to);
+
+ host_lock_component();
+ hyp_lock_component();
+
+ for (cur = start; cur < end; cur += PAGE_SIZE)
+ hyp_page_ref_dec(hyp_virt_to_page(cur));
+
+ hyp_unlock_component();
+ host_unlock_component();
+}
+
+int __pkvm_host_share_ffa(u64 pfn, u64 nr_pages)
+{
+ int ret;
+ struct pkvm_mem_share share = {
+ .tx = {
+ .nr_pages = nr_pages,
+ .initiator = {
+ .id = PKVM_ID_HOST,
+ .addr = hyp_pfn_to_phys(pfn),
+ },
+ .completer = {
+ .id = PKVM_ID_FFA,
+ },
+ },
+ };
+
+ host_lock_component();
+ ret = do_share(&share);
+ host_unlock_component();
+
+ return ret;
+}
+
+int __pkvm_host_unshare_ffa(u64 pfn, u64 nr_pages)
+{
+ int ret;
+ struct pkvm_mem_share share = {
+ .tx = {
+ .nr_pages = nr_pages,
+ .initiator = {
+ .id = PKVM_ID_HOST,
+ .addr = hyp_pfn_to_phys(pfn),
+ },
+ .completer = {
+ .id = PKVM_ID_FFA,
+ },
+ },
+ };
+
+ host_lock_component();
+ ret = do_unshare(&share);
+ host_unlock_component();
+
+ return ret;
+}
diff --git a/arch/arm64/kvm/hyp/nvhe/mm.c b/arch/arm64/kvm/hyp/nvhe/mm.c
new file mode 100644
index 0000000000..65a7a186d7
--- /dev/null
+++ b/arch/arm64/kvm/hyp/nvhe/mm.c
@@ -0,0 +1,423 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2020 Google LLC
+ * Author: Quentin Perret <qperret@google.com>
+ */
+
+#include <linux/kvm_host.h>
+#include <asm/kvm_hyp.h>
+#include <asm/kvm_mmu.h>
+#include <asm/kvm_pgtable.h>
+#include <asm/kvm_pkvm.h>
+#include <asm/spectre.h>
+
+#include <nvhe/early_alloc.h>
+#include <nvhe/gfp.h>
+#include <nvhe/memory.h>
+#include <nvhe/mem_protect.h>
+#include <nvhe/mm.h>
+#include <nvhe/spinlock.h>
+
+struct kvm_pgtable pkvm_pgtable;
+hyp_spinlock_t pkvm_pgd_lock;
+
+struct memblock_region hyp_memory[HYP_MEMBLOCK_REGIONS];
+unsigned int hyp_memblock_nr;
+
+static u64 __io_map_base;
+
+struct hyp_fixmap_slot {
+ u64 addr;
+ kvm_pte_t *ptep;
+};
+static DEFINE_PER_CPU(struct hyp_fixmap_slot, fixmap_slots);
+
+static int __pkvm_create_mappings(unsigned long start, unsigned long size,
+ unsigned long phys, enum kvm_pgtable_prot prot)
+{
+ int err;
+
+ hyp_spin_lock(&pkvm_pgd_lock);
+ err = kvm_pgtable_hyp_map(&pkvm_pgtable, start, size, phys, prot);
+ hyp_spin_unlock(&pkvm_pgd_lock);
+
+ return err;
+}
+
+static int __pkvm_alloc_private_va_range(unsigned long start, size_t size)
+{
+ unsigned long cur;
+
+ hyp_assert_lock_held(&pkvm_pgd_lock);
+
+ if (!start || start < __io_map_base)
+ return -EINVAL;
+
+ /* The allocated size is always a multiple of PAGE_SIZE */
+ cur = start + PAGE_ALIGN(size);
+
+ /* Are we overflowing on the vmemmap ? */
+ if (cur > __hyp_vmemmap)
+ return -ENOMEM;
+
+ __io_map_base = cur;
+
+ return 0;
+}
+
+/**
+ * pkvm_alloc_private_va_range - Allocates a private VA range.
+ * @size: The size of the VA range to reserve.
+ * @haddr: The hypervisor virtual start address of the allocation.
+ *
+ * The private virtual address (VA) range is allocated above __io_map_base
+ * and aligned based on the order of @size.
+ *
+ * Return: 0 on success or negative error code on failure.
+ */
+int pkvm_alloc_private_va_range(size_t size, unsigned long *haddr)
+{
+ unsigned long addr;
+ int ret;
+
+ hyp_spin_lock(&pkvm_pgd_lock);
+ addr = __io_map_base;
+ ret = __pkvm_alloc_private_va_range(addr, size);
+ hyp_spin_unlock(&pkvm_pgd_lock);
+
+ *haddr = addr;
+
+ return ret;
+}
+
+int __pkvm_create_private_mapping(phys_addr_t phys, size_t size,
+ enum kvm_pgtable_prot prot,
+ unsigned long *haddr)
+{
+ unsigned long addr;
+ int err;
+
+ size = PAGE_ALIGN(size + offset_in_page(phys));
+ err = pkvm_alloc_private_va_range(size, &addr);
+ if (err)
+ return err;
+
+ err = __pkvm_create_mappings(addr, size, phys, prot);
+ if (err)
+ return err;
+
+ *haddr = addr + offset_in_page(phys);
+ return err;
+}
+
+int pkvm_create_mappings_locked(void *from, void *to, enum kvm_pgtable_prot prot)
+{
+ unsigned long start = (unsigned long)from;
+ unsigned long end = (unsigned long)to;
+ unsigned long virt_addr;
+ phys_addr_t phys;
+
+ hyp_assert_lock_held(&pkvm_pgd_lock);
+
+ start = start & PAGE_MASK;
+ end = PAGE_ALIGN(end);
+
+ for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
+ int err;
+
+ phys = hyp_virt_to_phys((void *)virt_addr);
+ err = kvm_pgtable_hyp_map(&pkvm_pgtable, virt_addr, PAGE_SIZE,
+ phys, prot);
+ if (err)
+ return err;
+ }
+
+ return 0;
+}
+
+int pkvm_create_mappings(void *from, void *to, enum kvm_pgtable_prot prot)
+{
+ int ret;
+
+ hyp_spin_lock(&pkvm_pgd_lock);
+ ret = pkvm_create_mappings_locked(from, to, prot);
+ hyp_spin_unlock(&pkvm_pgd_lock);
+
+ return ret;
+}
+
+int hyp_back_vmemmap(phys_addr_t back)
+{
+ unsigned long i, start, size, end = 0;
+ int ret;
+
+ for (i = 0; i < hyp_memblock_nr; i++) {
+ start = hyp_memory[i].base;
+ start = ALIGN_DOWN((u64)hyp_phys_to_page(start), PAGE_SIZE);
+ /*
+ * The begining of the hyp_vmemmap region for the current
+ * memblock may already be backed by the page backing the end
+ * the previous region, so avoid mapping it twice.
+ */
+ start = max(start, end);
+
+ end = hyp_memory[i].base + hyp_memory[i].size;
+ end = PAGE_ALIGN((u64)hyp_phys_to_page(end));
+ if (start >= end)
+ continue;
+
+ size = end - start;
+ ret = __pkvm_create_mappings(start, size, back, PAGE_HYP);
+ if (ret)
+ return ret;
+
+ memset(hyp_phys_to_virt(back), 0, size);
+ back += size;
+ }
+
+ return 0;
+}
+
+static void *__hyp_bp_vect_base;
+int pkvm_cpu_set_vector(enum arm64_hyp_spectre_vector slot)
+{
+ void *vector;
+
+ switch (slot) {
+ case HYP_VECTOR_DIRECT: {
+ vector = __kvm_hyp_vector;
+ break;
+ }
+ case HYP_VECTOR_SPECTRE_DIRECT: {
+ vector = __bp_harden_hyp_vecs;
+ break;
+ }
+ case HYP_VECTOR_INDIRECT:
+ case HYP_VECTOR_SPECTRE_INDIRECT: {
+ vector = (void *)__hyp_bp_vect_base;
+ break;
+ }
+ default:
+ return -EINVAL;
+ }
+
+ vector = __kvm_vector_slot2addr(vector, slot);
+ *this_cpu_ptr(&kvm_hyp_vector) = (unsigned long)vector;
+
+ return 0;
+}
+
+int hyp_map_vectors(void)
+{
+ phys_addr_t phys;
+ unsigned long bp_base;
+ int ret;
+
+ if (!kvm_system_needs_idmapped_vectors()) {
+ __hyp_bp_vect_base = __bp_harden_hyp_vecs;
+ return 0;
+ }
+
+ phys = __hyp_pa(__bp_harden_hyp_vecs);
+ ret = __pkvm_create_private_mapping(phys, __BP_HARDEN_HYP_VECS_SZ,
+ PAGE_HYP_EXEC, &bp_base);
+ if (ret)
+ return ret;
+
+ __hyp_bp_vect_base = (void *)bp_base;
+
+ return 0;
+}
+
+void *hyp_fixmap_map(phys_addr_t phys)
+{
+ struct hyp_fixmap_slot *slot = this_cpu_ptr(&fixmap_slots);
+ kvm_pte_t pte, *ptep = slot->ptep;
+
+ pte = *ptep;
+ pte &= ~kvm_phys_to_pte(KVM_PHYS_INVALID);
+ pte |= kvm_phys_to_pte(phys) | KVM_PTE_VALID;
+ WRITE_ONCE(*ptep, pte);
+ dsb(ishst);
+
+ return (void *)slot->addr;
+}
+
+static void fixmap_clear_slot(struct hyp_fixmap_slot *slot)
+{
+ kvm_pte_t *ptep = slot->ptep;
+ u64 addr = slot->addr;
+
+ WRITE_ONCE(*ptep, *ptep & ~KVM_PTE_VALID);
+
+ /*
+ * Irritatingly, the architecture requires that we use inner-shareable
+ * broadcast TLB invalidation here in case another CPU speculates
+ * through our fixmap and decides to create an "amalagamation of the
+ * values held in the TLB" due to the apparent lack of a
+ * break-before-make sequence.
+ *
+ * https://lore.kernel.org/kvm/20221017115209.2099-1-will@kernel.org/T/#mf10dfbaf1eaef9274c581b81c53758918c1d0f03
+ */
+ dsb(ishst);
+ __tlbi_level(vale2is, __TLBI_VADDR(addr, 0), (KVM_PGTABLE_MAX_LEVELS - 1));
+ dsb(ish);
+ isb();
+}
+
+void hyp_fixmap_unmap(void)
+{
+ fixmap_clear_slot(this_cpu_ptr(&fixmap_slots));
+}
+
+static int __create_fixmap_slot_cb(const struct kvm_pgtable_visit_ctx *ctx,
+ enum kvm_pgtable_walk_flags visit)
+{
+ struct hyp_fixmap_slot *slot = per_cpu_ptr(&fixmap_slots, (u64)ctx->arg);
+
+ if (!kvm_pte_valid(ctx->old) || ctx->level != KVM_PGTABLE_MAX_LEVELS - 1)
+ return -EINVAL;
+
+ slot->addr = ctx->addr;
+ slot->ptep = ctx->ptep;
+
+ /*
+ * Clear the PTE, but keep the page-table page refcount elevated to
+ * prevent it from ever being freed. This lets us manipulate the PTEs
+ * by hand safely without ever needing to allocate memory.
+ */
+ fixmap_clear_slot(slot);
+
+ return 0;
+}
+
+static int create_fixmap_slot(u64 addr, u64 cpu)
+{
+ struct kvm_pgtable_walker walker = {
+ .cb = __create_fixmap_slot_cb,
+ .flags = KVM_PGTABLE_WALK_LEAF,
+ .arg = (void *)cpu,
+ };
+
+ return kvm_pgtable_walk(&pkvm_pgtable, addr, PAGE_SIZE, &walker);
+}
+
+int hyp_create_pcpu_fixmap(void)
+{
+ unsigned long addr, i;
+ int ret;
+
+ for (i = 0; i < hyp_nr_cpus; i++) {
+ ret = pkvm_alloc_private_va_range(PAGE_SIZE, &addr);
+ if (ret)
+ return ret;
+
+ ret = kvm_pgtable_hyp_map(&pkvm_pgtable, addr, PAGE_SIZE,
+ __hyp_pa(__hyp_bss_start), PAGE_HYP);
+ if (ret)
+ return ret;
+
+ ret = create_fixmap_slot(addr, i);
+ if (ret)
+ return ret;
+ }
+
+ return 0;
+}
+
+int hyp_create_idmap(u32 hyp_va_bits)
+{
+ unsigned long start, end;
+
+ start = hyp_virt_to_phys((void *)__hyp_idmap_text_start);
+ start = ALIGN_DOWN(start, PAGE_SIZE);
+
+ end = hyp_virt_to_phys((void *)__hyp_idmap_text_end);
+ end = ALIGN(end, PAGE_SIZE);
+
+ /*
+ * One half of the VA space is reserved to linearly map portions of
+ * memory -- see va_layout.c for more details. The other half of the VA
+ * space contains the trampoline page, and needs some care. Split that
+ * second half in two and find the quarter of VA space not conflicting
+ * with the idmap to place the IOs and the vmemmap. IOs use the lower
+ * half of the quarter and the vmemmap the upper half.
+ */
+ __io_map_base = start & BIT(hyp_va_bits - 2);
+ __io_map_base ^= BIT(hyp_va_bits - 2);
+ __hyp_vmemmap = __io_map_base | BIT(hyp_va_bits - 3);
+
+ return __pkvm_create_mappings(start, end - start, start, PAGE_HYP_EXEC);
+}
+
+int pkvm_create_stack(phys_addr_t phys, unsigned long *haddr)
+{
+ unsigned long addr, prev_base;
+ size_t size;
+ int ret;
+
+ hyp_spin_lock(&pkvm_pgd_lock);
+
+ prev_base = __io_map_base;
+ /*
+ * Efficient stack verification using the PAGE_SHIFT bit implies
+ * an alignment of our allocation on the order of the size.
+ */
+ size = PAGE_SIZE * 2;
+ addr = ALIGN(__io_map_base, size);
+
+ ret = __pkvm_alloc_private_va_range(addr, size);
+ if (!ret) {
+ /*
+ * Since the stack grows downwards, map the stack to the page
+ * at the higher address and leave the lower guard page
+ * unbacked.
+ *
+ * Any valid stack address now has the PAGE_SHIFT bit as 1
+ * and addresses corresponding to the guard page have the
+ * PAGE_SHIFT bit as 0 - this is used for overflow detection.
+ */
+ ret = kvm_pgtable_hyp_map(&pkvm_pgtable, addr + PAGE_SIZE,
+ PAGE_SIZE, phys, PAGE_HYP);
+ if (ret)
+ __io_map_base = prev_base;
+ }
+ hyp_spin_unlock(&pkvm_pgd_lock);
+
+ *haddr = addr + size;
+
+ return ret;
+}
+
+static void *admit_host_page(void *arg)
+{
+ struct kvm_hyp_memcache *host_mc = arg;
+
+ if (!host_mc->nr_pages)
+ return NULL;
+
+ /*
+ * The host still owns the pages in its memcache, so we need to go
+ * through a full host-to-hyp donation cycle to change it. Fortunately,
+ * __pkvm_host_donate_hyp() takes care of races for us, so if it
+ * succeeds we're good to go.
+ */
+ if (__pkvm_host_donate_hyp(hyp_phys_to_pfn(host_mc->head), 1))
+ return NULL;
+
+ return pop_hyp_memcache(host_mc, hyp_phys_to_virt);
+}
+
+/* Refill our local memcache by poping pages from the one provided by the host. */
+int refill_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages,
+ struct kvm_hyp_memcache *host_mc)
+{
+ struct kvm_hyp_memcache tmp = *host_mc;
+ int ret;
+
+ ret = __topup_hyp_memcache(mc, min_pages, admit_host_page,
+ hyp_virt_to_phys, &tmp);
+ *host_mc = tmp;
+
+ return ret;
+}
diff --git a/arch/arm64/kvm/hyp/nvhe/page_alloc.c b/arch/arm64/kvm/hyp/nvhe/page_alloc.c
new file mode 100644
index 0000000000..b1e392186a
--- /dev/null
+++ b/arch/arm64/kvm/hyp/nvhe/page_alloc.c
@@ -0,0 +1,247 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2020 Google LLC
+ * Author: Quentin Perret <qperret@google.com>
+ */
+
+#include <asm/kvm_hyp.h>
+#include <nvhe/gfp.h>
+
+u64 __hyp_vmemmap;
+
+/*
+ * Index the hyp_vmemmap to find a potential buddy page, but make no assumption
+ * about its current state.
+ *
+ * Example buddy-tree for a 4-pages physically contiguous pool:
+ *
+ * o : Page 3
+ * /
+ * o-o : Page 2
+ * /
+ * / o : Page 1
+ * / /
+ * o---o-o : Page 0
+ * Order 2 1 0
+ *
+ * Example of requests on this pool:
+ * __find_buddy_nocheck(pool, page 0, order 0) => page 1
+ * __find_buddy_nocheck(pool, page 0, order 1) => page 2
+ * __find_buddy_nocheck(pool, page 1, order 0) => page 0
+ * __find_buddy_nocheck(pool, page 2, order 0) => page 3
+ */
+static struct hyp_page *__find_buddy_nocheck(struct hyp_pool *pool,
+ struct hyp_page *p,
+ unsigned short order)
+{
+ phys_addr_t addr = hyp_page_to_phys(p);
+
+ addr ^= (PAGE_SIZE << order);
+
+ /*
+ * Don't return a page outside the pool range -- it belongs to
+ * something else and may not be mapped in hyp_vmemmap.
+ */
+ if (addr < pool->range_start || addr >= pool->range_end)
+ return NULL;
+
+ return hyp_phys_to_page(addr);
+}
+
+/* Find a buddy page currently available for allocation */
+static struct hyp_page *__find_buddy_avail(struct hyp_pool *pool,
+ struct hyp_page *p,
+ unsigned short order)
+{
+ struct hyp_page *buddy = __find_buddy_nocheck(pool, p, order);
+
+ if (!buddy || buddy->order != order || buddy->refcount)
+ return NULL;
+
+ return buddy;
+
+}
+
+/*
+ * Pages that are available for allocation are tracked in free-lists, so we use
+ * the pages themselves to store the list nodes to avoid wasting space. As the
+ * allocator always returns zeroed pages (which are zeroed on the hyp_put_page()
+ * path to optimize allocation speed), we also need to clean-up the list node in
+ * each page when we take it out of the list.
+ */
+static inline void page_remove_from_list(struct hyp_page *p)
+{
+ struct list_head *node = hyp_page_to_virt(p);
+
+ __list_del_entry(node);
+ memset(node, 0, sizeof(*node));
+}
+
+static inline void page_add_to_list(struct hyp_page *p, struct list_head *head)
+{
+ struct list_head *node = hyp_page_to_virt(p);
+
+ INIT_LIST_HEAD(node);
+ list_add_tail(node, head);
+}
+
+static inline struct hyp_page *node_to_page(struct list_head *node)
+{
+ return hyp_virt_to_page(node);
+}
+
+static void __hyp_attach_page(struct hyp_pool *pool,
+ struct hyp_page *p)
+{
+ phys_addr_t phys = hyp_page_to_phys(p);
+ unsigned short order = p->order;
+ struct hyp_page *buddy;
+
+ memset(hyp_page_to_virt(p), 0, PAGE_SIZE << p->order);
+
+ /* Skip coalescing for 'external' pages being freed into the pool. */
+ if (phys < pool->range_start || phys >= pool->range_end)
+ goto insert;
+
+ /*
+ * Only the first struct hyp_page of a high-order page (otherwise known
+ * as the 'head') should have p->order set. The non-head pages should
+ * have p->order = HYP_NO_ORDER. Here @p may no longer be the head
+ * after coalescing, so make sure to mark it HYP_NO_ORDER proactively.
+ */
+ p->order = HYP_NO_ORDER;
+ for (; (order + 1) <= pool->max_order; order++) {
+ buddy = __find_buddy_avail(pool, p, order);
+ if (!buddy)
+ break;
+
+ /* Take the buddy out of its list, and coalesce with @p */
+ page_remove_from_list(buddy);
+ buddy->order = HYP_NO_ORDER;
+ p = min(p, buddy);
+ }
+
+insert:
+ /* Mark the new head, and insert it */
+ p->order = order;
+ page_add_to_list(p, &pool->free_area[order]);
+}
+
+static struct hyp_page *__hyp_extract_page(struct hyp_pool *pool,
+ struct hyp_page *p,
+ unsigned short order)
+{
+ struct hyp_page *buddy;
+
+ page_remove_from_list(p);
+ while (p->order > order) {
+ /*
+ * The buddy of order n - 1 currently has HYP_NO_ORDER as it
+ * is covered by a higher-level page (whose head is @p). Use
+ * __find_buddy_nocheck() to find it and inject it in the
+ * free_list[n - 1], effectively splitting @p in half.
+ */
+ p->order--;
+ buddy = __find_buddy_nocheck(pool, p, p->order);
+ buddy->order = p->order;
+ page_add_to_list(buddy, &pool->free_area[buddy->order]);
+ }
+
+ return p;
+}
+
+static void __hyp_put_page(struct hyp_pool *pool, struct hyp_page *p)
+{
+ if (hyp_page_ref_dec_and_test(p))
+ __hyp_attach_page(pool, p);
+}
+
+/*
+ * Changes to the buddy tree and page refcounts must be done with the hyp_pool
+ * lock held. If a refcount change requires an update to the buddy tree (e.g.
+ * hyp_put_page()), both operations must be done within the same critical
+ * section to guarantee transient states (e.g. a page with null refcount but
+ * not yet attached to a free list) can't be observed by well-behaved readers.
+ */
+void hyp_put_page(struct hyp_pool *pool, void *addr)
+{
+ struct hyp_page *p = hyp_virt_to_page(addr);
+
+ hyp_spin_lock(&pool->lock);
+ __hyp_put_page(pool, p);
+ hyp_spin_unlock(&pool->lock);
+}
+
+void hyp_get_page(struct hyp_pool *pool, void *addr)
+{
+ struct hyp_page *p = hyp_virt_to_page(addr);
+
+ hyp_spin_lock(&pool->lock);
+ hyp_page_ref_inc(p);
+ hyp_spin_unlock(&pool->lock);
+}
+
+void hyp_split_page(struct hyp_page *p)
+{
+ unsigned short order = p->order;
+ unsigned int i;
+
+ p->order = 0;
+ for (i = 1; i < (1 << order); i++) {
+ struct hyp_page *tail = p + i;
+
+ tail->order = 0;
+ hyp_set_page_refcounted(tail);
+ }
+}
+
+void *hyp_alloc_pages(struct hyp_pool *pool, unsigned short order)
+{
+ unsigned short i = order;
+ struct hyp_page *p;
+
+ hyp_spin_lock(&pool->lock);
+
+ /* Look for a high-enough-order page */
+ while (i <= pool->max_order && list_empty(&pool->free_area[i]))
+ i++;
+ if (i > pool->max_order) {
+ hyp_spin_unlock(&pool->lock);
+ return NULL;
+ }
+
+ /* Extract it from the tree at the right order */
+ p = node_to_page(pool->free_area[i].next);
+ p = __hyp_extract_page(pool, p, order);
+
+ hyp_set_page_refcounted(p);
+ hyp_spin_unlock(&pool->lock);
+
+ return hyp_page_to_virt(p);
+}
+
+int hyp_pool_init(struct hyp_pool *pool, u64 pfn, unsigned int nr_pages,
+ unsigned int reserved_pages)
+{
+ phys_addr_t phys = hyp_pfn_to_phys(pfn);
+ struct hyp_page *p;
+ int i;
+
+ hyp_spin_lock_init(&pool->lock);
+ pool->max_order = min(MAX_ORDER, get_order(nr_pages << PAGE_SHIFT));
+ for (i = 0; i <= pool->max_order; i++)
+ INIT_LIST_HEAD(&pool->free_area[i]);
+ pool->range_start = phys;
+ pool->range_end = phys + (nr_pages << PAGE_SHIFT);
+
+ /* Init the vmemmap portion */
+ p = hyp_phys_to_page(phys);
+ for (i = 0; i < nr_pages; i++)
+ hyp_set_page_refcounted(&p[i]);
+
+ /* Attach the unused pages to the buddy tree */
+ for (i = reserved_pages; i < nr_pages; i++)
+ __hyp_put_page(pool, &p[i]);
+
+ return 0;
+}
diff --git a/arch/arm64/kvm/hyp/nvhe/pkvm.c b/arch/arm64/kvm/hyp/nvhe/pkvm.c
new file mode 100644
index 0000000000..8033ef353a
--- /dev/null
+++ b/arch/arm64/kvm/hyp/nvhe/pkvm.c
@@ -0,0 +1,636 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2021 Google LLC
+ * Author: Fuad Tabba <tabba@google.com>
+ */
+
+#include <linux/kvm_host.h>
+#include <linux/mm.h>
+#include <nvhe/fixed_config.h>
+#include <nvhe/mem_protect.h>
+#include <nvhe/memory.h>
+#include <nvhe/pkvm.h>
+#include <nvhe/trap_handler.h>
+
+/* Used by icache_is_vpipt(). */
+unsigned long __icache_flags;
+
+/* Used by kvm_get_vttbr(). */
+unsigned int kvm_arm_vmid_bits;
+
+/*
+ * Set trap register values based on features in ID_AA64PFR0.
+ */
+static void pvm_init_traps_aa64pfr0(struct kvm_vcpu *vcpu)
+{
+ const u64 feature_ids = pvm_read_id_reg(vcpu, SYS_ID_AA64PFR0_EL1);
+ u64 hcr_set = HCR_RW;
+ u64 hcr_clear = 0;
+ u64 cptr_set = 0;
+ u64 cptr_clear = 0;
+
+ /* Protected KVM does not support AArch32 guests. */
+ BUILD_BUG_ON(FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_EL0),
+ PVM_ID_AA64PFR0_RESTRICT_UNSIGNED) != ID_AA64PFR0_EL1_ELx_64BIT_ONLY);
+ BUILD_BUG_ON(FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_EL1),
+ PVM_ID_AA64PFR0_RESTRICT_UNSIGNED) != ID_AA64PFR0_EL1_ELx_64BIT_ONLY);
+
+ /*
+ * Linux guests assume support for floating-point and Advanced SIMD. Do
+ * not change the trapping behavior for these from the KVM default.
+ */
+ BUILD_BUG_ON(!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_FP),
+ PVM_ID_AA64PFR0_ALLOW));
+ BUILD_BUG_ON(!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_AdvSIMD),
+ PVM_ID_AA64PFR0_ALLOW));
+
+ if (has_hvhe())
+ hcr_set |= HCR_E2H;
+
+ /* Trap RAS unless all current versions are supported */
+ if (FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_RAS), feature_ids) <
+ ID_AA64PFR0_EL1_RAS_V1P1) {
+ hcr_set |= HCR_TERR | HCR_TEA;
+ hcr_clear |= HCR_FIEN;
+ }
+
+ /* Trap AMU */
+ if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_AMU), feature_ids)) {
+ hcr_clear |= HCR_AMVOFFEN;
+ cptr_set |= CPTR_EL2_TAM;
+ }
+
+ /* Trap SVE */
+ if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_SVE), feature_ids)) {
+ if (has_hvhe())
+ cptr_clear |= CPACR_EL1_ZEN_EL0EN | CPACR_EL1_ZEN_EL1EN;
+ else
+ cptr_set |= CPTR_EL2_TZ;
+ }
+
+ vcpu->arch.hcr_el2 |= hcr_set;
+ vcpu->arch.hcr_el2 &= ~hcr_clear;
+ vcpu->arch.cptr_el2 |= cptr_set;
+ vcpu->arch.cptr_el2 &= ~cptr_clear;
+}
+
+/*
+ * Set trap register values based on features in ID_AA64PFR1.
+ */
+static void pvm_init_traps_aa64pfr1(struct kvm_vcpu *vcpu)
+{
+ const u64 feature_ids = pvm_read_id_reg(vcpu, SYS_ID_AA64PFR1_EL1);
+ u64 hcr_set = 0;
+ u64 hcr_clear = 0;
+
+ /* Memory Tagging: Trap and Treat as Untagged if not supported. */
+ if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE), feature_ids)) {
+ hcr_set |= HCR_TID5;
+ hcr_clear |= HCR_DCT | HCR_ATA;
+ }
+
+ vcpu->arch.hcr_el2 |= hcr_set;
+ vcpu->arch.hcr_el2 &= ~hcr_clear;
+}
+
+/*
+ * Set trap register values based on features in ID_AA64DFR0.
+ */
+static void pvm_init_traps_aa64dfr0(struct kvm_vcpu *vcpu)
+{
+ const u64 feature_ids = pvm_read_id_reg(vcpu, SYS_ID_AA64DFR0_EL1);
+ u64 mdcr_set = 0;
+ u64 mdcr_clear = 0;
+ u64 cptr_set = 0;
+
+ /* Trap/constrain PMU */
+ if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer), feature_ids)) {
+ mdcr_set |= MDCR_EL2_TPM | MDCR_EL2_TPMCR;
+ mdcr_clear |= MDCR_EL2_HPME | MDCR_EL2_MTPME |
+ MDCR_EL2_HPMN_MASK;
+ }
+
+ /* Trap Debug */
+ if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_DebugVer), feature_ids))
+ mdcr_set |= MDCR_EL2_TDRA | MDCR_EL2_TDA | MDCR_EL2_TDE;
+
+ /* Trap OS Double Lock */
+ if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_DoubleLock), feature_ids))
+ mdcr_set |= MDCR_EL2_TDOSA;
+
+ /* Trap SPE */
+ if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMSVer), feature_ids)) {
+ mdcr_set |= MDCR_EL2_TPMS;
+ mdcr_clear |= MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT;
+ }
+
+ /* Trap Trace Filter */
+ if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_TraceFilt), feature_ids))
+ mdcr_set |= MDCR_EL2_TTRF;
+
+ /* Trap Trace */
+ if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_TraceVer), feature_ids)) {
+ if (has_hvhe())
+ cptr_set |= CPACR_EL1_TTA;
+ else
+ cptr_set |= CPTR_EL2_TTA;
+ }
+
+ vcpu->arch.mdcr_el2 |= mdcr_set;
+ vcpu->arch.mdcr_el2 &= ~mdcr_clear;
+ vcpu->arch.cptr_el2 |= cptr_set;
+}
+
+/*
+ * Set trap register values based on features in ID_AA64MMFR0.
+ */
+static void pvm_init_traps_aa64mmfr0(struct kvm_vcpu *vcpu)
+{
+ const u64 feature_ids = pvm_read_id_reg(vcpu, SYS_ID_AA64MMFR0_EL1);
+ u64 mdcr_set = 0;
+
+ /* Trap Debug Communications Channel registers */
+ if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64MMFR0_EL1_FGT), feature_ids))
+ mdcr_set |= MDCR_EL2_TDCC;
+
+ vcpu->arch.mdcr_el2 |= mdcr_set;
+}
+
+/*
+ * Set trap register values based on features in ID_AA64MMFR1.
+ */
+static void pvm_init_traps_aa64mmfr1(struct kvm_vcpu *vcpu)
+{
+ const u64 feature_ids = pvm_read_id_reg(vcpu, SYS_ID_AA64MMFR1_EL1);
+ u64 hcr_set = 0;
+
+ /* Trap LOR */
+ if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64MMFR1_EL1_LO), feature_ids))
+ hcr_set |= HCR_TLOR;
+
+ vcpu->arch.hcr_el2 |= hcr_set;
+}
+
+/*
+ * Set baseline trap register values.
+ */
+static void pvm_init_trap_regs(struct kvm_vcpu *vcpu)
+{
+ const u64 hcr_trap_feat_regs = HCR_TID3;
+ const u64 hcr_trap_impdef = HCR_TACR | HCR_TIDCP | HCR_TID1;
+
+ /*
+ * Always trap:
+ * - Feature id registers: to control features exposed to guests
+ * - Implementation-defined features
+ */
+ vcpu->arch.hcr_el2 |= hcr_trap_feat_regs | hcr_trap_impdef;
+
+ /* Clear res0 and set res1 bits to trap potential new features. */
+ vcpu->arch.hcr_el2 &= ~(HCR_RES0);
+ vcpu->arch.mdcr_el2 &= ~(MDCR_EL2_RES0);
+ if (!has_hvhe()) {
+ vcpu->arch.cptr_el2 |= CPTR_NVHE_EL2_RES1;
+ vcpu->arch.cptr_el2 &= ~(CPTR_NVHE_EL2_RES0);
+ }
+}
+
+/*
+ * Initialize trap register values for protected VMs.
+ */
+void __pkvm_vcpu_init_traps(struct kvm_vcpu *vcpu)
+{
+ pvm_init_trap_regs(vcpu);
+ pvm_init_traps_aa64pfr0(vcpu);
+ pvm_init_traps_aa64pfr1(vcpu);
+ pvm_init_traps_aa64dfr0(vcpu);
+ pvm_init_traps_aa64mmfr0(vcpu);
+ pvm_init_traps_aa64mmfr1(vcpu);
+}
+
+/*
+ * Start the VM table handle at the offset defined instead of at 0.
+ * Mainly for sanity checking and debugging.
+ */
+#define HANDLE_OFFSET 0x1000
+
+static unsigned int vm_handle_to_idx(pkvm_handle_t handle)
+{
+ return handle - HANDLE_OFFSET;
+}
+
+static pkvm_handle_t idx_to_vm_handle(unsigned int idx)
+{
+ return idx + HANDLE_OFFSET;
+}
+
+/*
+ * Spinlock for protecting state related to the VM table. Protects writes
+ * to 'vm_table' and 'nr_table_entries' as well as reads and writes to
+ * 'last_hyp_vcpu_lookup'.
+ */
+static DEFINE_HYP_SPINLOCK(vm_table_lock);
+
+/*
+ * The table of VM entries for protected VMs in hyp.
+ * Allocated at hyp initialization and setup.
+ */
+static struct pkvm_hyp_vm **vm_table;
+
+void pkvm_hyp_vm_table_init(void *tbl)
+{
+ WARN_ON(vm_table);
+ vm_table = tbl;
+}
+
+/*
+ * Return the hyp vm structure corresponding to the handle.
+ */
+static struct pkvm_hyp_vm *get_vm_by_handle(pkvm_handle_t handle)
+{
+ unsigned int idx = vm_handle_to_idx(handle);
+
+ if (unlikely(idx >= KVM_MAX_PVMS))
+ return NULL;
+
+ return vm_table[idx];
+}
+
+struct pkvm_hyp_vcpu *pkvm_load_hyp_vcpu(pkvm_handle_t handle,
+ unsigned int vcpu_idx)
+{
+ struct pkvm_hyp_vcpu *hyp_vcpu = NULL;
+ struct pkvm_hyp_vm *hyp_vm;
+
+ hyp_spin_lock(&vm_table_lock);
+ hyp_vm = get_vm_by_handle(handle);
+ if (!hyp_vm || hyp_vm->nr_vcpus <= vcpu_idx)
+ goto unlock;
+
+ hyp_vcpu = hyp_vm->vcpus[vcpu_idx];
+ hyp_page_ref_inc(hyp_virt_to_page(hyp_vm));
+unlock:
+ hyp_spin_unlock(&vm_table_lock);
+ return hyp_vcpu;
+}
+
+void pkvm_put_hyp_vcpu(struct pkvm_hyp_vcpu *hyp_vcpu)
+{
+ struct pkvm_hyp_vm *hyp_vm = pkvm_hyp_vcpu_to_hyp_vm(hyp_vcpu);
+
+ hyp_spin_lock(&vm_table_lock);
+ hyp_page_ref_dec(hyp_virt_to_page(hyp_vm));
+ hyp_spin_unlock(&vm_table_lock);
+}
+
+static void unpin_host_vcpu(struct kvm_vcpu *host_vcpu)
+{
+ if (host_vcpu)
+ hyp_unpin_shared_mem(host_vcpu, host_vcpu + 1);
+}
+
+static void unpin_host_vcpus(struct pkvm_hyp_vcpu *hyp_vcpus[],
+ unsigned int nr_vcpus)
+{
+ int i;
+
+ for (i = 0; i < nr_vcpus; i++)
+ unpin_host_vcpu(hyp_vcpus[i]->host_vcpu);
+}
+
+static void init_pkvm_hyp_vm(struct kvm *host_kvm, struct pkvm_hyp_vm *hyp_vm,
+ unsigned int nr_vcpus)
+{
+ hyp_vm->host_kvm = host_kvm;
+ hyp_vm->kvm.created_vcpus = nr_vcpus;
+ hyp_vm->kvm.arch.vtcr = host_mmu.arch.vtcr;
+}
+
+static int init_pkvm_hyp_vcpu(struct pkvm_hyp_vcpu *hyp_vcpu,
+ struct pkvm_hyp_vm *hyp_vm,
+ struct kvm_vcpu *host_vcpu,
+ unsigned int vcpu_idx)
+{
+ int ret = 0;
+
+ if (hyp_pin_shared_mem(host_vcpu, host_vcpu + 1))
+ return -EBUSY;
+
+ if (host_vcpu->vcpu_idx != vcpu_idx) {
+ ret = -EINVAL;
+ goto done;
+ }
+
+ hyp_vcpu->host_vcpu = host_vcpu;
+
+ hyp_vcpu->vcpu.kvm = &hyp_vm->kvm;
+ hyp_vcpu->vcpu.vcpu_id = READ_ONCE(host_vcpu->vcpu_id);
+ hyp_vcpu->vcpu.vcpu_idx = vcpu_idx;
+
+ hyp_vcpu->vcpu.arch.hw_mmu = &hyp_vm->kvm.arch.mmu;
+ hyp_vcpu->vcpu.arch.cflags = READ_ONCE(host_vcpu->arch.cflags);
+done:
+ if (ret)
+ unpin_host_vcpu(host_vcpu);
+ return ret;
+}
+
+static int find_free_vm_table_entry(struct kvm *host_kvm)
+{
+ int i;
+
+ for (i = 0; i < KVM_MAX_PVMS; ++i) {
+ if (!vm_table[i])
+ return i;
+ }
+
+ return -ENOMEM;
+}
+
+/*
+ * Allocate a VM table entry and insert a pointer to the new vm.
+ *
+ * Return a unique handle to the protected VM on success,
+ * negative error code on failure.
+ */
+static pkvm_handle_t insert_vm_table_entry(struct kvm *host_kvm,
+ struct pkvm_hyp_vm *hyp_vm)
+{
+ struct kvm_s2_mmu *mmu = &hyp_vm->kvm.arch.mmu;
+ int idx;
+
+ hyp_assert_lock_held(&vm_table_lock);
+
+ /*
+ * Initializing protected state might have failed, yet a malicious
+ * host could trigger this function. Thus, ensure that 'vm_table'
+ * exists.
+ */
+ if (unlikely(!vm_table))
+ return -EINVAL;
+
+ idx = find_free_vm_table_entry(host_kvm);
+ if (idx < 0)
+ return idx;
+
+ hyp_vm->kvm.arch.pkvm.handle = idx_to_vm_handle(idx);
+
+ /* VMID 0 is reserved for the host */
+ atomic64_set(&mmu->vmid.id, idx + 1);
+
+ mmu->arch = &hyp_vm->kvm.arch;
+ mmu->pgt = &hyp_vm->pgt;
+
+ vm_table[idx] = hyp_vm;
+ return hyp_vm->kvm.arch.pkvm.handle;
+}
+
+/*
+ * Deallocate and remove the VM table entry corresponding to the handle.
+ */
+static void remove_vm_table_entry(pkvm_handle_t handle)
+{
+ hyp_assert_lock_held(&vm_table_lock);
+ vm_table[vm_handle_to_idx(handle)] = NULL;
+}
+
+static size_t pkvm_get_hyp_vm_size(unsigned int nr_vcpus)
+{
+ return size_add(sizeof(struct pkvm_hyp_vm),
+ size_mul(sizeof(struct pkvm_hyp_vcpu *), nr_vcpus));
+}
+
+static void *map_donated_memory_noclear(unsigned long host_va, size_t size)
+{
+ void *va = (void *)kern_hyp_va(host_va);
+
+ if (!PAGE_ALIGNED(va))
+ return NULL;
+
+ if (__pkvm_host_donate_hyp(hyp_virt_to_pfn(va),
+ PAGE_ALIGN(size) >> PAGE_SHIFT))
+ return NULL;
+
+ return va;
+}
+
+static void *map_donated_memory(unsigned long host_va, size_t size)
+{
+ void *va = map_donated_memory_noclear(host_va, size);
+
+ if (va)
+ memset(va, 0, size);
+
+ return va;
+}
+
+static void __unmap_donated_memory(void *va, size_t size)
+{
+ WARN_ON(__pkvm_hyp_donate_host(hyp_virt_to_pfn(va),
+ PAGE_ALIGN(size) >> PAGE_SHIFT));
+}
+
+static void unmap_donated_memory(void *va, size_t size)
+{
+ if (!va)
+ return;
+
+ memset(va, 0, size);
+ __unmap_donated_memory(va, size);
+}
+
+static void unmap_donated_memory_noclear(void *va, size_t size)
+{
+ if (!va)
+ return;
+
+ __unmap_donated_memory(va, size);
+}
+
+/*
+ * Initialize the hypervisor copy of the protected VM state using the
+ * memory donated by the host.
+ *
+ * Unmaps the donated memory from the host at stage 2.
+ *
+ * host_kvm: A pointer to the host's struct kvm.
+ * vm_hva: The host va of the area being donated for the VM state.
+ * Must be page aligned.
+ * pgd_hva: The host va of the area being donated for the stage-2 PGD for
+ * the VM. Must be page aligned. Its size is implied by the VM's
+ * VTCR.
+ *
+ * Return a unique handle to the protected VM on success,
+ * negative error code on failure.
+ */
+int __pkvm_init_vm(struct kvm *host_kvm, unsigned long vm_hva,
+ unsigned long pgd_hva)
+{
+ struct pkvm_hyp_vm *hyp_vm = NULL;
+ size_t vm_size, pgd_size;
+ unsigned int nr_vcpus;
+ void *pgd = NULL;
+ int ret;
+
+ ret = hyp_pin_shared_mem(host_kvm, host_kvm + 1);
+ if (ret)
+ return ret;
+
+ nr_vcpus = READ_ONCE(host_kvm->created_vcpus);
+ if (nr_vcpus < 1) {
+ ret = -EINVAL;
+ goto err_unpin_kvm;
+ }
+
+ vm_size = pkvm_get_hyp_vm_size(nr_vcpus);
+ pgd_size = kvm_pgtable_stage2_pgd_size(host_mmu.arch.vtcr);
+
+ ret = -ENOMEM;
+
+ hyp_vm = map_donated_memory(vm_hva, vm_size);
+ if (!hyp_vm)
+ goto err_remove_mappings;
+
+ pgd = map_donated_memory_noclear(pgd_hva, pgd_size);
+ if (!pgd)
+ goto err_remove_mappings;
+
+ init_pkvm_hyp_vm(host_kvm, hyp_vm, nr_vcpus);
+
+ hyp_spin_lock(&vm_table_lock);
+ ret = insert_vm_table_entry(host_kvm, hyp_vm);
+ if (ret < 0)
+ goto err_unlock;
+
+ ret = kvm_guest_prepare_stage2(hyp_vm, pgd);
+ if (ret)
+ goto err_remove_vm_table_entry;
+ hyp_spin_unlock(&vm_table_lock);
+
+ return hyp_vm->kvm.arch.pkvm.handle;
+
+err_remove_vm_table_entry:
+ remove_vm_table_entry(hyp_vm->kvm.arch.pkvm.handle);
+err_unlock:
+ hyp_spin_unlock(&vm_table_lock);
+err_remove_mappings:
+ unmap_donated_memory(hyp_vm, vm_size);
+ unmap_donated_memory(pgd, pgd_size);
+err_unpin_kvm:
+ hyp_unpin_shared_mem(host_kvm, host_kvm + 1);
+ return ret;
+}
+
+/*
+ * Initialize the hypervisor copy of the protected vCPU state using the
+ * memory donated by the host.
+ *
+ * handle: The handle for the protected vm.
+ * host_vcpu: A pointer to the corresponding host vcpu.
+ * vcpu_hva: The host va of the area being donated for the vcpu state.
+ * Must be page aligned. The size of the area must be equal to
+ * the page-aligned size of 'struct pkvm_hyp_vcpu'.
+ * Return 0 on success, negative error code on failure.
+ */
+int __pkvm_init_vcpu(pkvm_handle_t handle, struct kvm_vcpu *host_vcpu,
+ unsigned long vcpu_hva)
+{
+ struct pkvm_hyp_vcpu *hyp_vcpu;
+ struct pkvm_hyp_vm *hyp_vm;
+ unsigned int idx;
+ int ret;
+
+ hyp_vcpu = map_donated_memory(vcpu_hva, sizeof(*hyp_vcpu));
+ if (!hyp_vcpu)
+ return -ENOMEM;
+
+ hyp_spin_lock(&vm_table_lock);
+
+ hyp_vm = get_vm_by_handle(handle);
+ if (!hyp_vm) {
+ ret = -ENOENT;
+ goto unlock;
+ }
+
+ idx = hyp_vm->nr_vcpus;
+ if (idx >= hyp_vm->kvm.created_vcpus) {
+ ret = -EINVAL;
+ goto unlock;
+ }
+
+ ret = init_pkvm_hyp_vcpu(hyp_vcpu, hyp_vm, host_vcpu, idx);
+ if (ret)
+ goto unlock;
+
+ hyp_vm->vcpus[idx] = hyp_vcpu;
+ hyp_vm->nr_vcpus++;
+unlock:
+ hyp_spin_unlock(&vm_table_lock);
+
+ if (ret)
+ unmap_donated_memory(hyp_vcpu, sizeof(*hyp_vcpu));
+
+ return ret;
+}
+
+static void
+teardown_donated_memory(struct kvm_hyp_memcache *mc, void *addr, size_t size)
+{
+ size = PAGE_ALIGN(size);
+ memset(addr, 0, size);
+
+ for (void *start = addr; start < addr + size; start += PAGE_SIZE)
+ push_hyp_memcache(mc, start, hyp_virt_to_phys);
+
+ unmap_donated_memory_noclear(addr, size);
+}
+
+int __pkvm_teardown_vm(pkvm_handle_t handle)
+{
+ struct kvm_hyp_memcache *mc;
+ struct pkvm_hyp_vm *hyp_vm;
+ struct kvm *host_kvm;
+ unsigned int idx;
+ size_t vm_size;
+ int err;
+
+ hyp_spin_lock(&vm_table_lock);
+ hyp_vm = get_vm_by_handle(handle);
+ if (!hyp_vm) {
+ err = -ENOENT;
+ goto err_unlock;
+ }
+
+ if (WARN_ON(hyp_page_count(hyp_vm))) {
+ err = -EBUSY;
+ goto err_unlock;
+ }
+
+ host_kvm = hyp_vm->host_kvm;
+
+ /* Ensure the VMID is clean before it can be reallocated */
+ __kvm_tlb_flush_vmid(&hyp_vm->kvm.arch.mmu);
+ remove_vm_table_entry(handle);
+ hyp_spin_unlock(&vm_table_lock);
+
+ /* Reclaim guest pages (including page-table pages) */
+ mc = &host_kvm->arch.pkvm.teardown_mc;
+ reclaim_guest_pages(hyp_vm, mc);
+ unpin_host_vcpus(hyp_vm->vcpus, hyp_vm->nr_vcpus);
+
+ /* Push the metadata pages to the teardown memcache */
+ for (idx = 0; idx < hyp_vm->nr_vcpus; ++idx) {
+ struct pkvm_hyp_vcpu *hyp_vcpu = hyp_vm->vcpus[idx];
+
+ teardown_donated_memory(mc, hyp_vcpu, sizeof(*hyp_vcpu));
+ }
+
+ vm_size = pkvm_get_hyp_vm_size(hyp_vm->kvm.created_vcpus);
+ teardown_donated_memory(mc, hyp_vm, vm_size);
+ hyp_unpin_shared_mem(host_kvm, host_kvm + 1);
+ return 0;
+
+err_unlock:
+ hyp_spin_unlock(&vm_table_lock);
+ return err;
+}
diff --git a/arch/arm64/kvm/hyp/nvhe/psci-relay.c b/arch/arm64/kvm/hyp/nvhe/psci-relay.c
new file mode 100644
index 0000000000..d57bcb6ab9
--- /dev/null
+++ b/arch/arm64/kvm/hyp/nvhe/psci-relay.c
@@ -0,0 +1,303 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2020 - Google LLC
+ * Author: David Brazdil <dbrazdil@google.com>
+ */
+
+#include <asm/kvm_asm.h>
+#include <asm/kvm_hyp.h>
+#include <asm/kvm_mmu.h>
+#include <linux/arm-smccc.h>
+#include <linux/kvm_host.h>
+#include <uapi/linux/psci.h>
+
+#include <nvhe/memory.h>
+#include <nvhe/trap_handler.h>
+
+void kvm_hyp_cpu_entry(unsigned long r0);
+void kvm_hyp_cpu_resume(unsigned long r0);
+
+void __noreturn __host_enter(struct kvm_cpu_context *host_ctxt);
+
+/* Config options set by the host. */
+struct kvm_host_psci_config __ro_after_init kvm_host_psci_config;
+
+#define INVALID_CPU_ID UINT_MAX
+
+struct psci_boot_args {
+ atomic_t lock;
+ unsigned long pc;
+ unsigned long r0;
+};
+
+#define PSCI_BOOT_ARGS_UNLOCKED 0
+#define PSCI_BOOT_ARGS_LOCKED 1
+
+#define PSCI_BOOT_ARGS_INIT \
+ ((struct psci_boot_args){ \
+ .lock = ATOMIC_INIT(PSCI_BOOT_ARGS_UNLOCKED), \
+ })
+
+static DEFINE_PER_CPU(struct psci_boot_args, cpu_on_args) = PSCI_BOOT_ARGS_INIT;
+static DEFINE_PER_CPU(struct psci_boot_args, suspend_args) = PSCI_BOOT_ARGS_INIT;
+
+#define is_psci_0_1(what, func_id) \
+ (kvm_host_psci_config.psci_0_1_ ## what ## _implemented && \
+ (func_id) == kvm_host_psci_config.function_ids_0_1.what)
+
+static bool is_psci_0_1_call(u64 func_id)
+{
+ return (is_psci_0_1(cpu_suspend, func_id) ||
+ is_psci_0_1(cpu_on, func_id) ||
+ is_psci_0_1(cpu_off, func_id) ||
+ is_psci_0_1(migrate, func_id));
+}
+
+static bool is_psci_0_2_call(u64 func_id)
+{
+ /* SMCCC reserves IDs 0x00-1F with the given 32/64-bit base for PSCI. */
+ return (PSCI_0_2_FN(0) <= func_id && func_id <= PSCI_0_2_FN(31)) ||
+ (PSCI_0_2_FN64(0) <= func_id && func_id <= PSCI_0_2_FN64(31));
+}
+
+static unsigned long psci_call(unsigned long fn, unsigned long arg0,
+ unsigned long arg1, unsigned long arg2)
+{
+ struct arm_smccc_res res;
+
+ arm_smccc_1_1_smc(fn, arg0, arg1, arg2, &res);
+ return res.a0;
+}
+
+static unsigned long psci_forward(struct kvm_cpu_context *host_ctxt)
+{
+ return psci_call(cpu_reg(host_ctxt, 0), cpu_reg(host_ctxt, 1),
+ cpu_reg(host_ctxt, 2), cpu_reg(host_ctxt, 3));
+}
+
+static unsigned int find_cpu_id(u64 mpidr)
+{
+ unsigned int i;
+
+ /* Reject invalid MPIDRs */
+ if (mpidr & ~MPIDR_HWID_BITMASK)
+ return INVALID_CPU_ID;
+
+ for (i = 0; i < NR_CPUS; i++) {
+ if (cpu_logical_map(i) == mpidr)
+ return i;
+ }
+
+ return INVALID_CPU_ID;
+}
+
+static __always_inline bool try_acquire_boot_args(struct psci_boot_args *args)
+{
+ return atomic_cmpxchg_acquire(&args->lock,
+ PSCI_BOOT_ARGS_UNLOCKED,
+ PSCI_BOOT_ARGS_LOCKED) ==
+ PSCI_BOOT_ARGS_UNLOCKED;
+}
+
+static __always_inline void release_boot_args(struct psci_boot_args *args)
+{
+ atomic_set_release(&args->lock, PSCI_BOOT_ARGS_UNLOCKED);
+}
+
+static int psci_cpu_on(u64 func_id, struct kvm_cpu_context *host_ctxt)
+{
+ DECLARE_REG(u64, mpidr, host_ctxt, 1);
+ DECLARE_REG(unsigned long, pc, host_ctxt, 2);
+ DECLARE_REG(unsigned long, r0, host_ctxt, 3);
+
+ unsigned int cpu_id;
+ struct psci_boot_args *boot_args;
+ struct kvm_nvhe_init_params *init_params;
+ int ret;
+
+ /*
+ * Find the logical CPU ID for the given MPIDR. The search set is
+ * the set of CPUs that were online at the point of KVM initialization.
+ * Booting other CPUs is rejected because their cpufeatures were not
+ * checked against the finalized capabilities. This could be relaxed
+ * by doing the feature checks in hyp.
+ */
+ cpu_id = find_cpu_id(mpidr);
+ if (cpu_id == INVALID_CPU_ID)
+ return PSCI_RET_INVALID_PARAMS;
+
+ boot_args = per_cpu_ptr(&cpu_on_args, cpu_id);
+ init_params = per_cpu_ptr(&kvm_init_params, cpu_id);
+
+ /* Check if the target CPU is already being booted. */
+ if (!try_acquire_boot_args(boot_args))
+ return PSCI_RET_ALREADY_ON;
+
+ boot_args->pc = pc;
+ boot_args->r0 = r0;
+ wmb();
+
+ ret = psci_call(func_id, mpidr,
+ __hyp_pa(&kvm_hyp_cpu_entry),
+ __hyp_pa(init_params));
+
+ /* If successful, the lock will be released by the target CPU. */
+ if (ret != PSCI_RET_SUCCESS)
+ release_boot_args(boot_args);
+
+ return ret;
+}
+
+static int psci_cpu_suspend(u64 func_id, struct kvm_cpu_context *host_ctxt)
+{
+ DECLARE_REG(u64, power_state, host_ctxt, 1);
+ DECLARE_REG(unsigned long, pc, host_ctxt, 2);
+ DECLARE_REG(unsigned long, r0, host_ctxt, 3);
+
+ struct psci_boot_args *boot_args;
+ struct kvm_nvhe_init_params *init_params;
+
+ boot_args = this_cpu_ptr(&suspend_args);
+ init_params = this_cpu_ptr(&kvm_init_params);
+
+ /*
+ * No need to acquire a lock before writing to boot_args because a core
+ * can only suspend itself. Racy CPU_ON calls use a separate struct.
+ */
+ boot_args->pc = pc;
+ boot_args->r0 = r0;
+
+ /*
+ * Will either return if shallow sleep state, or wake up into the entry
+ * point if it is a deep sleep state.
+ */
+ return psci_call(func_id, power_state,
+ __hyp_pa(&kvm_hyp_cpu_resume),
+ __hyp_pa(init_params));
+}
+
+static int psci_system_suspend(u64 func_id, struct kvm_cpu_context *host_ctxt)
+{
+ DECLARE_REG(unsigned long, pc, host_ctxt, 1);
+ DECLARE_REG(unsigned long, r0, host_ctxt, 2);
+
+ struct psci_boot_args *boot_args;
+ struct kvm_nvhe_init_params *init_params;
+
+ boot_args = this_cpu_ptr(&suspend_args);
+ init_params = this_cpu_ptr(&kvm_init_params);
+
+ /*
+ * No need to acquire a lock before writing to boot_args because a core
+ * can only suspend itself. Racy CPU_ON calls use a separate struct.
+ */
+ boot_args->pc = pc;
+ boot_args->r0 = r0;
+
+ /* Will only return on error. */
+ return psci_call(func_id,
+ __hyp_pa(&kvm_hyp_cpu_resume),
+ __hyp_pa(init_params), 0);
+}
+
+asmlinkage void __noreturn __kvm_host_psci_cpu_entry(bool is_cpu_on)
+{
+ struct psci_boot_args *boot_args;
+ struct kvm_cpu_context *host_ctxt;
+
+ host_ctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt;
+
+ if (is_cpu_on)
+ boot_args = this_cpu_ptr(&cpu_on_args);
+ else
+ boot_args = this_cpu_ptr(&suspend_args);
+
+ cpu_reg(host_ctxt, 0) = boot_args->r0;
+ write_sysreg_el2(boot_args->pc, SYS_ELR);
+
+ if (is_cpu_on)
+ release_boot_args(boot_args);
+
+ __host_enter(host_ctxt);
+}
+
+static unsigned long psci_0_1_handler(u64 func_id, struct kvm_cpu_context *host_ctxt)
+{
+ if (is_psci_0_1(cpu_off, func_id) || is_psci_0_1(migrate, func_id))
+ return psci_forward(host_ctxt);
+ if (is_psci_0_1(cpu_on, func_id))
+ return psci_cpu_on(func_id, host_ctxt);
+ if (is_psci_0_1(cpu_suspend, func_id))
+ return psci_cpu_suspend(func_id, host_ctxt);
+
+ return PSCI_RET_NOT_SUPPORTED;
+}
+
+static unsigned long psci_0_2_handler(u64 func_id, struct kvm_cpu_context *host_ctxt)
+{
+ switch (func_id) {
+ case PSCI_0_2_FN_PSCI_VERSION:
+ case PSCI_0_2_FN_CPU_OFF:
+ case PSCI_0_2_FN64_AFFINITY_INFO:
+ case PSCI_0_2_FN64_MIGRATE:
+ case PSCI_0_2_FN_MIGRATE_INFO_TYPE:
+ case PSCI_0_2_FN64_MIGRATE_INFO_UP_CPU:
+ return psci_forward(host_ctxt);
+ /*
+ * SYSTEM_OFF/RESET should not return according to the spec.
+ * Allow it so as to stay robust to broken firmware.
+ */
+ case PSCI_0_2_FN_SYSTEM_OFF:
+ case PSCI_0_2_FN_SYSTEM_RESET:
+ return psci_forward(host_ctxt);
+ case PSCI_0_2_FN64_CPU_SUSPEND:
+ return psci_cpu_suspend(func_id, host_ctxt);
+ case PSCI_0_2_FN64_CPU_ON:
+ return psci_cpu_on(func_id, host_ctxt);
+ default:
+ return PSCI_RET_NOT_SUPPORTED;
+ }
+}
+
+static unsigned long psci_1_0_handler(u64 func_id, struct kvm_cpu_context *host_ctxt)
+{
+ switch (func_id) {
+ case PSCI_1_0_FN_PSCI_FEATURES:
+ case PSCI_1_0_FN_SET_SUSPEND_MODE:
+ case PSCI_1_1_FN64_SYSTEM_RESET2:
+ return psci_forward(host_ctxt);
+ case PSCI_1_0_FN64_SYSTEM_SUSPEND:
+ return psci_system_suspend(func_id, host_ctxt);
+ default:
+ return psci_0_2_handler(func_id, host_ctxt);
+ }
+}
+
+bool kvm_host_psci_handler(struct kvm_cpu_context *host_ctxt, u32 func_id)
+{
+ unsigned long ret;
+
+ switch (kvm_host_psci_config.version) {
+ case PSCI_VERSION(0, 1):
+ if (!is_psci_0_1_call(func_id))
+ return false;
+ ret = psci_0_1_handler(func_id, host_ctxt);
+ break;
+ case PSCI_VERSION(0, 2):
+ if (!is_psci_0_2_call(func_id))
+ return false;
+ ret = psci_0_2_handler(func_id, host_ctxt);
+ break;
+ default:
+ if (!is_psci_0_2_call(func_id))
+ return false;
+ ret = psci_1_0_handler(func_id, host_ctxt);
+ break;
+ }
+
+ cpu_reg(host_ctxt, 0) = ret;
+ cpu_reg(host_ctxt, 1) = 0;
+ cpu_reg(host_ctxt, 2) = 0;
+ cpu_reg(host_ctxt, 3) = 0;
+ return true;
+}
diff --git a/arch/arm64/kvm/hyp/nvhe/setup.c b/arch/arm64/kvm/hyp/nvhe/setup.c
new file mode 100644
index 0000000000..0d5e0a89dd
--- /dev/null
+++ b/arch/arm64/kvm/hyp/nvhe/setup.c
@@ -0,0 +1,346 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2020 Google LLC
+ * Author: Quentin Perret <qperret@google.com>
+ */
+
+#include <linux/kvm_host.h>
+#include <asm/kvm_hyp.h>
+#include <asm/kvm_mmu.h>
+#include <asm/kvm_pgtable.h>
+#include <asm/kvm_pkvm.h>
+
+#include <nvhe/early_alloc.h>
+#include <nvhe/ffa.h>
+#include <nvhe/fixed_config.h>
+#include <nvhe/gfp.h>
+#include <nvhe/memory.h>
+#include <nvhe/mem_protect.h>
+#include <nvhe/mm.h>
+#include <nvhe/pkvm.h>
+#include <nvhe/trap_handler.h>
+
+unsigned long hyp_nr_cpus;
+
+#define hyp_percpu_size ((unsigned long)__per_cpu_end - \
+ (unsigned long)__per_cpu_start)
+
+static void *vmemmap_base;
+static void *vm_table_base;
+static void *hyp_pgt_base;
+static void *host_s2_pgt_base;
+static void *ffa_proxy_pages;
+static struct kvm_pgtable_mm_ops pkvm_pgtable_mm_ops;
+static struct hyp_pool hpool;
+
+static int divide_memory_pool(void *virt, unsigned long size)
+{
+ unsigned long nr_pages;
+
+ hyp_early_alloc_init(virt, size);
+
+ nr_pages = hyp_vmemmap_pages(sizeof(struct hyp_page));
+ vmemmap_base = hyp_early_alloc_contig(nr_pages);
+ if (!vmemmap_base)
+ return -ENOMEM;
+
+ nr_pages = hyp_vm_table_pages();
+ vm_table_base = hyp_early_alloc_contig(nr_pages);
+ if (!vm_table_base)
+ return -ENOMEM;
+
+ nr_pages = hyp_s1_pgtable_pages();
+ hyp_pgt_base = hyp_early_alloc_contig(nr_pages);
+ if (!hyp_pgt_base)
+ return -ENOMEM;
+
+ nr_pages = host_s2_pgtable_pages();
+ host_s2_pgt_base = hyp_early_alloc_contig(nr_pages);
+ if (!host_s2_pgt_base)
+ return -ENOMEM;
+
+ nr_pages = hyp_ffa_proxy_pages();
+ ffa_proxy_pages = hyp_early_alloc_contig(nr_pages);
+ if (!ffa_proxy_pages)
+ return -ENOMEM;
+
+ return 0;
+}
+
+static int recreate_hyp_mappings(phys_addr_t phys, unsigned long size,
+ unsigned long *per_cpu_base,
+ u32 hyp_va_bits)
+{
+ void *start, *end, *virt = hyp_phys_to_virt(phys);
+ unsigned long pgt_size = hyp_s1_pgtable_pages() << PAGE_SHIFT;
+ enum kvm_pgtable_prot prot;
+ int ret, i;
+
+ /* Recreate the hyp page-table using the early page allocator */
+ hyp_early_alloc_init(hyp_pgt_base, pgt_size);
+ ret = kvm_pgtable_hyp_init(&pkvm_pgtable, hyp_va_bits,
+ &hyp_early_alloc_mm_ops);
+ if (ret)
+ return ret;
+
+ ret = hyp_create_idmap(hyp_va_bits);
+ if (ret)
+ return ret;
+
+ ret = hyp_map_vectors();
+ if (ret)
+ return ret;
+
+ ret = hyp_back_vmemmap(hyp_virt_to_phys(vmemmap_base));
+ if (ret)
+ return ret;
+
+ ret = pkvm_create_mappings(__hyp_text_start, __hyp_text_end, PAGE_HYP_EXEC);
+ if (ret)
+ return ret;
+
+ ret = pkvm_create_mappings(__hyp_rodata_start, __hyp_rodata_end, PAGE_HYP_RO);
+ if (ret)
+ return ret;
+
+ ret = pkvm_create_mappings(__hyp_bss_start, __hyp_bss_end, PAGE_HYP);
+ if (ret)
+ return ret;
+
+ ret = pkvm_create_mappings(virt, virt + size, PAGE_HYP);
+ if (ret)
+ return ret;
+
+ for (i = 0; i < hyp_nr_cpus; i++) {
+ struct kvm_nvhe_init_params *params = per_cpu_ptr(&kvm_init_params, i);
+
+ start = (void *)kern_hyp_va(per_cpu_base[i]);
+ end = start + PAGE_ALIGN(hyp_percpu_size);
+ ret = pkvm_create_mappings(start, end, PAGE_HYP);
+ if (ret)
+ return ret;
+
+ ret = pkvm_create_stack(params->stack_pa, &params->stack_hyp_va);
+ if (ret)
+ return ret;
+ }
+
+ /*
+ * Map the host sections RO in the hypervisor, but transfer the
+ * ownership from the host to the hypervisor itself to make sure they
+ * can't be donated or shared with another entity.
+ *
+ * The ownership transition requires matching changes in the host
+ * stage-2. This will be done later (see finalize_host_mappings()) once
+ * the hyp_vmemmap is addressable.
+ */
+ prot = pkvm_mkstate(PAGE_HYP_RO, PKVM_PAGE_SHARED_OWNED);
+ ret = pkvm_create_mappings(&kvm_vgic_global_state,
+ &kvm_vgic_global_state + 1, prot);
+ if (ret)
+ return ret;
+
+ return 0;
+}
+
+static void update_nvhe_init_params(void)
+{
+ struct kvm_nvhe_init_params *params;
+ unsigned long i;
+
+ for (i = 0; i < hyp_nr_cpus; i++) {
+ params = per_cpu_ptr(&kvm_init_params, i);
+ params->pgd_pa = __hyp_pa(pkvm_pgtable.pgd);
+ dcache_clean_inval_poc((unsigned long)params,
+ (unsigned long)params + sizeof(*params));
+ }
+}
+
+static void *hyp_zalloc_hyp_page(void *arg)
+{
+ return hyp_alloc_pages(&hpool, 0);
+}
+
+static void hpool_get_page(void *addr)
+{
+ hyp_get_page(&hpool, addr);
+}
+
+static void hpool_put_page(void *addr)
+{
+ hyp_put_page(&hpool, addr);
+}
+
+static int fix_host_ownership_walker(const struct kvm_pgtable_visit_ctx *ctx,
+ enum kvm_pgtable_walk_flags visit)
+{
+ enum kvm_pgtable_prot prot;
+ enum pkvm_page_state state;
+ phys_addr_t phys;
+
+ if (!kvm_pte_valid(ctx->old))
+ return 0;
+
+ if (ctx->level != (KVM_PGTABLE_MAX_LEVELS - 1))
+ return -EINVAL;
+
+ phys = kvm_pte_to_phys(ctx->old);
+ if (!addr_is_memory(phys))
+ return -EINVAL;
+
+ /*
+ * Adjust the host stage-2 mappings to match the ownership attributes
+ * configured in the hypervisor stage-1.
+ */
+ state = pkvm_getstate(kvm_pgtable_hyp_pte_prot(ctx->old));
+ switch (state) {
+ case PKVM_PAGE_OWNED:
+ return host_stage2_set_owner_locked(phys, PAGE_SIZE, PKVM_ID_HYP);
+ case PKVM_PAGE_SHARED_OWNED:
+ prot = pkvm_mkstate(PKVM_HOST_MEM_PROT, PKVM_PAGE_SHARED_BORROWED);
+ break;
+ case PKVM_PAGE_SHARED_BORROWED:
+ prot = pkvm_mkstate(PKVM_HOST_MEM_PROT, PKVM_PAGE_SHARED_OWNED);
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ return host_stage2_idmap_locked(phys, PAGE_SIZE, prot);
+}
+
+static int fix_hyp_pgtable_refcnt_walker(const struct kvm_pgtable_visit_ctx *ctx,
+ enum kvm_pgtable_walk_flags visit)
+{
+ /*
+ * Fix-up the refcount for the page-table pages as the early allocator
+ * was unable to access the hyp_vmemmap and so the buddy allocator has
+ * initialised the refcount to '1'.
+ */
+ if (kvm_pte_valid(ctx->old))
+ ctx->mm_ops->get_page(ctx->ptep);
+
+ return 0;
+}
+
+static int fix_host_ownership(void)
+{
+ struct kvm_pgtable_walker walker = {
+ .cb = fix_host_ownership_walker,
+ .flags = KVM_PGTABLE_WALK_LEAF,
+ };
+ int i, ret;
+
+ for (i = 0; i < hyp_memblock_nr; i++) {
+ struct memblock_region *reg = &hyp_memory[i];
+ u64 start = (u64)hyp_phys_to_virt(reg->base);
+
+ ret = kvm_pgtable_walk(&pkvm_pgtable, start, reg->size, &walker);
+ if (ret)
+ return ret;
+ }
+
+ return 0;
+}
+
+static int fix_hyp_pgtable_refcnt(void)
+{
+ struct kvm_pgtable_walker walker = {
+ .cb = fix_hyp_pgtable_refcnt_walker,
+ .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
+ .arg = pkvm_pgtable.mm_ops,
+ };
+
+ return kvm_pgtable_walk(&pkvm_pgtable, 0, BIT(pkvm_pgtable.ia_bits),
+ &walker);
+}
+
+void __noreturn __pkvm_init_finalise(void)
+{
+ struct kvm_host_data *host_data = this_cpu_ptr(&kvm_host_data);
+ struct kvm_cpu_context *host_ctxt = &host_data->host_ctxt;
+ unsigned long nr_pages, reserved_pages, pfn;
+ int ret;
+
+ /* Now that the vmemmap is backed, install the full-fledged allocator */
+ pfn = hyp_virt_to_pfn(hyp_pgt_base);
+ nr_pages = hyp_s1_pgtable_pages();
+ reserved_pages = hyp_early_alloc_nr_used_pages();
+ ret = hyp_pool_init(&hpool, pfn, nr_pages, reserved_pages);
+ if (ret)
+ goto out;
+
+ ret = kvm_host_prepare_stage2(host_s2_pgt_base);
+ if (ret)
+ goto out;
+
+ pkvm_pgtable_mm_ops = (struct kvm_pgtable_mm_ops) {
+ .zalloc_page = hyp_zalloc_hyp_page,
+ .phys_to_virt = hyp_phys_to_virt,
+ .virt_to_phys = hyp_virt_to_phys,
+ .get_page = hpool_get_page,
+ .put_page = hpool_put_page,
+ .page_count = hyp_page_count,
+ };
+ pkvm_pgtable.mm_ops = &pkvm_pgtable_mm_ops;
+
+ ret = fix_host_ownership();
+ if (ret)
+ goto out;
+
+ ret = fix_hyp_pgtable_refcnt();
+ if (ret)
+ goto out;
+
+ ret = hyp_create_pcpu_fixmap();
+ if (ret)
+ goto out;
+
+ ret = hyp_ffa_init(ffa_proxy_pages);
+ if (ret)
+ goto out;
+
+ pkvm_hyp_vm_table_init(vm_table_base);
+out:
+ /*
+ * We tail-called to here from handle___pkvm_init() and will not return,
+ * so make sure to propagate the return value to the host.
+ */
+ cpu_reg(host_ctxt, 1) = ret;
+
+ __host_enter(host_ctxt);
+}
+
+int __pkvm_init(phys_addr_t phys, unsigned long size, unsigned long nr_cpus,
+ unsigned long *per_cpu_base, u32 hyp_va_bits)
+{
+ struct kvm_nvhe_init_params *params;
+ void *virt = hyp_phys_to_virt(phys);
+ void (*fn)(phys_addr_t params_pa, void *finalize_fn_va);
+ int ret;
+
+ BUG_ON(kvm_check_pvm_sysreg_table());
+
+ if (!PAGE_ALIGNED(phys) || !PAGE_ALIGNED(size))
+ return -EINVAL;
+
+ hyp_spin_lock_init(&pkvm_pgd_lock);
+ hyp_nr_cpus = nr_cpus;
+
+ ret = divide_memory_pool(virt, size);
+ if (ret)
+ return ret;
+
+ ret = recreate_hyp_mappings(phys, size, per_cpu_base, hyp_va_bits);
+ if (ret)
+ return ret;
+
+ update_nvhe_init_params();
+
+ /* Jump in the idmap page to switch to the new page-tables */
+ params = this_cpu_ptr(&kvm_init_params);
+ fn = (typeof(fn))__hyp_pa(__pkvm_init_switch_pgd);
+ fn(__hyp_pa(params), __pkvm_init_finalise);
+
+ unreachable();
+}
diff --git a/arch/arm64/kvm/hyp/nvhe/stacktrace.c b/arch/arm64/kvm/hyp/nvhe/stacktrace.c
new file mode 100644
index 0000000000..ed6b58b19c
--- /dev/null
+++ b/arch/arm64/kvm/hyp/nvhe/stacktrace.c
@@ -0,0 +1,158 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * KVM nVHE hypervisor stack tracing support.
+ *
+ * Copyright (C) 2022 Google LLC
+ */
+#include <asm/kvm_asm.h>
+#include <asm/kvm_hyp.h>
+#include <asm/memory.h>
+#include <asm/percpu.h>
+
+DEFINE_PER_CPU(unsigned long [OVERFLOW_STACK_SIZE/sizeof(long)], overflow_stack)
+ __aligned(16);
+
+DEFINE_PER_CPU(struct kvm_nvhe_stacktrace_info, kvm_stacktrace_info);
+
+/*
+ * hyp_prepare_backtrace - Prepare non-protected nVHE backtrace.
+ *
+ * @fp : frame pointer at which to start the unwinding.
+ * @pc : program counter at which to start the unwinding.
+ *
+ * Save the information needed by the host to unwind the non-protected
+ * nVHE hypervisor stack in EL1.
+ */
+static void hyp_prepare_backtrace(unsigned long fp, unsigned long pc)
+{
+ struct kvm_nvhe_stacktrace_info *stacktrace_info = this_cpu_ptr(&kvm_stacktrace_info);
+ struct kvm_nvhe_init_params *params = this_cpu_ptr(&kvm_init_params);
+
+ stacktrace_info->stack_base = (unsigned long)(params->stack_hyp_va - PAGE_SIZE);
+ stacktrace_info->overflow_stack_base = (unsigned long)this_cpu_ptr(overflow_stack);
+ stacktrace_info->fp = fp;
+ stacktrace_info->pc = pc;
+}
+
+#ifdef CONFIG_PROTECTED_NVHE_STACKTRACE
+#include <asm/stacktrace/nvhe.h>
+
+DEFINE_PER_CPU(unsigned long [NVHE_STACKTRACE_SIZE/sizeof(long)], pkvm_stacktrace);
+
+static struct stack_info stackinfo_get_overflow(void)
+{
+ unsigned long low = (unsigned long)this_cpu_ptr(overflow_stack);
+ unsigned long high = low + OVERFLOW_STACK_SIZE;
+
+ return (struct stack_info) {
+ .low = low,
+ .high = high,
+ };
+}
+
+static struct stack_info stackinfo_get_hyp(void)
+{
+ struct kvm_nvhe_init_params *params = this_cpu_ptr(&kvm_init_params);
+ unsigned long high = params->stack_hyp_va;
+ unsigned long low = high - PAGE_SIZE;
+
+ return (struct stack_info) {
+ .low = low,
+ .high = high,
+ };
+}
+
+static int unwind_next(struct unwind_state *state)
+{
+ return unwind_next_frame_record(state);
+}
+
+static void notrace unwind(struct unwind_state *state,
+ stack_trace_consume_fn consume_entry,
+ void *cookie)
+{
+ while (1) {
+ int ret;
+
+ if (!consume_entry(cookie, state->pc))
+ break;
+ ret = unwind_next(state);
+ if (ret < 0)
+ break;
+ }
+}
+
+/*
+ * pkvm_save_backtrace_entry - Saves a protected nVHE HYP stacktrace entry
+ *
+ * @arg : index of the entry in the stacktrace buffer
+ * @where : the program counter corresponding to the stack frame
+ *
+ * Save the return address of a stack frame to the shared stacktrace buffer.
+ * The host can access this shared buffer from EL1 to dump the backtrace.
+ */
+static bool pkvm_save_backtrace_entry(void *arg, unsigned long where)
+{
+ unsigned long *stacktrace = this_cpu_ptr(pkvm_stacktrace);
+ int *idx = (int *)arg;
+
+ /*
+ * Need 2 free slots: 1 for current entry and 1 for the
+ * delimiter.
+ */
+ if (*idx > ARRAY_SIZE(pkvm_stacktrace) - 2)
+ return false;
+
+ stacktrace[*idx] = where;
+ stacktrace[++*idx] = 0UL;
+
+ return true;
+}
+
+/*
+ * pkvm_save_backtrace - Saves the protected nVHE HYP stacktrace
+ *
+ * @fp : frame pointer at which to start the unwinding.
+ * @pc : program counter at which to start the unwinding.
+ *
+ * Save the unwinded stack addresses to the shared stacktrace buffer.
+ * The host can access this shared buffer from EL1 to dump the backtrace.
+ */
+static void pkvm_save_backtrace(unsigned long fp, unsigned long pc)
+{
+ struct stack_info stacks[] = {
+ stackinfo_get_overflow(),
+ stackinfo_get_hyp(),
+ };
+ struct unwind_state state = {
+ .stacks = stacks,
+ .nr_stacks = ARRAY_SIZE(stacks),
+ };
+ int idx = 0;
+
+ kvm_nvhe_unwind_init(&state, fp, pc);
+
+ unwind(&state, pkvm_save_backtrace_entry, &idx);
+}
+#else /* !CONFIG_PROTECTED_NVHE_STACKTRACE */
+static void pkvm_save_backtrace(unsigned long fp, unsigned long pc)
+{
+}
+#endif /* CONFIG_PROTECTED_NVHE_STACKTRACE */
+
+/*
+ * kvm_nvhe_prepare_backtrace - prepare to dump the nVHE backtrace
+ *
+ * @fp : frame pointer at which to start the unwinding.
+ * @pc : program counter at which to start the unwinding.
+ *
+ * Saves the information needed by the host to dump the nVHE hypervisor
+ * backtrace.
+ */
+void kvm_nvhe_prepare_backtrace(unsigned long fp, unsigned long pc)
+{
+ if (is_protected_kvm_enabled())
+ pkvm_save_backtrace(fp, pc);
+ else
+ hyp_prepare_backtrace(fp, pc);
+}
diff --git a/arch/arm64/kvm/hyp/nvhe/switch.c b/arch/arm64/kvm/hyp/nvhe/switch.c
new file mode 100644
index 0000000000..c353a06ee7
--- /dev/null
+++ b/arch/arm64/kvm/hyp/nvhe/switch.c
@@ -0,0 +1,394 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2015 - ARM Ltd
+ * Author: Marc Zyngier <marc.zyngier@arm.com>
+ */
+
+#include <hyp/switch.h>
+#include <hyp/sysreg-sr.h>
+
+#include <linux/arm-smccc.h>
+#include <linux/kvm_host.h>
+#include <linux/types.h>
+#include <linux/jump_label.h>
+#include <uapi/linux/psci.h>
+
+#include <kvm/arm_psci.h>
+
+#include <asm/barrier.h>
+#include <asm/cpufeature.h>
+#include <asm/kprobes.h>
+#include <asm/kvm_asm.h>
+#include <asm/kvm_emulate.h>
+#include <asm/kvm_hyp.h>
+#include <asm/kvm_mmu.h>
+#include <asm/fpsimd.h>
+#include <asm/debug-monitors.h>
+#include <asm/processor.h>
+
+#include <nvhe/fixed_config.h>
+#include <nvhe/mem_protect.h>
+
+/* Non-VHE specific context */
+DEFINE_PER_CPU(struct kvm_host_data, kvm_host_data);
+DEFINE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
+DEFINE_PER_CPU(unsigned long, kvm_hyp_vector);
+
+extern void kvm_nvhe_prepare_backtrace(unsigned long fp, unsigned long pc);
+
+static void __activate_traps(struct kvm_vcpu *vcpu)
+{
+ u64 val;
+
+ ___activate_traps(vcpu);
+ __activate_traps_common(vcpu);
+
+ val = vcpu->arch.cptr_el2;
+ val |= CPTR_EL2_TAM; /* Same bit irrespective of E2H */
+ val |= has_hvhe() ? CPACR_EL1_TTA : CPTR_EL2_TTA;
+ if (cpus_have_final_cap(ARM64_SME)) {
+ if (has_hvhe())
+ val &= ~(CPACR_EL1_SMEN_EL1EN | CPACR_EL1_SMEN_EL0EN);
+ else
+ val |= CPTR_EL2_TSM;
+ }
+
+ if (!guest_owns_fp_regs(vcpu)) {
+ if (has_hvhe())
+ val &= ~(CPACR_EL1_FPEN_EL0EN | CPACR_EL1_FPEN_EL1EN |
+ CPACR_EL1_ZEN_EL0EN | CPACR_EL1_ZEN_EL1EN);
+ else
+ val |= CPTR_EL2_TFP | CPTR_EL2_TZ;
+
+ __activate_traps_fpsimd32(vcpu);
+ }
+
+ kvm_write_cptr_el2(val);
+ write_sysreg(__this_cpu_read(kvm_hyp_vector), vbar_el2);
+
+ if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
+ struct kvm_cpu_context *ctxt = &vcpu->arch.ctxt;
+
+ isb();
+ /*
+ * At this stage, and thanks to the above isb(), S2 is
+ * configured and enabled. We can now restore the guest's S1
+ * configuration: SCTLR, and only then TCR.
+ */
+ write_sysreg_el1(ctxt_sys_reg(ctxt, SCTLR_EL1), SYS_SCTLR);
+ isb();
+ write_sysreg_el1(ctxt_sys_reg(ctxt, TCR_EL1), SYS_TCR);
+ }
+}
+
+static void __deactivate_traps(struct kvm_vcpu *vcpu)
+{
+ extern char __kvm_hyp_host_vector[];
+
+ ___deactivate_traps(vcpu);
+
+ if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
+ u64 val;
+
+ /*
+ * Set the TCR and SCTLR registers in the exact opposite
+ * sequence as __activate_traps (first prevent walks,
+ * then force the MMU on). A generous sprinkling of isb()
+ * ensure that things happen in this exact order.
+ */
+ val = read_sysreg_el1(SYS_TCR);
+ write_sysreg_el1(val | TCR_EPD1_MASK | TCR_EPD0_MASK, SYS_TCR);
+ isb();
+ val = read_sysreg_el1(SYS_SCTLR);
+ write_sysreg_el1(val | SCTLR_ELx_M, SYS_SCTLR);
+ isb();
+ }
+
+ __deactivate_traps_common(vcpu);
+
+ write_sysreg(this_cpu_ptr(&kvm_init_params)->hcr_el2, hcr_el2);
+
+ kvm_reset_cptr_el2(vcpu);
+ write_sysreg(__kvm_hyp_host_vector, vbar_el2);
+}
+
+/* Save VGICv3 state on non-VHE systems */
+static void __hyp_vgic_save_state(struct kvm_vcpu *vcpu)
+{
+ if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
+ __vgic_v3_save_state(&vcpu->arch.vgic_cpu.vgic_v3);
+ __vgic_v3_deactivate_traps(&vcpu->arch.vgic_cpu.vgic_v3);
+ }
+}
+
+/* Restore VGICv3 state on non-VHE systems */
+static void __hyp_vgic_restore_state(struct kvm_vcpu *vcpu)
+{
+ if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
+ __vgic_v3_activate_traps(&vcpu->arch.vgic_cpu.vgic_v3);
+ __vgic_v3_restore_state(&vcpu->arch.vgic_cpu.vgic_v3);
+ }
+}
+
+/*
+ * Disable host events, enable guest events
+ */
+#ifdef CONFIG_HW_PERF_EVENTS
+static bool __pmu_switch_to_guest(struct kvm_vcpu *vcpu)
+{
+ struct kvm_pmu_events *pmu = &vcpu->arch.pmu.events;
+
+ if (pmu->events_host)
+ write_sysreg(pmu->events_host, pmcntenclr_el0);
+
+ if (pmu->events_guest)
+ write_sysreg(pmu->events_guest, pmcntenset_el0);
+
+ return (pmu->events_host || pmu->events_guest);
+}
+
+/*
+ * Disable guest events, enable host events
+ */
+static void __pmu_switch_to_host(struct kvm_vcpu *vcpu)
+{
+ struct kvm_pmu_events *pmu = &vcpu->arch.pmu.events;
+
+ if (pmu->events_guest)
+ write_sysreg(pmu->events_guest, pmcntenclr_el0);
+
+ if (pmu->events_host)
+ write_sysreg(pmu->events_host, pmcntenset_el0);
+}
+#else
+#define __pmu_switch_to_guest(v) ({ false; })
+#define __pmu_switch_to_host(v) do {} while (0)
+#endif
+
+/*
+ * Handler for protected VM MSR, MRS or System instruction execution in AArch64.
+ *
+ * Returns true if the hypervisor has handled the exit, and control should go
+ * back to the guest, or false if it hasn't.
+ */
+static bool kvm_handle_pvm_sys64(struct kvm_vcpu *vcpu, u64 *exit_code)
+{
+ /*
+ * Make sure we handle the exit for workarounds and ptrauth
+ * before the pKVM handling, as the latter could decide to
+ * UNDEF.
+ */
+ return (kvm_hyp_handle_sysreg(vcpu, exit_code) ||
+ kvm_handle_pvm_sysreg(vcpu, exit_code));
+}
+
+static const exit_handler_fn hyp_exit_handlers[] = {
+ [0 ... ESR_ELx_EC_MAX] = NULL,
+ [ESR_ELx_EC_CP15_32] = kvm_hyp_handle_cp15_32,
+ [ESR_ELx_EC_SYS64] = kvm_hyp_handle_sysreg,
+ [ESR_ELx_EC_SVE] = kvm_hyp_handle_fpsimd,
+ [ESR_ELx_EC_FP_ASIMD] = kvm_hyp_handle_fpsimd,
+ [ESR_ELx_EC_IABT_LOW] = kvm_hyp_handle_iabt_low,
+ [ESR_ELx_EC_DABT_LOW] = kvm_hyp_handle_dabt_low,
+ [ESR_ELx_EC_WATCHPT_LOW] = kvm_hyp_handle_watchpt_low,
+ [ESR_ELx_EC_PAC] = kvm_hyp_handle_ptrauth,
+};
+
+static const exit_handler_fn pvm_exit_handlers[] = {
+ [0 ... ESR_ELx_EC_MAX] = NULL,
+ [ESR_ELx_EC_SYS64] = kvm_handle_pvm_sys64,
+ [ESR_ELx_EC_SVE] = kvm_handle_pvm_restricted,
+ [ESR_ELx_EC_FP_ASIMD] = kvm_hyp_handle_fpsimd,
+ [ESR_ELx_EC_IABT_LOW] = kvm_hyp_handle_iabt_low,
+ [ESR_ELx_EC_DABT_LOW] = kvm_hyp_handle_dabt_low,
+ [ESR_ELx_EC_WATCHPT_LOW] = kvm_hyp_handle_watchpt_low,
+ [ESR_ELx_EC_PAC] = kvm_hyp_handle_ptrauth,
+};
+
+static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu)
+{
+ if (unlikely(kvm_vm_is_protected(kern_hyp_va(vcpu->kvm))))
+ return pvm_exit_handlers;
+
+ return hyp_exit_handlers;
+}
+
+/*
+ * Some guests (e.g., protected VMs) are not be allowed to run in AArch32.
+ * The ARMv8 architecture does not give the hypervisor a mechanism to prevent a
+ * guest from dropping to AArch32 EL0 if implemented by the CPU. If the
+ * hypervisor spots a guest in such a state ensure it is handled, and don't
+ * trust the host to spot or fix it. The check below is based on the one in
+ * kvm_arch_vcpu_ioctl_run().
+ *
+ * Returns false if the guest ran in AArch32 when it shouldn't have, and
+ * thus should exit to the host, or true if a the guest run loop can continue.
+ */
+static void early_exit_filter(struct kvm_vcpu *vcpu, u64 *exit_code)
+{
+ struct kvm *kvm = kern_hyp_va(vcpu->kvm);
+
+ if (kvm_vm_is_protected(kvm) && vcpu_mode_is_32bit(vcpu)) {
+ /*
+ * As we have caught the guest red-handed, decide that it isn't
+ * fit for purpose anymore by making the vcpu invalid. The VMM
+ * can try and fix it by re-initializing the vcpu with
+ * KVM_ARM_VCPU_INIT, however, this is likely not possible for
+ * protected VMs.
+ */
+ vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
+ *exit_code &= BIT(ARM_EXIT_WITH_SERROR_BIT);
+ *exit_code |= ARM_EXCEPTION_IL;
+ }
+}
+
+/* Switch to the guest for legacy non-VHE systems */
+int __kvm_vcpu_run(struct kvm_vcpu *vcpu)
+{
+ struct kvm_cpu_context *host_ctxt;
+ struct kvm_cpu_context *guest_ctxt;
+ struct kvm_s2_mmu *mmu;
+ bool pmu_switch_needed;
+ u64 exit_code;
+
+ /*
+ * Having IRQs masked via PMR when entering the guest means the GIC
+ * will not signal the CPU of interrupts of lower priority, and the
+ * only way to get out will be via guest exceptions.
+ * Naturally, we want to avoid this.
+ */
+ if (system_uses_irq_prio_masking()) {
+ gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
+ pmr_sync();
+ }
+
+ host_ctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt;
+ host_ctxt->__hyp_running_vcpu = vcpu;
+ guest_ctxt = &vcpu->arch.ctxt;
+
+ pmu_switch_needed = __pmu_switch_to_guest(vcpu);
+
+ __sysreg_save_state_nvhe(host_ctxt);
+ /*
+ * We must flush and disable the SPE buffer for nVHE, as
+ * the translation regime(EL1&0) is going to be loaded with
+ * that of the guest. And we must do this before we change the
+ * translation regime to EL2 (via MDCR_EL2_E2PB == 0) and
+ * before we load guest Stage1.
+ */
+ __debug_save_host_buffers_nvhe(vcpu);
+
+ /*
+ * We're about to restore some new MMU state. Make sure
+ * ongoing page-table walks that have started before we
+ * trapped to EL2 have completed. This also synchronises the
+ * above disabling of SPE and TRBE.
+ *
+ * See DDI0487I.a D8.1.5 "Out-of-context translation regimes",
+ * rule R_LFHQG and subsequent information statements.
+ */
+ dsb(nsh);
+
+ __kvm_adjust_pc(vcpu);
+
+ /*
+ * We must restore the 32-bit state before the sysregs, thanks
+ * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
+ *
+ * Also, and in order to be able to deal with erratum #1319537 (A57)
+ * and #1319367 (A72), we must ensure that all VM-related sysreg are
+ * restored before we enable S2 translation.
+ */
+ __sysreg32_restore_state(vcpu);
+ __sysreg_restore_state_nvhe(guest_ctxt);
+
+ mmu = kern_hyp_va(vcpu->arch.hw_mmu);
+ __load_stage2(mmu, kern_hyp_va(mmu->arch));
+ __activate_traps(vcpu);
+
+ __hyp_vgic_restore_state(vcpu);
+ __timer_enable_traps(vcpu);
+
+ __debug_switch_to_guest(vcpu);
+
+ do {
+ /* Jump in the fire! */
+ exit_code = __guest_enter(vcpu);
+
+ /* And we're baaack! */
+ } while (fixup_guest_exit(vcpu, &exit_code));
+
+ __sysreg_save_state_nvhe(guest_ctxt);
+ __sysreg32_save_state(vcpu);
+ __timer_disable_traps(vcpu);
+ __hyp_vgic_save_state(vcpu);
+
+ /*
+ * Same thing as before the guest run: we're about to switch
+ * the MMU context, so let's make sure we don't have any
+ * ongoing EL1&0 translations.
+ */
+ dsb(nsh);
+
+ __deactivate_traps(vcpu);
+ __load_host_stage2();
+
+ __sysreg_restore_state_nvhe(host_ctxt);
+
+ if (vcpu->arch.fp_state == FP_STATE_GUEST_OWNED)
+ __fpsimd_save_fpexc32(vcpu);
+
+ __debug_switch_to_host(vcpu);
+ /*
+ * This must come after restoring the host sysregs, since a non-VHE
+ * system may enable SPE here and make use of the TTBRs.
+ */
+ __debug_restore_host_buffers_nvhe(vcpu);
+
+ if (pmu_switch_needed)
+ __pmu_switch_to_host(vcpu);
+
+ /* Returning to host will clear PSR.I, remask PMR if needed */
+ if (system_uses_irq_prio_masking())
+ gic_write_pmr(GIC_PRIO_IRQOFF);
+
+ host_ctxt->__hyp_running_vcpu = NULL;
+
+ return exit_code;
+}
+
+asmlinkage void __noreturn hyp_panic(void)
+{
+ u64 spsr = read_sysreg_el2(SYS_SPSR);
+ u64 elr = read_sysreg_el2(SYS_ELR);
+ u64 par = read_sysreg_par();
+ struct kvm_cpu_context *host_ctxt;
+ struct kvm_vcpu *vcpu;
+
+ host_ctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt;
+ vcpu = host_ctxt->__hyp_running_vcpu;
+
+ if (vcpu) {
+ __timer_disable_traps(vcpu);
+ __deactivate_traps(vcpu);
+ __load_host_stage2();
+ __sysreg_restore_state_nvhe(host_ctxt);
+ }
+
+ /* Prepare to dump kvm nvhe hyp stacktrace */
+ kvm_nvhe_prepare_backtrace((unsigned long)__builtin_frame_address(0),
+ _THIS_IP_);
+
+ __hyp_do_panic(host_ctxt, spsr, elr, par);
+ unreachable();
+}
+
+asmlinkage void __noreturn hyp_panic_bad_stack(void)
+{
+ hyp_panic();
+}
+
+asmlinkage void kvm_unexpected_el2_exception(void)
+{
+ __kvm_unexpected_el2_exception();
+}
diff --git a/arch/arm64/kvm/hyp/nvhe/sys_regs.c b/arch/arm64/kvm/hyp/nvhe/sys_regs.c
new file mode 100644
index 0000000000..edd969a1f3
--- /dev/null
+++ b/arch/arm64/kvm/hyp/nvhe/sys_regs.c
@@ -0,0 +1,516 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2021 Google LLC
+ * Author: Fuad Tabba <tabba@google.com>
+ */
+
+#include <linux/irqchip/arm-gic-v3.h>
+
+#include <asm/kvm_asm.h>
+#include <asm/kvm_mmu.h>
+
+#include <hyp/adjust_pc.h>
+
+#include <nvhe/fixed_config.h>
+
+#include "../../sys_regs.h"
+
+/*
+ * Copies of the host's CPU features registers holding sanitized values at hyp.
+ */
+u64 id_aa64pfr0_el1_sys_val;
+u64 id_aa64pfr1_el1_sys_val;
+u64 id_aa64isar0_el1_sys_val;
+u64 id_aa64isar1_el1_sys_val;
+u64 id_aa64isar2_el1_sys_val;
+u64 id_aa64mmfr0_el1_sys_val;
+u64 id_aa64mmfr1_el1_sys_val;
+u64 id_aa64mmfr2_el1_sys_val;
+u64 id_aa64smfr0_el1_sys_val;
+
+/*
+ * Inject an unknown/undefined exception to an AArch64 guest while most of its
+ * sysregs are live.
+ */
+static void inject_undef64(struct kvm_vcpu *vcpu)
+{
+ u64 esr = (ESR_ELx_EC_UNKNOWN << ESR_ELx_EC_SHIFT);
+
+ *vcpu_pc(vcpu) = read_sysreg_el2(SYS_ELR);
+ *vcpu_cpsr(vcpu) = read_sysreg_el2(SYS_SPSR);
+
+ kvm_pend_exception(vcpu, EXCEPT_AA64_EL1_SYNC);
+
+ __kvm_adjust_pc(vcpu);
+
+ write_sysreg_el1(esr, SYS_ESR);
+ write_sysreg_el1(read_sysreg_el2(SYS_ELR), SYS_ELR);
+ write_sysreg_el2(*vcpu_pc(vcpu), SYS_ELR);
+ write_sysreg_el2(*vcpu_cpsr(vcpu), SYS_SPSR);
+}
+
+/*
+ * Returns the restricted features values of the feature register based on the
+ * limitations in restrict_fields.
+ * A feature id field value of 0b0000 does not impose any restrictions.
+ * Note: Use only for unsigned feature field values.
+ */
+static u64 get_restricted_features_unsigned(u64 sys_reg_val,
+ u64 restrict_fields)
+{
+ u64 value = 0UL;
+ u64 mask = GENMASK_ULL(ARM64_FEATURE_FIELD_BITS - 1, 0);
+
+ /*
+ * According to the Arm Architecture Reference Manual, feature fields
+ * use increasing values to indicate increases in functionality.
+ * Iterate over the restricted feature fields and calculate the minimum
+ * unsigned value between the one supported by the system, and what the
+ * value is being restricted to.
+ */
+ while (sys_reg_val && restrict_fields) {
+ value |= min(sys_reg_val & mask, restrict_fields & mask);
+ sys_reg_val &= ~mask;
+ restrict_fields &= ~mask;
+ mask <<= ARM64_FEATURE_FIELD_BITS;
+ }
+
+ return value;
+}
+
+/*
+ * Functions that return the value of feature id registers for protected VMs
+ * based on allowed features, system features, and KVM support.
+ */
+
+static u64 get_pvm_id_aa64pfr0(const struct kvm_vcpu *vcpu)
+{
+ u64 set_mask = 0;
+ u64 allow_mask = PVM_ID_AA64PFR0_ALLOW;
+
+ set_mask |= get_restricted_features_unsigned(id_aa64pfr0_el1_sys_val,
+ PVM_ID_AA64PFR0_RESTRICT_UNSIGNED);
+
+ return (id_aa64pfr0_el1_sys_val & allow_mask) | set_mask;
+}
+
+static u64 get_pvm_id_aa64pfr1(const struct kvm_vcpu *vcpu)
+{
+ const struct kvm *kvm = (const struct kvm *)kern_hyp_va(vcpu->kvm);
+ u64 allow_mask = PVM_ID_AA64PFR1_ALLOW;
+
+ if (!kvm_has_mte(kvm))
+ allow_mask &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE);
+
+ return id_aa64pfr1_el1_sys_val & allow_mask;
+}
+
+static u64 get_pvm_id_aa64zfr0(const struct kvm_vcpu *vcpu)
+{
+ /*
+ * No support for Scalable Vectors, therefore, hyp has no sanitized
+ * copy of the feature id register.
+ */
+ BUILD_BUG_ON(PVM_ID_AA64ZFR0_ALLOW != 0ULL);
+ return 0;
+}
+
+static u64 get_pvm_id_aa64dfr0(const struct kvm_vcpu *vcpu)
+{
+ /*
+ * No support for debug, including breakpoints, and watchpoints,
+ * therefore, pKVM has no sanitized copy of the feature id register.
+ */
+ BUILD_BUG_ON(PVM_ID_AA64DFR0_ALLOW != 0ULL);
+ return 0;
+}
+
+static u64 get_pvm_id_aa64dfr1(const struct kvm_vcpu *vcpu)
+{
+ /*
+ * No support for debug, therefore, hyp has no sanitized copy of the
+ * feature id register.
+ */
+ BUILD_BUG_ON(PVM_ID_AA64DFR1_ALLOW != 0ULL);
+ return 0;
+}
+
+static u64 get_pvm_id_aa64afr0(const struct kvm_vcpu *vcpu)
+{
+ /*
+ * No support for implementation defined features, therefore, hyp has no
+ * sanitized copy of the feature id register.
+ */
+ BUILD_BUG_ON(PVM_ID_AA64AFR0_ALLOW != 0ULL);
+ return 0;
+}
+
+static u64 get_pvm_id_aa64afr1(const struct kvm_vcpu *vcpu)
+{
+ /*
+ * No support for implementation defined features, therefore, hyp has no
+ * sanitized copy of the feature id register.
+ */
+ BUILD_BUG_ON(PVM_ID_AA64AFR1_ALLOW != 0ULL);
+ return 0;
+}
+
+static u64 get_pvm_id_aa64isar0(const struct kvm_vcpu *vcpu)
+{
+ return id_aa64isar0_el1_sys_val & PVM_ID_AA64ISAR0_ALLOW;
+}
+
+static u64 get_pvm_id_aa64isar1(const struct kvm_vcpu *vcpu)
+{
+ u64 allow_mask = PVM_ID_AA64ISAR1_ALLOW;
+
+ if (!vcpu_has_ptrauth(vcpu))
+ allow_mask &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_APA) |
+ ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_API) |
+ ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPA) |
+ ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPI));
+
+ return id_aa64isar1_el1_sys_val & allow_mask;
+}
+
+static u64 get_pvm_id_aa64isar2(const struct kvm_vcpu *vcpu)
+{
+ u64 allow_mask = PVM_ID_AA64ISAR2_ALLOW;
+
+ if (!vcpu_has_ptrauth(vcpu))
+ allow_mask &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_APA3) |
+ ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_GPA3));
+
+ return id_aa64isar2_el1_sys_val & allow_mask;
+}
+
+static u64 get_pvm_id_aa64mmfr0(const struct kvm_vcpu *vcpu)
+{
+ u64 set_mask;
+
+ set_mask = get_restricted_features_unsigned(id_aa64mmfr0_el1_sys_val,
+ PVM_ID_AA64MMFR0_RESTRICT_UNSIGNED);
+
+ return (id_aa64mmfr0_el1_sys_val & PVM_ID_AA64MMFR0_ALLOW) | set_mask;
+}
+
+static u64 get_pvm_id_aa64mmfr1(const struct kvm_vcpu *vcpu)
+{
+ return id_aa64mmfr1_el1_sys_val & PVM_ID_AA64MMFR1_ALLOW;
+}
+
+static u64 get_pvm_id_aa64mmfr2(const struct kvm_vcpu *vcpu)
+{
+ return id_aa64mmfr2_el1_sys_val & PVM_ID_AA64MMFR2_ALLOW;
+}
+
+/* Read a sanitized cpufeature ID register by its encoding */
+u64 pvm_read_id_reg(const struct kvm_vcpu *vcpu, u32 id)
+{
+ switch (id) {
+ case SYS_ID_AA64PFR0_EL1:
+ return get_pvm_id_aa64pfr0(vcpu);
+ case SYS_ID_AA64PFR1_EL1:
+ return get_pvm_id_aa64pfr1(vcpu);
+ case SYS_ID_AA64ZFR0_EL1:
+ return get_pvm_id_aa64zfr0(vcpu);
+ case SYS_ID_AA64DFR0_EL1:
+ return get_pvm_id_aa64dfr0(vcpu);
+ case SYS_ID_AA64DFR1_EL1:
+ return get_pvm_id_aa64dfr1(vcpu);
+ case SYS_ID_AA64AFR0_EL1:
+ return get_pvm_id_aa64afr0(vcpu);
+ case SYS_ID_AA64AFR1_EL1:
+ return get_pvm_id_aa64afr1(vcpu);
+ case SYS_ID_AA64ISAR0_EL1:
+ return get_pvm_id_aa64isar0(vcpu);
+ case SYS_ID_AA64ISAR1_EL1:
+ return get_pvm_id_aa64isar1(vcpu);
+ case SYS_ID_AA64ISAR2_EL1:
+ return get_pvm_id_aa64isar2(vcpu);
+ case SYS_ID_AA64MMFR0_EL1:
+ return get_pvm_id_aa64mmfr0(vcpu);
+ case SYS_ID_AA64MMFR1_EL1:
+ return get_pvm_id_aa64mmfr1(vcpu);
+ case SYS_ID_AA64MMFR2_EL1:
+ return get_pvm_id_aa64mmfr2(vcpu);
+ default:
+ /* Unhandled ID register, RAZ */
+ return 0;
+ }
+}
+
+static u64 read_id_reg(const struct kvm_vcpu *vcpu,
+ struct sys_reg_desc const *r)
+{
+ return pvm_read_id_reg(vcpu, reg_to_encoding(r));
+}
+
+/* Handler to RAZ/WI sysregs */
+static bool pvm_access_raz_wi(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ if (!p->is_write)
+ p->regval = 0;
+
+ return true;
+}
+
+/*
+ * Accessor for AArch32 feature id registers.
+ *
+ * The value of these registers is "unknown" according to the spec if AArch32
+ * isn't supported.
+ */
+static bool pvm_access_id_aarch32(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ if (p->is_write) {
+ inject_undef64(vcpu);
+ return false;
+ }
+
+ /*
+ * No support for AArch32 guests, therefore, pKVM has no sanitized copy
+ * of AArch32 feature id registers.
+ */
+ BUILD_BUG_ON(FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_EL1),
+ PVM_ID_AA64PFR0_RESTRICT_UNSIGNED) > ID_AA64PFR0_EL1_ELx_64BIT_ONLY);
+
+ return pvm_access_raz_wi(vcpu, p, r);
+}
+
+/*
+ * Accessor for AArch64 feature id registers.
+ *
+ * If access is allowed, set the regval to the protected VM's view of the
+ * register and return true.
+ * Otherwise, inject an undefined exception and return false.
+ */
+static bool pvm_access_id_aarch64(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ if (p->is_write) {
+ inject_undef64(vcpu);
+ return false;
+ }
+
+ p->regval = read_id_reg(vcpu, r);
+ return true;
+}
+
+static bool pvm_gic_read_sre(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ /* pVMs only support GICv3. 'nuf said. */
+ if (!p->is_write)
+ p->regval = ICC_SRE_EL1_DIB | ICC_SRE_EL1_DFB | ICC_SRE_EL1_SRE;
+
+ return true;
+}
+
+/* Mark the specified system register as an AArch32 feature id register. */
+#define AARCH32(REG) { SYS_DESC(REG), .access = pvm_access_id_aarch32 }
+
+/* Mark the specified system register as an AArch64 feature id register. */
+#define AARCH64(REG) { SYS_DESC(REG), .access = pvm_access_id_aarch64 }
+
+/*
+ * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
+ * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
+ * (1 <= crm < 8, 0 <= Op2 < 8).
+ */
+#define ID_UNALLOCATED(crm, op2) { \
+ Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2), \
+ .access = pvm_access_id_aarch64, \
+}
+
+/* Mark the specified system register as Read-As-Zero/Write-Ignored */
+#define RAZ_WI(REG) { SYS_DESC(REG), .access = pvm_access_raz_wi }
+
+/* Mark the specified system register as not being handled in hyp. */
+#define HOST_HANDLED(REG) { SYS_DESC(REG), .access = NULL }
+
+/*
+ * Architected system registers.
+ * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
+ *
+ * NOTE: Anything not explicitly listed here is *restricted by default*, i.e.,
+ * it will lead to injecting an exception into the guest.
+ */
+static const struct sys_reg_desc pvm_sys_reg_descs[] = {
+ /* Cache maintenance by set/way operations are restricted. */
+
+ /* Debug and Trace Registers are restricted. */
+
+ /* AArch64 mappings of the AArch32 ID registers */
+ /* CRm=1 */
+ AARCH32(SYS_ID_PFR0_EL1),
+ AARCH32(SYS_ID_PFR1_EL1),
+ AARCH32(SYS_ID_DFR0_EL1),
+ AARCH32(SYS_ID_AFR0_EL1),
+ AARCH32(SYS_ID_MMFR0_EL1),
+ AARCH32(SYS_ID_MMFR1_EL1),
+ AARCH32(SYS_ID_MMFR2_EL1),
+ AARCH32(SYS_ID_MMFR3_EL1),
+
+ /* CRm=2 */
+ AARCH32(SYS_ID_ISAR0_EL1),
+ AARCH32(SYS_ID_ISAR1_EL1),
+ AARCH32(SYS_ID_ISAR2_EL1),
+ AARCH32(SYS_ID_ISAR3_EL1),
+ AARCH32(SYS_ID_ISAR4_EL1),
+ AARCH32(SYS_ID_ISAR5_EL1),
+ AARCH32(SYS_ID_MMFR4_EL1),
+ AARCH32(SYS_ID_ISAR6_EL1),
+
+ /* CRm=3 */
+ AARCH32(SYS_MVFR0_EL1),
+ AARCH32(SYS_MVFR1_EL1),
+ AARCH32(SYS_MVFR2_EL1),
+ ID_UNALLOCATED(3,3),
+ AARCH32(SYS_ID_PFR2_EL1),
+ AARCH32(SYS_ID_DFR1_EL1),
+ AARCH32(SYS_ID_MMFR5_EL1),
+ ID_UNALLOCATED(3,7),
+
+ /* AArch64 ID registers */
+ /* CRm=4 */
+ AARCH64(SYS_ID_AA64PFR0_EL1),
+ AARCH64(SYS_ID_AA64PFR1_EL1),
+ ID_UNALLOCATED(4,2),
+ ID_UNALLOCATED(4,3),
+ AARCH64(SYS_ID_AA64ZFR0_EL1),
+ ID_UNALLOCATED(4,5),
+ ID_UNALLOCATED(4,6),
+ ID_UNALLOCATED(4,7),
+ AARCH64(SYS_ID_AA64DFR0_EL1),
+ AARCH64(SYS_ID_AA64DFR1_EL1),
+ ID_UNALLOCATED(5,2),
+ ID_UNALLOCATED(5,3),
+ AARCH64(SYS_ID_AA64AFR0_EL1),
+ AARCH64(SYS_ID_AA64AFR1_EL1),
+ ID_UNALLOCATED(5,6),
+ ID_UNALLOCATED(5,7),
+ AARCH64(SYS_ID_AA64ISAR0_EL1),
+ AARCH64(SYS_ID_AA64ISAR1_EL1),
+ AARCH64(SYS_ID_AA64ISAR2_EL1),
+ ID_UNALLOCATED(6,3),
+ ID_UNALLOCATED(6,4),
+ ID_UNALLOCATED(6,5),
+ ID_UNALLOCATED(6,6),
+ ID_UNALLOCATED(6,7),
+ AARCH64(SYS_ID_AA64MMFR0_EL1),
+ AARCH64(SYS_ID_AA64MMFR1_EL1),
+ AARCH64(SYS_ID_AA64MMFR2_EL1),
+ ID_UNALLOCATED(7,3),
+ ID_UNALLOCATED(7,4),
+ ID_UNALLOCATED(7,5),
+ ID_UNALLOCATED(7,6),
+ ID_UNALLOCATED(7,7),
+
+ /* Scalable Vector Registers are restricted. */
+
+ RAZ_WI(SYS_ERRIDR_EL1),
+ RAZ_WI(SYS_ERRSELR_EL1),
+ RAZ_WI(SYS_ERXFR_EL1),
+ RAZ_WI(SYS_ERXCTLR_EL1),
+ RAZ_WI(SYS_ERXSTATUS_EL1),
+ RAZ_WI(SYS_ERXADDR_EL1),
+ RAZ_WI(SYS_ERXMISC0_EL1),
+ RAZ_WI(SYS_ERXMISC1_EL1),
+
+ /* Performance Monitoring Registers are restricted. */
+
+ /* Limited Ordering Regions Registers are restricted. */
+
+ HOST_HANDLED(SYS_ICC_SGI1R_EL1),
+ HOST_HANDLED(SYS_ICC_ASGI1R_EL1),
+ HOST_HANDLED(SYS_ICC_SGI0R_EL1),
+ { SYS_DESC(SYS_ICC_SRE_EL1), .access = pvm_gic_read_sre, },
+
+ HOST_HANDLED(SYS_CCSIDR_EL1),
+ HOST_HANDLED(SYS_CLIDR_EL1),
+ HOST_HANDLED(SYS_CSSELR_EL1),
+ HOST_HANDLED(SYS_CTR_EL0),
+
+ /* Performance Monitoring Registers are restricted. */
+
+ /* Activity Monitoring Registers are restricted. */
+
+ HOST_HANDLED(SYS_CNTP_TVAL_EL0),
+ HOST_HANDLED(SYS_CNTP_CTL_EL0),
+ HOST_HANDLED(SYS_CNTP_CVAL_EL0),
+
+ /* Performance Monitoring Registers are restricted. */
+};
+
+/*
+ * Checks that the sysreg table is unique and in-order.
+ *
+ * Returns 0 if the table is consistent, or 1 otherwise.
+ */
+int kvm_check_pvm_sysreg_table(void)
+{
+ unsigned int i;
+
+ for (i = 1; i < ARRAY_SIZE(pvm_sys_reg_descs); i++) {
+ if (cmp_sys_reg(&pvm_sys_reg_descs[i-1], &pvm_sys_reg_descs[i]) >= 0)
+ return 1;
+ }
+
+ return 0;
+}
+
+/*
+ * Handler for protected VM MSR, MRS or System instruction execution.
+ *
+ * Returns true if the hypervisor has handled the exit, and control should go
+ * back to the guest, or false if it hasn't, to be handled by the host.
+ */
+bool kvm_handle_pvm_sysreg(struct kvm_vcpu *vcpu, u64 *exit_code)
+{
+ const struct sys_reg_desc *r;
+ struct sys_reg_params params;
+ unsigned long esr = kvm_vcpu_get_esr(vcpu);
+ int Rt = kvm_vcpu_sys_get_rt(vcpu);
+
+ params = esr_sys64_to_params(esr);
+ params.regval = vcpu_get_reg(vcpu, Rt);
+
+ r = find_reg(&params, pvm_sys_reg_descs, ARRAY_SIZE(pvm_sys_reg_descs));
+
+ /* Undefined (RESTRICTED). */
+ if (r == NULL) {
+ inject_undef64(vcpu);
+ return true;
+ }
+
+ /* Handled by the host (HOST_HANDLED) */
+ if (r->access == NULL)
+ return false;
+
+ /* Handled by hyp: skip instruction if instructed to do so. */
+ if (r->access(vcpu, &params, r))
+ __kvm_skip_instr(vcpu);
+
+ if (!params.is_write)
+ vcpu_set_reg(vcpu, Rt, params.regval);
+
+ return true;
+}
+
+/*
+ * Handler for protected VM restricted exceptions.
+ *
+ * Inject an undefined exception into the guest and return true to indicate that
+ * the hypervisor has handled the exit, and control should go back to the guest.
+ */
+bool kvm_handle_pvm_restricted(struct kvm_vcpu *vcpu, u64 *exit_code)
+{
+ inject_undef64(vcpu);
+ return true;
+}
diff --git a/arch/arm64/kvm/hyp/nvhe/sysreg-sr.c b/arch/arm64/kvm/hyp/nvhe/sysreg-sr.c
new file mode 100644
index 0000000000..29305022bc
--- /dev/null
+++ b/arch/arm64/kvm/hyp/nvhe/sysreg-sr.c
@@ -0,0 +1,35 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2012-2015 - ARM Ltd
+ * Author: Marc Zyngier <marc.zyngier@arm.com>
+ */
+
+#include <hyp/sysreg-sr.h>
+
+#include <linux/compiler.h>
+#include <linux/kvm_host.h>
+
+#include <asm/kprobes.h>
+#include <asm/kvm_asm.h>
+#include <asm/kvm_emulate.h>
+#include <asm/kvm_hyp.h>
+
+/*
+ * Non-VHE: Both host and guest must save everything.
+ */
+
+void __sysreg_save_state_nvhe(struct kvm_cpu_context *ctxt)
+{
+ __sysreg_save_el1_state(ctxt);
+ __sysreg_save_common_state(ctxt);
+ __sysreg_save_user_state(ctxt);
+ __sysreg_save_el2_return_state(ctxt);
+}
+
+void __sysreg_restore_state_nvhe(struct kvm_cpu_context *ctxt)
+{
+ __sysreg_restore_el1_state(ctxt);
+ __sysreg_restore_common_state(ctxt);
+ __sysreg_restore_user_state(ctxt);
+ __sysreg_restore_el2_return_state(ctxt);
+}
diff --git a/arch/arm64/kvm/hyp/nvhe/timer-sr.c b/arch/arm64/kvm/hyp/nvhe/timer-sr.c
new file mode 100644
index 0000000000..3aaab20ae5
--- /dev/null
+++ b/arch/arm64/kvm/hyp/nvhe/timer-sr.c
@@ -0,0 +1,62 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2012-2015 - ARM Ltd
+ * Author: Marc Zyngier <marc.zyngier@arm.com>
+ */
+
+#include <clocksource/arm_arch_timer.h>
+#include <linux/compiler.h>
+#include <linux/kvm_host.h>
+
+#include <asm/kvm_hyp.h>
+#include <asm/kvm_mmu.h>
+
+void __kvm_timer_set_cntvoff(u64 cntvoff)
+{
+ write_sysreg(cntvoff, cntvoff_el2);
+}
+
+/*
+ * Should only be called on non-VHE or hVHE setups.
+ * VHE systems use EL2 timers and configure EL1 timers in kvm_timer_init_vhe().
+ */
+void __timer_disable_traps(struct kvm_vcpu *vcpu)
+{
+ u64 val, shift = 0;
+
+ if (has_hvhe())
+ shift = 10;
+
+ /* Allow physical timer/counter access for the host */
+ val = read_sysreg(cnthctl_el2);
+ val |= (CNTHCTL_EL1PCTEN | CNTHCTL_EL1PCEN) << shift;
+ write_sysreg(val, cnthctl_el2);
+}
+
+/*
+ * Should only be called on non-VHE or hVHE setups.
+ * VHE systems use EL2 timers and configure EL1 timers in kvm_timer_init_vhe().
+ */
+void __timer_enable_traps(struct kvm_vcpu *vcpu)
+{
+ u64 clr = 0, set = 0;
+
+ /*
+ * Disallow physical timer access for the guest
+ * Physical counter access is allowed if no offset is enforced
+ * or running protected (we don't offset anything in this case).
+ */
+ clr = CNTHCTL_EL1PCEN;
+ if (is_protected_kvm_enabled() ||
+ !kern_hyp_va(vcpu->kvm)->arch.timer_data.poffset)
+ set |= CNTHCTL_EL1PCTEN;
+ else
+ clr |= CNTHCTL_EL1PCTEN;
+
+ if (has_hvhe()) {
+ clr <<= 10;
+ set <<= 10;
+ }
+
+ sysreg_clear_set(cnthctl_el2, clr, set);
+}
diff --git a/arch/arm64/kvm/hyp/nvhe/tlb.c b/arch/arm64/kvm/hyp/nvhe/tlb.c
new file mode 100644
index 0000000000..1b265713d6
--- /dev/null
+++ b/arch/arm64/kvm/hyp/nvhe/tlb.c
@@ -0,0 +1,263 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2015 - ARM Ltd
+ * Author: Marc Zyngier <marc.zyngier@arm.com>
+ */
+
+#include <asm/kvm_hyp.h>
+#include <asm/kvm_mmu.h>
+#include <asm/tlbflush.h>
+
+#include <nvhe/mem_protect.h>
+
+struct tlb_inv_context {
+ u64 tcr;
+};
+
+static void __tlb_switch_to_guest(struct kvm_s2_mmu *mmu,
+ struct tlb_inv_context *cxt,
+ bool nsh)
+{
+ /*
+ * We have two requirements:
+ *
+ * - ensure that the page table updates are visible to all
+ * CPUs, for which a dsb(DOMAIN-st) is what we need, DOMAIN
+ * being either ish or nsh, depending on the invalidation
+ * type.
+ *
+ * - complete any speculative page table walk started before
+ * we trapped to EL2 so that we can mess with the MM
+ * registers out of context, for which dsb(nsh) is enough
+ *
+ * The composition of these two barriers is a dsb(DOMAIN), and
+ * the 'nsh' parameter tracks the distinction between
+ * Inner-Shareable and Non-Shareable, as specified by the
+ * callers.
+ */
+ if (nsh)
+ dsb(nsh);
+ else
+ dsb(ish);
+
+ if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
+ u64 val;
+
+ /*
+ * For CPUs that are affected by ARM 1319367, we need to
+ * avoid a host Stage-1 walk while we have the guest's
+ * VMID set in the VTTBR in order to invalidate TLBs.
+ * We're guaranteed that the S1 MMU is enabled, so we can
+ * simply set the EPD bits to avoid any further TLB fill.
+ */
+ val = cxt->tcr = read_sysreg_el1(SYS_TCR);
+ val |= TCR_EPD1_MASK | TCR_EPD0_MASK;
+ write_sysreg_el1(val, SYS_TCR);
+ isb();
+ }
+
+ /*
+ * __load_stage2() includes an ISB only when the AT
+ * workaround is applied. Take care of the opposite condition,
+ * ensuring that we always have an ISB, but not two ISBs back
+ * to back.
+ */
+ __load_stage2(mmu, kern_hyp_va(mmu->arch));
+ asm(ALTERNATIVE("isb", "nop", ARM64_WORKAROUND_SPECULATIVE_AT));
+}
+
+static void __tlb_switch_to_host(struct tlb_inv_context *cxt)
+{
+ __load_host_stage2();
+
+ if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
+ /* Ensure write of the host VMID */
+ isb();
+ /* Restore the host's TCR_EL1 */
+ write_sysreg_el1(cxt->tcr, SYS_TCR);
+ }
+}
+
+void __kvm_tlb_flush_vmid_ipa(struct kvm_s2_mmu *mmu,
+ phys_addr_t ipa, int level)
+{
+ struct tlb_inv_context cxt;
+
+ /* Switch to requested VMID */
+ __tlb_switch_to_guest(mmu, &cxt, false);
+
+ /*
+ * We could do so much better if we had the VA as well.
+ * Instead, we invalidate Stage-2 for this IPA, and the
+ * whole of Stage-1. Weep...
+ */
+ ipa >>= 12;
+ __tlbi_level(ipas2e1is, ipa, level);
+
+ /*
+ * We have to ensure completion of the invalidation at Stage-2,
+ * since a table walk on another CPU could refill a TLB with a
+ * complete (S1 + S2) walk based on the old Stage-2 mapping if
+ * the Stage-1 invalidation happened first.
+ */
+ dsb(ish);
+ __tlbi(vmalle1is);
+ dsb(ish);
+ isb();
+
+ /*
+ * If the host is running at EL1 and we have a VPIPT I-cache,
+ * then we must perform I-cache maintenance at EL2 in order for
+ * it to have an effect on the guest. Since the guest cannot hit
+ * I-cache lines allocated with a different VMID, we don't need
+ * to worry about junk out of guest reset (we nuke the I-cache on
+ * VMID rollover), but we do need to be careful when remapping
+ * executable pages for the same guest. This can happen when KSM
+ * takes a CoW fault on an executable page, copies the page into
+ * a page that was previously mapped in the guest and then needs
+ * to invalidate the guest view of the I-cache for that page
+ * from EL1. To solve this, we invalidate the entire I-cache when
+ * unmapping a page from a guest if we have a VPIPT I-cache but
+ * the host is running at EL1. As above, we could do better if
+ * we had the VA.
+ *
+ * The moral of this story is: if you have a VPIPT I-cache, then
+ * you should be running with VHE enabled.
+ */
+ if (icache_is_vpipt())
+ icache_inval_all_pou();
+
+ __tlb_switch_to_host(&cxt);
+}
+
+void __kvm_tlb_flush_vmid_ipa_nsh(struct kvm_s2_mmu *mmu,
+ phys_addr_t ipa, int level)
+{
+ struct tlb_inv_context cxt;
+
+ /* Switch to requested VMID */
+ __tlb_switch_to_guest(mmu, &cxt, true);
+
+ /*
+ * We could do so much better if we had the VA as well.
+ * Instead, we invalidate Stage-2 for this IPA, and the
+ * whole of Stage-1. Weep...
+ */
+ ipa >>= 12;
+ __tlbi_level(ipas2e1, ipa, level);
+
+ /*
+ * We have to ensure completion of the invalidation at Stage-2,
+ * since a table walk on another CPU could refill a TLB with a
+ * complete (S1 + S2) walk based on the old Stage-2 mapping if
+ * the Stage-1 invalidation happened first.
+ */
+ dsb(nsh);
+ __tlbi(vmalle1);
+ dsb(nsh);
+ isb();
+
+ /*
+ * If the host is running at EL1 and we have a VPIPT I-cache,
+ * then we must perform I-cache maintenance at EL2 in order for
+ * it to have an effect on the guest. Since the guest cannot hit
+ * I-cache lines allocated with a different VMID, we don't need
+ * to worry about junk out of guest reset (we nuke the I-cache on
+ * VMID rollover), but we do need to be careful when remapping
+ * executable pages for the same guest. This can happen when KSM
+ * takes a CoW fault on an executable page, copies the page into
+ * a page that was previously mapped in the guest and then needs
+ * to invalidate the guest view of the I-cache for that page
+ * from EL1. To solve this, we invalidate the entire I-cache when
+ * unmapping a page from a guest if we have a VPIPT I-cache but
+ * the host is running at EL1. As above, we could do better if
+ * we had the VA.
+ *
+ * The moral of this story is: if you have a VPIPT I-cache, then
+ * you should be running with VHE enabled.
+ */
+ if (icache_is_vpipt())
+ icache_inval_all_pou();
+
+ __tlb_switch_to_host(&cxt);
+}
+
+void __kvm_tlb_flush_vmid_range(struct kvm_s2_mmu *mmu,
+ phys_addr_t start, unsigned long pages)
+{
+ struct tlb_inv_context cxt;
+ unsigned long stride;
+
+ /*
+ * Since the range of addresses may not be mapped at
+ * the same level, assume the worst case as PAGE_SIZE
+ */
+ stride = PAGE_SIZE;
+ start = round_down(start, stride);
+
+ /* Switch to requested VMID */
+ __tlb_switch_to_guest(mmu, &cxt, false);
+
+ __flush_s2_tlb_range_op(ipas2e1is, start, pages, stride, 0);
+
+ dsb(ish);
+ __tlbi(vmalle1is);
+ dsb(ish);
+ isb();
+
+ /* See the comment in __kvm_tlb_flush_vmid_ipa() */
+ if (icache_is_vpipt())
+ icache_inval_all_pou();
+
+ __tlb_switch_to_host(&cxt);
+}
+
+void __kvm_tlb_flush_vmid(struct kvm_s2_mmu *mmu)
+{
+ struct tlb_inv_context cxt;
+
+ /* Switch to requested VMID */
+ __tlb_switch_to_guest(mmu, &cxt, false);
+
+ __tlbi(vmalls12e1is);
+ dsb(ish);
+ isb();
+
+ __tlb_switch_to_host(&cxt);
+}
+
+void __kvm_flush_cpu_context(struct kvm_s2_mmu *mmu)
+{
+ struct tlb_inv_context cxt;
+
+ /* Switch to requested VMID */
+ __tlb_switch_to_guest(mmu, &cxt, false);
+
+ __tlbi(vmalle1);
+ asm volatile("ic iallu");
+ dsb(nsh);
+ isb();
+
+ __tlb_switch_to_host(&cxt);
+}
+
+void __kvm_flush_vm_context(void)
+{
+ /* Same remark as in __tlb_switch_to_guest() */
+ dsb(ish);
+ __tlbi(alle1is);
+
+ /*
+ * VIPT and PIPT caches are not affected by VMID, so no maintenance
+ * is necessary across a VMID rollover.
+ *
+ * VPIPT caches constrain lookup and maintenance to the active VMID,
+ * so we need to invalidate lines with a stale VMID to avoid an ABA
+ * race after multiple rollovers.
+ *
+ */
+ if (icache_is_vpipt())
+ asm volatile("ic ialluis");
+
+ dsb(ish);
+}
diff --git a/arch/arm64/kvm/hyp/pgtable.c b/arch/arm64/kvm/hyp/pgtable.c
new file mode 100644
index 0000000000..f155b8c9e9
--- /dev/null
+++ b/arch/arm64/kvm/hyp/pgtable.c
@@ -0,0 +1,1600 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Stand-alone page-table allocator for hyp stage-1 and guest stage-2.
+ * No bombay mix was harmed in the writing of this file.
+ *
+ * Copyright (C) 2020 Google LLC
+ * Author: Will Deacon <will@kernel.org>
+ */
+
+#include <linux/bitfield.h>
+#include <asm/kvm_pgtable.h>
+#include <asm/stage2_pgtable.h>
+
+
+#define KVM_PTE_TYPE BIT(1)
+#define KVM_PTE_TYPE_BLOCK 0
+#define KVM_PTE_TYPE_PAGE 1
+#define KVM_PTE_TYPE_TABLE 1
+
+#define KVM_PTE_LEAF_ATTR_LO GENMASK(11, 2)
+
+#define KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX GENMASK(4, 2)
+#define KVM_PTE_LEAF_ATTR_LO_S1_AP GENMASK(7, 6)
+#define KVM_PTE_LEAF_ATTR_LO_S1_AP_RO \
+ ({ cpus_have_final_cap(ARM64_KVM_HVHE) ? 2 : 3; })
+#define KVM_PTE_LEAF_ATTR_LO_S1_AP_RW \
+ ({ cpus_have_final_cap(ARM64_KVM_HVHE) ? 0 : 1; })
+#define KVM_PTE_LEAF_ATTR_LO_S1_SH GENMASK(9, 8)
+#define KVM_PTE_LEAF_ATTR_LO_S1_SH_IS 3
+#define KVM_PTE_LEAF_ATTR_LO_S1_AF BIT(10)
+
+#define KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR GENMASK(5, 2)
+#define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R BIT(6)
+#define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W BIT(7)
+#define KVM_PTE_LEAF_ATTR_LO_S2_SH GENMASK(9, 8)
+#define KVM_PTE_LEAF_ATTR_LO_S2_SH_IS 3
+#define KVM_PTE_LEAF_ATTR_LO_S2_AF BIT(10)
+
+#define KVM_PTE_LEAF_ATTR_HI GENMASK(63, 50)
+
+#define KVM_PTE_LEAF_ATTR_HI_SW GENMASK(58, 55)
+
+#define KVM_PTE_LEAF_ATTR_HI_S1_XN BIT(54)
+
+#define KVM_PTE_LEAF_ATTR_HI_S2_XN BIT(54)
+
+#define KVM_PTE_LEAF_ATTR_HI_S1_GP BIT(50)
+
+#define KVM_PTE_LEAF_ATTR_S2_PERMS (KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R | \
+ KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W | \
+ KVM_PTE_LEAF_ATTR_HI_S2_XN)
+
+#define KVM_INVALID_PTE_OWNER_MASK GENMASK(9, 2)
+#define KVM_MAX_OWNER_ID 1
+
+/*
+ * Used to indicate a pte for which a 'break-before-make' sequence is in
+ * progress.
+ */
+#define KVM_INVALID_PTE_LOCKED BIT(10)
+
+struct kvm_pgtable_walk_data {
+ struct kvm_pgtable_walker *walker;
+
+ const u64 start;
+ u64 addr;
+ const u64 end;
+};
+
+static bool kvm_pgtable_walk_skip_bbm_tlbi(const struct kvm_pgtable_visit_ctx *ctx)
+{
+ return unlikely(ctx->flags & KVM_PGTABLE_WALK_SKIP_BBM_TLBI);
+}
+
+static bool kvm_pgtable_walk_skip_cmo(const struct kvm_pgtable_visit_ctx *ctx)
+{
+ return unlikely(ctx->flags & KVM_PGTABLE_WALK_SKIP_CMO);
+}
+
+static bool kvm_phys_is_valid(u64 phys)
+{
+ return phys < BIT(id_aa64mmfr0_parange_to_phys_shift(ID_AA64MMFR0_EL1_PARANGE_MAX));
+}
+
+static bool kvm_block_mapping_supported(const struct kvm_pgtable_visit_ctx *ctx, u64 phys)
+{
+ u64 granule = kvm_granule_size(ctx->level);
+
+ if (!kvm_level_supports_block_mapping(ctx->level))
+ return false;
+
+ if (granule > (ctx->end - ctx->addr))
+ return false;
+
+ if (kvm_phys_is_valid(phys) && !IS_ALIGNED(phys, granule))
+ return false;
+
+ return IS_ALIGNED(ctx->addr, granule);
+}
+
+static u32 kvm_pgtable_idx(struct kvm_pgtable_walk_data *data, u32 level)
+{
+ u64 shift = kvm_granule_shift(level);
+ u64 mask = BIT(PAGE_SHIFT - 3) - 1;
+
+ return (data->addr >> shift) & mask;
+}
+
+static u32 kvm_pgd_page_idx(struct kvm_pgtable *pgt, u64 addr)
+{
+ u64 shift = kvm_granule_shift(pgt->start_level - 1); /* May underflow */
+ u64 mask = BIT(pgt->ia_bits) - 1;
+
+ return (addr & mask) >> shift;
+}
+
+static u32 kvm_pgd_pages(u32 ia_bits, u32 start_level)
+{
+ struct kvm_pgtable pgt = {
+ .ia_bits = ia_bits,
+ .start_level = start_level,
+ };
+
+ return kvm_pgd_page_idx(&pgt, -1ULL) + 1;
+}
+
+static bool kvm_pte_table(kvm_pte_t pte, u32 level)
+{
+ if (level == KVM_PGTABLE_MAX_LEVELS - 1)
+ return false;
+
+ if (!kvm_pte_valid(pte))
+ return false;
+
+ return FIELD_GET(KVM_PTE_TYPE, pte) == KVM_PTE_TYPE_TABLE;
+}
+
+static kvm_pte_t *kvm_pte_follow(kvm_pte_t pte, struct kvm_pgtable_mm_ops *mm_ops)
+{
+ return mm_ops->phys_to_virt(kvm_pte_to_phys(pte));
+}
+
+static void kvm_clear_pte(kvm_pte_t *ptep)
+{
+ WRITE_ONCE(*ptep, 0);
+}
+
+static kvm_pte_t kvm_init_table_pte(kvm_pte_t *childp, struct kvm_pgtable_mm_ops *mm_ops)
+{
+ kvm_pte_t pte = kvm_phys_to_pte(mm_ops->virt_to_phys(childp));
+
+ pte |= FIELD_PREP(KVM_PTE_TYPE, KVM_PTE_TYPE_TABLE);
+ pte |= KVM_PTE_VALID;
+ return pte;
+}
+
+static kvm_pte_t kvm_init_valid_leaf_pte(u64 pa, kvm_pte_t attr, u32 level)
+{
+ kvm_pte_t pte = kvm_phys_to_pte(pa);
+ u64 type = (level == KVM_PGTABLE_MAX_LEVELS - 1) ? KVM_PTE_TYPE_PAGE :
+ KVM_PTE_TYPE_BLOCK;
+
+ pte |= attr & (KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI);
+ pte |= FIELD_PREP(KVM_PTE_TYPE, type);
+ pte |= KVM_PTE_VALID;
+
+ return pte;
+}
+
+static kvm_pte_t kvm_init_invalid_leaf_owner(u8 owner_id)
+{
+ return FIELD_PREP(KVM_INVALID_PTE_OWNER_MASK, owner_id);
+}
+
+static int kvm_pgtable_visitor_cb(struct kvm_pgtable_walk_data *data,
+ const struct kvm_pgtable_visit_ctx *ctx,
+ enum kvm_pgtable_walk_flags visit)
+{
+ struct kvm_pgtable_walker *walker = data->walker;
+
+ /* Ensure the appropriate lock is held (e.g. RCU lock for stage-2 MMU) */
+ WARN_ON_ONCE(kvm_pgtable_walk_shared(ctx) && !kvm_pgtable_walk_lock_held());
+ return walker->cb(ctx, visit);
+}
+
+static bool kvm_pgtable_walk_continue(const struct kvm_pgtable_walker *walker,
+ int r)
+{
+ /*
+ * Visitor callbacks return EAGAIN when the conditions that led to a
+ * fault are no longer reflected in the page tables due to a race to
+ * update a PTE. In the context of a fault handler this is interpreted
+ * as a signal to retry guest execution.
+ *
+ * Ignore the return code altogether for walkers outside a fault handler
+ * (e.g. write protecting a range of memory) and chug along with the
+ * page table walk.
+ */
+ if (r == -EAGAIN)
+ return !(walker->flags & KVM_PGTABLE_WALK_HANDLE_FAULT);
+
+ return !r;
+}
+
+static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
+ struct kvm_pgtable_mm_ops *mm_ops, kvm_pteref_t pgtable, u32 level);
+
+static inline int __kvm_pgtable_visit(struct kvm_pgtable_walk_data *data,
+ struct kvm_pgtable_mm_ops *mm_ops,
+ kvm_pteref_t pteref, u32 level)
+{
+ enum kvm_pgtable_walk_flags flags = data->walker->flags;
+ kvm_pte_t *ptep = kvm_dereference_pteref(data->walker, pteref);
+ struct kvm_pgtable_visit_ctx ctx = {
+ .ptep = ptep,
+ .old = READ_ONCE(*ptep),
+ .arg = data->walker->arg,
+ .mm_ops = mm_ops,
+ .start = data->start,
+ .addr = data->addr,
+ .end = data->end,
+ .level = level,
+ .flags = flags,
+ };
+ int ret = 0;
+ bool reload = false;
+ kvm_pteref_t childp;
+ bool table = kvm_pte_table(ctx.old, level);
+
+ if (table && (ctx.flags & KVM_PGTABLE_WALK_TABLE_PRE)) {
+ ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_TABLE_PRE);
+ reload = true;
+ }
+
+ if (!table && (ctx.flags & KVM_PGTABLE_WALK_LEAF)) {
+ ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_LEAF);
+ reload = true;
+ }
+
+ /*
+ * Reload the page table after invoking the walker callback for leaf
+ * entries or after pre-order traversal, to allow the walker to descend
+ * into a newly installed or replaced table.
+ */
+ if (reload) {
+ ctx.old = READ_ONCE(*ptep);
+ table = kvm_pte_table(ctx.old, level);
+ }
+
+ if (!kvm_pgtable_walk_continue(data->walker, ret))
+ goto out;
+
+ if (!table) {
+ data->addr = ALIGN_DOWN(data->addr, kvm_granule_size(level));
+ data->addr += kvm_granule_size(level);
+ goto out;
+ }
+
+ childp = (kvm_pteref_t)kvm_pte_follow(ctx.old, mm_ops);
+ ret = __kvm_pgtable_walk(data, mm_ops, childp, level + 1);
+ if (!kvm_pgtable_walk_continue(data->walker, ret))
+ goto out;
+
+ if (ctx.flags & KVM_PGTABLE_WALK_TABLE_POST)
+ ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_TABLE_POST);
+
+out:
+ if (kvm_pgtable_walk_continue(data->walker, ret))
+ return 0;
+
+ return ret;
+}
+
+static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
+ struct kvm_pgtable_mm_ops *mm_ops, kvm_pteref_t pgtable, u32 level)
+{
+ u32 idx;
+ int ret = 0;
+
+ if (WARN_ON_ONCE(level >= KVM_PGTABLE_MAX_LEVELS))
+ return -EINVAL;
+
+ for (idx = kvm_pgtable_idx(data, level); idx < PTRS_PER_PTE; ++idx) {
+ kvm_pteref_t pteref = &pgtable[idx];
+
+ if (data->addr >= data->end)
+ break;
+
+ ret = __kvm_pgtable_visit(data, mm_ops, pteref, level);
+ if (ret)
+ break;
+ }
+
+ return ret;
+}
+
+static int _kvm_pgtable_walk(struct kvm_pgtable *pgt, struct kvm_pgtable_walk_data *data)
+{
+ u32 idx;
+ int ret = 0;
+ u64 limit = BIT(pgt->ia_bits);
+
+ if (data->addr > limit || data->end > limit)
+ return -ERANGE;
+
+ if (!pgt->pgd)
+ return -EINVAL;
+
+ for (idx = kvm_pgd_page_idx(pgt, data->addr); data->addr < data->end; ++idx) {
+ kvm_pteref_t pteref = &pgt->pgd[idx * PTRS_PER_PTE];
+
+ ret = __kvm_pgtable_walk(data, pgt->mm_ops, pteref, pgt->start_level);
+ if (ret)
+ break;
+ }
+
+ return ret;
+}
+
+int kvm_pgtable_walk(struct kvm_pgtable *pgt, u64 addr, u64 size,
+ struct kvm_pgtable_walker *walker)
+{
+ struct kvm_pgtable_walk_data walk_data = {
+ .start = ALIGN_DOWN(addr, PAGE_SIZE),
+ .addr = ALIGN_DOWN(addr, PAGE_SIZE),
+ .end = PAGE_ALIGN(walk_data.addr + size),
+ .walker = walker,
+ };
+ int r;
+
+ r = kvm_pgtable_walk_begin(walker);
+ if (r)
+ return r;
+
+ r = _kvm_pgtable_walk(pgt, &walk_data);
+ kvm_pgtable_walk_end(walker);
+
+ return r;
+}
+
+struct leaf_walk_data {
+ kvm_pte_t pte;
+ u32 level;
+};
+
+static int leaf_walker(const struct kvm_pgtable_visit_ctx *ctx,
+ enum kvm_pgtable_walk_flags visit)
+{
+ struct leaf_walk_data *data = ctx->arg;
+
+ data->pte = ctx->old;
+ data->level = ctx->level;
+
+ return 0;
+}
+
+int kvm_pgtable_get_leaf(struct kvm_pgtable *pgt, u64 addr,
+ kvm_pte_t *ptep, u32 *level)
+{
+ struct leaf_walk_data data;
+ struct kvm_pgtable_walker walker = {
+ .cb = leaf_walker,
+ .flags = KVM_PGTABLE_WALK_LEAF,
+ .arg = &data,
+ };
+ int ret;
+
+ ret = kvm_pgtable_walk(pgt, ALIGN_DOWN(addr, PAGE_SIZE),
+ PAGE_SIZE, &walker);
+ if (!ret) {
+ if (ptep)
+ *ptep = data.pte;
+ if (level)
+ *level = data.level;
+ }
+
+ return ret;
+}
+
+struct hyp_map_data {
+ const u64 phys;
+ kvm_pte_t attr;
+};
+
+static int hyp_set_prot_attr(enum kvm_pgtable_prot prot, kvm_pte_t *ptep)
+{
+ bool device = prot & KVM_PGTABLE_PROT_DEVICE;
+ u32 mtype = device ? MT_DEVICE_nGnRE : MT_NORMAL;
+ kvm_pte_t attr = FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX, mtype);
+ u32 sh = KVM_PTE_LEAF_ATTR_LO_S1_SH_IS;
+ u32 ap = (prot & KVM_PGTABLE_PROT_W) ? KVM_PTE_LEAF_ATTR_LO_S1_AP_RW :
+ KVM_PTE_LEAF_ATTR_LO_S1_AP_RO;
+
+ if (!(prot & KVM_PGTABLE_PROT_R))
+ return -EINVAL;
+
+ if (prot & KVM_PGTABLE_PROT_X) {
+ if (prot & KVM_PGTABLE_PROT_W)
+ return -EINVAL;
+
+ if (device)
+ return -EINVAL;
+
+ if (IS_ENABLED(CONFIG_ARM64_BTI_KERNEL) && system_supports_bti())
+ attr |= KVM_PTE_LEAF_ATTR_HI_S1_GP;
+ } else {
+ attr |= KVM_PTE_LEAF_ATTR_HI_S1_XN;
+ }
+
+ attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_AP, ap);
+ attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_SH, sh);
+ attr |= KVM_PTE_LEAF_ATTR_LO_S1_AF;
+ attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
+ *ptep = attr;
+
+ return 0;
+}
+
+enum kvm_pgtable_prot kvm_pgtable_hyp_pte_prot(kvm_pte_t pte)
+{
+ enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
+ u32 ap;
+
+ if (!kvm_pte_valid(pte))
+ return prot;
+
+ if (!(pte & KVM_PTE_LEAF_ATTR_HI_S1_XN))
+ prot |= KVM_PGTABLE_PROT_X;
+
+ ap = FIELD_GET(KVM_PTE_LEAF_ATTR_LO_S1_AP, pte);
+ if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RO)
+ prot |= KVM_PGTABLE_PROT_R;
+ else if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RW)
+ prot |= KVM_PGTABLE_PROT_RW;
+
+ return prot;
+}
+
+static bool hyp_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx,
+ struct hyp_map_data *data)
+{
+ u64 phys = data->phys + (ctx->addr - ctx->start);
+ kvm_pte_t new;
+
+ if (!kvm_block_mapping_supported(ctx, phys))
+ return false;
+
+ new = kvm_init_valid_leaf_pte(phys, data->attr, ctx->level);
+ if (ctx->old == new)
+ return true;
+ if (!kvm_pte_valid(ctx->old))
+ ctx->mm_ops->get_page(ctx->ptep);
+ else if (WARN_ON((ctx->old ^ new) & ~KVM_PTE_LEAF_ATTR_HI_SW))
+ return false;
+
+ smp_store_release(ctx->ptep, new);
+ return true;
+}
+
+static int hyp_map_walker(const struct kvm_pgtable_visit_ctx *ctx,
+ enum kvm_pgtable_walk_flags visit)
+{
+ kvm_pte_t *childp, new;
+ struct hyp_map_data *data = ctx->arg;
+ struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
+
+ if (hyp_map_walker_try_leaf(ctx, data))
+ return 0;
+
+ if (WARN_ON(ctx->level == KVM_PGTABLE_MAX_LEVELS - 1))
+ return -EINVAL;
+
+ childp = (kvm_pte_t *)mm_ops->zalloc_page(NULL);
+ if (!childp)
+ return -ENOMEM;
+
+ new = kvm_init_table_pte(childp, mm_ops);
+ mm_ops->get_page(ctx->ptep);
+ smp_store_release(ctx->ptep, new);
+
+ return 0;
+}
+
+int kvm_pgtable_hyp_map(struct kvm_pgtable *pgt, u64 addr, u64 size, u64 phys,
+ enum kvm_pgtable_prot prot)
+{
+ int ret;
+ struct hyp_map_data map_data = {
+ .phys = ALIGN_DOWN(phys, PAGE_SIZE),
+ };
+ struct kvm_pgtable_walker walker = {
+ .cb = hyp_map_walker,
+ .flags = KVM_PGTABLE_WALK_LEAF,
+ .arg = &map_data,
+ };
+
+ ret = hyp_set_prot_attr(prot, &map_data.attr);
+ if (ret)
+ return ret;
+
+ ret = kvm_pgtable_walk(pgt, addr, size, &walker);
+ dsb(ishst);
+ isb();
+ return ret;
+}
+
+static int hyp_unmap_walker(const struct kvm_pgtable_visit_ctx *ctx,
+ enum kvm_pgtable_walk_flags visit)
+{
+ kvm_pte_t *childp = NULL;
+ u64 granule = kvm_granule_size(ctx->level);
+ u64 *unmapped = ctx->arg;
+ struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
+
+ if (!kvm_pte_valid(ctx->old))
+ return -EINVAL;
+
+ if (kvm_pte_table(ctx->old, ctx->level)) {
+ childp = kvm_pte_follow(ctx->old, mm_ops);
+
+ if (mm_ops->page_count(childp) != 1)
+ return 0;
+
+ kvm_clear_pte(ctx->ptep);
+ dsb(ishst);
+ __tlbi_level(vae2is, __TLBI_VADDR(ctx->addr, 0), ctx->level);
+ } else {
+ if (ctx->end - ctx->addr < granule)
+ return -EINVAL;
+
+ kvm_clear_pte(ctx->ptep);
+ dsb(ishst);
+ __tlbi_level(vale2is, __TLBI_VADDR(ctx->addr, 0), ctx->level);
+ *unmapped += granule;
+ }
+
+ dsb(ish);
+ isb();
+ mm_ops->put_page(ctx->ptep);
+
+ if (childp)
+ mm_ops->put_page(childp);
+
+ return 0;
+}
+
+u64 kvm_pgtable_hyp_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
+{
+ u64 unmapped = 0;
+ struct kvm_pgtable_walker walker = {
+ .cb = hyp_unmap_walker,
+ .arg = &unmapped,
+ .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
+ };
+
+ if (!pgt->mm_ops->page_count)
+ return 0;
+
+ kvm_pgtable_walk(pgt, addr, size, &walker);
+ return unmapped;
+}
+
+int kvm_pgtable_hyp_init(struct kvm_pgtable *pgt, u32 va_bits,
+ struct kvm_pgtable_mm_ops *mm_ops)
+{
+ u64 levels = ARM64_HW_PGTABLE_LEVELS(va_bits);
+
+ pgt->pgd = (kvm_pteref_t)mm_ops->zalloc_page(NULL);
+ if (!pgt->pgd)
+ return -ENOMEM;
+
+ pgt->ia_bits = va_bits;
+ pgt->start_level = KVM_PGTABLE_MAX_LEVELS - levels;
+ pgt->mm_ops = mm_ops;
+ pgt->mmu = NULL;
+ pgt->force_pte_cb = NULL;
+
+ return 0;
+}
+
+static int hyp_free_walker(const struct kvm_pgtable_visit_ctx *ctx,
+ enum kvm_pgtable_walk_flags visit)
+{
+ struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
+
+ if (!kvm_pte_valid(ctx->old))
+ return 0;
+
+ mm_ops->put_page(ctx->ptep);
+
+ if (kvm_pte_table(ctx->old, ctx->level))
+ mm_ops->put_page(kvm_pte_follow(ctx->old, mm_ops));
+
+ return 0;
+}
+
+void kvm_pgtable_hyp_destroy(struct kvm_pgtable *pgt)
+{
+ struct kvm_pgtable_walker walker = {
+ .cb = hyp_free_walker,
+ .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
+ };
+
+ WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
+ pgt->mm_ops->put_page(kvm_dereference_pteref(&walker, pgt->pgd));
+ pgt->pgd = NULL;
+}
+
+struct stage2_map_data {
+ const u64 phys;
+ kvm_pte_t attr;
+ u8 owner_id;
+
+ kvm_pte_t *anchor;
+ kvm_pte_t *childp;
+
+ struct kvm_s2_mmu *mmu;
+ void *memcache;
+
+ /* Force mappings to page granularity */
+ bool force_pte;
+};
+
+u64 kvm_get_vtcr(u64 mmfr0, u64 mmfr1, u32 phys_shift)
+{
+ u64 vtcr = VTCR_EL2_FLAGS;
+ u8 lvls;
+
+ vtcr |= kvm_get_parange(mmfr0) << VTCR_EL2_PS_SHIFT;
+ vtcr |= VTCR_EL2_T0SZ(phys_shift);
+ /*
+ * Use a minimum 2 level page table to prevent splitting
+ * host PMD huge pages at stage2.
+ */
+ lvls = stage2_pgtable_levels(phys_shift);
+ if (lvls < 2)
+ lvls = 2;
+ vtcr |= VTCR_EL2_LVLS_TO_SL0(lvls);
+
+#ifdef CONFIG_ARM64_HW_AFDBM
+ /*
+ * Enable the Hardware Access Flag management, unconditionally
+ * on all CPUs. In systems that have asymmetric support for the feature
+ * this allows KVM to leverage hardware support on the subset of cores
+ * that implement the feature.
+ *
+ * The architecture requires VTCR_EL2.HA to be RES0 (thus ignored by
+ * hardware) on implementations that do not advertise support for the
+ * feature. As such, setting HA unconditionally is safe, unless you
+ * happen to be running on a design that has unadvertised support for
+ * HAFDBS. Here be dragons.
+ */
+ if (!cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38))
+ vtcr |= VTCR_EL2_HA;
+#endif /* CONFIG_ARM64_HW_AFDBM */
+
+ /* Set the vmid bits */
+ vtcr |= (get_vmid_bits(mmfr1) == 16) ?
+ VTCR_EL2_VS_16BIT :
+ VTCR_EL2_VS_8BIT;
+
+ return vtcr;
+}
+
+static bool stage2_has_fwb(struct kvm_pgtable *pgt)
+{
+ if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
+ return false;
+
+ return !(pgt->flags & KVM_PGTABLE_S2_NOFWB);
+}
+
+void kvm_tlb_flush_vmid_range(struct kvm_s2_mmu *mmu,
+ phys_addr_t addr, size_t size)
+{
+ unsigned long pages, inval_pages;
+
+ if (!system_supports_tlb_range()) {
+ kvm_call_hyp(__kvm_tlb_flush_vmid, mmu);
+ return;
+ }
+
+ pages = size >> PAGE_SHIFT;
+ while (pages > 0) {
+ inval_pages = min(pages, MAX_TLBI_RANGE_PAGES);
+ kvm_call_hyp(__kvm_tlb_flush_vmid_range, mmu, addr, inval_pages);
+
+ addr += inval_pages << PAGE_SHIFT;
+ pages -= inval_pages;
+ }
+}
+
+#define KVM_S2_MEMATTR(pgt, attr) PAGE_S2_MEMATTR(attr, stage2_has_fwb(pgt))
+
+static int stage2_set_prot_attr(struct kvm_pgtable *pgt, enum kvm_pgtable_prot prot,
+ kvm_pte_t *ptep)
+{
+ bool device = prot & KVM_PGTABLE_PROT_DEVICE;
+ kvm_pte_t attr = device ? KVM_S2_MEMATTR(pgt, DEVICE_nGnRE) :
+ KVM_S2_MEMATTR(pgt, NORMAL);
+ u32 sh = KVM_PTE_LEAF_ATTR_LO_S2_SH_IS;
+
+ if (!(prot & KVM_PGTABLE_PROT_X))
+ attr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;
+ else if (device)
+ return -EINVAL;
+
+ if (prot & KVM_PGTABLE_PROT_R)
+ attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
+
+ if (prot & KVM_PGTABLE_PROT_W)
+ attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
+
+ attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S2_SH, sh);
+ attr |= KVM_PTE_LEAF_ATTR_LO_S2_AF;
+ attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
+ *ptep = attr;
+
+ return 0;
+}
+
+enum kvm_pgtable_prot kvm_pgtable_stage2_pte_prot(kvm_pte_t pte)
+{
+ enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
+
+ if (!kvm_pte_valid(pte))
+ return prot;
+
+ if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R)
+ prot |= KVM_PGTABLE_PROT_R;
+ if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W)
+ prot |= KVM_PGTABLE_PROT_W;
+ if (!(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN))
+ prot |= KVM_PGTABLE_PROT_X;
+
+ return prot;
+}
+
+static bool stage2_pte_needs_update(kvm_pte_t old, kvm_pte_t new)
+{
+ if (!kvm_pte_valid(old) || !kvm_pte_valid(new))
+ return true;
+
+ return ((old ^ new) & (~KVM_PTE_LEAF_ATTR_S2_PERMS));
+}
+
+static bool stage2_pte_is_counted(kvm_pte_t pte)
+{
+ /*
+ * The refcount tracks valid entries as well as invalid entries if they
+ * encode ownership of a page to another entity than the page-table
+ * owner, whose id is 0.
+ */
+ return !!pte;
+}
+
+static bool stage2_pte_is_locked(kvm_pte_t pte)
+{
+ return !kvm_pte_valid(pte) && (pte & KVM_INVALID_PTE_LOCKED);
+}
+
+static bool stage2_try_set_pte(const struct kvm_pgtable_visit_ctx *ctx, kvm_pte_t new)
+{
+ if (!kvm_pgtable_walk_shared(ctx)) {
+ WRITE_ONCE(*ctx->ptep, new);
+ return true;
+ }
+
+ return cmpxchg(ctx->ptep, ctx->old, new) == ctx->old;
+}
+
+/**
+ * stage2_try_break_pte() - Invalidates a pte according to the
+ * 'break-before-make' requirements of the
+ * architecture.
+ *
+ * @ctx: context of the visited pte.
+ * @mmu: stage-2 mmu
+ *
+ * Returns: true if the pte was successfully broken.
+ *
+ * If the removed pte was valid, performs the necessary serialization and TLB
+ * invalidation for the old value. For counted ptes, drops the reference count
+ * on the containing table page.
+ */
+static bool stage2_try_break_pte(const struct kvm_pgtable_visit_ctx *ctx,
+ struct kvm_s2_mmu *mmu)
+{
+ struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
+
+ if (stage2_pte_is_locked(ctx->old)) {
+ /*
+ * Should never occur if this walker has exclusive access to the
+ * page tables.
+ */
+ WARN_ON(!kvm_pgtable_walk_shared(ctx));
+ return false;
+ }
+
+ if (!stage2_try_set_pte(ctx, KVM_INVALID_PTE_LOCKED))
+ return false;
+
+ if (!kvm_pgtable_walk_skip_bbm_tlbi(ctx)) {
+ /*
+ * Perform the appropriate TLB invalidation based on the
+ * evicted pte value (if any).
+ */
+ if (kvm_pte_table(ctx->old, ctx->level))
+ kvm_tlb_flush_vmid_range(mmu, ctx->addr,
+ kvm_granule_size(ctx->level));
+ else if (kvm_pte_valid(ctx->old))
+ kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu,
+ ctx->addr, ctx->level);
+ }
+
+ if (stage2_pte_is_counted(ctx->old))
+ mm_ops->put_page(ctx->ptep);
+
+ return true;
+}
+
+static void stage2_make_pte(const struct kvm_pgtable_visit_ctx *ctx, kvm_pte_t new)
+{
+ struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
+
+ WARN_ON(!stage2_pte_is_locked(*ctx->ptep));
+
+ if (stage2_pte_is_counted(new))
+ mm_ops->get_page(ctx->ptep);
+
+ smp_store_release(ctx->ptep, new);
+}
+
+static bool stage2_unmap_defer_tlb_flush(struct kvm_pgtable *pgt)
+{
+ /*
+ * If FEAT_TLBIRANGE is implemented, defer the individual
+ * TLB invalidations until the entire walk is finished, and
+ * then use the range-based TLBI instructions to do the
+ * invalidations. Condition deferred TLB invalidation on the
+ * system supporting FWB as the optimization is entirely
+ * pointless when the unmap walker needs to perform CMOs.
+ */
+ return system_supports_tlb_range() && stage2_has_fwb(pgt);
+}
+
+static void stage2_unmap_put_pte(const struct kvm_pgtable_visit_ctx *ctx,
+ struct kvm_s2_mmu *mmu,
+ struct kvm_pgtable_mm_ops *mm_ops)
+{
+ struct kvm_pgtable *pgt = ctx->arg;
+
+ /*
+ * Clear the existing PTE, and perform break-before-make if it was
+ * valid. Depending on the system support, defer the TLB maintenance
+ * for the same until the entire unmap walk is completed.
+ */
+ if (kvm_pte_valid(ctx->old)) {
+ kvm_clear_pte(ctx->ptep);
+
+ if (!stage2_unmap_defer_tlb_flush(pgt))
+ kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu,
+ ctx->addr, ctx->level);
+ }
+
+ mm_ops->put_page(ctx->ptep);
+}
+
+static bool stage2_pte_cacheable(struct kvm_pgtable *pgt, kvm_pte_t pte)
+{
+ u64 memattr = pte & KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR;
+ return memattr == KVM_S2_MEMATTR(pgt, NORMAL);
+}
+
+static bool stage2_pte_executable(kvm_pte_t pte)
+{
+ return !(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN);
+}
+
+static u64 stage2_map_walker_phys_addr(const struct kvm_pgtable_visit_ctx *ctx,
+ const struct stage2_map_data *data)
+{
+ u64 phys = data->phys;
+
+ /*
+ * Stage-2 walks to update ownership data are communicated to the map
+ * walker using an invalid PA. Avoid offsetting an already invalid PA,
+ * which could overflow and make the address valid again.
+ */
+ if (!kvm_phys_is_valid(phys))
+ return phys;
+
+ /*
+ * Otherwise, work out the correct PA based on how far the walk has
+ * gotten.
+ */
+ return phys + (ctx->addr - ctx->start);
+}
+
+static bool stage2_leaf_mapping_allowed(const struct kvm_pgtable_visit_ctx *ctx,
+ struct stage2_map_data *data)
+{
+ u64 phys = stage2_map_walker_phys_addr(ctx, data);
+
+ if (data->force_pte && (ctx->level < (KVM_PGTABLE_MAX_LEVELS - 1)))
+ return false;
+
+ return kvm_block_mapping_supported(ctx, phys);
+}
+
+static int stage2_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx,
+ struct stage2_map_data *data)
+{
+ kvm_pte_t new;
+ u64 phys = stage2_map_walker_phys_addr(ctx, data);
+ u64 granule = kvm_granule_size(ctx->level);
+ struct kvm_pgtable *pgt = data->mmu->pgt;
+ struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
+
+ if (!stage2_leaf_mapping_allowed(ctx, data))
+ return -E2BIG;
+
+ if (kvm_phys_is_valid(phys))
+ new = kvm_init_valid_leaf_pte(phys, data->attr, ctx->level);
+ else
+ new = kvm_init_invalid_leaf_owner(data->owner_id);
+
+ /*
+ * Skip updating the PTE if we are trying to recreate the exact
+ * same mapping or only change the access permissions. Instead,
+ * the vCPU will exit one more time from guest if still needed
+ * and then go through the path of relaxing permissions.
+ */
+ if (!stage2_pte_needs_update(ctx->old, new))
+ return -EAGAIN;
+
+ if (!stage2_try_break_pte(ctx, data->mmu))
+ return -EAGAIN;
+
+ /* Perform CMOs before installation of the guest stage-2 PTE */
+ if (!kvm_pgtable_walk_skip_cmo(ctx) && mm_ops->dcache_clean_inval_poc &&
+ stage2_pte_cacheable(pgt, new))
+ mm_ops->dcache_clean_inval_poc(kvm_pte_follow(new, mm_ops),
+ granule);
+
+ if (!kvm_pgtable_walk_skip_cmo(ctx) && mm_ops->icache_inval_pou &&
+ stage2_pte_executable(new))
+ mm_ops->icache_inval_pou(kvm_pte_follow(new, mm_ops), granule);
+
+ stage2_make_pte(ctx, new);
+
+ return 0;
+}
+
+static int stage2_map_walk_table_pre(const struct kvm_pgtable_visit_ctx *ctx,
+ struct stage2_map_data *data)
+{
+ struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
+ kvm_pte_t *childp = kvm_pte_follow(ctx->old, mm_ops);
+ int ret;
+
+ if (!stage2_leaf_mapping_allowed(ctx, data))
+ return 0;
+
+ ret = stage2_map_walker_try_leaf(ctx, data);
+ if (ret)
+ return ret;
+
+ mm_ops->free_unlinked_table(childp, ctx->level);
+ return 0;
+}
+
+static int stage2_map_walk_leaf(const struct kvm_pgtable_visit_ctx *ctx,
+ struct stage2_map_data *data)
+{
+ struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
+ kvm_pte_t *childp, new;
+ int ret;
+
+ ret = stage2_map_walker_try_leaf(ctx, data);
+ if (ret != -E2BIG)
+ return ret;
+
+ if (WARN_ON(ctx->level == KVM_PGTABLE_MAX_LEVELS - 1))
+ return -EINVAL;
+
+ if (!data->memcache)
+ return -ENOMEM;
+
+ childp = mm_ops->zalloc_page(data->memcache);
+ if (!childp)
+ return -ENOMEM;
+
+ if (!stage2_try_break_pte(ctx, data->mmu)) {
+ mm_ops->put_page(childp);
+ return -EAGAIN;
+ }
+
+ /*
+ * If we've run into an existing block mapping then replace it with
+ * a table. Accesses beyond 'end' that fall within the new table
+ * will be mapped lazily.
+ */
+ new = kvm_init_table_pte(childp, mm_ops);
+ stage2_make_pte(ctx, new);
+
+ return 0;
+}
+
+/*
+ * The TABLE_PRE callback runs for table entries on the way down, looking
+ * for table entries which we could conceivably replace with a block entry
+ * for this mapping. If it finds one it replaces the entry and calls
+ * kvm_pgtable_mm_ops::free_unlinked_table() to tear down the detached table.
+ *
+ * Otherwise, the LEAF callback performs the mapping at the existing leaves
+ * instead.
+ */
+static int stage2_map_walker(const struct kvm_pgtable_visit_ctx *ctx,
+ enum kvm_pgtable_walk_flags visit)
+{
+ struct stage2_map_data *data = ctx->arg;
+
+ switch (visit) {
+ case KVM_PGTABLE_WALK_TABLE_PRE:
+ return stage2_map_walk_table_pre(ctx, data);
+ case KVM_PGTABLE_WALK_LEAF:
+ return stage2_map_walk_leaf(ctx, data);
+ default:
+ return -EINVAL;
+ }
+}
+
+int kvm_pgtable_stage2_map(struct kvm_pgtable *pgt, u64 addr, u64 size,
+ u64 phys, enum kvm_pgtable_prot prot,
+ void *mc, enum kvm_pgtable_walk_flags flags)
+{
+ int ret;
+ struct stage2_map_data map_data = {
+ .phys = ALIGN_DOWN(phys, PAGE_SIZE),
+ .mmu = pgt->mmu,
+ .memcache = mc,
+ .force_pte = pgt->force_pte_cb && pgt->force_pte_cb(addr, addr + size, prot),
+ };
+ struct kvm_pgtable_walker walker = {
+ .cb = stage2_map_walker,
+ .flags = flags |
+ KVM_PGTABLE_WALK_TABLE_PRE |
+ KVM_PGTABLE_WALK_LEAF,
+ .arg = &map_data,
+ };
+
+ if (WARN_ON((pgt->flags & KVM_PGTABLE_S2_IDMAP) && (addr != phys)))
+ return -EINVAL;
+
+ ret = stage2_set_prot_attr(pgt, prot, &map_data.attr);
+ if (ret)
+ return ret;
+
+ ret = kvm_pgtable_walk(pgt, addr, size, &walker);
+ dsb(ishst);
+ return ret;
+}
+
+int kvm_pgtable_stage2_set_owner(struct kvm_pgtable *pgt, u64 addr, u64 size,
+ void *mc, u8 owner_id)
+{
+ int ret;
+ struct stage2_map_data map_data = {
+ .phys = KVM_PHYS_INVALID,
+ .mmu = pgt->mmu,
+ .memcache = mc,
+ .owner_id = owner_id,
+ .force_pte = true,
+ };
+ struct kvm_pgtable_walker walker = {
+ .cb = stage2_map_walker,
+ .flags = KVM_PGTABLE_WALK_TABLE_PRE |
+ KVM_PGTABLE_WALK_LEAF,
+ .arg = &map_data,
+ };
+
+ if (owner_id > KVM_MAX_OWNER_ID)
+ return -EINVAL;
+
+ ret = kvm_pgtable_walk(pgt, addr, size, &walker);
+ return ret;
+}
+
+static int stage2_unmap_walker(const struct kvm_pgtable_visit_ctx *ctx,
+ enum kvm_pgtable_walk_flags visit)
+{
+ struct kvm_pgtable *pgt = ctx->arg;
+ struct kvm_s2_mmu *mmu = pgt->mmu;
+ struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
+ kvm_pte_t *childp = NULL;
+ bool need_flush = false;
+
+ if (!kvm_pte_valid(ctx->old)) {
+ if (stage2_pte_is_counted(ctx->old)) {
+ kvm_clear_pte(ctx->ptep);
+ mm_ops->put_page(ctx->ptep);
+ }
+ return 0;
+ }
+
+ if (kvm_pte_table(ctx->old, ctx->level)) {
+ childp = kvm_pte_follow(ctx->old, mm_ops);
+
+ if (mm_ops->page_count(childp) != 1)
+ return 0;
+ } else if (stage2_pte_cacheable(pgt, ctx->old)) {
+ need_flush = !stage2_has_fwb(pgt);
+ }
+
+ /*
+ * This is similar to the map() path in that we unmap the entire
+ * block entry and rely on the remaining portions being faulted
+ * back lazily.
+ */
+ stage2_unmap_put_pte(ctx, mmu, mm_ops);
+
+ if (need_flush && mm_ops->dcache_clean_inval_poc)
+ mm_ops->dcache_clean_inval_poc(kvm_pte_follow(ctx->old, mm_ops),
+ kvm_granule_size(ctx->level));
+
+ if (childp)
+ mm_ops->put_page(childp);
+
+ return 0;
+}
+
+int kvm_pgtable_stage2_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
+{
+ int ret;
+ struct kvm_pgtable_walker walker = {
+ .cb = stage2_unmap_walker,
+ .arg = pgt,
+ .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
+ };
+
+ ret = kvm_pgtable_walk(pgt, addr, size, &walker);
+ if (stage2_unmap_defer_tlb_flush(pgt))
+ /* Perform the deferred TLB invalidations */
+ kvm_tlb_flush_vmid_range(pgt->mmu, addr, size);
+
+ return ret;
+}
+
+struct stage2_attr_data {
+ kvm_pte_t attr_set;
+ kvm_pte_t attr_clr;
+ kvm_pte_t pte;
+ u32 level;
+};
+
+static int stage2_attr_walker(const struct kvm_pgtable_visit_ctx *ctx,
+ enum kvm_pgtable_walk_flags visit)
+{
+ kvm_pte_t pte = ctx->old;
+ struct stage2_attr_data *data = ctx->arg;
+ struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
+
+ if (!kvm_pte_valid(ctx->old))
+ return -EAGAIN;
+
+ data->level = ctx->level;
+ data->pte = pte;
+ pte &= ~data->attr_clr;
+ pte |= data->attr_set;
+
+ /*
+ * We may race with the CPU trying to set the access flag here,
+ * but worst-case the access flag update gets lost and will be
+ * set on the next access instead.
+ */
+ if (data->pte != pte) {
+ /*
+ * Invalidate instruction cache before updating the guest
+ * stage-2 PTE if we are going to add executable permission.
+ */
+ if (mm_ops->icache_inval_pou &&
+ stage2_pte_executable(pte) && !stage2_pte_executable(ctx->old))
+ mm_ops->icache_inval_pou(kvm_pte_follow(pte, mm_ops),
+ kvm_granule_size(ctx->level));
+
+ if (!stage2_try_set_pte(ctx, pte))
+ return -EAGAIN;
+ }
+
+ return 0;
+}
+
+static int stage2_update_leaf_attrs(struct kvm_pgtable *pgt, u64 addr,
+ u64 size, kvm_pte_t attr_set,
+ kvm_pte_t attr_clr, kvm_pte_t *orig_pte,
+ u32 *level, enum kvm_pgtable_walk_flags flags)
+{
+ int ret;
+ kvm_pte_t attr_mask = KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI;
+ struct stage2_attr_data data = {
+ .attr_set = attr_set & attr_mask,
+ .attr_clr = attr_clr & attr_mask,
+ };
+ struct kvm_pgtable_walker walker = {
+ .cb = stage2_attr_walker,
+ .arg = &data,
+ .flags = flags | KVM_PGTABLE_WALK_LEAF,
+ };
+
+ ret = kvm_pgtable_walk(pgt, addr, size, &walker);
+ if (ret)
+ return ret;
+
+ if (orig_pte)
+ *orig_pte = data.pte;
+
+ if (level)
+ *level = data.level;
+ return 0;
+}
+
+int kvm_pgtable_stage2_wrprotect(struct kvm_pgtable *pgt, u64 addr, u64 size)
+{
+ return stage2_update_leaf_attrs(pgt, addr, size, 0,
+ KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W,
+ NULL, NULL, 0);
+}
+
+kvm_pte_t kvm_pgtable_stage2_mkyoung(struct kvm_pgtable *pgt, u64 addr)
+{
+ kvm_pte_t pte = 0;
+ int ret;
+
+ ret = stage2_update_leaf_attrs(pgt, addr, 1, KVM_PTE_LEAF_ATTR_LO_S2_AF, 0,
+ &pte, NULL,
+ KVM_PGTABLE_WALK_HANDLE_FAULT |
+ KVM_PGTABLE_WALK_SHARED);
+ if (!ret)
+ dsb(ishst);
+
+ return pte;
+}
+
+struct stage2_age_data {
+ bool mkold;
+ bool young;
+};
+
+static int stage2_age_walker(const struct kvm_pgtable_visit_ctx *ctx,
+ enum kvm_pgtable_walk_flags visit)
+{
+ kvm_pte_t new = ctx->old & ~KVM_PTE_LEAF_ATTR_LO_S2_AF;
+ struct stage2_age_data *data = ctx->arg;
+
+ if (!kvm_pte_valid(ctx->old) || new == ctx->old)
+ return 0;
+
+ data->young = true;
+
+ /*
+ * stage2_age_walker() is always called while holding the MMU lock for
+ * write, so this will always succeed. Nonetheless, this deliberately
+ * follows the race detection pattern of the other stage-2 walkers in
+ * case the locking mechanics of the MMU notifiers is ever changed.
+ */
+ if (data->mkold && !stage2_try_set_pte(ctx, new))
+ return -EAGAIN;
+
+ /*
+ * "But where's the TLBI?!", you scream.
+ * "Over in the core code", I sigh.
+ *
+ * See the '->clear_flush_young()' callback on the KVM mmu notifier.
+ */
+ return 0;
+}
+
+bool kvm_pgtable_stage2_test_clear_young(struct kvm_pgtable *pgt, u64 addr,
+ u64 size, bool mkold)
+{
+ struct stage2_age_data data = {
+ .mkold = mkold,
+ };
+ struct kvm_pgtable_walker walker = {
+ .cb = stage2_age_walker,
+ .arg = &data,
+ .flags = KVM_PGTABLE_WALK_LEAF,
+ };
+
+ WARN_ON(kvm_pgtable_walk(pgt, addr, size, &walker));
+ return data.young;
+}
+
+int kvm_pgtable_stage2_relax_perms(struct kvm_pgtable *pgt, u64 addr,
+ enum kvm_pgtable_prot prot)
+{
+ int ret;
+ u32 level;
+ kvm_pte_t set = 0, clr = 0;
+
+ if (prot & KVM_PTE_LEAF_ATTR_HI_SW)
+ return -EINVAL;
+
+ if (prot & KVM_PGTABLE_PROT_R)
+ set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
+
+ if (prot & KVM_PGTABLE_PROT_W)
+ set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
+
+ if (prot & KVM_PGTABLE_PROT_X)
+ clr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;
+
+ ret = stage2_update_leaf_attrs(pgt, addr, 1, set, clr, NULL, &level,
+ KVM_PGTABLE_WALK_HANDLE_FAULT |
+ KVM_PGTABLE_WALK_SHARED);
+ if (!ret)
+ kvm_call_hyp(__kvm_tlb_flush_vmid_ipa_nsh, pgt->mmu, addr, level);
+ return ret;
+}
+
+static int stage2_flush_walker(const struct kvm_pgtable_visit_ctx *ctx,
+ enum kvm_pgtable_walk_flags visit)
+{
+ struct kvm_pgtable *pgt = ctx->arg;
+ struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;
+
+ if (!kvm_pte_valid(ctx->old) || !stage2_pte_cacheable(pgt, ctx->old))
+ return 0;
+
+ if (mm_ops->dcache_clean_inval_poc)
+ mm_ops->dcache_clean_inval_poc(kvm_pte_follow(ctx->old, mm_ops),
+ kvm_granule_size(ctx->level));
+ return 0;
+}
+
+int kvm_pgtable_stage2_flush(struct kvm_pgtable *pgt, u64 addr, u64 size)
+{
+ struct kvm_pgtable_walker walker = {
+ .cb = stage2_flush_walker,
+ .flags = KVM_PGTABLE_WALK_LEAF,
+ .arg = pgt,
+ };
+
+ if (stage2_has_fwb(pgt))
+ return 0;
+
+ return kvm_pgtable_walk(pgt, addr, size, &walker);
+}
+
+kvm_pte_t *kvm_pgtable_stage2_create_unlinked(struct kvm_pgtable *pgt,
+ u64 phys, u32 level,
+ enum kvm_pgtable_prot prot,
+ void *mc, bool force_pte)
+{
+ struct stage2_map_data map_data = {
+ .phys = phys,
+ .mmu = pgt->mmu,
+ .memcache = mc,
+ .force_pte = force_pte,
+ };
+ struct kvm_pgtable_walker walker = {
+ .cb = stage2_map_walker,
+ .flags = KVM_PGTABLE_WALK_LEAF |
+ KVM_PGTABLE_WALK_SKIP_BBM_TLBI |
+ KVM_PGTABLE_WALK_SKIP_CMO,
+ .arg = &map_data,
+ };
+ /*
+ * The input address (.addr) is irrelevant for walking an
+ * unlinked table. Construct an ambiguous IA range to map
+ * kvm_granule_size(level) worth of memory.
+ */
+ struct kvm_pgtable_walk_data data = {
+ .walker = &walker,
+ .addr = 0,
+ .end = kvm_granule_size(level),
+ };
+ struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;
+ kvm_pte_t *pgtable;
+ int ret;
+
+ if (!IS_ALIGNED(phys, kvm_granule_size(level)))
+ return ERR_PTR(-EINVAL);
+
+ ret = stage2_set_prot_attr(pgt, prot, &map_data.attr);
+ if (ret)
+ return ERR_PTR(ret);
+
+ pgtable = mm_ops->zalloc_page(mc);
+ if (!pgtable)
+ return ERR_PTR(-ENOMEM);
+
+ ret = __kvm_pgtable_walk(&data, mm_ops, (kvm_pteref_t)pgtable,
+ level + 1);
+ if (ret) {
+ kvm_pgtable_stage2_free_unlinked(mm_ops, pgtable, level);
+ mm_ops->put_page(pgtable);
+ return ERR_PTR(ret);
+ }
+
+ return pgtable;
+}
+
+/*
+ * Get the number of page-tables needed to replace a block with a
+ * fully populated tree up to the PTE entries. Note that @level is
+ * interpreted as in "level @level entry".
+ */
+static int stage2_block_get_nr_page_tables(u32 level)
+{
+ switch (level) {
+ case 1:
+ return PTRS_PER_PTE + 1;
+ case 2:
+ return 1;
+ case 3:
+ return 0;
+ default:
+ WARN_ON_ONCE(level < KVM_PGTABLE_MIN_BLOCK_LEVEL ||
+ level >= KVM_PGTABLE_MAX_LEVELS);
+ return -EINVAL;
+ };
+}
+
+static int stage2_split_walker(const struct kvm_pgtable_visit_ctx *ctx,
+ enum kvm_pgtable_walk_flags visit)
+{
+ struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
+ struct kvm_mmu_memory_cache *mc = ctx->arg;
+ struct kvm_s2_mmu *mmu;
+ kvm_pte_t pte = ctx->old, new, *childp;
+ enum kvm_pgtable_prot prot;
+ u32 level = ctx->level;
+ bool force_pte;
+ int nr_pages;
+ u64 phys;
+
+ /* No huge-pages exist at the last level */
+ if (level == KVM_PGTABLE_MAX_LEVELS - 1)
+ return 0;
+
+ /* We only split valid block mappings */
+ if (!kvm_pte_valid(pte))
+ return 0;
+
+ nr_pages = stage2_block_get_nr_page_tables(level);
+ if (nr_pages < 0)
+ return nr_pages;
+
+ if (mc->nobjs >= nr_pages) {
+ /* Build a tree mapped down to the PTE granularity. */
+ force_pte = true;
+ } else {
+ /*
+ * Don't force PTEs, so create_unlinked() below does
+ * not populate the tree up to the PTE level. The
+ * consequence is that the call will require a single
+ * page of level 2 entries at level 1, or a single
+ * page of PTEs at level 2. If we are at level 1, the
+ * PTEs will be created recursively.
+ */
+ force_pte = false;
+ nr_pages = 1;
+ }
+
+ if (mc->nobjs < nr_pages)
+ return -ENOMEM;
+
+ mmu = container_of(mc, struct kvm_s2_mmu, split_page_cache);
+ phys = kvm_pte_to_phys(pte);
+ prot = kvm_pgtable_stage2_pte_prot(pte);
+
+ childp = kvm_pgtable_stage2_create_unlinked(mmu->pgt, phys,
+ level, prot, mc, force_pte);
+ if (IS_ERR(childp))
+ return PTR_ERR(childp);
+
+ if (!stage2_try_break_pte(ctx, mmu)) {
+ kvm_pgtable_stage2_free_unlinked(mm_ops, childp, level);
+ mm_ops->put_page(childp);
+ return -EAGAIN;
+ }
+
+ /*
+ * Note, the contents of the page table are guaranteed to be made
+ * visible before the new PTE is assigned because stage2_make_pte()
+ * writes the PTE using smp_store_release().
+ */
+ new = kvm_init_table_pte(childp, mm_ops);
+ stage2_make_pte(ctx, new);
+ dsb(ishst);
+ return 0;
+}
+
+int kvm_pgtable_stage2_split(struct kvm_pgtable *pgt, u64 addr, u64 size,
+ struct kvm_mmu_memory_cache *mc)
+{
+ struct kvm_pgtable_walker walker = {
+ .cb = stage2_split_walker,
+ .flags = KVM_PGTABLE_WALK_LEAF,
+ .arg = mc,
+ };
+
+ return kvm_pgtable_walk(pgt, addr, size, &walker);
+}
+
+int __kvm_pgtable_stage2_init(struct kvm_pgtable *pgt, struct kvm_s2_mmu *mmu,
+ struct kvm_pgtable_mm_ops *mm_ops,
+ enum kvm_pgtable_stage2_flags flags,
+ kvm_pgtable_force_pte_cb_t force_pte_cb)
+{
+ size_t pgd_sz;
+ u64 vtcr = mmu->arch->vtcr;
+ u32 ia_bits = VTCR_EL2_IPA(vtcr);
+ u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
+ u32 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0;
+
+ pgd_sz = kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE;
+ pgt->pgd = (kvm_pteref_t)mm_ops->zalloc_pages_exact(pgd_sz);
+ if (!pgt->pgd)
+ return -ENOMEM;
+
+ pgt->ia_bits = ia_bits;
+ pgt->start_level = start_level;
+ pgt->mm_ops = mm_ops;
+ pgt->mmu = mmu;
+ pgt->flags = flags;
+ pgt->force_pte_cb = force_pte_cb;
+
+ /* Ensure zeroed PGD pages are visible to the hardware walker */
+ dsb(ishst);
+ return 0;
+}
+
+size_t kvm_pgtable_stage2_pgd_size(u64 vtcr)
+{
+ u32 ia_bits = VTCR_EL2_IPA(vtcr);
+ u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
+ u32 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0;
+
+ return kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE;
+}
+
+static int stage2_free_walker(const struct kvm_pgtable_visit_ctx *ctx,
+ enum kvm_pgtable_walk_flags visit)
+{
+ struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
+
+ if (!stage2_pte_is_counted(ctx->old))
+ return 0;
+
+ mm_ops->put_page(ctx->ptep);
+
+ if (kvm_pte_table(ctx->old, ctx->level))
+ mm_ops->put_page(kvm_pte_follow(ctx->old, mm_ops));
+
+ return 0;
+}
+
+void kvm_pgtable_stage2_destroy(struct kvm_pgtable *pgt)
+{
+ size_t pgd_sz;
+ struct kvm_pgtable_walker walker = {
+ .cb = stage2_free_walker,
+ .flags = KVM_PGTABLE_WALK_LEAF |
+ KVM_PGTABLE_WALK_TABLE_POST,
+ };
+
+ WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
+ pgd_sz = kvm_pgd_pages(pgt->ia_bits, pgt->start_level) * PAGE_SIZE;
+ pgt->mm_ops->free_pages_exact(kvm_dereference_pteref(&walker, pgt->pgd), pgd_sz);
+ pgt->pgd = NULL;
+}
+
+void kvm_pgtable_stage2_free_unlinked(struct kvm_pgtable_mm_ops *mm_ops, void *pgtable, u32 level)
+{
+ kvm_pteref_t ptep = (kvm_pteref_t)pgtable;
+ struct kvm_pgtable_walker walker = {
+ .cb = stage2_free_walker,
+ .flags = KVM_PGTABLE_WALK_LEAF |
+ KVM_PGTABLE_WALK_TABLE_POST,
+ };
+ struct kvm_pgtable_walk_data data = {
+ .walker = &walker,
+
+ /*
+ * At this point the IPA really doesn't matter, as the page
+ * table being traversed has already been removed from the stage
+ * 2. Set an appropriate range to cover the entire page table.
+ */
+ .addr = 0,
+ .end = kvm_granule_size(level),
+ };
+
+ WARN_ON(__kvm_pgtable_walk(&data, mm_ops, ptep, level + 1));
+
+ WARN_ON(mm_ops->page_count(pgtable) != 1);
+ mm_ops->put_page(pgtable);
+}
diff --git a/arch/arm64/kvm/hyp/vgic-v2-cpuif-proxy.c b/arch/arm64/kvm/hyp/vgic-v2-cpuif-proxy.c
new file mode 100644
index 0000000000..87a54375bd
--- /dev/null
+++ b/arch/arm64/kvm/hyp/vgic-v2-cpuif-proxy.c
@@ -0,0 +1,89 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2012-2015 - ARM Ltd
+ * Author: Marc Zyngier <marc.zyngier@arm.com>
+ */
+
+#include <hyp/adjust_pc.h>
+
+#include <linux/compiler.h>
+#include <linux/irqchip/arm-gic.h>
+#include <linux/kvm_host.h>
+#include <linux/swab.h>
+
+#include <asm/kvm_emulate.h>
+#include <asm/kvm_hyp.h>
+#include <asm/kvm_mmu.h>
+
+static bool __is_be(struct kvm_vcpu *vcpu)
+{
+ if (vcpu_mode_is_32bit(vcpu))
+ return !!(read_sysreg_el2(SYS_SPSR) & PSR_AA32_E_BIT);
+
+ return !!(read_sysreg(SCTLR_EL1) & SCTLR_ELx_EE);
+}
+
+/*
+ * __vgic_v2_perform_cpuif_access -- perform a GICV access on behalf of the
+ * guest.
+ *
+ * @vcpu: the offending vcpu
+ *
+ * Returns:
+ * 1: GICV access successfully performed
+ * 0: Not a GICV access
+ * -1: Illegal GICV access successfully performed
+ */
+int __vgic_v2_perform_cpuif_access(struct kvm_vcpu *vcpu)
+{
+ struct kvm *kvm = kern_hyp_va(vcpu->kvm);
+ struct vgic_dist *vgic = &kvm->arch.vgic;
+ phys_addr_t fault_ipa;
+ void __iomem *addr;
+ int rd;
+
+ /* Build the full address */
+ fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
+ fault_ipa |= kvm_vcpu_get_hfar(vcpu) & GENMASK(11, 0);
+
+ /* If not for GICV, move on */
+ if (fault_ipa < vgic->vgic_cpu_base ||
+ fault_ipa >= (vgic->vgic_cpu_base + KVM_VGIC_V2_CPU_SIZE))
+ return 0;
+
+ /* Reject anything but a 32bit access */
+ if (kvm_vcpu_dabt_get_as(vcpu) != sizeof(u32)) {
+ __kvm_skip_instr(vcpu);
+ return -1;
+ }
+
+ /* Not aligned? Don't bother */
+ if (fault_ipa & 3) {
+ __kvm_skip_instr(vcpu);
+ return -1;
+ }
+
+ rd = kvm_vcpu_dabt_get_rd(vcpu);
+ addr = kvm_vgic_global_state.vcpu_hyp_va;
+ addr += fault_ipa - vgic->vgic_cpu_base;
+
+ if (kvm_vcpu_dabt_iswrite(vcpu)) {
+ u32 data = vcpu_get_reg(vcpu, rd);
+ if (__is_be(vcpu)) {
+ /* guest pre-swabbed data, undo this for writel() */
+ data = __kvm_swab32(data);
+ }
+ writel_relaxed(data, addr);
+ } else {
+ u32 data = readl_relaxed(addr);
+ if (__is_be(vcpu)) {
+ /* guest expects swabbed data */
+ data = __kvm_swab32(data);
+ }
+ vcpu_set_reg(vcpu, rd, data);
+ }
+
+ __kvm_skip_instr(vcpu);
+
+ return 1;
+}
diff --git a/arch/arm64/kvm/hyp/vgic-v3-sr.c b/arch/arm64/kvm/hyp/vgic-v3-sr.c
new file mode 100644
index 0000000000..6cb638b184
--- /dev/null
+++ b/arch/arm64/kvm/hyp/vgic-v3-sr.c
@@ -0,0 +1,1143 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2012-2015 - ARM Ltd
+ * Author: Marc Zyngier <marc.zyngier@arm.com>
+ */
+
+#include <hyp/adjust_pc.h>
+
+#include <linux/compiler.h>
+#include <linux/irqchip/arm-gic-v3.h>
+#include <linux/kvm_host.h>
+
+#include <asm/kvm_emulate.h>
+#include <asm/kvm_hyp.h>
+#include <asm/kvm_mmu.h>
+
+#define vtr_to_max_lr_idx(v) ((v) & 0xf)
+#define vtr_to_nr_pre_bits(v) ((((u32)(v) >> 26) & 7) + 1)
+#define vtr_to_nr_apr_regs(v) (1 << (vtr_to_nr_pre_bits(v) - 5))
+
+static u64 __gic_v3_get_lr(unsigned int lr)
+{
+ switch (lr & 0xf) {
+ case 0:
+ return read_gicreg(ICH_LR0_EL2);
+ case 1:
+ return read_gicreg(ICH_LR1_EL2);
+ case 2:
+ return read_gicreg(ICH_LR2_EL2);
+ case 3:
+ return read_gicreg(ICH_LR3_EL2);
+ case 4:
+ return read_gicreg(ICH_LR4_EL2);
+ case 5:
+ return read_gicreg(ICH_LR5_EL2);
+ case 6:
+ return read_gicreg(ICH_LR6_EL2);
+ case 7:
+ return read_gicreg(ICH_LR7_EL2);
+ case 8:
+ return read_gicreg(ICH_LR8_EL2);
+ case 9:
+ return read_gicreg(ICH_LR9_EL2);
+ case 10:
+ return read_gicreg(ICH_LR10_EL2);
+ case 11:
+ return read_gicreg(ICH_LR11_EL2);
+ case 12:
+ return read_gicreg(ICH_LR12_EL2);
+ case 13:
+ return read_gicreg(ICH_LR13_EL2);
+ case 14:
+ return read_gicreg(ICH_LR14_EL2);
+ case 15:
+ return read_gicreg(ICH_LR15_EL2);
+ }
+
+ unreachable();
+}
+
+static void __gic_v3_set_lr(u64 val, int lr)
+{
+ switch (lr & 0xf) {
+ case 0:
+ write_gicreg(val, ICH_LR0_EL2);
+ break;
+ case 1:
+ write_gicreg(val, ICH_LR1_EL2);
+ break;
+ case 2:
+ write_gicreg(val, ICH_LR2_EL2);
+ break;
+ case 3:
+ write_gicreg(val, ICH_LR3_EL2);
+ break;
+ case 4:
+ write_gicreg(val, ICH_LR4_EL2);
+ break;
+ case 5:
+ write_gicreg(val, ICH_LR5_EL2);
+ break;
+ case 6:
+ write_gicreg(val, ICH_LR6_EL2);
+ break;
+ case 7:
+ write_gicreg(val, ICH_LR7_EL2);
+ break;
+ case 8:
+ write_gicreg(val, ICH_LR8_EL2);
+ break;
+ case 9:
+ write_gicreg(val, ICH_LR9_EL2);
+ break;
+ case 10:
+ write_gicreg(val, ICH_LR10_EL2);
+ break;
+ case 11:
+ write_gicreg(val, ICH_LR11_EL2);
+ break;
+ case 12:
+ write_gicreg(val, ICH_LR12_EL2);
+ break;
+ case 13:
+ write_gicreg(val, ICH_LR13_EL2);
+ break;
+ case 14:
+ write_gicreg(val, ICH_LR14_EL2);
+ break;
+ case 15:
+ write_gicreg(val, ICH_LR15_EL2);
+ break;
+ }
+}
+
+static void __vgic_v3_write_ap0rn(u32 val, int n)
+{
+ switch (n) {
+ case 0:
+ write_gicreg(val, ICH_AP0R0_EL2);
+ break;
+ case 1:
+ write_gicreg(val, ICH_AP0R1_EL2);
+ break;
+ case 2:
+ write_gicreg(val, ICH_AP0R2_EL2);
+ break;
+ case 3:
+ write_gicreg(val, ICH_AP0R3_EL2);
+ break;
+ }
+}
+
+static void __vgic_v3_write_ap1rn(u32 val, int n)
+{
+ switch (n) {
+ case 0:
+ write_gicreg(val, ICH_AP1R0_EL2);
+ break;
+ case 1:
+ write_gicreg(val, ICH_AP1R1_EL2);
+ break;
+ case 2:
+ write_gicreg(val, ICH_AP1R2_EL2);
+ break;
+ case 3:
+ write_gicreg(val, ICH_AP1R3_EL2);
+ break;
+ }
+}
+
+static u32 __vgic_v3_read_ap0rn(int n)
+{
+ u32 val;
+
+ switch (n) {
+ case 0:
+ val = read_gicreg(ICH_AP0R0_EL2);
+ break;
+ case 1:
+ val = read_gicreg(ICH_AP0R1_EL2);
+ break;
+ case 2:
+ val = read_gicreg(ICH_AP0R2_EL2);
+ break;
+ case 3:
+ val = read_gicreg(ICH_AP0R3_EL2);
+ break;
+ default:
+ unreachable();
+ }
+
+ return val;
+}
+
+static u32 __vgic_v3_read_ap1rn(int n)
+{
+ u32 val;
+
+ switch (n) {
+ case 0:
+ val = read_gicreg(ICH_AP1R0_EL2);
+ break;
+ case 1:
+ val = read_gicreg(ICH_AP1R1_EL2);
+ break;
+ case 2:
+ val = read_gicreg(ICH_AP1R2_EL2);
+ break;
+ case 3:
+ val = read_gicreg(ICH_AP1R3_EL2);
+ break;
+ default:
+ unreachable();
+ }
+
+ return val;
+}
+
+void __vgic_v3_save_state(struct vgic_v3_cpu_if *cpu_if)
+{
+ u64 used_lrs = cpu_if->used_lrs;
+
+ /*
+ * Make sure stores to the GIC via the memory mapped interface
+ * are now visible to the system register interface when reading the
+ * LRs, and when reading back the VMCR on non-VHE systems.
+ */
+ if (used_lrs || !has_vhe()) {
+ if (!cpu_if->vgic_sre) {
+ dsb(sy);
+ isb();
+ }
+ }
+
+ if (used_lrs || cpu_if->its_vpe.its_vm) {
+ int i;
+ u32 elrsr;
+
+ elrsr = read_gicreg(ICH_ELRSR_EL2);
+
+ write_gicreg(cpu_if->vgic_hcr & ~ICH_HCR_EN, ICH_HCR_EL2);
+
+ for (i = 0; i < used_lrs; i++) {
+ if (elrsr & (1 << i))
+ cpu_if->vgic_lr[i] &= ~ICH_LR_STATE;
+ else
+ cpu_if->vgic_lr[i] = __gic_v3_get_lr(i);
+
+ __gic_v3_set_lr(0, i);
+ }
+ }
+}
+
+void __vgic_v3_restore_state(struct vgic_v3_cpu_if *cpu_if)
+{
+ u64 used_lrs = cpu_if->used_lrs;
+ int i;
+
+ if (used_lrs || cpu_if->its_vpe.its_vm) {
+ write_gicreg(cpu_if->vgic_hcr, ICH_HCR_EL2);
+
+ for (i = 0; i < used_lrs; i++)
+ __gic_v3_set_lr(cpu_if->vgic_lr[i], i);
+ }
+
+ /*
+ * Ensure that writes to the LRs, and on non-VHE systems ensure that
+ * the write to the VMCR in __vgic_v3_activate_traps(), will have
+ * reached the (re)distributors. This ensure the guest will read the
+ * correct values from the memory-mapped interface.
+ */
+ if (used_lrs || !has_vhe()) {
+ if (!cpu_if->vgic_sre) {
+ isb();
+ dsb(sy);
+ }
+ }
+}
+
+void __vgic_v3_activate_traps(struct vgic_v3_cpu_if *cpu_if)
+{
+ /*
+ * VFIQEn is RES1 if ICC_SRE_EL1.SRE is 1. This causes a
+ * Group0 interrupt (as generated in GICv2 mode) to be
+ * delivered as a FIQ to the guest, with potentially fatal
+ * consequences. So we must make sure that ICC_SRE_EL1 has
+ * been actually programmed with the value we want before
+ * starting to mess with the rest of the GIC, and VMCR_EL2 in
+ * particular. This logic must be called before
+ * __vgic_v3_restore_state().
+ */
+ if (!cpu_if->vgic_sre) {
+ write_gicreg(0, ICC_SRE_EL1);
+ isb();
+ write_gicreg(cpu_if->vgic_vmcr, ICH_VMCR_EL2);
+
+
+ if (has_vhe()) {
+ /*
+ * Ensure that the write to the VMCR will have reached
+ * the (re)distributors. This ensure the guest will
+ * read the correct values from the memory-mapped
+ * interface.
+ */
+ isb();
+ dsb(sy);
+ }
+ }
+
+ /*
+ * Prevent the guest from touching the GIC system registers if
+ * SRE isn't enabled for GICv3 emulation.
+ */
+ write_gicreg(read_gicreg(ICC_SRE_EL2) & ~ICC_SRE_EL2_ENABLE,
+ ICC_SRE_EL2);
+
+ /*
+ * If we need to trap system registers, we must write
+ * ICH_HCR_EL2 anyway, even if no interrupts are being
+ * injected,
+ */
+ if (static_branch_unlikely(&vgic_v3_cpuif_trap) ||
+ cpu_if->its_vpe.its_vm)
+ write_gicreg(cpu_if->vgic_hcr, ICH_HCR_EL2);
+}
+
+void __vgic_v3_deactivate_traps(struct vgic_v3_cpu_if *cpu_if)
+{
+ u64 val;
+
+ if (!cpu_if->vgic_sre) {
+ cpu_if->vgic_vmcr = read_gicreg(ICH_VMCR_EL2);
+ }
+
+ val = read_gicreg(ICC_SRE_EL2);
+ write_gicreg(val | ICC_SRE_EL2_ENABLE, ICC_SRE_EL2);
+
+ if (!cpu_if->vgic_sre) {
+ /* Make sure ENABLE is set at EL2 before setting SRE at EL1 */
+ isb();
+ write_gicreg(1, ICC_SRE_EL1);
+ }
+
+ /*
+ * If we were trapping system registers, we enabled the VGIC even if
+ * no interrupts were being injected, and we disable it again here.
+ */
+ if (static_branch_unlikely(&vgic_v3_cpuif_trap) ||
+ cpu_if->its_vpe.its_vm)
+ write_gicreg(0, ICH_HCR_EL2);
+}
+
+void __vgic_v3_save_aprs(struct vgic_v3_cpu_if *cpu_if)
+{
+ u64 val;
+ u32 nr_pre_bits;
+
+ val = read_gicreg(ICH_VTR_EL2);
+ nr_pre_bits = vtr_to_nr_pre_bits(val);
+
+ switch (nr_pre_bits) {
+ case 7:
+ cpu_if->vgic_ap0r[3] = __vgic_v3_read_ap0rn(3);
+ cpu_if->vgic_ap0r[2] = __vgic_v3_read_ap0rn(2);
+ fallthrough;
+ case 6:
+ cpu_if->vgic_ap0r[1] = __vgic_v3_read_ap0rn(1);
+ fallthrough;
+ default:
+ cpu_if->vgic_ap0r[0] = __vgic_v3_read_ap0rn(0);
+ }
+
+ switch (nr_pre_bits) {
+ case 7:
+ cpu_if->vgic_ap1r[3] = __vgic_v3_read_ap1rn(3);
+ cpu_if->vgic_ap1r[2] = __vgic_v3_read_ap1rn(2);
+ fallthrough;
+ case 6:
+ cpu_if->vgic_ap1r[1] = __vgic_v3_read_ap1rn(1);
+ fallthrough;
+ default:
+ cpu_if->vgic_ap1r[0] = __vgic_v3_read_ap1rn(0);
+ }
+}
+
+void __vgic_v3_restore_aprs(struct vgic_v3_cpu_if *cpu_if)
+{
+ u64 val;
+ u32 nr_pre_bits;
+
+ val = read_gicreg(ICH_VTR_EL2);
+ nr_pre_bits = vtr_to_nr_pre_bits(val);
+
+ switch (nr_pre_bits) {
+ case 7:
+ __vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[3], 3);
+ __vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[2], 2);
+ fallthrough;
+ case 6:
+ __vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[1], 1);
+ fallthrough;
+ default:
+ __vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[0], 0);
+ }
+
+ switch (nr_pre_bits) {
+ case 7:
+ __vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[3], 3);
+ __vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[2], 2);
+ fallthrough;
+ case 6:
+ __vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[1], 1);
+ fallthrough;
+ default:
+ __vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[0], 0);
+ }
+}
+
+void __vgic_v3_init_lrs(void)
+{
+ int max_lr_idx = vtr_to_max_lr_idx(read_gicreg(ICH_VTR_EL2));
+ int i;
+
+ for (i = 0; i <= max_lr_idx; i++)
+ __gic_v3_set_lr(0, i);
+}
+
+/*
+ * Return the GIC CPU configuration:
+ * - [31:0] ICH_VTR_EL2
+ * - [62:32] RES0
+ * - [63] MMIO (GICv2) capable
+ */
+u64 __vgic_v3_get_gic_config(void)
+{
+ u64 val, sre = read_gicreg(ICC_SRE_EL1);
+ unsigned long flags = 0;
+
+ /*
+ * To check whether we have a MMIO-based (GICv2 compatible)
+ * CPU interface, we need to disable the system register
+ * view. To do that safely, we have to prevent any interrupt
+ * from firing (which would be deadly).
+ *
+ * Note that this only makes sense on VHE, as interrupts are
+ * already masked for nVHE as part of the exception entry to
+ * EL2.
+ */
+ if (has_vhe())
+ flags = local_daif_save();
+
+ /*
+ * Table 11-2 "Permitted ICC_SRE_ELx.SRE settings" indicates
+ * that to be able to set ICC_SRE_EL1.SRE to 0, all the
+ * interrupt overrides must be set. You've got to love this.
+ */
+ sysreg_clear_set(hcr_el2, 0, HCR_AMO | HCR_FMO | HCR_IMO);
+ isb();
+ write_gicreg(0, ICC_SRE_EL1);
+ isb();
+
+ val = read_gicreg(ICC_SRE_EL1);
+
+ write_gicreg(sre, ICC_SRE_EL1);
+ isb();
+ sysreg_clear_set(hcr_el2, HCR_AMO | HCR_FMO | HCR_IMO, 0);
+ isb();
+
+ if (has_vhe())
+ local_daif_restore(flags);
+
+ val = (val & ICC_SRE_EL1_SRE) ? 0 : (1ULL << 63);
+ val |= read_gicreg(ICH_VTR_EL2);
+
+ return val;
+}
+
+u64 __vgic_v3_read_vmcr(void)
+{
+ return read_gicreg(ICH_VMCR_EL2);
+}
+
+void __vgic_v3_write_vmcr(u32 vmcr)
+{
+ write_gicreg(vmcr, ICH_VMCR_EL2);
+}
+
+static int __vgic_v3_bpr_min(void)
+{
+ /* See Pseudocode for VPriorityGroup */
+ return 8 - vtr_to_nr_pre_bits(read_gicreg(ICH_VTR_EL2));
+}
+
+static int __vgic_v3_get_group(struct kvm_vcpu *vcpu)
+{
+ u64 esr = kvm_vcpu_get_esr(vcpu);
+ u8 crm = (esr & ESR_ELx_SYS64_ISS_CRM_MASK) >> ESR_ELx_SYS64_ISS_CRM_SHIFT;
+
+ return crm != 8;
+}
+
+#define GICv3_IDLE_PRIORITY 0xff
+
+static int __vgic_v3_highest_priority_lr(struct kvm_vcpu *vcpu, u32 vmcr,
+ u64 *lr_val)
+{
+ unsigned int used_lrs = vcpu->arch.vgic_cpu.vgic_v3.used_lrs;
+ u8 priority = GICv3_IDLE_PRIORITY;
+ int i, lr = -1;
+
+ for (i = 0; i < used_lrs; i++) {
+ u64 val = __gic_v3_get_lr(i);
+ u8 lr_prio = (val & ICH_LR_PRIORITY_MASK) >> ICH_LR_PRIORITY_SHIFT;
+
+ /* Not pending in the state? */
+ if ((val & ICH_LR_STATE) != ICH_LR_PENDING_BIT)
+ continue;
+
+ /* Group-0 interrupt, but Group-0 disabled? */
+ if (!(val & ICH_LR_GROUP) && !(vmcr & ICH_VMCR_ENG0_MASK))
+ continue;
+
+ /* Group-1 interrupt, but Group-1 disabled? */
+ if ((val & ICH_LR_GROUP) && !(vmcr & ICH_VMCR_ENG1_MASK))
+ continue;
+
+ /* Not the highest priority? */
+ if (lr_prio >= priority)
+ continue;
+
+ /* This is a candidate */
+ priority = lr_prio;
+ *lr_val = val;
+ lr = i;
+ }
+
+ if (lr == -1)
+ *lr_val = ICC_IAR1_EL1_SPURIOUS;
+
+ return lr;
+}
+
+static int __vgic_v3_find_active_lr(struct kvm_vcpu *vcpu, int intid,
+ u64 *lr_val)
+{
+ unsigned int used_lrs = vcpu->arch.vgic_cpu.vgic_v3.used_lrs;
+ int i;
+
+ for (i = 0; i < used_lrs; i++) {
+ u64 val = __gic_v3_get_lr(i);
+
+ if ((val & ICH_LR_VIRTUAL_ID_MASK) == intid &&
+ (val & ICH_LR_ACTIVE_BIT)) {
+ *lr_val = val;
+ return i;
+ }
+ }
+
+ *lr_val = ICC_IAR1_EL1_SPURIOUS;
+ return -1;
+}
+
+static int __vgic_v3_get_highest_active_priority(void)
+{
+ u8 nr_apr_regs = vtr_to_nr_apr_regs(read_gicreg(ICH_VTR_EL2));
+ u32 hap = 0;
+ int i;
+
+ for (i = 0; i < nr_apr_regs; i++) {
+ u32 val;
+
+ /*
+ * The ICH_AP0Rn_EL2 and ICH_AP1Rn_EL2 registers
+ * contain the active priority levels for this VCPU
+ * for the maximum number of supported priority
+ * levels, and we return the full priority level only
+ * if the BPR is programmed to its minimum, otherwise
+ * we return a combination of the priority level and
+ * subpriority, as determined by the setting of the
+ * BPR, but without the full subpriority.
+ */
+ val = __vgic_v3_read_ap0rn(i);
+ val |= __vgic_v3_read_ap1rn(i);
+ if (!val) {
+ hap += 32;
+ continue;
+ }
+
+ return (hap + __ffs(val)) << __vgic_v3_bpr_min();
+ }
+
+ return GICv3_IDLE_PRIORITY;
+}
+
+static unsigned int __vgic_v3_get_bpr0(u32 vmcr)
+{
+ return (vmcr & ICH_VMCR_BPR0_MASK) >> ICH_VMCR_BPR0_SHIFT;
+}
+
+static unsigned int __vgic_v3_get_bpr1(u32 vmcr)
+{
+ unsigned int bpr;
+
+ if (vmcr & ICH_VMCR_CBPR_MASK) {
+ bpr = __vgic_v3_get_bpr0(vmcr);
+ if (bpr < 7)
+ bpr++;
+ } else {
+ bpr = (vmcr & ICH_VMCR_BPR1_MASK) >> ICH_VMCR_BPR1_SHIFT;
+ }
+
+ return bpr;
+}
+
+/*
+ * Convert a priority to a preemption level, taking the relevant BPR
+ * into account by zeroing the sub-priority bits.
+ */
+static u8 __vgic_v3_pri_to_pre(u8 pri, u32 vmcr, int grp)
+{
+ unsigned int bpr;
+
+ if (!grp)
+ bpr = __vgic_v3_get_bpr0(vmcr) + 1;
+ else
+ bpr = __vgic_v3_get_bpr1(vmcr);
+
+ return pri & (GENMASK(7, 0) << bpr);
+}
+
+/*
+ * The priority value is independent of any of the BPR values, so we
+ * normalize it using the minimal BPR value. This guarantees that no
+ * matter what the guest does with its BPR, we can always set/get the
+ * same value of a priority.
+ */
+static void __vgic_v3_set_active_priority(u8 pri, u32 vmcr, int grp)
+{
+ u8 pre, ap;
+ u32 val;
+ int apr;
+
+ pre = __vgic_v3_pri_to_pre(pri, vmcr, grp);
+ ap = pre >> __vgic_v3_bpr_min();
+ apr = ap / 32;
+
+ if (!grp) {
+ val = __vgic_v3_read_ap0rn(apr);
+ __vgic_v3_write_ap0rn(val | BIT(ap % 32), apr);
+ } else {
+ val = __vgic_v3_read_ap1rn(apr);
+ __vgic_v3_write_ap1rn(val | BIT(ap % 32), apr);
+ }
+}
+
+static int __vgic_v3_clear_highest_active_priority(void)
+{
+ u8 nr_apr_regs = vtr_to_nr_apr_regs(read_gicreg(ICH_VTR_EL2));
+ u32 hap = 0;
+ int i;
+
+ for (i = 0; i < nr_apr_regs; i++) {
+ u32 ap0, ap1;
+ int c0, c1;
+
+ ap0 = __vgic_v3_read_ap0rn(i);
+ ap1 = __vgic_v3_read_ap1rn(i);
+ if (!ap0 && !ap1) {
+ hap += 32;
+ continue;
+ }
+
+ c0 = ap0 ? __ffs(ap0) : 32;
+ c1 = ap1 ? __ffs(ap1) : 32;
+
+ /* Always clear the LSB, which is the highest priority */
+ if (c0 < c1) {
+ ap0 &= ~BIT(c0);
+ __vgic_v3_write_ap0rn(ap0, i);
+ hap += c0;
+ } else {
+ ap1 &= ~BIT(c1);
+ __vgic_v3_write_ap1rn(ap1, i);
+ hap += c1;
+ }
+
+ /* Rescale to 8 bits of priority */
+ return hap << __vgic_v3_bpr_min();
+ }
+
+ return GICv3_IDLE_PRIORITY;
+}
+
+static void __vgic_v3_read_iar(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
+{
+ u64 lr_val;
+ u8 lr_prio, pmr;
+ int lr, grp;
+
+ grp = __vgic_v3_get_group(vcpu);
+
+ lr = __vgic_v3_highest_priority_lr(vcpu, vmcr, &lr_val);
+ if (lr < 0)
+ goto spurious;
+
+ if (grp != !!(lr_val & ICH_LR_GROUP))
+ goto spurious;
+
+ pmr = (vmcr & ICH_VMCR_PMR_MASK) >> ICH_VMCR_PMR_SHIFT;
+ lr_prio = (lr_val & ICH_LR_PRIORITY_MASK) >> ICH_LR_PRIORITY_SHIFT;
+ if (pmr <= lr_prio)
+ goto spurious;
+
+ if (__vgic_v3_get_highest_active_priority() <= __vgic_v3_pri_to_pre(lr_prio, vmcr, grp))
+ goto spurious;
+
+ lr_val &= ~ICH_LR_STATE;
+ lr_val |= ICH_LR_ACTIVE_BIT;
+ __gic_v3_set_lr(lr_val, lr);
+ __vgic_v3_set_active_priority(lr_prio, vmcr, grp);
+ vcpu_set_reg(vcpu, rt, lr_val & ICH_LR_VIRTUAL_ID_MASK);
+ return;
+
+spurious:
+ vcpu_set_reg(vcpu, rt, ICC_IAR1_EL1_SPURIOUS);
+}
+
+static void __vgic_v3_clear_active_lr(int lr, u64 lr_val)
+{
+ lr_val &= ~ICH_LR_ACTIVE_BIT;
+ if (lr_val & ICH_LR_HW) {
+ u32 pid;
+
+ pid = (lr_val & ICH_LR_PHYS_ID_MASK) >> ICH_LR_PHYS_ID_SHIFT;
+ gic_write_dir(pid);
+ }
+
+ __gic_v3_set_lr(lr_val, lr);
+}
+
+static void __vgic_v3_bump_eoicount(void)
+{
+ u32 hcr;
+
+ hcr = read_gicreg(ICH_HCR_EL2);
+ hcr += 1 << ICH_HCR_EOIcount_SHIFT;
+ write_gicreg(hcr, ICH_HCR_EL2);
+}
+
+static void __vgic_v3_write_dir(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
+{
+ u32 vid = vcpu_get_reg(vcpu, rt);
+ u64 lr_val;
+ int lr;
+
+ /* EOImode == 0, nothing to be done here */
+ if (!(vmcr & ICH_VMCR_EOIM_MASK))
+ return;
+
+ /* No deactivate to be performed on an LPI */
+ if (vid >= VGIC_MIN_LPI)
+ return;
+
+ lr = __vgic_v3_find_active_lr(vcpu, vid, &lr_val);
+ if (lr == -1) {
+ __vgic_v3_bump_eoicount();
+ return;
+ }
+
+ __vgic_v3_clear_active_lr(lr, lr_val);
+}
+
+static void __vgic_v3_write_eoir(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
+{
+ u32 vid = vcpu_get_reg(vcpu, rt);
+ u64 lr_val;
+ u8 lr_prio, act_prio;
+ int lr, grp;
+
+ grp = __vgic_v3_get_group(vcpu);
+
+ /* Drop priority in any case */
+ act_prio = __vgic_v3_clear_highest_active_priority();
+
+ lr = __vgic_v3_find_active_lr(vcpu, vid, &lr_val);
+ if (lr == -1) {
+ /* Do not bump EOIcount for LPIs that aren't in the LRs */
+ if (!(vid >= VGIC_MIN_LPI))
+ __vgic_v3_bump_eoicount();
+ return;
+ }
+
+ /* EOImode == 1 and not an LPI, nothing to be done here */
+ if ((vmcr & ICH_VMCR_EOIM_MASK) && !(vid >= VGIC_MIN_LPI))
+ return;
+
+ lr_prio = (lr_val & ICH_LR_PRIORITY_MASK) >> ICH_LR_PRIORITY_SHIFT;
+
+ /* If priorities or group do not match, the guest has fscked-up. */
+ if (grp != !!(lr_val & ICH_LR_GROUP) ||
+ __vgic_v3_pri_to_pre(lr_prio, vmcr, grp) != act_prio)
+ return;
+
+ /* Let's now perform the deactivation */
+ __vgic_v3_clear_active_lr(lr, lr_val);
+}
+
+static void __vgic_v3_read_igrpen0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
+{
+ vcpu_set_reg(vcpu, rt, !!(vmcr & ICH_VMCR_ENG0_MASK));
+}
+
+static void __vgic_v3_read_igrpen1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
+{
+ vcpu_set_reg(vcpu, rt, !!(vmcr & ICH_VMCR_ENG1_MASK));
+}
+
+static void __vgic_v3_write_igrpen0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
+{
+ u64 val = vcpu_get_reg(vcpu, rt);
+
+ if (val & 1)
+ vmcr |= ICH_VMCR_ENG0_MASK;
+ else
+ vmcr &= ~ICH_VMCR_ENG0_MASK;
+
+ __vgic_v3_write_vmcr(vmcr);
+}
+
+static void __vgic_v3_write_igrpen1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
+{
+ u64 val = vcpu_get_reg(vcpu, rt);
+
+ if (val & 1)
+ vmcr |= ICH_VMCR_ENG1_MASK;
+ else
+ vmcr &= ~ICH_VMCR_ENG1_MASK;
+
+ __vgic_v3_write_vmcr(vmcr);
+}
+
+static void __vgic_v3_read_bpr0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
+{
+ vcpu_set_reg(vcpu, rt, __vgic_v3_get_bpr0(vmcr));
+}
+
+static void __vgic_v3_read_bpr1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
+{
+ vcpu_set_reg(vcpu, rt, __vgic_v3_get_bpr1(vmcr));
+}
+
+static void __vgic_v3_write_bpr0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
+{
+ u64 val = vcpu_get_reg(vcpu, rt);
+ u8 bpr_min = __vgic_v3_bpr_min() - 1;
+
+ /* Enforce BPR limiting */
+ if (val < bpr_min)
+ val = bpr_min;
+
+ val <<= ICH_VMCR_BPR0_SHIFT;
+ val &= ICH_VMCR_BPR0_MASK;
+ vmcr &= ~ICH_VMCR_BPR0_MASK;
+ vmcr |= val;
+
+ __vgic_v3_write_vmcr(vmcr);
+}
+
+static void __vgic_v3_write_bpr1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
+{
+ u64 val = vcpu_get_reg(vcpu, rt);
+ u8 bpr_min = __vgic_v3_bpr_min();
+
+ if (vmcr & ICH_VMCR_CBPR_MASK)
+ return;
+
+ /* Enforce BPR limiting */
+ if (val < bpr_min)
+ val = bpr_min;
+
+ val <<= ICH_VMCR_BPR1_SHIFT;
+ val &= ICH_VMCR_BPR1_MASK;
+ vmcr &= ~ICH_VMCR_BPR1_MASK;
+ vmcr |= val;
+
+ __vgic_v3_write_vmcr(vmcr);
+}
+
+static void __vgic_v3_read_apxrn(struct kvm_vcpu *vcpu, int rt, int n)
+{
+ u32 val;
+
+ if (!__vgic_v3_get_group(vcpu))
+ val = __vgic_v3_read_ap0rn(n);
+ else
+ val = __vgic_v3_read_ap1rn(n);
+
+ vcpu_set_reg(vcpu, rt, val);
+}
+
+static void __vgic_v3_write_apxrn(struct kvm_vcpu *vcpu, int rt, int n)
+{
+ u32 val = vcpu_get_reg(vcpu, rt);
+
+ if (!__vgic_v3_get_group(vcpu))
+ __vgic_v3_write_ap0rn(val, n);
+ else
+ __vgic_v3_write_ap1rn(val, n);
+}
+
+static void __vgic_v3_read_apxr0(struct kvm_vcpu *vcpu,
+ u32 vmcr, int rt)
+{
+ __vgic_v3_read_apxrn(vcpu, rt, 0);
+}
+
+static void __vgic_v3_read_apxr1(struct kvm_vcpu *vcpu,
+ u32 vmcr, int rt)
+{
+ __vgic_v3_read_apxrn(vcpu, rt, 1);
+}
+
+static void __vgic_v3_read_apxr2(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
+{
+ __vgic_v3_read_apxrn(vcpu, rt, 2);
+}
+
+static void __vgic_v3_read_apxr3(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
+{
+ __vgic_v3_read_apxrn(vcpu, rt, 3);
+}
+
+static void __vgic_v3_write_apxr0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
+{
+ __vgic_v3_write_apxrn(vcpu, rt, 0);
+}
+
+static void __vgic_v3_write_apxr1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
+{
+ __vgic_v3_write_apxrn(vcpu, rt, 1);
+}
+
+static void __vgic_v3_write_apxr2(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
+{
+ __vgic_v3_write_apxrn(vcpu, rt, 2);
+}
+
+static void __vgic_v3_write_apxr3(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
+{
+ __vgic_v3_write_apxrn(vcpu, rt, 3);
+}
+
+static void __vgic_v3_read_hppir(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
+{
+ u64 lr_val;
+ int lr, lr_grp, grp;
+
+ grp = __vgic_v3_get_group(vcpu);
+
+ lr = __vgic_v3_highest_priority_lr(vcpu, vmcr, &lr_val);
+ if (lr == -1)
+ goto spurious;
+
+ lr_grp = !!(lr_val & ICH_LR_GROUP);
+ if (lr_grp != grp)
+ lr_val = ICC_IAR1_EL1_SPURIOUS;
+
+spurious:
+ vcpu_set_reg(vcpu, rt, lr_val & ICH_LR_VIRTUAL_ID_MASK);
+}
+
+static void __vgic_v3_read_pmr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
+{
+ vmcr &= ICH_VMCR_PMR_MASK;
+ vmcr >>= ICH_VMCR_PMR_SHIFT;
+ vcpu_set_reg(vcpu, rt, vmcr);
+}
+
+static void __vgic_v3_write_pmr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
+{
+ u32 val = vcpu_get_reg(vcpu, rt);
+
+ val <<= ICH_VMCR_PMR_SHIFT;
+ val &= ICH_VMCR_PMR_MASK;
+ vmcr &= ~ICH_VMCR_PMR_MASK;
+ vmcr |= val;
+
+ write_gicreg(vmcr, ICH_VMCR_EL2);
+}
+
+static void __vgic_v3_read_rpr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
+{
+ u32 val = __vgic_v3_get_highest_active_priority();
+ vcpu_set_reg(vcpu, rt, val);
+}
+
+static void __vgic_v3_read_ctlr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
+{
+ u32 vtr, val;
+
+ vtr = read_gicreg(ICH_VTR_EL2);
+ /* PRIbits */
+ val = ((vtr >> 29) & 7) << ICC_CTLR_EL1_PRI_BITS_SHIFT;
+ /* IDbits */
+ val |= ((vtr >> 23) & 7) << ICC_CTLR_EL1_ID_BITS_SHIFT;
+ /* SEIS */
+ if (kvm_vgic_global_state.ich_vtr_el2 & ICH_VTR_SEIS_MASK)
+ val |= BIT(ICC_CTLR_EL1_SEIS_SHIFT);
+ /* A3V */
+ val |= ((vtr >> 21) & 1) << ICC_CTLR_EL1_A3V_SHIFT;
+ /* EOImode */
+ val |= ((vmcr & ICH_VMCR_EOIM_MASK) >> ICH_VMCR_EOIM_SHIFT) << ICC_CTLR_EL1_EOImode_SHIFT;
+ /* CBPR */
+ val |= (vmcr & ICH_VMCR_CBPR_MASK) >> ICH_VMCR_CBPR_SHIFT;
+
+ vcpu_set_reg(vcpu, rt, val);
+}
+
+static void __vgic_v3_write_ctlr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
+{
+ u32 val = vcpu_get_reg(vcpu, rt);
+
+ if (val & ICC_CTLR_EL1_CBPR_MASK)
+ vmcr |= ICH_VMCR_CBPR_MASK;
+ else
+ vmcr &= ~ICH_VMCR_CBPR_MASK;
+
+ if (val & ICC_CTLR_EL1_EOImode_MASK)
+ vmcr |= ICH_VMCR_EOIM_MASK;
+ else
+ vmcr &= ~ICH_VMCR_EOIM_MASK;
+
+ write_gicreg(vmcr, ICH_VMCR_EL2);
+}
+
+int __vgic_v3_perform_cpuif_access(struct kvm_vcpu *vcpu)
+{
+ int rt;
+ u64 esr;
+ u32 vmcr;
+ void (*fn)(struct kvm_vcpu *, u32, int);
+ bool is_read;
+ u32 sysreg;
+
+ esr = kvm_vcpu_get_esr(vcpu);
+ if (vcpu_mode_is_32bit(vcpu)) {
+ if (!kvm_condition_valid(vcpu)) {
+ __kvm_skip_instr(vcpu);
+ return 1;
+ }
+
+ sysreg = esr_cp15_to_sysreg(esr);
+ } else {
+ sysreg = esr_sys64_to_sysreg(esr);
+ }
+
+ is_read = (esr & ESR_ELx_SYS64_ISS_DIR_MASK) == ESR_ELx_SYS64_ISS_DIR_READ;
+
+ switch (sysreg) {
+ case SYS_ICC_IAR0_EL1:
+ case SYS_ICC_IAR1_EL1:
+ if (unlikely(!is_read))
+ return 0;
+ fn = __vgic_v3_read_iar;
+ break;
+ case SYS_ICC_EOIR0_EL1:
+ case SYS_ICC_EOIR1_EL1:
+ if (unlikely(is_read))
+ return 0;
+ fn = __vgic_v3_write_eoir;
+ break;
+ case SYS_ICC_IGRPEN1_EL1:
+ if (is_read)
+ fn = __vgic_v3_read_igrpen1;
+ else
+ fn = __vgic_v3_write_igrpen1;
+ break;
+ case SYS_ICC_BPR1_EL1:
+ if (is_read)
+ fn = __vgic_v3_read_bpr1;
+ else
+ fn = __vgic_v3_write_bpr1;
+ break;
+ case SYS_ICC_AP0Rn_EL1(0):
+ case SYS_ICC_AP1Rn_EL1(0):
+ if (is_read)
+ fn = __vgic_v3_read_apxr0;
+ else
+ fn = __vgic_v3_write_apxr0;
+ break;
+ case SYS_ICC_AP0Rn_EL1(1):
+ case SYS_ICC_AP1Rn_EL1(1):
+ if (is_read)
+ fn = __vgic_v3_read_apxr1;
+ else
+ fn = __vgic_v3_write_apxr1;
+ break;
+ case SYS_ICC_AP0Rn_EL1(2):
+ case SYS_ICC_AP1Rn_EL1(2):
+ if (is_read)
+ fn = __vgic_v3_read_apxr2;
+ else
+ fn = __vgic_v3_write_apxr2;
+ break;
+ case SYS_ICC_AP0Rn_EL1(3):
+ case SYS_ICC_AP1Rn_EL1(3):
+ if (is_read)
+ fn = __vgic_v3_read_apxr3;
+ else
+ fn = __vgic_v3_write_apxr3;
+ break;
+ case SYS_ICC_HPPIR0_EL1:
+ case SYS_ICC_HPPIR1_EL1:
+ if (unlikely(!is_read))
+ return 0;
+ fn = __vgic_v3_read_hppir;
+ break;
+ case SYS_ICC_IGRPEN0_EL1:
+ if (is_read)
+ fn = __vgic_v3_read_igrpen0;
+ else
+ fn = __vgic_v3_write_igrpen0;
+ break;
+ case SYS_ICC_BPR0_EL1:
+ if (is_read)
+ fn = __vgic_v3_read_bpr0;
+ else
+ fn = __vgic_v3_write_bpr0;
+ break;
+ case SYS_ICC_DIR_EL1:
+ if (unlikely(is_read))
+ return 0;
+ fn = __vgic_v3_write_dir;
+ break;
+ case SYS_ICC_RPR_EL1:
+ if (unlikely(!is_read))
+ return 0;
+ fn = __vgic_v3_read_rpr;
+ break;
+ case SYS_ICC_CTLR_EL1:
+ if (is_read)
+ fn = __vgic_v3_read_ctlr;
+ else
+ fn = __vgic_v3_write_ctlr;
+ break;
+ case SYS_ICC_PMR_EL1:
+ if (is_read)
+ fn = __vgic_v3_read_pmr;
+ else
+ fn = __vgic_v3_write_pmr;
+ break;
+ default:
+ return 0;
+ }
+
+ vmcr = __vgic_v3_read_vmcr();
+ rt = kvm_vcpu_sys_get_rt(vcpu);
+ fn(vcpu, vmcr, rt);
+
+ __kvm_skip_instr(vcpu);
+
+ return 1;
+}
diff --git a/arch/arm64/kvm/hyp/vhe/Makefile b/arch/arm64/kvm/hyp/vhe/Makefile
new file mode 100644
index 0000000000..3b9e5464b5
--- /dev/null
+++ b/arch/arm64/kvm/hyp/vhe/Makefile
@@ -0,0 +1,11 @@
+# SPDX-License-Identifier: GPL-2.0
+#
+# Makefile for Kernel-based Virtual Machine module, HYP/VHE part
+#
+
+asflags-y := -D__KVM_VHE_HYPERVISOR__
+ccflags-y := -D__KVM_VHE_HYPERVISOR__
+
+obj-y := timer-sr.o sysreg-sr.o debug-sr.o switch.o tlb.o
+obj-y += ../vgic-v3-sr.o ../aarch32.o ../vgic-v2-cpuif-proxy.o ../entry.o \
+ ../fpsimd.o ../hyp-entry.o ../exception.o
diff --git a/arch/arm64/kvm/hyp/vhe/debug-sr.c b/arch/arm64/kvm/hyp/vhe/debug-sr.c
new file mode 100644
index 0000000000..289689b268
--- /dev/null
+++ b/arch/arm64/kvm/hyp/vhe/debug-sr.c
@@ -0,0 +1,26 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2015 - ARM Ltd
+ * Author: Marc Zyngier <marc.zyngier@arm.com>
+ */
+
+#include <hyp/debug-sr.h>
+
+#include <linux/kvm_host.h>
+
+#include <asm/kvm_hyp.h>
+
+void __debug_switch_to_guest(struct kvm_vcpu *vcpu)
+{
+ __debug_switch_to_guest_common(vcpu);
+}
+
+void __debug_switch_to_host(struct kvm_vcpu *vcpu)
+{
+ __debug_switch_to_host_common(vcpu);
+}
+
+u64 __kvm_get_mdcr_el2(void)
+{
+ return read_sysreg(mdcr_el2);
+}
diff --git a/arch/arm64/kvm/hyp/vhe/switch.c b/arch/arm64/kvm/hyp/vhe/switch.c
new file mode 100644
index 0000000000..448b17080d
--- /dev/null
+++ b/arch/arm64/kvm/hyp/vhe/switch.c
@@ -0,0 +1,327 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2015 - ARM Ltd
+ * Author: Marc Zyngier <marc.zyngier@arm.com>
+ */
+
+#include <hyp/switch.h>
+
+#include <linux/arm-smccc.h>
+#include <linux/kvm_host.h>
+#include <linux/types.h>
+#include <linux/jump_label.h>
+#include <linux/percpu.h>
+#include <uapi/linux/psci.h>
+
+#include <kvm/arm_psci.h>
+
+#include <asm/barrier.h>
+#include <asm/cpufeature.h>
+#include <asm/kprobes.h>
+#include <asm/kvm_asm.h>
+#include <asm/kvm_emulate.h>
+#include <asm/kvm_hyp.h>
+#include <asm/kvm_mmu.h>
+#include <asm/fpsimd.h>
+#include <asm/debug-monitors.h>
+#include <asm/processor.h>
+#include <asm/thread_info.h>
+#include <asm/vectors.h>
+
+/* VHE specific context */
+DEFINE_PER_CPU(struct kvm_host_data, kvm_host_data);
+DEFINE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
+DEFINE_PER_CPU(unsigned long, kvm_hyp_vector);
+
+static void __activate_traps(struct kvm_vcpu *vcpu)
+{
+ u64 val;
+
+ ___activate_traps(vcpu);
+
+ if (has_cntpoff()) {
+ struct timer_map map;
+
+ get_timer_map(vcpu, &map);
+
+ /*
+ * We're entrering the guest. Reload the correct
+ * values from memory now that TGE is clear.
+ */
+ if (map.direct_ptimer == vcpu_ptimer(vcpu))
+ val = __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0);
+ if (map.direct_ptimer == vcpu_hptimer(vcpu))
+ val = __vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2);
+
+ if (map.direct_ptimer) {
+ write_sysreg_el0(val, SYS_CNTP_CVAL);
+ isb();
+ }
+ }
+
+ val = read_sysreg(cpacr_el1);
+ val |= CPACR_ELx_TTA;
+ val &= ~(CPACR_EL1_ZEN_EL0EN | CPACR_EL1_ZEN_EL1EN |
+ CPACR_EL1_SMEN_EL0EN | CPACR_EL1_SMEN_EL1EN);
+
+ /*
+ * With VHE (HCR.E2H == 1), accesses to CPACR_EL1 are routed to
+ * CPTR_EL2. In general, CPACR_EL1 has the same layout as CPTR_EL2,
+ * except for some missing controls, such as TAM.
+ * In this case, CPTR_EL2.TAM has the same position with or without
+ * VHE (HCR.E2H == 1) which allows us to use here the CPTR_EL2.TAM
+ * shift value for trapping the AMU accesses.
+ */
+
+ val |= CPTR_EL2_TAM;
+
+ if (guest_owns_fp_regs(vcpu)) {
+ if (vcpu_has_sve(vcpu))
+ val |= CPACR_EL1_ZEN_EL0EN | CPACR_EL1_ZEN_EL1EN;
+ } else {
+ val &= ~(CPACR_EL1_FPEN_EL0EN | CPACR_EL1_FPEN_EL1EN);
+ __activate_traps_fpsimd32(vcpu);
+ }
+
+ write_sysreg(val, cpacr_el1);
+
+ write_sysreg(__this_cpu_read(kvm_hyp_vector), vbar_el1);
+}
+NOKPROBE_SYMBOL(__activate_traps);
+
+static void __deactivate_traps(struct kvm_vcpu *vcpu)
+{
+ const char *host_vectors = vectors;
+
+ ___deactivate_traps(vcpu);
+
+ write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2);
+
+ if (has_cntpoff()) {
+ struct timer_map map;
+ u64 val, offset;
+
+ get_timer_map(vcpu, &map);
+
+ /*
+ * We're exiting the guest. Save the latest CVAL value
+ * to memory and apply the offset now that TGE is set.
+ */
+ val = read_sysreg_el0(SYS_CNTP_CVAL);
+ if (map.direct_ptimer == vcpu_ptimer(vcpu))
+ __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0) = val;
+ if (map.direct_ptimer == vcpu_hptimer(vcpu))
+ __vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2) = val;
+
+ offset = read_sysreg_s(SYS_CNTPOFF_EL2);
+
+ if (map.direct_ptimer && offset) {
+ write_sysreg_el0(val + offset, SYS_CNTP_CVAL);
+ isb();
+ }
+ }
+
+ /*
+ * ARM errata 1165522 and 1530923 require the actual execution of the
+ * above before we can switch to the EL2/EL0 translation regime used by
+ * the host.
+ */
+ asm(ALTERNATIVE("nop", "isb", ARM64_WORKAROUND_SPECULATIVE_AT));
+
+ kvm_reset_cptr_el2(vcpu);
+
+ if (!arm64_kernel_unmapped_at_el0())
+ host_vectors = __this_cpu_read(this_cpu_vector);
+ write_sysreg(host_vectors, vbar_el1);
+}
+NOKPROBE_SYMBOL(__deactivate_traps);
+
+/*
+ * Disable IRQs in {activate,deactivate}_traps_vhe_{load,put}() to
+ * prevent a race condition between context switching of PMUSERENR_EL0
+ * in __{activate,deactivate}_traps_common() and IPIs that attempts to
+ * update PMUSERENR_EL0. See also kvm_set_pmuserenr().
+ */
+void activate_traps_vhe_load(struct kvm_vcpu *vcpu)
+{
+ unsigned long flags;
+
+ local_irq_save(flags);
+ __activate_traps_common(vcpu);
+ local_irq_restore(flags);
+}
+
+void deactivate_traps_vhe_put(struct kvm_vcpu *vcpu)
+{
+ unsigned long flags;
+
+ local_irq_save(flags);
+ __deactivate_traps_common(vcpu);
+ local_irq_restore(flags);
+}
+
+static const exit_handler_fn hyp_exit_handlers[] = {
+ [0 ... ESR_ELx_EC_MAX] = NULL,
+ [ESR_ELx_EC_CP15_32] = kvm_hyp_handle_cp15_32,
+ [ESR_ELx_EC_SYS64] = kvm_hyp_handle_sysreg,
+ [ESR_ELx_EC_SVE] = kvm_hyp_handle_fpsimd,
+ [ESR_ELx_EC_FP_ASIMD] = kvm_hyp_handle_fpsimd,
+ [ESR_ELx_EC_IABT_LOW] = kvm_hyp_handle_iabt_low,
+ [ESR_ELx_EC_DABT_LOW] = kvm_hyp_handle_dabt_low,
+ [ESR_ELx_EC_WATCHPT_LOW] = kvm_hyp_handle_watchpt_low,
+ [ESR_ELx_EC_PAC] = kvm_hyp_handle_ptrauth,
+};
+
+static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu)
+{
+ return hyp_exit_handlers;
+}
+
+static void early_exit_filter(struct kvm_vcpu *vcpu, u64 *exit_code)
+{
+ /*
+ * If we were in HYP context on entry, adjust the PSTATE view
+ * so that the usual helpers work correctly.
+ */
+ if (unlikely(vcpu_get_flag(vcpu, VCPU_HYP_CONTEXT))) {
+ u64 mode = *vcpu_cpsr(vcpu) & (PSR_MODE_MASK | PSR_MODE32_BIT);
+
+ switch (mode) {
+ case PSR_MODE_EL1t:
+ mode = PSR_MODE_EL2t;
+ break;
+ case PSR_MODE_EL1h:
+ mode = PSR_MODE_EL2h;
+ break;
+ }
+
+ *vcpu_cpsr(vcpu) &= ~(PSR_MODE_MASK | PSR_MODE32_BIT);
+ *vcpu_cpsr(vcpu) |= mode;
+ }
+}
+
+/* Switch to the guest for VHE systems running in EL2 */
+static int __kvm_vcpu_run_vhe(struct kvm_vcpu *vcpu)
+{
+ struct kvm_cpu_context *host_ctxt;
+ struct kvm_cpu_context *guest_ctxt;
+ u64 exit_code;
+
+ host_ctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt;
+ host_ctxt->__hyp_running_vcpu = vcpu;
+ guest_ctxt = &vcpu->arch.ctxt;
+
+ sysreg_save_host_state_vhe(host_ctxt);
+
+ /*
+ * ARM erratum 1165522 requires us to configure both stage 1 and
+ * stage 2 translation for the guest context before we clear
+ * HCR_EL2.TGE.
+ *
+ * We have already configured the guest's stage 1 translation in
+ * kvm_vcpu_load_sysregs_vhe above. We must now call
+ * __load_stage2 before __activate_traps, because
+ * __load_stage2 configures stage 2 translation, and
+ * __activate_traps clear HCR_EL2.TGE (among other things).
+ */
+ __load_stage2(vcpu->arch.hw_mmu, vcpu->arch.hw_mmu->arch);
+ __activate_traps(vcpu);
+
+ __kvm_adjust_pc(vcpu);
+
+ sysreg_restore_guest_state_vhe(guest_ctxt);
+ __debug_switch_to_guest(vcpu);
+
+ if (is_hyp_ctxt(vcpu))
+ vcpu_set_flag(vcpu, VCPU_HYP_CONTEXT);
+ else
+ vcpu_clear_flag(vcpu, VCPU_HYP_CONTEXT);
+
+ do {
+ /* Jump in the fire! */
+ exit_code = __guest_enter(vcpu);
+
+ /* And we're baaack! */
+ } while (fixup_guest_exit(vcpu, &exit_code));
+
+ sysreg_save_guest_state_vhe(guest_ctxt);
+
+ __deactivate_traps(vcpu);
+
+ sysreg_restore_host_state_vhe(host_ctxt);
+
+ if (vcpu->arch.fp_state == FP_STATE_GUEST_OWNED)
+ __fpsimd_save_fpexc32(vcpu);
+
+ __debug_switch_to_host(vcpu);
+
+ return exit_code;
+}
+NOKPROBE_SYMBOL(__kvm_vcpu_run_vhe);
+
+int __kvm_vcpu_run(struct kvm_vcpu *vcpu)
+{
+ int ret;
+
+ local_daif_mask();
+
+ /*
+ * Having IRQs masked via PMR when entering the guest means the GIC
+ * will not signal the CPU of interrupts of lower priority, and the
+ * only way to get out will be via guest exceptions.
+ * Naturally, we want to avoid this.
+ *
+ * local_daif_mask() already sets GIC_PRIO_PSR_I_SET, we just need a
+ * dsb to ensure the redistributor is forwards EL2 IRQs to the CPU.
+ */
+ pmr_sync();
+
+ ret = __kvm_vcpu_run_vhe(vcpu);
+
+ /*
+ * local_daif_restore() takes care to properly restore PSTATE.DAIF
+ * and the GIC PMR if the host is using IRQ priorities.
+ */
+ local_daif_restore(DAIF_PROCCTX_NOIRQ);
+
+ /*
+ * When we exit from the guest we change a number of CPU configuration
+ * parameters, such as traps. We rely on the isb() in kvm_call_hyp*()
+ * to make sure these changes take effect before running the host or
+ * additional guests.
+ */
+ return ret;
+}
+
+static void __hyp_call_panic(u64 spsr, u64 elr, u64 par)
+{
+ struct kvm_cpu_context *host_ctxt;
+ struct kvm_vcpu *vcpu;
+
+ host_ctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt;
+ vcpu = host_ctxt->__hyp_running_vcpu;
+
+ __deactivate_traps(vcpu);
+ sysreg_restore_host_state_vhe(host_ctxt);
+
+ panic("HYP panic:\nPS:%08llx PC:%016llx ESR:%08llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%p\n",
+ spsr, elr,
+ read_sysreg_el2(SYS_ESR), read_sysreg_el2(SYS_FAR),
+ read_sysreg(hpfar_el2), par, vcpu);
+}
+NOKPROBE_SYMBOL(__hyp_call_panic);
+
+void __noreturn hyp_panic(void)
+{
+ u64 spsr = read_sysreg_el2(SYS_SPSR);
+ u64 elr = read_sysreg_el2(SYS_ELR);
+ u64 par = read_sysreg_par();
+
+ __hyp_call_panic(spsr, elr, par);
+ unreachable();
+}
+
+asmlinkage void kvm_unexpected_el2_exception(void)
+{
+ __kvm_unexpected_el2_exception();
+}
diff --git a/arch/arm64/kvm/hyp/vhe/sysreg-sr.c b/arch/arm64/kvm/hyp/vhe/sysreg-sr.c
new file mode 100644
index 0000000000..b35a178e7e
--- /dev/null
+++ b/arch/arm64/kvm/hyp/vhe/sysreg-sr.c
@@ -0,0 +1,126 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2012-2015 - ARM Ltd
+ * Author: Marc Zyngier <marc.zyngier@arm.com>
+ */
+
+#include <hyp/sysreg-sr.h>
+
+#include <linux/compiler.h>
+#include <linux/kvm_host.h>
+
+#include <asm/kprobes.h>
+#include <asm/kvm_asm.h>
+#include <asm/kvm_emulate.h>
+#include <asm/kvm_hyp.h>
+#include <asm/kvm_nested.h>
+
+/*
+ * VHE: Host and guest must save mdscr_el1 and sp_el0 (and the PC and
+ * pstate, which are handled as part of the el2 return state) on every
+ * switch (sp_el0 is being dealt with in the assembly code).
+ * tpidr_el0 and tpidrro_el0 only need to be switched when going
+ * to host userspace or a different VCPU. EL1 registers only need to be
+ * switched when potentially going to run a different VCPU. The latter two
+ * classes are handled as part of kvm_arch_vcpu_load and kvm_arch_vcpu_put.
+ */
+
+void sysreg_save_host_state_vhe(struct kvm_cpu_context *ctxt)
+{
+ __sysreg_save_common_state(ctxt);
+}
+NOKPROBE_SYMBOL(sysreg_save_host_state_vhe);
+
+void sysreg_save_guest_state_vhe(struct kvm_cpu_context *ctxt)
+{
+ __sysreg_save_common_state(ctxt);
+ __sysreg_save_el2_return_state(ctxt);
+}
+NOKPROBE_SYMBOL(sysreg_save_guest_state_vhe);
+
+void sysreg_restore_host_state_vhe(struct kvm_cpu_context *ctxt)
+{
+ __sysreg_restore_common_state(ctxt);
+}
+NOKPROBE_SYMBOL(sysreg_restore_host_state_vhe);
+
+void sysreg_restore_guest_state_vhe(struct kvm_cpu_context *ctxt)
+{
+ __sysreg_restore_common_state(ctxt);
+ __sysreg_restore_el2_return_state(ctxt);
+}
+NOKPROBE_SYMBOL(sysreg_restore_guest_state_vhe);
+
+/**
+ * kvm_vcpu_load_sysregs_vhe - Load guest system registers to the physical CPU
+ *
+ * @vcpu: The VCPU pointer
+ *
+ * Load system registers that do not affect the host's execution, for
+ * example EL1 system registers on a VHE system where the host kernel
+ * runs at EL2. This function is called from KVM's vcpu_load() function
+ * and loading system register state early avoids having to load them on
+ * every entry to the VM.
+ */
+void kvm_vcpu_load_sysregs_vhe(struct kvm_vcpu *vcpu)
+{
+ struct kvm_cpu_context *guest_ctxt = &vcpu->arch.ctxt;
+ struct kvm_cpu_context *host_ctxt;
+
+ host_ctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt;
+ __sysreg_save_user_state(host_ctxt);
+
+ /*
+ * When running a normal EL1 guest, we only load a new vcpu
+ * after a context switch, which imvolves a DSB, so all
+ * speculative EL1&0 walks will have already completed.
+ * If running NV, the vcpu may transition between vEL1 and
+ * vEL2 without a context switch, so make sure we complete
+ * those walks before loading a new context.
+ */
+ if (vcpu_has_nv(vcpu))
+ dsb(nsh);
+
+ /*
+ * Load guest EL1 and user state
+ *
+ * We must restore the 32-bit state before the sysregs, thanks
+ * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
+ */
+ __sysreg32_restore_state(vcpu);
+ __sysreg_restore_user_state(guest_ctxt);
+ __sysreg_restore_el1_state(guest_ctxt);
+
+ vcpu_set_flag(vcpu, SYSREGS_ON_CPU);
+
+ activate_traps_vhe_load(vcpu);
+}
+
+/**
+ * kvm_vcpu_put_sysregs_vhe - Restore host system registers to the physical CPU
+ *
+ * @vcpu: The VCPU pointer
+ *
+ * Save guest system registers that do not affect the host's execution, for
+ * example EL1 system registers on a VHE system where the host kernel
+ * runs at EL2. This function is called from KVM's vcpu_put() function
+ * and deferring saving system register state until we're no longer running the
+ * VCPU avoids having to save them on every exit from the VM.
+ */
+void kvm_vcpu_put_sysregs_vhe(struct kvm_vcpu *vcpu)
+{
+ struct kvm_cpu_context *guest_ctxt = &vcpu->arch.ctxt;
+ struct kvm_cpu_context *host_ctxt;
+
+ host_ctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt;
+ deactivate_traps_vhe_put(vcpu);
+
+ __sysreg_save_el1_state(guest_ctxt);
+ __sysreg_save_user_state(guest_ctxt);
+ __sysreg32_save_state(vcpu);
+
+ /* Restore host user state */
+ __sysreg_restore_user_state(host_ctxt);
+
+ vcpu_clear_flag(vcpu, SYSREGS_ON_CPU);
+}
diff --git a/arch/arm64/kvm/hyp/vhe/timer-sr.c b/arch/arm64/kvm/hyp/vhe/timer-sr.c
new file mode 100644
index 0000000000..4cda674a8b
--- /dev/null
+++ b/arch/arm64/kvm/hyp/vhe/timer-sr.c
@@ -0,0 +1,12 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2012-2015 - ARM Ltd
+ * Author: Marc Zyngier <marc.zyngier@arm.com>
+ */
+
+#include <asm/kvm_hyp.h>
+
+void __kvm_timer_set_cntvoff(u64 cntvoff)
+{
+ write_sysreg(cntvoff, cntvoff_el2);
+}
diff --git a/arch/arm64/kvm/hyp/vhe/tlb.c b/arch/arm64/kvm/hyp/vhe/tlb.c
new file mode 100644
index 0000000000..46bd43f61d
--- /dev/null
+++ b/arch/arm64/kvm/hyp/vhe/tlb.c
@@ -0,0 +1,223 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2015 - ARM Ltd
+ * Author: Marc Zyngier <marc.zyngier@arm.com>
+ */
+
+#include <linux/irqflags.h>
+
+#include <asm/kvm_hyp.h>
+#include <asm/kvm_mmu.h>
+#include <asm/tlbflush.h>
+
+struct tlb_inv_context {
+ unsigned long flags;
+ u64 tcr;
+ u64 sctlr;
+};
+
+static void __tlb_switch_to_guest(struct kvm_s2_mmu *mmu,
+ struct tlb_inv_context *cxt)
+{
+ u64 val;
+
+ local_irq_save(cxt->flags);
+
+ if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
+ /*
+ * For CPUs that are affected by ARM errata 1165522 or 1530923,
+ * we cannot trust stage-1 to be in a correct state at that
+ * point. Since we do not want to force a full load of the
+ * vcpu state, we prevent the EL1 page-table walker to
+ * allocate new TLBs. This is done by setting the EPD bits
+ * in the TCR_EL1 register. We also need to prevent it to
+ * allocate IPA->PA walks, so we enable the S1 MMU...
+ */
+ val = cxt->tcr = read_sysreg_el1(SYS_TCR);
+ val |= TCR_EPD1_MASK | TCR_EPD0_MASK;
+ write_sysreg_el1(val, SYS_TCR);
+ val = cxt->sctlr = read_sysreg_el1(SYS_SCTLR);
+ val |= SCTLR_ELx_M;
+ write_sysreg_el1(val, SYS_SCTLR);
+ }
+
+ /*
+ * With VHE enabled, we have HCR_EL2.{E2H,TGE} = {1,1}, and
+ * most TLB operations target EL2/EL0. In order to affect the
+ * guest TLBs (EL1/EL0), we need to change one of these two
+ * bits. Changing E2H is impossible (goodbye TTBR1_EL2), so
+ * let's flip TGE before executing the TLB operation.
+ *
+ * ARM erratum 1165522 requires some special handling (again),
+ * as we need to make sure both stages of translation are in
+ * place before clearing TGE. __load_stage2() already
+ * has an ISB in order to deal with this.
+ */
+ __load_stage2(mmu, mmu->arch);
+ val = read_sysreg(hcr_el2);
+ val &= ~HCR_TGE;
+ write_sysreg(val, hcr_el2);
+ isb();
+}
+
+static void __tlb_switch_to_host(struct tlb_inv_context *cxt)
+{
+ /*
+ * We're done with the TLB operation, let's restore the host's
+ * view of HCR_EL2.
+ */
+ write_sysreg(0, vttbr_el2);
+ write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2);
+ isb();
+
+ if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
+ /* Restore the registers to what they were */
+ write_sysreg_el1(cxt->tcr, SYS_TCR);
+ write_sysreg_el1(cxt->sctlr, SYS_SCTLR);
+ }
+
+ local_irq_restore(cxt->flags);
+}
+
+void __kvm_tlb_flush_vmid_ipa(struct kvm_s2_mmu *mmu,
+ phys_addr_t ipa, int level)
+{
+ struct tlb_inv_context cxt;
+
+ dsb(ishst);
+
+ /* Switch to requested VMID */
+ __tlb_switch_to_guest(mmu, &cxt);
+
+ /*
+ * We could do so much better if we had the VA as well.
+ * Instead, we invalidate Stage-2 for this IPA, and the
+ * whole of Stage-1. Weep...
+ */
+ ipa >>= 12;
+ __tlbi_level(ipas2e1is, ipa, level);
+
+ /*
+ * We have to ensure completion of the invalidation at Stage-2,
+ * since a table walk on another CPU could refill a TLB with a
+ * complete (S1 + S2) walk based on the old Stage-2 mapping if
+ * the Stage-1 invalidation happened first.
+ */
+ dsb(ish);
+ __tlbi(vmalle1is);
+ dsb(ish);
+ isb();
+
+ __tlb_switch_to_host(&cxt);
+}
+
+void __kvm_tlb_flush_vmid_ipa_nsh(struct kvm_s2_mmu *mmu,
+ phys_addr_t ipa, int level)
+{
+ struct tlb_inv_context cxt;
+
+ dsb(nshst);
+
+ /* Switch to requested VMID */
+ __tlb_switch_to_guest(mmu, &cxt);
+
+ /*
+ * We could do so much better if we had the VA as well.
+ * Instead, we invalidate Stage-2 for this IPA, and the
+ * whole of Stage-1. Weep...
+ */
+ ipa >>= 12;
+ __tlbi_level(ipas2e1, ipa, level);
+
+ /*
+ * We have to ensure completion of the invalidation at Stage-2,
+ * since a table walk on another CPU could refill a TLB with a
+ * complete (S1 + S2) walk based on the old Stage-2 mapping if
+ * the Stage-1 invalidation happened first.
+ */
+ dsb(nsh);
+ __tlbi(vmalle1);
+ dsb(nsh);
+ isb();
+
+ __tlb_switch_to_host(&cxt);
+}
+
+void __kvm_tlb_flush_vmid_range(struct kvm_s2_mmu *mmu,
+ phys_addr_t start, unsigned long pages)
+{
+ struct tlb_inv_context cxt;
+ unsigned long stride;
+
+ /*
+ * Since the range of addresses may not be mapped at
+ * the same level, assume the worst case as PAGE_SIZE
+ */
+ stride = PAGE_SIZE;
+ start = round_down(start, stride);
+
+ dsb(ishst);
+
+ /* Switch to requested VMID */
+ __tlb_switch_to_guest(mmu, &cxt);
+
+ __flush_s2_tlb_range_op(ipas2e1is, start, pages, stride, 0);
+
+ dsb(ish);
+ __tlbi(vmalle1is);
+ dsb(ish);
+ isb();
+
+ __tlb_switch_to_host(&cxt);
+}
+
+void __kvm_tlb_flush_vmid(struct kvm_s2_mmu *mmu)
+{
+ struct tlb_inv_context cxt;
+
+ dsb(ishst);
+
+ /* Switch to requested VMID */
+ __tlb_switch_to_guest(mmu, &cxt);
+
+ __tlbi(vmalls12e1is);
+ dsb(ish);
+ isb();
+
+ __tlb_switch_to_host(&cxt);
+}
+
+void __kvm_flush_cpu_context(struct kvm_s2_mmu *mmu)
+{
+ struct tlb_inv_context cxt;
+
+ /* Switch to requested VMID */
+ __tlb_switch_to_guest(mmu, &cxt);
+
+ __tlbi(vmalle1);
+ asm volatile("ic iallu");
+ dsb(nsh);
+ isb();
+
+ __tlb_switch_to_host(&cxt);
+}
+
+void __kvm_flush_vm_context(void)
+{
+ dsb(ishst);
+ __tlbi(alle1is);
+
+ /*
+ * VIPT and PIPT caches are not affected by VMID, so no maintenance
+ * is necessary across a VMID rollover.
+ *
+ * VPIPT caches constrain lookup and maintenance to the active VMID,
+ * so we need to invalidate lines with a stale VMID to avoid an ABA
+ * race after multiple rollovers.
+ *
+ */
+ if (icache_is_vpipt())
+ asm volatile("ic ialluis");
+
+ dsb(ish);
+}
diff --git a/arch/arm64/kvm/hypercalls.c b/arch/arm64/kvm/hypercalls.c
new file mode 100644
index 0000000000..7fb4df0456
--- /dev/null
+++ b/arch/arm64/kvm/hypercalls.c
@@ -0,0 +1,652 @@
+// SPDX-License-Identifier: GPL-2.0
+// Copyright (C) 2019 Arm Ltd.
+
+#include <linux/arm-smccc.h>
+#include <linux/kvm_host.h>
+
+#include <asm/kvm_emulate.h>
+
+#include <kvm/arm_hypercalls.h>
+#include <kvm/arm_psci.h>
+
+#define KVM_ARM_SMCCC_STD_FEATURES \
+ GENMASK(KVM_REG_ARM_STD_BMAP_BIT_COUNT - 1, 0)
+#define KVM_ARM_SMCCC_STD_HYP_FEATURES \
+ GENMASK(KVM_REG_ARM_STD_HYP_BMAP_BIT_COUNT - 1, 0)
+#define KVM_ARM_SMCCC_VENDOR_HYP_FEATURES \
+ GENMASK(KVM_REG_ARM_VENDOR_HYP_BMAP_BIT_COUNT - 1, 0)
+
+static void kvm_ptp_get_time(struct kvm_vcpu *vcpu, u64 *val)
+{
+ struct system_time_snapshot systime_snapshot;
+ u64 cycles = ~0UL;
+ u32 feature;
+
+ /*
+ * system time and counter value must captured at the same
+ * time to keep consistency and precision.
+ */
+ ktime_get_snapshot(&systime_snapshot);
+
+ /*
+ * This is only valid if the current clocksource is the
+ * architected counter, as this is the only one the guest
+ * can see.
+ */
+ if (systime_snapshot.cs_id != CSID_ARM_ARCH_COUNTER)
+ return;
+
+ /*
+ * The guest selects one of the two reference counters
+ * (virtual or physical) with the first argument of the SMCCC
+ * call. In case the identifier is not supported, error out.
+ */
+ feature = smccc_get_arg1(vcpu);
+ switch (feature) {
+ case KVM_PTP_VIRT_COUNTER:
+ cycles = systime_snapshot.cycles - vcpu->kvm->arch.timer_data.voffset;
+ break;
+ case KVM_PTP_PHYS_COUNTER:
+ cycles = systime_snapshot.cycles - vcpu->kvm->arch.timer_data.poffset;
+ break;
+ default:
+ return;
+ }
+
+ /*
+ * This relies on the top bit of val[0] never being set for
+ * valid values of system time, because that is *really* far
+ * in the future (about 292 years from 1970, and at that stage
+ * nobody will give a damn about it).
+ */
+ val[0] = upper_32_bits(systime_snapshot.real);
+ val[1] = lower_32_bits(systime_snapshot.real);
+ val[2] = upper_32_bits(cycles);
+ val[3] = lower_32_bits(cycles);
+}
+
+static bool kvm_smccc_default_allowed(u32 func_id)
+{
+ switch (func_id) {
+ /*
+ * List of function-ids that are not gated with the bitmapped
+ * feature firmware registers, and are to be allowed for
+ * servicing the call by default.
+ */
+ case ARM_SMCCC_VERSION_FUNC_ID:
+ case ARM_SMCCC_ARCH_FEATURES_FUNC_ID:
+ return true;
+ default:
+ /* PSCI 0.2 and up is in the 0:0x1f range */
+ if (ARM_SMCCC_OWNER_NUM(func_id) == ARM_SMCCC_OWNER_STANDARD &&
+ ARM_SMCCC_FUNC_NUM(func_id) <= 0x1f)
+ return true;
+
+ /*
+ * KVM's PSCI 0.1 doesn't comply with SMCCC, and has
+ * its own function-id base and range
+ */
+ if (func_id >= KVM_PSCI_FN(0) && func_id <= KVM_PSCI_FN(3))
+ return true;
+
+ return false;
+ }
+}
+
+static bool kvm_smccc_test_fw_bmap(struct kvm_vcpu *vcpu, u32 func_id)
+{
+ struct kvm_smccc_features *smccc_feat = &vcpu->kvm->arch.smccc_feat;
+
+ switch (func_id) {
+ case ARM_SMCCC_TRNG_VERSION:
+ case ARM_SMCCC_TRNG_FEATURES:
+ case ARM_SMCCC_TRNG_GET_UUID:
+ case ARM_SMCCC_TRNG_RND32:
+ case ARM_SMCCC_TRNG_RND64:
+ return test_bit(KVM_REG_ARM_STD_BIT_TRNG_V1_0,
+ &smccc_feat->std_bmap);
+ case ARM_SMCCC_HV_PV_TIME_FEATURES:
+ case ARM_SMCCC_HV_PV_TIME_ST:
+ return test_bit(KVM_REG_ARM_STD_HYP_BIT_PV_TIME,
+ &smccc_feat->std_hyp_bmap);
+ case ARM_SMCCC_VENDOR_HYP_KVM_FEATURES_FUNC_ID:
+ case ARM_SMCCC_VENDOR_HYP_CALL_UID_FUNC_ID:
+ return test_bit(KVM_REG_ARM_VENDOR_HYP_BIT_FUNC_FEAT,
+ &smccc_feat->vendor_hyp_bmap);
+ case ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID:
+ return test_bit(KVM_REG_ARM_VENDOR_HYP_BIT_PTP,
+ &smccc_feat->vendor_hyp_bmap);
+ default:
+ return false;
+ }
+}
+
+#define SMC32_ARCH_RANGE_BEGIN ARM_SMCCC_VERSION_FUNC_ID
+#define SMC32_ARCH_RANGE_END ARM_SMCCC_CALL_VAL(ARM_SMCCC_FAST_CALL, \
+ ARM_SMCCC_SMC_32, \
+ 0, ARM_SMCCC_FUNC_MASK)
+
+#define SMC64_ARCH_RANGE_BEGIN ARM_SMCCC_CALL_VAL(ARM_SMCCC_FAST_CALL, \
+ ARM_SMCCC_SMC_64, \
+ 0, 0)
+#define SMC64_ARCH_RANGE_END ARM_SMCCC_CALL_VAL(ARM_SMCCC_FAST_CALL, \
+ ARM_SMCCC_SMC_64, \
+ 0, ARM_SMCCC_FUNC_MASK)
+
+static void init_smccc_filter(struct kvm *kvm)
+{
+ int r;
+
+ mt_init(&kvm->arch.smccc_filter);
+
+ /*
+ * Prevent userspace from handling any SMCCC calls in the architecture
+ * range, avoiding the risk of misrepresenting Spectre mitigation status
+ * to the guest.
+ */
+ r = mtree_insert_range(&kvm->arch.smccc_filter,
+ SMC32_ARCH_RANGE_BEGIN, SMC32_ARCH_RANGE_END,
+ xa_mk_value(KVM_SMCCC_FILTER_HANDLE),
+ GFP_KERNEL_ACCOUNT);
+ WARN_ON_ONCE(r);
+
+ r = mtree_insert_range(&kvm->arch.smccc_filter,
+ SMC64_ARCH_RANGE_BEGIN, SMC64_ARCH_RANGE_END,
+ xa_mk_value(KVM_SMCCC_FILTER_HANDLE),
+ GFP_KERNEL_ACCOUNT);
+ WARN_ON_ONCE(r);
+
+}
+
+static int kvm_smccc_set_filter(struct kvm *kvm, struct kvm_smccc_filter __user *uaddr)
+{
+ const void *zero_page = page_to_virt(ZERO_PAGE(0));
+ struct kvm_smccc_filter filter;
+ u32 start, end;
+ int r;
+
+ if (copy_from_user(&filter, uaddr, sizeof(filter)))
+ return -EFAULT;
+
+ if (memcmp(filter.pad, zero_page, sizeof(filter.pad)))
+ return -EINVAL;
+
+ start = filter.base;
+ end = start + filter.nr_functions - 1;
+
+ if (end < start || filter.action >= NR_SMCCC_FILTER_ACTIONS)
+ return -EINVAL;
+
+ mutex_lock(&kvm->arch.config_lock);
+
+ if (kvm_vm_has_ran_once(kvm)) {
+ r = -EBUSY;
+ goto out_unlock;
+ }
+
+ r = mtree_insert_range(&kvm->arch.smccc_filter, start, end,
+ xa_mk_value(filter.action), GFP_KERNEL_ACCOUNT);
+ if (r)
+ goto out_unlock;
+
+ set_bit(KVM_ARCH_FLAG_SMCCC_FILTER_CONFIGURED, &kvm->arch.flags);
+
+out_unlock:
+ mutex_unlock(&kvm->arch.config_lock);
+ return r;
+}
+
+static u8 kvm_smccc_filter_get_action(struct kvm *kvm, u32 func_id)
+{
+ unsigned long idx = func_id;
+ void *val;
+
+ if (!test_bit(KVM_ARCH_FLAG_SMCCC_FILTER_CONFIGURED, &kvm->arch.flags))
+ return KVM_SMCCC_FILTER_HANDLE;
+
+ /*
+ * But where's the error handling, you say?
+ *
+ * mt_find() returns NULL if no entry was found, which just so happens
+ * to match KVM_SMCCC_FILTER_HANDLE.
+ */
+ val = mt_find(&kvm->arch.smccc_filter, &idx, idx);
+ return xa_to_value(val);
+}
+
+static u8 kvm_smccc_get_action(struct kvm_vcpu *vcpu, u32 func_id)
+{
+ /*
+ * Intervening actions in the SMCCC filter take precedence over the
+ * pseudo-firmware register bitmaps.
+ */
+ u8 action = kvm_smccc_filter_get_action(vcpu->kvm, func_id);
+ if (action != KVM_SMCCC_FILTER_HANDLE)
+ return action;
+
+ if (kvm_smccc_test_fw_bmap(vcpu, func_id) ||
+ kvm_smccc_default_allowed(func_id))
+ return KVM_SMCCC_FILTER_HANDLE;
+
+ return KVM_SMCCC_FILTER_DENY;
+}
+
+static void kvm_prepare_hypercall_exit(struct kvm_vcpu *vcpu, u32 func_id)
+{
+ u8 ec = ESR_ELx_EC(kvm_vcpu_get_esr(vcpu));
+ struct kvm_run *run = vcpu->run;
+ u64 flags = 0;
+
+ if (ec == ESR_ELx_EC_SMC32 || ec == ESR_ELx_EC_SMC64)
+ flags |= KVM_HYPERCALL_EXIT_SMC;
+
+ if (!kvm_vcpu_trap_il_is32bit(vcpu))
+ flags |= KVM_HYPERCALL_EXIT_16BIT;
+
+ run->exit_reason = KVM_EXIT_HYPERCALL;
+ run->hypercall = (typeof(run->hypercall)) {
+ .nr = func_id,
+ .flags = flags,
+ };
+}
+
+int kvm_smccc_call_handler(struct kvm_vcpu *vcpu)
+{
+ struct kvm_smccc_features *smccc_feat = &vcpu->kvm->arch.smccc_feat;
+ u32 func_id = smccc_get_function(vcpu);
+ u64 val[4] = {SMCCC_RET_NOT_SUPPORTED};
+ u32 feature;
+ u8 action;
+ gpa_t gpa;
+
+ action = kvm_smccc_get_action(vcpu, func_id);
+ switch (action) {
+ case KVM_SMCCC_FILTER_HANDLE:
+ break;
+ case KVM_SMCCC_FILTER_DENY:
+ goto out;
+ case KVM_SMCCC_FILTER_FWD_TO_USER:
+ kvm_prepare_hypercall_exit(vcpu, func_id);
+ return 0;
+ default:
+ WARN_RATELIMIT(1, "Unhandled SMCCC filter action: %d\n", action);
+ goto out;
+ }
+
+ switch (func_id) {
+ case ARM_SMCCC_VERSION_FUNC_ID:
+ val[0] = ARM_SMCCC_VERSION_1_1;
+ break;
+ case ARM_SMCCC_ARCH_FEATURES_FUNC_ID:
+ feature = smccc_get_arg1(vcpu);
+ switch (feature) {
+ case ARM_SMCCC_ARCH_WORKAROUND_1:
+ switch (arm64_get_spectre_v2_state()) {
+ case SPECTRE_VULNERABLE:
+ break;
+ case SPECTRE_MITIGATED:
+ val[0] = SMCCC_RET_SUCCESS;
+ break;
+ case SPECTRE_UNAFFECTED:
+ val[0] = SMCCC_ARCH_WORKAROUND_RET_UNAFFECTED;
+ break;
+ }
+ break;
+ case ARM_SMCCC_ARCH_WORKAROUND_2:
+ switch (arm64_get_spectre_v4_state()) {
+ case SPECTRE_VULNERABLE:
+ break;
+ case SPECTRE_MITIGATED:
+ /*
+ * SSBS everywhere: Indicate no firmware
+ * support, as the SSBS support will be
+ * indicated to the guest and the default is
+ * safe.
+ *
+ * Otherwise, expose a permanent mitigation
+ * to the guest, and hide SSBS so that the
+ * guest stays protected.
+ */
+ if (cpus_have_final_cap(ARM64_SSBS))
+ break;
+ fallthrough;
+ case SPECTRE_UNAFFECTED:
+ val[0] = SMCCC_RET_NOT_REQUIRED;
+ break;
+ }
+ break;
+ case ARM_SMCCC_ARCH_WORKAROUND_3:
+ switch (arm64_get_spectre_bhb_state()) {
+ case SPECTRE_VULNERABLE:
+ break;
+ case SPECTRE_MITIGATED:
+ val[0] = SMCCC_RET_SUCCESS;
+ break;
+ case SPECTRE_UNAFFECTED:
+ val[0] = SMCCC_ARCH_WORKAROUND_RET_UNAFFECTED;
+ break;
+ }
+ break;
+ case ARM_SMCCC_HV_PV_TIME_FEATURES:
+ if (test_bit(KVM_REG_ARM_STD_HYP_BIT_PV_TIME,
+ &smccc_feat->std_hyp_bmap))
+ val[0] = SMCCC_RET_SUCCESS;
+ break;
+ }
+ break;
+ case ARM_SMCCC_HV_PV_TIME_FEATURES:
+ val[0] = kvm_hypercall_pv_features(vcpu);
+ break;
+ case ARM_SMCCC_HV_PV_TIME_ST:
+ gpa = kvm_init_stolen_time(vcpu);
+ if (gpa != INVALID_GPA)
+ val[0] = gpa;
+ break;
+ case ARM_SMCCC_VENDOR_HYP_CALL_UID_FUNC_ID:
+ val[0] = ARM_SMCCC_VENDOR_HYP_UID_KVM_REG_0;
+ val[1] = ARM_SMCCC_VENDOR_HYP_UID_KVM_REG_1;
+ val[2] = ARM_SMCCC_VENDOR_HYP_UID_KVM_REG_2;
+ val[3] = ARM_SMCCC_VENDOR_HYP_UID_KVM_REG_3;
+ break;
+ case ARM_SMCCC_VENDOR_HYP_KVM_FEATURES_FUNC_ID:
+ val[0] = smccc_feat->vendor_hyp_bmap;
+ break;
+ case ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID:
+ kvm_ptp_get_time(vcpu, val);
+ break;
+ case ARM_SMCCC_TRNG_VERSION:
+ case ARM_SMCCC_TRNG_FEATURES:
+ case ARM_SMCCC_TRNG_GET_UUID:
+ case ARM_SMCCC_TRNG_RND32:
+ case ARM_SMCCC_TRNG_RND64:
+ return kvm_trng_call(vcpu);
+ default:
+ return kvm_psci_call(vcpu);
+ }
+
+out:
+ smccc_set_retval(vcpu, val[0], val[1], val[2], val[3]);
+ return 1;
+}
+
+static const u64 kvm_arm_fw_reg_ids[] = {
+ KVM_REG_ARM_PSCI_VERSION,
+ KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1,
+ KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2,
+ KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3,
+ KVM_REG_ARM_STD_BMAP,
+ KVM_REG_ARM_STD_HYP_BMAP,
+ KVM_REG_ARM_VENDOR_HYP_BMAP,
+};
+
+void kvm_arm_init_hypercalls(struct kvm *kvm)
+{
+ struct kvm_smccc_features *smccc_feat = &kvm->arch.smccc_feat;
+
+ smccc_feat->std_bmap = KVM_ARM_SMCCC_STD_FEATURES;
+ smccc_feat->std_hyp_bmap = KVM_ARM_SMCCC_STD_HYP_FEATURES;
+ smccc_feat->vendor_hyp_bmap = KVM_ARM_SMCCC_VENDOR_HYP_FEATURES;
+
+ init_smccc_filter(kvm);
+}
+
+void kvm_arm_teardown_hypercalls(struct kvm *kvm)
+{
+ mtree_destroy(&kvm->arch.smccc_filter);
+}
+
+int kvm_arm_get_fw_num_regs(struct kvm_vcpu *vcpu)
+{
+ return ARRAY_SIZE(kvm_arm_fw_reg_ids);
+}
+
+int kvm_arm_copy_fw_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
+{
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(kvm_arm_fw_reg_ids); i++) {
+ if (put_user(kvm_arm_fw_reg_ids[i], uindices++))
+ return -EFAULT;
+ }
+
+ return 0;
+}
+
+#define KVM_REG_FEATURE_LEVEL_MASK GENMASK(3, 0)
+
+/*
+ * Convert the workaround level into an easy-to-compare number, where higher
+ * values mean better protection.
+ */
+static int get_kernel_wa_level(u64 regid)
+{
+ switch (regid) {
+ case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1:
+ switch (arm64_get_spectre_v2_state()) {
+ case SPECTRE_VULNERABLE:
+ return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_NOT_AVAIL;
+ case SPECTRE_MITIGATED:
+ return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_AVAIL;
+ case SPECTRE_UNAFFECTED:
+ return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_NOT_REQUIRED;
+ }
+ return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_NOT_AVAIL;
+ case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2:
+ switch (arm64_get_spectre_v4_state()) {
+ case SPECTRE_MITIGATED:
+ /*
+ * As for the hypercall discovery, we pretend we
+ * don't have any FW mitigation if SSBS is there at
+ * all times.
+ */
+ if (cpus_have_final_cap(ARM64_SSBS))
+ return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL;
+ fallthrough;
+ case SPECTRE_UNAFFECTED:
+ return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_REQUIRED;
+ case SPECTRE_VULNERABLE:
+ return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL;
+ }
+ break;
+ case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3:
+ switch (arm64_get_spectre_bhb_state()) {
+ case SPECTRE_VULNERABLE:
+ return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3_NOT_AVAIL;
+ case SPECTRE_MITIGATED:
+ return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3_AVAIL;
+ case SPECTRE_UNAFFECTED:
+ return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3_NOT_REQUIRED;
+ }
+ return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3_NOT_AVAIL;
+ }
+
+ return -EINVAL;
+}
+
+int kvm_arm_get_fw_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
+{
+ struct kvm_smccc_features *smccc_feat = &vcpu->kvm->arch.smccc_feat;
+ void __user *uaddr = (void __user *)(long)reg->addr;
+ u64 val;
+
+ switch (reg->id) {
+ case KVM_REG_ARM_PSCI_VERSION:
+ val = kvm_psci_version(vcpu);
+ break;
+ case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1:
+ case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2:
+ case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3:
+ val = get_kernel_wa_level(reg->id) & KVM_REG_FEATURE_LEVEL_MASK;
+ break;
+ case KVM_REG_ARM_STD_BMAP:
+ val = READ_ONCE(smccc_feat->std_bmap);
+ break;
+ case KVM_REG_ARM_STD_HYP_BMAP:
+ val = READ_ONCE(smccc_feat->std_hyp_bmap);
+ break;
+ case KVM_REG_ARM_VENDOR_HYP_BMAP:
+ val = READ_ONCE(smccc_feat->vendor_hyp_bmap);
+ break;
+ default:
+ return -ENOENT;
+ }
+
+ if (copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)))
+ return -EFAULT;
+
+ return 0;
+}
+
+static int kvm_arm_set_fw_reg_bmap(struct kvm_vcpu *vcpu, u64 reg_id, u64 val)
+{
+ int ret = 0;
+ struct kvm *kvm = vcpu->kvm;
+ struct kvm_smccc_features *smccc_feat = &kvm->arch.smccc_feat;
+ unsigned long *fw_reg_bmap, fw_reg_features;
+
+ switch (reg_id) {
+ case KVM_REG_ARM_STD_BMAP:
+ fw_reg_bmap = &smccc_feat->std_bmap;
+ fw_reg_features = KVM_ARM_SMCCC_STD_FEATURES;
+ break;
+ case KVM_REG_ARM_STD_HYP_BMAP:
+ fw_reg_bmap = &smccc_feat->std_hyp_bmap;
+ fw_reg_features = KVM_ARM_SMCCC_STD_HYP_FEATURES;
+ break;
+ case KVM_REG_ARM_VENDOR_HYP_BMAP:
+ fw_reg_bmap = &smccc_feat->vendor_hyp_bmap;
+ fw_reg_features = KVM_ARM_SMCCC_VENDOR_HYP_FEATURES;
+ break;
+ default:
+ return -ENOENT;
+ }
+
+ /* Check for unsupported bit */
+ if (val & ~fw_reg_features)
+ return -EINVAL;
+
+ mutex_lock(&kvm->arch.config_lock);
+
+ if (kvm_vm_has_ran_once(kvm) && val != *fw_reg_bmap) {
+ ret = -EBUSY;
+ goto out;
+ }
+
+ WRITE_ONCE(*fw_reg_bmap, val);
+out:
+ mutex_unlock(&kvm->arch.config_lock);
+ return ret;
+}
+
+int kvm_arm_set_fw_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
+{
+ void __user *uaddr = (void __user *)(long)reg->addr;
+ u64 val;
+ int wa_level;
+
+ if (KVM_REG_SIZE(reg->id) != sizeof(val))
+ return -ENOENT;
+ if (copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id)))
+ return -EFAULT;
+
+ switch (reg->id) {
+ case KVM_REG_ARM_PSCI_VERSION:
+ {
+ bool wants_02;
+
+ wants_02 = test_bit(KVM_ARM_VCPU_PSCI_0_2, vcpu->arch.features);
+
+ switch (val) {
+ case KVM_ARM_PSCI_0_1:
+ if (wants_02)
+ return -EINVAL;
+ vcpu->kvm->arch.psci_version = val;
+ return 0;
+ case KVM_ARM_PSCI_0_2:
+ case KVM_ARM_PSCI_1_0:
+ case KVM_ARM_PSCI_1_1:
+ if (!wants_02)
+ return -EINVAL;
+ vcpu->kvm->arch.psci_version = val;
+ return 0;
+ }
+ break;
+ }
+
+ case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1:
+ case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3:
+ if (val & ~KVM_REG_FEATURE_LEVEL_MASK)
+ return -EINVAL;
+
+ if (get_kernel_wa_level(reg->id) < val)
+ return -EINVAL;
+
+ return 0;
+
+ case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2:
+ if (val & ~(KVM_REG_FEATURE_LEVEL_MASK |
+ KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_ENABLED))
+ return -EINVAL;
+
+ /* The enabled bit must not be set unless the level is AVAIL. */
+ if ((val & KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_ENABLED) &&
+ (val & KVM_REG_FEATURE_LEVEL_MASK) != KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_AVAIL)
+ return -EINVAL;
+
+ /*
+ * Map all the possible incoming states to the only two we
+ * really want to deal with.
+ */
+ switch (val & KVM_REG_FEATURE_LEVEL_MASK) {
+ case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL:
+ case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_UNKNOWN:
+ wa_level = KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL;
+ break;
+ case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_AVAIL:
+ case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_REQUIRED:
+ wa_level = KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_REQUIRED;
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ /*
+ * We can deal with NOT_AVAIL on NOT_REQUIRED, but not the
+ * other way around.
+ */
+ if (get_kernel_wa_level(reg->id) < wa_level)
+ return -EINVAL;
+
+ return 0;
+ case KVM_REG_ARM_STD_BMAP:
+ case KVM_REG_ARM_STD_HYP_BMAP:
+ case KVM_REG_ARM_VENDOR_HYP_BMAP:
+ return kvm_arm_set_fw_reg_bmap(vcpu, reg->id, val);
+ default:
+ return -ENOENT;
+ }
+
+ return -EINVAL;
+}
+
+int kvm_vm_smccc_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
+{
+ switch (attr->attr) {
+ case KVM_ARM_VM_SMCCC_FILTER:
+ return 0;
+ default:
+ return -ENXIO;
+ }
+}
+
+int kvm_vm_smccc_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
+{
+ void __user *uaddr = (void __user *)attr->addr;
+
+ switch (attr->attr) {
+ case KVM_ARM_VM_SMCCC_FILTER:
+ return kvm_smccc_set_filter(kvm, uaddr);
+ default:
+ return -ENXIO;
+ }
+}
diff --git a/arch/arm64/kvm/inject_fault.c b/arch/arm64/kvm/inject_fault.c
new file mode 100644
index 0000000000..0bd93a5f21
--- /dev/null
+++ b/arch/arm64/kvm/inject_fault.c
@@ -0,0 +1,254 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Fault injection for both 32 and 64bit guests.
+ *
+ * Copyright (C) 2012,2013 - ARM Ltd
+ * Author: Marc Zyngier <marc.zyngier@arm.com>
+ *
+ * Based on arch/arm/kvm/emulate.c
+ * Copyright (C) 2012 - Virtual Open Systems and Columbia University
+ * Author: Christoffer Dall <c.dall@virtualopensystems.com>
+ */
+
+#include <linux/kvm_host.h>
+#include <asm/kvm_emulate.h>
+#include <asm/kvm_nested.h>
+#include <asm/esr.h>
+
+static void pend_sync_exception(struct kvm_vcpu *vcpu)
+{
+ /* If not nesting, EL1 is the only possible exception target */
+ if (likely(!vcpu_has_nv(vcpu))) {
+ kvm_pend_exception(vcpu, EXCEPT_AA64_EL1_SYNC);
+ return;
+ }
+
+ /*
+ * With NV, we need to pick between EL1 and EL2. Note that we
+ * never deal with a nesting exception here, hence never
+ * changing context, and the exception itself can be delayed
+ * until the next entry.
+ */
+ switch(*vcpu_cpsr(vcpu) & PSR_MODE_MASK) {
+ case PSR_MODE_EL2h:
+ case PSR_MODE_EL2t:
+ kvm_pend_exception(vcpu, EXCEPT_AA64_EL2_SYNC);
+ break;
+ case PSR_MODE_EL1h:
+ case PSR_MODE_EL1t:
+ kvm_pend_exception(vcpu, EXCEPT_AA64_EL1_SYNC);
+ break;
+ case PSR_MODE_EL0t:
+ if (vcpu_el2_tge_is_set(vcpu))
+ kvm_pend_exception(vcpu, EXCEPT_AA64_EL2_SYNC);
+ else
+ kvm_pend_exception(vcpu, EXCEPT_AA64_EL1_SYNC);
+ break;
+ default:
+ BUG();
+ }
+}
+
+static bool match_target_el(struct kvm_vcpu *vcpu, unsigned long target)
+{
+ return (vcpu_get_flag(vcpu, EXCEPT_MASK) == target);
+}
+
+static void inject_abt64(struct kvm_vcpu *vcpu, bool is_iabt, unsigned long addr)
+{
+ unsigned long cpsr = *vcpu_cpsr(vcpu);
+ bool is_aarch32 = vcpu_mode_is_32bit(vcpu);
+ u64 esr = 0;
+
+ pend_sync_exception(vcpu);
+
+ /*
+ * Build an {i,d}abort, depending on the level and the
+ * instruction set. Report an external synchronous abort.
+ */
+ if (kvm_vcpu_trap_il_is32bit(vcpu))
+ esr |= ESR_ELx_IL;
+
+ /*
+ * Here, the guest runs in AArch64 mode when in EL1. If we get
+ * an AArch32 fault, it means we managed to trap an EL0 fault.
+ */
+ if (is_aarch32 || (cpsr & PSR_MODE_MASK) == PSR_MODE_EL0t)
+ esr |= (ESR_ELx_EC_IABT_LOW << ESR_ELx_EC_SHIFT);
+ else
+ esr |= (ESR_ELx_EC_IABT_CUR << ESR_ELx_EC_SHIFT);
+
+ if (!is_iabt)
+ esr |= ESR_ELx_EC_DABT_LOW << ESR_ELx_EC_SHIFT;
+
+ esr |= ESR_ELx_FSC_EXTABT;
+
+ if (match_target_el(vcpu, unpack_vcpu_flag(EXCEPT_AA64_EL1_SYNC))) {
+ vcpu_write_sys_reg(vcpu, addr, FAR_EL1);
+ vcpu_write_sys_reg(vcpu, esr, ESR_EL1);
+ } else {
+ vcpu_write_sys_reg(vcpu, addr, FAR_EL2);
+ vcpu_write_sys_reg(vcpu, esr, ESR_EL2);
+ }
+}
+
+static void inject_undef64(struct kvm_vcpu *vcpu)
+{
+ u64 esr = (ESR_ELx_EC_UNKNOWN << ESR_ELx_EC_SHIFT);
+
+ pend_sync_exception(vcpu);
+
+ /*
+ * Build an unknown exception, depending on the instruction
+ * set.
+ */
+ if (kvm_vcpu_trap_il_is32bit(vcpu))
+ esr |= ESR_ELx_IL;
+
+ if (match_target_el(vcpu, unpack_vcpu_flag(EXCEPT_AA64_EL1_SYNC)))
+ vcpu_write_sys_reg(vcpu, esr, ESR_EL1);
+ else
+ vcpu_write_sys_reg(vcpu, esr, ESR_EL2);
+}
+
+#define DFSR_FSC_EXTABT_LPAE 0x10
+#define DFSR_FSC_EXTABT_nLPAE 0x08
+#define DFSR_LPAE BIT(9)
+#define TTBCR_EAE BIT(31)
+
+static void inject_undef32(struct kvm_vcpu *vcpu)
+{
+ kvm_pend_exception(vcpu, EXCEPT_AA32_UND);
+}
+
+/*
+ * Modelled after TakeDataAbortException() and TakePrefetchAbortException
+ * pseudocode.
+ */
+static void inject_abt32(struct kvm_vcpu *vcpu, bool is_pabt, u32 addr)
+{
+ u64 far;
+ u32 fsr;
+
+ /* Give the guest an IMPLEMENTATION DEFINED exception */
+ if (vcpu_read_sys_reg(vcpu, TCR_EL1) & TTBCR_EAE) {
+ fsr = DFSR_LPAE | DFSR_FSC_EXTABT_LPAE;
+ } else {
+ /* no need to shuffle FS[4] into DFSR[10] as its 0 */
+ fsr = DFSR_FSC_EXTABT_nLPAE;
+ }
+
+ far = vcpu_read_sys_reg(vcpu, FAR_EL1);
+
+ if (is_pabt) {
+ kvm_pend_exception(vcpu, EXCEPT_AA32_IABT);
+ far &= GENMASK(31, 0);
+ far |= (u64)addr << 32;
+ vcpu_write_sys_reg(vcpu, fsr, IFSR32_EL2);
+ } else { /* !iabt */
+ kvm_pend_exception(vcpu, EXCEPT_AA32_DABT);
+ far &= GENMASK(63, 32);
+ far |= addr;
+ vcpu_write_sys_reg(vcpu, fsr, ESR_EL1);
+ }
+
+ vcpu_write_sys_reg(vcpu, far, FAR_EL1);
+}
+
+/**
+ * kvm_inject_dabt - inject a data abort into the guest
+ * @vcpu: The VCPU to receive the data abort
+ * @addr: The address to report in the DFAR
+ *
+ * It is assumed that this code is called from the VCPU thread and that the
+ * VCPU therefore is not currently executing guest code.
+ */
+void kvm_inject_dabt(struct kvm_vcpu *vcpu, unsigned long addr)
+{
+ if (vcpu_el1_is_32bit(vcpu))
+ inject_abt32(vcpu, false, addr);
+ else
+ inject_abt64(vcpu, false, addr);
+}
+
+/**
+ * kvm_inject_pabt - inject a prefetch abort into the guest
+ * @vcpu: The VCPU to receive the prefetch abort
+ * @addr: The address to report in the DFAR
+ *
+ * It is assumed that this code is called from the VCPU thread and that the
+ * VCPU therefore is not currently executing guest code.
+ */
+void kvm_inject_pabt(struct kvm_vcpu *vcpu, unsigned long addr)
+{
+ if (vcpu_el1_is_32bit(vcpu))
+ inject_abt32(vcpu, true, addr);
+ else
+ inject_abt64(vcpu, true, addr);
+}
+
+void kvm_inject_size_fault(struct kvm_vcpu *vcpu)
+{
+ unsigned long addr, esr;
+
+ addr = kvm_vcpu_get_fault_ipa(vcpu);
+ addr |= kvm_vcpu_get_hfar(vcpu) & GENMASK(11, 0);
+
+ if (kvm_vcpu_trap_is_iabt(vcpu))
+ kvm_inject_pabt(vcpu, addr);
+ else
+ kvm_inject_dabt(vcpu, addr);
+
+ /*
+ * If AArch64 or LPAE, set FSC to 0 to indicate an Address
+ * Size Fault at level 0, as if exceeding PARange.
+ *
+ * Non-LPAE guests will only get the external abort, as there
+ * is no way to describe the ASF.
+ */
+ if (vcpu_el1_is_32bit(vcpu) &&
+ !(vcpu_read_sys_reg(vcpu, TCR_EL1) & TTBCR_EAE))
+ return;
+
+ esr = vcpu_read_sys_reg(vcpu, ESR_EL1);
+ esr &= ~GENMASK_ULL(5, 0);
+ vcpu_write_sys_reg(vcpu, esr, ESR_EL1);
+}
+
+/**
+ * kvm_inject_undefined - inject an undefined instruction into the guest
+ * @vcpu: The vCPU in which to inject the exception
+ *
+ * It is assumed that this code is called from the VCPU thread and that the
+ * VCPU therefore is not currently executing guest code.
+ */
+void kvm_inject_undefined(struct kvm_vcpu *vcpu)
+{
+ if (vcpu_el1_is_32bit(vcpu))
+ inject_undef32(vcpu);
+ else
+ inject_undef64(vcpu);
+}
+
+void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 esr)
+{
+ vcpu_set_vsesr(vcpu, esr & ESR_ELx_ISS_MASK);
+ *vcpu_hcr(vcpu) |= HCR_VSE;
+}
+
+/**
+ * kvm_inject_vabt - inject an async abort / SError into the guest
+ * @vcpu: The VCPU to receive the exception
+ *
+ * It is assumed that this code is called from the VCPU thread and that the
+ * VCPU therefore is not currently executing guest code.
+ *
+ * Systems with the RAS Extensions specify an imp-def ESR (ISV/IDS = 1) with
+ * the remaining ISS all-zeros so that this error is not interpreted as an
+ * uncategorized RAS error. Without the RAS Extensions we can't specify an ESR
+ * value, so the CPU generates an imp-def value.
+ */
+void kvm_inject_vabt(struct kvm_vcpu *vcpu)
+{
+ kvm_set_sei_esr(vcpu, ESR_ELx_ISV);
+}
diff --git a/arch/arm64/kvm/mmio.c b/arch/arm64/kvm/mmio.c
new file mode 100644
index 0000000000..3dd38a151d
--- /dev/null
+++ b/arch/arm64/kvm/mmio.c
@@ -0,0 +1,196 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2012 - Virtual Open Systems and Columbia University
+ * Author: Christoffer Dall <c.dall@virtualopensystems.com>
+ */
+
+#include <linux/kvm_host.h>
+#include <asm/kvm_emulate.h>
+#include <trace/events/kvm.h>
+
+#include "trace.h"
+
+void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data)
+{
+ void *datap = NULL;
+ union {
+ u8 byte;
+ u16 hword;
+ u32 word;
+ u64 dword;
+ } tmp;
+
+ switch (len) {
+ case 1:
+ tmp.byte = data;
+ datap = &tmp.byte;
+ break;
+ case 2:
+ tmp.hword = data;
+ datap = &tmp.hword;
+ break;
+ case 4:
+ tmp.word = data;
+ datap = &tmp.word;
+ break;
+ case 8:
+ tmp.dword = data;
+ datap = &tmp.dword;
+ break;
+ }
+
+ memcpy(buf, datap, len);
+}
+
+unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len)
+{
+ unsigned long data = 0;
+ union {
+ u16 hword;
+ u32 word;
+ u64 dword;
+ } tmp;
+
+ switch (len) {
+ case 1:
+ data = *(u8 *)buf;
+ break;
+ case 2:
+ memcpy(&tmp.hword, buf, len);
+ data = tmp.hword;
+ break;
+ case 4:
+ memcpy(&tmp.word, buf, len);
+ data = tmp.word;
+ break;
+ case 8:
+ memcpy(&tmp.dword, buf, len);
+ data = tmp.dword;
+ break;
+ }
+
+ return data;
+}
+
+/**
+ * kvm_handle_mmio_return -- Handle MMIO loads after user space emulation
+ * or in-kernel IO emulation
+ *
+ * @vcpu: The VCPU pointer
+ */
+int kvm_handle_mmio_return(struct kvm_vcpu *vcpu)
+{
+ unsigned long data;
+ unsigned int len;
+ int mask;
+
+ /* Detect an already handled MMIO return */
+ if (unlikely(!vcpu->mmio_needed))
+ return 0;
+
+ vcpu->mmio_needed = 0;
+
+ if (!kvm_vcpu_dabt_iswrite(vcpu)) {
+ struct kvm_run *run = vcpu->run;
+
+ len = kvm_vcpu_dabt_get_as(vcpu);
+ data = kvm_mmio_read_buf(run->mmio.data, len);
+
+ if (kvm_vcpu_dabt_issext(vcpu) &&
+ len < sizeof(unsigned long)) {
+ mask = 1U << ((len * 8) - 1);
+ data = (data ^ mask) - mask;
+ }
+
+ if (!kvm_vcpu_dabt_issf(vcpu))
+ data = data & 0xffffffff;
+
+ trace_kvm_mmio(KVM_TRACE_MMIO_READ, len, run->mmio.phys_addr,
+ &data);
+ data = vcpu_data_host_to_guest(vcpu, data, len);
+ vcpu_set_reg(vcpu, kvm_vcpu_dabt_get_rd(vcpu), data);
+ }
+
+ /*
+ * The MMIO instruction is emulated and should not be re-executed
+ * in the guest.
+ */
+ kvm_incr_pc(vcpu);
+
+ return 0;
+}
+
+int io_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
+{
+ struct kvm_run *run = vcpu->run;
+ unsigned long data;
+ unsigned long rt;
+ int ret;
+ bool is_write;
+ int len;
+ u8 data_buf[8];
+
+ /*
+ * No valid syndrome? Ask userspace for help if it has
+ * volunteered to do so, and bail out otherwise.
+ */
+ if (!kvm_vcpu_dabt_isvalid(vcpu)) {
+ if (test_bit(KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER,
+ &vcpu->kvm->arch.flags)) {
+ run->exit_reason = KVM_EXIT_ARM_NISV;
+ run->arm_nisv.esr_iss = kvm_vcpu_dabt_iss_nisv_sanitized(vcpu);
+ run->arm_nisv.fault_ipa = fault_ipa;
+ return 0;
+ }
+
+ kvm_pr_unimpl("Data abort outside memslots with no valid syndrome info\n");
+ return -ENOSYS;
+ }
+
+ /*
+ * Prepare MMIO operation. First decode the syndrome data we get
+ * from the CPU. Then try if some in-kernel emulation feels
+ * responsible, otherwise let user space do its magic.
+ */
+ is_write = kvm_vcpu_dabt_iswrite(vcpu);
+ len = kvm_vcpu_dabt_get_as(vcpu);
+ rt = kvm_vcpu_dabt_get_rd(vcpu);
+
+ if (is_write) {
+ data = vcpu_data_guest_to_host(vcpu, vcpu_get_reg(vcpu, rt),
+ len);
+
+ trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, len, fault_ipa, &data);
+ kvm_mmio_write_buf(data_buf, len, data);
+
+ ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, fault_ipa, len,
+ data_buf);
+ } else {
+ trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, len,
+ fault_ipa, NULL);
+
+ ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, fault_ipa, len,
+ data_buf);
+ }
+
+ /* Now prepare kvm_run for the potential return to userland. */
+ run->mmio.is_write = is_write;
+ run->mmio.phys_addr = fault_ipa;
+ run->mmio.len = len;
+ vcpu->mmio_needed = 1;
+
+ if (!ret) {
+ /* We handled the access successfully in the kernel. */
+ if (!is_write)
+ memcpy(run->mmio.data, data_buf, len);
+ vcpu->stat.mmio_exit_kernel++;
+ kvm_handle_mmio_return(vcpu);
+ return 1;
+ }
+
+ if (is_write)
+ memcpy(run->mmio.data, data_buf, len);
+ vcpu->stat.mmio_exit_user++;
+ run->exit_reason = KVM_EXIT_MMIO;
+ return 0;
+}
diff --git a/arch/arm64/kvm/mmu.c b/arch/arm64/kvm/mmu.c
new file mode 100644
index 0000000000..482280fe22
--- /dev/null
+++ b/arch/arm64/kvm/mmu.c
@@ -0,0 +1,2158 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2012 - Virtual Open Systems and Columbia University
+ * Author: Christoffer Dall <c.dall@virtualopensystems.com>
+ */
+
+#include <linux/mman.h>
+#include <linux/kvm_host.h>
+#include <linux/io.h>
+#include <linux/hugetlb.h>
+#include <linux/sched/signal.h>
+#include <trace/events/kvm.h>
+#include <asm/pgalloc.h>
+#include <asm/cacheflush.h>
+#include <asm/kvm_arm.h>
+#include <asm/kvm_mmu.h>
+#include <asm/kvm_pgtable.h>
+#include <asm/kvm_ras.h>
+#include <asm/kvm_asm.h>
+#include <asm/kvm_emulate.h>
+#include <asm/virt.h>
+
+#include "trace.h"
+
+static struct kvm_pgtable *hyp_pgtable;
+static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
+
+static unsigned long __ro_after_init hyp_idmap_start;
+static unsigned long __ro_after_init hyp_idmap_end;
+static phys_addr_t __ro_after_init hyp_idmap_vector;
+
+static unsigned long __ro_after_init io_map_base;
+
+static phys_addr_t __stage2_range_addr_end(phys_addr_t addr, phys_addr_t end,
+ phys_addr_t size)
+{
+ phys_addr_t boundary = ALIGN_DOWN(addr + size, size);
+
+ return (boundary - 1 < end - 1) ? boundary : end;
+}
+
+static phys_addr_t stage2_range_addr_end(phys_addr_t addr, phys_addr_t end)
+{
+ phys_addr_t size = kvm_granule_size(KVM_PGTABLE_MIN_BLOCK_LEVEL);
+
+ return __stage2_range_addr_end(addr, end, size);
+}
+
+/*
+ * Release kvm_mmu_lock periodically if the memory region is large. Otherwise,
+ * we may see kernel panics with CONFIG_DETECT_HUNG_TASK,
+ * CONFIG_LOCKUP_DETECTOR, CONFIG_LOCKDEP. Additionally, holding the lock too
+ * long will also starve other vCPUs. We have to also make sure that the page
+ * tables are not freed while we released the lock.
+ */
+static int stage2_apply_range(struct kvm_s2_mmu *mmu, phys_addr_t addr,
+ phys_addr_t end,
+ int (*fn)(struct kvm_pgtable *, u64, u64),
+ bool resched)
+{
+ struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
+ int ret;
+ u64 next;
+
+ do {
+ struct kvm_pgtable *pgt = mmu->pgt;
+ if (!pgt)
+ return -EINVAL;
+
+ next = stage2_range_addr_end(addr, end);
+ ret = fn(pgt, addr, next - addr);
+ if (ret)
+ break;
+
+ if (resched && next != end)
+ cond_resched_rwlock_write(&kvm->mmu_lock);
+ } while (addr = next, addr != end);
+
+ return ret;
+}
+
+#define stage2_apply_range_resched(mmu, addr, end, fn) \
+ stage2_apply_range(mmu, addr, end, fn, true)
+
+/*
+ * Get the maximum number of page-tables pages needed to split a range
+ * of blocks into PAGE_SIZE PTEs. It assumes the range is already
+ * mapped at level 2, or at level 1 if allowed.
+ */
+static int kvm_mmu_split_nr_page_tables(u64 range)
+{
+ int n = 0;
+
+ if (KVM_PGTABLE_MIN_BLOCK_LEVEL < 2)
+ n += DIV_ROUND_UP(range, PUD_SIZE);
+ n += DIV_ROUND_UP(range, PMD_SIZE);
+ return n;
+}
+
+static bool need_split_memcache_topup_or_resched(struct kvm *kvm)
+{
+ struct kvm_mmu_memory_cache *cache;
+ u64 chunk_size, min;
+
+ if (need_resched() || rwlock_needbreak(&kvm->mmu_lock))
+ return true;
+
+ chunk_size = kvm->arch.mmu.split_page_chunk_size;
+ min = kvm_mmu_split_nr_page_tables(chunk_size);
+ cache = &kvm->arch.mmu.split_page_cache;
+ return kvm_mmu_memory_cache_nr_free_objects(cache) < min;
+}
+
+static int kvm_mmu_split_huge_pages(struct kvm *kvm, phys_addr_t addr,
+ phys_addr_t end)
+{
+ struct kvm_mmu_memory_cache *cache;
+ struct kvm_pgtable *pgt;
+ int ret, cache_capacity;
+ u64 next, chunk_size;
+
+ lockdep_assert_held_write(&kvm->mmu_lock);
+
+ chunk_size = kvm->arch.mmu.split_page_chunk_size;
+ cache_capacity = kvm_mmu_split_nr_page_tables(chunk_size);
+
+ if (chunk_size == 0)
+ return 0;
+
+ cache = &kvm->arch.mmu.split_page_cache;
+
+ do {
+ if (need_split_memcache_topup_or_resched(kvm)) {
+ write_unlock(&kvm->mmu_lock);
+ cond_resched();
+ /* Eager page splitting is best-effort. */
+ ret = __kvm_mmu_topup_memory_cache(cache,
+ cache_capacity,
+ cache_capacity);
+ write_lock(&kvm->mmu_lock);
+ if (ret)
+ break;
+ }
+
+ pgt = kvm->arch.mmu.pgt;
+ if (!pgt)
+ return -EINVAL;
+
+ next = __stage2_range_addr_end(addr, end, chunk_size);
+ ret = kvm_pgtable_stage2_split(pgt, addr, next - addr, cache);
+ if (ret)
+ break;
+ } while (addr = next, addr != end);
+
+ return ret;
+}
+
+static bool memslot_is_logging(struct kvm_memory_slot *memslot)
+{
+ return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
+}
+
+/**
+ * kvm_arch_flush_remote_tlbs() - flush all VM TLB entries for v7/8
+ * @kvm: pointer to kvm structure.
+ *
+ * Interface to HYP function to flush all VM TLB entries
+ */
+int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
+{
+ kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu);
+ return 0;
+}
+
+int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm,
+ gfn_t gfn, u64 nr_pages)
+{
+ kvm_tlb_flush_vmid_range(&kvm->arch.mmu,
+ gfn << PAGE_SHIFT, nr_pages << PAGE_SHIFT);
+ return 0;
+}
+
+static bool kvm_is_device_pfn(unsigned long pfn)
+{
+ return !pfn_is_map_memory(pfn);
+}
+
+static void *stage2_memcache_zalloc_page(void *arg)
+{
+ struct kvm_mmu_memory_cache *mc = arg;
+ void *virt;
+
+ /* Allocated with __GFP_ZERO, so no need to zero */
+ virt = kvm_mmu_memory_cache_alloc(mc);
+ if (virt)
+ kvm_account_pgtable_pages(virt, 1);
+ return virt;
+}
+
+static void *kvm_host_zalloc_pages_exact(size_t size)
+{
+ return alloc_pages_exact(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
+}
+
+static void *kvm_s2_zalloc_pages_exact(size_t size)
+{
+ void *virt = kvm_host_zalloc_pages_exact(size);
+
+ if (virt)
+ kvm_account_pgtable_pages(virt, (size >> PAGE_SHIFT));
+ return virt;
+}
+
+static void kvm_s2_free_pages_exact(void *virt, size_t size)
+{
+ kvm_account_pgtable_pages(virt, -(size >> PAGE_SHIFT));
+ free_pages_exact(virt, size);
+}
+
+static struct kvm_pgtable_mm_ops kvm_s2_mm_ops;
+
+static void stage2_free_unlinked_table_rcu_cb(struct rcu_head *head)
+{
+ struct page *page = container_of(head, struct page, rcu_head);
+ void *pgtable = page_to_virt(page);
+ u32 level = page_private(page);
+
+ kvm_pgtable_stage2_free_unlinked(&kvm_s2_mm_ops, pgtable, level);
+}
+
+static void stage2_free_unlinked_table(void *addr, u32 level)
+{
+ struct page *page = virt_to_page(addr);
+
+ set_page_private(page, (unsigned long)level);
+ call_rcu(&page->rcu_head, stage2_free_unlinked_table_rcu_cb);
+}
+
+static void kvm_host_get_page(void *addr)
+{
+ get_page(virt_to_page(addr));
+}
+
+static void kvm_host_put_page(void *addr)
+{
+ put_page(virt_to_page(addr));
+}
+
+static void kvm_s2_put_page(void *addr)
+{
+ struct page *p = virt_to_page(addr);
+ /* Dropping last refcount, the page will be freed */
+ if (page_count(p) == 1)
+ kvm_account_pgtable_pages(addr, -1);
+ put_page(p);
+}
+
+static int kvm_host_page_count(void *addr)
+{
+ return page_count(virt_to_page(addr));
+}
+
+static phys_addr_t kvm_host_pa(void *addr)
+{
+ return __pa(addr);
+}
+
+static void *kvm_host_va(phys_addr_t phys)
+{
+ return __va(phys);
+}
+
+static void clean_dcache_guest_page(void *va, size_t size)
+{
+ __clean_dcache_guest_page(va, size);
+}
+
+static void invalidate_icache_guest_page(void *va, size_t size)
+{
+ __invalidate_icache_guest_page(va, size);
+}
+
+/*
+ * Unmapping vs dcache management:
+ *
+ * If a guest maps certain memory pages as uncached, all writes will
+ * bypass the data cache and go directly to RAM. However, the CPUs
+ * can still speculate reads (not writes) and fill cache lines with
+ * data.
+ *
+ * Those cache lines will be *clean* cache lines though, so a
+ * clean+invalidate operation is equivalent to an invalidate
+ * operation, because no cache lines are marked dirty.
+ *
+ * Those clean cache lines could be filled prior to an uncached write
+ * by the guest, and the cache coherent IO subsystem would therefore
+ * end up writing old data to disk.
+ *
+ * This is why right after unmapping a page/section and invalidating
+ * the corresponding TLBs, we flush to make sure the IO subsystem will
+ * never hit in the cache.
+ *
+ * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
+ * we then fully enforce cacheability of RAM, no matter what the guest
+ * does.
+ */
+/**
+ * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
+ * @mmu: The KVM stage-2 MMU pointer
+ * @start: The intermediate physical base address of the range to unmap
+ * @size: The size of the area to unmap
+ * @may_block: Whether or not we are permitted to block
+ *
+ * Clear a range of stage-2 mappings, lowering the various ref-counts. Must
+ * be called while holding mmu_lock (unless for freeing the stage2 pgd before
+ * destroying the VM), otherwise another faulting VCPU may come in and mess
+ * with things behind our backs.
+ */
+static void __unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size,
+ bool may_block)
+{
+ struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
+ phys_addr_t end = start + size;
+
+ lockdep_assert_held_write(&kvm->mmu_lock);
+ WARN_ON(size & ~PAGE_MASK);
+ WARN_ON(stage2_apply_range(mmu, start, end, kvm_pgtable_stage2_unmap,
+ may_block));
+}
+
+static void unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size)
+{
+ __unmap_stage2_range(mmu, start, size, true);
+}
+
+static void stage2_flush_memslot(struct kvm *kvm,
+ struct kvm_memory_slot *memslot)
+{
+ phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
+ phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
+
+ stage2_apply_range_resched(&kvm->arch.mmu, addr, end, kvm_pgtable_stage2_flush);
+}
+
+/**
+ * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
+ * @kvm: The struct kvm pointer
+ *
+ * Go through the stage 2 page tables and invalidate any cache lines
+ * backing memory already mapped to the VM.
+ */
+static void stage2_flush_vm(struct kvm *kvm)
+{
+ struct kvm_memslots *slots;
+ struct kvm_memory_slot *memslot;
+ int idx, bkt;
+
+ idx = srcu_read_lock(&kvm->srcu);
+ write_lock(&kvm->mmu_lock);
+
+ slots = kvm_memslots(kvm);
+ kvm_for_each_memslot(memslot, bkt, slots)
+ stage2_flush_memslot(kvm, memslot);
+
+ write_unlock(&kvm->mmu_lock);
+ srcu_read_unlock(&kvm->srcu, idx);
+}
+
+/**
+ * free_hyp_pgds - free Hyp-mode page tables
+ */
+void __init free_hyp_pgds(void)
+{
+ mutex_lock(&kvm_hyp_pgd_mutex);
+ if (hyp_pgtable) {
+ kvm_pgtable_hyp_destroy(hyp_pgtable);
+ kfree(hyp_pgtable);
+ hyp_pgtable = NULL;
+ }
+ mutex_unlock(&kvm_hyp_pgd_mutex);
+}
+
+static bool kvm_host_owns_hyp_mappings(void)
+{
+ if (is_kernel_in_hyp_mode())
+ return false;
+
+ if (static_branch_likely(&kvm_protected_mode_initialized))
+ return false;
+
+ /*
+ * This can happen at boot time when __create_hyp_mappings() is called
+ * after the hyp protection has been enabled, but the static key has
+ * not been flipped yet.
+ */
+ if (!hyp_pgtable && is_protected_kvm_enabled())
+ return false;
+
+ WARN_ON(!hyp_pgtable);
+
+ return true;
+}
+
+int __create_hyp_mappings(unsigned long start, unsigned long size,
+ unsigned long phys, enum kvm_pgtable_prot prot)
+{
+ int err;
+
+ if (WARN_ON(!kvm_host_owns_hyp_mappings()))
+ return -EINVAL;
+
+ mutex_lock(&kvm_hyp_pgd_mutex);
+ err = kvm_pgtable_hyp_map(hyp_pgtable, start, size, phys, prot);
+ mutex_unlock(&kvm_hyp_pgd_mutex);
+
+ return err;
+}
+
+static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
+{
+ if (!is_vmalloc_addr(kaddr)) {
+ BUG_ON(!virt_addr_valid(kaddr));
+ return __pa(kaddr);
+ } else {
+ return page_to_phys(vmalloc_to_page(kaddr)) +
+ offset_in_page(kaddr);
+ }
+}
+
+struct hyp_shared_pfn {
+ u64 pfn;
+ int count;
+ struct rb_node node;
+};
+
+static DEFINE_MUTEX(hyp_shared_pfns_lock);
+static struct rb_root hyp_shared_pfns = RB_ROOT;
+
+static struct hyp_shared_pfn *find_shared_pfn(u64 pfn, struct rb_node ***node,
+ struct rb_node **parent)
+{
+ struct hyp_shared_pfn *this;
+
+ *node = &hyp_shared_pfns.rb_node;
+ *parent = NULL;
+ while (**node) {
+ this = container_of(**node, struct hyp_shared_pfn, node);
+ *parent = **node;
+ if (this->pfn < pfn)
+ *node = &((**node)->rb_left);
+ else if (this->pfn > pfn)
+ *node = &((**node)->rb_right);
+ else
+ return this;
+ }
+
+ return NULL;
+}
+
+static int share_pfn_hyp(u64 pfn)
+{
+ struct rb_node **node, *parent;
+ struct hyp_shared_pfn *this;
+ int ret = 0;
+
+ mutex_lock(&hyp_shared_pfns_lock);
+ this = find_shared_pfn(pfn, &node, &parent);
+ if (this) {
+ this->count++;
+ goto unlock;
+ }
+
+ this = kzalloc(sizeof(*this), GFP_KERNEL);
+ if (!this) {
+ ret = -ENOMEM;
+ goto unlock;
+ }
+
+ this->pfn = pfn;
+ this->count = 1;
+ rb_link_node(&this->node, parent, node);
+ rb_insert_color(&this->node, &hyp_shared_pfns);
+ ret = kvm_call_hyp_nvhe(__pkvm_host_share_hyp, pfn, 1);
+unlock:
+ mutex_unlock(&hyp_shared_pfns_lock);
+
+ return ret;
+}
+
+static int unshare_pfn_hyp(u64 pfn)
+{
+ struct rb_node **node, *parent;
+ struct hyp_shared_pfn *this;
+ int ret = 0;
+
+ mutex_lock(&hyp_shared_pfns_lock);
+ this = find_shared_pfn(pfn, &node, &parent);
+ if (WARN_ON(!this)) {
+ ret = -ENOENT;
+ goto unlock;
+ }
+
+ this->count--;
+ if (this->count)
+ goto unlock;
+
+ rb_erase(&this->node, &hyp_shared_pfns);
+ kfree(this);
+ ret = kvm_call_hyp_nvhe(__pkvm_host_unshare_hyp, pfn, 1);
+unlock:
+ mutex_unlock(&hyp_shared_pfns_lock);
+
+ return ret;
+}
+
+int kvm_share_hyp(void *from, void *to)
+{
+ phys_addr_t start, end, cur;
+ u64 pfn;
+ int ret;
+
+ if (is_kernel_in_hyp_mode())
+ return 0;
+
+ /*
+ * The share hcall maps things in the 'fixed-offset' region of the hyp
+ * VA space, so we can only share physically contiguous data-structures
+ * for now.
+ */
+ if (is_vmalloc_or_module_addr(from) || is_vmalloc_or_module_addr(to))
+ return -EINVAL;
+
+ if (kvm_host_owns_hyp_mappings())
+ return create_hyp_mappings(from, to, PAGE_HYP);
+
+ start = ALIGN_DOWN(__pa(from), PAGE_SIZE);
+ end = PAGE_ALIGN(__pa(to));
+ for (cur = start; cur < end; cur += PAGE_SIZE) {
+ pfn = __phys_to_pfn(cur);
+ ret = share_pfn_hyp(pfn);
+ if (ret)
+ return ret;
+ }
+
+ return 0;
+}
+
+void kvm_unshare_hyp(void *from, void *to)
+{
+ phys_addr_t start, end, cur;
+ u64 pfn;
+
+ if (is_kernel_in_hyp_mode() || kvm_host_owns_hyp_mappings() || !from)
+ return;
+
+ start = ALIGN_DOWN(__pa(from), PAGE_SIZE);
+ end = PAGE_ALIGN(__pa(to));
+ for (cur = start; cur < end; cur += PAGE_SIZE) {
+ pfn = __phys_to_pfn(cur);
+ WARN_ON(unshare_pfn_hyp(pfn));
+ }
+}
+
+/**
+ * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
+ * @from: The virtual kernel start address of the range
+ * @to: The virtual kernel end address of the range (exclusive)
+ * @prot: The protection to be applied to this range
+ *
+ * The same virtual address as the kernel virtual address is also used
+ * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
+ * physical pages.
+ */
+int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot)
+{
+ phys_addr_t phys_addr;
+ unsigned long virt_addr;
+ unsigned long start = kern_hyp_va((unsigned long)from);
+ unsigned long end = kern_hyp_va((unsigned long)to);
+
+ if (is_kernel_in_hyp_mode())
+ return 0;
+
+ if (!kvm_host_owns_hyp_mappings())
+ return -EPERM;
+
+ start = start & PAGE_MASK;
+ end = PAGE_ALIGN(end);
+
+ for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
+ int err;
+
+ phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
+ err = __create_hyp_mappings(virt_addr, PAGE_SIZE, phys_addr,
+ prot);
+ if (err)
+ return err;
+ }
+
+ return 0;
+}
+
+static int __hyp_alloc_private_va_range(unsigned long base)
+{
+ lockdep_assert_held(&kvm_hyp_pgd_mutex);
+
+ if (!PAGE_ALIGNED(base))
+ return -EINVAL;
+
+ /*
+ * Verify that BIT(VA_BITS - 1) hasn't been flipped by
+ * allocating the new area, as it would indicate we've
+ * overflowed the idmap/IO address range.
+ */
+ if ((base ^ io_map_base) & BIT(VA_BITS - 1))
+ return -ENOMEM;
+
+ io_map_base = base;
+
+ return 0;
+}
+
+/**
+ * hyp_alloc_private_va_range - Allocates a private VA range.
+ * @size: The size of the VA range to reserve.
+ * @haddr: The hypervisor virtual start address of the allocation.
+ *
+ * The private virtual address (VA) range is allocated below io_map_base
+ * and aligned based on the order of @size.
+ *
+ * Return: 0 on success or negative error code on failure.
+ */
+int hyp_alloc_private_va_range(size_t size, unsigned long *haddr)
+{
+ unsigned long base;
+ int ret = 0;
+
+ mutex_lock(&kvm_hyp_pgd_mutex);
+
+ /*
+ * This assumes that we have enough space below the idmap
+ * page to allocate our VAs. If not, the check in
+ * __hyp_alloc_private_va_range() will kick. A potential
+ * alternative would be to detect that overflow and switch
+ * to an allocation above the idmap.
+ *
+ * The allocated size is always a multiple of PAGE_SIZE.
+ */
+ size = PAGE_ALIGN(size);
+ base = io_map_base - size;
+ ret = __hyp_alloc_private_va_range(base);
+
+ mutex_unlock(&kvm_hyp_pgd_mutex);
+
+ if (!ret)
+ *haddr = base;
+
+ return ret;
+}
+
+static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
+ unsigned long *haddr,
+ enum kvm_pgtable_prot prot)
+{
+ unsigned long addr;
+ int ret = 0;
+
+ if (!kvm_host_owns_hyp_mappings()) {
+ addr = kvm_call_hyp_nvhe(__pkvm_create_private_mapping,
+ phys_addr, size, prot);
+ if (IS_ERR_VALUE(addr))
+ return addr;
+ *haddr = addr;
+
+ return 0;
+ }
+
+ size = PAGE_ALIGN(size + offset_in_page(phys_addr));
+ ret = hyp_alloc_private_va_range(size, &addr);
+ if (ret)
+ return ret;
+
+ ret = __create_hyp_mappings(addr, size, phys_addr, prot);
+ if (ret)
+ return ret;
+
+ *haddr = addr + offset_in_page(phys_addr);
+ return ret;
+}
+
+int create_hyp_stack(phys_addr_t phys_addr, unsigned long *haddr)
+{
+ unsigned long base;
+ size_t size;
+ int ret;
+
+ mutex_lock(&kvm_hyp_pgd_mutex);
+ /*
+ * Efficient stack verification using the PAGE_SHIFT bit implies
+ * an alignment of our allocation on the order of the size.
+ */
+ size = PAGE_SIZE * 2;
+ base = ALIGN_DOWN(io_map_base - size, size);
+
+ ret = __hyp_alloc_private_va_range(base);
+
+ mutex_unlock(&kvm_hyp_pgd_mutex);
+
+ if (ret) {
+ kvm_err("Cannot allocate hyp stack guard page\n");
+ return ret;
+ }
+
+ /*
+ * Since the stack grows downwards, map the stack to the page
+ * at the higher address and leave the lower guard page
+ * unbacked.
+ *
+ * Any valid stack address now has the PAGE_SHIFT bit as 1
+ * and addresses corresponding to the guard page have the
+ * PAGE_SHIFT bit as 0 - this is used for overflow detection.
+ */
+ ret = __create_hyp_mappings(base + PAGE_SIZE, PAGE_SIZE, phys_addr,
+ PAGE_HYP);
+ if (ret)
+ kvm_err("Cannot map hyp stack\n");
+
+ *haddr = base + size;
+
+ return ret;
+}
+
+/**
+ * create_hyp_io_mappings - Map IO into both kernel and HYP
+ * @phys_addr: The physical start address which gets mapped
+ * @size: Size of the region being mapped
+ * @kaddr: Kernel VA for this mapping
+ * @haddr: HYP VA for this mapping
+ */
+int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
+ void __iomem **kaddr,
+ void __iomem **haddr)
+{
+ unsigned long addr;
+ int ret;
+
+ if (is_protected_kvm_enabled())
+ return -EPERM;
+
+ *kaddr = ioremap(phys_addr, size);
+ if (!*kaddr)
+ return -ENOMEM;
+
+ if (is_kernel_in_hyp_mode()) {
+ *haddr = *kaddr;
+ return 0;
+ }
+
+ ret = __create_hyp_private_mapping(phys_addr, size,
+ &addr, PAGE_HYP_DEVICE);
+ if (ret) {
+ iounmap(*kaddr);
+ *kaddr = NULL;
+ *haddr = NULL;
+ return ret;
+ }
+
+ *haddr = (void __iomem *)addr;
+ return 0;
+}
+
+/**
+ * create_hyp_exec_mappings - Map an executable range into HYP
+ * @phys_addr: The physical start address which gets mapped
+ * @size: Size of the region being mapped
+ * @haddr: HYP VA for this mapping
+ */
+int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
+ void **haddr)
+{
+ unsigned long addr;
+ int ret;
+
+ BUG_ON(is_kernel_in_hyp_mode());
+
+ ret = __create_hyp_private_mapping(phys_addr, size,
+ &addr, PAGE_HYP_EXEC);
+ if (ret) {
+ *haddr = NULL;
+ return ret;
+ }
+
+ *haddr = (void *)addr;
+ return 0;
+}
+
+static struct kvm_pgtable_mm_ops kvm_user_mm_ops = {
+ /* We shouldn't need any other callback to walk the PT */
+ .phys_to_virt = kvm_host_va,
+};
+
+static int get_user_mapping_size(struct kvm *kvm, u64 addr)
+{
+ struct kvm_pgtable pgt = {
+ .pgd = (kvm_pteref_t)kvm->mm->pgd,
+ .ia_bits = vabits_actual,
+ .start_level = (KVM_PGTABLE_MAX_LEVELS -
+ CONFIG_PGTABLE_LEVELS),
+ .mm_ops = &kvm_user_mm_ops,
+ };
+ unsigned long flags;
+ kvm_pte_t pte = 0; /* Keep GCC quiet... */
+ u32 level = ~0;
+ int ret;
+
+ /*
+ * Disable IRQs so that we hazard against a concurrent
+ * teardown of the userspace page tables (which relies on
+ * IPI-ing threads).
+ */
+ local_irq_save(flags);
+ ret = kvm_pgtable_get_leaf(&pgt, addr, &pte, &level);
+ local_irq_restore(flags);
+
+ if (ret)
+ return ret;
+
+ /*
+ * Not seeing an error, but not updating level? Something went
+ * deeply wrong...
+ */
+ if (WARN_ON(level >= KVM_PGTABLE_MAX_LEVELS))
+ return -EFAULT;
+
+ /* Oops, the userspace PTs are gone... Replay the fault */
+ if (!kvm_pte_valid(pte))
+ return -EAGAIN;
+
+ return BIT(ARM64_HW_PGTABLE_LEVEL_SHIFT(level));
+}
+
+static struct kvm_pgtable_mm_ops kvm_s2_mm_ops = {
+ .zalloc_page = stage2_memcache_zalloc_page,
+ .zalloc_pages_exact = kvm_s2_zalloc_pages_exact,
+ .free_pages_exact = kvm_s2_free_pages_exact,
+ .free_unlinked_table = stage2_free_unlinked_table,
+ .get_page = kvm_host_get_page,
+ .put_page = kvm_s2_put_page,
+ .page_count = kvm_host_page_count,
+ .phys_to_virt = kvm_host_va,
+ .virt_to_phys = kvm_host_pa,
+ .dcache_clean_inval_poc = clean_dcache_guest_page,
+ .icache_inval_pou = invalidate_icache_guest_page,
+};
+
+/**
+ * kvm_init_stage2_mmu - Initialise a S2 MMU structure
+ * @kvm: The pointer to the KVM structure
+ * @mmu: The pointer to the s2 MMU structure
+ * @type: The machine type of the virtual machine
+ *
+ * Allocates only the stage-2 HW PGD level table(s).
+ * Note we don't need locking here as this is only called when the VM is
+ * created, which can only be done once.
+ */
+int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu, unsigned long type)
+{
+ u32 kvm_ipa_limit = get_kvm_ipa_limit();
+ int cpu, err;
+ struct kvm_pgtable *pgt;
+ u64 mmfr0, mmfr1;
+ u32 phys_shift;
+
+ if (type & ~KVM_VM_TYPE_ARM_IPA_SIZE_MASK)
+ return -EINVAL;
+
+ phys_shift = KVM_VM_TYPE_ARM_IPA_SIZE(type);
+ if (is_protected_kvm_enabled()) {
+ phys_shift = kvm_ipa_limit;
+ } else if (phys_shift) {
+ if (phys_shift > kvm_ipa_limit ||
+ phys_shift < ARM64_MIN_PARANGE_BITS)
+ return -EINVAL;
+ } else {
+ phys_shift = KVM_PHYS_SHIFT;
+ if (phys_shift > kvm_ipa_limit) {
+ pr_warn_once("%s using unsupported default IPA limit, upgrade your VMM\n",
+ current->comm);
+ return -EINVAL;
+ }
+ }
+
+ mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
+ mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
+ kvm->arch.vtcr = kvm_get_vtcr(mmfr0, mmfr1, phys_shift);
+
+ if (mmu->pgt != NULL) {
+ kvm_err("kvm_arch already initialized?\n");
+ return -EINVAL;
+ }
+
+ pgt = kzalloc(sizeof(*pgt), GFP_KERNEL_ACCOUNT);
+ if (!pgt)
+ return -ENOMEM;
+
+ mmu->arch = &kvm->arch;
+ err = kvm_pgtable_stage2_init(pgt, mmu, &kvm_s2_mm_ops);
+ if (err)
+ goto out_free_pgtable;
+
+ mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran));
+ if (!mmu->last_vcpu_ran) {
+ err = -ENOMEM;
+ goto out_destroy_pgtable;
+ }
+
+ for_each_possible_cpu(cpu)
+ *per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1;
+
+ /* The eager page splitting is disabled by default */
+ mmu->split_page_chunk_size = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT;
+ mmu->split_page_cache.gfp_zero = __GFP_ZERO;
+
+ mmu->pgt = pgt;
+ mmu->pgd_phys = __pa(pgt->pgd);
+ return 0;
+
+out_destroy_pgtable:
+ kvm_pgtable_stage2_destroy(pgt);
+out_free_pgtable:
+ kfree(pgt);
+ return err;
+}
+
+void kvm_uninit_stage2_mmu(struct kvm *kvm)
+{
+ kvm_free_stage2_pgd(&kvm->arch.mmu);
+ kvm_mmu_free_memory_cache(&kvm->arch.mmu.split_page_cache);
+}
+
+static void stage2_unmap_memslot(struct kvm *kvm,
+ struct kvm_memory_slot *memslot)
+{
+ hva_t hva = memslot->userspace_addr;
+ phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
+ phys_addr_t size = PAGE_SIZE * memslot->npages;
+ hva_t reg_end = hva + size;
+
+ /*
+ * A memory region could potentially cover multiple VMAs, and any holes
+ * between them, so iterate over all of them to find out if we should
+ * unmap any of them.
+ *
+ * +--------------------------------------------+
+ * +---------------+----------------+ +----------------+
+ * | : VMA 1 | VMA 2 | | VMA 3 : |
+ * +---------------+----------------+ +----------------+
+ * | memory region |
+ * +--------------------------------------------+
+ */
+ do {
+ struct vm_area_struct *vma;
+ hva_t vm_start, vm_end;
+
+ vma = find_vma_intersection(current->mm, hva, reg_end);
+ if (!vma)
+ break;
+
+ /*
+ * Take the intersection of this VMA with the memory region
+ */
+ vm_start = max(hva, vma->vm_start);
+ vm_end = min(reg_end, vma->vm_end);
+
+ if (!(vma->vm_flags & VM_PFNMAP)) {
+ gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
+ unmap_stage2_range(&kvm->arch.mmu, gpa, vm_end - vm_start);
+ }
+ hva = vm_end;
+ } while (hva < reg_end);
+}
+
+/**
+ * stage2_unmap_vm - Unmap Stage-2 RAM mappings
+ * @kvm: The struct kvm pointer
+ *
+ * Go through the memregions and unmap any regular RAM
+ * backing memory already mapped to the VM.
+ */
+void stage2_unmap_vm(struct kvm *kvm)
+{
+ struct kvm_memslots *slots;
+ struct kvm_memory_slot *memslot;
+ int idx, bkt;
+
+ idx = srcu_read_lock(&kvm->srcu);
+ mmap_read_lock(current->mm);
+ write_lock(&kvm->mmu_lock);
+
+ slots = kvm_memslots(kvm);
+ kvm_for_each_memslot(memslot, bkt, slots)
+ stage2_unmap_memslot(kvm, memslot);
+
+ write_unlock(&kvm->mmu_lock);
+ mmap_read_unlock(current->mm);
+ srcu_read_unlock(&kvm->srcu, idx);
+}
+
+void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu)
+{
+ struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
+ struct kvm_pgtable *pgt = NULL;
+
+ write_lock(&kvm->mmu_lock);
+ pgt = mmu->pgt;
+ if (pgt) {
+ mmu->pgd_phys = 0;
+ mmu->pgt = NULL;
+ free_percpu(mmu->last_vcpu_ran);
+ }
+ write_unlock(&kvm->mmu_lock);
+
+ if (pgt) {
+ kvm_pgtable_stage2_destroy(pgt);
+ kfree(pgt);
+ }
+}
+
+static void hyp_mc_free_fn(void *addr, void *unused)
+{
+ free_page((unsigned long)addr);
+}
+
+static void *hyp_mc_alloc_fn(void *unused)
+{
+ return (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
+}
+
+void free_hyp_memcache(struct kvm_hyp_memcache *mc)
+{
+ if (is_protected_kvm_enabled())
+ __free_hyp_memcache(mc, hyp_mc_free_fn,
+ kvm_host_va, NULL);
+}
+
+int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages)
+{
+ if (!is_protected_kvm_enabled())
+ return 0;
+
+ return __topup_hyp_memcache(mc, min_pages, hyp_mc_alloc_fn,
+ kvm_host_pa, NULL);
+}
+
+/**
+ * kvm_phys_addr_ioremap - map a device range to guest IPA
+ *
+ * @kvm: The KVM pointer
+ * @guest_ipa: The IPA at which to insert the mapping
+ * @pa: The physical address of the device
+ * @size: The size of the mapping
+ * @writable: Whether or not to create a writable mapping
+ */
+int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
+ phys_addr_t pa, unsigned long size, bool writable)
+{
+ phys_addr_t addr;
+ int ret = 0;
+ struct kvm_mmu_memory_cache cache = { .gfp_zero = __GFP_ZERO };
+ struct kvm_pgtable *pgt = kvm->arch.mmu.pgt;
+ enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_DEVICE |
+ KVM_PGTABLE_PROT_R |
+ (writable ? KVM_PGTABLE_PROT_W : 0);
+
+ if (is_protected_kvm_enabled())
+ return -EPERM;
+
+ size += offset_in_page(guest_ipa);
+ guest_ipa &= PAGE_MASK;
+
+ for (addr = guest_ipa; addr < guest_ipa + size; addr += PAGE_SIZE) {
+ ret = kvm_mmu_topup_memory_cache(&cache,
+ kvm_mmu_cache_min_pages(kvm));
+ if (ret)
+ break;
+
+ write_lock(&kvm->mmu_lock);
+ ret = kvm_pgtable_stage2_map(pgt, addr, PAGE_SIZE, pa, prot,
+ &cache, 0);
+ write_unlock(&kvm->mmu_lock);
+ if (ret)
+ break;
+
+ pa += PAGE_SIZE;
+ }
+
+ kvm_mmu_free_memory_cache(&cache);
+ return ret;
+}
+
+/**
+ * stage2_wp_range() - write protect stage2 memory region range
+ * @mmu: The KVM stage-2 MMU pointer
+ * @addr: Start address of range
+ * @end: End address of range
+ */
+static void stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end)
+{
+ stage2_apply_range_resched(mmu, addr, end, kvm_pgtable_stage2_wrprotect);
+}
+
+/**
+ * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
+ * @kvm: The KVM pointer
+ * @slot: The memory slot to write protect
+ *
+ * Called to start logging dirty pages after memory region
+ * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
+ * all present PUD, PMD and PTEs are write protected in the memory region.
+ * Afterwards read of dirty page log can be called.
+ *
+ * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
+ * serializing operations for VM memory regions.
+ */
+static void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
+{
+ struct kvm_memslots *slots = kvm_memslots(kvm);
+ struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
+ phys_addr_t start, end;
+
+ if (WARN_ON_ONCE(!memslot))
+ return;
+
+ start = memslot->base_gfn << PAGE_SHIFT;
+ end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
+
+ write_lock(&kvm->mmu_lock);
+ stage2_wp_range(&kvm->arch.mmu, start, end);
+ write_unlock(&kvm->mmu_lock);
+ kvm_flush_remote_tlbs_memslot(kvm, memslot);
+}
+
+/**
+ * kvm_mmu_split_memory_region() - split the stage 2 blocks into PAGE_SIZE
+ * pages for memory slot
+ * @kvm: The KVM pointer
+ * @slot: The memory slot to split
+ *
+ * Acquires kvm->mmu_lock. Called with kvm->slots_lock mutex acquired,
+ * serializing operations for VM memory regions.
+ */
+static void kvm_mmu_split_memory_region(struct kvm *kvm, int slot)
+{
+ struct kvm_memslots *slots;
+ struct kvm_memory_slot *memslot;
+ phys_addr_t start, end;
+
+ lockdep_assert_held(&kvm->slots_lock);
+
+ slots = kvm_memslots(kvm);
+ memslot = id_to_memslot(slots, slot);
+
+ start = memslot->base_gfn << PAGE_SHIFT;
+ end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
+
+ write_lock(&kvm->mmu_lock);
+ kvm_mmu_split_huge_pages(kvm, start, end);
+ write_unlock(&kvm->mmu_lock);
+}
+
+/*
+ * kvm_arch_mmu_enable_log_dirty_pt_masked() - enable dirty logging for selected pages.
+ * @kvm: The KVM pointer
+ * @slot: The memory slot associated with mask
+ * @gfn_offset: The gfn offset in memory slot
+ * @mask: The mask of pages at offset 'gfn_offset' in this memory
+ * slot to enable dirty logging on
+ *
+ * Writes protect selected pages to enable dirty logging, and then
+ * splits them to PAGE_SIZE. Caller must acquire kvm->mmu_lock.
+ */
+void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
+ struct kvm_memory_slot *slot,
+ gfn_t gfn_offset, unsigned long mask)
+{
+ phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
+ phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT;
+ phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
+
+ lockdep_assert_held_write(&kvm->mmu_lock);
+
+ stage2_wp_range(&kvm->arch.mmu, start, end);
+
+ /*
+ * Eager-splitting is done when manual-protect is set. We
+ * also check for initially-all-set because we can avoid
+ * eager-splitting if initially-all-set is false.
+ * Initially-all-set equal false implies that huge-pages were
+ * already split when enabling dirty logging: no need to do it
+ * again.
+ */
+ if (kvm_dirty_log_manual_protect_and_init_set(kvm))
+ kvm_mmu_split_huge_pages(kvm, start, end);
+}
+
+static void kvm_send_hwpoison_signal(unsigned long address, short lsb)
+{
+ send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
+}
+
+static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
+ unsigned long hva,
+ unsigned long map_size)
+{
+ gpa_t gpa_start;
+ hva_t uaddr_start, uaddr_end;
+ size_t size;
+
+ /* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */
+ if (map_size == PAGE_SIZE)
+ return true;
+
+ size = memslot->npages * PAGE_SIZE;
+
+ gpa_start = memslot->base_gfn << PAGE_SHIFT;
+
+ uaddr_start = memslot->userspace_addr;
+ uaddr_end = uaddr_start + size;
+
+ /*
+ * Pages belonging to memslots that don't have the same alignment
+ * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2
+ * PMD/PUD entries, because we'll end up mapping the wrong pages.
+ *
+ * Consider a layout like the following:
+ *
+ * memslot->userspace_addr:
+ * +-----+--------------------+--------------------+---+
+ * |abcde|fgh Stage-1 block | Stage-1 block tv|xyz|
+ * +-----+--------------------+--------------------+---+
+ *
+ * memslot->base_gfn << PAGE_SHIFT:
+ * +---+--------------------+--------------------+-----+
+ * |abc|def Stage-2 block | Stage-2 block |tvxyz|
+ * +---+--------------------+--------------------+-----+
+ *
+ * If we create those stage-2 blocks, we'll end up with this incorrect
+ * mapping:
+ * d -> f
+ * e -> g
+ * f -> h
+ */
+ if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1)))
+ return false;
+
+ /*
+ * Next, let's make sure we're not trying to map anything not covered
+ * by the memslot. This means we have to prohibit block size mappings
+ * for the beginning and end of a non-block aligned and non-block sized
+ * memory slot (illustrated by the head and tail parts of the
+ * userspace view above containing pages 'abcde' and 'xyz',
+ * respectively).
+ *
+ * Note that it doesn't matter if we do the check using the
+ * userspace_addr or the base_gfn, as both are equally aligned (per
+ * the check above) and equally sized.
+ */
+ return (hva & ~(map_size - 1)) >= uaddr_start &&
+ (hva & ~(map_size - 1)) + map_size <= uaddr_end;
+}
+
+/*
+ * Check if the given hva is backed by a transparent huge page (THP) and
+ * whether it can be mapped using block mapping in stage2. If so, adjust
+ * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently
+ * supported. This will need to be updated to support other THP sizes.
+ *
+ * Returns the size of the mapping.
+ */
+static long
+transparent_hugepage_adjust(struct kvm *kvm, struct kvm_memory_slot *memslot,
+ unsigned long hva, kvm_pfn_t *pfnp,
+ phys_addr_t *ipap)
+{
+ kvm_pfn_t pfn = *pfnp;
+
+ /*
+ * Make sure the adjustment is done only for THP pages. Also make
+ * sure that the HVA and IPA are sufficiently aligned and that the
+ * block map is contained within the memslot.
+ */
+ if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) {
+ int sz = get_user_mapping_size(kvm, hva);
+
+ if (sz < 0)
+ return sz;
+
+ if (sz < PMD_SIZE)
+ return PAGE_SIZE;
+
+ /*
+ * The address we faulted on is backed by a transparent huge
+ * page. However, because we map the compound huge page and
+ * not the individual tail page, we need to transfer the
+ * refcount to the head page. We have to be careful that the
+ * THP doesn't start to split while we are adjusting the
+ * refcounts.
+ *
+ * We are sure this doesn't happen, because mmu_invalidate_retry
+ * was successful and we are holding the mmu_lock, so if this
+ * THP is trying to split, it will be blocked in the mmu
+ * notifier before touching any of the pages, specifically
+ * before being able to call __split_huge_page_refcount().
+ *
+ * We can therefore safely transfer the refcount from PG_tail
+ * to PG_head and switch the pfn from a tail page to the head
+ * page accordingly.
+ */
+ *ipap &= PMD_MASK;
+ kvm_release_pfn_clean(pfn);
+ pfn &= ~(PTRS_PER_PMD - 1);
+ get_page(pfn_to_page(pfn));
+ *pfnp = pfn;
+
+ return PMD_SIZE;
+ }
+
+ /* Use page mapping if we cannot use block mapping. */
+ return PAGE_SIZE;
+}
+
+static int get_vma_page_shift(struct vm_area_struct *vma, unsigned long hva)
+{
+ unsigned long pa;
+
+ if (is_vm_hugetlb_page(vma) && !(vma->vm_flags & VM_PFNMAP))
+ return huge_page_shift(hstate_vma(vma));
+
+ if (!(vma->vm_flags & VM_PFNMAP))
+ return PAGE_SHIFT;
+
+ VM_BUG_ON(is_vm_hugetlb_page(vma));
+
+ pa = (vma->vm_pgoff << PAGE_SHIFT) + (hva - vma->vm_start);
+
+#ifndef __PAGETABLE_PMD_FOLDED
+ if ((hva & (PUD_SIZE - 1)) == (pa & (PUD_SIZE - 1)) &&
+ ALIGN_DOWN(hva, PUD_SIZE) >= vma->vm_start &&
+ ALIGN(hva, PUD_SIZE) <= vma->vm_end)
+ return PUD_SHIFT;
+#endif
+
+ if ((hva & (PMD_SIZE - 1)) == (pa & (PMD_SIZE - 1)) &&
+ ALIGN_DOWN(hva, PMD_SIZE) >= vma->vm_start &&
+ ALIGN(hva, PMD_SIZE) <= vma->vm_end)
+ return PMD_SHIFT;
+
+ return PAGE_SHIFT;
+}
+
+/*
+ * The page will be mapped in stage 2 as Normal Cacheable, so the VM will be
+ * able to see the page's tags and therefore they must be initialised first. If
+ * PG_mte_tagged is set, tags have already been initialised.
+ *
+ * The race in the test/set of the PG_mte_tagged flag is handled by:
+ * - preventing VM_SHARED mappings in a memslot with MTE preventing two VMs
+ * racing to santise the same page
+ * - mmap_lock protects between a VM faulting a page in and the VMM performing
+ * an mprotect() to add VM_MTE
+ */
+static void sanitise_mte_tags(struct kvm *kvm, kvm_pfn_t pfn,
+ unsigned long size)
+{
+ unsigned long i, nr_pages = size >> PAGE_SHIFT;
+ struct page *page = pfn_to_page(pfn);
+
+ if (!kvm_has_mte(kvm))
+ return;
+
+ for (i = 0; i < nr_pages; i++, page++) {
+ if (try_page_mte_tagging(page)) {
+ mte_clear_page_tags(page_address(page));
+ set_page_mte_tagged(page);
+ }
+ }
+}
+
+static bool kvm_vma_mte_allowed(struct vm_area_struct *vma)
+{
+ return vma->vm_flags & VM_MTE_ALLOWED;
+}
+
+static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
+ struct kvm_memory_slot *memslot, unsigned long hva,
+ unsigned long fault_status)
+{
+ int ret = 0;
+ bool write_fault, writable, force_pte = false;
+ bool exec_fault, mte_allowed;
+ bool device = false;
+ unsigned long mmu_seq;
+ struct kvm *kvm = vcpu->kvm;
+ struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
+ struct vm_area_struct *vma;
+ short vma_shift;
+ gfn_t gfn;
+ kvm_pfn_t pfn;
+ bool logging_active = memslot_is_logging(memslot);
+ unsigned long fault_level = kvm_vcpu_trap_get_fault_level(vcpu);
+ long vma_pagesize, fault_granule;
+ enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_R;
+ struct kvm_pgtable *pgt;
+
+ fault_granule = 1UL << ARM64_HW_PGTABLE_LEVEL_SHIFT(fault_level);
+ write_fault = kvm_is_write_fault(vcpu);
+ exec_fault = kvm_vcpu_trap_is_exec_fault(vcpu);
+ VM_BUG_ON(write_fault && exec_fault);
+
+ if (fault_status == ESR_ELx_FSC_PERM && !write_fault && !exec_fault) {
+ kvm_err("Unexpected L2 read permission error\n");
+ return -EFAULT;
+ }
+
+ /*
+ * Permission faults just need to update the existing leaf entry,
+ * and so normally don't require allocations from the memcache. The
+ * only exception to this is when dirty logging is enabled at runtime
+ * and a write fault needs to collapse a block entry into a table.
+ */
+ if (fault_status != ESR_ELx_FSC_PERM ||
+ (logging_active && write_fault)) {
+ ret = kvm_mmu_topup_memory_cache(memcache,
+ kvm_mmu_cache_min_pages(kvm));
+ if (ret)
+ return ret;
+ }
+
+ /*
+ * Let's check if we will get back a huge page backed by hugetlbfs, or
+ * get block mapping for device MMIO region.
+ */
+ mmap_read_lock(current->mm);
+ vma = vma_lookup(current->mm, hva);
+ if (unlikely(!vma)) {
+ kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
+ mmap_read_unlock(current->mm);
+ return -EFAULT;
+ }
+
+ /*
+ * logging_active is guaranteed to never be true for VM_PFNMAP
+ * memslots.
+ */
+ if (logging_active) {
+ force_pte = true;
+ vma_shift = PAGE_SHIFT;
+ } else {
+ vma_shift = get_vma_page_shift(vma, hva);
+ }
+
+ switch (vma_shift) {
+#ifndef __PAGETABLE_PMD_FOLDED
+ case PUD_SHIFT:
+ if (fault_supports_stage2_huge_mapping(memslot, hva, PUD_SIZE))
+ break;
+ fallthrough;
+#endif
+ case CONT_PMD_SHIFT:
+ vma_shift = PMD_SHIFT;
+ fallthrough;
+ case PMD_SHIFT:
+ if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE))
+ break;
+ fallthrough;
+ case CONT_PTE_SHIFT:
+ vma_shift = PAGE_SHIFT;
+ force_pte = true;
+ fallthrough;
+ case PAGE_SHIFT:
+ break;
+ default:
+ WARN_ONCE(1, "Unknown vma_shift %d", vma_shift);
+ }
+
+ vma_pagesize = 1UL << vma_shift;
+ if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE)
+ fault_ipa &= ~(vma_pagesize - 1);
+
+ gfn = fault_ipa >> PAGE_SHIFT;
+ mte_allowed = kvm_vma_mte_allowed(vma);
+
+ /* Don't use the VMA after the unlock -- it may have vanished */
+ vma = NULL;
+
+ /*
+ * Read mmu_invalidate_seq so that KVM can detect if the results of
+ * vma_lookup() or __gfn_to_pfn_memslot() become stale prior to
+ * acquiring kvm->mmu_lock.
+ *
+ * Rely on mmap_read_unlock() for an implicit smp_rmb(), which pairs
+ * with the smp_wmb() in kvm_mmu_invalidate_end().
+ */
+ mmu_seq = vcpu->kvm->mmu_invalidate_seq;
+ mmap_read_unlock(current->mm);
+
+ pfn = __gfn_to_pfn_memslot(memslot, gfn, false, false, NULL,
+ write_fault, &writable, NULL);
+ if (pfn == KVM_PFN_ERR_HWPOISON) {
+ kvm_send_hwpoison_signal(hva, vma_shift);
+ return 0;
+ }
+ if (is_error_noslot_pfn(pfn))
+ return -EFAULT;
+
+ if (kvm_is_device_pfn(pfn)) {
+ /*
+ * If the page was identified as device early by looking at
+ * the VMA flags, vma_pagesize is already representing the
+ * largest quantity we can map. If instead it was mapped
+ * via gfn_to_pfn_prot(), vma_pagesize is set to PAGE_SIZE
+ * and must not be upgraded.
+ *
+ * In both cases, we don't let transparent_hugepage_adjust()
+ * change things at the last minute.
+ */
+ device = true;
+ } else if (logging_active && !write_fault) {
+ /*
+ * Only actually map the page as writable if this was a write
+ * fault.
+ */
+ writable = false;
+ }
+
+ if (exec_fault && device)
+ return -ENOEXEC;
+
+ read_lock(&kvm->mmu_lock);
+ pgt = vcpu->arch.hw_mmu->pgt;
+ if (mmu_invalidate_retry(kvm, mmu_seq))
+ goto out_unlock;
+
+ /*
+ * If we are not forced to use page mapping, check if we are
+ * backed by a THP and thus use block mapping if possible.
+ */
+ if (vma_pagesize == PAGE_SIZE && !(force_pte || device)) {
+ if (fault_status == ESR_ELx_FSC_PERM &&
+ fault_granule > PAGE_SIZE)
+ vma_pagesize = fault_granule;
+ else
+ vma_pagesize = transparent_hugepage_adjust(kvm, memslot,
+ hva, &pfn,
+ &fault_ipa);
+
+ if (vma_pagesize < 0) {
+ ret = vma_pagesize;
+ goto out_unlock;
+ }
+ }
+
+ if (fault_status != ESR_ELx_FSC_PERM && !device && kvm_has_mte(kvm)) {
+ /* Check the VMM hasn't introduced a new disallowed VMA */
+ if (mte_allowed) {
+ sanitise_mte_tags(kvm, pfn, vma_pagesize);
+ } else {
+ ret = -EFAULT;
+ goto out_unlock;
+ }
+ }
+
+ if (writable)
+ prot |= KVM_PGTABLE_PROT_W;
+
+ if (exec_fault)
+ prot |= KVM_PGTABLE_PROT_X;
+
+ if (device)
+ prot |= KVM_PGTABLE_PROT_DEVICE;
+ else if (cpus_have_const_cap(ARM64_HAS_CACHE_DIC))
+ prot |= KVM_PGTABLE_PROT_X;
+
+ /*
+ * Under the premise of getting a FSC_PERM fault, we just need to relax
+ * permissions only if vma_pagesize equals fault_granule. Otherwise,
+ * kvm_pgtable_stage2_map() should be called to change block size.
+ */
+ if (fault_status == ESR_ELx_FSC_PERM && vma_pagesize == fault_granule)
+ ret = kvm_pgtable_stage2_relax_perms(pgt, fault_ipa, prot);
+ else
+ ret = kvm_pgtable_stage2_map(pgt, fault_ipa, vma_pagesize,
+ __pfn_to_phys(pfn), prot,
+ memcache,
+ KVM_PGTABLE_WALK_HANDLE_FAULT |
+ KVM_PGTABLE_WALK_SHARED);
+
+ /* Mark the page dirty only if the fault is handled successfully */
+ if (writable && !ret) {
+ kvm_set_pfn_dirty(pfn);
+ mark_page_dirty_in_slot(kvm, memslot, gfn);
+ }
+
+out_unlock:
+ read_unlock(&kvm->mmu_lock);
+ kvm_release_pfn_clean(pfn);
+ return ret != -EAGAIN ? ret : 0;
+}
+
+/* Resolve the access fault by making the page young again. */
+static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
+{
+ kvm_pte_t pte;
+ struct kvm_s2_mmu *mmu;
+
+ trace_kvm_access_fault(fault_ipa);
+
+ read_lock(&vcpu->kvm->mmu_lock);
+ mmu = vcpu->arch.hw_mmu;
+ pte = kvm_pgtable_stage2_mkyoung(mmu->pgt, fault_ipa);
+ read_unlock(&vcpu->kvm->mmu_lock);
+
+ if (kvm_pte_valid(pte))
+ kvm_set_pfn_accessed(kvm_pte_to_pfn(pte));
+}
+
+/**
+ * kvm_handle_guest_abort - handles all 2nd stage aborts
+ * @vcpu: the VCPU pointer
+ *
+ * Any abort that gets to the host is almost guaranteed to be caused by a
+ * missing second stage translation table entry, which can mean that either the
+ * guest simply needs more memory and we must allocate an appropriate page or it
+ * can mean that the guest tried to access I/O memory, which is emulated by user
+ * space. The distinction is based on the IPA causing the fault and whether this
+ * memory region has been registered as standard RAM by user space.
+ */
+int kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
+{
+ unsigned long fault_status;
+ phys_addr_t fault_ipa;
+ struct kvm_memory_slot *memslot;
+ unsigned long hva;
+ bool is_iabt, write_fault, writable;
+ gfn_t gfn;
+ int ret, idx;
+
+ fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
+
+ fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
+ is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
+
+ if (fault_status == ESR_ELx_FSC_FAULT) {
+ /* Beyond sanitised PARange (which is the IPA limit) */
+ if (fault_ipa >= BIT_ULL(get_kvm_ipa_limit())) {
+ kvm_inject_size_fault(vcpu);
+ return 1;
+ }
+
+ /* Falls between the IPA range and the PARange? */
+ if (fault_ipa >= BIT_ULL(vcpu->arch.hw_mmu->pgt->ia_bits)) {
+ fault_ipa |= kvm_vcpu_get_hfar(vcpu) & GENMASK(11, 0);
+
+ if (is_iabt)
+ kvm_inject_pabt(vcpu, fault_ipa);
+ else
+ kvm_inject_dabt(vcpu, fault_ipa);
+ return 1;
+ }
+ }
+
+ /* Synchronous External Abort? */
+ if (kvm_vcpu_abt_issea(vcpu)) {
+ /*
+ * For RAS the host kernel may handle this abort.
+ * There is no need to pass the error into the guest.
+ */
+ if (kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_esr(vcpu)))
+ kvm_inject_vabt(vcpu);
+
+ return 1;
+ }
+
+ trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu),
+ kvm_vcpu_get_hfar(vcpu), fault_ipa);
+
+ /* Check the stage-2 fault is trans. fault or write fault */
+ if (fault_status != ESR_ELx_FSC_FAULT &&
+ fault_status != ESR_ELx_FSC_PERM &&
+ fault_status != ESR_ELx_FSC_ACCESS) {
+ kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
+ kvm_vcpu_trap_get_class(vcpu),
+ (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
+ (unsigned long)kvm_vcpu_get_esr(vcpu));
+ return -EFAULT;
+ }
+
+ idx = srcu_read_lock(&vcpu->kvm->srcu);
+
+ gfn = fault_ipa >> PAGE_SHIFT;
+ memslot = gfn_to_memslot(vcpu->kvm, gfn);
+ hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
+ write_fault = kvm_is_write_fault(vcpu);
+ if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
+ /*
+ * The guest has put either its instructions or its page-tables
+ * somewhere it shouldn't have. Userspace won't be able to do
+ * anything about this (there's no syndrome for a start), so
+ * re-inject the abort back into the guest.
+ */
+ if (is_iabt) {
+ ret = -ENOEXEC;
+ goto out;
+ }
+
+ if (kvm_vcpu_abt_iss1tw(vcpu)) {
+ kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
+ ret = 1;
+ goto out_unlock;
+ }
+
+ /*
+ * Check for a cache maintenance operation. Since we
+ * ended-up here, we know it is outside of any memory
+ * slot. But we can't find out if that is for a device,
+ * or if the guest is just being stupid. The only thing
+ * we know for sure is that this range cannot be cached.
+ *
+ * So let's assume that the guest is just being
+ * cautious, and skip the instruction.
+ */
+ if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) {
+ kvm_incr_pc(vcpu);
+ ret = 1;
+ goto out_unlock;
+ }
+
+ /*
+ * The IPA is reported as [MAX:12], so we need to
+ * complement it with the bottom 12 bits from the
+ * faulting VA. This is always 12 bits, irrespective
+ * of the page size.
+ */
+ fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
+ ret = io_mem_abort(vcpu, fault_ipa);
+ goto out_unlock;
+ }
+
+ /* Userspace should not be able to register out-of-bounds IPAs */
+ VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm));
+
+ if (fault_status == ESR_ELx_FSC_ACCESS) {
+ handle_access_fault(vcpu, fault_ipa);
+ ret = 1;
+ goto out_unlock;
+ }
+
+ ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
+ if (ret == 0)
+ ret = 1;
+out:
+ if (ret == -ENOEXEC) {
+ kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
+ ret = 1;
+ }
+out_unlock:
+ srcu_read_unlock(&vcpu->kvm->srcu, idx);
+ return ret;
+}
+
+bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
+{
+ if (!kvm->arch.mmu.pgt)
+ return false;
+
+ __unmap_stage2_range(&kvm->arch.mmu, range->start << PAGE_SHIFT,
+ (range->end - range->start) << PAGE_SHIFT,
+ range->may_block);
+
+ return false;
+}
+
+bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
+{
+ kvm_pfn_t pfn = pte_pfn(range->arg.pte);
+
+ if (!kvm->arch.mmu.pgt)
+ return false;
+
+ WARN_ON(range->end - range->start != 1);
+
+ /*
+ * If the page isn't tagged, defer to user_mem_abort() for sanitising
+ * the MTE tags. The S2 pte should have been unmapped by
+ * mmu_notifier_invalidate_range_end().
+ */
+ if (kvm_has_mte(kvm) && !page_mte_tagged(pfn_to_page(pfn)))
+ return false;
+
+ /*
+ * We've moved a page around, probably through CoW, so let's treat
+ * it just like a translation fault and the map handler will clean
+ * the cache to the PoC.
+ *
+ * The MMU notifiers will have unmapped a huge PMD before calling
+ * ->change_pte() (which in turn calls kvm_set_spte_gfn()) and
+ * therefore we never need to clear out a huge PMD through this
+ * calling path and a memcache is not required.
+ */
+ kvm_pgtable_stage2_map(kvm->arch.mmu.pgt, range->start << PAGE_SHIFT,
+ PAGE_SIZE, __pfn_to_phys(pfn),
+ KVM_PGTABLE_PROT_R, NULL, 0);
+
+ return false;
+}
+
+bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
+{
+ u64 size = (range->end - range->start) << PAGE_SHIFT;
+
+ if (!kvm->arch.mmu.pgt)
+ return false;
+
+ return kvm_pgtable_stage2_test_clear_young(kvm->arch.mmu.pgt,
+ range->start << PAGE_SHIFT,
+ size, true);
+}
+
+bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
+{
+ u64 size = (range->end - range->start) << PAGE_SHIFT;
+
+ if (!kvm->arch.mmu.pgt)
+ return false;
+
+ return kvm_pgtable_stage2_test_clear_young(kvm->arch.mmu.pgt,
+ range->start << PAGE_SHIFT,
+ size, false);
+}
+
+phys_addr_t kvm_mmu_get_httbr(void)
+{
+ return __pa(hyp_pgtable->pgd);
+}
+
+phys_addr_t kvm_get_idmap_vector(void)
+{
+ return hyp_idmap_vector;
+}
+
+static int kvm_map_idmap_text(void)
+{
+ unsigned long size = hyp_idmap_end - hyp_idmap_start;
+ int err = __create_hyp_mappings(hyp_idmap_start, size, hyp_idmap_start,
+ PAGE_HYP_EXEC);
+ if (err)
+ kvm_err("Failed to idmap %lx-%lx\n",
+ hyp_idmap_start, hyp_idmap_end);
+
+ return err;
+}
+
+static void *kvm_hyp_zalloc_page(void *arg)
+{
+ return (void *)get_zeroed_page(GFP_KERNEL);
+}
+
+static struct kvm_pgtable_mm_ops kvm_hyp_mm_ops = {
+ .zalloc_page = kvm_hyp_zalloc_page,
+ .get_page = kvm_host_get_page,
+ .put_page = kvm_host_put_page,
+ .phys_to_virt = kvm_host_va,
+ .virt_to_phys = kvm_host_pa,
+};
+
+int __init kvm_mmu_init(u32 *hyp_va_bits)
+{
+ int err;
+ u32 idmap_bits;
+ u32 kernel_bits;
+
+ hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start);
+ hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
+ hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end);
+ hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
+ hyp_idmap_vector = __pa_symbol(__kvm_hyp_init);
+
+ /*
+ * We rely on the linker script to ensure at build time that the HYP
+ * init code does not cross a page boundary.
+ */
+ BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
+
+ /*
+ * The ID map may be configured to use an extended virtual address
+ * range. This is only the case if system RAM is out of range for the
+ * currently configured page size and VA_BITS_MIN, in which case we will
+ * also need the extended virtual range for the HYP ID map, or we won't
+ * be able to enable the EL2 MMU.
+ *
+ * However, in some cases the ID map may be configured for fewer than
+ * the number of VA bits used by the regular kernel stage 1. This
+ * happens when VA_BITS=52 and the kernel image is placed in PA space
+ * below 48 bits.
+ *
+ * At EL2, there is only one TTBR register, and we can't switch between
+ * translation tables *and* update TCR_EL2.T0SZ at the same time. Bottom
+ * line: we need to use the extended range with *both* our translation
+ * tables.
+ *
+ * So use the maximum of the idmap VA bits and the regular kernel stage
+ * 1 VA bits to assure that the hypervisor can both ID map its code page
+ * and map any kernel memory.
+ */
+ idmap_bits = 64 - ((idmap_t0sz & TCR_T0SZ_MASK) >> TCR_T0SZ_OFFSET);
+ kernel_bits = vabits_actual;
+ *hyp_va_bits = max(idmap_bits, kernel_bits);
+
+ kvm_debug("Using %u-bit virtual addresses at EL2\n", *hyp_va_bits);
+ kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
+ kvm_debug("HYP VA range: %lx:%lx\n",
+ kern_hyp_va(PAGE_OFFSET),
+ kern_hyp_va((unsigned long)high_memory - 1));
+
+ if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
+ hyp_idmap_start < kern_hyp_va((unsigned long)high_memory - 1) &&
+ hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
+ /*
+ * The idmap page is intersecting with the VA space,
+ * it is not safe to continue further.
+ */
+ kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
+ err = -EINVAL;
+ goto out;
+ }
+
+ hyp_pgtable = kzalloc(sizeof(*hyp_pgtable), GFP_KERNEL);
+ if (!hyp_pgtable) {
+ kvm_err("Hyp mode page-table not allocated\n");
+ err = -ENOMEM;
+ goto out;
+ }
+
+ err = kvm_pgtable_hyp_init(hyp_pgtable, *hyp_va_bits, &kvm_hyp_mm_ops);
+ if (err)
+ goto out_free_pgtable;
+
+ err = kvm_map_idmap_text();
+ if (err)
+ goto out_destroy_pgtable;
+
+ io_map_base = hyp_idmap_start;
+ return 0;
+
+out_destroy_pgtable:
+ kvm_pgtable_hyp_destroy(hyp_pgtable);
+out_free_pgtable:
+ kfree(hyp_pgtable);
+ hyp_pgtable = NULL;
+out:
+ return err;
+}
+
+void kvm_arch_commit_memory_region(struct kvm *kvm,
+ struct kvm_memory_slot *old,
+ const struct kvm_memory_slot *new,
+ enum kvm_mr_change change)
+{
+ bool log_dirty_pages = new && new->flags & KVM_MEM_LOG_DIRTY_PAGES;
+
+ /*
+ * At this point memslot has been committed and there is an
+ * allocated dirty_bitmap[], dirty pages will be tracked while the
+ * memory slot is write protected.
+ */
+ if (log_dirty_pages) {
+
+ if (change == KVM_MR_DELETE)
+ return;
+
+ /*
+ * Huge and normal pages are write-protected and split
+ * on either of these two cases:
+ *
+ * 1. with initial-all-set: gradually with CLEAR ioctls,
+ */
+ if (kvm_dirty_log_manual_protect_and_init_set(kvm))
+ return;
+ /*
+ * or
+ * 2. without initial-all-set: all in one shot when
+ * enabling dirty logging.
+ */
+ kvm_mmu_wp_memory_region(kvm, new->id);
+ kvm_mmu_split_memory_region(kvm, new->id);
+ } else {
+ /*
+ * Free any leftovers from the eager page splitting cache. Do
+ * this when deleting, moving, disabling dirty logging, or
+ * creating the memslot (a nop). Doing it for deletes makes
+ * sure we don't leak memory, and there's no need to keep the
+ * cache around for any of the other cases.
+ */
+ kvm_mmu_free_memory_cache(&kvm->arch.mmu.split_page_cache);
+ }
+}
+
+int kvm_arch_prepare_memory_region(struct kvm *kvm,
+ const struct kvm_memory_slot *old,
+ struct kvm_memory_slot *new,
+ enum kvm_mr_change change)
+{
+ hva_t hva, reg_end;
+ int ret = 0;
+
+ if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
+ change != KVM_MR_FLAGS_ONLY)
+ return 0;
+
+ /*
+ * Prevent userspace from creating a memory region outside of the IPA
+ * space addressable by the KVM guest IPA space.
+ */
+ if ((new->base_gfn + new->npages) > (kvm_phys_size(kvm) >> PAGE_SHIFT))
+ return -EFAULT;
+
+ hva = new->userspace_addr;
+ reg_end = hva + (new->npages << PAGE_SHIFT);
+
+ mmap_read_lock(current->mm);
+ /*
+ * A memory region could potentially cover multiple VMAs, and any holes
+ * between them, so iterate over all of them.
+ *
+ * +--------------------------------------------+
+ * +---------------+----------------+ +----------------+
+ * | : VMA 1 | VMA 2 | | VMA 3 : |
+ * +---------------+----------------+ +----------------+
+ * | memory region |
+ * +--------------------------------------------+
+ */
+ do {
+ struct vm_area_struct *vma;
+
+ vma = find_vma_intersection(current->mm, hva, reg_end);
+ if (!vma)
+ break;
+
+ if (kvm_has_mte(kvm) && !kvm_vma_mte_allowed(vma)) {
+ ret = -EINVAL;
+ break;
+ }
+
+ if (vma->vm_flags & VM_PFNMAP) {
+ /* IO region dirty page logging not allowed */
+ if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
+ ret = -EINVAL;
+ break;
+ }
+ }
+ hva = min(reg_end, vma->vm_end);
+ } while (hva < reg_end);
+
+ mmap_read_unlock(current->mm);
+ return ret;
+}
+
+void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
+{
+}
+
+void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
+{
+}
+
+void kvm_arch_flush_shadow_all(struct kvm *kvm)
+{
+ kvm_uninit_stage2_mmu(kvm);
+}
+
+void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
+ struct kvm_memory_slot *slot)
+{
+ gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
+ phys_addr_t size = slot->npages << PAGE_SHIFT;
+
+ write_lock(&kvm->mmu_lock);
+ unmap_stage2_range(&kvm->arch.mmu, gpa, size);
+ write_unlock(&kvm->mmu_lock);
+}
+
+/*
+ * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
+ *
+ * Main problems:
+ * - S/W ops are local to a CPU (not broadcast)
+ * - We have line migration behind our back (speculation)
+ * - System caches don't support S/W at all (damn!)
+ *
+ * In the face of the above, the best we can do is to try and convert
+ * S/W ops to VA ops. Because the guest is not allowed to infer the
+ * S/W to PA mapping, it can only use S/W to nuke the whole cache,
+ * which is a rather good thing for us.
+ *
+ * Also, it is only used when turning caches on/off ("The expected
+ * usage of the cache maintenance instructions that operate by set/way
+ * is associated with the cache maintenance instructions associated
+ * with the powerdown and powerup of caches, if this is required by
+ * the implementation.").
+ *
+ * We use the following policy:
+ *
+ * - If we trap a S/W operation, we enable VM trapping to detect
+ * caches being turned on/off, and do a full clean.
+ *
+ * - We flush the caches on both caches being turned on and off.
+ *
+ * - Once the caches are enabled, we stop trapping VM ops.
+ */
+void kvm_set_way_flush(struct kvm_vcpu *vcpu)
+{
+ unsigned long hcr = *vcpu_hcr(vcpu);
+
+ /*
+ * If this is the first time we do a S/W operation
+ * (i.e. HCR_TVM not set) flush the whole memory, and set the
+ * VM trapping.
+ *
+ * Otherwise, rely on the VM trapping to wait for the MMU +
+ * Caches to be turned off. At that point, we'll be able to
+ * clean the caches again.
+ */
+ if (!(hcr & HCR_TVM)) {
+ trace_kvm_set_way_flush(*vcpu_pc(vcpu),
+ vcpu_has_cache_enabled(vcpu));
+ stage2_flush_vm(vcpu->kvm);
+ *vcpu_hcr(vcpu) = hcr | HCR_TVM;
+ }
+}
+
+void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
+{
+ bool now_enabled = vcpu_has_cache_enabled(vcpu);
+
+ /*
+ * If switching the MMU+caches on, need to invalidate the caches.
+ * If switching it off, need to clean the caches.
+ * Clean + invalidate does the trick always.
+ */
+ if (now_enabled != was_enabled)
+ stage2_flush_vm(vcpu->kvm);
+
+ /* Caches are now on, stop trapping VM ops (until a S/W op) */
+ if (now_enabled)
+ *vcpu_hcr(vcpu) &= ~HCR_TVM;
+
+ trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
+}
diff --git a/arch/arm64/kvm/nested.c b/arch/arm64/kvm/nested.c
new file mode 100644
index 0000000000..042695a210
--- /dev/null
+++ b/arch/arm64/kvm/nested.c
@@ -0,0 +1,162 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2017 - Columbia University and Linaro Ltd.
+ * Author: Jintack Lim <jintack.lim@linaro.org>
+ */
+
+#include <linux/kvm.h>
+#include <linux/kvm_host.h>
+
+#include <asm/kvm_emulate.h>
+#include <asm/kvm_nested.h>
+#include <asm/sysreg.h>
+
+#include "sys_regs.h"
+
+/* Protection against the sysreg repainting madness... */
+#define NV_FTR(r, f) ID_AA64##r##_EL1_##f
+
+/*
+ * Our emulated CPU doesn't support all the possible features. For the
+ * sake of simplicity (and probably mental sanity), wipe out a number
+ * of feature bits we don't intend to support for the time being.
+ * This list should get updated as new features get added to the NV
+ * support, and new extension to the architecture.
+ */
+void access_nested_id_reg(struct kvm_vcpu *v, struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ u32 id = reg_to_encoding(r);
+ u64 val, tmp;
+
+ val = p->regval;
+
+ switch (id) {
+ case SYS_ID_AA64ISAR0_EL1:
+ /* Support everything but TME, O.S. and Range TLBIs */
+ val &= ~(NV_FTR(ISAR0, TLB) |
+ NV_FTR(ISAR0, TME));
+ break;
+
+ case SYS_ID_AA64ISAR1_EL1:
+ /* Support everything but PtrAuth and Spec Invalidation */
+ val &= ~(GENMASK_ULL(63, 56) |
+ NV_FTR(ISAR1, SPECRES) |
+ NV_FTR(ISAR1, GPI) |
+ NV_FTR(ISAR1, GPA) |
+ NV_FTR(ISAR1, API) |
+ NV_FTR(ISAR1, APA));
+ break;
+
+ case SYS_ID_AA64PFR0_EL1:
+ /* No AMU, MPAM, S-EL2, RAS or SVE */
+ val &= ~(GENMASK_ULL(55, 52) |
+ NV_FTR(PFR0, AMU) |
+ NV_FTR(PFR0, MPAM) |
+ NV_FTR(PFR0, SEL2) |
+ NV_FTR(PFR0, RAS) |
+ NV_FTR(PFR0, SVE) |
+ NV_FTR(PFR0, EL3) |
+ NV_FTR(PFR0, EL2) |
+ NV_FTR(PFR0, EL1));
+ /* 64bit EL1/EL2/EL3 only */
+ val |= FIELD_PREP(NV_FTR(PFR0, EL1), 0b0001);
+ val |= FIELD_PREP(NV_FTR(PFR0, EL2), 0b0001);
+ val |= FIELD_PREP(NV_FTR(PFR0, EL3), 0b0001);
+ break;
+
+ case SYS_ID_AA64PFR1_EL1:
+ /* Only support SSBS */
+ val &= NV_FTR(PFR1, SSBS);
+ break;
+
+ case SYS_ID_AA64MMFR0_EL1:
+ /* Hide ECV, ExS, Secure Memory */
+ val &= ~(NV_FTR(MMFR0, ECV) |
+ NV_FTR(MMFR0, EXS) |
+ NV_FTR(MMFR0, TGRAN4_2) |
+ NV_FTR(MMFR0, TGRAN16_2) |
+ NV_FTR(MMFR0, TGRAN64_2) |
+ NV_FTR(MMFR0, SNSMEM));
+
+ /* Disallow unsupported S2 page sizes */
+ switch (PAGE_SIZE) {
+ case SZ_64K:
+ val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN16_2), 0b0001);
+ fallthrough;
+ case SZ_16K:
+ val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN4_2), 0b0001);
+ fallthrough;
+ case SZ_4K:
+ /* Support everything */
+ break;
+ }
+ /*
+ * Since we can't support a guest S2 page size smaller than
+ * the host's own page size (due to KVM only populating its
+ * own S2 using the kernel's page size), advertise the
+ * limitation using FEAT_GTG.
+ */
+ switch (PAGE_SIZE) {
+ case SZ_4K:
+ val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN4_2), 0b0010);
+ fallthrough;
+ case SZ_16K:
+ val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN16_2), 0b0010);
+ fallthrough;
+ case SZ_64K:
+ val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN64_2), 0b0010);
+ break;
+ }
+ /* Cap PARange to 48bits */
+ tmp = FIELD_GET(NV_FTR(MMFR0, PARANGE), val);
+ if (tmp > 0b0101) {
+ val &= ~NV_FTR(MMFR0, PARANGE);
+ val |= FIELD_PREP(NV_FTR(MMFR0, PARANGE), 0b0101);
+ }
+ break;
+
+ case SYS_ID_AA64MMFR1_EL1:
+ val &= (NV_FTR(MMFR1, HCX) |
+ NV_FTR(MMFR1, PAN) |
+ NV_FTR(MMFR1, LO) |
+ NV_FTR(MMFR1, HPDS) |
+ NV_FTR(MMFR1, VH) |
+ NV_FTR(MMFR1, VMIDBits));
+ break;
+
+ case SYS_ID_AA64MMFR2_EL1:
+ val &= ~(NV_FTR(MMFR2, BBM) |
+ NV_FTR(MMFR2, TTL) |
+ GENMASK_ULL(47, 44) |
+ NV_FTR(MMFR2, ST) |
+ NV_FTR(MMFR2, CCIDX) |
+ NV_FTR(MMFR2, VARange));
+
+ /* Force TTL support */
+ val |= FIELD_PREP(NV_FTR(MMFR2, TTL), 0b0001);
+ break;
+
+ case SYS_ID_AA64DFR0_EL1:
+ /* Only limited support for PMU, Debug, BPs and WPs */
+ val &= (NV_FTR(DFR0, PMUVer) |
+ NV_FTR(DFR0, WRPs) |
+ NV_FTR(DFR0, BRPs) |
+ NV_FTR(DFR0, DebugVer));
+
+ /* Cap Debug to ARMv8.1 */
+ tmp = FIELD_GET(NV_FTR(DFR0, DebugVer), val);
+ if (tmp > 0b0111) {
+ val &= ~NV_FTR(DFR0, DebugVer);
+ val |= FIELD_PREP(NV_FTR(DFR0, DebugVer), 0b0111);
+ }
+ break;
+
+ default:
+ /* Unknown register, just wipe it clean */
+ val = 0;
+ break;
+ }
+
+ p->regval = val;
+}
diff --git a/arch/arm64/kvm/pkvm.c b/arch/arm64/kvm/pkvm.c
new file mode 100644
index 0000000000..6ff3ec18c9
--- /dev/null
+++ b/arch/arm64/kvm/pkvm.c
@@ -0,0 +1,263 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (C) 2020 - Google LLC
+ * Author: Quentin Perret <qperret@google.com>
+ */
+
+#include <linux/init.h>
+#include <linux/kmemleak.h>
+#include <linux/kvm_host.h>
+#include <linux/memblock.h>
+#include <linux/mutex.h>
+#include <linux/sort.h>
+
+#include <asm/kvm_pkvm.h>
+
+#include "hyp_constants.h"
+
+DEFINE_STATIC_KEY_FALSE(kvm_protected_mode_initialized);
+
+static struct memblock_region *hyp_memory = kvm_nvhe_sym(hyp_memory);
+static unsigned int *hyp_memblock_nr_ptr = &kvm_nvhe_sym(hyp_memblock_nr);
+
+phys_addr_t hyp_mem_base;
+phys_addr_t hyp_mem_size;
+
+static int cmp_hyp_memblock(const void *p1, const void *p2)
+{
+ const struct memblock_region *r1 = p1;
+ const struct memblock_region *r2 = p2;
+
+ return r1->base < r2->base ? -1 : (r1->base > r2->base);
+}
+
+static void __init sort_memblock_regions(void)
+{
+ sort(hyp_memory,
+ *hyp_memblock_nr_ptr,
+ sizeof(struct memblock_region),
+ cmp_hyp_memblock,
+ NULL);
+}
+
+static int __init register_memblock_regions(void)
+{
+ struct memblock_region *reg;
+
+ for_each_mem_region(reg) {
+ if (*hyp_memblock_nr_ptr >= HYP_MEMBLOCK_REGIONS)
+ return -ENOMEM;
+
+ hyp_memory[*hyp_memblock_nr_ptr] = *reg;
+ (*hyp_memblock_nr_ptr)++;
+ }
+ sort_memblock_regions();
+
+ return 0;
+}
+
+void __init kvm_hyp_reserve(void)
+{
+ u64 hyp_mem_pages = 0;
+ int ret;
+
+ if (!is_hyp_mode_available() || is_kernel_in_hyp_mode())
+ return;
+
+ if (kvm_get_mode() != KVM_MODE_PROTECTED)
+ return;
+
+ ret = register_memblock_regions();
+ if (ret) {
+ *hyp_memblock_nr_ptr = 0;
+ kvm_err("Failed to register hyp memblocks: %d\n", ret);
+ return;
+ }
+
+ hyp_mem_pages += hyp_s1_pgtable_pages();
+ hyp_mem_pages += host_s2_pgtable_pages();
+ hyp_mem_pages += hyp_vm_table_pages();
+ hyp_mem_pages += hyp_vmemmap_pages(STRUCT_HYP_PAGE_SIZE);
+ hyp_mem_pages += hyp_ffa_proxy_pages();
+
+ /*
+ * Try to allocate a PMD-aligned region to reduce TLB pressure once
+ * this is unmapped from the host stage-2, and fallback to PAGE_SIZE.
+ */
+ hyp_mem_size = hyp_mem_pages << PAGE_SHIFT;
+ hyp_mem_base = memblock_phys_alloc(ALIGN(hyp_mem_size, PMD_SIZE),
+ PMD_SIZE);
+ if (!hyp_mem_base)
+ hyp_mem_base = memblock_phys_alloc(hyp_mem_size, PAGE_SIZE);
+ else
+ hyp_mem_size = ALIGN(hyp_mem_size, PMD_SIZE);
+
+ if (!hyp_mem_base) {
+ kvm_err("Failed to reserve hyp memory\n");
+ return;
+ }
+
+ kvm_info("Reserved %lld MiB at 0x%llx\n", hyp_mem_size >> 20,
+ hyp_mem_base);
+}
+
+/*
+ * Allocates and donates memory for hypervisor VM structs at EL2.
+ *
+ * Allocates space for the VM state, which includes the hyp vm as well as
+ * the hyp vcpus.
+ *
+ * Stores an opaque handler in the kvm struct for future reference.
+ *
+ * Return 0 on success, negative error code on failure.
+ */
+static int __pkvm_create_hyp_vm(struct kvm *host_kvm)
+{
+ size_t pgd_sz, hyp_vm_sz, hyp_vcpu_sz;
+ struct kvm_vcpu *host_vcpu;
+ pkvm_handle_t handle;
+ void *pgd, *hyp_vm;
+ unsigned long idx;
+ int ret;
+
+ if (host_kvm->created_vcpus < 1)
+ return -EINVAL;
+
+ pgd_sz = kvm_pgtable_stage2_pgd_size(host_kvm->arch.vtcr);
+
+ /*
+ * The PGD pages will be reclaimed using a hyp_memcache which implies
+ * page granularity. So, use alloc_pages_exact() to get individual
+ * refcounts.
+ */
+ pgd = alloc_pages_exact(pgd_sz, GFP_KERNEL_ACCOUNT);
+ if (!pgd)
+ return -ENOMEM;
+
+ /* Allocate memory to donate to hyp for vm and vcpu pointers. */
+ hyp_vm_sz = PAGE_ALIGN(size_add(PKVM_HYP_VM_SIZE,
+ size_mul(sizeof(void *),
+ host_kvm->created_vcpus)));
+ hyp_vm = alloc_pages_exact(hyp_vm_sz, GFP_KERNEL_ACCOUNT);
+ if (!hyp_vm) {
+ ret = -ENOMEM;
+ goto free_pgd;
+ }
+
+ /* Donate the VM memory to hyp and let hyp initialize it. */
+ ret = kvm_call_hyp_nvhe(__pkvm_init_vm, host_kvm, hyp_vm, pgd);
+ if (ret < 0)
+ goto free_vm;
+
+ handle = ret;
+
+ host_kvm->arch.pkvm.handle = handle;
+
+ /* Donate memory for the vcpus at hyp and initialize it. */
+ hyp_vcpu_sz = PAGE_ALIGN(PKVM_HYP_VCPU_SIZE);
+ kvm_for_each_vcpu(idx, host_vcpu, host_kvm) {
+ void *hyp_vcpu;
+
+ /* Indexing of the vcpus to be sequential starting at 0. */
+ if (WARN_ON(host_vcpu->vcpu_idx != idx)) {
+ ret = -EINVAL;
+ goto destroy_vm;
+ }
+
+ hyp_vcpu = alloc_pages_exact(hyp_vcpu_sz, GFP_KERNEL_ACCOUNT);
+ if (!hyp_vcpu) {
+ ret = -ENOMEM;
+ goto destroy_vm;
+ }
+
+ ret = kvm_call_hyp_nvhe(__pkvm_init_vcpu, handle, host_vcpu,
+ hyp_vcpu);
+ if (ret) {
+ free_pages_exact(hyp_vcpu, hyp_vcpu_sz);
+ goto destroy_vm;
+ }
+ }
+
+ return 0;
+
+destroy_vm:
+ pkvm_destroy_hyp_vm(host_kvm);
+ return ret;
+free_vm:
+ free_pages_exact(hyp_vm, hyp_vm_sz);
+free_pgd:
+ free_pages_exact(pgd, pgd_sz);
+ return ret;
+}
+
+int pkvm_create_hyp_vm(struct kvm *host_kvm)
+{
+ int ret = 0;
+
+ mutex_lock(&host_kvm->lock);
+ if (!host_kvm->arch.pkvm.handle)
+ ret = __pkvm_create_hyp_vm(host_kvm);
+ mutex_unlock(&host_kvm->lock);
+
+ return ret;
+}
+
+void pkvm_destroy_hyp_vm(struct kvm *host_kvm)
+{
+ if (host_kvm->arch.pkvm.handle) {
+ WARN_ON(kvm_call_hyp_nvhe(__pkvm_teardown_vm,
+ host_kvm->arch.pkvm.handle));
+ }
+
+ host_kvm->arch.pkvm.handle = 0;
+ free_hyp_memcache(&host_kvm->arch.pkvm.teardown_mc);
+}
+
+int pkvm_init_host_vm(struct kvm *host_kvm)
+{
+ mutex_init(&host_kvm->lock);
+ return 0;
+}
+
+static void __init _kvm_host_prot_finalize(void *arg)
+{
+ int *err = arg;
+
+ if (WARN_ON(kvm_call_hyp_nvhe(__pkvm_prot_finalize)))
+ WRITE_ONCE(*err, -EINVAL);
+}
+
+static int __init pkvm_drop_host_privileges(void)
+{
+ int ret = 0;
+
+ /*
+ * Flip the static key upfront as that may no longer be possible
+ * once the host stage 2 is installed.
+ */
+ static_branch_enable(&kvm_protected_mode_initialized);
+ on_each_cpu(_kvm_host_prot_finalize, &ret, 1);
+ return ret;
+}
+
+static int __init finalize_pkvm(void)
+{
+ int ret;
+
+ if (!is_protected_kvm_enabled() || !is_kvm_arm_initialised())
+ return 0;
+
+ /*
+ * Exclude HYP sections from kmemleak so that they don't get peeked
+ * at, which would end badly once inaccessible.
+ */
+ kmemleak_free_part(__hyp_bss_start, __hyp_bss_end - __hyp_bss_start);
+ kmemleak_free_part_phys(hyp_mem_base, hyp_mem_size);
+
+ ret = pkvm_drop_host_privileges();
+ if (ret)
+ pr_err("Failed to finalize Hyp protection: %d\n", ret);
+
+ return ret;
+}
+device_initcall_sync(finalize_pkvm);
diff --git a/arch/arm64/kvm/pmu-emul.c b/arch/arm64/kvm/pmu-emul.c
new file mode 100644
index 0000000000..6b066e04dc
--- /dev/null
+++ b/arch/arm64/kvm/pmu-emul.c
@@ -0,0 +1,1074 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2015 Linaro Ltd.
+ * Author: Shannon Zhao <shannon.zhao@linaro.org>
+ */
+
+#include <linux/cpu.h>
+#include <linux/kvm.h>
+#include <linux/kvm_host.h>
+#include <linux/list.h>
+#include <linux/perf_event.h>
+#include <linux/perf/arm_pmu.h>
+#include <linux/uaccess.h>
+#include <asm/kvm_emulate.h>
+#include <kvm/arm_pmu.h>
+#include <kvm/arm_vgic.h>
+#include <asm/arm_pmuv3.h>
+
+#define PERF_ATTR_CFG1_COUNTER_64BIT BIT(0)
+
+DEFINE_STATIC_KEY_FALSE(kvm_arm_pmu_available);
+
+static LIST_HEAD(arm_pmus);
+static DEFINE_MUTEX(arm_pmus_lock);
+
+static void kvm_pmu_create_perf_event(struct kvm_pmc *pmc);
+static void kvm_pmu_release_perf_event(struct kvm_pmc *pmc);
+
+static struct kvm_vcpu *kvm_pmc_to_vcpu(const struct kvm_pmc *pmc)
+{
+ return container_of(pmc, struct kvm_vcpu, arch.pmu.pmc[pmc->idx]);
+}
+
+static struct kvm_pmc *kvm_vcpu_idx_to_pmc(struct kvm_vcpu *vcpu, int cnt_idx)
+{
+ return &vcpu->arch.pmu.pmc[cnt_idx];
+}
+
+static u32 __kvm_pmu_event_mask(unsigned int pmuver)
+{
+ switch (pmuver) {
+ case ID_AA64DFR0_EL1_PMUVer_IMP:
+ return GENMASK(9, 0);
+ case ID_AA64DFR0_EL1_PMUVer_V3P1:
+ case ID_AA64DFR0_EL1_PMUVer_V3P4:
+ case ID_AA64DFR0_EL1_PMUVer_V3P5:
+ case ID_AA64DFR0_EL1_PMUVer_V3P7:
+ return GENMASK(15, 0);
+ default: /* Shouldn't be here, just for sanity */
+ WARN_ONCE(1, "Unknown PMU version %d\n", pmuver);
+ return 0;
+ }
+}
+
+static u32 kvm_pmu_event_mask(struct kvm *kvm)
+{
+ u64 dfr0 = IDREG(kvm, SYS_ID_AA64DFR0_EL1);
+ u8 pmuver = SYS_FIELD_GET(ID_AA64DFR0_EL1, PMUVer, dfr0);
+
+ return __kvm_pmu_event_mask(pmuver);
+}
+
+/**
+ * kvm_pmc_is_64bit - determine if counter is 64bit
+ * @pmc: counter context
+ */
+static bool kvm_pmc_is_64bit(struct kvm_pmc *pmc)
+{
+ return (pmc->idx == ARMV8_PMU_CYCLE_IDX ||
+ kvm_pmu_is_3p5(kvm_pmc_to_vcpu(pmc)));
+}
+
+static bool kvm_pmc_has_64bit_overflow(struct kvm_pmc *pmc)
+{
+ u64 val = __vcpu_sys_reg(kvm_pmc_to_vcpu(pmc), PMCR_EL0);
+
+ return (pmc->idx < ARMV8_PMU_CYCLE_IDX && (val & ARMV8_PMU_PMCR_LP)) ||
+ (pmc->idx == ARMV8_PMU_CYCLE_IDX && (val & ARMV8_PMU_PMCR_LC));
+}
+
+static bool kvm_pmu_counter_can_chain(struct kvm_pmc *pmc)
+{
+ return (!(pmc->idx & 1) && (pmc->idx + 1) < ARMV8_PMU_CYCLE_IDX &&
+ !kvm_pmc_has_64bit_overflow(pmc));
+}
+
+static u32 counter_index_to_reg(u64 idx)
+{
+ return (idx == ARMV8_PMU_CYCLE_IDX) ? PMCCNTR_EL0 : PMEVCNTR0_EL0 + idx;
+}
+
+static u32 counter_index_to_evtreg(u64 idx)
+{
+ return (idx == ARMV8_PMU_CYCLE_IDX) ? PMCCFILTR_EL0 : PMEVTYPER0_EL0 + idx;
+}
+
+static u64 kvm_pmu_get_pmc_value(struct kvm_pmc *pmc)
+{
+ struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
+ u64 counter, reg, enabled, running;
+
+ reg = counter_index_to_reg(pmc->idx);
+ counter = __vcpu_sys_reg(vcpu, reg);
+
+ /*
+ * The real counter value is equal to the value of counter register plus
+ * the value perf event counts.
+ */
+ if (pmc->perf_event)
+ counter += perf_event_read_value(pmc->perf_event, &enabled,
+ &running);
+
+ if (!kvm_pmc_is_64bit(pmc))
+ counter = lower_32_bits(counter);
+
+ return counter;
+}
+
+/**
+ * kvm_pmu_get_counter_value - get PMU counter value
+ * @vcpu: The vcpu pointer
+ * @select_idx: The counter index
+ */
+u64 kvm_pmu_get_counter_value(struct kvm_vcpu *vcpu, u64 select_idx)
+{
+ if (!kvm_vcpu_has_pmu(vcpu))
+ return 0;
+
+ return kvm_pmu_get_pmc_value(kvm_vcpu_idx_to_pmc(vcpu, select_idx));
+}
+
+static void kvm_pmu_set_pmc_value(struct kvm_pmc *pmc, u64 val, bool force)
+{
+ struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
+ u64 reg;
+
+ kvm_pmu_release_perf_event(pmc);
+
+ reg = counter_index_to_reg(pmc->idx);
+
+ if (vcpu_mode_is_32bit(vcpu) && pmc->idx != ARMV8_PMU_CYCLE_IDX &&
+ !force) {
+ /*
+ * Even with PMUv3p5, AArch32 cannot write to the top
+ * 32bit of the counters. The only possible course of
+ * action is to use PMCR.P, which will reset them to
+ * 0 (the only use of the 'force' parameter).
+ */
+ val = __vcpu_sys_reg(vcpu, reg) & GENMASK(63, 32);
+ val |= lower_32_bits(val);
+ }
+
+ __vcpu_sys_reg(vcpu, reg) = val;
+
+ /* Recreate the perf event to reflect the updated sample_period */
+ kvm_pmu_create_perf_event(pmc);
+}
+
+/**
+ * kvm_pmu_set_counter_value - set PMU counter value
+ * @vcpu: The vcpu pointer
+ * @select_idx: The counter index
+ * @val: The counter value
+ */
+void kvm_pmu_set_counter_value(struct kvm_vcpu *vcpu, u64 select_idx, u64 val)
+{
+ if (!kvm_vcpu_has_pmu(vcpu))
+ return;
+
+ kvm_pmu_set_pmc_value(kvm_vcpu_idx_to_pmc(vcpu, select_idx), val, false);
+}
+
+/**
+ * kvm_pmu_release_perf_event - remove the perf event
+ * @pmc: The PMU counter pointer
+ */
+static void kvm_pmu_release_perf_event(struct kvm_pmc *pmc)
+{
+ if (pmc->perf_event) {
+ perf_event_disable(pmc->perf_event);
+ perf_event_release_kernel(pmc->perf_event);
+ pmc->perf_event = NULL;
+ }
+}
+
+/**
+ * kvm_pmu_stop_counter - stop PMU counter
+ * @pmc: The PMU counter pointer
+ *
+ * If this counter has been configured to monitor some event, release it here.
+ */
+static void kvm_pmu_stop_counter(struct kvm_pmc *pmc)
+{
+ struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
+ u64 reg, val;
+
+ if (!pmc->perf_event)
+ return;
+
+ val = kvm_pmu_get_pmc_value(pmc);
+
+ reg = counter_index_to_reg(pmc->idx);
+
+ __vcpu_sys_reg(vcpu, reg) = val;
+
+ kvm_pmu_release_perf_event(pmc);
+}
+
+/**
+ * kvm_pmu_vcpu_init - assign pmu counter idx for cpu
+ * @vcpu: The vcpu pointer
+ *
+ */
+void kvm_pmu_vcpu_init(struct kvm_vcpu *vcpu)
+{
+ int i;
+ struct kvm_pmu *pmu = &vcpu->arch.pmu;
+
+ for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++)
+ pmu->pmc[i].idx = i;
+}
+
+/**
+ * kvm_pmu_vcpu_reset - reset pmu state for cpu
+ * @vcpu: The vcpu pointer
+ *
+ */
+void kvm_pmu_vcpu_reset(struct kvm_vcpu *vcpu)
+{
+ unsigned long mask = kvm_pmu_valid_counter_mask(vcpu);
+ int i;
+
+ for_each_set_bit(i, &mask, 32)
+ kvm_pmu_stop_counter(kvm_vcpu_idx_to_pmc(vcpu, i));
+}
+
+/**
+ * kvm_pmu_vcpu_destroy - free perf event of PMU for cpu
+ * @vcpu: The vcpu pointer
+ *
+ */
+void kvm_pmu_vcpu_destroy(struct kvm_vcpu *vcpu)
+{
+ int i;
+
+ for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++)
+ kvm_pmu_release_perf_event(kvm_vcpu_idx_to_pmc(vcpu, i));
+ irq_work_sync(&vcpu->arch.pmu.overflow_work);
+}
+
+u64 kvm_pmu_valid_counter_mask(struct kvm_vcpu *vcpu)
+{
+ u64 val = __vcpu_sys_reg(vcpu, PMCR_EL0) >> ARMV8_PMU_PMCR_N_SHIFT;
+
+ val &= ARMV8_PMU_PMCR_N_MASK;
+ if (val == 0)
+ return BIT(ARMV8_PMU_CYCLE_IDX);
+ else
+ return GENMASK(val - 1, 0) | BIT(ARMV8_PMU_CYCLE_IDX);
+}
+
+/**
+ * kvm_pmu_enable_counter_mask - enable selected PMU counters
+ * @vcpu: The vcpu pointer
+ * @val: the value guest writes to PMCNTENSET register
+ *
+ * Call perf_event_enable to start counting the perf event
+ */
+void kvm_pmu_enable_counter_mask(struct kvm_vcpu *vcpu, u64 val)
+{
+ int i;
+ if (!kvm_vcpu_has_pmu(vcpu))
+ return;
+
+ if (!(__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E) || !val)
+ return;
+
+ for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++) {
+ struct kvm_pmc *pmc;
+
+ if (!(val & BIT(i)))
+ continue;
+
+ pmc = kvm_vcpu_idx_to_pmc(vcpu, i);
+
+ if (!pmc->perf_event) {
+ kvm_pmu_create_perf_event(pmc);
+ } else {
+ perf_event_enable(pmc->perf_event);
+ if (pmc->perf_event->state != PERF_EVENT_STATE_ACTIVE)
+ kvm_debug("fail to enable perf event\n");
+ }
+ }
+}
+
+/**
+ * kvm_pmu_disable_counter_mask - disable selected PMU counters
+ * @vcpu: The vcpu pointer
+ * @val: the value guest writes to PMCNTENCLR register
+ *
+ * Call perf_event_disable to stop counting the perf event
+ */
+void kvm_pmu_disable_counter_mask(struct kvm_vcpu *vcpu, u64 val)
+{
+ int i;
+
+ if (!kvm_vcpu_has_pmu(vcpu) || !val)
+ return;
+
+ for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++) {
+ struct kvm_pmc *pmc;
+
+ if (!(val & BIT(i)))
+ continue;
+
+ pmc = kvm_vcpu_idx_to_pmc(vcpu, i);
+
+ if (pmc->perf_event)
+ perf_event_disable(pmc->perf_event);
+ }
+}
+
+static u64 kvm_pmu_overflow_status(struct kvm_vcpu *vcpu)
+{
+ u64 reg = 0;
+
+ if ((__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E)) {
+ reg = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
+ reg &= __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
+ reg &= __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
+ }
+
+ return reg;
+}
+
+static void kvm_pmu_update_state(struct kvm_vcpu *vcpu)
+{
+ struct kvm_pmu *pmu = &vcpu->arch.pmu;
+ bool overflow;
+
+ if (!kvm_vcpu_has_pmu(vcpu))
+ return;
+
+ overflow = !!kvm_pmu_overflow_status(vcpu);
+ if (pmu->irq_level == overflow)
+ return;
+
+ pmu->irq_level = overflow;
+
+ if (likely(irqchip_in_kernel(vcpu->kvm))) {
+ int ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id,
+ pmu->irq_num, overflow, pmu);
+ WARN_ON(ret);
+ }
+}
+
+bool kvm_pmu_should_notify_user(struct kvm_vcpu *vcpu)
+{
+ struct kvm_pmu *pmu = &vcpu->arch.pmu;
+ struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
+ bool run_level = sregs->device_irq_level & KVM_ARM_DEV_PMU;
+
+ if (likely(irqchip_in_kernel(vcpu->kvm)))
+ return false;
+
+ return pmu->irq_level != run_level;
+}
+
+/*
+ * Reflect the PMU overflow interrupt output level into the kvm_run structure
+ */
+void kvm_pmu_update_run(struct kvm_vcpu *vcpu)
+{
+ struct kvm_sync_regs *regs = &vcpu->run->s.regs;
+
+ /* Populate the timer bitmap for user space */
+ regs->device_irq_level &= ~KVM_ARM_DEV_PMU;
+ if (vcpu->arch.pmu.irq_level)
+ regs->device_irq_level |= KVM_ARM_DEV_PMU;
+}
+
+/**
+ * kvm_pmu_flush_hwstate - flush pmu state to cpu
+ * @vcpu: The vcpu pointer
+ *
+ * Check if the PMU has overflowed while we were running in the host, and inject
+ * an interrupt if that was the case.
+ */
+void kvm_pmu_flush_hwstate(struct kvm_vcpu *vcpu)
+{
+ kvm_pmu_update_state(vcpu);
+}
+
+/**
+ * kvm_pmu_sync_hwstate - sync pmu state from cpu
+ * @vcpu: The vcpu pointer
+ *
+ * Check if the PMU has overflowed while we were running in the guest, and
+ * inject an interrupt if that was the case.
+ */
+void kvm_pmu_sync_hwstate(struct kvm_vcpu *vcpu)
+{
+ kvm_pmu_update_state(vcpu);
+}
+
+/**
+ * When perf interrupt is an NMI, we cannot safely notify the vcpu corresponding
+ * to the event.
+ * This is why we need a callback to do it once outside of the NMI context.
+ */
+static void kvm_pmu_perf_overflow_notify_vcpu(struct irq_work *work)
+{
+ struct kvm_vcpu *vcpu;
+
+ vcpu = container_of(work, struct kvm_vcpu, arch.pmu.overflow_work);
+ kvm_vcpu_kick(vcpu);
+}
+
+/*
+ * Perform an increment on any of the counters described in @mask,
+ * generating the overflow if required, and propagate it as a chained
+ * event if possible.
+ */
+static void kvm_pmu_counter_increment(struct kvm_vcpu *vcpu,
+ unsigned long mask, u32 event)
+{
+ int i;
+
+ if (!(__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E))
+ return;
+
+ /* Weed out disabled counters */
+ mask &= __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
+
+ for_each_set_bit(i, &mask, ARMV8_PMU_CYCLE_IDX) {
+ struct kvm_pmc *pmc = kvm_vcpu_idx_to_pmc(vcpu, i);
+ u64 type, reg;
+
+ /* Filter on event type */
+ type = __vcpu_sys_reg(vcpu, counter_index_to_evtreg(i));
+ type &= kvm_pmu_event_mask(vcpu->kvm);
+ if (type != event)
+ continue;
+
+ /* Increment this counter */
+ reg = __vcpu_sys_reg(vcpu, counter_index_to_reg(i)) + 1;
+ if (!kvm_pmc_is_64bit(pmc))
+ reg = lower_32_bits(reg);
+ __vcpu_sys_reg(vcpu, counter_index_to_reg(i)) = reg;
+
+ /* No overflow? move on */
+ if (kvm_pmc_has_64bit_overflow(pmc) ? reg : lower_32_bits(reg))
+ continue;
+
+ /* Mark overflow */
+ __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= BIT(i);
+
+ if (kvm_pmu_counter_can_chain(pmc))
+ kvm_pmu_counter_increment(vcpu, BIT(i + 1),
+ ARMV8_PMUV3_PERFCTR_CHAIN);
+ }
+}
+
+/* Compute the sample period for a given counter value */
+static u64 compute_period(struct kvm_pmc *pmc, u64 counter)
+{
+ u64 val;
+
+ if (kvm_pmc_is_64bit(pmc) && kvm_pmc_has_64bit_overflow(pmc))
+ val = (-counter) & GENMASK(63, 0);
+ else
+ val = (-counter) & GENMASK(31, 0);
+
+ return val;
+}
+
+/**
+ * When the perf event overflows, set the overflow status and inform the vcpu.
+ */
+static void kvm_pmu_perf_overflow(struct perf_event *perf_event,
+ struct perf_sample_data *data,
+ struct pt_regs *regs)
+{
+ struct kvm_pmc *pmc = perf_event->overflow_handler_context;
+ struct arm_pmu *cpu_pmu = to_arm_pmu(perf_event->pmu);
+ struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
+ int idx = pmc->idx;
+ u64 period;
+
+ cpu_pmu->pmu.stop(perf_event, PERF_EF_UPDATE);
+
+ /*
+ * Reset the sample period to the architectural limit,
+ * i.e. the point where the counter overflows.
+ */
+ period = compute_period(pmc, local64_read(&perf_event->count));
+
+ local64_set(&perf_event->hw.period_left, 0);
+ perf_event->attr.sample_period = period;
+ perf_event->hw.sample_period = period;
+
+ __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= BIT(idx);
+
+ if (kvm_pmu_counter_can_chain(pmc))
+ kvm_pmu_counter_increment(vcpu, BIT(idx + 1),
+ ARMV8_PMUV3_PERFCTR_CHAIN);
+
+ if (kvm_pmu_overflow_status(vcpu)) {
+ kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
+
+ if (!in_nmi())
+ kvm_vcpu_kick(vcpu);
+ else
+ irq_work_queue(&vcpu->arch.pmu.overflow_work);
+ }
+
+ cpu_pmu->pmu.start(perf_event, PERF_EF_RELOAD);
+}
+
+/**
+ * kvm_pmu_software_increment - do software increment
+ * @vcpu: The vcpu pointer
+ * @val: the value guest writes to PMSWINC register
+ */
+void kvm_pmu_software_increment(struct kvm_vcpu *vcpu, u64 val)
+{
+ kvm_pmu_counter_increment(vcpu, val, ARMV8_PMUV3_PERFCTR_SW_INCR);
+}
+
+/**
+ * kvm_pmu_handle_pmcr - handle PMCR register
+ * @vcpu: The vcpu pointer
+ * @val: the value guest writes to PMCR register
+ */
+void kvm_pmu_handle_pmcr(struct kvm_vcpu *vcpu, u64 val)
+{
+ int i;
+
+ if (!kvm_vcpu_has_pmu(vcpu))
+ return;
+
+ /* Fixup PMCR_EL0 to reconcile the PMU version and the LP bit */
+ if (!kvm_pmu_is_3p5(vcpu))
+ val &= ~ARMV8_PMU_PMCR_LP;
+
+ /* The reset bits don't indicate any state, and shouldn't be saved. */
+ __vcpu_sys_reg(vcpu, PMCR_EL0) = val & ~(ARMV8_PMU_PMCR_C | ARMV8_PMU_PMCR_P);
+
+ if (val & ARMV8_PMU_PMCR_E) {
+ kvm_pmu_enable_counter_mask(vcpu,
+ __vcpu_sys_reg(vcpu, PMCNTENSET_EL0));
+ } else {
+ kvm_pmu_disable_counter_mask(vcpu,
+ __vcpu_sys_reg(vcpu, PMCNTENSET_EL0));
+ }
+
+ if (val & ARMV8_PMU_PMCR_C)
+ kvm_pmu_set_counter_value(vcpu, ARMV8_PMU_CYCLE_IDX, 0);
+
+ if (val & ARMV8_PMU_PMCR_P) {
+ unsigned long mask = kvm_pmu_valid_counter_mask(vcpu);
+ mask &= ~BIT(ARMV8_PMU_CYCLE_IDX);
+ for_each_set_bit(i, &mask, 32)
+ kvm_pmu_set_pmc_value(kvm_vcpu_idx_to_pmc(vcpu, i), 0, true);
+ }
+ kvm_vcpu_pmu_restore_guest(vcpu);
+}
+
+static bool kvm_pmu_counter_is_enabled(struct kvm_pmc *pmc)
+{
+ struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
+ return (__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E) &&
+ (__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & BIT(pmc->idx));
+}
+
+/**
+ * kvm_pmu_create_perf_event - create a perf event for a counter
+ * @pmc: Counter context
+ */
+static void kvm_pmu_create_perf_event(struct kvm_pmc *pmc)
+{
+ struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
+ struct arm_pmu *arm_pmu = vcpu->kvm->arch.arm_pmu;
+ struct perf_event *event;
+ struct perf_event_attr attr;
+ u64 eventsel, reg, data;
+
+ reg = counter_index_to_evtreg(pmc->idx);
+ data = __vcpu_sys_reg(vcpu, reg);
+
+ kvm_pmu_stop_counter(pmc);
+ if (pmc->idx == ARMV8_PMU_CYCLE_IDX)
+ eventsel = ARMV8_PMUV3_PERFCTR_CPU_CYCLES;
+ else
+ eventsel = data & kvm_pmu_event_mask(vcpu->kvm);
+
+ /*
+ * Neither SW increment nor chained events need to be backed
+ * by a perf event.
+ */
+ if (eventsel == ARMV8_PMUV3_PERFCTR_SW_INCR ||
+ eventsel == ARMV8_PMUV3_PERFCTR_CHAIN)
+ return;
+
+ /*
+ * If we have a filter in place and that the event isn't allowed, do
+ * not install a perf event either.
+ */
+ if (vcpu->kvm->arch.pmu_filter &&
+ !test_bit(eventsel, vcpu->kvm->arch.pmu_filter))
+ return;
+
+ memset(&attr, 0, sizeof(struct perf_event_attr));
+ attr.type = arm_pmu->pmu.type;
+ attr.size = sizeof(attr);
+ attr.pinned = 1;
+ attr.disabled = !kvm_pmu_counter_is_enabled(pmc);
+ attr.exclude_user = data & ARMV8_PMU_EXCLUDE_EL0 ? 1 : 0;
+ attr.exclude_kernel = data & ARMV8_PMU_EXCLUDE_EL1 ? 1 : 0;
+ attr.exclude_hv = 1; /* Don't count EL2 events */
+ attr.exclude_host = 1; /* Don't count host events */
+ attr.config = eventsel;
+
+ /*
+ * If counting with a 64bit counter, advertise it to the perf
+ * code, carefully dealing with the initial sample period
+ * which also depends on the overflow.
+ */
+ if (kvm_pmc_is_64bit(pmc))
+ attr.config1 |= PERF_ATTR_CFG1_COUNTER_64BIT;
+
+ attr.sample_period = compute_period(pmc, kvm_pmu_get_pmc_value(pmc));
+
+ event = perf_event_create_kernel_counter(&attr, -1, current,
+ kvm_pmu_perf_overflow, pmc);
+
+ if (IS_ERR(event)) {
+ pr_err_once("kvm: pmu event creation failed %ld\n",
+ PTR_ERR(event));
+ return;
+ }
+
+ pmc->perf_event = event;
+}
+
+/**
+ * kvm_pmu_set_counter_event_type - set selected counter to monitor some event
+ * @vcpu: The vcpu pointer
+ * @data: The data guest writes to PMXEVTYPER_EL0
+ * @select_idx: The number of selected counter
+ *
+ * When OS accesses PMXEVTYPER_EL0, that means it wants to set a PMC to count an
+ * event with given hardware event number. Here we call perf_event API to
+ * emulate this action and create a kernel perf event for it.
+ */
+void kvm_pmu_set_counter_event_type(struct kvm_vcpu *vcpu, u64 data,
+ u64 select_idx)
+{
+ struct kvm_pmc *pmc = kvm_vcpu_idx_to_pmc(vcpu, select_idx);
+ u64 reg, mask;
+
+ if (!kvm_vcpu_has_pmu(vcpu))
+ return;
+
+ mask = ARMV8_PMU_EVTYPE_MASK;
+ mask &= ~ARMV8_PMU_EVTYPE_EVENT;
+ mask |= kvm_pmu_event_mask(vcpu->kvm);
+
+ reg = counter_index_to_evtreg(pmc->idx);
+
+ __vcpu_sys_reg(vcpu, reg) = data & mask;
+
+ kvm_pmu_create_perf_event(pmc);
+}
+
+void kvm_host_pmu_init(struct arm_pmu *pmu)
+{
+ struct arm_pmu_entry *entry;
+
+ /*
+ * Check the sanitised PMU version for the system, as KVM does not
+ * support implementations where PMUv3 exists on a subset of CPUs.
+ */
+ if (!pmuv3_implemented(kvm_arm_pmu_get_pmuver_limit()))
+ return;
+
+ mutex_lock(&arm_pmus_lock);
+
+ entry = kmalloc(sizeof(*entry), GFP_KERNEL);
+ if (!entry)
+ goto out_unlock;
+
+ entry->arm_pmu = pmu;
+ list_add_tail(&entry->entry, &arm_pmus);
+
+ if (list_is_singular(&arm_pmus))
+ static_branch_enable(&kvm_arm_pmu_available);
+
+out_unlock:
+ mutex_unlock(&arm_pmus_lock);
+}
+
+static struct arm_pmu *kvm_pmu_probe_armpmu(void)
+{
+ struct arm_pmu *tmp, *pmu = NULL;
+ struct arm_pmu_entry *entry;
+ int cpu;
+
+ mutex_lock(&arm_pmus_lock);
+
+ /*
+ * It is safe to use a stale cpu to iterate the list of PMUs so long as
+ * the same value is used for the entirety of the loop. Given this, and
+ * the fact that no percpu data is used for the lookup there is no need
+ * to disable preemption.
+ *
+ * It is still necessary to get a valid cpu, though, to probe for the
+ * default PMU instance as userspace is not required to specify a PMU
+ * type. In order to uphold the preexisting behavior KVM selects the
+ * PMU instance for the core where the first call to the
+ * KVM_ARM_VCPU_PMU_V3_CTRL attribute group occurs. A dependent use case
+ * would be a user with disdain of all things big.LITTLE that affines
+ * the VMM to a particular cluster of cores.
+ *
+ * In any case, userspace should just do the sane thing and use the UAPI
+ * to select a PMU type directly. But, be wary of the baggage being
+ * carried here.
+ */
+ cpu = raw_smp_processor_id();
+ list_for_each_entry(entry, &arm_pmus, entry) {
+ tmp = entry->arm_pmu;
+
+ if (cpumask_test_cpu(cpu, &tmp->supported_cpus)) {
+ pmu = tmp;
+ break;
+ }
+ }
+
+ mutex_unlock(&arm_pmus_lock);
+
+ return pmu;
+}
+
+u64 kvm_pmu_get_pmceid(struct kvm_vcpu *vcpu, bool pmceid1)
+{
+ unsigned long *bmap = vcpu->kvm->arch.pmu_filter;
+ u64 val, mask = 0;
+ int base, i, nr_events;
+
+ if (!kvm_vcpu_has_pmu(vcpu))
+ return 0;
+
+ if (!pmceid1) {
+ val = read_sysreg(pmceid0_el0);
+ /* always support CHAIN */
+ val |= BIT(ARMV8_PMUV3_PERFCTR_CHAIN);
+ base = 0;
+ } else {
+ val = read_sysreg(pmceid1_el0);
+ /*
+ * Don't advertise STALL_SLOT*, as PMMIR_EL0 is handled
+ * as RAZ
+ */
+ val &= ~(BIT_ULL(ARMV8_PMUV3_PERFCTR_STALL_SLOT - 32) |
+ BIT_ULL(ARMV8_PMUV3_PERFCTR_STALL_SLOT_FRONTEND - 32) |
+ BIT_ULL(ARMV8_PMUV3_PERFCTR_STALL_SLOT_BACKEND - 32));
+ base = 32;
+ }
+
+ if (!bmap)
+ return val;
+
+ nr_events = kvm_pmu_event_mask(vcpu->kvm) + 1;
+
+ for (i = 0; i < 32; i += 8) {
+ u64 byte;
+
+ byte = bitmap_get_value8(bmap, base + i);
+ mask |= byte << i;
+ if (nr_events >= (0x4000 + base + 32)) {
+ byte = bitmap_get_value8(bmap, 0x4000 + base + i);
+ mask |= byte << (32 + i);
+ }
+ }
+
+ return val & mask;
+}
+
+int kvm_arm_pmu_v3_enable(struct kvm_vcpu *vcpu)
+{
+ if (!kvm_vcpu_has_pmu(vcpu))
+ return 0;
+
+ if (!vcpu->arch.pmu.created)
+ return -EINVAL;
+
+ /*
+ * A valid interrupt configuration for the PMU is either to have a
+ * properly configured interrupt number and using an in-kernel
+ * irqchip, or to not have an in-kernel GIC and not set an IRQ.
+ */
+ if (irqchip_in_kernel(vcpu->kvm)) {
+ int irq = vcpu->arch.pmu.irq_num;
+ /*
+ * If we are using an in-kernel vgic, at this point we know
+ * the vgic will be initialized, so we can check the PMU irq
+ * number against the dimensions of the vgic and make sure
+ * it's valid.
+ */
+ if (!irq_is_ppi(irq) && !vgic_valid_spi(vcpu->kvm, irq))
+ return -EINVAL;
+ } else if (kvm_arm_pmu_irq_initialized(vcpu)) {
+ return -EINVAL;
+ }
+
+ /* One-off reload of the PMU on first run */
+ kvm_make_request(KVM_REQ_RELOAD_PMU, vcpu);
+
+ return 0;
+}
+
+static int kvm_arm_pmu_v3_init(struct kvm_vcpu *vcpu)
+{
+ if (irqchip_in_kernel(vcpu->kvm)) {
+ int ret;
+
+ /*
+ * If using the PMU with an in-kernel virtual GIC
+ * implementation, we require the GIC to be already
+ * initialized when initializing the PMU.
+ */
+ if (!vgic_initialized(vcpu->kvm))
+ return -ENODEV;
+
+ if (!kvm_arm_pmu_irq_initialized(vcpu))
+ return -ENXIO;
+
+ ret = kvm_vgic_set_owner(vcpu, vcpu->arch.pmu.irq_num,
+ &vcpu->arch.pmu);
+ if (ret)
+ return ret;
+ }
+
+ init_irq_work(&vcpu->arch.pmu.overflow_work,
+ kvm_pmu_perf_overflow_notify_vcpu);
+
+ vcpu->arch.pmu.created = true;
+ return 0;
+}
+
+/*
+ * For one VM the interrupt type must be same for each vcpu.
+ * As a PPI, the interrupt number is the same for all vcpus,
+ * while as an SPI it must be a separate number per vcpu.
+ */
+static bool pmu_irq_is_valid(struct kvm *kvm, int irq)
+{
+ unsigned long i;
+ struct kvm_vcpu *vcpu;
+
+ kvm_for_each_vcpu(i, vcpu, kvm) {
+ if (!kvm_arm_pmu_irq_initialized(vcpu))
+ continue;
+
+ if (irq_is_ppi(irq)) {
+ if (vcpu->arch.pmu.irq_num != irq)
+ return false;
+ } else {
+ if (vcpu->arch.pmu.irq_num == irq)
+ return false;
+ }
+ }
+
+ return true;
+}
+
+static int kvm_arm_pmu_v3_set_pmu(struct kvm_vcpu *vcpu, int pmu_id)
+{
+ struct kvm *kvm = vcpu->kvm;
+ struct arm_pmu_entry *entry;
+ struct arm_pmu *arm_pmu;
+ int ret = -ENXIO;
+
+ lockdep_assert_held(&kvm->arch.config_lock);
+ mutex_lock(&arm_pmus_lock);
+
+ list_for_each_entry(entry, &arm_pmus, entry) {
+ arm_pmu = entry->arm_pmu;
+ if (arm_pmu->pmu.type == pmu_id) {
+ if (kvm_vm_has_ran_once(kvm) ||
+ (kvm->arch.pmu_filter && kvm->arch.arm_pmu != arm_pmu)) {
+ ret = -EBUSY;
+ break;
+ }
+
+ kvm->arch.arm_pmu = arm_pmu;
+ cpumask_copy(kvm->arch.supported_cpus, &arm_pmu->supported_cpus);
+ ret = 0;
+ break;
+ }
+ }
+
+ mutex_unlock(&arm_pmus_lock);
+ return ret;
+}
+
+int kvm_arm_pmu_v3_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
+{
+ struct kvm *kvm = vcpu->kvm;
+
+ lockdep_assert_held(&kvm->arch.config_lock);
+
+ if (!kvm_vcpu_has_pmu(vcpu))
+ return -ENODEV;
+
+ if (vcpu->arch.pmu.created)
+ return -EBUSY;
+
+ if (!kvm->arch.arm_pmu) {
+ /*
+ * No PMU set, get the default one.
+ *
+ * The observant among you will notice that the supported_cpus
+ * mask does not get updated for the default PMU even though it
+ * is quite possible the selected instance supports only a
+ * subset of cores in the system. This is intentional, and
+ * upholds the preexisting behavior on heterogeneous systems
+ * where vCPUs can be scheduled on any core but the guest
+ * counters could stop working.
+ */
+ kvm->arch.arm_pmu = kvm_pmu_probe_armpmu();
+ if (!kvm->arch.arm_pmu)
+ return -ENODEV;
+ }
+
+ switch (attr->attr) {
+ case KVM_ARM_VCPU_PMU_V3_IRQ: {
+ int __user *uaddr = (int __user *)(long)attr->addr;
+ int irq;
+
+ if (!irqchip_in_kernel(kvm))
+ return -EINVAL;
+
+ if (get_user(irq, uaddr))
+ return -EFAULT;
+
+ /* The PMU overflow interrupt can be a PPI or a valid SPI. */
+ if (!(irq_is_ppi(irq) || irq_is_spi(irq)))
+ return -EINVAL;
+
+ if (!pmu_irq_is_valid(kvm, irq))
+ return -EINVAL;
+
+ if (kvm_arm_pmu_irq_initialized(vcpu))
+ return -EBUSY;
+
+ kvm_debug("Set kvm ARM PMU irq: %d\n", irq);
+ vcpu->arch.pmu.irq_num = irq;
+ return 0;
+ }
+ case KVM_ARM_VCPU_PMU_V3_FILTER: {
+ u8 pmuver = kvm_arm_pmu_get_pmuver_limit();
+ struct kvm_pmu_event_filter __user *uaddr;
+ struct kvm_pmu_event_filter filter;
+ int nr_events;
+
+ /*
+ * Allow userspace to specify an event filter for the entire
+ * event range supported by PMUVer of the hardware, rather
+ * than the guest's PMUVer for KVM backward compatibility.
+ */
+ nr_events = __kvm_pmu_event_mask(pmuver) + 1;
+
+ uaddr = (struct kvm_pmu_event_filter __user *)(long)attr->addr;
+
+ if (copy_from_user(&filter, uaddr, sizeof(filter)))
+ return -EFAULT;
+
+ if (((u32)filter.base_event + filter.nevents) > nr_events ||
+ (filter.action != KVM_PMU_EVENT_ALLOW &&
+ filter.action != KVM_PMU_EVENT_DENY))
+ return -EINVAL;
+
+ if (kvm_vm_has_ran_once(kvm))
+ return -EBUSY;
+
+ if (!kvm->arch.pmu_filter) {
+ kvm->arch.pmu_filter = bitmap_alloc(nr_events, GFP_KERNEL_ACCOUNT);
+ if (!kvm->arch.pmu_filter)
+ return -ENOMEM;
+
+ /*
+ * The default depends on the first applied filter.
+ * If it allows events, the default is to deny.
+ * Conversely, if the first filter denies a set of
+ * events, the default is to allow.
+ */
+ if (filter.action == KVM_PMU_EVENT_ALLOW)
+ bitmap_zero(kvm->arch.pmu_filter, nr_events);
+ else
+ bitmap_fill(kvm->arch.pmu_filter, nr_events);
+ }
+
+ if (filter.action == KVM_PMU_EVENT_ALLOW)
+ bitmap_set(kvm->arch.pmu_filter, filter.base_event, filter.nevents);
+ else
+ bitmap_clear(kvm->arch.pmu_filter, filter.base_event, filter.nevents);
+
+ return 0;
+ }
+ case KVM_ARM_VCPU_PMU_V3_SET_PMU: {
+ int __user *uaddr = (int __user *)(long)attr->addr;
+ int pmu_id;
+
+ if (get_user(pmu_id, uaddr))
+ return -EFAULT;
+
+ return kvm_arm_pmu_v3_set_pmu(vcpu, pmu_id);
+ }
+ case KVM_ARM_VCPU_PMU_V3_INIT:
+ return kvm_arm_pmu_v3_init(vcpu);
+ }
+
+ return -ENXIO;
+}
+
+int kvm_arm_pmu_v3_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
+{
+ switch (attr->attr) {
+ case KVM_ARM_VCPU_PMU_V3_IRQ: {
+ int __user *uaddr = (int __user *)(long)attr->addr;
+ int irq;
+
+ if (!irqchip_in_kernel(vcpu->kvm))
+ return -EINVAL;
+
+ if (!kvm_vcpu_has_pmu(vcpu))
+ return -ENODEV;
+
+ if (!kvm_arm_pmu_irq_initialized(vcpu))
+ return -ENXIO;
+
+ irq = vcpu->arch.pmu.irq_num;
+ return put_user(irq, uaddr);
+ }
+ }
+
+ return -ENXIO;
+}
+
+int kvm_arm_pmu_v3_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
+{
+ switch (attr->attr) {
+ case KVM_ARM_VCPU_PMU_V3_IRQ:
+ case KVM_ARM_VCPU_PMU_V3_INIT:
+ case KVM_ARM_VCPU_PMU_V3_FILTER:
+ case KVM_ARM_VCPU_PMU_V3_SET_PMU:
+ if (kvm_vcpu_has_pmu(vcpu))
+ return 0;
+ }
+
+ return -ENXIO;
+}
+
+u8 kvm_arm_pmu_get_pmuver_limit(void)
+{
+ u64 tmp;
+
+ tmp = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
+ tmp = cpuid_feature_cap_perfmon_field(tmp,
+ ID_AA64DFR0_EL1_PMUVer_SHIFT,
+ ID_AA64DFR0_EL1_PMUVer_V3P5);
+ return FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer), tmp);
+}
diff --git a/arch/arm64/kvm/pmu.c b/arch/arm64/kvm/pmu.c
new file mode 100644
index 0000000000..a243934c55
--- /dev/null
+++ b/arch/arm64/kvm/pmu.c
@@ -0,0 +1,256 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright 2019 Arm Limited
+ * Author: Andrew Murray <Andrew.Murray@arm.com>
+ */
+#include <linux/kvm_host.h>
+#include <linux/perf_event.h>
+
+static DEFINE_PER_CPU(struct kvm_pmu_events, kvm_pmu_events);
+
+/*
+ * Given the perf event attributes and system type, determine
+ * if we are going to need to switch counters at guest entry/exit.
+ */
+static bool kvm_pmu_switch_needed(struct perf_event_attr *attr)
+{
+ /**
+ * With VHE the guest kernel runs at EL1 and the host at EL2,
+ * where user (EL0) is excluded then we have no reason to switch
+ * counters.
+ */
+ if (has_vhe() && attr->exclude_user)
+ return false;
+
+ /* Only switch if attributes are different */
+ return (attr->exclude_host != attr->exclude_guest);
+}
+
+struct kvm_pmu_events *kvm_get_pmu_events(void)
+{
+ return this_cpu_ptr(&kvm_pmu_events);
+}
+
+/*
+ * Add events to track that we may want to switch at guest entry/exit
+ * time.
+ */
+void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr)
+{
+ struct kvm_pmu_events *pmu = kvm_get_pmu_events();
+
+ if (!kvm_arm_support_pmu_v3() || !kvm_pmu_switch_needed(attr))
+ return;
+
+ if (!attr->exclude_host)
+ pmu->events_host |= set;
+ if (!attr->exclude_guest)
+ pmu->events_guest |= set;
+}
+
+/*
+ * Stop tracking events
+ */
+void kvm_clr_pmu_events(u32 clr)
+{
+ struct kvm_pmu_events *pmu = kvm_get_pmu_events();
+
+ if (!kvm_arm_support_pmu_v3())
+ return;
+
+ pmu->events_host &= ~clr;
+ pmu->events_guest &= ~clr;
+}
+
+#define PMEVTYPER_READ_CASE(idx) \
+ case idx: \
+ return read_sysreg(pmevtyper##idx##_el0)
+
+#define PMEVTYPER_WRITE_CASE(idx) \
+ case idx: \
+ write_sysreg(val, pmevtyper##idx##_el0); \
+ break
+
+#define PMEVTYPER_CASES(readwrite) \
+ PMEVTYPER_##readwrite##_CASE(0); \
+ PMEVTYPER_##readwrite##_CASE(1); \
+ PMEVTYPER_##readwrite##_CASE(2); \
+ PMEVTYPER_##readwrite##_CASE(3); \
+ PMEVTYPER_##readwrite##_CASE(4); \
+ PMEVTYPER_##readwrite##_CASE(5); \
+ PMEVTYPER_##readwrite##_CASE(6); \
+ PMEVTYPER_##readwrite##_CASE(7); \
+ PMEVTYPER_##readwrite##_CASE(8); \
+ PMEVTYPER_##readwrite##_CASE(9); \
+ PMEVTYPER_##readwrite##_CASE(10); \
+ PMEVTYPER_##readwrite##_CASE(11); \
+ PMEVTYPER_##readwrite##_CASE(12); \
+ PMEVTYPER_##readwrite##_CASE(13); \
+ PMEVTYPER_##readwrite##_CASE(14); \
+ PMEVTYPER_##readwrite##_CASE(15); \
+ PMEVTYPER_##readwrite##_CASE(16); \
+ PMEVTYPER_##readwrite##_CASE(17); \
+ PMEVTYPER_##readwrite##_CASE(18); \
+ PMEVTYPER_##readwrite##_CASE(19); \
+ PMEVTYPER_##readwrite##_CASE(20); \
+ PMEVTYPER_##readwrite##_CASE(21); \
+ PMEVTYPER_##readwrite##_CASE(22); \
+ PMEVTYPER_##readwrite##_CASE(23); \
+ PMEVTYPER_##readwrite##_CASE(24); \
+ PMEVTYPER_##readwrite##_CASE(25); \
+ PMEVTYPER_##readwrite##_CASE(26); \
+ PMEVTYPER_##readwrite##_CASE(27); \
+ PMEVTYPER_##readwrite##_CASE(28); \
+ PMEVTYPER_##readwrite##_CASE(29); \
+ PMEVTYPER_##readwrite##_CASE(30)
+
+/*
+ * Read a value direct from PMEVTYPER<idx> where idx is 0-30
+ * or PMCCFILTR_EL0 where idx is ARMV8_PMU_CYCLE_IDX (31).
+ */
+static u64 kvm_vcpu_pmu_read_evtype_direct(int idx)
+{
+ switch (idx) {
+ PMEVTYPER_CASES(READ);
+ case ARMV8_PMU_CYCLE_IDX:
+ return read_sysreg(pmccfiltr_el0);
+ default:
+ WARN_ON(1);
+ }
+
+ return 0;
+}
+
+/*
+ * Write a value direct to PMEVTYPER<idx> where idx is 0-30
+ * or PMCCFILTR_EL0 where idx is ARMV8_PMU_CYCLE_IDX (31).
+ */
+static void kvm_vcpu_pmu_write_evtype_direct(int idx, u32 val)
+{
+ switch (idx) {
+ PMEVTYPER_CASES(WRITE);
+ case ARMV8_PMU_CYCLE_IDX:
+ write_sysreg(val, pmccfiltr_el0);
+ break;
+ default:
+ WARN_ON(1);
+ }
+}
+
+/*
+ * Modify ARMv8 PMU events to include EL0 counting
+ */
+static void kvm_vcpu_pmu_enable_el0(unsigned long events)
+{
+ u64 typer;
+ u32 counter;
+
+ for_each_set_bit(counter, &events, 32) {
+ typer = kvm_vcpu_pmu_read_evtype_direct(counter);
+ typer &= ~ARMV8_PMU_EXCLUDE_EL0;
+ kvm_vcpu_pmu_write_evtype_direct(counter, typer);
+ }
+}
+
+/*
+ * Modify ARMv8 PMU events to exclude EL0 counting
+ */
+static void kvm_vcpu_pmu_disable_el0(unsigned long events)
+{
+ u64 typer;
+ u32 counter;
+
+ for_each_set_bit(counter, &events, 32) {
+ typer = kvm_vcpu_pmu_read_evtype_direct(counter);
+ typer |= ARMV8_PMU_EXCLUDE_EL0;
+ kvm_vcpu_pmu_write_evtype_direct(counter, typer);
+ }
+}
+
+/*
+ * On VHE ensure that only guest events have EL0 counting enabled.
+ * This is called from both vcpu_{load,put} and the sysreg handling.
+ * Since the latter is preemptible, special care must be taken to
+ * disable preemption.
+ */
+void kvm_vcpu_pmu_restore_guest(struct kvm_vcpu *vcpu)
+{
+ struct kvm_pmu_events *pmu;
+ u32 events_guest, events_host;
+
+ if (!kvm_arm_support_pmu_v3() || !has_vhe())
+ return;
+
+ preempt_disable();
+ pmu = kvm_get_pmu_events();
+ events_guest = pmu->events_guest;
+ events_host = pmu->events_host;
+
+ kvm_vcpu_pmu_enable_el0(events_guest);
+ kvm_vcpu_pmu_disable_el0(events_host);
+ preempt_enable();
+}
+
+/*
+ * On VHE ensure that only host events have EL0 counting enabled
+ */
+void kvm_vcpu_pmu_restore_host(struct kvm_vcpu *vcpu)
+{
+ struct kvm_pmu_events *pmu;
+ u32 events_guest, events_host;
+
+ if (!kvm_arm_support_pmu_v3() || !has_vhe())
+ return;
+
+ pmu = kvm_get_pmu_events();
+ events_guest = pmu->events_guest;
+ events_host = pmu->events_host;
+
+ kvm_vcpu_pmu_enable_el0(events_host);
+ kvm_vcpu_pmu_disable_el0(events_guest);
+}
+
+/*
+ * With VHE, keep track of the PMUSERENR_EL0 value for the host EL0 on the pCPU
+ * where PMUSERENR_EL0 for the guest is loaded, since PMUSERENR_EL0 is switched
+ * to the value for the guest on vcpu_load(). The value for the host EL0
+ * will be restored on vcpu_put(), before returning to userspace.
+ * This isn't necessary for nVHE, as the register is context switched for
+ * every guest enter/exit.
+ *
+ * Return true if KVM takes care of the register. Otherwise return false.
+ */
+bool kvm_set_pmuserenr(u64 val)
+{
+ struct kvm_cpu_context *hctxt;
+ struct kvm_vcpu *vcpu;
+
+ if (!kvm_arm_support_pmu_v3() || !has_vhe())
+ return false;
+
+ vcpu = kvm_get_running_vcpu();
+ if (!vcpu || !vcpu_get_flag(vcpu, PMUSERENR_ON_CPU))
+ return false;
+
+ hctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt;
+ ctxt_sys_reg(hctxt, PMUSERENR_EL0) = val;
+ return true;
+}
+
+/*
+ * If we interrupted the guest to update the host PMU context, make
+ * sure we re-apply the guest EL0 state.
+ */
+void kvm_vcpu_pmu_resync_el0(void)
+{
+ struct kvm_vcpu *vcpu;
+
+ if (!has_vhe() || !in_interrupt())
+ return;
+
+ vcpu = kvm_get_running_vcpu();
+ if (!vcpu)
+ return;
+
+ kvm_make_request(KVM_REQ_RESYNC_PMU_EL0, vcpu);
+}
diff --git a/arch/arm64/kvm/psci.c b/arch/arm64/kvm/psci.c
new file mode 100644
index 0000000000..1f69b66733
--- /dev/null
+++ b/arch/arm64/kvm/psci.c
@@ -0,0 +1,465 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2012 - ARM Ltd
+ * Author: Marc Zyngier <marc.zyngier@arm.com>
+ */
+
+#include <linux/arm-smccc.h>
+#include <linux/preempt.h>
+#include <linux/kvm_host.h>
+#include <linux/uaccess.h>
+#include <linux/wait.h>
+
+#include <asm/cputype.h>
+#include <asm/kvm_emulate.h>
+
+#include <kvm/arm_psci.h>
+#include <kvm/arm_hypercalls.h>
+
+/*
+ * This is an implementation of the Power State Coordination Interface
+ * as described in ARM document number ARM DEN 0022A.
+ */
+
+#define AFFINITY_MASK(level) ~((0x1UL << ((level) * MPIDR_LEVEL_BITS)) - 1)
+
+static unsigned long psci_affinity_mask(unsigned long affinity_level)
+{
+ if (affinity_level <= 3)
+ return MPIDR_HWID_BITMASK & AFFINITY_MASK(affinity_level);
+
+ return 0;
+}
+
+static unsigned long kvm_psci_vcpu_suspend(struct kvm_vcpu *vcpu)
+{
+ /*
+ * NOTE: For simplicity, we make VCPU suspend emulation to be
+ * same-as WFI (Wait-for-interrupt) emulation.
+ *
+ * This means for KVM the wakeup events are interrupts and
+ * this is consistent with intended use of StateID as described
+ * in section 5.4.1 of PSCI v0.2 specification (ARM DEN 0022A).
+ *
+ * Further, we also treat power-down request to be same as
+ * stand-by request as-per section 5.4.2 clause 3 of PSCI v0.2
+ * specification (ARM DEN 0022A). This means all suspend states
+ * for KVM will preserve the register state.
+ */
+ kvm_vcpu_wfi(vcpu);
+
+ return PSCI_RET_SUCCESS;
+}
+
+static inline bool kvm_psci_valid_affinity(struct kvm_vcpu *vcpu,
+ unsigned long affinity)
+{
+ return !(affinity & ~MPIDR_HWID_BITMASK);
+}
+
+static unsigned long kvm_psci_vcpu_on(struct kvm_vcpu *source_vcpu)
+{
+ struct vcpu_reset_state *reset_state;
+ struct kvm *kvm = source_vcpu->kvm;
+ struct kvm_vcpu *vcpu = NULL;
+ int ret = PSCI_RET_SUCCESS;
+ unsigned long cpu_id;
+
+ cpu_id = smccc_get_arg1(source_vcpu);
+ if (!kvm_psci_valid_affinity(source_vcpu, cpu_id))
+ return PSCI_RET_INVALID_PARAMS;
+
+ vcpu = kvm_mpidr_to_vcpu(kvm, cpu_id);
+
+ /*
+ * Make sure the caller requested a valid CPU and that the CPU is
+ * turned off.
+ */
+ if (!vcpu)
+ return PSCI_RET_INVALID_PARAMS;
+
+ spin_lock(&vcpu->arch.mp_state_lock);
+ if (!kvm_arm_vcpu_stopped(vcpu)) {
+ if (kvm_psci_version(source_vcpu) != KVM_ARM_PSCI_0_1)
+ ret = PSCI_RET_ALREADY_ON;
+ else
+ ret = PSCI_RET_INVALID_PARAMS;
+
+ goto out_unlock;
+ }
+
+ reset_state = &vcpu->arch.reset_state;
+
+ reset_state->pc = smccc_get_arg2(source_vcpu);
+
+ /* Propagate caller endianness */
+ reset_state->be = kvm_vcpu_is_be(source_vcpu);
+
+ /*
+ * NOTE: We always update r0 (or x0) because for PSCI v0.1
+ * the general purpose registers are undefined upon CPU_ON.
+ */
+ reset_state->r0 = smccc_get_arg3(source_vcpu);
+
+ reset_state->reset = true;
+ kvm_make_request(KVM_REQ_VCPU_RESET, vcpu);
+
+ /*
+ * Make sure the reset request is observed if the RUNNABLE mp_state is
+ * observed.
+ */
+ smp_wmb();
+
+ WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE);
+ kvm_vcpu_wake_up(vcpu);
+
+out_unlock:
+ spin_unlock(&vcpu->arch.mp_state_lock);
+ return ret;
+}
+
+static unsigned long kvm_psci_vcpu_affinity_info(struct kvm_vcpu *vcpu)
+{
+ int matching_cpus = 0;
+ unsigned long i, mpidr;
+ unsigned long target_affinity;
+ unsigned long target_affinity_mask;
+ unsigned long lowest_affinity_level;
+ struct kvm *kvm = vcpu->kvm;
+ struct kvm_vcpu *tmp;
+
+ target_affinity = smccc_get_arg1(vcpu);
+ lowest_affinity_level = smccc_get_arg2(vcpu);
+
+ if (!kvm_psci_valid_affinity(vcpu, target_affinity))
+ return PSCI_RET_INVALID_PARAMS;
+
+ /* Determine target affinity mask */
+ target_affinity_mask = psci_affinity_mask(lowest_affinity_level);
+ if (!target_affinity_mask)
+ return PSCI_RET_INVALID_PARAMS;
+
+ /* Ignore other bits of target affinity */
+ target_affinity &= target_affinity_mask;
+
+ /*
+ * If one or more VCPU matching target affinity are running
+ * then ON else OFF
+ */
+ kvm_for_each_vcpu(i, tmp, kvm) {
+ mpidr = kvm_vcpu_get_mpidr_aff(tmp);
+ if ((mpidr & target_affinity_mask) == target_affinity) {
+ matching_cpus++;
+ if (!kvm_arm_vcpu_stopped(tmp))
+ return PSCI_0_2_AFFINITY_LEVEL_ON;
+ }
+ }
+
+ if (!matching_cpus)
+ return PSCI_RET_INVALID_PARAMS;
+
+ return PSCI_0_2_AFFINITY_LEVEL_OFF;
+}
+
+static void kvm_prepare_system_event(struct kvm_vcpu *vcpu, u32 type, u64 flags)
+{
+ unsigned long i;
+ struct kvm_vcpu *tmp;
+
+ /*
+ * The KVM ABI specifies that a system event exit may call KVM_RUN
+ * again and may perform shutdown/reboot at a later time that when the
+ * actual request is made. Since we are implementing PSCI and a
+ * caller of PSCI reboot and shutdown expects that the system shuts
+ * down or reboots immediately, let's make sure that VCPUs are not run
+ * after this call is handled and before the VCPUs have been
+ * re-initialized.
+ */
+ kvm_for_each_vcpu(i, tmp, vcpu->kvm) {
+ spin_lock(&tmp->arch.mp_state_lock);
+ WRITE_ONCE(tmp->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED);
+ spin_unlock(&tmp->arch.mp_state_lock);
+ }
+ kvm_make_all_cpus_request(vcpu->kvm, KVM_REQ_SLEEP);
+
+ memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event));
+ vcpu->run->system_event.type = type;
+ vcpu->run->system_event.ndata = 1;
+ vcpu->run->system_event.data[0] = flags;
+ vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
+}
+
+static void kvm_psci_system_off(struct kvm_vcpu *vcpu)
+{
+ kvm_prepare_system_event(vcpu, KVM_SYSTEM_EVENT_SHUTDOWN, 0);
+}
+
+static void kvm_psci_system_reset(struct kvm_vcpu *vcpu)
+{
+ kvm_prepare_system_event(vcpu, KVM_SYSTEM_EVENT_RESET, 0);
+}
+
+static void kvm_psci_system_reset2(struct kvm_vcpu *vcpu)
+{
+ kvm_prepare_system_event(vcpu, KVM_SYSTEM_EVENT_RESET,
+ KVM_SYSTEM_EVENT_RESET_FLAG_PSCI_RESET2);
+}
+
+static void kvm_psci_system_suspend(struct kvm_vcpu *vcpu)
+{
+ struct kvm_run *run = vcpu->run;
+
+ memset(&run->system_event, 0, sizeof(vcpu->run->system_event));
+ run->system_event.type = KVM_SYSTEM_EVENT_SUSPEND;
+ run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
+}
+
+static void kvm_psci_narrow_to_32bit(struct kvm_vcpu *vcpu)
+{
+ int i;
+
+ /*
+ * Zero the input registers' upper 32 bits. They will be fully
+ * zeroed on exit, so we're fine changing them in place.
+ */
+ for (i = 1; i < 4; i++)
+ vcpu_set_reg(vcpu, i, lower_32_bits(vcpu_get_reg(vcpu, i)));
+}
+
+static unsigned long kvm_psci_check_allowed_function(struct kvm_vcpu *vcpu, u32 fn)
+{
+ /*
+ * Prevent 32 bit guests from calling 64 bit PSCI functions.
+ */
+ if ((fn & PSCI_0_2_64BIT) && vcpu_mode_is_32bit(vcpu))
+ return PSCI_RET_NOT_SUPPORTED;
+
+ return 0;
+}
+
+static int kvm_psci_0_2_call(struct kvm_vcpu *vcpu)
+{
+ u32 psci_fn = smccc_get_function(vcpu);
+ unsigned long val;
+ int ret = 1;
+
+ switch (psci_fn) {
+ case PSCI_0_2_FN_PSCI_VERSION:
+ /*
+ * Bits[31:16] = Major Version = 0
+ * Bits[15:0] = Minor Version = 2
+ */
+ val = KVM_ARM_PSCI_0_2;
+ break;
+ case PSCI_0_2_FN_CPU_SUSPEND:
+ case PSCI_0_2_FN64_CPU_SUSPEND:
+ val = kvm_psci_vcpu_suspend(vcpu);
+ break;
+ case PSCI_0_2_FN_CPU_OFF:
+ kvm_arm_vcpu_power_off(vcpu);
+ val = PSCI_RET_SUCCESS;
+ break;
+ case PSCI_0_2_FN_CPU_ON:
+ kvm_psci_narrow_to_32bit(vcpu);
+ fallthrough;
+ case PSCI_0_2_FN64_CPU_ON:
+ val = kvm_psci_vcpu_on(vcpu);
+ break;
+ case PSCI_0_2_FN_AFFINITY_INFO:
+ kvm_psci_narrow_to_32bit(vcpu);
+ fallthrough;
+ case PSCI_0_2_FN64_AFFINITY_INFO:
+ val = kvm_psci_vcpu_affinity_info(vcpu);
+ break;
+ case PSCI_0_2_FN_MIGRATE_INFO_TYPE:
+ /*
+ * Trusted OS is MP hence does not require migration
+ * or
+ * Trusted OS is not present
+ */
+ val = PSCI_0_2_TOS_MP;
+ break;
+ case PSCI_0_2_FN_SYSTEM_OFF:
+ kvm_psci_system_off(vcpu);
+ /*
+ * We shouldn't be going back to guest VCPU after
+ * receiving SYSTEM_OFF request.
+ *
+ * If user space accidentally/deliberately resumes
+ * guest VCPU after SYSTEM_OFF request then guest
+ * VCPU should see internal failure from PSCI return
+ * value. To achieve this, we preload r0 (or x0) with
+ * PSCI return value INTERNAL_FAILURE.
+ */
+ val = PSCI_RET_INTERNAL_FAILURE;
+ ret = 0;
+ break;
+ case PSCI_0_2_FN_SYSTEM_RESET:
+ kvm_psci_system_reset(vcpu);
+ /*
+ * Same reason as SYSTEM_OFF for preloading r0 (or x0)
+ * with PSCI return value INTERNAL_FAILURE.
+ */
+ val = PSCI_RET_INTERNAL_FAILURE;
+ ret = 0;
+ break;
+ default:
+ val = PSCI_RET_NOT_SUPPORTED;
+ break;
+ }
+
+ smccc_set_retval(vcpu, val, 0, 0, 0);
+ return ret;
+}
+
+static int kvm_psci_1_x_call(struct kvm_vcpu *vcpu, u32 minor)
+{
+ unsigned long val = PSCI_RET_NOT_SUPPORTED;
+ u32 psci_fn = smccc_get_function(vcpu);
+ struct kvm *kvm = vcpu->kvm;
+ u32 arg;
+ int ret = 1;
+
+ switch(psci_fn) {
+ case PSCI_0_2_FN_PSCI_VERSION:
+ val = minor == 0 ? KVM_ARM_PSCI_1_0 : KVM_ARM_PSCI_1_1;
+ break;
+ case PSCI_1_0_FN_PSCI_FEATURES:
+ arg = smccc_get_arg1(vcpu);
+ val = kvm_psci_check_allowed_function(vcpu, arg);
+ if (val)
+ break;
+
+ val = PSCI_RET_NOT_SUPPORTED;
+
+ switch(arg) {
+ case PSCI_0_2_FN_PSCI_VERSION:
+ case PSCI_0_2_FN_CPU_SUSPEND:
+ case PSCI_0_2_FN64_CPU_SUSPEND:
+ case PSCI_0_2_FN_CPU_OFF:
+ case PSCI_0_2_FN_CPU_ON:
+ case PSCI_0_2_FN64_CPU_ON:
+ case PSCI_0_2_FN_AFFINITY_INFO:
+ case PSCI_0_2_FN64_AFFINITY_INFO:
+ case PSCI_0_2_FN_MIGRATE_INFO_TYPE:
+ case PSCI_0_2_FN_SYSTEM_OFF:
+ case PSCI_0_2_FN_SYSTEM_RESET:
+ case PSCI_1_0_FN_PSCI_FEATURES:
+ case ARM_SMCCC_VERSION_FUNC_ID:
+ val = 0;
+ break;
+ case PSCI_1_0_FN_SYSTEM_SUSPEND:
+ case PSCI_1_0_FN64_SYSTEM_SUSPEND:
+ if (test_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags))
+ val = 0;
+ break;
+ case PSCI_1_1_FN_SYSTEM_RESET2:
+ case PSCI_1_1_FN64_SYSTEM_RESET2:
+ if (minor >= 1)
+ val = 0;
+ break;
+ }
+ break;
+ case PSCI_1_0_FN_SYSTEM_SUSPEND:
+ kvm_psci_narrow_to_32bit(vcpu);
+ fallthrough;
+ case PSCI_1_0_FN64_SYSTEM_SUSPEND:
+ /*
+ * Return directly to userspace without changing the vCPU's
+ * registers. Userspace depends on reading the SMCCC parameters
+ * to implement SYSTEM_SUSPEND.
+ */
+ if (test_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags)) {
+ kvm_psci_system_suspend(vcpu);
+ return 0;
+ }
+ break;
+ case PSCI_1_1_FN_SYSTEM_RESET2:
+ kvm_psci_narrow_to_32bit(vcpu);
+ fallthrough;
+ case PSCI_1_1_FN64_SYSTEM_RESET2:
+ if (minor >= 1) {
+ arg = smccc_get_arg1(vcpu);
+
+ if (arg <= PSCI_1_1_RESET_TYPE_SYSTEM_WARM_RESET ||
+ arg >= PSCI_1_1_RESET_TYPE_VENDOR_START) {
+ kvm_psci_system_reset2(vcpu);
+ vcpu_set_reg(vcpu, 0, PSCI_RET_INTERNAL_FAILURE);
+ return 0;
+ }
+
+ val = PSCI_RET_INVALID_PARAMS;
+ break;
+ }
+ break;
+ default:
+ return kvm_psci_0_2_call(vcpu);
+ }
+
+ smccc_set_retval(vcpu, val, 0, 0, 0);
+ return ret;
+}
+
+static int kvm_psci_0_1_call(struct kvm_vcpu *vcpu)
+{
+ u32 psci_fn = smccc_get_function(vcpu);
+ unsigned long val;
+
+ switch (psci_fn) {
+ case KVM_PSCI_FN_CPU_OFF:
+ kvm_arm_vcpu_power_off(vcpu);
+ val = PSCI_RET_SUCCESS;
+ break;
+ case KVM_PSCI_FN_CPU_ON:
+ val = kvm_psci_vcpu_on(vcpu);
+ break;
+ default:
+ val = PSCI_RET_NOT_SUPPORTED;
+ break;
+ }
+
+ smccc_set_retval(vcpu, val, 0, 0, 0);
+ return 1;
+}
+
+/**
+ * kvm_psci_call - handle PSCI call if r0 value is in range
+ * @vcpu: Pointer to the VCPU struct
+ *
+ * Handle PSCI calls from guests through traps from HVC instructions.
+ * The calling convention is similar to SMC calls to the secure world
+ * where the function number is placed in r0.
+ *
+ * This function returns: > 0 (success), 0 (success but exit to user
+ * space), and < 0 (errors)
+ *
+ * Errors:
+ * -EINVAL: Unrecognized PSCI function
+ */
+int kvm_psci_call(struct kvm_vcpu *vcpu)
+{
+ u32 psci_fn = smccc_get_function(vcpu);
+ int version = kvm_psci_version(vcpu);
+ unsigned long val;
+
+ val = kvm_psci_check_allowed_function(vcpu, psci_fn);
+ if (val) {
+ smccc_set_retval(vcpu, val, 0, 0, 0);
+ return 1;
+ }
+
+ switch (version) {
+ case KVM_ARM_PSCI_1_1:
+ return kvm_psci_1_x_call(vcpu, 1);
+ case KVM_ARM_PSCI_1_0:
+ return kvm_psci_1_x_call(vcpu, 0);
+ case KVM_ARM_PSCI_0_2:
+ return kvm_psci_0_2_call(vcpu);
+ case KVM_ARM_PSCI_0_1:
+ return kvm_psci_0_1_call(vcpu);
+ default:
+ WARN_ONCE(1, "Unknown PSCI version %d", version);
+ smccc_set_retval(vcpu, SMCCC_RET_NOT_SUPPORTED, 0, 0, 0);
+ return 1;
+ }
+}
diff --git a/arch/arm64/kvm/pvtime.c b/arch/arm64/kvm/pvtime.c
new file mode 100644
index 0000000000..4ceabaa4c3
--- /dev/null
+++ b/arch/arm64/kvm/pvtime.c
@@ -0,0 +1,133 @@
+// SPDX-License-Identifier: GPL-2.0
+// Copyright (C) 2019 Arm Ltd.
+
+#include <linux/arm-smccc.h>
+#include <linux/kvm_host.h>
+#include <linux/sched/stat.h>
+
+#include <asm/kvm_mmu.h>
+#include <asm/pvclock-abi.h>
+
+#include <kvm/arm_hypercalls.h>
+
+void kvm_update_stolen_time(struct kvm_vcpu *vcpu)
+{
+ struct kvm *kvm = vcpu->kvm;
+ u64 base = vcpu->arch.steal.base;
+ u64 last_steal = vcpu->arch.steal.last_steal;
+ u64 offset = offsetof(struct pvclock_vcpu_stolen_time, stolen_time);
+ u64 steal = 0;
+ int idx;
+
+ if (base == INVALID_GPA)
+ return;
+
+ idx = srcu_read_lock(&kvm->srcu);
+ if (!kvm_get_guest(kvm, base + offset, steal)) {
+ steal = le64_to_cpu(steal);
+ vcpu->arch.steal.last_steal = READ_ONCE(current->sched_info.run_delay);
+ steal += vcpu->arch.steal.last_steal - last_steal;
+ kvm_put_guest(kvm, base + offset, cpu_to_le64(steal));
+ }
+ srcu_read_unlock(&kvm->srcu, idx);
+}
+
+long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu)
+{
+ u32 feature = smccc_get_arg1(vcpu);
+ long val = SMCCC_RET_NOT_SUPPORTED;
+
+ switch (feature) {
+ case ARM_SMCCC_HV_PV_TIME_FEATURES:
+ case ARM_SMCCC_HV_PV_TIME_ST:
+ if (vcpu->arch.steal.base != INVALID_GPA)
+ val = SMCCC_RET_SUCCESS;
+ break;
+ }
+
+ return val;
+}
+
+gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu)
+{
+ struct pvclock_vcpu_stolen_time init_values = {};
+ struct kvm *kvm = vcpu->kvm;
+ u64 base = vcpu->arch.steal.base;
+
+ if (base == INVALID_GPA)
+ return base;
+
+ /*
+ * Start counting stolen time from the time the guest requests
+ * the feature enabled.
+ */
+ vcpu->arch.steal.last_steal = current->sched_info.run_delay;
+ kvm_write_guest_lock(kvm, base, &init_values, sizeof(init_values));
+
+ return base;
+}
+
+bool kvm_arm_pvtime_supported(void)
+{
+ return !!sched_info_on();
+}
+
+int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu,
+ struct kvm_device_attr *attr)
+{
+ u64 __user *user = (u64 __user *)attr->addr;
+ struct kvm *kvm = vcpu->kvm;
+ u64 ipa;
+ int ret = 0;
+ int idx;
+
+ if (!kvm_arm_pvtime_supported() ||
+ attr->attr != KVM_ARM_VCPU_PVTIME_IPA)
+ return -ENXIO;
+
+ if (get_user(ipa, user))
+ return -EFAULT;
+ if (!IS_ALIGNED(ipa, 64))
+ return -EINVAL;
+ if (vcpu->arch.steal.base != INVALID_GPA)
+ return -EEXIST;
+
+ /* Check the address is in a valid memslot */
+ idx = srcu_read_lock(&kvm->srcu);
+ if (kvm_is_error_hva(gfn_to_hva(kvm, ipa >> PAGE_SHIFT)))
+ ret = -EINVAL;
+ srcu_read_unlock(&kvm->srcu, idx);
+
+ if (!ret)
+ vcpu->arch.steal.base = ipa;
+
+ return ret;
+}
+
+int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu,
+ struct kvm_device_attr *attr)
+{
+ u64 __user *user = (u64 __user *)attr->addr;
+ u64 ipa;
+
+ if (!kvm_arm_pvtime_supported() ||
+ attr->attr != KVM_ARM_VCPU_PVTIME_IPA)
+ return -ENXIO;
+
+ ipa = vcpu->arch.steal.base;
+
+ if (put_user(ipa, user))
+ return -EFAULT;
+ return 0;
+}
+
+int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu,
+ struct kvm_device_attr *attr)
+{
+ switch (attr->attr) {
+ case KVM_ARM_VCPU_PVTIME_IPA:
+ if (kvm_arm_pvtime_supported())
+ return 0;
+ }
+ return -ENXIO;
+}
diff --git a/arch/arm64/kvm/reset.c b/arch/arm64/kvm/reset.c
new file mode 100644
index 0000000000..7a65a35ee4
--- /dev/null
+++ b/arch/arm64/kvm/reset.c
@@ -0,0 +1,352 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2012,2013 - ARM Ltd
+ * Author: Marc Zyngier <marc.zyngier@arm.com>
+ *
+ * Derived from arch/arm/kvm/reset.c
+ * Copyright (C) 2012 - Virtual Open Systems and Columbia University
+ * Author: Christoffer Dall <c.dall@virtualopensystems.com>
+ */
+
+#include <linux/errno.h>
+#include <linux/kernel.h>
+#include <linux/kvm_host.h>
+#include <linux/kvm.h>
+#include <linux/hw_breakpoint.h>
+#include <linux/slab.h>
+#include <linux/string.h>
+#include <linux/types.h>
+
+#include <kvm/arm_arch_timer.h>
+
+#include <asm/cpufeature.h>
+#include <asm/cputype.h>
+#include <asm/fpsimd.h>
+#include <asm/ptrace.h>
+#include <asm/kvm_arm.h>
+#include <asm/kvm_asm.h>
+#include <asm/kvm_emulate.h>
+#include <asm/kvm_mmu.h>
+#include <asm/kvm_nested.h>
+#include <asm/virt.h>
+
+/* Maximum phys_shift supported for any VM on this host */
+static u32 __ro_after_init kvm_ipa_limit;
+
+/*
+ * ARMv8 Reset Values
+ */
+#define VCPU_RESET_PSTATE_EL1 (PSR_MODE_EL1h | PSR_A_BIT | PSR_I_BIT | \
+ PSR_F_BIT | PSR_D_BIT)
+
+#define VCPU_RESET_PSTATE_EL2 (PSR_MODE_EL2h | PSR_A_BIT | PSR_I_BIT | \
+ PSR_F_BIT | PSR_D_BIT)
+
+#define VCPU_RESET_PSTATE_SVC (PSR_AA32_MODE_SVC | PSR_AA32_A_BIT | \
+ PSR_AA32_I_BIT | PSR_AA32_F_BIT)
+
+unsigned int __ro_after_init kvm_sve_max_vl;
+
+int __init kvm_arm_init_sve(void)
+{
+ if (system_supports_sve()) {
+ kvm_sve_max_vl = sve_max_virtualisable_vl();
+
+ /*
+ * The get_sve_reg()/set_sve_reg() ioctl interface will need
+ * to be extended with multiple register slice support in
+ * order to support vector lengths greater than
+ * VL_ARCH_MAX:
+ */
+ if (WARN_ON(kvm_sve_max_vl > VL_ARCH_MAX))
+ kvm_sve_max_vl = VL_ARCH_MAX;
+
+ /*
+ * Don't even try to make use of vector lengths that
+ * aren't available on all CPUs, for now:
+ */
+ if (kvm_sve_max_vl < sve_max_vl())
+ pr_warn("KVM: SVE vector length for guests limited to %u bytes\n",
+ kvm_sve_max_vl);
+ }
+
+ return 0;
+}
+
+static int kvm_vcpu_enable_sve(struct kvm_vcpu *vcpu)
+{
+ if (!system_supports_sve())
+ return -EINVAL;
+
+ vcpu->arch.sve_max_vl = kvm_sve_max_vl;
+
+ /*
+ * Userspace can still customize the vector lengths by writing
+ * KVM_REG_ARM64_SVE_VLS. Allocation is deferred until
+ * kvm_arm_vcpu_finalize(), which freezes the configuration.
+ */
+ vcpu_set_flag(vcpu, GUEST_HAS_SVE);
+
+ return 0;
+}
+
+/*
+ * Finalize vcpu's maximum SVE vector length, allocating
+ * vcpu->arch.sve_state as necessary.
+ */
+static int kvm_vcpu_finalize_sve(struct kvm_vcpu *vcpu)
+{
+ void *buf;
+ unsigned int vl;
+ size_t reg_sz;
+ int ret;
+
+ vl = vcpu->arch.sve_max_vl;
+
+ /*
+ * Responsibility for these properties is shared between
+ * kvm_arm_init_sve(), kvm_vcpu_enable_sve() and
+ * set_sve_vls(). Double-check here just to be sure:
+ */
+ if (WARN_ON(!sve_vl_valid(vl) || vl > sve_max_virtualisable_vl() ||
+ vl > VL_ARCH_MAX))
+ return -EIO;
+
+ reg_sz = vcpu_sve_state_size(vcpu);
+ buf = kzalloc(reg_sz, GFP_KERNEL_ACCOUNT);
+ if (!buf)
+ return -ENOMEM;
+
+ ret = kvm_share_hyp(buf, buf + reg_sz);
+ if (ret) {
+ kfree(buf);
+ return ret;
+ }
+
+ vcpu->arch.sve_state = buf;
+ vcpu_set_flag(vcpu, VCPU_SVE_FINALIZED);
+ return 0;
+}
+
+int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature)
+{
+ switch (feature) {
+ case KVM_ARM_VCPU_SVE:
+ if (!vcpu_has_sve(vcpu))
+ return -EINVAL;
+
+ if (kvm_arm_vcpu_sve_finalized(vcpu))
+ return -EPERM;
+
+ return kvm_vcpu_finalize_sve(vcpu);
+ }
+
+ return -EINVAL;
+}
+
+bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu)
+{
+ if (vcpu_has_sve(vcpu) && !kvm_arm_vcpu_sve_finalized(vcpu))
+ return false;
+
+ return true;
+}
+
+void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu)
+{
+ void *sve_state = vcpu->arch.sve_state;
+
+ kvm_vcpu_unshare_task_fp(vcpu);
+ kvm_unshare_hyp(vcpu, vcpu + 1);
+ if (sve_state)
+ kvm_unshare_hyp(sve_state, sve_state + vcpu_sve_state_size(vcpu));
+ kfree(sve_state);
+ kfree(vcpu->arch.ccsidr);
+}
+
+static void kvm_vcpu_reset_sve(struct kvm_vcpu *vcpu)
+{
+ if (vcpu_has_sve(vcpu))
+ memset(vcpu->arch.sve_state, 0, vcpu_sve_state_size(vcpu));
+}
+
+static int kvm_vcpu_enable_ptrauth(struct kvm_vcpu *vcpu)
+{
+ /*
+ * For now make sure that both address/generic pointer authentication
+ * features are requested by the userspace together and the system
+ * supports these capabilities.
+ */
+ if (!test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, vcpu->arch.features) ||
+ !test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, vcpu->arch.features) ||
+ !system_has_full_ptr_auth())
+ return -EINVAL;
+
+ vcpu_set_flag(vcpu, GUEST_HAS_PTRAUTH);
+ return 0;
+}
+
+/**
+ * kvm_reset_vcpu - sets core registers and sys_regs to reset value
+ * @vcpu: The VCPU pointer
+ *
+ * This function sets the registers on the virtual CPU struct to their
+ * architecturally defined reset values, except for registers whose reset is
+ * deferred until kvm_arm_vcpu_finalize().
+ *
+ * Note: This function can be called from two paths: The KVM_ARM_VCPU_INIT
+ * ioctl or as part of handling a request issued by another VCPU in the PSCI
+ * handling code. In the first case, the VCPU will not be loaded, and in the
+ * second case the VCPU will be loaded. Because this function operates purely
+ * on the memory-backed values of system registers, we want to do a full put if
+ * we were loaded (handling a request) and load the values back at the end of
+ * the function. Otherwise we leave the state alone. In both cases, we
+ * disable preemption around the vcpu reset as we would otherwise race with
+ * preempt notifiers which also call put/load.
+ */
+int kvm_reset_vcpu(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_reset_state reset_state;
+ int ret;
+ bool loaded;
+ u32 pstate;
+
+ spin_lock(&vcpu->arch.mp_state_lock);
+ reset_state = vcpu->arch.reset_state;
+ vcpu->arch.reset_state.reset = false;
+ spin_unlock(&vcpu->arch.mp_state_lock);
+
+ /* Reset PMU outside of the non-preemptible section */
+ kvm_pmu_vcpu_reset(vcpu);
+
+ preempt_disable();
+ loaded = (vcpu->cpu != -1);
+ if (loaded)
+ kvm_arch_vcpu_put(vcpu);
+
+ /* Disallow NV+SVE for the time being */
+ if (vcpu_has_nv(vcpu) && vcpu_has_feature(vcpu, KVM_ARM_VCPU_SVE)) {
+ ret = -EINVAL;
+ goto out;
+ }
+
+ if (!kvm_arm_vcpu_sve_finalized(vcpu)) {
+ if (test_bit(KVM_ARM_VCPU_SVE, vcpu->arch.features)) {
+ ret = kvm_vcpu_enable_sve(vcpu);
+ if (ret)
+ goto out;
+ }
+ } else {
+ kvm_vcpu_reset_sve(vcpu);
+ }
+
+ if (test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, vcpu->arch.features) ||
+ test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, vcpu->arch.features)) {
+ if (kvm_vcpu_enable_ptrauth(vcpu)) {
+ ret = -EINVAL;
+ goto out;
+ }
+ }
+
+ if (vcpu_el1_is_32bit(vcpu))
+ pstate = VCPU_RESET_PSTATE_SVC;
+ else if (vcpu_has_nv(vcpu))
+ pstate = VCPU_RESET_PSTATE_EL2;
+ else
+ pstate = VCPU_RESET_PSTATE_EL1;
+
+ if (kvm_vcpu_has_pmu(vcpu) && !kvm_arm_support_pmu_v3()) {
+ ret = -EINVAL;
+ goto out;
+ }
+
+ /* Reset core registers */
+ memset(vcpu_gp_regs(vcpu), 0, sizeof(*vcpu_gp_regs(vcpu)));
+ memset(&vcpu->arch.ctxt.fp_regs, 0, sizeof(vcpu->arch.ctxt.fp_regs));
+ vcpu->arch.ctxt.spsr_abt = 0;
+ vcpu->arch.ctxt.spsr_und = 0;
+ vcpu->arch.ctxt.spsr_irq = 0;
+ vcpu->arch.ctxt.spsr_fiq = 0;
+ vcpu_gp_regs(vcpu)->pstate = pstate;
+
+ /* Reset system registers */
+ kvm_reset_sys_regs(vcpu);
+
+ /*
+ * Additional reset state handling that PSCI may have imposed on us.
+ * Must be done after all the sys_reg reset.
+ */
+ if (reset_state.reset) {
+ unsigned long target_pc = reset_state.pc;
+
+ /* Gracefully handle Thumb2 entry point */
+ if (vcpu_mode_is_32bit(vcpu) && (target_pc & 1)) {
+ target_pc &= ~1UL;
+ vcpu_set_thumb(vcpu);
+ }
+
+ /* Propagate caller endianness */
+ if (reset_state.be)
+ kvm_vcpu_set_be(vcpu);
+
+ *vcpu_pc(vcpu) = target_pc;
+ vcpu_set_reg(vcpu, 0, reset_state.r0);
+ }
+
+ /* Reset timer */
+ ret = kvm_timer_vcpu_reset(vcpu);
+out:
+ if (loaded)
+ kvm_arch_vcpu_load(vcpu, smp_processor_id());
+ preempt_enable();
+ return ret;
+}
+
+u32 get_kvm_ipa_limit(void)
+{
+ return kvm_ipa_limit;
+}
+
+int __init kvm_set_ipa_limit(void)
+{
+ unsigned int parange;
+ u64 mmfr0;
+
+ mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
+ parange = cpuid_feature_extract_unsigned_field(mmfr0,
+ ID_AA64MMFR0_EL1_PARANGE_SHIFT);
+ /*
+ * IPA size beyond 48 bits could not be supported
+ * on either 4K or 16K page size. Hence let's cap
+ * it to 48 bits, in case it's reported as larger
+ * on the system.
+ */
+ if (PAGE_SIZE != SZ_64K)
+ parange = min(parange, (unsigned int)ID_AA64MMFR0_EL1_PARANGE_48);
+
+ /*
+ * Check with ARMv8.5-GTG that our PAGE_SIZE is supported at
+ * Stage-2. If not, things will stop very quickly.
+ */
+ switch (cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_EL1_TGRAN_2_SHIFT)) {
+ case ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_NONE:
+ kvm_err("PAGE_SIZE not supported at Stage-2, giving up\n");
+ return -EINVAL;
+ case ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_DEFAULT:
+ kvm_debug("PAGE_SIZE supported at Stage-2 (default)\n");
+ break;
+ case ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_MIN ... ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_MAX:
+ kvm_debug("PAGE_SIZE supported at Stage-2 (advertised)\n");
+ break;
+ default:
+ kvm_err("Unsupported value for TGRAN_2, giving up\n");
+ return -EINVAL;
+ }
+
+ kvm_ipa_limit = id_aa64mmfr0_parange_to_phys_shift(parange);
+ kvm_info("IPA Size Limit: %d bits%s\n", kvm_ipa_limit,
+ ((kvm_ipa_limit < KVM_PHYS_SHIFT) ?
+ " (Reduced IPA size, limited VM/VMM compatibility)" : ""));
+
+ return 0;
+}
diff --git a/arch/arm64/kvm/stacktrace.c b/arch/arm64/kvm/stacktrace.c
new file mode 100644
index 0000000000..3ace5b7581
--- /dev/null
+++ b/arch/arm64/kvm/stacktrace.c
@@ -0,0 +1,245 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+/*
+ * KVM nVHE hypervisor stack tracing support.
+ *
+ * The unwinder implementation depends on the nVHE mode:
+ *
+ * 1) Non-protected nVHE mode - the host can directly access the
+ * HYP stack pages and unwind the HYP stack in EL1. This saves having
+ * to allocate shared buffers for the host to read the unwinded
+ * stacktrace.
+ *
+ * 2) pKVM (protected nVHE) mode - the host cannot directly access
+ * the HYP memory. The stack is unwinded in EL2 and dumped to a shared
+ * buffer where the host can read and print the stacktrace.
+ *
+ * Copyright (C) 2022 Google LLC
+ */
+
+#include <linux/kvm.h>
+#include <linux/kvm_host.h>
+
+#include <asm/stacktrace/nvhe.h>
+
+static struct stack_info stackinfo_get_overflow(void)
+{
+ struct kvm_nvhe_stacktrace_info *stacktrace_info
+ = this_cpu_ptr_nvhe_sym(kvm_stacktrace_info);
+ unsigned long low = (unsigned long)stacktrace_info->overflow_stack_base;
+ unsigned long high = low + OVERFLOW_STACK_SIZE;
+
+ return (struct stack_info) {
+ .low = low,
+ .high = high,
+ };
+}
+
+static struct stack_info stackinfo_get_overflow_kern_va(void)
+{
+ unsigned long low = (unsigned long)this_cpu_ptr_nvhe_sym(overflow_stack);
+ unsigned long high = low + OVERFLOW_STACK_SIZE;
+
+ return (struct stack_info) {
+ .low = low,
+ .high = high,
+ };
+}
+
+static struct stack_info stackinfo_get_hyp(void)
+{
+ struct kvm_nvhe_stacktrace_info *stacktrace_info
+ = this_cpu_ptr_nvhe_sym(kvm_stacktrace_info);
+ unsigned long low = (unsigned long)stacktrace_info->stack_base;
+ unsigned long high = low + PAGE_SIZE;
+
+ return (struct stack_info) {
+ .low = low,
+ .high = high,
+ };
+}
+
+static struct stack_info stackinfo_get_hyp_kern_va(void)
+{
+ unsigned long low = (unsigned long)*this_cpu_ptr(&kvm_arm_hyp_stack_page);
+ unsigned long high = low + PAGE_SIZE;
+
+ return (struct stack_info) {
+ .low = low,
+ .high = high,
+ };
+}
+
+/*
+ * kvm_nvhe_stack_kern_va - Convert KVM nVHE HYP stack addresses to a kernel VAs
+ *
+ * The nVHE hypervisor stack is mapped in the flexible 'private' VA range, to
+ * allow for guard pages below the stack. Consequently, the fixed offset address
+ * translation macros won't work here.
+ *
+ * The kernel VA is calculated as an offset from the kernel VA of the hypervisor
+ * stack base.
+ *
+ * Returns true on success and updates @addr to its corresponding kernel VA;
+ * otherwise returns false.
+ */
+static bool kvm_nvhe_stack_kern_va(unsigned long *addr, unsigned long size)
+{
+ struct stack_info stack_hyp, stack_kern;
+
+ stack_hyp = stackinfo_get_hyp();
+ stack_kern = stackinfo_get_hyp_kern_va();
+ if (stackinfo_on_stack(&stack_hyp, *addr, size))
+ goto found;
+
+ stack_hyp = stackinfo_get_overflow();
+ stack_kern = stackinfo_get_overflow_kern_va();
+ if (stackinfo_on_stack(&stack_hyp, *addr, size))
+ goto found;
+
+ return false;
+
+found:
+ *addr = *addr - stack_hyp.low + stack_kern.low;
+ return true;
+}
+
+/*
+ * Convert a KVN nVHE HYP frame record address to a kernel VA
+ */
+static bool kvm_nvhe_stack_kern_record_va(unsigned long *addr)
+{
+ return kvm_nvhe_stack_kern_va(addr, 16);
+}
+
+static int unwind_next(struct unwind_state *state)
+{
+ /*
+ * The FP is in the hypervisor VA space. Convert it to the kernel VA
+ * space so it can be unwound by the regular unwind functions.
+ */
+ if (!kvm_nvhe_stack_kern_record_va(&state->fp))
+ return -EINVAL;
+
+ return unwind_next_frame_record(state);
+}
+
+static void unwind(struct unwind_state *state,
+ stack_trace_consume_fn consume_entry, void *cookie)
+{
+ while (1) {
+ int ret;
+
+ if (!consume_entry(cookie, state->pc))
+ break;
+ ret = unwind_next(state);
+ if (ret < 0)
+ break;
+ }
+}
+
+/*
+ * kvm_nvhe_dump_backtrace_entry - Symbolize and print an nVHE backtrace entry
+ *
+ * @arg : the hypervisor offset, used for address translation
+ * @where : the program counter corresponding to the stack frame
+ */
+static bool kvm_nvhe_dump_backtrace_entry(void *arg, unsigned long where)
+{
+ unsigned long va_mask = GENMASK_ULL(vabits_actual - 1, 0);
+ unsigned long hyp_offset = (unsigned long)arg;
+
+ /* Mask tags and convert to kern addr */
+ where = (where & va_mask) + hyp_offset;
+ kvm_err(" [<%016lx>] %pB\n", where, (void *)(where + kaslr_offset()));
+
+ return true;
+}
+
+static void kvm_nvhe_dump_backtrace_start(void)
+{
+ kvm_err("nVHE call trace:\n");
+}
+
+static void kvm_nvhe_dump_backtrace_end(void)
+{
+ kvm_err("---[ end nVHE call trace ]---\n");
+}
+
+/*
+ * hyp_dump_backtrace - Dump the non-protected nVHE backtrace.
+ *
+ * @hyp_offset: hypervisor offset, used for address translation.
+ *
+ * The host can directly access HYP stack pages in non-protected
+ * mode, so the unwinding is done directly from EL1. This removes
+ * the need for shared buffers between host and hypervisor for
+ * the stacktrace.
+ */
+static void hyp_dump_backtrace(unsigned long hyp_offset)
+{
+ struct kvm_nvhe_stacktrace_info *stacktrace_info;
+ struct stack_info stacks[] = {
+ stackinfo_get_overflow_kern_va(),
+ stackinfo_get_hyp_kern_va(),
+ };
+ struct unwind_state state = {
+ .stacks = stacks,
+ .nr_stacks = ARRAY_SIZE(stacks),
+ };
+
+ stacktrace_info = this_cpu_ptr_nvhe_sym(kvm_stacktrace_info);
+
+ kvm_nvhe_unwind_init(&state, stacktrace_info->fp, stacktrace_info->pc);
+
+ kvm_nvhe_dump_backtrace_start();
+ unwind(&state, kvm_nvhe_dump_backtrace_entry, (void *)hyp_offset);
+ kvm_nvhe_dump_backtrace_end();
+}
+
+#ifdef CONFIG_PROTECTED_NVHE_STACKTRACE
+DECLARE_KVM_NVHE_PER_CPU(unsigned long [NVHE_STACKTRACE_SIZE/sizeof(long)],
+ pkvm_stacktrace);
+
+/*
+ * pkvm_dump_backtrace - Dump the protected nVHE HYP backtrace.
+ *
+ * @hyp_offset: hypervisor offset, used for address translation.
+ *
+ * Dumping of the pKVM HYP backtrace is done by reading the
+ * stack addresses from the shared stacktrace buffer, since the
+ * host cannot directly access hypervisor memory in protected
+ * mode.
+ */
+static void pkvm_dump_backtrace(unsigned long hyp_offset)
+{
+ unsigned long *stacktrace
+ = (unsigned long *) this_cpu_ptr_nvhe_sym(pkvm_stacktrace);
+ int i;
+
+ kvm_nvhe_dump_backtrace_start();
+ /* The saved stacktrace is terminated by a null entry */
+ for (i = 0;
+ i < ARRAY_SIZE(kvm_nvhe_sym(pkvm_stacktrace)) && stacktrace[i];
+ i++)
+ kvm_nvhe_dump_backtrace_entry((void *)hyp_offset, stacktrace[i]);
+ kvm_nvhe_dump_backtrace_end();
+}
+#else /* !CONFIG_PROTECTED_NVHE_STACKTRACE */
+static void pkvm_dump_backtrace(unsigned long hyp_offset)
+{
+ kvm_err("Cannot dump pKVM nVHE stacktrace: !CONFIG_PROTECTED_NVHE_STACKTRACE\n");
+}
+#endif /* CONFIG_PROTECTED_NVHE_STACKTRACE */
+
+/*
+ * kvm_nvhe_dump_backtrace - Dump KVM nVHE hypervisor backtrace.
+ *
+ * @hyp_offset: hypervisor offset, used for address translation.
+ */
+void kvm_nvhe_dump_backtrace(unsigned long hyp_offset)
+{
+ if (is_protected_kvm_enabled())
+ pkvm_dump_backtrace(hyp_offset);
+ else
+ hyp_dump_backtrace(hyp_offset);
+}
diff --git a/arch/arm64/kvm/sys_regs.c b/arch/arm64/kvm/sys_regs.c
new file mode 100644
index 0000000000..0afd6136e2
--- /dev/null
+++ b/arch/arm64/kvm/sys_regs.c
@@ -0,0 +1,3606 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2012,2013 - ARM Ltd
+ * Author: Marc Zyngier <marc.zyngier@arm.com>
+ *
+ * Derived from arch/arm/kvm/coproc.c:
+ * Copyright (C) 2012 - Virtual Open Systems and Columbia University
+ * Authors: Rusty Russell <rusty@rustcorp.com.au>
+ * Christoffer Dall <c.dall@virtualopensystems.com>
+ */
+
+#include <linux/bitfield.h>
+#include <linux/bsearch.h>
+#include <linux/cacheinfo.h>
+#include <linux/kvm_host.h>
+#include <linux/mm.h>
+#include <linux/printk.h>
+#include <linux/uaccess.h>
+
+#include <asm/cacheflush.h>
+#include <asm/cputype.h>
+#include <asm/debug-monitors.h>
+#include <asm/esr.h>
+#include <asm/kvm_arm.h>
+#include <asm/kvm_emulate.h>
+#include <asm/kvm_hyp.h>
+#include <asm/kvm_mmu.h>
+#include <asm/kvm_nested.h>
+#include <asm/perf_event.h>
+#include <asm/sysreg.h>
+
+#include <trace/events/kvm.h>
+
+#include "sys_regs.h"
+
+#include "trace.h"
+
+/*
+ * For AArch32, we only take care of what is being trapped. Anything
+ * that has to do with init and userspace access has to go via the
+ * 64bit interface.
+ */
+
+static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
+static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
+ u64 val);
+
+static bool read_from_write_only(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *params,
+ const struct sys_reg_desc *r)
+{
+ WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
+ print_sys_reg_instr(params);
+ kvm_inject_undefined(vcpu);
+ return false;
+}
+
+static bool write_to_read_only(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *params,
+ const struct sys_reg_desc *r)
+{
+ WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
+ print_sys_reg_instr(params);
+ kvm_inject_undefined(vcpu);
+ return false;
+}
+
+u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
+{
+ u64 val = 0x8badf00d8badf00d;
+
+ if (vcpu_get_flag(vcpu, SYSREGS_ON_CPU) &&
+ __vcpu_read_sys_reg_from_cpu(reg, &val))
+ return val;
+
+ return __vcpu_sys_reg(vcpu, reg);
+}
+
+void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
+{
+ if (vcpu_get_flag(vcpu, SYSREGS_ON_CPU) &&
+ __vcpu_write_sys_reg_to_cpu(val, reg))
+ return;
+
+ __vcpu_sys_reg(vcpu, reg) = val;
+}
+
+/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
+#define CSSELR_MAX 14
+
+/*
+ * Returns the minimum line size for the selected cache, expressed as
+ * Log2(bytes).
+ */
+static u8 get_min_cache_line_size(bool icache)
+{
+ u64 ctr = read_sanitised_ftr_reg(SYS_CTR_EL0);
+ u8 field;
+
+ if (icache)
+ field = SYS_FIELD_GET(CTR_EL0, IminLine, ctr);
+ else
+ field = SYS_FIELD_GET(CTR_EL0, DminLine, ctr);
+
+ /*
+ * Cache line size is represented as Log2(words) in CTR_EL0.
+ * Log2(bytes) can be derived with the following:
+ *
+ * Log2(words) + 2 = Log2(bytes / 4) + 2
+ * = Log2(bytes) - 2 + 2
+ * = Log2(bytes)
+ */
+ return field + 2;
+}
+
+/* Which cache CCSIDR represents depends on CSSELR value. */
+static u32 get_ccsidr(struct kvm_vcpu *vcpu, u32 csselr)
+{
+ u8 line_size;
+
+ if (vcpu->arch.ccsidr)
+ return vcpu->arch.ccsidr[csselr];
+
+ line_size = get_min_cache_line_size(csselr & CSSELR_EL1_InD);
+
+ /*
+ * Fabricate a CCSIDR value as the overriding value does not exist.
+ * The real CCSIDR value will not be used as it can vary by the
+ * physical CPU which the vcpu currently resides in.
+ *
+ * The line size is determined with get_min_cache_line_size(), which
+ * should be valid for all CPUs even if they have different cache
+ * configuration.
+ *
+ * The associativity bits are cleared, meaning the geometry of all data
+ * and unified caches (which are guaranteed to be PIPT and thus
+ * non-aliasing) are 1 set and 1 way.
+ * Guests should not be doing cache operations by set/way at all, and
+ * for this reason, we trap them and attempt to infer the intent, so
+ * that we can flush the entire guest's address space at the appropriate
+ * time. The exposed geometry minimizes the number of the traps.
+ * [If guests should attempt to infer aliasing properties from the
+ * geometry (which is not permitted by the architecture), they would
+ * only do so for virtually indexed caches.]
+ *
+ * We don't check if the cache level exists as it is allowed to return
+ * an UNKNOWN value if not.
+ */
+ return SYS_FIELD_PREP(CCSIDR_EL1, LineSize, line_size - 4);
+}
+
+static int set_ccsidr(struct kvm_vcpu *vcpu, u32 csselr, u32 val)
+{
+ u8 line_size = FIELD_GET(CCSIDR_EL1_LineSize, val) + 4;
+ u32 *ccsidr = vcpu->arch.ccsidr;
+ u32 i;
+
+ if ((val & CCSIDR_EL1_RES0) ||
+ line_size < get_min_cache_line_size(csselr & CSSELR_EL1_InD))
+ return -EINVAL;
+
+ if (!ccsidr) {
+ if (val == get_ccsidr(vcpu, csselr))
+ return 0;
+
+ ccsidr = kmalloc_array(CSSELR_MAX, sizeof(u32), GFP_KERNEL_ACCOUNT);
+ if (!ccsidr)
+ return -ENOMEM;
+
+ for (i = 0; i < CSSELR_MAX; i++)
+ ccsidr[i] = get_ccsidr(vcpu, i);
+
+ vcpu->arch.ccsidr = ccsidr;
+ }
+
+ ccsidr[csselr] = val;
+
+ return 0;
+}
+
+static bool access_rw(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ if (p->is_write)
+ vcpu_write_sys_reg(vcpu, p->regval, r->reg);
+ else
+ p->regval = vcpu_read_sys_reg(vcpu, r->reg);
+
+ return true;
+}
+
+/*
+ * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
+ */
+static bool access_dcsw(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ if (!p->is_write)
+ return read_from_write_only(vcpu, p, r);
+
+ /*
+ * Only track S/W ops if we don't have FWB. It still indicates
+ * that the guest is a bit broken (S/W operations should only
+ * be done by firmware, knowing that there is only a single
+ * CPU left in the system, and certainly not from non-secure
+ * software).
+ */
+ if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
+ kvm_set_way_flush(vcpu);
+
+ return true;
+}
+
+static bool access_dcgsw(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ if (!kvm_has_mte(vcpu->kvm)) {
+ kvm_inject_undefined(vcpu);
+ return false;
+ }
+
+ /* Treat MTE S/W ops as we treat the classic ones: with contempt */
+ return access_dcsw(vcpu, p, r);
+}
+
+static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift)
+{
+ switch (r->aarch32_map) {
+ case AA32_LO:
+ *mask = GENMASK_ULL(31, 0);
+ *shift = 0;
+ break;
+ case AA32_HI:
+ *mask = GENMASK_ULL(63, 32);
+ *shift = 32;
+ break;
+ default:
+ *mask = GENMASK_ULL(63, 0);
+ *shift = 0;
+ break;
+ }
+}
+
+/*
+ * Generic accessor for VM registers. Only called as long as HCR_TVM
+ * is set. If the guest enables the MMU, we stop trapping the VM
+ * sys_regs and leave it in complete control of the caches.
+ */
+static bool access_vm_reg(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ bool was_enabled = vcpu_has_cache_enabled(vcpu);
+ u64 val, mask, shift;
+
+ BUG_ON(!p->is_write);
+
+ get_access_mask(r, &mask, &shift);
+
+ if (~mask) {
+ val = vcpu_read_sys_reg(vcpu, r->reg);
+ val &= ~mask;
+ } else {
+ val = 0;
+ }
+
+ val |= (p->regval & (mask >> shift)) << shift;
+ vcpu_write_sys_reg(vcpu, val, r->reg);
+
+ kvm_toggle_cache(vcpu, was_enabled);
+ return true;
+}
+
+static bool access_actlr(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ u64 mask, shift;
+
+ if (p->is_write)
+ return ignore_write(vcpu, p);
+
+ get_access_mask(r, &mask, &shift);
+ p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift;
+
+ return true;
+}
+
+/*
+ * Trap handler for the GICv3 SGI generation system register.
+ * Forward the request to the VGIC emulation.
+ * The cp15_64 code makes sure this automatically works
+ * for both AArch64 and AArch32 accesses.
+ */
+static bool access_gic_sgi(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ bool g1;
+
+ if (!p->is_write)
+ return read_from_write_only(vcpu, p, r);
+
+ /*
+ * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
+ * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
+ * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
+ * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
+ * group.
+ */
+ if (p->Op0 == 0) { /* AArch32 */
+ switch (p->Op1) {
+ default: /* Keep GCC quiet */
+ case 0: /* ICC_SGI1R */
+ g1 = true;
+ break;
+ case 1: /* ICC_ASGI1R */
+ case 2: /* ICC_SGI0R */
+ g1 = false;
+ break;
+ }
+ } else { /* AArch64 */
+ switch (p->Op2) {
+ default: /* Keep GCC quiet */
+ case 5: /* ICC_SGI1R_EL1 */
+ g1 = true;
+ break;
+ case 6: /* ICC_ASGI1R_EL1 */
+ case 7: /* ICC_SGI0R_EL1 */
+ g1 = false;
+ break;
+ }
+ }
+
+ vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
+
+ return true;
+}
+
+static bool access_gic_sre(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ if (p->is_write)
+ return ignore_write(vcpu, p);
+
+ p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
+ return true;
+}
+
+static bool trap_raz_wi(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ if (p->is_write)
+ return ignore_write(vcpu, p);
+ else
+ return read_zero(vcpu, p);
+}
+
+static bool trap_undef(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ kvm_inject_undefined(vcpu);
+ return false;
+}
+
+/*
+ * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
+ * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
+ * system, these registers should UNDEF. LORID_EL1 being a RO register, we
+ * treat it separately.
+ */
+static bool trap_loregion(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
+ u32 sr = reg_to_encoding(r);
+
+ if (!(val & (0xfUL << ID_AA64MMFR1_EL1_LO_SHIFT))) {
+ kvm_inject_undefined(vcpu);
+ return false;
+ }
+
+ if (p->is_write && sr == SYS_LORID_EL1)
+ return write_to_read_only(vcpu, p, r);
+
+ return trap_raz_wi(vcpu, p, r);
+}
+
+static bool trap_oslar_el1(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ u64 oslsr;
+
+ if (!p->is_write)
+ return read_from_write_only(vcpu, p, r);
+
+ /* Forward the OSLK bit to OSLSR */
+ oslsr = __vcpu_sys_reg(vcpu, OSLSR_EL1) & ~OSLSR_EL1_OSLK;
+ if (p->regval & OSLAR_EL1_OSLK)
+ oslsr |= OSLSR_EL1_OSLK;
+
+ __vcpu_sys_reg(vcpu, OSLSR_EL1) = oslsr;
+ return true;
+}
+
+static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ if (p->is_write)
+ return write_to_read_only(vcpu, p, r);
+
+ p->regval = __vcpu_sys_reg(vcpu, r->reg);
+ return true;
+}
+
+static int set_oslsr_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
+ u64 val)
+{
+ /*
+ * The only modifiable bit is the OSLK bit. Refuse the write if
+ * userspace attempts to change any other bit in the register.
+ */
+ if ((val ^ rd->val) & ~OSLSR_EL1_OSLK)
+ return -EINVAL;
+
+ __vcpu_sys_reg(vcpu, rd->reg) = val;
+ return 0;
+}
+
+static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ if (p->is_write) {
+ return ignore_write(vcpu, p);
+ } else {
+ p->regval = read_sysreg(dbgauthstatus_el1);
+ return true;
+ }
+}
+
+/*
+ * We want to avoid world-switching all the DBG registers all the
+ * time:
+ *
+ * - If we've touched any debug register, it is likely that we're
+ * going to touch more of them. It then makes sense to disable the
+ * traps and start doing the save/restore dance
+ * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
+ * then mandatory to save/restore the registers, as the guest
+ * depends on them.
+ *
+ * For this, we use a DIRTY bit, indicating the guest has modified the
+ * debug registers, used as follow:
+ *
+ * On guest entry:
+ * - If the dirty bit is set (because we're coming back from trapping),
+ * disable the traps, save host registers, restore guest registers.
+ * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
+ * set the dirty bit, disable the traps, save host registers,
+ * restore guest registers.
+ * - Otherwise, enable the traps
+ *
+ * On guest exit:
+ * - If the dirty bit is set, save guest registers, restore host
+ * registers and clear the dirty bit. This ensure that the host can
+ * now use the debug registers.
+ */
+static bool trap_debug_regs(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ access_rw(vcpu, p, r);
+ if (p->is_write)
+ vcpu_set_flag(vcpu, DEBUG_DIRTY);
+
+ trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
+
+ return true;
+}
+
+/*
+ * reg_to_dbg/dbg_to_reg
+ *
+ * A 32 bit write to a debug register leave top bits alone
+ * A 32 bit read from a debug register only returns the bottom bits
+ *
+ * All writes will set the DEBUG_DIRTY flag to ensure the hyp code
+ * switches between host and guest values in future.
+ */
+static void reg_to_dbg(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *p,
+ const struct sys_reg_desc *rd,
+ u64 *dbg_reg)
+{
+ u64 mask, shift, val;
+
+ get_access_mask(rd, &mask, &shift);
+
+ val = *dbg_reg;
+ val &= ~mask;
+ val |= (p->regval & (mask >> shift)) << shift;
+ *dbg_reg = val;
+
+ vcpu_set_flag(vcpu, DEBUG_DIRTY);
+}
+
+static void dbg_to_reg(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *p,
+ const struct sys_reg_desc *rd,
+ u64 *dbg_reg)
+{
+ u64 mask, shift;
+
+ get_access_mask(rd, &mask, &shift);
+ p->regval = (*dbg_reg & mask) >> shift;
+}
+
+static bool trap_bvr(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *p,
+ const struct sys_reg_desc *rd)
+{
+ u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
+
+ if (p->is_write)
+ reg_to_dbg(vcpu, p, rd, dbg_reg);
+ else
+ dbg_to_reg(vcpu, p, rd, dbg_reg);
+
+ trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
+
+ return true;
+}
+
+static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
+ u64 val)
+{
+ vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = val;
+ return 0;
+}
+
+static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
+ u64 *val)
+{
+ *val = vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
+ return 0;
+}
+
+static u64 reset_bvr(struct kvm_vcpu *vcpu,
+ const struct sys_reg_desc *rd)
+{
+ vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = rd->val;
+ return rd->val;
+}
+
+static bool trap_bcr(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *p,
+ const struct sys_reg_desc *rd)
+{
+ u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
+
+ if (p->is_write)
+ reg_to_dbg(vcpu, p, rd, dbg_reg);
+ else
+ dbg_to_reg(vcpu, p, rd, dbg_reg);
+
+ trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
+
+ return true;
+}
+
+static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
+ u64 val)
+{
+ vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = val;
+ return 0;
+}
+
+static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
+ u64 *val)
+{
+ *val = vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
+ return 0;
+}
+
+static u64 reset_bcr(struct kvm_vcpu *vcpu,
+ const struct sys_reg_desc *rd)
+{
+ vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = rd->val;
+ return rd->val;
+}
+
+static bool trap_wvr(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *p,
+ const struct sys_reg_desc *rd)
+{
+ u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
+
+ if (p->is_write)
+ reg_to_dbg(vcpu, p, rd, dbg_reg);
+ else
+ dbg_to_reg(vcpu, p, rd, dbg_reg);
+
+ trace_trap_reg(__func__, rd->CRm, p->is_write,
+ vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]);
+
+ return true;
+}
+
+static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
+ u64 val)
+{
+ vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = val;
+ return 0;
+}
+
+static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
+ u64 *val)
+{
+ *val = vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
+ return 0;
+}
+
+static u64 reset_wvr(struct kvm_vcpu *vcpu,
+ const struct sys_reg_desc *rd)
+{
+ vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = rd->val;
+ return rd->val;
+}
+
+static bool trap_wcr(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *p,
+ const struct sys_reg_desc *rd)
+{
+ u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
+
+ if (p->is_write)
+ reg_to_dbg(vcpu, p, rd, dbg_reg);
+ else
+ dbg_to_reg(vcpu, p, rd, dbg_reg);
+
+ trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
+
+ return true;
+}
+
+static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
+ u64 val)
+{
+ vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = val;
+ return 0;
+}
+
+static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
+ u64 *val)
+{
+ *val = vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
+ return 0;
+}
+
+static u64 reset_wcr(struct kvm_vcpu *vcpu,
+ const struct sys_reg_desc *rd)
+{
+ vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = rd->val;
+ return rd->val;
+}
+
+static u64 reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
+{
+ u64 amair = read_sysreg(amair_el1);
+ vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
+ return amair;
+}
+
+static u64 reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
+{
+ u64 actlr = read_sysreg(actlr_el1);
+ vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
+ return actlr;
+}
+
+static u64 reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
+{
+ u64 mpidr;
+
+ /*
+ * Map the vcpu_id into the first three affinity level fields of
+ * the MPIDR. We limit the number of VCPUs in level 0 due to a
+ * limitation to 16 CPUs in that level in the ICC_SGIxR registers
+ * of the GICv3 to be able to address each CPU directly when
+ * sending IPIs.
+ */
+ mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
+ mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
+ mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
+ mpidr |= (1ULL << 31);
+ vcpu_write_sys_reg(vcpu, mpidr, MPIDR_EL1);
+
+ return mpidr;
+}
+
+static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu,
+ const struct sys_reg_desc *r)
+{
+ if (kvm_vcpu_has_pmu(vcpu))
+ return 0;
+
+ return REG_HIDDEN;
+}
+
+static u64 reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
+{
+ u64 n, mask = BIT(ARMV8_PMU_CYCLE_IDX);
+
+ /* No PMU available, any PMU reg may UNDEF... */
+ if (!kvm_arm_support_pmu_v3())
+ return 0;
+
+ n = read_sysreg(pmcr_el0) >> ARMV8_PMU_PMCR_N_SHIFT;
+ n &= ARMV8_PMU_PMCR_N_MASK;
+ if (n)
+ mask |= GENMASK(n - 1, 0);
+
+ reset_unknown(vcpu, r);
+ __vcpu_sys_reg(vcpu, r->reg) &= mask;
+
+ return __vcpu_sys_reg(vcpu, r->reg);
+}
+
+static u64 reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
+{
+ reset_unknown(vcpu, r);
+ __vcpu_sys_reg(vcpu, r->reg) &= GENMASK(31, 0);
+
+ return __vcpu_sys_reg(vcpu, r->reg);
+}
+
+static u64 reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
+{
+ reset_unknown(vcpu, r);
+ __vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_EVTYPE_MASK;
+
+ return __vcpu_sys_reg(vcpu, r->reg);
+}
+
+static u64 reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
+{
+ reset_unknown(vcpu, r);
+ __vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_COUNTER_MASK;
+
+ return __vcpu_sys_reg(vcpu, r->reg);
+}
+
+static u64 reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
+{
+ u64 pmcr;
+
+ /* No PMU available, PMCR_EL0 may UNDEF... */
+ if (!kvm_arm_support_pmu_v3())
+ return 0;
+
+ /* Only preserve PMCR_EL0.N, and reset the rest to 0 */
+ pmcr = read_sysreg(pmcr_el0) & (ARMV8_PMU_PMCR_N_MASK << ARMV8_PMU_PMCR_N_SHIFT);
+ if (!kvm_supports_32bit_el0())
+ pmcr |= ARMV8_PMU_PMCR_LC;
+
+ __vcpu_sys_reg(vcpu, r->reg) = pmcr;
+
+ return __vcpu_sys_reg(vcpu, r->reg);
+}
+
+static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
+{
+ u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
+ bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
+
+ if (!enabled)
+ kvm_inject_undefined(vcpu);
+
+ return !enabled;
+}
+
+static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
+{
+ return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
+}
+
+static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
+{
+ return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
+}
+
+static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
+{
+ return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
+}
+
+static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
+{
+ return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
+}
+
+static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ u64 val;
+
+ if (pmu_access_el0_disabled(vcpu))
+ return false;
+
+ if (p->is_write) {
+ /*
+ * Only update writeable bits of PMCR (continuing into
+ * kvm_pmu_handle_pmcr() as well)
+ */
+ val = __vcpu_sys_reg(vcpu, PMCR_EL0);
+ val &= ~ARMV8_PMU_PMCR_MASK;
+ val |= p->regval & ARMV8_PMU_PMCR_MASK;
+ if (!kvm_supports_32bit_el0())
+ val |= ARMV8_PMU_PMCR_LC;
+ kvm_pmu_handle_pmcr(vcpu, val);
+ } else {
+ /* PMCR.P & PMCR.C are RAZ */
+ val = __vcpu_sys_reg(vcpu, PMCR_EL0)
+ & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
+ p->regval = val;
+ }
+
+ return true;
+}
+
+static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ if (pmu_access_event_counter_el0_disabled(vcpu))
+ return false;
+
+ if (p->is_write)
+ __vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
+ else
+ /* return PMSELR.SEL field */
+ p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
+ & ARMV8_PMU_COUNTER_MASK;
+
+ return true;
+}
+
+static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ u64 pmceid, mask, shift;
+
+ BUG_ON(p->is_write);
+
+ if (pmu_access_el0_disabled(vcpu))
+ return false;
+
+ get_access_mask(r, &mask, &shift);
+
+ pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
+ pmceid &= mask;
+ pmceid >>= shift;
+
+ p->regval = pmceid;
+
+ return true;
+}
+
+static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
+{
+ u64 pmcr, val;
+
+ pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
+ val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
+ if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
+ kvm_inject_undefined(vcpu);
+ return false;
+ }
+
+ return true;
+}
+
+static int get_pmu_evcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
+ u64 *val)
+{
+ u64 idx;
+
+ if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 0)
+ /* PMCCNTR_EL0 */
+ idx = ARMV8_PMU_CYCLE_IDX;
+ else
+ /* PMEVCNTRn_EL0 */
+ idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
+
+ *val = kvm_pmu_get_counter_value(vcpu, idx);
+ return 0;
+}
+
+static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ u64 idx = ~0UL;
+
+ if (r->CRn == 9 && r->CRm == 13) {
+ if (r->Op2 == 2) {
+ /* PMXEVCNTR_EL0 */
+ if (pmu_access_event_counter_el0_disabled(vcpu))
+ return false;
+
+ idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
+ & ARMV8_PMU_COUNTER_MASK;
+ } else if (r->Op2 == 0) {
+ /* PMCCNTR_EL0 */
+ if (pmu_access_cycle_counter_el0_disabled(vcpu))
+ return false;
+
+ idx = ARMV8_PMU_CYCLE_IDX;
+ }
+ } else if (r->CRn == 0 && r->CRm == 9) {
+ /* PMCCNTR */
+ if (pmu_access_event_counter_el0_disabled(vcpu))
+ return false;
+
+ idx = ARMV8_PMU_CYCLE_IDX;
+ } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
+ /* PMEVCNTRn_EL0 */
+ if (pmu_access_event_counter_el0_disabled(vcpu))
+ return false;
+
+ idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
+ }
+
+ /* Catch any decoding mistake */
+ WARN_ON(idx == ~0UL);
+
+ if (!pmu_counter_idx_valid(vcpu, idx))
+ return false;
+
+ if (p->is_write) {
+ if (pmu_access_el0_disabled(vcpu))
+ return false;
+
+ kvm_pmu_set_counter_value(vcpu, idx, p->regval);
+ } else {
+ p->regval = kvm_pmu_get_counter_value(vcpu, idx);
+ }
+
+ return true;
+}
+
+static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ u64 idx, reg;
+
+ if (pmu_access_el0_disabled(vcpu))
+ return false;
+
+ if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
+ /* PMXEVTYPER_EL0 */
+ idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
+ reg = PMEVTYPER0_EL0 + idx;
+ } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
+ idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
+ if (idx == ARMV8_PMU_CYCLE_IDX)
+ reg = PMCCFILTR_EL0;
+ else
+ /* PMEVTYPERn_EL0 */
+ reg = PMEVTYPER0_EL0 + idx;
+ } else {
+ BUG();
+ }
+
+ if (!pmu_counter_idx_valid(vcpu, idx))
+ return false;
+
+ if (p->is_write) {
+ kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
+ kvm_vcpu_pmu_restore_guest(vcpu);
+ } else {
+ p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
+ }
+
+ return true;
+}
+
+static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ u64 val, mask;
+
+ if (pmu_access_el0_disabled(vcpu))
+ return false;
+
+ mask = kvm_pmu_valid_counter_mask(vcpu);
+ if (p->is_write) {
+ val = p->regval & mask;
+ if (r->Op2 & 0x1) {
+ /* accessing PMCNTENSET_EL0 */
+ __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
+ kvm_pmu_enable_counter_mask(vcpu, val);
+ kvm_vcpu_pmu_restore_guest(vcpu);
+ } else {
+ /* accessing PMCNTENCLR_EL0 */
+ __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
+ kvm_pmu_disable_counter_mask(vcpu, val);
+ }
+ } else {
+ p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
+ }
+
+ return true;
+}
+
+static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ u64 mask = kvm_pmu_valid_counter_mask(vcpu);
+
+ if (check_pmu_access_disabled(vcpu, 0))
+ return false;
+
+ if (p->is_write) {
+ u64 val = p->regval & mask;
+
+ if (r->Op2 & 0x1)
+ /* accessing PMINTENSET_EL1 */
+ __vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
+ else
+ /* accessing PMINTENCLR_EL1 */
+ __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
+ } else {
+ p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
+ }
+
+ return true;
+}
+
+static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ u64 mask = kvm_pmu_valid_counter_mask(vcpu);
+
+ if (pmu_access_el0_disabled(vcpu))
+ return false;
+
+ if (p->is_write) {
+ if (r->CRm & 0x2)
+ /* accessing PMOVSSET_EL0 */
+ __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
+ else
+ /* accessing PMOVSCLR_EL0 */
+ __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
+ } else {
+ p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
+ }
+
+ return true;
+}
+
+static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ u64 mask;
+
+ if (!p->is_write)
+ return read_from_write_only(vcpu, p, r);
+
+ if (pmu_write_swinc_el0_disabled(vcpu))
+ return false;
+
+ mask = kvm_pmu_valid_counter_mask(vcpu);
+ kvm_pmu_software_increment(vcpu, p->regval & mask);
+ return true;
+}
+
+static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ if (p->is_write) {
+ if (!vcpu_mode_priv(vcpu)) {
+ kvm_inject_undefined(vcpu);
+ return false;
+ }
+
+ __vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
+ p->regval & ARMV8_PMU_USERENR_MASK;
+ } else {
+ p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
+ & ARMV8_PMU_USERENR_MASK;
+ }
+
+ return true;
+}
+
+/* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
+#define DBG_BCR_BVR_WCR_WVR_EL1(n) \
+ { SYS_DESC(SYS_DBGBVRn_EL1(n)), \
+ trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr }, \
+ { SYS_DESC(SYS_DBGBCRn_EL1(n)), \
+ trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr }, \
+ { SYS_DESC(SYS_DBGWVRn_EL1(n)), \
+ trap_wvr, reset_wvr, 0, 0, get_wvr, set_wvr }, \
+ { SYS_DESC(SYS_DBGWCRn_EL1(n)), \
+ trap_wcr, reset_wcr, 0, 0, get_wcr, set_wcr }
+
+#define PMU_SYS_REG(name) \
+ SYS_DESC(SYS_##name), .reset = reset_pmu_reg, \
+ .visibility = pmu_visibility
+
+/* Macro to expand the PMEVCNTRn_EL0 register */
+#define PMU_PMEVCNTR_EL0(n) \
+ { PMU_SYS_REG(PMEVCNTRn_EL0(n)), \
+ .reset = reset_pmevcntr, .get_user = get_pmu_evcntr, \
+ .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), }
+
+/* Macro to expand the PMEVTYPERn_EL0 register */
+#define PMU_PMEVTYPER_EL0(n) \
+ { PMU_SYS_REG(PMEVTYPERn_EL0(n)), \
+ .reset = reset_pmevtyper, \
+ .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), }
+
+static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ kvm_inject_undefined(vcpu);
+
+ return false;
+}
+
+/* Macro to expand the AMU counter and type registers*/
+#define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
+#define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
+#define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
+#define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }
+
+static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
+ const struct sys_reg_desc *rd)
+{
+ return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
+}
+
+/*
+ * If we land here on a PtrAuth access, that is because we didn't
+ * fixup the access on exit by allowing the PtrAuth sysregs. The only
+ * way this happens is when the guest does not have PtrAuth support
+ * enabled.
+ */
+#define __PTRAUTH_KEY(k) \
+ { SYS_DESC(SYS_## k), undef_access, reset_unknown, k, \
+ .visibility = ptrauth_visibility}
+
+#define PTRAUTH_KEY(k) \
+ __PTRAUTH_KEY(k ## KEYLO_EL1), \
+ __PTRAUTH_KEY(k ## KEYHI_EL1)
+
+static bool access_arch_timer(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ enum kvm_arch_timers tmr;
+ enum kvm_arch_timer_regs treg;
+ u64 reg = reg_to_encoding(r);
+
+ switch (reg) {
+ case SYS_CNTP_TVAL_EL0:
+ case SYS_AARCH32_CNTP_TVAL:
+ tmr = TIMER_PTIMER;
+ treg = TIMER_REG_TVAL;
+ break;
+ case SYS_CNTP_CTL_EL0:
+ case SYS_AARCH32_CNTP_CTL:
+ tmr = TIMER_PTIMER;
+ treg = TIMER_REG_CTL;
+ break;
+ case SYS_CNTP_CVAL_EL0:
+ case SYS_AARCH32_CNTP_CVAL:
+ tmr = TIMER_PTIMER;
+ treg = TIMER_REG_CVAL;
+ break;
+ case SYS_CNTPCT_EL0:
+ case SYS_CNTPCTSS_EL0:
+ case SYS_AARCH32_CNTPCT:
+ tmr = TIMER_PTIMER;
+ treg = TIMER_REG_CNT;
+ break;
+ default:
+ print_sys_reg_msg(p, "%s", "Unhandled trapped timer register");
+ kvm_inject_undefined(vcpu);
+ return false;
+ }
+
+ if (p->is_write)
+ kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
+ else
+ p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
+
+ return true;
+}
+
+static s64 kvm_arm64_ftr_safe_value(u32 id, const struct arm64_ftr_bits *ftrp,
+ s64 new, s64 cur)
+{
+ struct arm64_ftr_bits kvm_ftr = *ftrp;
+
+ /* Some features have different safe value type in KVM than host features */
+ switch (id) {
+ case SYS_ID_AA64DFR0_EL1:
+ if (kvm_ftr.shift == ID_AA64DFR0_EL1_PMUVer_SHIFT)
+ kvm_ftr.type = FTR_LOWER_SAFE;
+ break;
+ case SYS_ID_DFR0_EL1:
+ if (kvm_ftr.shift == ID_DFR0_EL1_PerfMon_SHIFT)
+ kvm_ftr.type = FTR_LOWER_SAFE;
+ break;
+ }
+
+ return arm64_ftr_safe_value(&kvm_ftr, new, cur);
+}
+
+/**
+ * arm64_check_features() - Check if a feature register value constitutes
+ * a subset of features indicated by the idreg's KVM sanitised limit.
+ *
+ * This function will check if each feature field of @val is the "safe" value
+ * against idreg's KVM sanitised limit return from reset() callback.
+ * If a field value in @val is the same as the one in limit, it is always
+ * considered the safe value regardless For register fields that are not in
+ * writable, only the value in limit is considered the safe value.
+ *
+ * Return: 0 if all the fields are safe. Otherwise, return negative errno.
+ */
+static int arm64_check_features(struct kvm_vcpu *vcpu,
+ const struct sys_reg_desc *rd,
+ u64 val)
+{
+ const struct arm64_ftr_reg *ftr_reg;
+ const struct arm64_ftr_bits *ftrp = NULL;
+ u32 id = reg_to_encoding(rd);
+ u64 writable_mask = rd->val;
+ u64 limit = rd->reset(vcpu, rd);
+ u64 mask = 0;
+
+ /*
+ * Hidden and unallocated ID registers may not have a corresponding
+ * struct arm64_ftr_reg. Of course, if the register is RAZ we know the
+ * only safe value is 0.
+ */
+ if (sysreg_visible_as_raz(vcpu, rd))
+ return val ? -E2BIG : 0;
+
+ ftr_reg = get_arm64_ftr_reg(id);
+ if (!ftr_reg)
+ return -EINVAL;
+
+ ftrp = ftr_reg->ftr_bits;
+
+ for (; ftrp && ftrp->width; ftrp++) {
+ s64 f_val, f_lim, safe_val;
+ u64 ftr_mask;
+
+ ftr_mask = arm64_ftr_mask(ftrp);
+ if ((ftr_mask & writable_mask) != ftr_mask)
+ continue;
+
+ f_val = arm64_ftr_value(ftrp, val);
+ f_lim = arm64_ftr_value(ftrp, limit);
+ mask |= ftr_mask;
+
+ if (f_val == f_lim)
+ safe_val = f_val;
+ else
+ safe_val = kvm_arm64_ftr_safe_value(id, ftrp, f_val, f_lim);
+
+ if (safe_val != f_val)
+ return -E2BIG;
+ }
+
+ /* For fields that are not writable, values in limit are the safe values. */
+ if ((val & ~mask) != (limit & ~mask))
+ return -E2BIG;
+
+ return 0;
+}
+
+static u8 pmuver_to_perfmon(u8 pmuver)
+{
+ switch (pmuver) {
+ case ID_AA64DFR0_EL1_PMUVer_IMP:
+ return ID_DFR0_EL1_PerfMon_PMUv3;
+ case ID_AA64DFR0_EL1_PMUVer_IMP_DEF:
+ return ID_DFR0_EL1_PerfMon_IMPDEF;
+ default:
+ /* Anything ARMv8.1+ and NI have the same value. For now. */
+ return pmuver;
+ }
+}
+
+/* Read a sanitised cpufeature ID register by sys_reg_desc */
+static u64 __kvm_read_sanitised_id_reg(const struct kvm_vcpu *vcpu,
+ const struct sys_reg_desc *r)
+{
+ u32 id = reg_to_encoding(r);
+ u64 val;
+
+ if (sysreg_visible_as_raz(vcpu, r))
+ return 0;
+
+ val = read_sanitised_ftr_reg(id);
+
+ switch (id) {
+ case SYS_ID_AA64PFR1_EL1:
+ if (!kvm_has_mte(vcpu->kvm))
+ val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE);
+
+ val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_SME);
+ break;
+ case SYS_ID_AA64ISAR1_EL1:
+ if (!vcpu_has_ptrauth(vcpu))
+ val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_APA) |
+ ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_API) |
+ ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPA) |
+ ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPI));
+ break;
+ case SYS_ID_AA64ISAR2_EL1:
+ if (!vcpu_has_ptrauth(vcpu))
+ val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_APA3) |
+ ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_GPA3));
+ if (!cpus_have_final_cap(ARM64_HAS_WFXT))
+ val &= ~ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_WFxT);
+ val &= ~ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_MOPS);
+ break;
+ case SYS_ID_AA64MMFR2_EL1:
+ val &= ~ID_AA64MMFR2_EL1_CCIDX_MASK;
+ break;
+ case SYS_ID_MMFR4_EL1:
+ val &= ~ARM64_FEATURE_MASK(ID_MMFR4_EL1_CCIDX);
+ break;
+ }
+
+ return val;
+}
+
+static u64 kvm_read_sanitised_id_reg(struct kvm_vcpu *vcpu,
+ const struct sys_reg_desc *r)
+{
+ return __kvm_read_sanitised_id_reg(vcpu, r);
+}
+
+static u64 read_id_reg(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
+{
+ return IDREG(vcpu->kvm, reg_to_encoding(r));
+}
+
+/*
+ * Return true if the register's (Op0, Op1, CRn, CRm, Op2) is
+ * (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8.
+ */
+static inline bool is_id_reg(u32 id)
+{
+ return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 &&
+ sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 &&
+ sys_reg_CRm(id) < 8);
+}
+
+static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
+ const struct sys_reg_desc *r)
+{
+ u32 id = reg_to_encoding(r);
+
+ switch (id) {
+ case SYS_ID_AA64ZFR0_EL1:
+ if (!vcpu_has_sve(vcpu))
+ return REG_RAZ;
+ break;
+ }
+
+ return 0;
+}
+
+static unsigned int aa32_id_visibility(const struct kvm_vcpu *vcpu,
+ const struct sys_reg_desc *r)
+{
+ /*
+ * AArch32 ID registers are UNKNOWN if AArch32 isn't implemented at any
+ * EL. Promote to RAZ/WI in order to guarantee consistency between
+ * systems.
+ */
+ if (!kvm_supports_32bit_el0())
+ return REG_RAZ | REG_USER_WI;
+
+ return id_visibility(vcpu, r);
+}
+
+static unsigned int raz_visibility(const struct kvm_vcpu *vcpu,
+ const struct sys_reg_desc *r)
+{
+ return REG_RAZ;
+}
+
+/* cpufeature ID register access trap handlers */
+
+static bool access_id_reg(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ if (p->is_write)
+ return write_to_read_only(vcpu, p, r);
+
+ p->regval = read_id_reg(vcpu, r);
+ if (vcpu_has_nv(vcpu))
+ access_nested_id_reg(vcpu, p, r);
+
+ return true;
+}
+
+/* Visibility overrides for SVE-specific control registers */
+static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
+ const struct sys_reg_desc *rd)
+{
+ if (vcpu_has_sve(vcpu))
+ return 0;
+
+ return REG_HIDDEN;
+}
+
+static u64 read_sanitised_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
+ const struct sys_reg_desc *rd)
+{
+ u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
+
+ if (!vcpu_has_sve(vcpu))
+ val &= ~ID_AA64PFR0_EL1_SVE_MASK;
+
+ /*
+ * The default is to expose CSV2 == 1 if the HW isn't affected.
+ * Although this is a per-CPU feature, we make it global because
+ * asymmetric systems are just a nuisance.
+ *
+ * Userspace can override this as long as it doesn't promise
+ * the impossible.
+ */
+ if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED) {
+ val &= ~ID_AA64PFR0_EL1_CSV2_MASK;
+ val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV2, IMP);
+ }
+ if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED) {
+ val &= ~ID_AA64PFR0_EL1_CSV3_MASK;
+ val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV3, IMP);
+ }
+
+ if (kvm_vgic_global_state.type == VGIC_V3) {
+ val &= ~ID_AA64PFR0_EL1_GIC_MASK;
+ val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, GIC, IMP);
+ }
+
+ val &= ~ID_AA64PFR0_EL1_AMU_MASK;
+
+ return val;
+}
+
+static u64 read_sanitised_id_aa64dfr0_el1(struct kvm_vcpu *vcpu,
+ const struct sys_reg_desc *rd)
+{
+ u64 val = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
+
+ /* Limit debug to ARMv8.0 */
+ val &= ~ID_AA64DFR0_EL1_DebugVer_MASK;
+ val |= SYS_FIELD_PREP_ENUM(ID_AA64DFR0_EL1, DebugVer, IMP);
+
+ /*
+ * Only initialize the PMU version if the vCPU was configured with one.
+ */
+ val &= ~ID_AA64DFR0_EL1_PMUVer_MASK;
+ if (kvm_vcpu_has_pmu(vcpu))
+ val |= SYS_FIELD_PREP(ID_AA64DFR0_EL1, PMUVer,
+ kvm_arm_pmu_get_pmuver_limit());
+
+ /* Hide SPE from guests */
+ val &= ~ID_AA64DFR0_EL1_PMSVer_MASK;
+
+ return val;
+}
+
+static int set_id_aa64dfr0_el1(struct kvm_vcpu *vcpu,
+ const struct sys_reg_desc *rd,
+ u64 val)
+{
+ u8 pmuver = SYS_FIELD_GET(ID_AA64DFR0_EL1, PMUVer, val);
+
+ /*
+ * Prior to commit 3d0dba5764b9 ("KVM: arm64: PMU: Move the
+ * ID_AA64DFR0_EL1.PMUver limit to VM creation"), KVM erroneously
+ * exposed an IMP_DEF PMU to userspace and the guest on systems w/
+ * non-architectural PMUs. Of course, PMUv3 is the only game in town for
+ * PMU virtualization, so the IMP_DEF value was rather user-hostile.
+ *
+ * At minimum, we're on the hook to allow values that were given to
+ * userspace by KVM. Cover our tracks here and replace the IMP_DEF value
+ * with a more sensible NI. The value of an ID register changing under
+ * the nose of the guest is unfortunate, but is certainly no more
+ * surprising than an ill-guided PMU driver poking at impdef system
+ * registers that end in an UNDEF...
+ */
+ if (pmuver == ID_AA64DFR0_EL1_PMUVer_IMP_DEF)
+ val &= ~ID_AA64DFR0_EL1_PMUVer_MASK;
+
+ return set_id_reg(vcpu, rd, val);
+}
+
+static u64 read_sanitised_id_dfr0_el1(struct kvm_vcpu *vcpu,
+ const struct sys_reg_desc *rd)
+{
+ u8 perfmon = pmuver_to_perfmon(kvm_arm_pmu_get_pmuver_limit());
+ u64 val = read_sanitised_ftr_reg(SYS_ID_DFR0_EL1);
+
+ val &= ~ID_DFR0_EL1_PerfMon_MASK;
+ if (kvm_vcpu_has_pmu(vcpu))
+ val |= SYS_FIELD_PREP(ID_DFR0_EL1, PerfMon, perfmon);
+
+ return val;
+}
+
+static int set_id_dfr0_el1(struct kvm_vcpu *vcpu,
+ const struct sys_reg_desc *rd,
+ u64 val)
+{
+ u8 perfmon = SYS_FIELD_GET(ID_DFR0_EL1, PerfMon, val);
+
+ if (perfmon == ID_DFR0_EL1_PerfMon_IMPDEF) {
+ val &= ~ID_DFR0_EL1_PerfMon_MASK;
+ perfmon = 0;
+ }
+
+ /*
+ * Allow DFR0_EL1.PerfMon to be set from userspace as long as
+ * it doesn't promise more than what the HW gives us on the
+ * AArch64 side (as everything is emulated with that), and
+ * that this is a PMUv3.
+ */
+ if (perfmon != 0 && perfmon < ID_DFR0_EL1_PerfMon_PMUv3)
+ return -EINVAL;
+
+ return set_id_reg(vcpu, rd, val);
+}
+
+/*
+ * cpufeature ID register user accessors
+ *
+ * For now, these registers are immutable for userspace, so no values
+ * are stored, and for set_id_reg() we don't allow the effective value
+ * to be changed.
+ */
+static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
+ u64 *val)
+{
+ /*
+ * Avoid locking if the VM has already started, as the ID registers are
+ * guaranteed to be invariant at that point.
+ */
+ if (kvm_vm_has_ran_once(vcpu->kvm)) {
+ *val = read_id_reg(vcpu, rd);
+ return 0;
+ }
+
+ mutex_lock(&vcpu->kvm->arch.config_lock);
+ *val = read_id_reg(vcpu, rd);
+ mutex_unlock(&vcpu->kvm->arch.config_lock);
+
+ return 0;
+}
+
+static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
+ u64 val)
+{
+ u32 id = reg_to_encoding(rd);
+ int ret;
+
+ mutex_lock(&vcpu->kvm->arch.config_lock);
+
+ /*
+ * Once the VM has started the ID registers are immutable. Reject any
+ * write that does not match the final register value.
+ */
+ if (kvm_vm_has_ran_once(vcpu->kvm)) {
+ if (val != read_id_reg(vcpu, rd))
+ ret = -EBUSY;
+ else
+ ret = 0;
+
+ mutex_unlock(&vcpu->kvm->arch.config_lock);
+ return ret;
+ }
+
+ ret = arm64_check_features(vcpu, rd, val);
+ if (!ret)
+ IDREG(vcpu->kvm, id) = val;
+
+ mutex_unlock(&vcpu->kvm->arch.config_lock);
+
+ /*
+ * arm64_check_features() returns -E2BIG to indicate the register's
+ * feature set is a superset of the maximally-allowed register value.
+ * While it would be nice to precisely describe this to userspace, the
+ * existing UAPI for KVM_SET_ONE_REG has it that invalid register
+ * writes return -EINVAL.
+ */
+ if (ret == -E2BIG)
+ ret = -EINVAL;
+ return ret;
+}
+
+static int get_raz_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
+ u64 *val)
+{
+ *val = 0;
+ return 0;
+}
+
+static int set_wi_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
+ u64 val)
+{
+ return 0;
+}
+
+static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ if (p->is_write)
+ return write_to_read_only(vcpu, p, r);
+
+ p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
+ return true;
+}
+
+static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ if (p->is_write)
+ return write_to_read_only(vcpu, p, r);
+
+ p->regval = __vcpu_sys_reg(vcpu, r->reg);
+ return true;
+}
+
+/*
+ * Fabricate a CLIDR_EL1 value instead of using the real value, which can vary
+ * by the physical CPU which the vcpu currently resides in.
+ */
+static u64 reset_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
+{
+ u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
+ u64 clidr;
+ u8 loc;
+
+ if ((ctr_el0 & CTR_EL0_IDC)) {
+ /*
+ * Data cache clean to the PoU is not required so LoUU and LoUIS
+ * will not be set and a unified cache, which will be marked as
+ * LoC, will be added.
+ *
+ * If not DIC, let the unified cache L2 so that an instruction
+ * cache can be added as L1 later.
+ */
+ loc = (ctr_el0 & CTR_EL0_DIC) ? 1 : 2;
+ clidr = CACHE_TYPE_UNIFIED << CLIDR_CTYPE_SHIFT(loc);
+ } else {
+ /*
+ * Data cache clean to the PoU is required so let L1 have a data
+ * cache and mark it as LoUU and LoUIS. As L1 has a data cache,
+ * it can be marked as LoC too.
+ */
+ loc = 1;
+ clidr = 1 << CLIDR_LOUU_SHIFT;
+ clidr |= 1 << CLIDR_LOUIS_SHIFT;
+ clidr |= CACHE_TYPE_DATA << CLIDR_CTYPE_SHIFT(1);
+ }
+
+ /*
+ * Instruction cache invalidation to the PoU is required so let L1 have
+ * an instruction cache. If L1 already has a data cache, it will be
+ * CACHE_TYPE_SEPARATE.
+ */
+ if (!(ctr_el0 & CTR_EL0_DIC))
+ clidr |= CACHE_TYPE_INST << CLIDR_CTYPE_SHIFT(1);
+
+ clidr |= loc << CLIDR_LOC_SHIFT;
+
+ /*
+ * Add tag cache unified to data cache. Allocation tags and data are
+ * unified in a cache line so that it looks valid even if there is only
+ * one cache line.
+ */
+ if (kvm_has_mte(vcpu->kvm))
+ clidr |= 2 << CLIDR_TTYPE_SHIFT(loc);
+
+ __vcpu_sys_reg(vcpu, r->reg) = clidr;
+
+ return __vcpu_sys_reg(vcpu, r->reg);
+}
+
+static int set_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
+ u64 val)
+{
+ u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
+ u64 idc = !CLIDR_LOC(val) || (!CLIDR_LOUIS(val) && !CLIDR_LOUU(val));
+
+ if ((val & CLIDR_EL1_RES0) || (!(ctr_el0 & CTR_EL0_IDC) && idc))
+ return -EINVAL;
+
+ __vcpu_sys_reg(vcpu, rd->reg) = val;
+
+ return 0;
+}
+
+static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ int reg = r->reg;
+
+ if (p->is_write)
+ vcpu_write_sys_reg(vcpu, p->regval, reg);
+ else
+ p->regval = vcpu_read_sys_reg(vcpu, reg);
+ return true;
+}
+
+static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ u32 csselr;
+
+ if (p->is_write)
+ return write_to_read_only(vcpu, p, r);
+
+ csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
+ csselr &= CSSELR_EL1_Level | CSSELR_EL1_InD;
+ if (csselr < CSSELR_MAX)
+ p->regval = get_ccsidr(vcpu, csselr);
+
+ return true;
+}
+
+static unsigned int mte_visibility(const struct kvm_vcpu *vcpu,
+ const struct sys_reg_desc *rd)
+{
+ if (kvm_has_mte(vcpu->kvm))
+ return 0;
+
+ return REG_HIDDEN;
+}
+
+#define MTE_REG(name) { \
+ SYS_DESC(SYS_##name), \
+ .access = undef_access, \
+ .reset = reset_unknown, \
+ .reg = name, \
+ .visibility = mte_visibility, \
+}
+
+static unsigned int el2_visibility(const struct kvm_vcpu *vcpu,
+ const struct sys_reg_desc *rd)
+{
+ if (vcpu_has_nv(vcpu))
+ return 0;
+
+ return REG_HIDDEN;
+}
+
+#define EL2_REG(name, acc, rst, v) { \
+ SYS_DESC(SYS_##name), \
+ .access = acc, \
+ .reset = rst, \
+ .reg = name, \
+ .visibility = el2_visibility, \
+ .val = v, \
+}
+
+/*
+ * EL{0,1}2 registers are the EL2 view on an EL0 or EL1 register when
+ * HCR_EL2.E2H==1, and only in the sysreg table for convenience of
+ * handling traps. Given that, they are always hidden from userspace.
+ */
+static unsigned int elx2_visibility(const struct kvm_vcpu *vcpu,
+ const struct sys_reg_desc *rd)
+{
+ return REG_HIDDEN_USER;
+}
+
+#define EL12_REG(name, acc, rst, v) { \
+ SYS_DESC(SYS_##name##_EL12), \
+ .access = acc, \
+ .reset = rst, \
+ .reg = name##_EL1, \
+ .val = v, \
+ .visibility = elx2_visibility, \
+}
+
+/*
+ * Since reset() callback and field val are not used for idregs, they will be
+ * used for specific purposes for idregs.
+ * The reset() would return KVM sanitised register value. The value would be the
+ * same as the host kernel sanitised value if there is no KVM sanitisation.
+ * The val would be used as a mask indicating writable fields for the idreg.
+ * Only bits with 1 are writable from userspace. This mask might not be
+ * necessary in the future whenever all ID registers are enabled as writable
+ * from userspace.
+ */
+
+/* sys_reg_desc initialiser for known cpufeature ID registers */
+#define ID_SANITISED(name) { \
+ SYS_DESC(SYS_##name), \
+ .access = access_id_reg, \
+ .get_user = get_id_reg, \
+ .set_user = set_id_reg, \
+ .visibility = id_visibility, \
+ .reset = kvm_read_sanitised_id_reg, \
+ .val = 0, \
+}
+
+/* sys_reg_desc initialiser for known cpufeature ID registers */
+#define AA32_ID_SANITISED(name) { \
+ SYS_DESC(SYS_##name), \
+ .access = access_id_reg, \
+ .get_user = get_id_reg, \
+ .set_user = set_id_reg, \
+ .visibility = aa32_id_visibility, \
+ .reset = kvm_read_sanitised_id_reg, \
+ .val = 0, \
+}
+
+/*
+ * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
+ * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
+ * (1 <= crm < 8, 0 <= Op2 < 8).
+ */
+#define ID_UNALLOCATED(crm, op2) { \
+ Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2), \
+ .access = access_id_reg, \
+ .get_user = get_id_reg, \
+ .set_user = set_id_reg, \
+ .visibility = raz_visibility, \
+ .reset = kvm_read_sanitised_id_reg, \
+ .val = 0, \
+}
+
+/*
+ * sys_reg_desc initialiser for known ID registers that we hide from guests.
+ * For now, these are exposed just like unallocated ID regs: they appear
+ * RAZ for the guest.
+ */
+#define ID_HIDDEN(name) { \
+ SYS_DESC(SYS_##name), \
+ .access = access_id_reg, \
+ .get_user = get_id_reg, \
+ .set_user = set_id_reg, \
+ .visibility = raz_visibility, \
+ .reset = kvm_read_sanitised_id_reg, \
+ .val = 0, \
+}
+
+static bool access_sp_el1(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ if (p->is_write)
+ __vcpu_sys_reg(vcpu, SP_EL1) = p->regval;
+ else
+ p->regval = __vcpu_sys_reg(vcpu, SP_EL1);
+
+ return true;
+}
+
+static bool access_elr(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ if (p->is_write)
+ vcpu_write_sys_reg(vcpu, p->regval, ELR_EL1);
+ else
+ p->regval = vcpu_read_sys_reg(vcpu, ELR_EL1);
+
+ return true;
+}
+
+static bool access_spsr(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ if (p->is_write)
+ __vcpu_sys_reg(vcpu, SPSR_EL1) = p->regval;
+ else
+ p->regval = __vcpu_sys_reg(vcpu, SPSR_EL1);
+
+ return true;
+}
+
+/*
+ * Architected system registers.
+ * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
+ *
+ * Debug handling: We do trap most, if not all debug related system
+ * registers. The implementation is good enough to ensure that a guest
+ * can use these with minimal performance degradation. The drawback is
+ * that we don't implement any of the external debug architecture.
+ * This should be revisited if we ever encounter a more demanding
+ * guest...
+ */
+static const struct sys_reg_desc sys_reg_descs[] = {
+ { SYS_DESC(SYS_DC_ISW), access_dcsw },
+ { SYS_DESC(SYS_DC_IGSW), access_dcgsw },
+ { SYS_DESC(SYS_DC_IGDSW), access_dcgsw },
+ { SYS_DESC(SYS_DC_CSW), access_dcsw },
+ { SYS_DESC(SYS_DC_CGSW), access_dcgsw },
+ { SYS_DESC(SYS_DC_CGDSW), access_dcgsw },
+ { SYS_DESC(SYS_DC_CISW), access_dcsw },
+ { SYS_DESC(SYS_DC_CIGSW), access_dcgsw },
+ { SYS_DESC(SYS_DC_CIGDSW), access_dcgsw },
+
+ DBG_BCR_BVR_WCR_WVR_EL1(0),
+ DBG_BCR_BVR_WCR_WVR_EL1(1),
+ { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
+ { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
+ DBG_BCR_BVR_WCR_WVR_EL1(2),
+ DBG_BCR_BVR_WCR_WVR_EL1(3),
+ DBG_BCR_BVR_WCR_WVR_EL1(4),
+ DBG_BCR_BVR_WCR_WVR_EL1(5),
+ DBG_BCR_BVR_WCR_WVR_EL1(6),
+ DBG_BCR_BVR_WCR_WVR_EL1(7),
+ DBG_BCR_BVR_WCR_WVR_EL1(8),
+ DBG_BCR_BVR_WCR_WVR_EL1(9),
+ DBG_BCR_BVR_WCR_WVR_EL1(10),
+ DBG_BCR_BVR_WCR_WVR_EL1(11),
+ DBG_BCR_BVR_WCR_WVR_EL1(12),
+ DBG_BCR_BVR_WCR_WVR_EL1(13),
+ DBG_BCR_BVR_WCR_WVR_EL1(14),
+ DBG_BCR_BVR_WCR_WVR_EL1(15),
+
+ { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
+ { SYS_DESC(SYS_OSLAR_EL1), trap_oslar_el1 },
+ { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1, reset_val, OSLSR_EL1,
+ OSLSR_EL1_OSLM_IMPLEMENTED, .set_user = set_oslsr_el1, },
+ { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
+ { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
+ { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
+ { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
+ { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
+
+ { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
+ { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
+ // DBGDTR[TR]X_EL0 share the same encoding
+ { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
+
+ { SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
+
+ { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
+
+ /*
+ * ID regs: all ID_SANITISED() entries here must have corresponding
+ * entries in arm64_ftr_regs[].
+ */
+
+ /* AArch64 mappings of the AArch32 ID registers */
+ /* CRm=1 */
+ AA32_ID_SANITISED(ID_PFR0_EL1),
+ AA32_ID_SANITISED(ID_PFR1_EL1),
+ { SYS_DESC(SYS_ID_DFR0_EL1),
+ .access = access_id_reg,
+ .get_user = get_id_reg,
+ .set_user = set_id_dfr0_el1,
+ .visibility = aa32_id_visibility,
+ .reset = read_sanitised_id_dfr0_el1,
+ .val = ID_DFR0_EL1_PerfMon_MASK, },
+ ID_HIDDEN(ID_AFR0_EL1),
+ AA32_ID_SANITISED(ID_MMFR0_EL1),
+ AA32_ID_SANITISED(ID_MMFR1_EL1),
+ AA32_ID_SANITISED(ID_MMFR2_EL1),
+ AA32_ID_SANITISED(ID_MMFR3_EL1),
+
+ /* CRm=2 */
+ AA32_ID_SANITISED(ID_ISAR0_EL1),
+ AA32_ID_SANITISED(ID_ISAR1_EL1),
+ AA32_ID_SANITISED(ID_ISAR2_EL1),
+ AA32_ID_SANITISED(ID_ISAR3_EL1),
+ AA32_ID_SANITISED(ID_ISAR4_EL1),
+ AA32_ID_SANITISED(ID_ISAR5_EL1),
+ AA32_ID_SANITISED(ID_MMFR4_EL1),
+ AA32_ID_SANITISED(ID_ISAR6_EL1),
+
+ /* CRm=3 */
+ AA32_ID_SANITISED(MVFR0_EL1),
+ AA32_ID_SANITISED(MVFR1_EL1),
+ AA32_ID_SANITISED(MVFR2_EL1),
+ ID_UNALLOCATED(3,3),
+ AA32_ID_SANITISED(ID_PFR2_EL1),
+ ID_HIDDEN(ID_DFR1_EL1),
+ AA32_ID_SANITISED(ID_MMFR5_EL1),
+ ID_UNALLOCATED(3,7),
+
+ /* AArch64 ID registers */
+ /* CRm=4 */
+ { SYS_DESC(SYS_ID_AA64PFR0_EL1),
+ .access = access_id_reg,
+ .get_user = get_id_reg,
+ .set_user = set_id_reg,
+ .reset = read_sanitised_id_aa64pfr0_el1,
+ .val = ID_AA64PFR0_EL1_CSV2_MASK | ID_AA64PFR0_EL1_CSV3_MASK, },
+ ID_SANITISED(ID_AA64PFR1_EL1),
+ ID_UNALLOCATED(4,2),
+ ID_UNALLOCATED(4,3),
+ ID_SANITISED(ID_AA64ZFR0_EL1),
+ ID_HIDDEN(ID_AA64SMFR0_EL1),
+ ID_UNALLOCATED(4,6),
+ ID_UNALLOCATED(4,7),
+
+ /* CRm=5 */
+ { SYS_DESC(SYS_ID_AA64DFR0_EL1),
+ .access = access_id_reg,
+ .get_user = get_id_reg,
+ .set_user = set_id_aa64dfr0_el1,
+ .reset = read_sanitised_id_aa64dfr0_el1,
+ .val = ID_AA64DFR0_EL1_PMUVer_MASK, },
+ ID_SANITISED(ID_AA64DFR1_EL1),
+ ID_UNALLOCATED(5,2),
+ ID_UNALLOCATED(5,3),
+ ID_HIDDEN(ID_AA64AFR0_EL1),
+ ID_HIDDEN(ID_AA64AFR1_EL1),
+ ID_UNALLOCATED(5,6),
+ ID_UNALLOCATED(5,7),
+
+ /* CRm=6 */
+ ID_SANITISED(ID_AA64ISAR0_EL1),
+ ID_SANITISED(ID_AA64ISAR1_EL1),
+ ID_SANITISED(ID_AA64ISAR2_EL1),
+ ID_UNALLOCATED(6,3),
+ ID_UNALLOCATED(6,4),
+ ID_UNALLOCATED(6,5),
+ ID_UNALLOCATED(6,6),
+ ID_UNALLOCATED(6,7),
+
+ /* CRm=7 */
+ ID_SANITISED(ID_AA64MMFR0_EL1),
+ ID_SANITISED(ID_AA64MMFR1_EL1),
+ ID_SANITISED(ID_AA64MMFR2_EL1),
+ ID_SANITISED(ID_AA64MMFR3_EL1),
+ ID_UNALLOCATED(7,4),
+ ID_UNALLOCATED(7,5),
+ ID_UNALLOCATED(7,6),
+ ID_UNALLOCATED(7,7),
+
+ { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
+ { SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
+ { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
+
+ MTE_REG(RGSR_EL1),
+ MTE_REG(GCR_EL1),
+
+ { SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
+ { SYS_DESC(SYS_TRFCR_EL1), undef_access },
+ { SYS_DESC(SYS_SMPRI_EL1), undef_access },
+ { SYS_DESC(SYS_SMCR_EL1), undef_access },
+ { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
+ { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
+ { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
+ { SYS_DESC(SYS_TCR2_EL1), access_vm_reg, reset_val, TCR2_EL1, 0 },
+
+ PTRAUTH_KEY(APIA),
+ PTRAUTH_KEY(APIB),
+ PTRAUTH_KEY(APDA),
+ PTRAUTH_KEY(APDB),
+ PTRAUTH_KEY(APGA),
+
+ { SYS_DESC(SYS_SPSR_EL1), access_spsr},
+ { SYS_DESC(SYS_ELR_EL1), access_elr},
+
+ { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
+ { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
+ { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
+
+ { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
+ { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
+ { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
+ { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
+ { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
+ { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
+ { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
+ { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
+
+ MTE_REG(TFSR_EL1),
+ MTE_REG(TFSRE0_EL1),
+
+ { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
+ { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
+
+ { SYS_DESC(SYS_PMSCR_EL1), undef_access },
+ { SYS_DESC(SYS_PMSNEVFR_EL1), undef_access },
+ { SYS_DESC(SYS_PMSICR_EL1), undef_access },
+ { SYS_DESC(SYS_PMSIRR_EL1), undef_access },
+ { SYS_DESC(SYS_PMSFCR_EL1), undef_access },
+ { SYS_DESC(SYS_PMSEVFR_EL1), undef_access },
+ { SYS_DESC(SYS_PMSLATFR_EL1), undef_access },
+ { SYS_DESC(SYS_PMSIDR_EL1), undef_access },
+ { SYS_DESC(SYS_PMBLIMITR_EL1), undef_access },
+ { SYS_DESC(SYS_PMBPTR_EL1), undef_access },
+ { SYS_DESC(SYS_PMBSR_EL1), undef_access },
+ /* PMBIDR_EL1 is not trapped */
+
+ { PMU_SYS_REG(PMINTENSET_EL1),
+ .access = access_pminten, .reg = PMINTENSET_EL1 },
+ { PMU_SYS_REG(PMINTENCLR_EL1),
+ .access = access_pminten, .reg = PMINTENSET_EL1 },
+ { SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi },
+
+ { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
+ { SYS_DESC(SYS_PIRE0_EL1), NULL, reset_unknown, PIRE0_EL1 },
+ { SYS_DESC(SYS_PIR_EL1), NULL, reset_unknown, PIR_EL1 },
+ { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
+
+ { SYS_DESC(SYS_LORSA_EL1), trap_loregion },
+ { SYS_DESC(SYS_LOREA_EL1), trap_loregion },
+ { SYS_DESC(SYS_LORN_EL1), trap_loregion },
+ { SYS_DESC(SYS_LORC_EL1), trap_loregion },
+ { SYS_DESC(SYS_LORID_EL1), trap_loregion },
+
+ { SYS_DESC(SYS_VBAR_EL1), access_rw, reset_val, VBAR_EL1, 0 },
+ { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
+
+ { SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
+ { SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
+ { SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
+ { SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
+ { SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
+ { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
+ { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
+ { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
+ { SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
+ { SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
+ { SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
+ { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
+
+ { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
+ { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
+
+ { SYS_DESC(SYS_ACCDATA_EL1), undef_access },
+
+ { SYS_DESC(SYS_SCXTNUM_EL1), undef_access },
+
+ { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
+
+ { SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
+ { SYS_DESC(SYS_CLIDR_EL1), access_clidr, reset_clidr, CLIDR_EL1,
+ .set_user = set_clidr },
+ { SYS_DESC(SYS_CCSIDR2_EL1), undef_access },
+ { SYS_DESC(SYS_SMIDR_EL1), undef_access },
+ { SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
+ { SYS_DESC(SYS_CTR_EL0), access_ctr },
+ { SYS_DESC(SYS_SVCR), undef_access },
+
+ { PMU_SYS_REG(PMCR_EL0), .access = access_pmcr,
+ .reset = reset_pmcr, .reg = PMCR_EL0 },
+ { PMU_SYS_REG(PMCNTENSET_EL0),
+ .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
+ { PMU_SYS_REG(PMCNTENCLR_EL0),
+ .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
+ { PMU_SYS_REG(PMOVSCLR_EL0),
+ .access = access_pmovs, .reg = PMOVSSET_EL0 },
+ /*
+ * PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was
+ * previously (and pointlessly) advertised in the past...
+ */
+ { PMU_SYS_REG(PMSWINC_EL0),
+ .get_user = get_raz_reg, .set_user = set_wi_reg,
+ .access = access_pmswinc, .reset = NULL },
+ { PMU_SYS_REG(PMSELR_EL0),
+ .access = access_pmselr, .reset = reset_pmselr, .reg = PMSELR_EL0 },
+ { PMU_SYS_REG(PMCEID0_EL0),
+ .access = access_pmceid, .reset = NULL },
+ { PMU_SYS_REG(PMCEID1_EL0),
+ .access = access_pmceid, .reset = NULL },
+ { PMU_SYS_REG(PMCCNTR_EL0),
+ .access = access_pmu_evcntr, .reset = reset_unknown,
+ .reg = PMCCNTR_EL0, .get_user = get_pmu_evcntr},
+ { PMU_SYS_REG(PMXEVTYPER_EL0),
+ .access = access_pmu_evtyper, .reset = NULL },
+ { PMU_SYS_REG(PMXEVCNTR_EL0),
+ .access = access_pmu_evcntr, .reset = NULL },
+ /*
+ * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
+ * in 32bit mode. Here we choose to reset it as zero for consistency.
+ */
+ { PMU_SYS_REG(PMUSERENR_EL0), .access = access_pmuserenr,
+ .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 },
+ { PMU_SYS_REG(PMOVSSET_EL0),
+ .access = access_pmovs, .reg = PMOVSSET_EL0 },
+
+ { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
+ { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
+ { SYS_DESC(SYS_TPIDR2_EL0), undef_access },
+
+ { SYS_DESC(SYS_SCXTNUM_EL0), undef_access },
+
+ { SYS_DESC(SYS_AMCR_EL0), undef_access },
+ { SYS_DESC(SYS_AMCFGR_EL0), undef_access },
+ { SYS_DESC(SYS_AMCGCR_EL0), undef_access },
+ { SYS_DESC(SYS_AMUSERENR_EL0), undef_access },
+ { SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access },
+ { SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access },
+ { SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access },
+ { SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access },
+ AMU_AMEVCNTR0_EL0(0),
+ AMU_AMEVCNTR0_EL0(1),
+ AMU_AMEVCNTR0_EL0(2),
+ AMU_AMEVCNTR0_EL0(3),
+ AMU_AMEVCNTR0_EL0(4),
+ AMU_AMEVCNTR0_EL0(5),
+ AMU_AMEVCNTR0_EL0(6),
+ AMU_AMEVCNTR0_EL0(7),
+ AMU_AMEVCNTR0_EL0(8),
+ AMU_AMEVCNTR0_EL0(9),
+ AMU_AMEVCNTR0_EL0(10),
+ AMU_AMEVCNTR0_EL0(11),
+ AMU_AMEVCNTR0_EL0(12),
+ AMU_AMEVCNTR0_EL0(13),
+ AMU_AMEVCNTR0_EL0(14),
+ AMU_AMEVCNTR0_EL0(15),
+ AMU_AMEVTYPER0_EL0(0),
+ AMU_AMEVTYPER0_EL0(1),
+ AMU_AMEVTYPER0_EL0(2),
+ AMU_AMEVTYPER0_EL0(3),
+ AMU_AMEVTYPER0_EL0(4),
+ AMU_AMEVTYPER0_EL0(5),
+ AMU_AMEVTYPER0_EL0(6),
+ AMU_AMEVTYPER0_EL0(7),
+ AMU_AMEVTYPER0_EL0(8),
+ AMU_AMEVTYPER0_EL0(9),
+ AMU_AMEVTYPER0_EL0(10),
+ AMU_AMEVTYPER0_EL0(11),
+ AMU_AMEVTYPER0_EL0(12),
+ AMU_AMEVTYPER0_EL0(13),
+ AMU_AMEVTYPER0_EL0(14),
+ AMU_AMEVTYPER0_EL0(15),
+ AMU_AMEVCNTR1_EL0(0),
+ AMU_AMEVCNTR1_EL0(1),
+ AMU_AMEVCNTR1_EL0(2),
+ AMU_AMEVCNTR1_EL0(3),
+ AMU_AMEVCNTR1_EL0(4),
+ AMU_AMEVCNTR1_EL0(5),
+ AMU_AMEVCNTR1_EL0(6),
+ AMU_AMEVCNTR1_EL0(7),
+ AMU_AMEVCNTR1_EL0(8),
+ AMU_AMEVCNTR1_EL0(9),
+ AMU_AMEVCNTR1_EL0(10),
+ AMU_AMEVCNTR1_EL0(11),
+ AMU_AMEVCNTR1_EL0(12),
+ AMU_AMEVCNTR1_EL0(13),
+ AMU_AMEVCNTR1_EL0(14),
+ AMU_AMEVCNTR1_EL0(15),
+ AMU_AMEVTYPER1_EL0(0),
+ AMU_AMEVTYPER1_EL0(1),
+ AMU_AMEVTYPER1_EL0(2),
+ AMU_AMEVTYPER1_EL0(3),
+ AMU_AMEVTYPER1_EL0(4),
+ AMU_AMEVTYPER1_EL0(5),
+ AMU_AMEVTYPER1_EL0(6),
+ AMU_AMEVTYPER1_EL0(7),
+ AMU_AMEVTYPER1_EL0(8),
+ AMU_AMEVTYPER1_EL0(9),
+ AMU_AMEVTYPER1_EL0(10),
+ AMU_AMEVTYPER1_EL0(11),
+ AMU_AMEVTYPER1_EL0(12),
+ AMU_AMEVTYPER1_EL0(13),
+ AMU_AMEVTYPER1_EL0(14),
+ AMU_AMEVTYPER1_EL0(15),
+
+ { SYS_DESC(SYS_CNTPCT_EL0), access_arch_timer },
+ { SYS_DESC(SYS_CNTPCTSS_EL0), access_arch_timer },
+ { SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
+ { SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
+ { SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
+
+ /* PMEVCNTRn_EL0 */
+ PMU_PMEVCNTR_EL0(0),
+ PMU_PMEVCNTR_EL0(1),
+ PMU_PMEVCNTR_EL0(2),
+ PMU_PMEVCNTR_EL0(3),
+ PMU_PMEVCNTR_EL0(4),
+ PMU_PMEVCNTR_EL0(5),
+ PMU_PMEVCNTR_EL0(6),
+ PMU_PMEVCNTR_EL0(7),
+ PMU_PMEVCNTR_EL0(8),
+ PMU_PMEVCNTR_EL0(9),
+ PMU_PMEVCNTR_EL0(10),
+ PMU_PMEVCNTR_EL0(11),
+ PMU_PMEVCNTR_EL0(12),
+ PMU_PMEVCNTR_EL0(13),
+ PMU_PMEVCNTR_EL0(14),
+ PMU_PMEVCNTR_EL0(15),
+ PMU_PMEVCNTR_EL0(16),
+ PMU_PMEVCNTR_EL0(17),
+ PMU_PMEVCNTR_EL0(18),
+ PMU_PMEVCNTR_EL0(19),
+ PMU_PMEVCNTR_EL0(20),
+ PMU_PMEVCNTR_EL0(21),
+ PMU_PMEVCNTR_EL0(22),
+ PMU_PMEVCNTR_EL0(23),
+ PMU_PMEVCNTR_EL0(24),
+ PMU_PMEVCNTR_EL0(25),
+ PMU_PMEVCNTR_EL0(26),
+ PMU_PMEVCNTR_EL0(27),
+ PMU_PMEVCNTR_EL0(28),
+ PMU_PMEVCNTR_EL0(29),
+ PMU_PMEVCNTR_EL0(30),
+ /* PMEVTYPERn_EL0 */
+ PMU_PMEVTYPER_EL0(0),
+ PMU_PMEVTYPER_EL0(1),
+ PMU_PMEVTYPER_EL0(2),
+ PMU_PMEVTYPER_EL0(3),
+ PMU_PMEVTYPER_EL0(4),
+ PMU_PMEVTYPER_EL0(5),
+ PMU_PMEVTYPER_EL0(6),
+ PMU_PMEVTYPER_EL0(7),
+ PMU_PMEVTYPER_EL0(8),
+ PMU_PMEVTYPER_EL0(9),
+ PMU_PMEVTYPER_EL0(10),
+ PMU_PMEVTYPER_EL0(11),
+ PMU_PMEVTYPER_EL0(12),
+ PMU_PMEVTYPER_EL0(13),
+ PMU_PMEVTYPER_EL0(14),
+ PMU_PMEVTYPER_EL0(15),
+ PMU_PMEVTYPER_EL0(16),
+ PMU_PMEVTYPER_EL0(17),
+ PMU_PMEVTYPER_EL0(18),
+ PMU_PMEVTYPER_EL0(19),
+ PMU_PMEVTYPER_EL0(20),
+ PMU_PMEVTYPER_EL0(21),
+ PMU_PMEVTYPER_EL0(22),
+ PMU_PMEVTYPER_EL0(23),
+ PMU_PMEVTYPER_EL0(24),
+ PMU_PMEVTYPER_EL0(25),
+ PMU_PMEVTYPER_EL0(26),
+ PMU_PMEVTYPER_EL0(27),
+ PMU_PMEVTYPER_EL0(28),
+ PMU_PMEVTYPER_EL0(29),
+ PMU_PMEVTYPER_EL0(30),
+ /*
+ * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
+ * in 32bit mode. Here we choose to reset it as zero for consistency.
+ */
+ { PMU_SYS_REG(PMCCFILTR_EL0), .access = access_pmu_evtyper,
+ .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 },
+
+ EL2_REG(VPIDR_EL2, access_rw, reset_unknown, 0),
+ EL2_REG(VMPIDR_EL2, access_rw, reset_unknown, 0),
+ EL2_REG(SCTLR_EL2, access_rw, reset_val, SCTLR_EL2_RES1),
+ EL2_REG(ACTLR_EL2, access_rw, reset_val, 0),
+ EL2_REG(HCR_EL2, access_rw, reset_val, 0),
+ EL2_REG(MDCR_EL2, access_rw, reset_val, 0),
+ EL2_REG(CPTR_EL2, access_rw, reset_val, CPTR_NVHE_EL2_RES1),
+ EL2_REG(HSTR_EL2, access_rw, reset_val, 0),
+ EL2_REG(HFGRTR_EL2, access_rw, reset_val, 0),
+ EL2_REG(HFGWTR_EL2, access_rw, reset_val, 0),
+ EL2_REG(HFGITR_EL2, access_rw, reset_val, 0),
+ EL2_REG(HACR_EL2, access_rw, reset_val, 0),
+
+ EL2_REG(HCRX_EL2, access_rw, reset_val, 0),
+
+ EL2_REG(TTBR0_EL2, access_rw, reset_val, 0),
+ EL2_REG(TTBR1_EL2, access_rw, reset_val, 0),
+ EL2_REG(TCR_EL2, access_rw, reset_val, TCR_EL2_RES1),
+ EL2_REG(VTTBR_EL2, access_rw, reset_val, 0),
+ EL2_REG(VTCR_EL2, access_rw, reset_val, 0),
+
+ { SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
+ EL2_REG(HDFGRTR_EL2, access_rw, reset_val, 0),
+ EL2_REG(HDFGWTR_EL2, access_rw, reset_val, 0),
+ EL2_REG(SPSR_EL2, access_rw, reset_val, 0),
+ EL2_REG(ELR_EL2, access_rw, reset_val, 0),
+ { SYS_DESC(SYS_SP_EL1), access_sp_el1},
+
+ { SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
+ EL2_REG(AFSR0_EL2, access_rw, reset_val, 0),
+ EL2_REG(AFSR1_EL2, access_rw, reset_val, 0),
+ EL2_REG(ESR_EL2, access_rw, reset_val, 0),
+ { SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
+
+ EL2_REG(FAR_EL2, access_rw, reset_val, 0),
+ EL2_REG(HPFAR_EL2, access_rw, reset_val, 0),
+
+ EL2_REG(MAIR_EL2, access_rw, reset_val, 0),
+ EL2_REG(AMAIR_EL2, access_rw, reset_val, 0),
+
+ EL2_REG(VBAR_EL2, access_rw, reset_val, 0),
+ EL2_REG(RVBAR_EL2, access_rw, reset_val, 0),
+ { SYS_DESC(SYS_RMR_EL2), trap_undef },
+
+ EL2_REG(CONTEXTIDR_EL2, access_rw, reset_val, 0),
+ EL2_REG(TPIDR_EL2, access_rw, reset_val, 0),
+
+ EL2_REG(CNTVOFF_EL2, access_rw, reset_val, 0),
+ EL2_REG(CNTHCTL_EL2, access_rw, reset_val, 0),
+
+ EL12_REG(SCTLR, access_vm_reg, reset_val, 0x00C50078),
+ EL12_REG(CPACR, access_rw, reset_val, 0),
+ EL12_REG(TTBR0, access_vm_reg, reset_unknown, 0),
+ EL12_REG(TTBR1, access_vm_reg, reset_unknown, 0),
+ EL12_REG(TCR, access_vm_reg, reset_val, 0),
+ { SYS_DESC(SYS_SPSR_EL12), access_spsr},
+ { SYS_DESC(SYS_ELR_EL12), access_elr},
+ EL12_REG(AFSR0, access_vm_reg, reset_unknown, 0),
+ EL12_REG(AFSR1, access_vm_reg, reset_unknown, 0),
+ EL12_REG(ESR, access_vm_reg, reset_unknown, 0),
+ EL12_REG(FAR, access_vm_reg, reset_unknown, 0),
+ EL12_REG(MAIR, access_vm_reg, reset_unknown, 0),
+ EL12_REG(AMAIR, access_vm_reg, reset_amair_el1, 0),
+ EL12_REG(VBAR, access_rw, reset_val, 0),
+ EL12_REG(CONTEXTIDR, access_vm_reg, reset_val, 0),
+ EL12_REG(CNTKCTL, access_rw, reset_val, 0),
+
+ EL2_REG(SP_EL2, NULL, reset_unknown, 0),
+};
+
+static const struct sys_reg_desc *first_idreg;
+
+static bool trap_dbgdidr(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ if (p->is_write) {
+ return ignore_write(vcpu, p);
+ } else {
+ u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
+ u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
+ u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL1_EL3_SHIFT);
+
+ p->regval = ((((dfr >> ID_AA64DFR0_EL1_WRPs_SHIFT) & 0xf) << 28) |
+ (((dfr >> ID_AA64DFR0_EL1_BRPs_SHIFT) & 0xf) << 24) |
+ (((dfr >> ID_AA64DFR0_EL1_CTX_CMPs_SHIFT) & 0xf) << 20)
+ | (6 << 16) | (1 << 15) | (el3 << 14) | (el3 << 12));
+ return true;
+ }
+}
+
+/*
+ * AArch32 debug register mappings
+ *
+ * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
+ * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
+ *
+ * None of the other registers share their location, so treat them as
+ * if they were 64bit.
+ */
+#define DBG_BCR_BVR_WCR_WVR(n) \
+ /* DBGBVRn */ \
+ { AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
+ /* DBGBCRn */ \
+ { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \
+ /* DBGWVRn */ \
+ { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \
+ /* DBGWCRn */ \
+ { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
+
+#define DBGBXVR(n) \
+ { AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n }
+
+/*
+ * Trapped cp14 registers. We generally ignore most of the external
+ * debug, on the principle that they don't really make sense to a
+ * guest. Revisit this one day, would this principle change.
+ */
+static const struct sys_reg_desc cp14_regs[] = {
+ /* DBGDIDR */
+ { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr },
+ /* DBGDTRRXext */
+ { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
+
+ DBG_BCR_BVR_WCR_WVR(0),
+ /* DBGDSCRint */
+ { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
+ DBG_BCR_BVR_WCR_WVR(1),
+ /* DBGDCCINT */
+ { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 },
+ /* DBGDSCRext */
+ { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 },
+ DBG_BCR_BVR_WCR_WVR(2),
+ /* DBGDTR[RT]Xint */
+ { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
+ /* DBGDTR[RT]Xext */
+ { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
+ DBG_BCR_BVR_WCR_WVR(3),
+ DBG_BCR_BVR_WCR_WVR(4),
+ DBG_BCR_BVR_WCR_WVR(5),
+ /* DBGWFAR */
+ { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
+ /* DBGOSECCR */
+ { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
+ DBG_BCR_BVR_WCR_WVR(6),
+ /* DBGVCR */
+ { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 },
+ DBG_BCR_BVR_WCR_WVR(7),
+ DBG_BCR_BVR_WCR_WVR(8),
+ DBG_BCR_BVR_WCR_WVR(9),
+ DBG_BCR_BVR_WCR_WVR(10),
+ DBG_BCR_BVR_WCR_WVR(11),
+ DBG_BCR_BVR_WCR_WVR(12),
+ DBG_BCR_BVR_WCR_WVR(13),
+ DBG_BCR_BVR_WCR_WVR(14),
+ DBG_BCR_BVR_WCR_WVR(15),
+
+ /* DBGDRAR (32bit) */
+ { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
+
+ DBGBXVR(0),
+ /* DBGOSLAR */
+ { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_oslar_el1 },
+ DBGBXVR(1),
+ /* DBGOSLSR */
+ { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1, NULL, OSLSR_EL1 },
+ DBGBXVR(2),
+ DBGBXVR(3),
+ /* DBGOSDLR */
+ { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
+ DBGBXVR(4),
+ /* DBGPRCR */
+ { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
+ DBGBXVR(5),
+ DBGBXVR(6),
+ DBGBXVR(7),
+ DBGBXVR(8),
+ DBGBXVR(9),
+ DBGBXVR(10),
+ DBGBXVR(11),
+ DBGBXVR(12),
+ DBGBXVR(13),
+ DBGBXVR(14),
+ DBGBXVR(15),
+
+ /* DBGDSAR (32bit) */
+ { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
+
+ /* DBGDEVID2 */
+ { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
+ /* DBGDEVID1 */
+ { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
+ /* DBGDEVID */
+ { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
+ /* DBGCLAIMSET */
+ { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
+ /* DBGCLAIMCLR */
+ { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
+ /* DBGAUTHSTATUS */
+ { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
+};
+
+/* Trapped cp14 64bit registers */
+static const struct sys_reg_desc cp14_64_regs[] = {
+ /* DBGDRAR (64bit) */
+ { Op1( 0), CRm( 1), .access = trap_raz_wi },
+
+ /* DBGDSAR (64bit) */
+ { Op1( 0), CRm( 2), .access = trap_raz_wi },
+};
+
+#define CP15_PMU_SYS_REG(_map, _Op1, _CRn, _CRm, _Op2) \
+ AA32(_map), \
+ Op1(_Op1), CRn(_CRn), CRm(_CRm), Op2(_Op2), \
+ .visibility = pmu_visibility
+
+/* Macro to expand the PMEVCNTRn register */
+#define PMU_PMEVCNTR(n) \
+ { CP15_PMU_SYS_REG(DIRECT, 0, 0b1110, \
+ (0b1000 | (((n) >> 3) & 0x3)), ((n) & 0x7)), \
+ .access = access_pmu_evcntr }
+
+/* Macro to expand the PMEVTYPERn register */
+#define PMU_PMEVTYPER(n) \
+ { CP15_PMU_SYS_REG(DIRECT, 0, 0b1110, \
+ (0b1100 | (((n) >> 3) & 0x3)), ((n) & 0x7)), \
+ .access = access_pmu_evtyper }
+/*
+ * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
+ * depending on the way they are accessed (as a 32bit or a 64bit
+ * register).
+ */
+static const struct sys_reg_desc cp15_regs[] = {
+ { Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
+ { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 },
+ /* ACTLR */
+ { AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 },
+ /* ACTLR2 */
+ { AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 },
+ { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
+ { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 },
+ /* TTBCR */
+ { AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 },
+ /* TTBCR2 */
+ { AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 },
+ { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 },
+ /* DFSR */
+ { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 },
+ { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 },
+ /* ADFSR */
+ { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 },
+ /* AIFSR */
+ { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 },
+ /* DFAR */
+ { AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 },
+ /* IFAR */
+ { AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 },
+
+ /*
+ * DC{C,I,CI}SW operations:
+ */
+ { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
+ { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
+ { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
+
+ /* PMU */
+ { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 0), .access = access_pmcr },
+ { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 1), .access = access_pmcnten },
+ { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 2), .access = access_pmcnten },
+ { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 3), .access = access_pmovs },
+ { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 4), .access = access_pmswinc },
+ { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 5), .access = access_pmselr },
+ { CP15_PMU_SYS_REG(LO, 0, 9, 12, 6), .access = access_pmceid },
+ { CP15_PMU_SYS_REG(LO, 0, 9, 12, 7), .access = access_pmceid },
+ { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 0), .access = access_pmu_evcntr },
+ { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 1), .access = access_pmu_evtyper },
+ { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 2), .access = access_pmu_evcntr },
+ { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 0), .access = access_pmuserenr },
+ { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 1), .access = access_pminten },
+ { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 2), .access = access_pminten },
+ { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 3), .access = access_pmovs },
+ { CP15_PMU_SYS_REG(HI, 0, 9, 14, 4), .access = access_pmceid },
+ { CP15_PMU_SYS_REG(HI, 0, 9, 14, 5), .access = access_pmceid },
+ /* PMMIR */
+ { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 6), .access = trap_raz_wi },
+
+ /* PRRR/MAIR0 */
+ { AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 },
+ /* NMRR/MAIR1 */
+ { AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 },
+ /* AMAIR0 */
+ { AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 },
+ /* AMAIR1 */
+ { AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 },
+
+ /* ICC_SRE */
+ { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
+
+ { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 },
+
+ /* Arch Tmers */
+ { SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
+ { SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
+
+ /* PMEVCNTRn */
+ PMU_PMEVCNTR(0),
+ PMU_PMEVCNTR(1),
+ PMU_PMEVCNTR(2),
+ PMU_PMEVCNTR(3),
+ PMU_PMEVCNTR(4),
+ PMU_PMEVCNTR(5),
+ PMU_PMEVCNTR(6),
+ PMU_PMEVCNTR(7),
+ PMU_PMEVCNTR(8),
+ PMU_PMEVCNTR(9),
+ PMU_PMEVCNTR(10),
+ PMU_PMEVCNTR(11),
+ PMU_PMEVCNTR(12),
+ PMU_PMEVCNTR(13),
+ PMU_PMEVCNTR(14),
+ PMU_PMEVCNTR(15),
+ PMU_PMEVCNTR(16),
+ PMU_PMEVCNTR(17),
+ PMU_PMEVCNTR(18),
+ PMU_PMEVCNTR(19),
+ PMU_PMEVCNTR(20),
+ PMU_PMEVCNTR(21),
+ PMU_PMEVCNTR(22),
+ PMU_PMEVCNTR(23),
+ PMU_PMEVCNTR(24),
+ PMU_PMEVCNTR(25),
+ PMU_PMEVCNTR(26),
+ PMU_PMEVCNTR(27),
+ PMU_PMEVCNTR(28),
+ PMU_PMEVCNTR(29),
+ PMU_PMEVCNTR(30),
+ /* PMEVTYPERn */
+ PMU_PMEVTYPER(0),
+ PMU_PMEVTYPER(1),
+ PMU_PMEVTYPER(2),
+ PMU_PMEVTYPER(3),
+ PMU_PMEVTYPER(4),
+ PMU_PMEVTYPER(5),
+ PMU_PMEVTYPER(6),
+ PMU_PMEVTYPER(7),
+ PMU_PMEVTYPER(8),
+ PMU_PMEVTYPER(9),
+ PMU_PMEVTYPER(10),
+ PMU_PMEVTYPER(11),
+ PMU_PMEVTYPER(12),
+ PMU_PMEVTYPER(13),
+ PMU_PMEVTYPER(14),
+ PMU_PMEVTYPER(15),
+ PMU_PMEVTYPER(16),
+ PMU_PMEVTYPER(17),
+ PMU_PMEVTYPER(18),
+ PMU_PMEVTYPER(19),
+ PMU_PMEVTYPER(20),
+ PMU_PMEVTYPER(21),
+ PMU_PMEVTYPER(22),
+ PMU_PMEVTYPER(23),
+ PMU_PMEVTYPER(24),
+ PMU_PMEVTYPER(25),
+ PMU_PMEVTYPER(26),
+ PMU_PMEVTYPER(27),
+ PMU_PMEVTYPER(28),
+ PMU_PMEVTYPER(29),
+ PMU_PMEVTYPER(30),
+ /* PMCCFILTR */
+ { CP15_PMU_SYS_REG(DIRECT, 0, 14, 15, 7), .access = access_pmu_evtyper },
+
+ { Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
+ { Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
+
+ /* CCSIDR2 */
+ { Op1(1), CRn( 0), CRm( 0), Op2(2), undef_access },
+
+ { Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 },
+};
+
+static const struct sys_reg_desc cp15_64_regs[] = {
+ { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
+ { CP15_PMU_SYS_REG(DIRECT, 0, 0, 9, 0), .access = access_pmu_evcntr },
+ { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
+ { SYS_DESC(SYS_AARCH32_CNTPCT), access_arch_timer },
+ { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 },
+ { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
+ { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
+ { SYS_DESC(SYS_AARCH32_CNTP_CVAL), access_arch_timer },
+ { SYS_DESC(SYS_AARCH32_CNTPCTSS), access_arch_timer },
+};
+
+static bool check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
+ bool is_32)
+{
+ unsigned int i;
+
+ for (i = 0; i < n; i++) {
+ if (!is_32 && table[i].reg && !table[i].reset) {
+ kvm_err("sys_reg table %pS entry %d lacks reset\n", &table[i], i);
+ return false;
+ }
+
+ if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
+ kvm_err("sys_reg table %pS entry %d out of order\n", &table[i - 1], i - 1);
+ return false;
+ }
+ }
+
+ return true;
+}
+
+int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
+{
+ kvm_inject_undefined(vcpu);
+ return 1;
+}
+
+static void perform_access(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *params,
+ const struct sys_reg_desc *r)
+{
+ trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
+
+ /* Check for regs disabled by runtime config */
+ if (sysreg_hidden(vcpu, r)) {
+ kvm_inject_undefined(vcpu);
+ return;
+ }
+
+ /*
+ * Not having an accessor means that we have configured a trap
+ * that we don't know how to handle. This certainly qualifies
+ * as a gross bug that should be fixed right away.
+ */
+ BUG_ON(!r->access);
+
+ /* Skip instruction if instructed so */
+ if (likely(r->access(vcpu, params, r)))
+ kvm_incr_pc(vcpu);
+}
+
+/*
+ * emulate_cp -- tries to match a sys_reg access in a handling table, and
+ * call the corresponding trap handler.
+ *
+ * @params: pointer to the descriptor of the access
+ * @table: array of trap descriptors
+ * @num: size of the trap descriptor array
+ *
+ * Return true if the access has been handled, false if not.
+ */
+static bool emulate_cp(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *params,
+ const struct sys_reg_desc *table,
+ size_t num)
+{
+ const struct sys_reg_desc *r;
+
+ if (!table)
+ return false; /* Not handled */
+
+ r = find_reg(params, table, num);
+
+ if (r) {
+ perform_access(vcpu, params, r);
+ return true;
+ }
+
+ /* Not handled */
+ return false;
+}
+
+static void unhandled_cp_access(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *params)
+{
+ u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
+ int cp = -1;
+
+ switch (esr_ec) {
+ case ESR_ELx_EC_CP15_32:
+ case ESR_ELx_EC_CP15_64:
+ cp = 15;
+ break;
+ case ESR_ELx_EC_CP14_MR:
+ case ESR_ELx_EC_CP14_64:
+ cp = 14;
+ break;
+ default:
+ WARN_ON(1);
+ }
+
+ print_sys_reg_msg(params,
+ "Unsupported guest CP%d access at: %08lx [%08lx]\n",
+ cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
+ kvm_inject_undefined(vcpu);
+}
+
+/**
+ * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
+ * @vcpu: The VCPU pointer
+ * @run: The kvm_run struct
+ */
+static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
+ const struct sys_reg_desc *global,
+ size_t nr_global)
+{
+ struct sys_reg_params params;
+ u64 esr = kvm_vcpu_get_esr(vcpu);
+ int Rt = kvm_vcpu_sys_get_rt(vcpu);
+ int Rt2 = (esr >> 10) & 0x1f;
+
+ params.CRm = (esr >> 1) & 0xf;
+ params.is_write = ((esr & 1) == 0);
+
+ params.Op0 = 0;
+ params.Op1 = (esr >> 16) & 0xf;
+ params.Op2 = 0;
+ params.CRn = 0;
+
+ /*
+ * Make a 64-bit value out of Rt and Rt2. As we use the same trap
+ * backends between AArch32 and AArch64, we get away with it.
+ */
+ if (params.is_write) {
+ params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
+ params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
+ }
+
+ /*
+ * If the table contains a handler, handle the
+ * potential register operation in the case of a read and return
+ * with success.
+ */
+ if (emulate_cp(vcpu, &params, global, nr_global)) {
+ /* Split up the value between registers for the read side */
+ if (!params.is_write) {
+ vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
+ vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
+ }
+
+ return 1;
+ }
+
+ unhandled_cp_access(vcpu, &params);
+ return 1;
+}
+
+static bool emulate_sys_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *params);
+
+/*
+ * The CP10 ID registers are architecturally mapped to AArch64 feature
+ * registers. Abuse that fact so we can rely on the AArch64 handler for accesses
+ * from AArch32.
+ */
+static bool kvm_esr_cp10_id_to_sys64(u64 esr, struct sys_reg_params *params)
+{
+ u8 reg_id = (esr >> 10) & 0xf;
+ bool valid;
+
+ params->is_write = ((esr & 1) == 0);
+ params->Op0 = 3;
+ params->Op1 = 0;
+ params->CRn = 0;
+ params->CRm = 3;
+
+ /* CP10 ID registers are read-only */
+ valid = !params->is_write;
+
+ switch (reg_id) {
+ /* MVFR0 */
+ case 0b0111:
+ params->Op2 = 0;
+ break;
+ /* MVFR1 */
+ case 0b0110:
+ params->Op2 = 1;
+ break;
+ /* MVFR2 */
+ case 0b0101:
+ params->Op2 = 2;
+ break;
+ default:
+ valid = false;
+ }
+
+ if (valid)
+ return true;
+
+ kvm_pr_unimpl("Unhandled cp10 register %s: %u\n",
+ params->is_write ? "write" : "read", reg_id);
+ return false;
+}
+
+/**
+ * kvm_handle_cp10_id() - Handles a VMRS trap on guest access to a 'Media and
+ * VFP Register' from AArch32.
+ * @vcpu: The vCPU pointer
+ *
+ * MVFR{0-2} are architecturally mapped to the AArch64 MVFR{0-2}_EL1 registers.
+ * Work out the correct AArch64 system register encoding and reroute to the
+ * AArch64 system register emulation.
+ */
+int kvm_handle_cp10_id(struct kvm_vcpu *vcpu)
+{
+ int Rt = kvm_vcpu_sys_get_rt(vcpu);
+ u64 esr = kvm_vcpu_get_esr(vcpu);
+ struct sys_reg_params params;
+
+ /* UNDEF on any unhandled register access */
+ if (!kvm_esr_cp10_id_to_sys64(esr, &params)) {
+ kvm_inject_undefined(vcpu);
+ return 1;
+ }
+
+ if (emulate_sys_reg(vcpu, &params))
+ vcpu_set_reg(vcpu, Rt, params.regval);
+
+ return 1;
+}
+
+/**
+ * kvm_emulate_cp15_id_reg() - Handles an MRC trap on a guest CP15 access where
+ * CRn=0, which corresponds to the AArch32 feature
+ * registers.
+ * @vcpu: the vCPU pointer
+ * @params: the system register access parameters.
+ *
+ * Our cp15 system register tables do not enumerate the AArch32 feature
+ * registers. Conveniently, our AArch64 table does, and the AArch32 system
+ * register encoding can be trivially remapped into the AArch64 for the feature
+ * registers: Append op0=3, leaving op1, CRn, CRm, and op2 the same.
+ *
+ * According to DDI0487G.b G7.3.1, paragraph "Behavior of VMSAv8-32 32-bit
+ * System registers with (coproc=0b1111, CRn==c0)", read accesses from this
+ * range are either UNKNOWN or RES0. Rerouting remains architectural as we
+ * treat undefined registers in this range as RAZ.
+ */
+static int kvm_emulate_cp15_id_reg(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *params)
+{
+ int Rt = kvm_vcpu_sys_get_rt(vcpu);
+
+ /* Treat impossible writes to RO registers as UNDEFINED */
+ if (params->is_write) {
+ unhandled_cp_access(vcpu, params);
+ return 1;
+ }
+
+ params->Op0 = 3;
+
+ /*
+ * All registers where CRm > 3 are known to be UNKNOWN/RAZ from AArch32.
+ * Avoid conflicting with future expansion of AArch64 feature registers
+ * and simply treat them as RAZ here.
+ */
+ if (params->CRm > 3)
+ params->regval = 0;
+ else if (!emulate_sys_reg(vcpu, params))
+ return 1;
+
+ vcpu_set_reg(vcpu, Rt, params->regval);
+ return 1;
+}
+
+/**
+ * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
+ * @vcpu: The VCPU pointer
+ * @run: The kvm_run struct
+ */
+static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *params,
+ const struct sys_reg_desc *global,
+ size_t nr_global)
+{
+ int Rt = kvm_vcpu_sys_get_rt(vcpu);
+
+ params->regval = vcpu_get_reg(vcpu, Rt);
+
+ if (emulate_cp(vcpu, params, global, nr_global)) {
+ if (!params->is_write)
+ vcpu_set_reg(vcpu, Rt, params->regval);
+ return 1;
+ }
+
+ unhandled_cp_access(vcpu, params);
+ return 1;
+}
+
+int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
+{
+ return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
+}
+
+int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
+{
+ struct sys_reg_params params;
+
+ params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
+
+ /*
+ * Certain AArch32 ID registers are handled by rerouting to the AArch64
+ * system register table. Registers in the ID range where CRm=0 are
+ * excluded from this scheme as they do not trivially map into AArch64
+ * system register encodings.
+ */
+ if (params.Op1 == 0 && params.CRn == 0 && params.CRm)
+ return kvm_emulate_cp15_id_reg(vcpu, &params);
+
+ return kvm_handle_cp_32(vcpu, &params, cp15_regs, ARRAY_SIZE(cp15_regs));
+}
+
+int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
+{
+ return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
+}
+
+int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
+{
+ struct sys_reg_params params;
+
+ params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
+
+ return kvm_handle_cp_32(vcpu, &params, cp14_regs, ARRAY_SIZE(cp14_regs));
+}
+
+static bool is_imp_def_sys_reg(struct sys_reg_params *params)
+{
+ // See ARM DDI 0487E.a, section D12.3.2
+ return params->Op0 == 3 && (params->CRn & 0b1011) == 0b1011;
+}
+
+/**
+ * emulate_sys_reg - Emulate a guest access to an AArch64 system register
+ * @vcpu: The VCPU pointer
+ * @params: Decoded system register parameters
+ *
+ * Return: true if the system register access was successful, false otherwise.
+ */
+static bool emulate_sys_reg(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *params)
+{
+ const struct sys_reg_desc *r;
+
+ r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
+
+ if (likely(r)) {
+ perform_access(vcpu, params, r);
+ return true;
+ }
+
+ if (is_imp_def_sys_reg(params)) {
+ kvm_inject_undefined(vcpu);
+ } else {
+ print_sys_reg_msg(params,
+ "Unsupported guest sys_reg access at: %lx [%08lx]\n",
+ *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
+ kvm_inject_undefined(vcpu);
+ }
+ return false;
+}
+
+static void kvm_reset_id_regs(struct kvm_vcpu *vcpu)
+{
+ const struct sys_reg_desc *idreg = first_idreg;
+ u32 id = reg_to_encoding(idreg);
+ struct kvm *kvm = vcpu->kvm;
+
+ if (test_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags))
+ return;
+
+ lockdep_assert_held(&kvm->arch.config_lock);
+
+ /* Initialize all idregs */
+ while (is_id_reg(id)) {
+ IDREG(kvm, id) = idreg->reset(vcpu, idreg);
+
+ idreg++;
+ id = reg_to_encoding(idreg);
+ }
+
+ set_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags);
+}
+
+/**
+ * kvm_reset_sys_regs - sets system registers to reset value
+ * @vcpu: The VCPU pointer
+ *
+ * This function finds the right table above and sets the registers on the
+ * virtual CPU struct to their architecturally defined reset values.
+ */
+void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
+{
+ unsigned long i;
+
+ kvm_reset_id_regs(vcpu);
+
+ for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
+ const struct sys_reg_desc *r = &sys_reg_descs[i];
+
+ if (is_id_reg(reg_to_encoding(r)))
+ continue;
+
+ if (r->reset)
+ r->reset(vcpu, r);
+ }
+}
+
+/**
+ * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
+ * @vcpu: The VCPU pointer
+ */
+int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
+{
+ struct sys_reg_params params;
+ unsigned long esr = kvm_vcpu_get_esr(vcpu);
+ int Rt = kvm_vcpu_sys_get_rt(vcpu);
+
+ trace_kvm_handle_sys_reg(esr);
+
+ if (__check_nv_sr_forward(vcpu))
+ return 1;
+
+ params = esr_sys64_to_params(esr);
+ params.regval = vcpu_get_reg(vcpu, Rt);
+
+ if (!emulate_sys_reg(vcpu, &params))
+ return 1;
+
+ if (!params.is_write)
+ vcpu_set_reg(vcpu, Rt, params.regval);
+ return 1;
+}
+
+/******************************************************************************
+ * Userspace API
+ *****************************************************************************/
+
+static bool index_to_params(u64 id, struct sys_reg_params *params)
+{
+ switch (id & KVM_REG_SIZE_MASK) {
+ case KVM_REG_SIZE_U64:
+ /* Any unused index bits means it's not valid. */
+ if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
+ | KVM_REG_ARM_COPROC_MASK
+ | KVM_REG_ARM64_SYSREG_OP0_MASK
+ | KVM_REG_ARM64_SYSREG_OP1_MASK
+ | KVM_REG_ARM64_SYSREG_CRN_MASK
+ | KVM_REG_ARM64_SYSREG_CRM_MASK
+ | KVM_REG_ARM64_SYSREG_OP2_MASK))
+ return false;
+ params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
+ >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
+ params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
+ >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
+ params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
+ >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
+ params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
+ >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
+ params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
+ >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
+ return true;
+ default:
+ return false;
+ }
+}
+
+const struct sys_reg_desc *get_reg_by_id(u64 id,
+ const struct sys_reg_desc table[],
+ unsigned int num)
+{
+ struct sys_reg_params params;
+
+ if (!index_to_params(id, &params))
+ return NULL;
+
+ return find_reg(&params, table, num);
+}
+
+/* Decode an index value, and find the sys_reg_desc entry. */
+static const struct sys_reg_desc *
+id_to_sys_reg_desc(struct kvm_vcpu *vcpu, u64 id,
+ const struct sys_reg_desc table[], unsigned int num)
+
+{
+ const struct sys_reg_desc *r;
+
+ /* We only do sys_reg for now. */
+ if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
+ return NULL;
+
+ r = get_reg_by_id(id, table, num);
+
+ /* Not saved in the sys_reg array and not otherwise accessible? */
+ if (r && (!(r->reg || r->get_user) || sysreg_hidden(vcpu, r)))
+ r = NULL;
+
+ return r;
+}
+
+/*
+ * These are the invariant sys_reg registers: we let the guest see the
+ * host versions of these, so they're part of the guest state.
+ *
+ * A future CPU may provide a mechanism to present different values to
+ * the guest, or a future kvm may trap them.
+ */
+
+#define FUNCTION_INVARIANT(reg) \
+ static u64 get_##reg(struct kvm_vcpu *v, \
+ const struct sys_reg_desc *r) \
+ { \
+ ((struct sys_reg_desc *)r)->val = read_sysreg(reg); \
+ return ((struct sys_reg_desc *)r)->val; \
+ }
+
+FUNCTION_INVARIANT(midr_el1)
+FUNCTION_INVARIANT(revidr_el1)
+FUNCTION_INVARIANT(aidr_el1)
+
+static u64 get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
+{
+ ((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
+ return ((struct sys_reg_desc *)r)->val;
+}
+
+/* ->val is filled in by kvm_sys_reg_table_init() */
+static struct sys_reg_desc invariant_sys_regs[] __ro_after_init = {
+ { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
+ { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
+ { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
+ { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
+};
+
+static int get_invariant_sys_reg(u64 id, u64 __user *uaddr)
+{
+ const struct sys_reg_desc *r;
+
+ r = get_reg_by_id(id, invariant_sys_regs,
+ ARRAY_SIZE(invariant_sys_regs));
+ if (!r)
+ return -ENOENT;
+
+ return put_user(r->val, uaddr);
+}
+
+static int set_invariant_sys_reg(u64 id, u64 __user *uaddr)
+{
+ const struct sys_reg_desc *r;
+ u64 val;
+
+ r = get_reg_by_id(id, invariant_sys_regs,
+ ARRAY_SIZE(invariant_sys_regs));
+ if (!r)
+ return -ENOENT;
+
+ if (get_user(val, uaddr))
+ return -EFAULT;
+
+ /* This is what we mean by invariant: you can't change it. */
+ if (r->val != val)
+ return -EINVAL;
+
+ return 0;
+}
+
+static int demux_c15_get(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
+{
+ u32 val;
+ u32 __user *uval = uaddr;
+
+ /* Fail if we have unknown bits set. */
+ if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
+ | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
+ return -ENOENT;
+
+ switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
+ case KVM_REG_ARM_DEMUX_ID_CCSIDR:
+ if (KVM_REG_SIZE(id) != 4)
+ return -ENOENT;
+ val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
+ >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
+ if (val >= CSSELR_MAX)
+ return -ENOENT;
+
+ return put_user(get_ccsidr(vcpu, val), uval);
+ default:
+ return -ENOENT;
+ }
+}
+
+static int demux_c15_set(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
+{
+ u32 val, newval;
+ u32 __user *uval = uaddr;
+
+ /* Fail if we have unknown bits set. */
+ if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
+ | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
+ return -ENOENT;
+
+ switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
+ case KVM_REG_ARM_DEMUX_ID_CCSIDR:
+ if (KVM_REG_SIZE(id) != 4)
+ return -ENOENT;
+ val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
+ >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
+ if (val >= CSSELR_MAX)
+ return -ENOENT;
+
+ if (get_user(newval, uval))
+ return -EFAULT;
+
+ return set_ccsidr(vcpu, val, newval);
+ default:
+ return -ENOENT;
+ }
+}
+
+int kvm_sys_reg_get_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
+ const struct sys_reg_desc table[], unsigned int num)
+{
+ u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
+ const struct sys_reg_desc *r;
+ u64 val;
+ int ret;
+
+ r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
+ if (!r || sysreg_hidden_user(vcpu, r))
+ return -ENOENT;
+
+ if (r->get_user) {
+ ret = (r->get_user)(vcpu, r, &val);
+ } else {
+ val = __vcpu_sys_reg(vcpu, r->reg);
+ ret = 0;
+ }
+
+ if (!ret)
+ ret = put_user(val, uaddr);
+
+ return ret;
+}
+
+int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
+{
+ void __user *uaddr = (void __user *)(unsigned long)reg->addr;
+ int err;
+
+ if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
+ return demux_c15_get(vcpu, reg->id, uaddr);
+
+ err = get_invariant_sys_reg(reg->id, uaddr);
+ if (err != -ENOENT)
+ return err;
+
+ return kvm_sys_reg_get_user(vcpu, reg,
+ sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
+}
+
+int kvm_sys_reg_set_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
+ const struct sys_reg_desc table[], unsigned int num)
+{
+ u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
+ const struct sys_reg_desc *r;
+ u64 val;
+ int ret;
+
+ if (get_user(val, uaddr))
+ return -EFAULT;
+
+ r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
+ if (!r || sysreg_hidden_user(vcpu, r))
+ return -ENOENT;
+
+ if (sysreg_user_write_ignore(vcpu, r))
+ return 0;
+
+ if (r->set_user) {
+ ret = (r->set_user)(vcpu, r, val);
+ } else {
+ __vcpu_sys_reg(vcpu, r->reg) = val;
+ ret = 0;
+ }
+
+ return ret;
+}
+
+int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
+{
+ void __user *uaddr = (void __user *)(unsigned long)reg->addr;
+ int err;
+
+ if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
+ return demux_c15_set(vcpu, reg->id, uaddr);
+
+ err = set_invariant_sys_reg(reg->id, uaddr);
+ if (err != -ENOENT)
+ return err;
+
+ return kvm_sys_reg_set_user(vcpu, reg,
+ sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
+}
+
+static unsigned int num_demux_regs(void)
+{
+ return CSSELR_MAX;
+}
+
+static int write_demux_regids(u64 __user *uindices)
+{
+ u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
+ unsigned int i;
+
+ val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
+ for (i = 0; i < CSSELR_MAX; i++) {
+ if (put_user(val | i, uindices))
+ return -EFAULT;
+ uindices++;
+ }
+ return 0;
+}
+
+static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
+{
+ return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
+ KVM_REG_ARM64_SYSREG |
+ (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
+ (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
+ (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
+ (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
+ (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
+}
+
+static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
+{
+ if (!*uind)
+ return true;
+
+ if (put_user(sys_reg_to_index(reg), *uind))
+ return false;
+
+ (*uind)++;
+ return true;
+}
+
+static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
+ const struct sys_reg_desc *rd,
+ u64 __user **uind,
+ unsigned int *total)
+{
+ /*
+ * Ignore registers we trap but don't save,
+ * and for which no custom user accessor is provided.
+ */
+ if (!(rd->reg || rd->get_user))
+ return 0;
+
+ if (sysreg_hidden_user(vcpu, rd))
+ return 0;
+
+ if (!copy_reg_to_user(rd, uind))
+ return -EFAULT;
+
+ (*total)++;
+ return 0;
+}
+
+/* Assumed ordered tables, see kvm_sys_reg_table_init. */
+static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
+{
+ const struct sys_reg_desc *i2, *end2;
+ unsigned int total = 0;
+ int err;
+
+ i2 = sys_reg_descs;
+ end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
+
+ while (i2 != end2) {
+ err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
+ if (err)
+ return err;
+ }
+ return total;
+}
+
+unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
+{
+ return ARRAY_SIZE(invariant_sys_regs)
+ + num_demux_regs()
+ + walk_sys_regs(vcpu, (u64 __user *)NULL);
+}
+
+int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
+{
+ unsigned int i;
+ int err;
+
+ /* Then give them all the invariant registers' indices. */
+ for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
+ if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
+ return -EFAULT;
+ uindices++;
+ }
+
+ err = walk_sys_regs(vcpu, uindices);
+ if (err < 0)
+ return err;
+ uindices += err;
+
+ return write_demux_regids(uindices);
+}
+
+int __init kvm_sys_reg_table_init(void)
+{
+ struct sys_reg_params params;
+ bool valid = true;
+ unsigned int i;
+
+ /* Make sure tables are unique and in order. */
+ valid &= check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false);
+ valid &= check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true);
+ valid &= check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true);
+ valid &= check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true);
+ valid &= check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true);
+ valid &= check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false);
+
+ if (!valid)
+ return -EINVAL;
+
+ /* We abuse the reset function to overwrite the table itself. */
+ for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
+ invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
+
+ /* Find the first idreg (SYS_ID_PFR0_EL1) in sys_reg_descs. */
+ params = encoding_to_params(SYS_ID_PFR0_EL1);
+ first_idreg = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
+ if (!first_idreg)
+ return -EINVAL;
+
+ if (kvm_get_mode() == KVM_MODE_NV)
+ return populate_nv_trap_config();
+
+ return 0;
+}
diff --git a/arch/arm64/kvm/sys_regs.h b/arch/arm64/kvm/sys_regs.h
new file mode 100644
index 0000000000..c65c129b35
--- /dev/null
+++ b/arch/arm64/kvm/sys_regs.h
@@ -0,0 +1,249 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+/*
+ * Copyright (C) 2012,2013 - ARM Ltd
+ * Author: Marc Zyngier <marc.zyngier@arm.com>
+ *
+ * Derived from arch/arm/kvm/coproc.h
+ * Copyright (C) 2012 - Virtual Open Systems and Columbia University
+ * Authors: Christoffer Dall <c.dall@virtualopensystems.com>
+ */
+
+#ifndef __ARM64_KVM_SYS_REGS_LOCAL_H__
+#define __ARM64_KVM_SYS_REGS_LOCAL_H__
+
+#include <linux/bsearch.h>
+
+#define reg_to_encoding(x) \
+ sys_reg((u32)(x)->Op0, (u32)(x)->Op1, \
+ (u32)(x)->CRn, (u32)(x)->CRm, (u32)(x)->Op2)
+
+struct sys_reg_params {
+ u8 Op0;
+ u8 Op1;
+ u8 CRn;
+ u8 CRm;
+ u8 Op2;
+ u64 regval;
+ bool is_write;
+};
+
+#define encoding_to_params(reg) \
+ ((struct sys_reg_params){ .Op0 = sys_reg_Op0(reg), \
+ .Op1 = sys_reg_Op1(reg), \
+ .CRn = sys_reg_CRn(reg), \
+ .CRm = sys_reg_CRm(reg), \
+ .Op2 = sys_reg_Op2(reg) })
+
+#define esr_sys64_to_params(esr) \
+ ((struct sys_reg_params){ .Op0 = ((esr) >> 20) & 3, \
+ .Op1 = ((esr) >> 14) & 0x7, \
+ .CRn = ((esr) >> 10) & 0xf, \
+ .CRm = ((esr) >> 1) & 0xf, \
+ .Op2 = ((esr) >> 17) & 0x7, \
+ .is_write = !((esr) & 1) })
+
+#define esr_cp1x_32_to_params(esr) \
+ ((struct sys_reg_params){ .Op1 = ((esr) >> 14) & 0x7, \
+ .CRn = ((esr) >> 10) & 0xf, \
+ .CRm = ((esr) >> 1) & 0xf, \
+ .Op2 = ((esr) >> 17) & 0x7, \
+ .is_write = !((esr) & 1) })
+
+struct sys_reg_desc {
+ /* Sysreg string for debug */
+ const char *name;
+
+ enum {
+ AA32_DIRECT,
+ AA32_LO,
+ AA32_HI,
+ } aarch32_map;
+
+ /* MRS/MSR instruction which accesses it. */
+ u8 Op0;
+ u8 Op1;
+ u8 CRn;
+ u8 CRm;
+ u8 Op2;
+
+ /* Trapped access from guest, if non-NULL. */
+ bool (*access)(struct kvm_vcpu *,
+ struct sys_reg_params *,
+ const struct sys_reg_desc *);
+
+ /*
+ * Initialization for vcpu. Return initialized value, or KVM
+ * sanitized value for ID registers.
+ */
+ u64 (*reset)(struct kvm_vcpu *, const struct sys_reg_desc *);
+
+ /* Index into sys_reg[], or 0 if we don't need to save it. */
+ int reg;
+
+ /* Value (usually reset value), or write mask for idregs */
+ u64 val;
+
+ /* Custom get/set_user functions, fallback to generic if NULL */
+ int (*get_user)(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
+ u64 *val);
+ int (*set_user)(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
+ u64 val);
+
+ /* Return mask of REG_* runtime visibility overrides */
+ unsigned int (*visibility)(const struct kvm_vcpu *vcpu,
+ const struct sys_reg_desc *rd);
+};
+
+#define REG_HIDDEN (1 << 0) /* hidden from userspace and guest */
+#define REG_HIDDEN_USER (1 << 1) /* hidden from userspace only */
+#define REG_RAZ (1 << 2) /* RAZ from userspace and guest */
+#define REG_USER_WI (1 << 3) /* WI from userspace only */
+
+static __printf(2, 3)
+inline void print_sys_reg_msg(const struct sys_reg_params *p,
+ char *fmt, ...)
+{
+ va_list va;
+
+ va_start(va, fmt);
+ /* Look, we even formatted it for you to paste into the table! */
+ kvm_pr_unimpl("%pV { Op0(%2u), Op1(%2u), CRn(%2u), CRm(%2u), Op2(%2u), func_%s },\n",
+ &(struct va_format){ fmt, &va },
+ p->Op0, p->Op1, p->CRn, p->CRm, p->Op2, p->is_write ? "write" : "read");
+ va_end(va);
+}
+
+static inline void print_sys_reg_instr(const struct sys_reg_params *p)
+{
+ /* GCC warns on an empty format string */
+ print_sys_reg_msg(p, "%s", "");
+}
+
+static inline bool ignore_write(struct kvm_vcpu *vcpu,
+ const struct sys_reg_params *p)
+{
+ return true;
+}
+
+static inline bool read_zero(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *p)
+{
+ p->regval = 0;
+ return true;
+}
+
+/* Reset functions */
+static inline u64 reset_unknown(struct kvm_vcpu *vcpu,
+ const struct sys_reg_desc *r)
+{
+ BUG_ON(!r->reg);
+ BUG_ON(r->reg >= NR_SYS_REGS);
+ __vcpu_sys_reg(vcpu, r->reg) = 0x1de7ec7edbadc0deULL;
+ return __vcpu_sys_reg(vcpu, r->reg);
+}
+
+static inline u64 reset_val(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
+{
+ BUG_ON(!r->reg);
+ BUG_ON(r->reg >= NR_SYS_REGS);
+ __vcpu_sys_reg(vcpu, r->reg) = r->val;
+ return __vcpu_sys_reg(vcpu, r->reg);
+}
+
+static inline unsigned int sysreg_visibility(const struct kvm_vcpu *vcpu,
+ const struct sys_reg_desc *r)
+{
+ if (likely(!r->visibility))
+ return 0;
+
+ return r->visibility(vcpu, r);
+}
+
+static inline bool sysreg_hidden(const struct kvm_vcpu *vcpu,
+ const struct sys_reg_desc *r)
+{
+ return sysreg_visibility(vcpu, r) & REG_HIDDEN;
+}
+
+static inline bool sysreg_hidden_user(const struct kvm_vcpu *vcpu,
+ const struct sys_reg_desc *r)
+{
+ if (likely(!r->visibility))
+ return false;
+
+ return r->visibility(vcpu, r) & (REG_HIDDEN | REG_HIDDEN_USER);
+}
+
+static inline bool sysreg_visible_as_raz(const struct kvm_vcpu *vcpu,
+ const struct sys_reg_desc *r)
+{
+ return sysreg_visibility(vcpu, r) & REG_RAZ;
+}
+
+static inline bool sysreg_user_write_ignore(const struct kvm_vcpu *vcpu,
+ const struct sys_reg_desc *r)
+{
+ return sysreg_visibility(vcpu, r) & REG_USER_WI;
+}
+
+static inline int cmp_sys_reg(const struct sys_reg_desc *i1,
+ const struct sys_reg_desc *i2)
+{
+ BUG_ON(i1 == i2);
+ if (!i1)
+ return 1;
+ else if (!i2)
+ return -1;
+ if (i1->Op0 != i2->Op0)
+ return i1->Op0 - i2->Op0;
+ if (i1->Op1 != i2->Op1)
+ return i1->Op1 - i2->Op1;
+ if (i1->CRn != i2->CRn)
+ return i1->CRn - i2->CRn;
+ if (i1->CRm != i2->CRm)
+ return i1->CRm - i2->CRm;
+ return i1->Op2 - i2->Op2;
+}
+
+static inline int match_sys_reg(const void *key, const void *elt)
+{
+ const unsigned long pval = (unsigned long)key;
+ const struct sys_reg_desc *r = elt;
+
+ return pval - reg_to_encoding(r);
+}
+
+static inline const struct sys_reg_desc *
+find_reg(const struct sys_reg_params *params, const struct sys_reg_desc table[],
+ unsigned int num)
+{
+ unsigned long pval = reg_to_encoding(params);
+
+ return __inline_bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
+}
+
+const struct sys_reg_desc *get_reg_by_id(u64 id,
+ const struct sys_reg_desc table[],
+ unsigned int num);
+
+int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *);
+int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *);
+int kvm_sys_reg_get_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
+ const struct sys_reg_desc table[], unsigned int num);
+int kvm_sys_reg_set_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
+ const struct sys_reg_desc table[], unsigned int num);
+
+#define AA32(_x) .aarch32_map = AA32_##_x
+#define Op0(_x) .Op0 = _x
+#define Op1(_x) .Op1 = _x
+#define CRn(_x) .CRn = _x
+#define CRm(_x) .CRm = _x
+#define Op2(_x) .Op2 = _x
+
+#define SYS_DESC(reg) \
+ .name = #reg, \
+ Op0(sys_reg_Op0(reg)), Op1(sys_reg_Op1(reg)), \
+ CRn(sys_reg_CRn(reg)), CRm(sys_reg_CRm(reg)), \
+ Op2(sys_reg_Op2(reg))
+
+#endif /* __ARM64_KVM_SYS_REGS_LOCAL_H__ */
diff --git a/arch/arm64/kvm/trace.h b/arch/arm64/kvm/trace.h
new file mode 100644
index 0000000000..86f9ea47be
--- /dev/null
+++ b/arch/arm64/kvm/trace.h
@@ -0,0 +1,8 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifndef _TRACE_ARM64_KVM_H
+#define _TRACE_ARM64_KVM_H
+
+#include "trace_arm.h"
+#include "trace_handle_exit.h"
+
+#endif /* _TRACE_ARM64_KVM_H */
diff --git a/arch/arm64/kvm/trace_arm.h b/arch/arm64/kvm/trace_arm.h
new file mode 100644
index 0000000000..8ad5310493
--- /dev/null
+++ b/arch/arm64/kvm/trace_arm.h
@@ -0,0 +1,401 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#if !defined(_TRACE_ARM_ARM64_KVM_H) || defined(TRACE_HEADER_MULTI_READ)
+#define _TRACE_ARM_ARM64_KVM_H
+
+#include <asm/kvm_emulate.h>
+#include <kvm/arm_arch_timer.h>
+#include <linux/tracepoint.h>
+
+#undef TRACE_SYSTEM
+#define TRACE_SYSTEM kvm
+
+/*
+ * Tracepoints for entry/exit to guest
+ */
+TRACE_EVENT(kvm_entry,
+ TP_PROTO(unsigned long vcpu_pc),
+ TP_ARGS(vcpu_pc),
+
+ TP_STRUCT__entry(
+ __field( unsigned long, vcpu_pc )
+ ),
+
+ TP_fast_assign(
+ __entry->vcpu_pc = vcpu_pc;
+ ),
+
+ TP_printk("PC: 0x%016lx", __entry->vcpu_pc)
+);
+
+TRACE_EVENT(kvm_exit,
+ TP_PROTO(int ret, unsigned int esr_ec, unsigned long vcpu_pc),
+ TP_ARGS(ret, esr_ec, vcpu_pc),
+
+ TP_STRUCT__entry(
+ __field( int, ret )
+ __field( unsigned int, esr_ec )
+ __field( unsigned long, vcpu_pc )
+ ),
+
+ TP_fast_assign(
+ __entry->ret = ARM_EXCEPTION_CODE(ret);
+ __entry->esr_ec = ARM_EXCEPTION_IS_TRAP(ret) ? esr_ec : 0;
+ __entry->vcpu_pc = vcpu_pc;
+ ),
+
+ TP_printk("%s: HSR_EC: 0x%04x (%s), PC: 0x%016lx",
+ __print_symbolic(__entry->ret, kvm_arm_exception_type),
+ __entry->esr_ec,
+ __print_symbolic(__entry->esr_ec, kvm_arm_exception_class),
+ __entry->vcpu_pc)
+);
+
+TRACE_EVENT(kvm_guest_fault,
+ TP_PROTO(unsigned long vcpu_pc, unsigned long hsr,
+ unsigned long hxfar,
+ unsigned long long ipa),
+ TP_ARGS(vcpu_pc, hsr, hxfar, ipa),
+
+ TP_STRUCT__entry(
+ __field( unsigned long, vcpu_pc )
+ __field( unsigned long, hsr )
+ __field( unsigned long, hxfar )
+ __field( unsigned long long, ipa )
+ ),
+
+ TP_fast_assign(
+ __entry->vcpu_pc = vcpu_pc;
+ __entry->hsr = hsr;
+ __entry->hxfar = hxfar;
+ __entry->ipa = ipa;
+ ),
+
+ TP_printk("ipa %#llx, hsr %#08lx, hxfar %#08lx, pc %#016lx",
+ __entry->ipa, __entry->hsr,
+ __entry->hxfar, __entry->vcpu_pc)
+);
+
+TRACE_EVENT(kvm_access_fault,
+ TP_PROTO(unsigned long ipa),
+ TP_ARGS(ipa),
+
+ TP_STRUCT__entry(
+ __field( unsigned long, ipa )
+ ),
+
+ TP_fast_assign(
+ __entry->ipa = ipa;
+ ),
+
+ TP_printk("IPA: %lx", __entry->ipa)
+);
+
+TRACE_EVENT(kvm_irq_line,
+ TP_PROTO(unsigned int type, int vcpu_idx, int irq_num, int level),
+ TP_ARGS(type, vcpu_idx, irq_num, level),
+
+ TP_STRUCT__entry(
+ __field( unsigned int, type )
+ __field( int, vcpu_idx )
+ __field( int, irq_num )
+ __field( int, level )
+ ),
+
+ TP_fast_assign(
+ __entry->type = type;
+ __entry->vcpu_idx = vcpu_idx;
+ __entry->irq_num = irq_num;
+ __entry->level = level;
+ ),
+
+ TP_printk("Inject %s interrupt (%d), vcpu->idx: %d, num: %d, level: %d",
+ (__entry->type == KVM_ARM_IRQ_TYPE_CPU) ? "CPU" :
+ (__entry->type == KVM_ARM_IRQ_TYPE_PPI) ? "VGIC PPI" :
+ (__entry->type == KVM_ARM_IRQ_TYPE_SPI) ? "VGIC SPI" : "UNKNOWN",
+ __entry->type, __entry->vcpu_idx, __entry->irq_num, __entry->level)
+);
+
+TRACE_EVENT(kvm_mmio_emulate,
+ TP_PROTO(unsigned long vcpu_pc, unsigned long instr,
+ unsigned long cpsr),
+ TP_ARGS(vcpu_pc, instr, cpsr),
+
+ TP_STRUCT__entry(
+ __field( unsigned long, vcpu_pc )
+ __field( unsigned long, instr )
+ __field( unsigned long, cpsr )
+ ),
+
+ TP_fast_assign(
+ __entry->vcpu_pc = vcpu_pc;
+ __entry->instr = instr;
+ __entry->cpsr = cpsr;
+ ),
+
+ TP_printk("Emulate MMIO at: 0x%016lx (instr: %08lx, cpsr: %08lx)",
+ __entry->vcpu_pc, __entry->instr, __entry->cpsr)
+);
+
+TRACE_EVENT(kvm_set_way_flush,
+ TP_PROTO(unsigned long vcpu_pc, bool cache),
+ TP_ARGS(vcpu_pc, cache),
+
+ TP_STRUCT__entry(
+ __field( unsigned long, vcpu_pc )
+ __field( bool, cache )
+ ),
+
+ TP_fast_assign(
+ __entry->vcpu_pc = vcpu_pc;
+ __entry->cache = cache;
+ ),
+
+ TP_printk("S/W flush at 0x%016lx (cache %s)",
+ __entry->vcpu_pc, __entry->cache ? "on" : "off")
+);
+
+TRACE_EVENT(kvm_toggle_cache,
+ TP_PROTO(unsigned long vcpu_pc, bool was, bool now),
+ TP_ARGS(vcpu_pc, was, now),
+
+ TP_STRUCT__entry(
+ __field( unsigned long, vcpu_pc )
+ __field( bool, was )
+ __field( bool, now )
+ ),
+
+ TP_fast_assign(
+ __entry->vcpu_pc = vcpu_pc;
+ __entry->was = was;
+ __entry->now = now;
+ ),
+
+ TP_printk("VM op at 0x%016lx (cache was %s, now %s)",
+ __entry->vcpu_pc, __entry->was ? "on" : "off",
+ __entry->now ? "on" : "off")
+);
+
+/*
+ * Tracepoints for arch_timer
+ */
+TRACE_EVENT(kvm_timer_update_irq,
+ TP_PROTO(unsigned long vcpu_id, __u32 irq, int level),
+ TP_ARGS(vcpu_id, irq, level),
+
+ TP_STRUCT__entry(
+ __field( unsigned long, vcpu_id )
+ __field( __u32, irq )
+ __field( int, level )
+ ),
+
+ TP_fast_assign(
+ __entry->vcpu_id = vcpu_id;
+ __entry->irq = irq;
+ __entry->level = level;
+ ),
+
+ TP_printk("VCPU: %ld, IRQ %d, level %d",
+ __entry->vcpu_id, __entry->irq, __entry->level)
+);
+
+TRACE_EVENT(kvm_get_timer_map,
+ TP_PROTO(unsigned long vcpu_id, struct timer_map *map),
+ TP_ARGS(vcpu_id, map),
+
+ TP_STRUCT__entry(
+ __field( unsigned long, vcpu_id )
+ __field( int, direct_vtimer )
+ __field( int, direct_ptimer )
+ __field( int, emul_vtimer )
+ __field( int, emul_ptimer )
+ ),
+
+ TP_fast_assign(
+ __entry->vcpu_id = vcpu_id;
+ __entry->direct_vtimer = arch_timer_ctx_index(map->direct_vtimer);
+ __entry->direct_ptimer =
+ (map->direct_ptimer) ? arch_timer_ctx_index(map->direct_ptimer) : -1;
+ __entry->emul_vtimer =
+ (map->emul_vtimer) ? arch_timer_ctx_index(map->emul_vtimer) : -1;
+ __entry->emul_ptimer =
+ (map->emul_ptimer) ? arch_timer_ctx_index(map->emul_ptimer) : -1;
+ ),
+
+ TP_printk("VCPU: %ld, dv: %d, dp: %d, ev: %d, ep: %d",
+ __entry->vcpu_id,
+ __entry->direct_vtimer,
+ __entry->direct_ptimer,
+ __entry->emul_vtimer,
+ __entry->emul_ptimer)
+);
+
+TRACE_EVENT(kvm_timer_save_state,
+ TP_PROTO(struct arch_timer_context *ctx),
+ TP_ARGS(ctx),
+
+ TP_STRUCT__entry(
+ __field( unsigned long, ctl )
+ __field( unsigned long long, cval )
+ __field( int, timer_idx )
+ ),
+
+ TP_fast_assign(
+ __entry->ctl = timer_get_ctl(ctx);
+ __entry->cval = timer_get_cval(ctx);
+ __entry->timer_idx = arch_timer_ctx_index(ctx);
+ ),
+
+ TP_printk(" CTL: %#08lx CVAL: %#16llx arch_timer_ctx_index: %d",
+ __entry->ctl,
+ __entry->cval,
+ __entry->timer_idx)
+);
+
+TRACE_EVENT(kvm_timer_restore_state,
+ TP_PROTO(struct arch_timer_context *ctx),
+ TP_ARGS(ctx),
+
+ TP_STRUCT__entry(
+ __field( unsigned long, ctl )
+ __field( unsigned long long, cval )
+ __field( int, timer_idx )
+ ),
+
+ TP_fast_assign(
+ __entry->ctl = timer_get_ctl(ctx);
+ __entry->cval = timer_get_cval(ctx);
+ __entry->timer_idx = arch_timer_ctx_index(ctx);
+ ),
+
+ TP_printk("CTL: %#08lx CVAL: %#16llx arch_timer_ctx_index: %d",
+ __entry->ctl,
+ __entry->cval,
+ __entry->timer_idx)
+);
+
+TRACE_EVENT(kvm_timer_hrtimer_expire,
+ TP_PROTO(struct arch_timer_context *ctx),
+ TP_ARGS(ctx),
+
+ TP_STRUCT__entry(
+ __field( int, timer_idx )
+ ),
+
+ TP_fast_assign(
+ __entry->timer_idx = arch_timer_ctx_index(ctx);
+ ),
+
+ TP_printk("arch_timer_ctx_index: %d", __entry->timer_idx)
+);
+
+TRACE_EVENT(kvm_timer_emulate,
+ TP_PROTO(struct arch_timer_context *ctx, bool should_fire),
+ TP_ARGS(ctx, should_fire),
+
+ TP_STRUCT__entry(
+ __field( int, timer_idx )
+ __field( bool, should_fire )
+ ),
+
+ TP_fast_assign(
+ __entry->timer_idx = arch_timer_ctx_index(ctx);
+ __entry->should_fire = should_fire;
+ ),
+
+ TP_printk("arch_timer_ctx_index: %d (should_fire: %d)",
+ __entry->timer_idx, __entry->should_fire)
+);
+
+TRACE_EVENT(kvm_nested_eret,
+ TP_PROTO(struct kvm_vcpu *vcpu, unsigned long elr_el2,
+ unsigned long spsr_el2),
+ TP_ARGS(vcpu, elr_el2, spsr_el2),
+
+ TP_STRUCT__entry(
+ __field(struct kvm_vcpu *, vcpu)
+ __field(unsigned long, elr_el2)
+ __field(unsigned long, spsr_el2)
+ __field(unsigned long, target_mode)
+ __field(unsigned long, hcr_el2)
+ ),
+
+ TP_fast_assign(
+ __entry->vcpu = vcpu;
+ __entry->elr_el2 = elr_el2;
+ __entry->spsr_el2 = spsr_el2;
+ __entry->target_mode = spsr_el2 & (PSR_MODE_MASK | PSR_MODE32_BIT);
+ __entry->hcr_el2 = __vcpu_sys_reg(vcpu, HCR_EL2);
+ ),
+
+ TP_printk("elr_el2: 0x%lx spsr_el2: 0x%08lx (M: %s) hcr_el2: %lx",
+ __entry->elr_el2, __entry->spsr_el2,
+ __print_symbolic(__entry->target_mode, kvm_mode_names),
+ __entry->hcr_el2)
+);
+
+TRACE_EVENT(kvm_inject_nested_exception,
+ TP_PROTO(struct kvm_vcpu *vcpu, u64 esr_el2, int type),
+ TP_ARGS(vcpu, esr_el2, type),
+
+ TP_STRUCT__entry(
+ __field(struct kvm_vcpu *, vcpu)
+ __field(unsigned long, esr_el2)
+ __field(int, type)
+ __field(unsigned long, spsr_el2)
+ __field(unsigned long, pc)
+ __field(unsigned long, source_mode)
+ __field(unsigned long, hcr_el2)
+ ),
+
+ TP_fast_assign(
+ __entry->vcpu = vcpu;
+ __entry->esr_el2 = esr_el2;
+ __entry->type = type;
+ __entry->spsr_el2 = *vcpu_cpsr(vcpu);
+ __entry->pc = *vcpu_pc(vcpu);
+ __entry->source_mode = *vcpu_cpsr(vcpu) & (PSR_MODE_MASK | PSR_MODE32_BIT);
+ __entry->hcr_el2 = __vcpu_sys_reg(vcpu, HCR_EL2);
+ ),
+
+ TP_printk("%s: esr_el2 0x%lx elr_el2: 0x%lx spsr_el2: 0x%08lx (M: %s) hcr_el2: %lx",
+ __print_symbolic(__entry->type, kvm_exception_type_names),
+ __entry->esr_el2, __entry->pc, __entry->spsr_el2,
+ __print_symbolic(__entry->source_mode, kvm_mode_names),
+ __entry->hcr_el2)
+);
+
+TRACE_EVENT(kvm_forward_sysreg_trap,
+ TP_PROTO(struct kvm_vcpu *vcpu, u32 sysreg, bool is_read),
+ TP_ARGS(vcpu, sysreg, is_read),
+
+ TP_STRUCT__entry(
+ __field(u64, pc)
+ __field(u32, sysreg)
+ __field(bool, is_read)
+ ),
+
+ TP_fast_assign(
+ __entry->pc = *vcpu_pc(vcpu);
+ __entry->sysreg = sysreg;
+ __entry->is_read = is_read;
+ ),
+
+ TP_printk("%llx %c (%d,%d,%d,%d,%d)",
+ __entry->pc,
+ __entry->is_read ? 'R' : 'W',
+ sys_reg_Op0(__entry->sysreg),
+ sys_reg_Op1(__entry->sysreg),
+ sys_reg_CRn(__entry->sysreg),
+ sys_reg_CRm(__entry->sysreg),
+ sys_reg_Op2(__entry->sysreg))
+);
+
+#endif /* _TRACE_ARM_ARM64_KVM_H */
+
+#undef TRACE_INCLUDE_PATH
+#define TRACE_INCLUDE_PATH .
+#undef TRACE_INCLUDE_FILE
+#define TRACE_INCLUDE_FILE trace_arm
+
+/* This part must be outside protection */
+#include <trace/define_trace.h>
diff --git a/arch/arm64/kvm/trace_handle_exit.h b/arch/arm64/kvm/trace_handle_exit.h
new file mode 100644
index 0000000000..064a58c19f
--- /dev/null
+++ b/arch/arm64/kvm/trace_handle_exit.h
@@ -0,0 +1,219 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#if !defined(_TRACE_HANDLE_EXIT_ARM64_KVM_H) || defined(TRACE_HEADER_MULTI_READ)
+#define _TRACE_HANDLE_EXIT_ARM64_KVM_H
+
+#include <linux/tracepoint.h>
+#include "sys_regs.h"
+
+#undef TRACE_SYSTEM
+#define TRACE_SYSTEM kvm
+
+TRACE_EVENT(kvm_wfx_arm64,
+ TP_PROTO(unsigned long vcpu_pc, bool is_wfe),
+ TP_ARGS(vcpu_pc, is_wfe),
+
+ TP_STRUCT__entry(
+ __field(unsigned long, vcpu_pc)
+ __field(bool, is_wfe)
+ ),
+
+ TP_fast_assign(
+ __entry->vcpu_pc = vcpu_pc;
+ __entry->is_wfe = is_wfe;
+ ),
+
+ TP_printk("guest executed wf%c at: 0x%016lx",
+ __entry->is_wfe ? 'e' : 'i', __entry->vcpu_pc)
+);
+
+TRACE_EVENT(kvm_hvc_arm64,
+ TP_PROTO(unsigned long vcpu_pc, unsigned long r0, unsigned long imm),
+ TP_ARGS(vcpu_pc, r0, imm),
+
+ TP_STRUCT__entry(
+ __field(unsigned long, vcpu_pc)
+ __field(unsigned long, r0)
+ __field(unsigned long, imm)
+ ),
+
+ TP_fast_assign(
+ __entry->vcpu_pc = vcpu_pc;
+ __entry->r0 = r0;
+ __entry->imm = imm;
+ ),
+
+ TP_printk("HVC at 0x%016lx (r0: 0x%016lx, imm: 0x%lx)",
+ __entry->vcpu_pc, __entry->r0, __entry->imm)
+);
+
+TRACE_EVENT(kvm_arm_setup_debug,
+ TP_PROTO(struct kvm_vcpu *vcpu, __u32 guest_debug),
+ TP_ARGS(vcpu, guest_debug),
+
+ TP_STRUCT__entry(
+ __field(struct kvm_vcpu *, vcpu)
+ __field(__u32, guest_debug)
+ ),
+
+ TP_fast_assign(
+ __entry->vcpu = vcpu;
+ __entry->guest_debug = guest_debug;
+ ),
+
+ TP_printk("vcpu: %p, flags: 0x%08x", __entry->vcpu, __entry->guest_debug)
+);
+
+TRACE_EVENT(kvm_arm_clear_debug,
+ TP_PROTO(__u32 guest_debug),
+ TP_ARGS(guest_debug),
+
+ TP_STRUCT__entry(
+ __field(__u32, guest_debug)
+ ),
+
+ TP_fast_assign(
+ __entry->guest_debug = guest_debug;
+ ),
+
+ TP_printk("flags: 0x%08x", __entry->guest_debug)
+);
+
+/*
+ * The dreg32 name is a leftover from a distant past. This will really
+ * output a 64bit value...
+ */
+TRACE_EVENT(kvm_arm_set_dreg32,
+ TP_PROTO(const char *name, __u64 value),
+ TP_ARGS(name, value),
+
+ TP_STRUCT__entry(
+ __field(const char *, name)
+ __field(__u64, value)
+ ),
+
+ TP_fast_assign(
+ __entry->name = name;
+ __entry->value = value;
+ ),
+
+ TP_printk("%s: 0x%llx", __entry->name, __entry->value)
+);
+
+TRACE_DEFINE_SIZEOF(__u64);
+
+TRACE_EVENT(kvm_arm_set_regset,
+ TP_PROTO(const char *type, int len, __u64 *control, __u64 *value),
+ TP_ARGS(type, len, control, value),
+ TP_STRUCT__entry(
+ __field(const char *, name)
+ __field(int, len)
+ __array(u64, ctrls, 16)
+ __array(u64, values, 16)
+ ),
+ TP_fast_assign(
+ __entry->name = type;
+ __entry->len = len;
+ memcpy(__entry->ctrls, control, len << 3);
+ memcpy(__entry->values, value, len << 3);
+ ),
+ TP_printk("%d %s CTRL:%s VALUE:%s", __entry->len, __entry->name,
+ __print_array(__entry->ctrls, __entry->len, sizeof(__u64)),
+ __print_array(__entry->values, __entry->len, sizeof(__u64)))
+);
+
+TRACE_EVENT(trap_reg,
+ TP_PROTO(const char *fn, int reg, bool is_write, u64 write_value),
+ TP_ARGS(fn, reg, is_write, write_value),
+
+ TP_STRUCT__entry(
+ __field(const char *, fn)
+ __field(int, reg)
+ __field(bool, is_write)
+ __field(u64, write_value)
+ ),
+
+ TP_fast_assign(
+ __entry->fn = fn;
+ __entry->reg = reg;
+ __entry->is_write = is_write;
+ __entry->write_value = write_value;
+ ),
+
+ TP_printk("%s %s reg %d (0x%016llx)", __entry->fn, __entry->is_write?"write to":"read from", __entry->reg, __entry->write_value)
+);
+
+TRACE_EVENT(kvm_handle_sys_reg,
+ TP_PROTO(unsigned long hsr),
+ TP_ARGS(hsr),
+
+ TP_STRUCT__entry(
+ __field(unsigned long, hsr)
+ ),
+
+ TP_fast_assign(
+ __entry->hsr = hsr;
+ ),
+
+ TP_printk("HSR 0x%08lx", __entry->hsr)
+);
+
+TRACE_EVENT(kvm_sys_access,
+ TP_PROTO(unsigned long vcpu_pc, struct sys_reg_params *params, const struct sys_reg_desc *reg),
+ TP_ARGS(vcpu_pc, params, reg),
+
+ TP_STRUCT__entry(
+ __field(unsigned long, vcpu_pc)
+ __field(bool, is_write)
+ __field(const char *, name)
+ __field(u8, Op0)
+ __field(u8, Op1)
+ __field(u8, CRn)
+ __field(u8, CRm)
+ __field(u8, Op2)
+ ),
+
+ TP_fast_assign(
+ __entry->vcpu_pc = vcpu_pc;
+ __entry->is_write = params->is_write;
+ __entry->name = reg->name;
+ __entry->Op0 = reg->Op0;
+ __entry->Op0 = reg->Op0;
+ __entry->Op1 = reg->Op1;
+ __entry->CRn = reg->CRn;
+ __entry->CRm = reg->CRm;
+ __entry->Op2 = reg->Op2;
+ ),
+
+ TP_printk("PC: %lx %s (%d,%d,%d,%d,%d) %s",
+ __entry->vcpu_pc, __entry->name ?: "UNKN",
+ __entry->Op0, __entry->Op1, __entry->CRn,
+ __entry->CRm, __entry->Op2,
+ __entry->is_write ? "write" : "read")
+);
+
+TRACE_EVENT(kvm_set_guest_debug,
+ TP_PROTO(struct kvm_vcpu *vcpu, __u32 guest_debug),
+ TP_ARGS(vcpu, guest_debug),
+
+ TP_STRUCT__entry(
+ __field(struct kvm_vcpu *, vcpu)
+ __field(__u32, guest_debug)
+ ),
+
+ TP_fast_assign(
+ __entry->vcpu = vcpu;
+ __entry->guest_debug = guest_debug;
+ ),
+
+ TP_printk("vcpu: %p, flags: 0x%08x", __entry->vcpu, __entry->guest_debug)
+);
+
+#endif /* _TRACE_HANDLE_EXIT_ARM64_KVM_H */
+
+#undef TRACE_INCLUDE_PATH
+#define TRACE_INCLUDE_PATH .
+#undef TRACE_INCLUDE_FILE
+#define TRACE_INCLUDE_FILE trace_handle_exit
+
+/* This part must be outside protection */
+#include <trace/define_trace.h>
diff --git a/arch/arm64/kvm/trng.c b/arch/arm64/kvm/trng.c
new file mode 100644
index 0000000000..99bdd7103c
--- /dev/null
+++ b/arch/arm64/kvm/trng.c
@@ -0,0 +1,85 @@
+// SPDX-License-Identifier: GPL-2.0
+// Copyright (C) 2020 Arm Ltd.
+
+#include <linux/arm-smccc.h>
+#include <linux/kvm_host.h>
+
+#include <asm/kvm_emulate.h>
+
+#include <kvm/arm_hypercalls.h>
+
+#define ARM_SMCCC_TRNG_VERSION_1_0 0x10000UL
+
+/* Those values are deliberately separate from the generic SMCCC definitions. */
+#define TRNG_SUCCESS 0UL
+#define TRNG_NOT_SUPPORTED ((unsigned long)-1)
+#define TRNG_INVALID_PARAMETER ((unsigned long)-2)
+#define TRNG_NO_ENTROPY ((unsigned long)-3)
+
+#define TRNG_MAX_BITS64 192
+
+static const uuid_t arm_smc_trng_uuid __aligned(4) = UUID_INIT(
+ 0x0d21e000, 0x4384, 0x11eb, 0x80, 0x70, 0x52, 0x44, 0x55, 0x4e, 0x5a, 0x4c);
+
+static int kvm_trng_do_rnd(struct kvm_vcpu *vcpu, int size)
+{
+ DECLARE_BITMAP(bits, TRNG_MAX_BITS64);
+ u32 num_bits = smccc_get_arg1(vcpu);
+ int i;
+
+ if (num_bits > 3 * size) {
+ smccc_set_retval(vcpu, TRNG_INVALID_PARAMETER, 0, 0, 0);
+ return 1;
+ }
+
+ /* get as many bits as we need to fulfil the request */
+ for (i = 0; i < DIV_ROUND_UP(num_bits, BITS_PER_LONG); i++)
+ bits[i] = get_random_long();
+
+ bitmap_clear(bits, num_bits, TRNG_MAX_BITS64 - num_bits);
+
+ if (size == 32)
+ smccc_set_retval(vcpu, TRNG_SUCCESS, lower_32_bits(bits[1]),
+ upper_32_bits(bits[0]), lower_32_bits(bits[0]));
+ else
+ smccc_set_retval(vcpu, TRNG_SUCCESS, bits[2], bits[1], bits[0]);
+
+ memzero_explicit(bits, sizeof(bits));
+ return 1;
+}
+
+int kvm_trng_call(struct kvm_vcpu *vcpu)
+{
+ const __le32 *u = (__le32 *)arm_smc_trng_uuid.b;
+ u32 func_id = smccc_get_function(vcpu);
+ unsigned long val = TRNG_NOT_SUPPORTED;
+ int size = 64;
+
+ switch (func_id) {
+ case ARM_SMCCC_TRNG_VERSION:
+ val = ARM_SMCCC_TRNG_VERSION_1_0;
+ break;
+ case ARM_SMCCC_TRNG_FEATURES:
+ switch (smccc_get_arg1(vcpu)) {
+ case ARM_SMCCC_TRNG_VERSION:
+ case ARM_SMCCC_TRNG_FEATURES:
+ case ARM_SMCCC_TRNG_GET_UUID:
+ case ARM_SMCCC_TRNG_RND32:
+ case ARM_SMCCC_TRNG_RND64:
+ val = TRNG_SUCCESS;
+ }
+ break;
+ case ARM_SMCCC_TRNG_GET_UUID:
+ smccc_set_retval(vcpu, le32_to_cpu(u[0]), le32_to_cpu(u[1]),
+ le32_to_cpu(u[2]), le32_to_cpu(u[3]));
+ return 1;
+ case ARM_SMCCC_TRNG_RND32:
+ size = 32;
+ fallthrough;
+ case ARM_SMCCC_TRNG_RND64:
+ return kvm_trng_do_rnd(vcpu, size);
+ }
+
+ smccc_set_retval(vcpu, val, 0, 0, 0);
+ return 1;
+}
diff --git a/arch/arm64/kvm/va_layout.c b/arch/arm64/kvm/va_layout.c
new file mode 100644
index 0000000000..91b22a0146
--- /dev/null
+++ b/arch/arm64/kvm/va_layout.c
@@ -0,0 +1,298 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2017 ARM Ltd.
+ * Author: Marc Zyngier <marc.zyngier@arm.com>
+ */
+
+#include <linux/kvm_host.h>
+#include <linux/random.h>
+#include <linux/memblock.h>
+#include <asm/alternative.h>
+#include <asm/debug-monitors.h>
+#include <asm/insn.h>
+#include <asm/kvm_mmu.h>
+#include <asm/memory.h>
+
+/*
+ * The LSB of the HYP VA tag
+ */
+static u8 tag_lsb;
+/*
+ * The HYP VA tag value with the region bit
+ */
+static u64 tag_val;
+static u64 va_mask;
+
+/*
+ * Compute HYP VA by using the same computation as kern_hyp_va().
+ */
+static u64 __early_kern_hyp_va(u64 addr)
+{
+ addr &= va_mask;
+ addr |= tag_val << tag_lsb;
+ return addr;
+}
+
+/*
+ * Store a hyp VA <-> PA offset into a EL2-owned variable.
+ */
+static void init_hyp_physvirt_offset(void)
+{
+ u64 kern_va, hyp_va;
+
+ /* Compute the offset from the hyp VA and PA of a random symbol. */
+ kern_va = (u64)lm_alias(__hyp_text_start);
+ hyp_va = __early_kern_hyp_va(kern_va);
+ hyp_physvirt_offset = (s64)__pa(kern_va) - (s64)hyp_va;
+}
+
+/*
+ * We want to generate a hyp VA with the following format (with V ==
+ * vabits_actual):
+ *
+ * 63 ... V | V-1 | V-2 .. tag_lsb | tag_lsb - 1 .. 0
+ * ---------------------------------------------------------
+ * | 0000000 | hyp_va_msb | random tag | kern linear VA |
+ * |--------- tag_val -----------|----- va_mask ---|
+ *
+ * which does not conflict with the idmap regions.
+ */
+__init void kvm_compute_layout(void)
+{
+ phys_addr_t idmap_addr = __pa_symbol(__hyp_idmap_text_start);
+ u64 hyp_va_msb;
+
+ /* Where is my RAM region? */
+ hyp_va_msb = idmap_addr & BIT(vabits_actual - 1);
+ hyp_va_msb ^= BIT(vabits_actual - 1);
+
+ tag_lsb = fls64((u64)phys_to_virt(memblock_start_of_DRAM()) ^
+ (u64)(high_memory - 1));
+
+ va_mask = GENMASK_ULL(tag_lsb - 1, 0);
+ tag_val = hyp_va_msb;
+
+ if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && tag_lsb != (vabits_actual - 1)) {
+ /* We have some free bits to insert a random tag. */
+ tag_val |= get_random_long() & GENMASK_ULL(vabits_actual - 2, tag_lsb);
+ }
+ tag_val >>= tag_lsb;
+
+ init_hyp_physvirt_offset();
+}
+
+/*
+ * The .hyp.reloc ELF section contains a list of kimg positions that
+ * contains kimg VAs but will be accessed only in hyp execution context.
+ * Convert them to hyp VAs. See gen-hyprel.c for more details.
+ */
+__init void kvm_apply_hyp_relocations(void)
+{
+ int32_t *rel;
+ int32_t *begin = (int32_t *)__hyp_reloc_begin;
+ int32_t *end = (int32_t *)__hyp_reloc_end;
+
+ for (rel = begin; rel < end; ++rel) {
+ uintptr_t *ptr, kimg_va;
+
+ /*
+ * Each entry contains a 32-bit relative offset from itself
+ * to a kimg VA position.
+ */
+ ptr = (uintptr_t *)lm_alias((char *)rel + *rel);
+
+ /* Read the kimg VA value at the relocation address. */
+ kimg_va = *ptr;
+
+ /* Convert to hyp VA and store back to the relocation address. */
+ *ptr = __early_kern_hyp_va((uintptr_t)lm_alias(kimg_va));
+ }
+}
+
+static u32 compute_instruction(int n, u32 rd, u32 rn)
+{
+ u32 insn = AARCH64_BREAK_FAULT;
+
+ switch (n) {
+ case 0:
+ insn = aarch64_insn_gen_logical_immediate(AARCH64_INSN_LOGIC_AND,
+ AARCH64_INSN_VARIANT_64BIT,
+ rn, rd, va_mask);
+ break;
+
+ case 1:
+ /* ROR is a variant of EXTR with Rm = Rn */
+ insn = aarch64_insn_gen_extr(AARCH64_INSN_VARIANT_64BIT,
+ rn, rn, rd,
+ tag_lsb);
+ break;
+
+ case 2:
+ insn = aarch64_insn_gen_add_sub_imm(rd, rn,
+ tag_val & GENMASK(11, 0),
+ AARCH64_INSN_VARIANT_64BIT,
+ AARCH64_INSN_ADSB_ADD);
+ break;
+
+ case 3:
+ insn = aarch64_insn_gen_add_sub_imm(rd, rn,
+ tag_val & GENMASK(23, 12),
+ AARCH64_INSN_VARIANT_64BIT,
+ AARCH64_INSN_ADSB_ADD);
+ break;
+
+ case 4:
+ /* ROR is a variant of EXTR with Rm = Rn */
+ insn = aarch64_insn_gen_extr(AARCH64_INSN_VARIANT_64BIT,
+ rn, rn, rd, 64 - tag_lsb);
+ break;
+ }
+
+ return insn;
+}
+
+void __init kvm_update_va_mask(struct alt_instr *alt,
+ __le32 *origptr, __le32 *updptr, int nr_inst)
+{
+ int i;
+
+ BUG_ON(nr_inst != 5);
+
+ for (i = 0; i < nr_inst; i++) {
+ u32 rd, rn, insn, oinsn;
+
+ /*
+ * VHE doesn't need any address translation, let's NOP
+ * everything.
+ *
+ * Alternatively, if the tag is zero (because the layout
+ * dictates it and we don't have any spare bits in the
+ * address), NOP everything after masking the kernel VA.
+ */
+ if (cpus_have_cap(ARM64_HAS_VIRT_HOST_EXTN) || (!tag_val && i > 0)) {
+ updptr[i] = cpu_to_le32(aarch64_insn_gen_nop());
+ continue;
+ }
+
+ oinsn = le32_to_cpu(origptr[i]);
+ rd = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RD, oinsn);
+ rn = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RN, oinsn);
+
+ insn = compute_instruction(i, rd, rn);
+ BUG_ON(insn == AARCH64_BREAK_FAULT);
+
+ updptr[i] = cpu_to_le32(insn);
+ }
+}
+
+void kvm_patch_vector_branch(struct alt_instr *alt,
+ __le32 *origptr, __le32 *updptr, int nr_inst)
+{
+ u64 addr;
+ u32 insn;
+
+ BUG_ON(nr_inst != 4);
+
+ if (!cpus_have_cap(ARM64_SPECTRE_V3A) ||
+ WARN_ON_ONCE(cpus_have_cap(ARM64_HAS_VIRT_HOST_EXTN)))
+ return;
+
+ /*
+ * Compute HYP VA by using the same computation as kern_hyp_va()
+ */
+ addr = __early_kern_hyp_va((u64)kvm_ksym_ref(__kvm_hyp_vector));
+
+ /* Use PC[10:7] to branch to the same vector in KVM */
+ addr |= ((u64)origptr & GENMASK_ULL(10, 7));
+
+ /*
+ * Branch over the preamble in order to avoid the initial store on
+ * the stack (which we already perform in the hardening vectors).
+ */
+ addr += KVM_VECTOR_PREAMBLE;
+
+ /* movz x0, #(addr & 0xffff) */
+ insn = aarch64_insn_gen_movewide(AARCH64_INSN_REG_0,
+ (u16)addr,
+ 0,
+ AARCH64_INSN_VARIANT_64BIT,
+ AARCH64_INSN_MOVEWIDE_ZERO);
+ *updptr++ = cpu_to_le32(insn);
+
+ /* movk x0, #((addr >> 16) & 0xffff), lsl #16 */
+ insn = aarch64_insn_gen_movewide(AARCH64_INSN_REG_0,
+ (u16)(addr >> 16),
+ 16,
+ AARCH64_INSN_VARIANT_64BIT,
+ AARCH64_INSN_MOVEWIDE_KEEP);
+ *updptr++ = cpu_to_le32(insn);
+
+ /* movk x0, #((addr >> 32) & 0xffff), lsl #32 */
+ insn = aarch64_insn_gen_movewide(AARCH64_INSN_REG_0,
+ (u16)(addr >> 32),
+ 32,
+ AARCH64_INSN_VARIANT_64BIT,
+ AARCH64_INSN_MOVEWIDE_KEEP);
+ *updptr++ = cpu_to_le32(insn);
+
+ /* br x0 */
+ insn = aarch64_insn_gen_branch_reg(AARCH64_INSN_REG_0,
+ AARCH64_INSN_BRANCH_NOLINK);
+ *updptr++ = cpu_to_le32(insn);
+}
+
+static void generate_mov_q(u64 val, __le32 *origptr, __le32 *updptr, int nr_inst)
+{
+ u32 insn, oinsn, rd;
+
+ BUG_ON(nr_inst != 4);
+
+ /* Compute target register */
+ oinsn = le32_to_cpu(*origptr);
+ rd = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RD, oinsn);
+
+ /* movz rd, #(val & 0xffff) */
+ insn = aarch64_insn_gen_movewide(rd,
+ (u16)val,
+ 0,
+ AARCH64_INSN_VARIANT_64BIT,
+ AARCH64_INSN_MOVEWIDE_ZERO);
+ *updptr++ = cpu_to_le32(insn);
+
+ /* movk rd, #((val >> 16) & 0xffff), lsl #16 */
+ insn = aarch64_insn_gen_movewide(rd,
+ (u16)(val >> 16),
+ 16,
+ AARCH64_INSN_VARIANT_64BIT,
+ AARCH64_INSN_MOVEWIDE_KEEP);
+ *updptr++ = cpu_to_le32(insn);
+
+ /* movk rd, #((val >> 32) & 0xffff), lsl #32 */
+ insn = aarch64_insn_gen_movewide(rd,
+ (u16)(val >> 32),
+ 32,
+ AARCH64_INSN_VARIANT_64BIT,
+ AARCH64_INSN_MOVEWIDE_KEEP);
+ *updptr++ = cpu_to_le32(insn);
+
+ /* movk rd, #((val >> 48) & 0xffff), lsl #48 */
+ insn = aarch64_insn_gen_movewide(rd,
+ (u16)(val >> 48),
+ 48,
+ AARCH64_INSN_VARIANT_64BIT,
+ AARCH64_INSN_MOVEWIDE_KEEP);
+ *updptr++ = cpu_to_le32(insn);
+}
+
+void kvm_get_kimage_voffset(struct alt_instr *alt,
+ __le32 *origptr, __le32 *updptr, int nr_inst)
+{
+ generate_mov_q(kimage_voffset, origptr, updptr, nr_inst);
+}
+
+void kvm_compute_final_ctr_el0(struct alt_instr *alt,
+ __le32 *origptr, __le32 *updptr, int nr_inst)
+{
+ generate_mov_q(read_sanitised_ftr_reg(SYS_CTR_EL0),
+ origptr, updptr, nr_inst);
+}
diff --git a/arch/arm64/kvm/vgic-sys-reg-v3.c b/arch/arm64/kvm/vgic-sys-reg-v3.c
new file mode 100644
index 0000000000..9e7c486b48
--- /dev/null
+++ b/arch/arm64/kvm/vgic-sys-reg-v3.c
@@ -0,0 +1,366 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * VGIC system registers handling functions for AArch64 mode
+ */
+
+#include <linux/irqchip/arm-gic-v3.h>
+#include <linux/kvm.h>
+#include <linux/kvm_host.h>
+#include <asm/kvm_emulate.h>
+#include "vgic/vgic.h"
+#include "sys_regs.h"
+
+static int set_gic_ctlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
+ u64 val)
+{
+ u32 host_pri_bits, host_id_bits, host_seis, host_a3v, seis, a3v;
+ struct vgic_cpu *vgic_v3_cpu = &vcpu->arch.vgic_cpu;
+ struct vgic_vmcr vmcr;
+
+ vgic_get_vmcr(vcpu, &vmcr);
+
+ /*
+ * Disallow restoring VM state if not supported by this
+ * hardware.
+ */
+ host_pri_bits = FIELD_GET(ICC_CTLR_EL1_PRI_BITS_MASK, val) + 1;
+ if (host_pri_bits > vgic_v3_cpu->num_pri_bits)
+ return -EINVAL;
+
+ vgic_v3_cpu->num_pri_bits = host_pri_bits;
+
+ host_id_bits = FIELD_GET(ICC_CTLR_EL1_ID_BITS_MASK, val);
+ if (host_id_bits > vgic_v3_cpu->num_id_bits)
+ return -EINVAL;
+
+ vgic_v3_cpu->num_id_bits = host_id_bits;
+
+ host_seis = FIELD_GET(ICH_VTR_SEIS_MASK, kvm_vgic_global_state.ich_vtr_el2);
+ seis = FIELD_GET(ICC_CTLR_EL1_SEIS_MASK, val);
+ if (host_seis != seis)
+ return -EINVAL;
+
+ host_a3v = FIELD_GET(ICH_VTR_A3V_MASK, kvm_vgic_global_state.ich_vtr_el2);
+ a3v = FIELD_GET(ICC_CTLR_EL1_A3V_MASK, val);
+ if (host_a3v != a3v)
+ return -EINVAL;
+
+ /*
+ * Here set VMCR.CTLR in ICC_CTLR_EL1 layout.
+ * The vgic_set_vmcr() will convert to ICH_VMCR layout.
+ */
+ vmcr.cbpr = FIELD_GET(ICC_CTLR_EL1_CBPR_MASK, val);
+ vmcr.eoim = FIELD_GET(ICC_CTLR_EL1_EOImode_MASK, val);
+ vgic_set_vmcr(vcpu, &vmcr);
+
+ return 0;
+}
+
+static int get_gic_ctlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
+ u64 *valp)
+{
+ struct vgic_cpu *vgic_v3_cpu = &vcpu->arch.vgic_cpu;
+ struct vgic_vmcr vmcr;
+ u64 val;
+
+ vgic_get_vmcr(vcpu, &vmcr);
+ val = 0;
+ val |= FIELD_PREP(ICC_CTLR_EL1_PRI_BITS_MASK, vgic_v3_cpu->num_pri_bits - 1);
+ val |= FIELD_PREP(ICC_CTLR_EL1_ID_BITS_MASK, vgic_v3_cpu->num_id_bits);
+ val |= FIELD_PREP(ICC_CTLR_EL1_SEIS_MASK,
+ FIELD_GET(ICH_VTR_SEIS_MASK,
+ kvm_vgic_global_state.ich_vtr_el2));
+ val |= FIELD_PREP(ICC_CTLR_EL1_A3V_MASK,
+ FIELD_GET(ICH_VTR_A3V_MASK, kvm_vgic_global_state.ich_vtr_el2));
+ /*
+ * The VMCR.CTLR value is in ICC_CTLR_EL1 layout.
+ * Extract it directly using ICC_CTLR_EL1 reg definitions.
+ */
+ val |= FIELD_PREP(ICC_CTLR_EL1_CBPR_MASK, vmcr.cbpr);
+ val |= FIELD_PREP(ICC_CTLR_EL1_EOImode_MASK, vmcr.eoim);
+
+ *valp = val;
+
+ return 0;
+}
+
+static int set_gic_pmr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
+ u64 val)
+{
+ struct vgic_vmcr vmcr;
+
+ vgic_get_vmcr(vcpu, &vmcr);
+ vmcr.pmr = FIELD_GET(ICC_PMR_EL1_MASK, val);
+ vgic_set_vmcr(vcpu, &vmcr);
+
+ return 0;
+}
+
+static int get_gic_pmr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
+ u64 *val)
+{
+ struct vgic_vmcr vmcr;
+
+ vgic_get_vmcr(vcpu, &vmcr);
+ *val = FIELD_PREP(ICC_PMR_EL1_MASK, vmcr.pmr);
+
+ return 0;
+}
+
+static int set_gic_bpr0(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
+ u64 val)
+{
+ struct vgic_vmcr vmcr;
+
+ vgic_get_vmcr(vcpu, &vmcr);
+ vmcr.bpr = FIELD_GET(ICC_BPR0_EL1_MASK, val);
+ vgic_set_vmcr(vcpu, &vmcr);
+
+ return 0;
+}
+
+static int get_gic_bpr0(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
+ u64 *val)
+{
+ struct vgic_vmcr vmcr;
+
+ vgic_get_vmcr(vcpu, &vmcr);
+ *val = FIELD_PREP(ICC_BPR0_EL1_MASK, vmcr.bpr);
+
+ return 0;
+}
+
+static int set_gic_bpr1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
+ u64 val)
+{
+ struct vgic_vmcr vmcr;
+
+ vgic_get_vmcr(vcpu, &vmcr);
+ if (!vmcr.cbpr) {
+ vmcr.abpr = FIELD_GET(ICC_BPR1_EL1_MASK, val);
+ vgic_set_vmcr(vcpu, &vmcr);
+ }
+
+ return 0;
+}
+
+static int get_gic_bpr1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
+ u64 *val)
+{
+ struct vgic_vmcr vmcr;
+
+ vgic_get_vmcr(vcpu, &vmcr);
+ if (!vmcr.cbpr)
+ *val = FIELD_PREP(ICC_BPR1_EL1_MASK, vmcr.abpr);
+ else
+ *val = min((vmcr.bpr + 1), 7U);
+
+
+ return 0;
+}
+
+static int set_gic_grpen0(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
+ u64 val)
+{
+ struct vgic_vmcr vmcr;
+
+ vgic_get_vmcr(vcpu, &vmcr);
+ vmcr.grpen0 = FIELD_GET(ICC_IGRPEN0_EL1_MASK, val);
+ vgic_set_vmcr(vcpu, &vmcr);
+
+ return 0;
+}
+
+static int get_gic_grpen0(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
+ u64 *val)
+{
+ struct vgic_vmcr vmcr;
+
+ vgic_get_vmcr(vcpu, &vmcr);
+ *val = FIELD_PREP(ICC_IGRPEN0_EL1_MASK, vmcr.grpen0);
+
+ return 0;
+}
+
+static int set_gic_grpen1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
+ u64 val)
+{
+ struct vgic_vmcr vmcr;
+
+ vgic_get_vmcr(vcpu, &vmcr);
+ vmcr.grpen1 = FIELD_GET(ICC_IGRPEN1_EL1_MASK, val);
+ vgic_set_vmcr(vcpu, &vmcr);
+
+ return 0;
+}
+
+static int get_gic_grpen1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
+ u64 *val)
+{
+ struct vgic_vmcr vmcr;
+
+ vgic_get_vmcr(vcpu, &vmcr);
+ *val = FIELD_GET(ICC_IGRPEN1_EL1_MASK, vmcr.grpen1);
+
+ return 0;
+}
+
+static void set_apr_reg(struct kvm_vcpu *vcpu, u64 val, u8 apr, u8 idx)
+{
+ struct vgic_v3_cpu_if *vgicv3 = &vcpu->arch.vgic_cpu.vgic_v3;
+
+ if (apr)
+ vgicv3->vgic_ap1r[idx] = val;
+ else
+ vgicv3->vgic_ap0r[idx] = val;
+}
+
+static u64 get_apr_reg(struct kvm_vcpu *vcpu, u8 apr, u8 idx)
+{
+ struct vgic_v3_cpu_if *vgicv3 = &vcpu->arch.vgic_cpu.vgic_v3;
+
+ if (apr)
+ return vgicv3->vgic_ap1r[idx];
+ else
+ return vgicv3->vgic_ap0r[idx];
+}
+
+static int set_gic_ap0r(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
+ u64 val)
+
+{
+ u8 idx = r->Op2 & 3;
+
+ if (idx > vgic_v3_max_apr_idx(vcpu))
+ return -EINVAL;
+
+ set_apr_reg(vcpu, val, 0, idx);
+ return 0;
+}
+
+static int get_gic_ap0r(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
+ u64 *val)
+{
+ u8 idx = r->Op2 & 3;
+
+ if (idx > vgic_v3_max_apr_idx(vcpu))
+ return -EINVAL;
+
+ *val = get_apr_reg(vcpu, 0, idx);
+
+ return 0;
+}
+
+static int set_gic_ap1r(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
+ u64 val)
+
+{
+ u8 idx = r->Op2 & 3;
+
+ if (idx > vgic_v3_max_apr_idx(vcpu))
+ return -EINVAL;
+
+ set_apr_reg(vcpu, val, 1, idx);
+ return 0;
+}
+
+static int get_gic_ap1r(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
+ u64 *val)
+{
+ u8 idx = r->Op2 & 3;
+
+ if (idx > vgic_v3_max_apr_idx(vcpu))
+ return -EINVAL;
+
+ *val = get_apr_reg(vcpu, 1, idx);
+
+ return 0;
+}
+
+static int set_gic_sre(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
+ u64 val)
+{
+ /* Validate SRE bit */
+ if (!(val & ICC_SRE_EL1_SRE))
+ return -EINVAL;
+
+ return 0;
+}
+
+static int get_gic_sre(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
+ u64 *val)
+{
+ struct vgic_v3_cpu_if *vgicv3 = &vcpu->arch.vgic_cpu.vgic_v3;
+
+ *val = vgicv3->vgic_sre;
+
+ return 0;
+}
+
+static const struct sys_reg_desc gic_v3_icc_reg_descs[] = {
+ { SYS_DESC(SYS_ICC_PMR_EL1),
+ .set_user = set_gic_pmr, .get_user = get_gic_pmr, },
+ { SYS_DESC(SYS_ICC_BPR0_EL1),
+ .set_user = set_gic_bpr0, .get_user = get_gic_bpr0, },
+ { SYS_DESC(SYS_ICC_AP0R0_EL1),
+ .set_user = set_gic_ap0r, .get_user = get_gic_ap0r, },
+ { SYS_DESC(SYS_ICC_AP0R1_EL1),
+ .set_user = set_gic_ap0r, .get_user = get_gic_ap0r, },
+ { SYS_DESC(SYS_ICC_AP0R2_EL1),
+ .set_user = set_gic_ap0r, .get_user = get_gic_ap0r, },
+ { SYS_DESC(SYS_ICC_AP0R3_EL1),
+ .set_user = set_gic_ap0r, .get_user = get_gic_ap0r, },
+ { SYS_DESC(SYS_ICC_AP1R0_EL1),
+ .set_user = set_gic_ap1r, .get_user = get_gic_ap1r, },
+ { SYS_DESC(SYS_ICC_AP1R1_EL1),
+ .set_user = set_gic_ap1r, .get_user = get_gic_ap1r, },
+ { SYS_DESC(SYS_ICC_AP1R2_EL1),
+ .set_user = set_gic_ap1r, .get_user = get_gic_ap1r, },
+ { SYS_DESC(SYS_ICC_AP1R3_EL1),
+ .set_user = set_gic_ap1r, .get_user = get_gic_ap1r, },
+ { SYS_DESC(SYS_ICC_BPR1_EL1),
+ .set_user = set_gic_bpr1, .get_user = get_gic_bpr1, },
+ { SYS_DESC(SYS_ICC_CTLR_EL1),
+ .set_user = set_gic_ctlr, .get_user = get_gic_ctlr, },
+ { SYS_DESC(SYS_ICC_SRE_EL1),
+ .set_user = set_gic_sre, .get_user = get_gic_sre, },
+ { SYS_DESC(SYS_ICC_IGRPEN0_EL1),
+ .set_user = set_gic_grpen0, .get_user = get_gic_grpen0, },
+ { SYS_DESC(SYS_ICC_IGRPEN1_EL1),
+ .set_user = set_gic_grpen1, .get_user = get_gic_grpen1, },
+};
+
+static u64 attr_to_id(u64 attr)
+{
+ return ARM64_SYS_REG(FIELD_GET(KVM_REG_ARM_VGIC_SYSREG_OP0_MASK, attr),
+ FIELD_GET(KVM_REG_ARM_VGIC_SYSREG_OP1_MASK, attr),
+ FIELD_GET(KVM_REG_ARM_VGIC_SYSREG_CRN_MASK, attr),
+ FIELD_GET(KVM_REG_ARM_VGIC_SYSREG_CRM_MASK, attr),
+ FIELD_GET(KVM_REG_ARM_VGIC_SYSREG_OP2_MASK, attr));
+}
+
+int vgic_v3_has_cpu_sysregs_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
+{
+ if (get_reg_by_id(attr_to_id(attr->attr), gic_v3_icc_reg_descs,
+ ARRAY_SIZE(gic_v3_icc_reg_descs)))
+ return 0;
+
+ return -ENXIO;
+}
+
+int vgic_v3_cpu_sysregs_uaccess(struct kvm_vcpu *vcpu,
+ struct kvm_device_attr *attr,
+ bool is_write)
+{
+ struct kvm_one_reg reg = {
+ .id = attr_to_id(attr->attr),
+ .addr = attr->addr,
+ };
+
+ if (is_write)
+ return kvm_sys_reg_set_user(vcpu, &reg, gic_v3_icc_reg_descs,
+ ARRAY_SIZE(gic_v3_icc_reg_descs));
+ else
+ return kvm_sys_reg_get_user(vcpu, &reg, gic_v3_icc_reg_descs,
+ ARRAY_SIZE(gic_v3_icc_reg_descs));
+}
diff --git a/arch/arm64/kvm/vgic/trace.h b/arch/arm64/kvm/vgic/trace.h
new file mode 100644
index 0000000000..83c64401a7
--- /dev/null
+++ b/arch/arm64/kvm/vgic/trace.h
@@ -0,0 +1,38 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#if !defined(_TRACE_VGIC_H) || defined(TRACE_HEADER_MULTI_READ)
+#define _TRACE_VGIC_H
+
+#include <linux/tracepoint.h>
+
+#undef TRACE_SYSTEM
+#define TRACE_SYSTEM kvm
+
+TRACE_EVENT(vgic_update_irq_pending,
+ TP_PROTO(unsigned long vcpu_id, __u32 irq, bool level),
+ TP_ARGS(vcpu_id, irq, level),
+
+ TP_STRUCT__entry(
+ __field( unsigned long, vcpu_id )
+ __field( __u32, irq )
+ __field( bool, level )
+ ),
+
+ TP_fast_assign(
+ __entry->vcpu_id = vcpu_id;
+ __entry->irq = irq;
+ __entry->level = level;
+ ),
+
+ TP_printk("VCPU: %ld, IRQ %d, level: %d",
+ __entry->vcpu_id, __entry->irq, __entry->level)
+);
+
+#endif /* _TRACE_VGIC_H */
+
+#undef TRACE_INCLUDE_PATH
+#define TRACE_INCLUDE_PATH ../../arch/arm64/kvm/vgic
+#undef TRACE_INCLUDE_FILE
+#define TRACE_INCLUDE_FILE trace
+
+/* This part must be outside protection */
+#include <trace/define_trace.h>
diff --git a/arch/arm64/kvm/vgic/vgic-debug.c b/arch/arm64/kvm/vgic/vgic-debug.c
new file mode 100644
index 0000000000..07aa043712
--- /dev/null
+++ b/arch/arm64/kvm/vgic/vgic-debug.c
@@ -0,0 +1,280 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2016 Linaro
+ * Author: Christoffer Dall <christoffer.dall@linaro.org>
+ */
+
+#include <linux/cpu.h>
+#include <linux/debugfs.h>
+#include <linux/interrupt.h>
+#include <linux/kvm_host.h>
+#include <linux/seq_file.h>
+#include <kvm/arm_vgic.h>
+#include <asm/kvm_mmu.h>
+#include "vgic.h"
+
+/*
+ * Structure to control looping through the entire vgic state. We start at
+ * zero for each field and move upwards. So, if dist_id is 0 we print the
+ * distributor info. When dist_id is 1, we have already printed it and move
+ * on.
+ *
+ * When vcpu_id < nr_cpus we print the vcpu info until vcpu_id == nr_cpus and
+ * so on.
+ */
+struct vgic_state_iter {
+ int nr_cpus;
+ int nr_spis;
+ int nr_lpis;
+ int dist_id;
+ int vcpu_id;
+ int intid;
+ int lpi_idx;
+ u32 *lpi_array;
+};
+
+static void iter_next(struct vgic_state_iter *iter)
+{
+ if (iter->dist_id == 0) {
+ iter->dist_id++;
+ return;
+ }
+
+ iter->intid++;
+ if (iter->intid == VGIC_NR_PRIVATE_IRQS &&
+ ++iter->vcpu_id < iter->nr_cpus)
+ iter->intid = 0;
+
+ if (iter->intid >= (iter->nr_spis + VGIC_NR_PRIVATE_IRQS)) {
+ if (iter->lpi_idx < iter->nr_lpis)
+ iter->intid = iter->lpi_array[iter->lpi_idx];
+ iter->lpi_idx++;
+ }
+}
+
+static void iter_init(struct kvm *kvm, struct vgic_state_iter *iter,
+ loff_t pos)
+{
+ int nr_cpus = atomic_read(&kvm->online_vcpus);
+
+ memset(iter, 0, sizeof(*iter));
+
+ iter->nr_cpus = nr_cpus;
+ iter->nr_spis = kvm->arch.vgic.nr_spis;
+ if (kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) {
+ iter->nr_lpis = vgic_copy_lpi_list(kvm, NULL, &iter->lpi_array);
+ if (iter->nr_lpis < 0)
+ iter->nr_lpis = 0;
+ }
+
+ /* Fast forward to the right position if needed */
+ while (pos--)
+ iter_next(iter);
+}
+
+static bool end_of_vgic(struct vgic_state_iter *iter)
+{
+ return iter->dist_id > 0 &&
+ iter->vcpu_id == iter->nr_cpus &&
+ iter->intid >= (iter->nr_spis + VGIC_NR_PRIVATE_IRQS) &&
+ iter->lpi_idx > iter->nr_lpis;
+}
+
+static void *vgic_debug_start(struct seq_file *s, loff_t *pos)
+{
+ struct kvm *kvm = s->private;
+ struct vgic_state_iter *iter;
+
+ mutex_lock(&kvm->arch.config_lock);
+ iter = kvm->arch.vgic.iter;
+ if (iter) {
+ iter = ERR_PTR(-EBUSY);
+ goto out;
+ }
+
+ iter = kmalloc(sizeof(*iter), GFP_KERNEL);
+ if (!iter) {
+ iter = ERR_PTR(-ENOMEM);
+ goto out;
+ }
+
+ iter_init(kvm, iter, *pos);
+ kvm->arch.vgic.iter = iter;
+
+ if (end_of_vgic(iter))
+ iter = NULL;
+out:
+ mutex_unlock(&kvm->arch.config_lock);
+ return iter;
+}
+
+static void *vgic_debug_next(struct seq_file *s, void *v, loff_t *pos)
+{
+ struct kvm *kvm = s->private;
+ struct vgic_state_iter *iter = kvm->arch.vgic.iter;
+
+ ++*pos;
+ iter_next(iter);
+ if (end_of_vgic(iter))
+ iter = NULL;
+ return iter;
+}
+
+static void vgic_debug_stop(struct seq_file *s, void *v)
+{
+ struct kvm *kvm = s->private;
+ struct vgic_state_iter *iter;
+
+ /*
+ * If the seq file wasn't properly opened, there's nothing to clearn
+ * up.
+ */
+ if (IS_ERR(v))
+ return;
+
+ mutex_lock(&kvm->arch.config_lock);
+ iter = kvm->arch.vgic.iter;
+ kfree(iter->lpi_array);
+ kfree(iter);
+ kvm->arch.vgic.iter = NULL;
+ mutex_unlock(&kvm->arch.config_lock);
+}
+
+static void print_dist_state(struct seq_file *s, struct vgic_dist *dist)
+{
+ bool v3 = dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3;
+
+ seq_printf(s, "Distributor\n");
+ seq_printf(s, "===========\n");
+ seq_printf(s, "vgic_model:\t%s\n", v3 ? "GICv3" : "GICv2");
+ seq_printf(s, "nr_spis:\t%d\n", dist->nr_spis);
+ if (v3)
+ seq_printf(s, "nr_lpis:\t%d\n", dist->lpi_list_count);
+ seq_printf(s, "enabled:\t%d\n", dist->enabled);
+ seq_printf(s, "\n");
+
+ seq_printf(s, "P=pending_latch, L=line_level, A=active\n");
+ seq_printf(s, "E=enabled, H=hw, C=config (level=1, edge=0)\n");
+ seq_printf(s, "G=group\n");
+}
+
+static void print_header(struct seq_file *s, struct vgic_irq *irq,
+ struct kvm_vcpu *vcpu)
+{
+ int id = 0;
+ char *hdr = "SPI ";
+
+ if (vcpu) {
+ hdr = "VCPU";
+ id = vcpu->vcpu_id;
+ }
+
+ seq_printf(s, "\n");
+ seq_printf(s, "%s%2d TYP ID TGT_ID PLAEHCG HWID TARGET SRC PRI VCPU_ID\n", hdr, id);
+ seq_printf(s, "----------------------------------------------------------------\n");
+}
+
+static void print_irq_state(struct seq_file *s, struct vgic_irq *irq,
+ struct kvm_vcpu *vcpu)
+{
+ char *type;
+ bool pending;
+
+ if (irq->intid < VGIC_NR_SGIS)
+ type = "SGI";
+ else if (irq->intid < VGIC_NR_PRIVATE_IRQS)
+ type = "PPI";
+ else if (irq->intid < VGIC_MAX_SPI)
+ type = "SPI";
+ else
+ type = "LPI";
+
+ if (irq->intid ==0 || irq->intid == VGIC_NR_PRIVATE_IRQS)
+ print_header(s, irq, vcpu);
+
+ pending = irq->pending_latch;
+ if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
+ int err;
+
+ err = irq_get_irqchip_state(irq->host_irq,
+ IRQCHIP_STATE_PENDING,
+ &pending);
+ WARN_ON_ONCE(err);
+ }
+
+ seq_printf(s, " %s %4d "
+ " %2d "
+ "%d%d%d%d%d%d%d "
+ "%8d "
+ "%8x "
+ " %2x "
+ "%3d "
+ " %2d "
+ "\n",
+ type, irq->intid,
+ (irq->target_vcpu) ? irq->target_vcpu->vcpu_id : -1,
+ pending,
+ irq->line_level,
+ irq->active,
+ irq->enabled,
+ irq->hw,
+ irq->config == VGIC_CONFIG_LEVEL,
+ irq->group,
+ irq->hwintid,
+ irq->mpidr,
+ irq->source,
+ irq->priority,
+ (irq->vcpu) ? irq->vcpu->vcpu_id : -1);
+}
+
+static int vgic_debug_show(struct seq_file *s, void *v)
+{
+ struct kvm *kvm = s->private;
+ struct vgic_state_iter *iter = v;
+ struct vgic_irq *irq;
+ struct kvm_vcpu *vcpu = NULL;
+ unsigned long flags;
+
+ if (iter->dist_id == 0) {
+ print_dist_state(s, &kvm->arch.vgic);
+ return 0;
+ }
+
+ if (!kvm->arch.vgic.initialized)
+ return 0;
+
+ if (iter->vcpu_id < iter->nr_cpus)
+ vcpu = kvm_get_vcpu(kvm, iter->vcpu_id);
+
+ irq = vgic_get_irq(kvm, vcpu, iter->intid);
+ if (!irq) {
+ seq_printf(s, " LPI %4d freed\n", iter->intid);
+ return 0;
+ }
+
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+ print_irq_state(s, irq, vcpu);
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+
+ vgic_put_irq(kvm, irq);
+ return 0;
+}
+
+static const struct seq_operations vgic_debug_sops = {
+ .start = vgic_debug_start,
+ .next = vgic_debug_next,
+ .stop = vgic_debug_stop,
+ .show = vgic_debug_show
+};
+
+DEFINE_SEQ_ATTRIBUTE(vgic_debug);
+
+void vgic_debug_init(struct kvm *kvm)
+{
+ debugfs_create_file("vgic-state", 0444, kvm->debugfs_dentry, kvm,
+ &vgic_debug_fops);
+}
+
+void vgic_debug_destroy(struct kvm *kvm)
+{
+}
diff --git a/arch/arm64/kvm/vgic/vgic-init.c b/arch/arm64/kvm/vgic/vgic-init.c
new file mode 100644
index 0000000000..e949e1d0fd
--- /dev/null
+++ b/arch/arm64/kvm/vgic/vgic-init.c
@@ -0,0 +1,626 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2015, 2016 ARM Ltd.
+ */
+
+#include <linux/uaccess.h>
+#include <linux/interrupt.h>
+#include <linux/cpu.h>
+#include <linux/kvm_host.h>
+#include <kvm/arm_vgic.h>
+#include <asm/kvm_emulate.h>
+#include <asm/kvm_mmu.h>
+#include "vgic.h"
+
+/*
+ * Initialization rules: there are multiple stages to the vgic
+ * initialization, both for the distributor and the CPU interfaces. The basic
+ * idea is that even though the VGIC is not functional or not requested from
+ * user space, the critical path of the run loop can still call VGIC functions
+ * that just won't do anything, without them having to check additional
+ * initialization flags to ensure they don't look at uninitialized data
+ * structures.
+ *
+ * Distributor:
+ *
+ * - kvm_vgic_early_init(): initialization of static data that doesn't
+ * depend on any sizing information or emulation type. No allocation
+ * is allowed there.
+ *
+ * - vgic_init(): allocation and initialization of the generic data
+ * structures that depend on sizing information (number of CPUs,
+ * number of interrupts). Also initializes the vcpu specific data
+ * structures. Can be executed lazily for GICv2.
+ *
+ * CPU Interface:
+ *
+ * - kvm_vgic_vcpu_init(): initialization of static data that
+ * doesn't depend on any sizing information or emulation type. No
+ * allocation is allowed there.
+ */
+
+/* EARLY INIT */
+
+/**
+ * kvm_vgic_early_init() - Initialize static VGIC VCPU data structures
+ * @kvm: The VM whose VGIC districutor should be initialized
+ *
+ * Only do initialization of static structures that don't require any
+ * allocation or sizing information from userspace. vgic_init() called
+ * kvm_vgic_dist_init() which takes care of the rest.
+ */
+void kvm_vgic_early_init(struct kvm *kvm)
+{
+ struct vgic_dist *dist = &kvm->arch.vgic;
+
+ INIT_LIST_HEAD(&dist->lpi_list_head);
+ INIT_LIST_HEAD(&dist->lpi_translation_cache);
+ raw_spin_lock_init(&dist->lpi_list_lock);
+}
+
+/* CREATION */
+
+/**
+ * kvm_vgic_create: triggered by the instantiation of the VGIC device by
+ * user space, either through the legacy KVM_CREATE_IRQCHIP ioctl (v2 only)
+ * or through the generic KVM_CREATE_DEVICE API ioctl.
+ * irqchip_in_kernel() tells you if this function succeeded or not.
+ * @kvm: kvm struct pointer
+ * @type: KVM_DEV_TYPE_ARM_VGIC_V[23]
+ */
+int kvm_vgic_create(struct kvm *kvm, u32 type)
+{
+ struct kvm_vcpu *vcpu;
+ unsigned long i;
+ int ret;
+
+ /*
+ * This function is also called by the KVM_CREATE_IRQCHIP handler,
+ * which had no chance yet to check the availability of the GICv2
+ * emulation. So check this here again. KVM_CREATE_DEVICE does
+ * the proper checks already.
+ */
+ if (type == KVM_DEV_TYPE_ARM_VGIC_V2 &&
+ !kvm_vgic_global_state.can_emulate_gicv2)
+ return -ENODEV;
+
+ /* Must be held to avoid race with vCPU creation */
+ lockdep_assert_held(&kvm->lock);
+
+ ret = -EBUSY;
+ if (!lock_all_vcpus(kvm))
+ return ret;
+
+ mutex_lock(&kvm->arch.config_lock);
+
+ if (irqchip_in_kernel(kvm)) {
+ ret = -EEXIST;
+ goto out_unlock;
+ }
+
+ kvm_for_each_vcpu(i, vcpu, kvm) {
+ if (vcpu_has_run_once(vcpu))
+ goto out_unlock;
+ }
+ ret = 0;
+
+ if (type == KVM_DEV_TYPE_ARM_VGIC_V2)
+ kvm->max_vcpus = VGIC_V2_MAX_CPUS;
+ else
+ kvm->max_vcpus = VGIC_V3_MAX_CPUS;
+
+ if (atomic_read(&kvm->online_vcpus) > kvm->max_vcpus) {
+ ret = -E2BIG;
+ goto out_unlock;
+ }
+
+ kvm->arch.vgic.in_kernel = true;
+ kvm->arch.vgic.vgic_model = type;
+
+ kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
+
+ if (type == KVM_DEV_TYPE_ARM_VGIC_V2)
+ kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
+ else
+ INIT_LIST_HEAD(&kvm->arch.vgic.rd_regions);
+
+out_unlock:
+ mutex_unlock(&kvm->arch.config_lock);
+ unlock_all_vcpus(kvm);
+ return ret;
+}
+
+/* INIT/DESTROY */
+
+/**
+ * kvm_vgic_dist_init: initialize the dist data structures
+ * @kvm: kvm struct pointer
+ * @nr_spis: number of spis, frozen by caller
+ */
+static int kvm_vgic_dist_init(struct kvm *kvm, unsigned int nr_spis)
+{
+ struct vgic_dist *dist = &kvm->arch.vgic;
+ struct kvm_vcpu *vcpu0 = kvm_get_vcpu(kvm, 0);
+ int i;
+
+ dist->spis = kcalloc(nr_spis, sizeof(struct vgic_irq), GFP_KERNEL_ACCOUNT);
+ if (!dist->spis)
+ return -ENOMEM;
+
+ /*
+ * In the following code we do not take the irq struct lock since
+ * no other action on irq structs can happen while the VGIC is
+ * not initialized yet:
+ * If someone wants to inject an interrupt or does a MMIO access, we
+ * require prior initialization in case of a virtual GICv3 or trigger
+ * initialization when using a virtual GICv2.
+ */
+ for (i = 0; i < nr_spis; i++) {
+ struct vgic_irq *irq = &dist->spis[i];
+
+ irq->intid = i + VGIC_NR_PRIVATE_IRQS;
+ INIT_LIST_HEAD(&irq->ap_list);
+ raw_spin_lock_init(&irq->irq_lock);
+ irq->vcpu = NULL;
+ irq->target_vcpu = vcpu0;
+ kref_init(&irq->refcount);
+ switch (dist->vgic_model) {
+ case KVM_DEV_TYPE_ARM_VGIC_V2:
+ irq->targets = 0;
+ irq->group = 0;
+ break;
+ case KVM_DEV_TYPE_ARM_VGIC_V3:
+ irq->mpidr = 0;
+ irq->group = 1;
+ break;
+ default:
+ kfree(dist->spis);
+ dist->spis = NULL;
+ return -EINVAL;
+ }
+ }
+ return 0;
+}
+
+/**
+ * kvm_vgic_vcpu_init() - Initialize static VGIC VCPU data
+ * structures and register VCPU-specific KVM iodevs
+ *
+ * @vcpu: pointer to the VCPU being created and initialized
+ *
+ * Only do initialization, but do not actually enable the
+ * VGIC CPU interface
+ */
+int kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu)
+{
+ struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
+ struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
+ int ret = 0;
+ int i;
+
+ vgic_cpu->rd_iodev.base_addr = VGIC_ADDR_UNDEF;
+
+ INIT_LIST_HEAD(&vgic_cpu->ap_list_head);
+ raw_spin_lock_init(&vgic_cpu->ap_list_lock);
+ atomic_set(&vgic_cpu->vgic_v3.its_vpe.vlpi_count, 0);
+
+ /*
+ * Enable and configure all SGIs to be edge-triggered and
+ * configure all PPIs as level-triggered.
+ */
+ for (i = 0; i < VGIC_NR_PRIVATE_IRQS; i++) {
+ struct vgic_irq *irq = &vgic_cpu->private_irqs[i];
+
+ INIT_LIST_HEAD(&irq->ap_list);
+ raw_spin_lock_init(&irq->irq_lock);
+ irq->intid = i;
+ irq->vcpu = NULL;
+ irq->target_vcpu = vcpu;
+ kref_init(&irq->refcount);
+ if (vgic_irq_is_sgi(i)) {
+ /* SGIs */
+ irq->enabled = 1;
+ irq->config = VGIC_CONFIG_EDGE;
+ } else {
+ /* PPIs */
+ irq->config = VGIC_CONFIG_LEVEL;
+ }
+ }
+
+ if (!irqchip_in_kernel(vcpu->kvm))
+ return 0;
+
+ /*
+ * If we are creating a VCPU with a GICv3 we must also register the
+ * KVM io device for the redistributor that belongs to this VCPU.
+ */
+ if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) {
+ mutex_lock(&vcpu->kvm->slots_lock);
+ ret = vgic_register_redist_iodev(vcpu);
+ mutex_unlock(&vcpu->kvm->slots_lock);
+ }
+ return ret;
+}
+
+static void kvm_vgic_vcpu_enable(struct kvm_vcpu *vcpu)
+{
+ if (kvm_vgic_global_state.type == VGIC_V2)
+ vgic_v2_enable(vcpu);
+ else
+ vgic_v3_enable(vcpu);
+}
+
+/*
+ * vgic_init: allocates and initializes dist and vcpu data structures
+ * depending on two dimensioning parameters:
+ * - the number of spis
+ * - the number of vcpus
+ * The function is generally called when nr_spis has been explicitly set
+ * by the guest through the KVM DEVICE API. If not nr_spis is set to 256.
+ * vgic_initialized() returns true when this function has succeeded.
+ */
+int vgic_init(struct kvm *kvm)
+{
+ struct vgic_dist *dist = &kvm->arch.vgic;
+ struct kvm_vcpu *vcpu;
+ int ret = 0, i;
+ unsigned long idx;
+
+ lockdep_assert_held(&kvm->arch.config_lock);
+
+ if (vgic_initialized(kvm))
+ return 0;
+
+ /* Are we also in the middle of creating a VCPU? */
+ if (kvm->created_vcpus != atomic_read(&kvm->online_vcpus))
+ return -EBUSY;
+
+ /* freeze the number of spis */
+ if (!dist->nr_spis)
+ dist->nr_spis = VGIC_NR_IRQS_LEGACY - VGIC_NR_PRIVATE_IRQS;
+
+ ret = kvm_vgic_dist_init(kvm, dist->nr_spis);
+ if (ret)
+ goto out;
+
+ /* Initialize groups on CPUs created before the VGIC type was known */
+ kvm_for_each_vcpu(idx, vcpu, kvm) {
+ struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
+
+ for (i = 0; i < VGIC_NR_PRIVATE_IRQS; i++) {
+ struct vgic_irq *irq = &vgic_cpu->private_irqs[i];
+ switch (dist->vgic_model) {
+ case KVM_DEV_TYPE_ARM_VGIC_V3:
+ irq->group = 1;
+ irq->mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
+ break;
+ case KVM_DEV_TYPE_ARM_VGIC_V2:
+ irq->group = 0;
+ irq->targets = 1U << idx;
+ break;
+ default:
+ ret = -EINVAL;
+ goto out;
+ }
+ }
+ }
+
+ if (vgic_has_its(kvm))
+ vgic_lpi_translation_cache_init(kvm);
+
+ /*
+ * If we have GICv4.1 enabled, unconditionnaly request enable the
+ * v4 support so that we get HW-accelerated vSGIs. Otherwise, only
+ * enable it if we present a virtual ITS to the guest.
+ */
+ if (vgic_supports_direct_msis(kvm)) {
+ ret = vgic_v4_init(kvm);
+ if (ret)
+ goto out;
+ }
+
+ kvm_for_each_vcpu(idx, vcpu, kvm)
+ kvm_vgic_vcpu_enable(vcpu);
+
+ ret = kvm_vgic_setup_default_irq_routing(kvm);
+ if (ret)
+ goto out;
+
+ vgic_debug_init(kvm);
+
+ /*
+ * If userspace didn't set the GIC implementation revision,
+ * default to the latest and greatest. You know want it.
+ */
+ if (!dist->implementation_rev)
+ dist->implementation_rev = KVM_VGIC_IMP_REV_LATEST;
+ dist->initialized = true;
+
+out:
+ return ret;
+}
+
+static void kvm_vgic_dist_destroy(struct kvm *kvm)
+{
+ struct vgic_dist *dist = &kvm->arch.vgic;
+ struct vgic_redist_region *rdreg, *next;
+
+ dist->ready = false;
+ dist->initialized = false;
+
+ kfree(dist->spis);
+ dist->spis = NULL;
+ dist->nr_spis = 0;
+ dist->vgic_dist_base = VGIC_ADDR_UNDEF;
+
+ if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) {
+ list_for_each_entry_safe(rdreg, next, &dist->rd_regions, list)
+ vgic_v3_free_redist_region(rdreg);
+ INIT_LIST_HEAD(&dist->rd_regions);
+ } else {
+ dist->vgic_cpu_base = VGIC_ADDR_UNDEF;
+ }
+
+ if (vgic_has_its(kvm))
+ vgic_lpi_translation_cache_destroy(kvm);
+
+ if (vgic_supports_direct_msis(kvm))
+ vgic_v4_teardown(kvm);
+}
+
+static void __kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu)
+{
+ struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
+
+ /*
+ * Retire all pending LPIs on this vcpu anyway as we're
+ * going to destroy it.
+ */
+ vgic_flush_pending_lpis(vcpu);
+
+ INIT_LIST_HEAD(&vgic_cpu->ap_list_head);
+ if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) {
+ vgic_unregister_redist_iodev(vcpu);
+ vgic_cpu->rd_iodev.base_addr = VGIC_ADDR_UNDEF;
+ }
+}
+
+void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu)
+{
+ struct kvm *kvm = vcpu->kvm;
+
+ mutex_lock(&kvm->slots_lock);
+ __kvm_vgic_vcpu_destroy(vcpu);
+ mutex_unlock(&kvm->slots_lock);
+}
+
+void kvm_vgic_destroy(struct kvm *kvm)
+{
+ struct kvm_vcpu *vcpu;
+ unsigned long i;
+
+ mutex_lock(&kvm->slots_lock);
+
+ vgic_debug_destroy(kvm);
+
+ kvm_for_each_vcpu(i, vcpu, kvm)
+ __kvm_vgic_vcpu_destroy(vcpu);
+
+ mutex_lock(&kvm->arch.config_lock);
+
+ kvm_vgic_dist_destroy(kvm);
+
+ mutex_unlock(&kvm->arch.config_lock);
+ mutex_unlock(&kvm->slots_lock);
+}
+
+/**
+ * vgic_lazy_init: Lazy init is only allowed if the GIC exposed to the guest
+ * is a GICv2. A GICv3 must be explicitly initialized by userspace using the
+ * KVM_DEV_ARM_VGIC_GRP_CTRL KVM_DEVICE group.
+ * @kvm: kvm struct pointer
+ */
+int vgic_lazy_init(struct kvm *kvm)
+{
+ int ret = 0;
+
+ if (unlikely(!vgic_initialized(kvm))) {
+ /*
+ * We only provide the automatic initialization of the VGIC
+ * for the legacy case of a GICv2. Any other type must
+ * be explicitly initialized once setup with the respective
+ * KVM device call.
+ */
+ if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2)
+ return -EBUSY;
+
+ mutex_lock(&kvm->arch.config_lock);
+ ret = vgic_init(kvm);
+ mutex_unlock(&kvm->arch.config_lock);
+ }
+
+ return ret;
+}
+
+/* RESOURCE MAPPING */
+
+/**
+ * Map the MMIO regions depending on the VGIC model exposed to the guest
+ * called on the first VCPU run.
+ * Also map the virtual CPU interface into the VM.
+ * v2 calls vgic_init() if not already done.
+ * v3 and derivatives return an error if the VGIC is not initialized.
+ * vgic_ready() returns true if this function has succeeded.
+ * @kvm: kvm struct pointer
+ */
+int kvm_vgic_map_resources(struct kvm *kvm)
+{
+ struct vgic_dist *dist = &kvm->arch.vgic;
+ enum vgic_type type;
+ gpa_t dist_base;
+ int ret = 0;
+
+ if (likely(vgic_ready(kvm)))
+ return 0;
+
+ mutex_lock(&kvm->slots_lock);
+ mutex_lock(&kvm->arch.config_lock);
+ if (vgic_ready(kvm))
+ goto out;
+
+ if (!irqchip_in_kernel(kvm))
+ goto out;
+
+ if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V2) {
+ ret = vgic_v2_map_resources(kvm);
+ type = VGIC_V2;
+ } else {
+ ret = vgic_v3_map_resources(kvm);
+ type = VGIC_V3;
+ }
+
+ if (ret)
+ goto out;
+
+ dist->ready = true;
+ dist_base = dist->vgic_dist_base;
+ mutex_unlock(&kvm->arch.config_lock);
+
+ ret = vgic_register_dist_iodev(kvm, dist_base, type);
+ if (ret)
+ kvm_err("Unable to register VGIC dist MMIO regions\n");
+
+ goto out_slots;
+out:
+ mutex_unlock(&kvm->arch.config_lock);
+out_slots:
+ mutex_unlock(&kvm->slots_lock);
+
+ if (ret)
+ kvm_vgic_destroy(kvm);
+
+ return ret;
+}
+
+/* GENERIC PROBE */
+
+void kvm_vgic_cpu_up(void)
+{
+ enable_percpu_irq(kvm_vgic_global_state.maint_irq, 0);
+}
+
+
+void kvm_vgic_cpu_down(void)
+{
+ disable_percpu_irq(kvm_vgic_global_state.maint_irq);
+}
+
+static irqreturn_t vgic_maintenance_handler(int irq, void *data)
+{
+ /*
+ * We cannot rely on the vgic maintenance interrupt to be
+ * delivered synchronously. This means we can only use it to
+ * exit the VM, and we perform the handling of EOIed
+ * interrupts on the exit path (see vgic_fold_lr_state).
+ */
+ return IRQ_HANDLED;
+}
+
+static struct gic_kvm_info *gic_kvm_info;
+
+void __init vgic_set_kvm_info(const struct gic_kvm_info *info)
+{
+ BUG_ON(gic_kvm_info != NULL);
+ gic_kvm_info = kmalloc(sizeof(*info), GFP_KERNEL);
+ if (gic_kvm_info)
+ *gic_kvm_info = *info;
+}
+
+/**
+ * kvm_vgic_init_cpu_hardware - initialize the GIC VE hardware
+ *
+ * For a specific CPU, initialize the GIC VE hardware.
+ */
+void kvm_vgic_init_cpu_hardware(void)
+{
+ BUG_ON(preemptible());
+
+ /*
+ * We want to make sure the list registers start out clear so that we
+ * only have the program the used registers.
+ */
+ if (kvm_vgic_global_state.type == VGIC_V2)
+ vgic_v2_init_lrs();
+ else
+ kvm_call_hyp(__vgic_v3_init_lrs);
+}
+
+/**
+ * kvm_vgic_hyp_init: populates the kvm_vgic_global_state variable
+ * according to the host GIC model. Accordingly calls either
+ * vgic_v2/v3_probe which registers the KVM_DEVICE that can be
+ * instantiated by a guest later on .
+ */
+int kvm_vgic_hyp_init(void)
+{
+ bool has_mask;
+ int ret;
+
+ if (!gic_kvm_info)
+ return -ENODEV;
+
+ has_mask = !gic_kvm_info->no_maint_irq_mask;
+
+ if (has_mask && !gic_kvm_info->maint_irq) {
+ kvm_err("No vgic maintenance irq\n");
+ return -ENXIO;
+ }
+
+ /*
+ * If we get one of these oddball non-GICs, taint the kernel,
+ * as we have no idea of how they *really* behave.
+ */
+ if (gic_kvm_info->no_hw_deactivation) {
+ kvm_info("Non-architectural vgic, tainting kernel\n");
+ add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
+ kvm_vgic_global_state.no_hw_deactivation = true;
+ }
+
+ switch (gic_kvm_info->type) {
+ case GIC_V2:
+ ret = vgic_v2_probe(gic_kvm_info);
+ break;
+ case GIC_V3:
+ ret = vgic_v3_probe(gic_kvm_info);
+ if (!ret) {
+ static_branch_enable(&kvm_vgic_global_state.gicv3_cpuif);
+ kvm_info("GIC system register CPU interface enabled\n");
+ }
+ break;
+ default:
+ ret = -ENODEV;
+ }
+
+ kvm_vgic_global_state.maint_irq = gic_kvm_info->maint_irq;
+
+ kfree(gic_kvm_info);
+ gic_kvm_info = NULL;
+
+ if (ret)
+ return ret;
+
+ if (!has_mask && !kvm_vgic_global_state.maint_irq)
+ return 0;
+
+ ret = request_percpu_irq(kvm_vgic_global_state.maint_irq,
+ vgic_maintenance_handler,
+ "vgic", kvm_get_running_vcpus());
+ if (ret) {
+ kvm_err("Cannot register interrupt %d\n",
+ kvm_vgic_global_state.maint_irq);
+ return ret;
+ }
+
+ kvm_info("vgic interrupt IRQ%d\n", kvm_vgic_global_state.maint_irq);
+ return 0;
+}
diff --git a/arch/arm64/kvm/vgic/vgic-irqfd.c b/arch/arm64/kvm/vgic/vgic-irqfd.c
new file mode 100644
index 0000000000..475059bace
--- /dev/null
+++ b/arch/arm64/kvm/vgic/vgic-irqfd.c
@@ -0,0 +1,155 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2015, 2016 ARM Ltd.
+ */
+
+#include <linux/kvm.h>
+#include <linux/kvm_host.h>
+#include <trace/events/kvm.h>
+#include <kvm/arm_vgic.h>
+#include "vgic.h"
+
+/**
+ * vgic_irqfd_set_irq: inject the IRQ corresponding to the
+ * irqchip routing entry
+ *
+ * This is the entry point for irqfd IRQ injection
+ */
+static int vgic_irqfd_set_irq(struct kvm_kernel_irq_routing_entry *e,
+ struct kvm *kvm, int irq_source_id,
+ int level, bool line_status)
+{
+ unsigned int spi_id = e->irqchip.pin + VGIC_NR_PRIVATE_IRQS;
+
+ if (!vgic_valid_spi(kvm, spi_id))
+ return -EINVAL;
+ return kvm_vgic_inject_irq(kvm, 0, spi_id, level, NULL);
+}
+
+/**
+ * kvm_set_routing_entry: populate a kvm routing entry
+ * from a user routing entry
+ *
+ * @kvm: the VM this entry is applied to
+ * @e: kvm kernel routing entry handle
+ * @ue: user api routing entry handle
+ * return 0 on success, -EINVAL on errors.
+ */
+int kvm_set_routing_entry(struct kvm *kvm,
+ struct kvm_kernel_irq_routing_entry *e,
+ const struct kvm_irq_routing_entry *ue)
+{
+ int r = -EINVAL;
+
+ switch (ue->type) {
+ case KVM_IRQ_ROUTING_IRQCHIP:
+ e->set = vgic_irqfd_set_irq;
+ e->irqchip.irqchip = ue->u.irqchip.irqchip;
+ e->irqchip.pin = ue->u.irqchip.pin;
+ if ((e->irqchip.pin >= KVM_IRQCHIP_NUM_PINS) ||
+ (e->irqchip.irqchip >= KVM_NR_IRQCHIPS))
+ goto out;
+ break;
+ case KVM_IRQ_ROUTING_MSI:
+ e->set = kvm_set_msi;
+ e->msi.address_lo = ue->u.msi.address_lo;
+ e->msi.address_hi = ue->u.msi.address_hi;
+ e->msi.data = ue->u.msi.data;
+ e->msi.flags = ue->flags;
+ e->msi.devid = ue->u.msi.devid;
+ break;
+ default:
+ goto out;
+ }
+ r = 0;
+out:
+ return r;
+}
+
+static void kvm_populate_msi(struct kvm_kernel_irq_routing_entry *e,
+ struct kvm_msi *msi)
+{
+ msi->address_lo = e->msi.address_lo;
+ msi->address_hi = e->msi.address_hi;
+ msi->data = e->msi.data;
+ msi->flags = e->msi.flags;
+ msi->devid = e->msi.devid;
+}
+/**
+ * kvm_set_msi: inject the MSI corresponding to the
+ * MSI routing entry
+ *
+ * This is the entry point for irqfd MSI injection
+ * and userspace MSI injection.
+ */
+int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e,
+ struct kvm *kvm, int irq_source_id,
+ int level, bool line_status)
+{
+ struct kvm_msi msi;
+
+ if (!vgic_has_its(kvm))
+ return -ENODEV;
+
+ if (!level)
+ return -1;
+
+ kvm_populate_msi(e, &msi);
+ return vgic_its_inject_msi(kvm, &msi);
+}
+
+/**
+ * kvm_arch_set_irq_inatomic: fast-path for irqfd injection
+ */
+int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
+ struct kvm *kvm, int irq_source_id, int level,
+ bool line_status)
+{
+ if (!level)
+ return -EWOULDBLOCK;
+
+ switch (e->type) {
+ case KVM_IRQ_ROUTING_MSI: {
+ struct kvm_msi msi;
+
+ if (!vgic_has_its(kvm))
+ break;
+
+ kvm_populate_msi(e, &msi);
+ return vgic_its_inject_cached_translation(kvm, &msi);
+ }
+
+ case KVM_IRQ_ROUTING_IRQCHIP:
+ /*
+ * Injecting SPIs is always possible in atomic context
+ * as long as the damn vgic is initialized.
+ */
+ if (unlikely(!vgic_initialized(kvm)))
+ break;
+ return vgic_irqfd_set_irq(e, kvm, irq_source_id, 1, line_status);
+ }
+
+ return -EWOULDBLOCK;
+}
+
+int kvm_vgic_setup_default_irq_routing(struct kvm *kvm)
+{
+ struct kvm_irq_routing_entry *entries;
+ struct vgic_dist *dist = &kvm->arch.vgic;
+ u32 nr = dist->nr_spis;
+ int i, ret;
+
+ entries = kcalloc(nr, sizeof(*entries), GFP_KERNEL_ACCOUNT);
+ if (!entries)
+ return -ENOMEM;
+
+ for (i = 0; i < nr; i++) {
+ entries[i].gsi = i;
+ entries[i].type = KVM_IRQ_ROUTING_IRQCHIP;
+ entries[i].u.irqchip.irqchip = 0;
+ entries[i].u.irqchip.pin = i;
+ }
+ ret = kvm_set_irq_routing(kvm, entries, nr, 0);
+ kfree(entries);
+ return ret;
+}
diff --git a/arch/arm64/kvm/vgic/vgic-its.c b/arch/arm64/kvm/vgic/vgic-its.c
new file mode 100644
index 0000000000..c420723548
--- /dev/null
+++ b/arch/arm64/kvm/vgic/vgic-its.c
@@ -0,0 +1,2908 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * GICv3 ITS emulation
+ *
+ * Copyright (C) 2015,2016 ARM Ltd.
+ * Author: Andre Przywara <andre.przywara@arm.com>
+ */
+
+#include <linux/cpu.h>
+#include <linux/kvm.h>
+#include <linux/kvm_host.h>
+#include <linux/interrupt.h>
+#include <linux/list.h>
+#include <linux/uaccess.h>
+#include <linux/list_sort.h>
+
+#include <linux/irqchip/arm-gic-v3.h>
+
+#include <asm/kvm_emulate.h>
+#include <asm/kvm_arm.h>
+#include <asm/kvm_mmu.h>
+
+#include "vgic.h"
+#include "vgic-mmio.h"
+
+static int vgic_its_save_tables_v0(struct vgic_its *its);
+static int vgic_its_restore_tables_v0(struct vgic_its *its);
+static int vgic_its_commit_v0(struct vgic_its *its);
+static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
+ struct kvm_vcpu *filter_vcpu, bool needs_inv);
+
+/*
+ * Creates a new (reference to a) struct vgic_irq for a given LPI.
+ * If this LPI is already mapped on another ITS, we increase its refcount
+ * and return a pointer to the existing structure.
+ * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq.
+ * This function returns a pointer to the _unlocked_ structure.
+ */
+static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid,
+ struct kvm_vcpu *vcpu)
+{
+ struct vgic_dist *dist = &kvm->arch.vgic;
+ struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq;
+ unsigned long flags;
+ int ret;
+
+ /* In this case there is no put, since we keep the reference. */
+ if (irq)
+ return irq;
+
+ irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL_ACCOUNT);
+ if (!irq)
+ return ERR_PTR(-ENOMEM);
+
+ INIT_LIST_HEAD(&irq->lpi_list);
+ INIT_LIST_HEAD(&irq->ap_list);
+ raw_spin_lock_init(&irq->irq_lock);
+
+ irq->config = VGIC_CONFIG_EDGE;
+ kref_init(&irq->refcount);
+ irq->intid = intid;
+ irq->target_vcpu = vcpu;
+ irq->group = 1;
+
+ raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
+
+ /*
+ * There could be a race with another vgic_add_lpi(), so we need to
+ * check that we don't add a second list entry with the same LPI.
+ */
+ list_for_each_entry(oldirq, &dist->lpi_list_head, lpi_list) {
+ if (oldirq->intid != intid)
+ continue;
+
+ /* Someone was faster with adding this LPI, lets use that. */
+ kfree(irq);
+ irq = oldirq;
+
+ /*
+ * This increases the refcount, the caller is expected to
+ * call vgic_put_irq() on the returned pointer once it's
+ * finished with the IRQ.
+ */
+ vgic_get_irq_kref(irq);
+
+ goto out_unlock;
+ }
+
+ list_add_tail(&irq->lpi_list, &dist->lpi_list_head);
+ dist->lpi_list_count++;
+
+out_unlock:
+ raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
+
+ /*
+ * We "cache" the configuration table entries in our struct vgic_irq's.
+ * However we only have those structs for mapped IRQs, so we read in
+ * the respective config data from memory here upon mapping the LPI.
+ *
+ * Should any of these fail, behave as if we couldn't create the LPI
+ * by dropping the refcount and returning the error.
+ */
+ ret = update_lpi_config(kvm, irq, NULL, false);
+ if (ret) {
+ vgic_put_irq(kvm, irq);
+ return ERR_PTR(ret);
+ }
+
+ ret = vgic_v3_lpi_sync_pending_status(kvm, irq);
+ if (ret) {
+ vgic_put_irq(kvm, irq);
+ return ERR_PTR(ret);
+ }
+
+ return irq;
+}
+
+struct its_device {
+ struct list_head dev_list;
+
+ /* the head for the list of ITTEs */
+ struct list_head itt_head;
+ u32 num_eventid_bits;
+ gpa_t itt_addr;
+ u32 device_id;
+};
+
+#define COLLECTION_NOT_MAPPED ((u32)~0)
+
+struct its_collection {
+ struct list_head coll_list;
+
+ u32 collection_id;
+ u32 target_addr;
+};
+
+#define its_is_collection_mapped(coll) ((coll) && \
+ ((coll)->target_addr != COLLECTION_NOT_MAPPED))
+
+struct its_ite {
+ struct list_head ite_list;
+
+ struct vgic_irq *irq;
+ struct its_collection *collection;
+ u32 event_id;
+};
+
+struct vgic_translation_cache_entry {
+ struct list_head entry;
+ phys_addr_t db;
+ u32 devid;
+ u32 eventid;
+ struct vgic_irq *irq;
+};
+
+/**
+ * struct vgic_its_abi - ITS abi ops and settings
+ * @cte_esz: collection table entry size
+ * @dte_esz: device table entry size
+ * @ite_esz: interrupt translation table entry size
+ * @save tables: save the ITS tables into guest RAM
+ * @restore_tables: restore the ITS internal structs from tables
+ * stored in guest RAM
+ * @commit: initialize the registers which expose the ABI settings,
+ * especially the entry sizes
+ */
+struct vgic_its_abi {
+ int cte_esz;
+ int dte_esz;
+ int ite_esz;
+ int (*save_tables)(struct vgic_its *its);
+ int (*restore_tables)(struct vgic_its *its);
+ int (*commit)(struct vgic_its *its);
+};
+
+#define ABI_0_ESZ 8
+#define ESZ_MAX ABI_0_ESZ
+
+static const struct vgic_its_abi its_table_abi_versions[] = {
+ [0] = {
+ .cte_esz = ABI_0_ESZ,
+ .dte_esz = ABI_0_ESZ,
+ .ite_esz = ABI_0_ESZ,
+ .save_tables = vgic_its_save_tables_v0,
+ .restore_tables = vgic_its_restore_tables_v0,
+ .commit = vgic_its_commit_v0,
+ },
+};
+
+#define NR_ITS_ABIS ARRAY_SIZE(its_table_abi_versions)
+
+inline const struct vgic_its_abi *vgic_its_get_abi(struct vgic_its *its)
+{
+ return &its_table_abi_versions[its->abi_rev];
+}
+
+static int vgic_its_set_abi(struct vgic_its *its, u32 rev)
+{
+ const struct vgic_its_abi *abi;
+
+ its->abi_rev = rev;
+ abi = vgic_its_get_abi(its);
+ return abi->commit(its);
+}
+
+/*
+ * Find and returns a device in the device table for an ITS.
+ * Must be called with the its_lock mutex held.
+ */
+static struct its_device *find_its_device(struct vgic_its *its, u32 device_id)
+{
+ struct its_device *device;
+
+ list_for_each_entry(device, &its->device_list, dev_list)
+ if (device_id == device->device_id)
+ return device;
+
+ return NULL;
+}
+
+/*
+ * Find and returns an interrupt translation table entry (ITTE) for a given
+ * Device ID/Event ID pair on an ITS.
+ * Must be called with the its_lock mutex held.
+ */
+static struct its_ite *find_ite(struct vgic_its *its, u32 device_id,
+ u32 event_id)
+{
+ struct its_device *device;
+ struct its_ite *ite;
+
+ device = find_its_device(its, device_id);
+ if (device == NULL)
+ return NULL;
+
+ list_for_each_entry(ite, &device->itt_head, ite_list)
+ if (ite->event_id == event_id)
+ return ite;
+
+ return NULL;
+}
+
+/* To be used as an iterator this macro misses the enclosing parentheses */
+#define for_each_lpi_its(dev, ite, its) \
+ list_for_each_entry(dev, &(its)->device_list, dev_list) \
+ list_for_each_entry(ite, &(dev)->itt_head, ite_list)
+
+#define GIC_LPI_OFFSET 8192
+
+#define VITS_TYPER_IDBITS 16
+#define VITS_TYPER_DEVBITS 16
+#define VITS_DTE_MAX_DEVID_OFFSET (BIT(14) - 1)
+#define VITS_ITE_MAX_EVENTID_OFFSET (BIT(16) - 1)
+
+/*
+ * Finds and returns a collection in the ITS collection table.
+ * Must be called with the its_lock mutex held.
+ */
+static struct its_collection *find_collection(struct vgic_its *its, int coll_id)
+{
+ struct its_collection *collection;
+
+ list_for_each_entry(collection, &its->collection_list, coll_list) {
+ if (coll_id == collection->collection_id)
+ return collection;
+ }
+
+ return NULL;
+}
+
+#define LPI_PROP_ENABLE_BIT(p) ((p) & LPI_PROP_ENABLED)
+#define LPI_PROP_PRIORITY(p) ((p) & 0xfc)
+
+/*
+ * Reads the configuration data for a given LPI from guest memory and
+ * updates the fields in struct vgic_irq.
+ * If filter_vcpu is not NULL, applies only if the IRQ is targeting this
+ * VCPU. Unconditionally applies if filter_vcpu is NULL.
+ */
+static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
+ struct kvm_vcpu *filter_vcpu, bool needs_inv)
+{
+ u64 propbase = GICR_PROPBASER_ADDRESS(kvm->arch.vgic.propbaser);
+ u8 prop;
+ int ret;
+ unsigned long flags;
+
+ ret = kvm_read_guest_lock(kvm, propbase + irq->intid - GIC_LPI_OFFSET,
+ &prop, 1);
+
+ if (ret)
+ return ret;
+
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+
+ if (!filter_vcpu || filter_vcpu == irq->target_vcpu) {
+ irq->priority = LPI_PROP_PRIORITY(prop);
+ irq->enabled = LPI_PROP_ENABLE_BIT(prop);
+
+ if (!irq->hw) {
+ vgic_queue_irq_unlock(kvm, irq, flags);
+ return 0;
+ }
+ }
+
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+
+ if (irq->hw)
+ return its_prop_update_vlpi(irq->host_irq, prop, needs_inv);
+
+ return 0;
+}
+
+/*
+ * Create a snapshot of the current LPIs targeting @vcpu, so that we can
+ * enumerate those LPIs without holding any lock.
+ * Returns their number and puts the kmalloc'ed array into intid_ptr.
+ */
+int vgic_copy_lpi_list(struct kvm *kvm, struct kvm_vcpu *vcpu, u32 **intid_ptr)
+{
+ struct vgic_dist *dist = &kvm->arch.vgic;
+ struct vgic_irq *irq;
+ unsigned long flags;
+ u32 *intids;
+ int irq_count, i = 0;
+
+ /*
+ * There is an obvious race between allocating the array and LPIs
+ * being mapped/unmapped. If we ended up here as a result of a
+ * command, we're safe (locks are held, preventing another
+ * command). If coming from another path (such as enabling LPIs),
+ * we must be careful not to overrun the array.
+ */
+ irq_count = READ_ONCE(dist->lpi_list_count);
+ intids = kmalloc_array(irq_count, sizeof(intids[0]), GFP_KERNEL_ACCOUNT);
+ if (!intids)
+ return -ENOMEM;
+
+ raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
+ list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
+ if (i == irq_count)
+ break;
+ /* We don't need to "get" the IRQ, as we hold the list lock. */
+ if (vcpu && irq->target_vcpu != vcpu)
+ continue;
+ intids[i++] = irq->intid;
+ }
+ raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
+
+ *intid_ptr = intids;
+ return i;
+}
+
+static int update_affinity(struct vgic_irq *irq, struct kvm_vcpu *vcpu)
+{
+ int ret = 0;
+ unsigned long flags;
+
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+ irq->target_vcpu = vcpu;
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+
+ if (irq->hw) {
+ struct its_vlpi_map map;
+
+ ret = its_get_vlpi(irq->host_irq, &map);
+ if (ret)
+ return ret;
+
+ if (map.vpe)
+ atomic_dec(&map.vpe->vlpi_count);
+ map.vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
+ atomic_inc(&map.vpe->vlpi_count);
+
+ ret = its_map_vlpi(irq->host_irq, &map);
+ }
+
+ return ret;
+}
+
+/*
+ * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI
+ * is targeting) to the VGIC's view, which deals with target VCPUs.
+ * Needs to be called whenever either the collection for a LPIs has
+ * changed or the collection itself got retargeted.
+ */
+static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite)
+{
+ struct kvm_vcpu *vcpu;
+
+ if (!its_is_collection_mapped(ite->collection))
+ return;
+
+ vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
+ update_affinity(ite->irq, vcpu);
+}
+
+/*
+ * Updates the target VCPU for every LPI targeting this collection.
+ * Must be called with the its_lock mutex held.
+ */
+static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its,
+ struct its_collection *coll)
+{
+ struct its_device *device;
+ struct its_ite *ite;
+
+ for_each_lpi_its(device, ite, its) {
+ if (ite->collection != coll)
+ continue;
+
+ update_affinity_ite(kvm, ite);
+ }
+}
+
+static u32 max_lpis_propbaser(u64 propbaser)
+{
+ int nr_idbits = (propbaser & 0x1f) + 1;
+
+ return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS);
+}
+
+/*
+ * Sync the pending table pending bit of LPIs targeting @vcpu
+ * with our own data structures. This relies on the LPI being
+ * mapped before.
+ */
+static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)
+{
+ gpa_t pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
+ struct vgic_irq *irq;
+ int last_byte_offset = -1;
+ int ret = 0;
+ u32 *intids;
+ int nr_irqs, i;
+ unsigned long flags;
+ u8 pendmask;
+
+ nr_irqs = vgic_copy_lpi_list(vcpu->kvm, vcpu, &intids);
+ if (nr_irqs < 0)
+ return nr_irqs;
+
+ for (i = 0; i < nr_irqs; i++) {
+ int byte_offset, bit_nr;
+
+ byte_offset = intids[i] / BITS_PER_BYTE;
+ bit_nr = intids[i] % BITS_PER_BYTE;
+
+ /*
+ * For contiguously allocated LPIs chances are we just read
+ * this very same byte in the last iteration. Reuse that.
+ */
+ if (byte_offset != last_byte_offset) {
+ ret = kvm_read_guest_lock(vcpu->kvm,
+ pendbase + byte_offset,
+ &pendmask, 1);
+ if (ret) {
+ kfree(intids);
+ return ret;
+ }
+ last_byte_offset = byte_offset;
+ }
+
+ irq = vgic_get_irq(vcpu->kvm, NULL, intids[i]);
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+ irq->pending_latch = pendmask & (1U << bit_nr);
+ vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+
+ kfree(intids);
+
+ return ret;
+}
+
+static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm,
+ struct vgic_its *its,
+ gpa_t addr, unsigned int len)
+{
+ const struct vgic_its_abi *abi = vgic_its_get_abi(its);
+ u64 reg = GITS_TYPER_PLPIS;
+
+ /*
+ * We use linear CPU numbers for redistributor addressing,
+ * so GITS_TYPER.PTA is 0.
+ * Also we force all PROPBASER registers to be the same, so
+ * CommonLPIAff is 0 as well.
+ * To avoid memory waste in the guest, we keep the number of IDBits and
+ * DevBits low - as least for the time being.
+ */
+ reg |= GIC_ENCODE_SZ(VITS_TYPER_DEVBITS, 5) << GITS_TYPER_DEVBITS_SHIFT;
+ reg |= GIC_ENCODE_SZ(VITS_TYPER_IDBITS, 5) << GITS_TYPER_IDBITS_SHIFT;
+ reg |= GIC_ENCODE_SZ(abi->ite_esz, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT;
+
+ return extract_bytes(reg, addr & 7, len);
+}
+
+static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm,
+ struct vgic_its *its,
+ gpa_t addr, unsigned int len)
+{
+ u32 val;
+
+ val = (its->abi_rev << GITS_IIDR_REV_SHIFT) & GITS_IIDR_REV_MASK;
+ val |= (PRODUCT_ID_KVM << GITS_IIDR_PRODUCTID_SHIFT) | IMPLEMENTER_ARM;
+ return val;
+}
+
+static int vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm,
+ struct vgic_its *its,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ u32 rev = GITS_IIDR_REV(val);
+
+ if (rev >= NR_ITS_ABIS)
+ return -EINVAL;
+ return vgic_its_set_abi(its, rev);
+}
+
+static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm,
+ struct vgic_its *its,
+ gpa_t addr, unsigned int len)
+{
+ switch (addr & 0xffff) {
+ case GITS_PIDR0:
+ return 0x92; /* part number, bits[7:0] */
+ case GITS_PIDR1:
+ return 0xb4; /* part number, bits[11:8] */
+ case GITS_PIDR2:
+ return GIC_PIDR2_ARCH_GICv3 | 0x0b;
+ case GITS_PIDR4:
+ return 0x40; /* This is a 64K software visible page */
+ /* The following are the ID registers for (any) GIC. */
+ case GITS_CIDR0:
+ return 0x0d;
+ case GITS_CIDR1:
+ return 0xf0;
+ case GITS_CIDR2:
+ return 0x05;
+ case GITS_CIDR3:
+ return 0xb1;
+ }
+
+ return 0;
+}
+
+static struct vgic_irq *__vgic_its_check_cache(struct vgic_dist *dist,
+ phys_addr_t db,
+ u32 devid, u32 eventid)
+{
+ struct vgic_translation_cache_entry *cte;
+
+ list_for_each_entry(cte, &dist->lpi_translation_cache, entry) {
+ /*
+ * If we hit a NULL entry, there is nothing after this
+ * point.
+ */
+ if (!cte->irq)
+ break;
+
+ if (cte->db != db || cte->devid != devid ||
+ cte->eventid != eventid)
+ continue;
+
+ /*
+ * Move this entry to the head, as it is the most
+ * recently used.
+ */
+ if (!list_is_first(&cte->entry, &dist->lpi_translation_cache))
+ list_move(&cte->entry, &dist->lpi_translation_cache);
+
+ return cte->irq;
+ }
+
+ return NULL;
+}
+
+static struct vgic_irq *vgic_its_check_cache(struct kvm *kvm, phys_addr_t db,
+ u32 devid, u32 eventid)
+{
+ struct vgic_dist *dist = &kvm->arch.vgic;
+ struct vgic_irq *irq;
+ unsigned long flags;
+
+ raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
+
+ irq = __vgic_its_check_cache(dist, db, devid, eventid);
+ if (irq)
+ vgic_get_irq_kref(irq);
+
+ raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
+
+ return irq;
+}
+
+static void vgic_its_cache_translation(struct kvm *kvm, struct vgic_its *its,
+ u32 devid, u32 eventid,
+ struct vgic_irq *irq)
+{
+ struct vgic_dist *dist = &kvm->arch.vgic;
+ struct vgic_translation_cache_entry *cte;
+ unsigned long flags;
+ phys_addr_t db;
+
+ /* Do not cache a directly injected interrupt */
+ if (irq->hw)
+ return;
+
+ raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
+
+ if (unlikely(list_empty(&dist->lpi_translation_cache)))
+ goto out;
+
+ /*
+ * We could have raced with another CPU caching the same
+ * translation behind our back, so let's check it is not in
+ * already
+ */
+ db = its->vgic_its_base + GITS_TRANSLATER;
+ if (__vgic_its_check_cache(dist, db, devid, eventid))
+ goto out;
+
+ /* Always reuse the last entry (LRU policy) */
+ cte = list_last_entry(&dist->lpi_translation_cache,
+ typeof(*cte), entry);
+
+ /*
+ * Caching the translation implies having an extra reference
+ * to the interrupt, so drop the potential reference on what
+ * was in the cache, and increment it on the new interrupt.
+ */
+ if (cte->irq)
+ __vgic_put_lpi_locked(kvm, cte->irq);
+
+ vgic_get_irq_kref(irq);
+
+ cte->db = db;
+ cte->devid = devid;
+ cte->eventid = eventid;
+ cte->irq = irq;
+
+ /* Move the new translation to the head of the list */
+ list_move(&cte->entry, &dist->lpi_translation_cache);
+
+out:
+ raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
+}
+
+void vgic_its_invalidate_cache(struct kvm *kvm)
+{
+ struct vgic_dist *dist = &kvm->arch.vgic;
+ struct vgic_translation_cache_entry *cte;
+ unsigned long flags;
+
+ raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
+
+ list_for_each_entry(cte, &dist->lpi_translation_cache, entry) {
+ /*
+ * If we hit a NULL entry, there is nothing after this
+ * point.
+ */
+ if (!cte->irq)
+ break;
+
+ __vgic_put_lpi_locked(kvm, cte->irq);
+ cte->irq = NULL;
+ }
+
+ raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
+}
+
+int vgic_its_resolve_lpi(struct kvm *kvm, struct vgic_its *its,
+ u32 devid, u32 eventid, struct vgic_irq **irq)
+{
+ struct kvm_vcpu *vcpu;
+ struct its_ite *ite;
+
+ if (!its->enabled)
+ return -EBUSY;
+
+ ite = find_ite(its, devid, eventid);
+ if (!ite || !its_is_collection_mapped(ite->collection))
+ return E_ITS_INT_UNMAPPED_INTERRUPT;
+
+ vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
+ if (!vcpu)
+ return E_ITS_INT_UNMAPPED_INTERRUPT;
+
+ if (!vgic_lpis_enabled(vcpu))
+ return -EBUSY;
+
+ vgic_its_cache_translation(kvm, its, devid, eventid, ite->irq);
+
+ *irq = ite->irq;
+ return 0;
+}
+
+struct vgic_its *vgic_msi_to_its(struct kvm *kvm, struct kvm_msi *msi)
+{
+ u64 address;
+ struct kvm_io_device *kvm_io_dev;
+ struct vgic_io_device *iodev;
+
+ if (!vgic_has_its(kvm))
+ return ERR_PTR(-ENODEV);
+
+ if (!(msi->flags & KVM_MSI_VALID_DEVID))
+ return ERR_PTR(-EINVAL);
+
+ address = (u64)msi->address_hi << 32 | msi->address_lo;
+
+ kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, address);
+ if (!kvm_io_dev)
+ return ERR_PTR(-EINVAL);
+
+ if (kvm_io_dev->ops != &kvm_io_gic_ops)
+ return ERR_PTR(-EINVAL);
+
+ iodev = container_of(kvm_io_dev, struct vgic_io_device, dev);
+ if (iodev->iodev_type != IODEV_ITS)
+ return ERR_PTR(-EINVAL);
+
+ return iodev->its;
+}
+
+/*
+ * Find the target VCPU and the LPI number for a given devid/eventid pair
+ * and make this IRQ pending, possibly injecting it.
+ * Must be called with the its_lock mutex held.
+ * Returns 0 on success, a positive error value for any ITS mapping
+ * related errors and negative error values for generic errors.
+ */
+static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its,
+ u32 devid, u32 eventid)
+{
+ struct vgic_irq *irq = NULL;
+ unsigned long flags;
+ int err;
+
+ err = vgic_its_resolve_lpi(kvm, its, devid, eventid, &irq);
+ if (err)
+ return err;
+
+ if (irq->hw)
+ return irq_set_irqchip_state(irq->host_irq,
+ IRQCHIP_STATE_PENDING, true);
+
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+ irq->pending_latch = true;
+ vgic_queue_irq_unlock(kvm, irq, flags);
+
+ return 0;
+}
+
+int vgic_its_inject_cached_translation(struct kvm *kvm, struct kvm_msi *msi)
+{
+ struct vgic_irq *irq;
+ unsigned long flags;
+ phys_addr_t db;
+
+ db = (u64)msi->address_hi << 32 | msi->address_lo;
+ irq = vgic_its_check_cache(kvm, db, msi->devid, msi->data);
+ if (!irq)
+ return -EWOULDBLOCK;
+
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+ irq->pending_latch = true;
+ vgic_queue_irq_unlock(kvm, irq, flags);
+ vgic_put_irq(kvm, irq);
+
+ return 0;
+}
+
+/*
+ * Queries the KVM IO bus framework to get the ITS pointer from the given
+ * doorbell address.
+ * We then call vgic_its_trigger_msi() with the decoded data.
+ * According to the KVM_SIGNAL_MSI API description returns 1 on success.
+ */
+int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi)
+{
+ struct vgic_its *its;
+ int ret;
+
+ if (!vgic_its_inject_cached_translation(kvm, msi))
+ return 1;
+
+ its = vgic_msi_to_its(kvm, msi);
+ if (IS_ERR(its))
+ return PTR_ERR(its);
+
+ mutex_lock(&its->its_lock);
+ ret = vgic_its_trigger_msi(kvm, its, msi->devid, msi->data);
+ mutex_unlock(&its->its_lock);
+
+ if (ret < 0)
+ return ret;
+
+ /*
+ * KVM_SIGNAL_MSI demands a return value > 0 for success and 0
+ * if the guest has blocked the MSI. So we map any LPI mapping
+ * related error to that.
+ */
+ if (ret)
+ return 0;
+ else
+ return 1;
+}
+
+/* Requires the its_lock to be held. */
+static void its_free_ite(struct kvm *kvm, struct its_ite *ite)
+{
+ list_del(&ite->ite_list);
+
+ /* This put matches the get in vgic_add_lpi. */
+ if (ite->irq) {
+ if (ite->irq->hw)
+ WARN_ON(its_unmap_vlpi(ite->irq->host_irq));
+
+ vgic_put_irq(kvm, ite->irq);
+ }
+
+ kfree(ite);
+}
+
+static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size)
+{
+ return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1);
+}
+
+#define its_cmd_get_command(cmd) its_cmd_mask_field(cmd, 0, 0, 8)
+#define its_cmd_get_deviceid(cmd) its_cmd_mask_field(cmd, 0, 32, 32)
+#define its_cmd_get_size(cmd) (its_cmd_mask_field(cmd, 1, 0, 5) + 1)
+#define its_cmd_get_id(cmd) its_cmd_mask_field(cmd, 1, 0, 32)
+#define its_cmd_get_physical_id(cmd) its_cmd_mask_field(cmd, 1, 32, 32)
+#define its_cmd_get_collection(cmd) its_cmd_mask_field(cmd, 2, 0, 16)
+#define its_cmd_get_ittaddr(cmd) (its_cmd_mask_field(cmd, 2, 8, 44) << 8)
+#define its_cmd_get_target_addr(cmd) its_cmd_mask_field(cmd, 2, 16, 32)
+#define its_cmd_get_validbit(cmd) its_cmd_mask_field(cmd, 2, 63, 1)
+
+/*
+ * The DISCARD command frees an Interrupt Translation Table Entry (ITTE).
+ * Must be called with the its_lock mutex held.
+ */
+static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its,
+ u64 *its_cmd)
+{
+ u32 device_id = its_cmd_get_deviceid(its_cmd);
+ u32 event_id = its_cmd_get_id(its_cmd);
+ struct its_ite *ite;
+
+ ite = find_ite(its, device_id, event_id);
+ if (ite && its_is_collection_mapped(ite->collection)) {
+ /*
+ * Though the spec talks about removing the pending state, we
+ * don't bother here since we clear the ITTE anyway and the
+ * pending state is a property of the ITTE struct.
+ */
+ vgic_its_invalidate_cache(kvm);
+
+ its_free_ite(kvm, ite);
+ return 0;
+ }
+
+ return E_ITS_DISCARD_UNMAPPED_INTERRUPT;
+}
+
+/*
+ * The MOVI command moves an ITTE to a different collection.
+ * Must be called with the its_lock mutex held.
+ */
+static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its,
+ u64 *its_cmd)
+{
+ u32 device_id = its_cmd_get_deviceid(its_cmd);
+ u32 event_id = its_cmd_get_id(its_cmd);
+ u32 coll_id = its_cmd_get_collection(its_cmd);
+ struct kvm_vcpu *vcpu;
+ struct its_ite *ite;
+ struct its_collection *collection;
+
+ ite = find_ite(its, device_id, event_id);
+ if (!ite)
+ return E_ITS_MOVI_UNMAPPED_INTERRUPT;
+
+ if (!its_is_collection_mapped(ite->collection))
+ return E_ITS_MOVI_UNMAPPED_COLLECTION;
+
+ collection = find_collection(its, coll_id);
+ if (!its_is_collection_mapped(collection))
+ return E_ITS_MOVI_UNMAPPED_COLLECTION;
+
+ ite->collection = collection;
+ vcpu = kvm_get_vcpu(kvm, collection->target_addr);
+
+ vgic_its_invalidate_cache(kvm);
+
+ return update_affinity(ite->irq, vcpu);
+}
+
+static bool __is_visible_gfn_locked(struct vgic_its *its, gpa_t gpa)
+{
+ gfn_t gfn = gpa >> PAGE_SHIFT;
+ int idx;
+ bool ret;
+
+ idx = srcu_read_lock(&its->dev->kvm->srcu);
+ ret = kvm_is_visible_gfn(its->dev->kvm, gfn);
+ srcu_read_unlock(&its->dev->kvm->srcu, idx);
+ return ret;
+}
+
+/*
+ * Check whether an ID can be stored into the corresponding guest table.
+ * For a direct table this is pretty easy, but gets a bit nasty for
+ * indirect tables. We check whether the resulting guest physical address
+ * is actually valid (covered by a memslot and guest accessible).
+ * For this we have to read the respective first level entry.
+ */
+static bool vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id,
+ gpa_t *eaddr)
+{
+ int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
+ u64 indirect_ptr, type = GITS_BASER_TYPE(baser);
+ phys_addr_t base = GITS_BASER_ADDR_48_to_52(baser);
+ int esz = GITS_BASER_ENTRY_SIZE(baser);
+ int index;
+
+ switch (type) {
+ case GITS_BASER_TYPE_DEVICE:
+ if (id >= BIT_ULL(VITS_TYPER_DEVBITS))
+ return false;
+ break;
+ case GITS_BASER_TYPE_COLLECTION:
+ /* as GITS_TYPER.CIL == 0, ITS supports 16-bit collection ID */
+ if (id >= BIT_ULL(16))
+ return false;
+ break;
+ default:
+ return false;
+ }
+
+ if (!(baser & GITS_BASER_INDIRECT)) {
+ phys_addr_t addr;
+
+ if (id >= (l1_tbl_size / esz))
+ return false;
+
+ addr = base + id * esz;
+
+ if (eaddr)
+ *eaddr = addr;
+
+ return __is_visible_gfn_locked(its, addr);
+ }
+
+ /* calculate and check the index into the 1st level */
+ index = id / (SZ_64K / esz);
+ if (index >= (l1_tbl_size / sizeof(u64)))
+ return false;
+
+ /* Each 1st level entry is represented by a 64-bit value. */
+ if (kvm_read_guest_lock(its->dev->kvm,
+ base + index * sizeof(indirect_ptr),
+ &indirect_ptr, sizeof(indirect_ptr)))
+ return false;
+
+ indirect_ptr = le64_to_cpu(indirect_ptr);
+
+ /* check the valid bit of the first level entry */
+ if (!(indirect_ptr & BIT_ULL(63)))
+ return false;
+
+ /* Mask the guest physical address and calculate the frame number. */
+ indirect_ptr &= GENMASK_ULL(51, 16);
+
+ /* Find the address of the actual entry */
+ index = id % (SZ_64K / esz);
+ indirect_ptr += index * esz;
+
+ if (eaddr)
+ *eaddr = indirect_ptr;
+
+ return __is_visible_gfn_locked(its, indirect_ptr);
+}
+
+/*
+ * Check whether an event ID can be stored in the corresponding Interrupt
+ * Translation Table, which starts at device->itt_addr.
+ */
+static bool vgic_its_check_event_id(struct vgic_its *its, struct its_device *device,
+ u32 event_id)
+{
+ const struct vgic_its_abi *abi = vgic_its_get_abi(its);
+ int ite_esz = abi->ite_esz;
+ gpa_t gpa;
+
+ /* max table size is: BIT_ULL(device->num_eventid_bits) * ite_esz */
+ if (event_id >= BIT_ULL(device->num_eventid_bits))
+ return false;
+
+ gpa = device->itt_addr + event_id * ite_esz;
+ return __is_visible_gfn_locked(its, gpa);
+}
+
+/*
+ * Add a new collection into the ITS collection table.
+ * Returns 0 on success, and a negative error value for generic errors.
+ */
+static int vgic_its_alloc_collection(struct vgic_its *its,
+ struct its_collection **colp,
+ u32 coll_id)
+{
+ struct its_collection *collection;
+
+ collection = kzalloc(sizeof(*collection), GFP_KERNEL_ACCOUNT);
+ if (!collection)
+ return -ENOMEM;
+
+ collection->collection_id = coll_id;
+ collection->target_addr = COLLECTION_NOT_MAPPED;
+
+ list_add_tail(&collection->coll_list, &its->collection_list);
+ *colp = collection;
+
+ return 0;
+}
+
+static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id)
+{
+ struct its_collection *collection;
+ struct its_device *device;
+ struct its_ite *ite;
+
+ /*
+ * Clearing the mapping for that collection ID removes the
+ * entry from the list. If there wasn't any before, we can
+ * go home early.
+ */
+ collection = find_collection(its, coll_id);
+ if (!collection)
+ return;
+
+ for_each_lpi_its(device, ite, its)
+ if (ite->collection &&
+ ite->collection->collection_id == coll_id)
+ ite->collection = NULL;
+
+ list_del(&collection->coll_list);
+ kfree(collection);
+}
+
+/* Must be called with its_lock mutex held */
+static struct its_ite *vgic_its_alloc_ite(struct its_device *device,
+ struct its_collection *collection,
+ u32 event_id)
+{
+ struct its_ite *ite;
+
+ ite = kzalloc(sizeof(*ite), GFP_KERNEL_ACCOUNT);
+ if (!ite)
+ return ERR_PTR(-ENOMEM);
+
+ ite->event_id = event_id;
+ ite->collection = collection;
+
+ list_add_tail(&ite->ite_list, &device->itt_head);
+ return ite;
+}
+
+/*
+ * The MAPTI and MAPI commands map LPIs to ITTEs.
+ * Must be called with its_lock mutex held.
+ */
+static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
+ u64 *its_cmd)
+{
+ u32 device_id = its_cmd_get_deviceid(its_cmd);
+ u32 event_id = its_cmd_get_id(its_cmd);
+ u32 coll_id = its_cmd_get_collection(its_cmd);
+ struct its_ite *ite;
+ struct kvm_vcpu *vcpu = NULL;
+ struct its_device *device;
+ struct its_collection *collection, *new_coll = NULL;
+ struct vgic_irq *irq;
+ int lpi_nr;
+
+ device = find_its_device(its, device_id);
+ if (!device)
+ return E_ITS_MAPTI_UNMAPPED_DEVICE;
+
+ if (!vgic_its_check_event_id(its, device, event_id))
+ return E_ITS_MAPTI_ID_OOR;
+
+ if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI)
+ lpi_nr = its_cmd_get_physical_id(its_cmd);
+ else
+ lpi_nr = event_id;
+ if (lpi_nr < GIC_LPI_OFFSET ||
+ lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser))
+ return E_ITS_MAPTI_PHYSICALID_OOR;
+
+ /* If there is an existing mapping, behavior is UNPREDICTABLE. */
+ if (find_ite(its, device_id, event_id))
+ return 0;
+
+ collection = find_collection(its, coll_id);
+ if (!collection) {
+ int ret;
+
+ if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
+ return E_ITS_MAPC_COLLECTION_OOR;
+
+ ret = vgic_its_alloc_collection(its, &collection, coll_id);
+ if (ret)
+ return ret;
+ new_coll = collection;
+ }
+
+ ite = vgic_its_alloc_ite(device, collection, event_id);
+ if (IS_ERR(ite)) {
+ if (new_coll)
+ vgic_its_free_collection(its, coll_id);
+ return PTR_ERR(ite);
+ }
+
+ if (its_is_collection_mapped(collection))
+ vcpu = kvm_get_vcpu(kvm, collection->target_addr);
+
+ irq = vgic_add_lpi(kvm, lpi_nr, vcpu);
+ if (IS_ERR(irq)) {
+ if (new_coll)
+ vgic_its_free_collection(its, coll_id);
+ its_free_ite(kvm, ite);
+ return PTR_ERR(irq);
+ }
+ ite->irq = irq;
+
+ return 0;
+}
+
+/* Requires the its_lock to be held. */
+static void vgic_its_free_device(struct kvm *kvm, struct its_device *device)
+{
+ struct its_ite *ite, *temp;
+
+ /*
+ * The spec says that unmapping a device with still valid
+ * ITTEs associated is UNPREDICTABLE. We remove all ITTEs,
+ * since we cannot leave the memory unreferenced.
+ */
+ list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list)
+ its_free_ite(kvm, ite);
+
+ vgic_its_invalidate_cache(kvm);
+
+ list_del(&device->dev_list);
+ kfree(device);
+}
+
+/* its lock must be held */
+static void vgic_its_free_device_list(struct kvm *kvm, struct vgic_its *its)
+{
+ struct its_device *cur, *temp;
+
+ list_for_each_entry_safe(cur, temp, &its->device_list, dev_list)
+ vgic_its_free_device(kvm, cur);
+}
+
+/* its lock must be held */
+static void vgic_its_free_collection_list(struct kvm *kvm, struct vgic_its *its)
+{
+ struct its_collection *cur, *temp;
+
+ list_for_each_entry_safe(cur, temp, &its->collection_list, coll_list)
+ vgic_its_free_collection(its, cur->collection_id);
+}
+
+/* Must be called with its_lock mutex held */
+static struct its_device *vgic_its_alloc_device(struct vgic_its *its,
+ u32 device_id, gpa_t itt_addr,
+ u8 num_eventid_bits)
+{
+ struct its_device *device;
+
+ device = kzalloc(sizeof(*device), GFP_KERNEL_ACCOUNT);
+ if (!device)
+ return ERR_PTR(-ENOMEM);
+
+ device->device_id = device_id;
+ device->itt_addr = itt_addr;
+ device->num_eventid_bits = num_eventid_bits;
+ INIT_LIST_HEAD(&device->itt_head);
+
+ list_add_tail(&device->dev_list, &its->device_list);
+ return device;
+}
+
+/*
+ * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs).
+ * Must be called with the its_lock mutex held.
+ */
+static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its,
+ u64 *its_cmd)
+{
+ u32 device_id = its_cmd_get_deviceid(its_cmd);
+ bool valid = its_cmd_get_validbit(its_cmd);
+ u8 num_eventid_bits = its_cmd_get_size(its_cmd);
+ gpa_t itt_addr = its_cmd_get_ittaddr(its_cmd);
+ struct its_device *device;
+
+ if (!vgic_its_check_id(its, its->baser_device_table, device_id, NULL))
+ return E_ITS_MAPD_DEVICE_OOR;
+
+ if (valid && num_eventid_bits > VITS_TYPER_IDBITS)
+ return E_ITS_MAPD_ITTSIZE_OOR;
+
+ device = find_its_device(its, device_id);
+
+ /*
+ * The spec says that calling MAPD on an already mapped device
+ * invalidates all cached data for this device. We implement this
+ * by removing the mapping and re-establishing it.
+ */
+ if (device)
+ vgic_its_free_device(kvm, device);
+
+ /*
+ * The spec does not say whether unmapping a not-mapped device
+ * is an error, so we are done in any case.
+ */
+ if (!valid)
+ return 0;
+
+ device = vgic_its_alloc_device(its, device_id, itt_addr,
+ num_eventid_bits);
+
+ return PTR_ERR_OR_ZERO(device);
+}
+
+/*
+ * The MAPC command maps collection IDs to redistributors.
+ * Must be called with the its_lock mutex held.
+ */
+static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its,
+ u64 *its_cmd)
+{
+ u16 coll_id;
+ u32 target_addr;
+ struct its_collection *collection;
+ bool valid;
+
+ valid = its_cmd_get_validbit(its_cmd);
+ coll_id = its_cmd_get_collection(its_cmd);
+ target_addr = its_cmd_get_target_addr(its_cmd);
+
+ if (target_addr >= atomic_read(&kvm->online_vcpus))
+ return E_ITS_MAPC_PROCNUM_OOR;
+
+ if (!valid) {
+ vgic_its_free_collection(its, coll_id);
+ vgic_its_invalidate_cache(kvm);
+ } else {
+ collection = find_collection(its, coll_id);
+
+ if (!collection) {
+ int ret;
+
+ if (!vgic_its_check_id(its, its->baser_coll_table,
+ coll_id, NULL))
+ return E_ITS_MAPC_COLLECTION_OOR;
+
+ ret = vgic_its_alloc_collection(its, &collection,
+ coll_id);
+ if (ret)
+ return ret;
+ collection->target_addr = target_addr;
+ } else {
+ collection->target_addr = target_addr;
+ update_affinity_collection(kvm, its, collection);
+ }
+ }
+
+ return 0;
+}
+
+/*
+ * The CLEAR command removes the pending state for a particular LPI.
+ * Must be called with the its_lock mutex held.
+ */
+static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its,
+ u64 *its_cmd)
+{
+ u32 device_id = its_cmd_get_deviceid(its_cmd);
+ u32 event_id = its_cmd_get_id(its_cmd);
+ struct its_ite *ite;
+
+
+ ite = find_ite(its, device_id, event_id);
+ if (!ite)
+ return E_ITS_CLEAR_UNMAPPED_INTERRUPT;
+
+ ite->irq->pending_latch = false;
+
+ if (ite->irq->hw)
+ return irq_set_irqchip_state(ite->irq->host_irq,
+ IRQCHIP_STATE_PENDING, false);
+
+ return 0;
+}
+
+int vgic_its_inv_lpi(struct kvm *kvm, struct vgic_irq *irq)
+{
+ return update_lpi_config(kvm, irq, NULL, true);
+}
+
+/*
+ * The INV command syncs the configuration bits from the memory table.
+ * Must be called with the its_lock mutex held.
+ */
+static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its,
+ u64 *its_cmd)
+{
+ u32 device_id = its_cmd_get_deviceid(its_cmd);
+ u32 event_id = its_cmd_get_id(its_cmd);
+ struct its_ite *ite;
+
+
+ ite = find_ite(its, device_id, event_id);
+ if (!ite)
+ return E_ITS_INV_UNMAPPED_INTERRUPT;
+
+ return vgic_its_inv_lpi(kvm, ite->irq);
+}
+
+/**
+ * vgic_its_invall - invalidate all LPIs targetting a given vcpu
+ * @vcpu: the vcpu for which the RD is targetted by an invalidation
+ *
+ * Contrary to the INVALL command, this targets a RD instead of a
+ * collection, and we don't need to hold the its_lock, since no ITS is
+ * involved here.
+ */
+int vgic_its_invall(struct kvm_vcpu *vcpu)
+{
+ struct kvm *kvm = vcpu->kvm;
+ int irq_count, i = 0;
+ u32 *intids;
+
+ irq_count = vgic_copy_lpi_list(kvm, vcpu, &intids);
+ if (irq_count < 0)
+ return irq_count;
+
+ for (i = 0; i < irq_count; i++) {
+ struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intids[i]);
+ if (!irq)
+ continue;
+ update_lpi_config(kvm, irq, vcpu, false);
+ vgic_put_irq(kvm, irq);
+ }
+
+ kfree(intids);
+
+ if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.its_vm)
+ its_invall_vpe(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe);
+
+ return 0;
+}
+
+/*
+ * The INVALL command requests flushing of all IRQ data in this collection.
+ * Find the VCPU mapped to that collection, then iterate over the VM's list
+ * of mapped LPIs and update the configuration for each IRQ which targets
+ * the specified vcpu. The configuration will be read from the in-memory
+ * configuration table.
+ * Must be called with the its_lock mutex held.
+ */
+static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its,
+ u64 *its_cmd)
+{
+ u32 coll_id = its_cmd_get_collection(its_cmd);
+ struct its_collection *collection;
+ struct kvm_vcpu *vcpu;
+
+ collection = find_collection(its, coll_id);
+ if (!its_is_collection_mapped(collection))
+ return E_ITS_INVALL_UNMAPPED_COLLECTION;
+
+ vcpu = kvm_get_vcpu(kvm, collection->target_addr);
+ vgic_its_invall(vcpu);
+
+ return 0;
+}
+
+/*
+ * The MOVALL command moves the pending state of all IRQs targeting one
+ * redistributor to another. We don't hold the pending state in the VCPUs,
+ * but in the IRQs instead, so there is really not much to do for us here.
+ * However the spec says that no IRQ must target the old redistributor
+ * afterwards, so we make sure that no LPI is using the associated target_vcpu.
+ * This command affects all LPIs in the system that target that redistributor.
+ */
+static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its,
+ u64 *its_cmd)
+{
+ u32 target1_addr = its_cmd_get_target_addr(its_cmd);
+ u32 target2_addr = its_cmd_mask_field(its_cmd, 3, 16, 32);
+ struct kvm_vcpu *vcpu1, *vcpu2;
+ struct vgic_irq *irq;
+ u32 *intids;
+ int irq_count, i;
+
+ if (target1_addr >= atomic_read(&kvm->online_vcpus) ||
+ target2_addr >= atomic_read(&kvm->online_vcpus))
+ return E_ITS_MOVALL_PROCNUM_OOR;
+
+ if (target1_addr == target2_addr)
+ return 0;
+
+ vcpu1 = kvm_get_vcpu(kvm, target1_addr);
+ vcpu2 = kvm_get_vcpu(kvm, target2_addr);
+
+ irq_count = vgic_copy_lpi_list(kvm, vcpu1, &intids);
+ if (irq_count < 0)
+ return irq_count;
+
+ for (i = 0; i < irq_count; i++) {
+ irq = vgic_get_irq(kvm, NULL, intids[i]);
+
+ update_affinity(irq, vcpu2);
+
+ vgic_put_irq(kvm, irq);
+ }
+
+ vgic_its_invalidate_cache(kvm);
+
+ kfree(intids);
+ return 0;
+}
+
+/*
+ * The INT command injects the LPI associated with that DevID/EvID pair.
+ * Must be called with the its_lock mutex held.
+ */
+static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its,
+ u64 *its_cmd)
+{
+ u32 msi_data = its_cmd_get_id(its_cmd);
+ u64 msi_devid = its_cmd_get_deviceid(its_cmd);
+
+ return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data);
+}
+
+/*
+ * This function is called with the its_cmd lock held, but the ITS data
+ * structure lock dropped.
+ */
+static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its,
+ u64 *its_cmd)
+{
+ int ret = -ENODEV;
+
+ mutex_lock(&its->its_lock);
+ switch (its_cmd_get_command(its_cmd)) {
+ case GITS_CMD_MAPD:
+ ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd);
+ break;
+ case GITS_CMD_MAPC:
+ ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd);
+ break;
+ case GITS_CMD_MAPI:
+ ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
+ break;
+ case GITS_CMD_MAPTI:
+ ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
+ break;
+ case GITS_CMD_MOVI:
+ ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd);
+ break;
+ case GITS_CMD_DISCARD:
+ ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd);
+ break;
+ case GITS_CMD_CLEAR:
+ ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd);
+ break;
+ case GITS_CMD_MOVALL:
+ ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd);
+ break;
+ case GITS_CMD_INT:
+ ret = vgic_its_cmd_handle_int(kvm, its, its_cmd);
+ break;
+ case GITS_CMD_INV:
+ ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd);
+ break;
+ case GITS_CMD_INVALL:
+ ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd);
+ break;
+ case GITS_CMD_SYNC:
+ /* we ignore this command: we are in sync all of the time */
+ ret = 0;
+ break;
+ }
+ mutex_unlock(&its->its_lock);
+
+ return ret;
+}
+
+static u64 vgic_sanitise_its_baser(u64 reg)
+{
+ reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK,
+ GITS_BASER_SHAREABILITY_SHIFT,
+ vgic_sanitise_shareability);
+ reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK,
+ GITS_BASER_INNER_CACHEABILITY_SHIFT,
+ vgic_sanitise_inner_cacheability);
+ reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK,
+ GITS_BASER_OUTER_CACHEABILITY_SHIFT,
+ vgic_sanitise_outer_cacheability);
+
+ /* We support only one (ITS) page size: 64K */
+ reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K;
+
+ return reg;
+}
+
+static u64 vgic_sanitise_its_cbaser(u64 reg)
+{
+ reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK,
+ GITS_CBASER_SHAREABILITY_SHIFT,
+ vgic_sanitise_shareability);
+ reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK,
+ GITS_CBASER_INNER_CACHEABILITY_SHIFT,
+ vgic_sanitise_inner_cacheability);
+ reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK,
+ GITS_CBASER_OUTER_CACHEABILITY_SHIFT,
+ vgic_sanitise_outer_cacheability);
+
+ /* Sanitise the physical address to be 64k aligned. */
+ reg &= ~GENMASK_ULL(15, 12);
+
+ return reg;
+}
+
+static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm,
+ struct vgic_its *its,
+ gpa_t addr, unsigned int len)
+{
+ return extract_bytes(its->cbaser, addr & 7, len);
+}
+
+static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ /* When GITS_CTLR.Enable is 1, this register is RO. */
+ if (its->enabled)
+ return;
+
+ mutex_lock(&its->cmd_lock);
+ its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val);
+ its->cbaser = vgic_sanitise_its_cbaser(its->cbaser);
+ its->creadr = 0;
+ /*
+ * CWRITER is architecturally UNKNOWN on reset, but we need to reset
+ * it to CREADR to make sure we start with an empty command buffer.
+ */
+ its->cwriter = its->creadr;
+ mutex_unlock(&its->cmd_lock);
+}
+
+#define ITS_CMD_BUFFER_SIZE(baser) ((((baser) & 0xff) + 1) << 12)
+#define ITS_CMD_SIZE 32
+#define ITS_CMD_OFFSET(reg) ((reg) & GENMASK(19, 5))
+
+/* Must be called with the cmd_lock held. */
+static void vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its)
+{
+ gpa_t cbaser;
+ u64 cmd_buf[4];
+
+ /* Commands are only processed when the ITS is enabled. */
+ if (!its->enabled)
+ return;
+
+ cbaser = GITS_CBASER_ADDRESS(its->cbaser);
+
+ while (its->cwriter != its->creadr) {
+ int ret = kvm_read_guest_lock(kvm, cbaser + its->creadr,
+ cmd_buf, ITS_CMD_SIZE);
+ /*
+ * If kvm_read_guest() fails, this could be due to the guest
+ * programming a bogus value in CBASER or something else going
+ * wrong from which we cannot easily recover.
+ * According to section 6.3.2 in the GICv3 spec we can just
+ * ignore that command then.
+ */
+ if (!ret)
+ vgic_its_handle_command(kvm, its, cmd_buf);
+
+ its->creadr += ITS_CMD_SIZE;
+ if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser))
+ its->creadr = 0;
+ }
+}
+
+/*
+ * By writing to CWRITER the guest announces new commands to be processed.
+ * To avoid any races in the first place, we take the its_cmd lock, which
+ * protects our ring buffer variables, so that there is only one user
+ * per ITS handling commands at a given time.
+ */
+static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ u64 reg;
+
+ if (!its)
+ return;
+
+ mutex_lock(&its->cmd_lock);
+
+ reg = update_64bit_reg(its->cwriter, addr & 7, len, val);
+ reg = ITS_CMD_OFFSET(reg);
+ if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
+ mutex_unlock(&its->cmd_lock);
+ return;
+ }
+ its->cwriter = reg;
+
+ vgic_its_process_commands(kvm, its);
+
+ mutex_unlock(&its->cmd_lock);
+}
+
+static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm,
+ struct vgic_its *its,
+ gpa_t addr, unsigned int len)
+{
+ return extract_bytes(its->cwriter, addr & 0x7, len);
+}
+
+static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm,
+ struct vgic_its *its,
+ gpa_t addr, unsigned int len)
+{
+ return extract_bytes(its->creadr, addr & 0x7, len);
+}
+
+static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm,
+ struct vgic_its *its,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ u32 cmd_offset;
+ int ret = 0;
+
+ mutex_lock(&its->cmd_lock);
+
+ if (its->enabled) {
+ ret = -EBUSY;
+ goto out;
+ }
+
+ cmd_offset = ITS_CMD_OFFSET(val);
+ if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
+ ret = -EINVAL;
+ goto out;
+ }
+
+ its->creadr = cmd_offset;
+out:
+ mutex_unlock(&its->cmd_lock);
+ return ret;
+}
+
+#define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7)
+static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm,
+ struct vgic_its *its,
+ gpa_t addr, unsigned int len)
+{
+ u64 reg;
+
+ switch (BASER_INDEX(addr)) {
+ case 0:
+ reg = its->baser_device_table;
+ break;
+ case 1:
+ reg = its->baser_coll_table;
+ break;
+ default:
+ reg = 0;
+ break;
+ }
+
+ return extract_bytes(reg, addr & 7, len);
+}
+
+#define GITS_BASER_RO_MASK (GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56))
+static void vgic_mmio_write_its_baser(struct kvm *kvm,
+ struct vgic_its *its,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ const struct vgic_its_abi *abi = vgic_its_get_abi(its);
+ u64 entry_size, table_type;
+ u64 reg, *regptr, clearbits = 0;
+
+ /* When GITS_CTLR.Enable is 1, we ignore write accesses. */
+ if (its->enabled)
+ return;
+
+ switch (BASER_INDEX(addr)) {
+ case 0:
+ regptr = &its->baser_device_table;
+ entry_size = abi->dte_esz;
+ table_type = GITS_BASER_TYPE_DEVICE;
+ break;
+ case 1:
+ regptr = &its->baser_coll_table;
+ entry_size = abi->cte_esz;
+ table_type = GITS_BASER_TYPE_COLLECTION;
+ clearbits = GITS_BASER_INDIRECT;
+ break;
+ default:
+ return;
+ }
+
+ reg = update_64bit_reg(*regptr, addr & 7, len, val);
+ reg &= ~GITS_BASER_RO_MASK;
+ reg &= ~clearbits;
+
+ reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT;
+ reg |= table_type << GITS_BASER_TYPE_SHIFT;
+ reg = vgic_sanitise_its_baser(reg);
+
+ *regptr = reg;
+
+ if (!(reg & GITS_BASER_VALID)) {
+ /* Take the its_lock to prevent a race with a save/restore */
+ mutex_lock(&its->its_lock);
+ switch (table_type) {
+ case GITS_BASER_TYPE_DEVICE:
+ vgic_its_free_device_list(kvm, its);
+ break;
+ case GITS_BASER_TYPE_COLLECTION:
+ vgic_its_free_collection_list(kvm, its);
+ break;
+ }
+ mutex_unlock(&its->its_lock);
+ }
+}
+
+static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu,
+ struct vgic_its *its,
+ gpa_t addr, unsigned int len)
+{
+ u32 reg = 0;
+
+ mutex_lock(&its->cmd_lock);
+ if (its->creadr == its->cwriter)
+ reg |= GITS_CTLR_QUIESCENT;
+ if (its->enabled)
+ reg |= GITS_CTLR_ENABLE;
+ mutex_unlock(&its->cmd_lock);
+
+ return reg;
+}
+
+static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ mutex_lock(&its->cmd_lock);
+
+ /*
+ * It is UNPREDICTABLE to enable the ITS if any of the CBASER or
+ * device/collection BASER are invalid
+ */
+ if (!its->enabled && (val & GITS_CTLR_ENABLE) &&
+ (!(its->baser_device_table & GITS_BASER_VALID) ||
+ !(its->baser_coll_table & GITS_BASER_VALID) ||
+ !(its->cbaser & GITS_CBASER_VALID)))
+ goto out;
+
+ its->enabled = !!(val & GITS_CTLR_ENABLE);
+ if (!its->enabled)
+ vgic_its_invalidate_cache(kvm);
+
+ /*
+ * Try to process any pending commands. This function bails out early
+ * if the ITS is disabled or no commands have been queued.
+ */
+ vgic_its_process_commands(kvm, its);
+
+out:
+ mutex_unlock(&its->cmd_lock);
+}
+
+#define REGISTER_ITS_DESC(off, rd, wr, length, acc) \
+{ \
+ .reg_offset = off, \
+ .len = length, \
+ .access_flags = acc, \
+ .its_read = rd, \
+ .its_write = wr, \
+}
+
+#define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\
+{ \
+ .reg_offset = off, \
+ .len = length, \
+ .access_flags = acc, \
+ .its_read = rd, \
+ .its_write = wr, \
+ .uaccess_its_write = uwr, \
+}
+
+static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its,
+ gpa_t addr, unsigned int len, unsigned long val)
+{
+ /* Ignore */
+}
+
+static struct vgic_register_region its_registers[] = {
+ REGISTER_ITS_DESC(GITS_CTLR,
+ vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4,
+ VGIC_ACCESS_32bit),
+ REGISTER_ITS_DESC_UACCESS(GITS_IIDR,
+ vgic_mmio_read_its_iidr, its_mmio_write_wi,
+ vgic_mmio_uaccess_write_its_iidr, 4,
+ VGIC_ACCESS_32bit),
+ REGISTER_ITS_DESC(GITS_TYPER,
+ vgic_mmio_read_its_typer, its_mmio_write_wi, 8,
+ VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
+ REGISTER_ITS_DESC(GITS_CBASER,
+ vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8,
+ VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
+ REGISTER_ITS_DESC(GITS_CWRITER,
+ vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8,
+ VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
+ REGISTER_ITS_DESC_UACCESS(GITS_CREADR,
+ vgic_mmio_read_its_creadr, its_mmio_write_wi,
+ vgic_mmio_uaccess_write_its_creadr, 8,
+ VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
+ REGISTER_ITS_DESC(GITS_BASER,
+ vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40,
+ VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
+ REGISTER_ITS_DESC(GITS_IDREGS_BASE,
+ vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30,
+ VGIC_ACCESS_32bit),
+};
+
+/* This is called on setting the LPI enable bit in the redistributor. */
+void vgic_enable_lpis(struct kvm_vcpu *vcpu)
+{
+ if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ))
+ its_sync_lpi_pending_table(vcpu);
+}
+
+static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its,
+ u64 addr)
+{
+ struct vgic_io_device *iodev = &its->iodev;
+ int ret;
+
+ mutex_lock(&kvm->slots_lock);
+ if (!IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
+ ret = -EBUSY;
+ goto out;
+ }
+
+ its->vgic_its_base = addr;
+ iodev->regions = its_registers;
+ iodev->nr_regions = ARRAY_SIZE(its_registers);
+ kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops);
+
+ iodev->base_addr = its->vgic_its_base;
+ iodev->iodev_type = IODEV_ITS;
+ iodev->its = its;
+ ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr,
+ KVM_VGIC_V3_ITS_SIZE, &iodev->dev);
+out:
+ mutex_unlock(&kvm->slots_lock);
+
+ return ret;
+}
+
+/* Default is 16 cached LPIs per vcpu */
+#define LPI_DEFAULT_PCPU_CACHE_SIZE 16
+
+void vgic_lpi_translation_cache_init(struct kvm *kvm)
+{
+ struct vgic_dist *dist = &kvm->arch.vgic;
+ unsigned int sz;
+ int i;
+
+ if (!list_empty(&dist->lpi_translation_cache))
+ return;
+
+ sz = atomic_read(&kvm->online_vcpus) * LPI_DEFAULT_PCPU_CACHE_SIZE;
+
+ for (i = 0; i < sz; i++) {
+ struct vgic_translation_cache_entry *cte;
+
+ /* An allocation failure is not fatal */
+ cte = kzalloc(sizeof(*cte), GFP_KERNEL_ACCOUNT);
+ if (WARN_ON(!cte))
+ break;
+
+ INIT_LIST_HEAD(&cte->entry);
+ list_add(&cte->entry, &dist->lpi_translation_cache);
+ }
+}
+
+void vgic_lpi_translation_cache_destroy(struct kvm *kvm)
+{
+ struct vgic_dist *dist = &kvm->arch.vgic;
+ struct vgic_translation_cache_entry *cte, *tmp;
+
+ vgic_its_invalidate_cache(kvm);
+
+ list_for_each_entry_safe(cte, tmp,
+ &dist->lpi_translation_cache, entry) {
+ list_del(&cte->entry);
+ kfree(cte);
+ }
+}
+
+#define INITIAL_BASER_VALUE \
+ (GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb) | \
+ GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner) | \
+ GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable) | \
+ GITS_BASER_PAGE_SIZE_64K)
+
+#define INITIAL_PROPBASER_VALUE \
+ (GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb) | \
+ GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner) | \
+ GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable))
+
+static int vgic_its_create(struct kvm_device *dev, u32 type)
+{
+ int ret;
+ struct vgic_its *its;
+
+ if (type != KVM_DEV_TYPE_ARM_VGIC_ITS)
+ return -ENODEV;
+
+ its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL_ACCOUNT);
+ if (!its)
+ return -ENOMEM;
+
+ mutex_lock(&dev->kvm->arch.config_lock);
+
+ if (vgic_initialized(dev->kvm)) {
+ ret = vgic_v4_init(dev->kvm);
+ if (ret < 0) {
+ mutex_unlock(&dev->kvm->arch.config_lock);
+ kfree(its);
+ return ret;
+ }
+
+ vgic_lpi_translation_cache_init(dev->kvm);
+ }
+
+ mutex_init(&its->its_lock);
+ mutex_init(&its->cmd_lock);
+
+ /* Yep, even more trickery for lock ordering... */
+#ifdef CONFIG_LOCKDEP
+ mutex_lock(&its->cmd_lock);
+ mutex_lock(&its->its_lock);
+ mutex_unlock(&its->its_lock);
+ mutex_unlock(&its->cmd_lock);
+#endif
+
+ its->vgic_its_base = VGIC_ADDR_UNDEF;
+
+ INIT_LIST_HEAD(&its->device_list);
+ INIT_LIST_HEAD(&its->collection_list);
+
+ dev->kvm->arch.vgic.msis_require_devid = true;
+ dev->kvm->arch.vgic.has_its = true;
+ its->enabled = false;
+ its->dev = dev;
+
+ its->baser_device_table = INITIAL_BASER_VALUE |
+ ((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT);
+ its->baser_coll_table = INITIAL_BASER_VALUE |
+ ((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT);
+ dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE;
+
+ dev->private = its;
+
+ ret = vgic_its_set_abi(its, NR_ITS_ABIS - 1);
+
+ mutex_unlock(&dev->kvm->arch.config_lock);
+
+ return ret;
+}
+
+static void vgic_its_destroy(struct kvm_device *kvm_dev)
+{
+ struct kvm *kvm = kvm_dev->kvm;
+ struct vgic_its *its = kvm_dev->private;
+
+ mutex_lock(&its->its_lock);
+
+ vgic_its_free_device_list(kvm, its);
+ vgic_its_free_collection_list(kvm, its);
+
+ mutex_unlock(&its->its_lock);
+ kfree(its);
+ kfree(kvm_dev);/* alloc by kvm_ioctl_create_device, free by .destroy */
+}
+
+static int vgic_its_has_attr_regs(struct kvm_device *dev,
+ struct kvm_device_attr *attr)
+{
+ const struct vgic_register_region *region;
+ gpa_t offset = attr->attr;
+ int align;
+
+ align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7;
+
+ if (offset & align)
+ return -EINVAL;
+
+ region = vgic_find_mmio_region(its_registers,
+ ARRAY_SIZE(its_registers),
+ offset);
+ if (!region)
+ return -ENXIO;
+
+ return 0;
+}
+
+static int vgic_its_attr_regs_access(struct kvm_device *dev,
+ struct kvm_device_attr *attr,
+ u64 *reg, bool is_write)
+{
+ const struct vgic_register_region *region;
+ struct vgic_its *its;
+ gpa_t addr, offset;
+ unsigned int len;
+ int align, ret = 0;
+
+ its = dev->private;
+ offset = attr->attr;
+
+ /*
+ * Although the spec supports upper/lower 32-bit accesses to
+ * 64-bit ITS registers, the userspace ABI requires 64-bit
+ * accesses to all 64-bit wide registers. We therefore only
+ * support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID
+ * registers
+ */
+ if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4))
+ align = 0x3;
+ else
+ align = 0x7;
+
+ if (offset & align)
+ return -EINVAL;
+
+ mutex_lock(&dev->kvm->lock);
+
+ if (!lock_all_vcpus(dev->kvm)) {
+ mutex_unlock(&dev->kvm->lock);
+ return -EBUSY;
+ }
+
+ mutex_lock(&dev->kvm->arch.config_lock);
+
+ if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
+ ret = -ENXIO;
+ goto out;
+ }
+
+ region = vgic_find_mmio_region(its_registers,
+ ARRAY_SIZE(its_registers),
+ offset);
+ if (!region) {
+ ret = -ENXIO;
+ goto out;
+ }
+
+ addr = its->vgic_its_base + offset;
+
+ len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4;
+
+ if (is_write) {
+ if (region->uaccess_its_write)
+ ret = region->uaccess_its_write(dev->kvm, its, addr,
+ len, *reg);
+ else
+ region->its_write(dev->kvm, its, addr, len, *reg);
+ } else {
+ *reg = region->its_read(dev->kvm, its, addr, len);
+ }
+out:
+ mutex_unlock(&dev->kvm->arch.config_lock);
+ unlock_all_vcpus(dev->kvm);
+ mutex_unlock(&dev->kvm->lock);
+ return ret;
+}
+
+static u32 compute_next_devid_offset(struct list_head *h,
+ struct its_device *dev)
+{
+ struct its_device *next;
+ u32 next_offset;
+
+ if (list_is_last(&dev->dev_list, h))
+ return 0;
+ next = list_next_entry(dev, dev_list);
+ next_offset = next->device_id - dev->device_id;
+
+ return min_t(u32, next_offset, VITS_DTE_MAX_DEVID_OFFSET);
+}
+
+static u32 compute_next_eventid_offset(struct list_head *h, struct its_ite *ite)
+{
+ struct its_ite *next;
+ u32 next_offset;
+
+ if (list_is_last(&ite->ite_list, h))
+ return 0;
+ next = list_next_entry(ite, ite_list);
+ next_offset = next->event_id - ite->event_id;
+
+ return min_t(u32, next_offset, VITS_ITE_MAX_EVENTID_OFFSET);
+}
+
+/**
+ * entry_fn_t - Callback called on a table entry restore path
+ * @its: its handle
+ * @id: id of the entry
+ * @entry: pointer to the entry
+ * @opaque: pointer to an opaque data
+ *
+ * Return: < 0 on error, 0 if last element was identified, id offset to next
+ * element otherwise
+ */
+typedef int (*entry_fn_t)(struct vgic_its *its, u32 id, void *entry,
+ void *opaque);
+
+/**
+ * scan_its_table - Scan a contiguous table in guest RAM and applies a function
+ * to each entry
+ *
+ * @its: its handle
+ * @base: base gpa of the table
+ * @size: size of the table in bytes
+ * @esz: entry size in bytes
+ * @start_id: the ID of the first entry in the table
+ * (non zero for 2d level tables)
+ * @fn: function to apply on each entry
+ *
+ * Return: < 0 on error, 0 if last element was identified, 1 otherwise
+ * (the last element may not be found on second level tables)
+ */
+static int scan_its_table(struct vgic_its *its, gpa_t base, int size, u32 esz,
+ int start_id, entry_fn_t fn, void *opaque)
+{
+ struct kvm *kvm = its->dev->kvm;
+ unsigned long len = size;
+ int id = start_id;
+ gpa_t gpa = base;
+ char entry[ESZ_MAX];
+ int ret;
+
+ memset(entry, 0, esz);
+
+ while (true) {
+ int next_offset;
+ size_t byte_offset;
+
+ ret = kvm_read_guest_lock(kvm, gpa, entry, esz);
+ if (ret)
+ return ret;
+
+ next_offset = fn(its, id, entry, opaque);
+ if (next_offset <= 0)
+ return next_offset;
+
+ byte_offset = next_offset * esz;
+ if (byte_offset >= len)
+ break;
+
+ id += next_offset;
+ gpa += byte_offset;
+ len -= byte_offset;
+ }
+ return 1;
+}
+
+/**
+ * vgic_its_save_ite - Save an interrupt translation entry at @gpa
+ */
+static int vgic_its_save_ite(struct vgic_its *its, struct its_device *dev,
+ struct its_ite *ite, gpa_t gpa, int ite_esz)
+{
+ struct kvm *kvm = its->dev->kvm;
+ u32 next_offset;
+ u64 val;
+
+ next_offset = compute_next_eventid_offset(&dev->itt_head, ite);
+ val = ((u64)next_offset << KVM_ITS_ITE_NEXT_SHIFT) |
+ ((u64)ite->irq->intid << KVM_ITS_ITE_PINTID_SHIFT) |
+ ite->collection->collection_id;
+ val = cpu_to_le64(val);
+ return vgic_write_guest_lock(kvm, gpa, &val, ite_esz);
+}
+
+/**
+ * vgic_its_restore_ite - restore an interrupt translation entry
+ * @event_id: id used for indexing
+ * @ptr: pointer to the ITE entry
+ * @opaque: pointer to the its_device
+ */
+static int vgic_its_restore_ite(struct vgic_its *its, u32 event_id,
+ void *ptr, void *opaque)
+{
+ struct its_device *dev = opaque;
+ struct its_collection *collection;
+ struct kvm *kvm = its->dev->kvm;
+ struct kvm_vcpu *vcpu = NULL;
+ u64 val;
+ u64 *p = (u64 *)ptr;
+ struct vgic_irq *irq;
+ u32 coll_id, lpi_id;
+ struct its_ite *ite;
+ u32 offset;
+
+ val = *p;
+
+ val = le64_to_cpu(val);
+
+ coll_id = val & KVM_ITS_ITE_ICID_MASK;
+ lpi_id = (val & KVM_ITS_ITE_PINTID_MASK) >> KVM_ITS_ITE_PINTID_SHIFT;
+
+ if (!lpi_id)
+ return 1; /* invalid entry, no choice but to scan next entry */
+
+ if (lpi_id < VGIC_MIN_LPI)
+ return -EINVAL;
+
+ offset = val >> KVM_ITS_ITE_NEXT_SHIFT;
+ if (event_id + offset >= BIT_ULL(dev->num_eventid_bits))
+ return -EINVAL;
+
+ collection = find_collection(its, coll_id);
+ if (!collection)
+ return -EINVAL;
+
+ if (!vgic_its_check_event_id(its, dev, event_id))
+ return -EINVAL;
+
+ ite = vgic_its_alloc_ite(dev, collection, event_id);
+ if (IS_ERR(ite))
+ return PTR_ERR(ite);
+
+ if (its_is_collection_mapped(collection))
+ vcpu = kvm_get_vcpu(kvm, collection->target_addr);
+
+ irq = vgic_add_lpi(kvm, lpi_id, vcpu);
+ if (IS_ERR(irq)) {
+ its_free_ite(kvm, ite);
+ return PTR_ERR(irq);
+ }
+ ite->irq = irq;
+
+ return offset;
+}
+
+static int vgic_its_ite_cmp(void *priv, const struct list_head *a,
+ const struct list_head *b)
+{
+ struct its_ite *itea = container_of(a, struct its_ite, ite_list);
+ struct its_ite *iteb = container_of(b, struct its_ite, ite_list);
+
+ if (itea->event_id < iteb->event_id)
+ return -1;
+ else
+ return 1;
+}
+
+static int vgic_its_save_itt(struct vgic_its *its, struct its_device *device)
+{
+ const struct vgic_its_abi *abi = vgic_its_get_abi(its);
+ gpa_t base = device->itt_addr;
+ struct its_ite *ite;
+ int ret;
+ int ite_esz = abi->ite_esz;
+
+ list_sort(NULL, &device->itt_head, vgic_its_ite_cmp);
+
+ list_for_each_entry(ite, &device->itt_head, ite_list) {
+ gpa_t gpa = base + ite->event_id * ite_esz;
+
+ /*
+ * If an LPI carries the HW bit, this means that this
+ * interrupt is controlled by GICv4, and we do not
+ * have direct access to that state without GICv4.1.
+ * Let's simply fail the save operation...
+ */
+ if (ite->irq->hw && !kvm_vgic_global_state.has_gicv4_1)
+ return -EACCES;
+
+ ret = vgic_its_save_ite(its, device, ite, gpa, ite_esz);
+ if (ret)
+ return ret;
+ }
+ return 0;
+}
+
+/**
+ * vgic_its_restore_itt - restore the ITT of a device
+ *
+ * @its: its handle
+ * @dev: device handle
+ *
+ * Return 0 on success, < 0 on error
+ */
+static int vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev)
+{
+ const struct vgic_its_abi *abi = vgic_its_get_abi(its);
+ gpa_t base = dev->itt_addr;
+ int ret;
+ int ite_esz = abi->ite_esz;
+ size_t max_size = BIT_ULL(dev->num_eventid_bits) * ite_esz;
+
+ ret = scan_its_table(its, base, max_size, ite_esz, 0,
+ vgic_its_restore_ite, dev);
+
+ /* scan_its_table returns +1 if all ITEs are invalid */
+ if (ret > 0)
+ ret = 0;
+
+ return ret;
+}
+
+/**
+ * vgic_its_save_dte - Save a device table entry at a given GPA
+ *
+ * @its: ITS handle
+ * @dev: ITS device
+ * @ptr: GPA
+ */
+static int vgic_its_save_dte(struct vgic_its *its, struct its_device *dev,
+ gpa_t ptr, int dte_esz)
+{
+ struct kvm *kvm = its->dev->kvm;
+ u64 val, itt_addr_field;
+ u32 next_offset;
+
+ itt_addr_field = dev->itt_addr >> 8;
+ next_offset = compute_next_devid_offset(&its->device_list, dev);
+ val = (1ULL << KVM_ITS_DTE_VALID_SHIFT |
+ ((u64)next_offset << KVM_ITS_DTE_NEXT_SHIFT) |
+ (itt_addr_field << KVM_ITS_DTE_ITTADDR_SHIFT) |
+ (dev->num_eventid_bits - 1));
+ val = cpu_to_le64(val);
+ return vgic_write_guest_lock(kvm, ptr, &val, dte_esz);
+}
+
+/**
+ * vgic_its_restore_dte - restore a device table entry
+ *
+ * @its: its handle
+ * @id: device id the DTE corresponds to
+ * @ptr: kernel VA where the 8 byte DTE is located
+ * @opaque: unused
+ *
+ * Return: < 0 on error, 0 if the dte is the last one, id offset to the
+ * next dte otherwise
+ */
+static int vgic_its_restore_dte(struct vgic_its *its, u32 id,
+ void *ptr, void *opaque)
+{
+ struct its_device *dev;
+ u64 baser = its->baser_device_table;
+ gpa_t itt_addr;
+ u8 num_eventid_bits;
+ u64 entry = *(u64 *)ptr;
+ bool valid;
+ u32 offset;
+ int ret;
+
+ entry = le64_to_cpu(entry);
+
+ valid = entry >> KVM_ITS_DTE_VALID_SHIFT;
+ num_eventid_bits = (entry & KVM_ITS_DTE_SIZE_MASK) + 1;
+ itt_addr = ((entry & KVM_ITS_DTE_ITTADDR_MASK)
+ >> KVM_ITS_DTE_ITTADDR_SHIFT) << 8;
+
+ if (!valid)
+ return 1;
+
+ /* dte entry is valid */
+ offset = (entry & KVM_ITS_DTE_NEXT_MASK) >> KVM_ITS_DTE_NEXT_SHIFT;
+
+ if (!vgic_its_check_id(its, baser, id, NULL))
+ return -EINVAL;
+
+ dev = vgic_its_alloc_device(its, id, itt_addr, num_eventid_bits);
+ if (IS_ERR(dev))
+ return PTR_ERR(dev);
+
+ ret = vgic_its_restore_itt(its, dev);
+ if (ret) {
+ vgic_its_free_device(its->dev->kvm, dev);
+ return ret;
+ }
+
+ return offset;
+}
+
+static int vgic_its_device_cmp(void *priv, const struct list_head *a,
+ const struct list_head *b)
+{
+ struct its_device *deva = container_of(a, struct its_device, dev_list);
+ struct its_device *devb = container_of(b, struct its_device, dev_list);
+
+ if (deva->device_id < devb->device_id)
+ return -1;
+ else
+ return 1;
+}
+
+/**
+ * vgic_its_save_device_tables - Save the device table and all ITT
+ * into guest RAM
+ *
+ * L1/L2 handling is hidden by vgic_its_check_id() helper which directly
+ * returns the GPA of the device entry
+ */
+static int vgic_its_save_device_tables(struct vgic_its *its)
+{
+ const struct vgic_its_abi *abi = vgic_its_get_abi(its);
+ u64 baser = its->baser_device_table;
+ struct its_device *dev;
+ int dte_esz = abi->dte_esz;
+
+ if (!(baser & GITS_BASER_VALID))
+ return 0;
+
+ list_sort(NULL, &its->device_list, vgic_its_device_cmp);
+
+ list_for_each_entry(dev, &its->device_list, dev_list) {
+ int ret;
+ gpa_t eaddr;
+
+ if (!vgic_its_check_id(its, baser,
+ dev->device_id, &eaddr))
+ return -EINVAL;
+
+ ret = vgic_its_save_itt(its, dev);
+ if (ret)
+ return ret;
+
+ ret = vgic_its_save_dte(its, dev, eaddr, dte_esz);
+ if (ret)
+ return ret;
+ }
+ return 0;
+}
+
+/**
+ * handle_l1_dte - callback used for L1 device table entries (2 stage case)
+ *
+ * @its: its handle
+ * @id: index of the entry in the L1 table
+ * @addr: kernel VA
+ * @opaque: unused
+ *
+ * L1 table entries are scanned by steps of 1 entry
+ * Return < 0 if error, 0 if last dte was found when scanning the L2
+ * table, +1 otherwise (meaning next L1 entry must be scanned)
+ */
+static int handle_l1_dte(struct vgic_its *its, u32 id, void *addr,
+ void *opaque)
+{
+ const struct vgic_its_abi *abi = vgic_its_get_abi(its);
+ int l2_start_id = id * (SZ_64K / abi->dte_esz);
+ u64 entry = *(u64 *)addr;
+ int dte_esz = abi->dte_esz;
+ gpa_t gpa;
+ int ret;
+
+ entry = le64_to_cpu(entry);
+
+ if (!(entry & KVM_ITS_L1E_VALID_MASK))
+ return 1;
+
+ gpa = entry & KVM_ITS_L1E_ADDR_MASK;
+
+ ret = scan_its_table(its, gpa, SZ_64K, dte_esz,
+ l2_start_id, vgic_its_restore_dte, NULL);
+
+ return ret;
+}
+
+/**
+ * vgic_its_restore_device_tables - Restore the device table and all ITT
+ * from guest RAM to internal data structs
+ */
+static int vgic_its_restore_device_tables(struct vgic_its *its)
+{
+ const struct vgic_its_abi *abi = vgic_its_get_abi(its);
+ u64 baser = its->baser_device_table;
+ int l1_esz, ret;
+ int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
+ gpa_t l1_gpa;
+
+ if (!(baser & GITS_BASER_VALID))
+ return 0;
+
+ l1_gpa = GITS_BASER_ADDR_48_to_52(baser);
+
+ if (baser & GITS_BASER_INDIRECT) {
+ l1_esz = GITS_LVL1_ENTRY_SIZE;
+ ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
+ handle_l1_dte, NULL);
+ } else {
+ l1_esz = abi->dte_esz;
+ ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
+ vgic_its_restore_dte, NULL);
+ }
+
+ /* scan_its_table returns +1 if all entries are invalid */
+ if (ret > 0)
+ ret = 0;
+
+ if (ret < 0)
+ vgic_its_free_device_list(its->dev->kvm, its);
+
+ return ret;
+}
+
+static int vgic_its_save_cte(struct vgic_its *its,
+ struct its_collection *collection,
+ gpa_t gpa, int esz)
+{
+ u64 val;
+
+ val = (1ULL << KVM_ITS_CTE_VALID_SHIFT |
+ ((u64)collection->target_addr << KVM_ITS_CTE_RDBASE_SHIFT) |
+ collection->collection_id);
+ val = cpu_to_le64(val);
+ return vgic_write_guest_lock(its->dev->kvm, gpa, &val, esz);
+}
+
+/*
+ * Restore a collection entry into the ITS collection table.
+ * Return +1 on success, 0 if the entry was invalid (which should be
+ * interpreted as end-of-table), and a negative error value for generic errors.
+ */
+static int vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa, int esz)
+{
+ struct its_collection *collection;
+ struct kvm *kvm = its->dev->kvm;
+ u32 target_addr, coll_id;
+ u64 val;
+ int ret;
+
+ BUG_ON(esz > sizeof(val));
+ ret = kvm_read_guest_lock(kvm, gpa, &val, esz);
+ if (ret)
+ return ret;
+ val = le64_to_cpu(val);
+ if (!(val & KVM_ITS_CTE_VALID_MASK))
+ return 0;
+
+ target_addr = (u32)(val >> KVM_ITS_CTE_RDBASE_SHIFT);
+ coll_id = val & KVM_ITS_CTE_ICID_MASK;
+
+ if (target_addr != COLLECTION_NOT_MAPPED &&
+ target_addr >= atomic_read(&kvm->online_vcpus))
+ return -EINVAL;
+
+ collection = find_collection(its, coll_id);
+ if (collection)
+ return -EEXIST;
+
+ if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
+ return -EINVAL;
+
+ ret = vgic_its_alloc_collection(its, &collection, coll_id);
+ if (ret)
+ return ret;
+ collection->target_addr = target_addr;
+ return 1;
+}
+
+/**
+ * vgic_its_save_collection_table - Save the collection table into
+ * guest RAM
+ */
+static int vgic_its_save_collection_table(struct vgic_its *its)
+{
+ const struct vgic_its_abi *abi = vgic_its_get_abi(its);
+ u64 baser = its->baser_coll_table;
+ gpa_t gpa = GITS_BASER_ADDR_48_to_52(baser);
+ struct its_collection *collection;
+ u64 val;
+ size_t max_size, filled = 0;
+ int ret, cte_esz = abi->cte_esz;
+
+ if (!(baser & GITS_BASER_VALID))
+ return 0;
+
+ max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
+
+ list_for_each_entry(collection, &its->collection_list, coll_list) {
+ ret = vgic_its_save_cte(its, collection, gpa, cte_esz);
+ if (ret)
+ return ret;
+ gpa += cte_esz;
+ filled += cte_esz;
+ }
+
+ if (filled == max_size)
+ return 0;
+
+ /*
+ * table is not fully filled, add a last dummy element
+ * with valid bit unset
+ */
+ val = 0;
+ BUG_ON(cte_esz > sizeof(val));
+ ret = vgic_write_guest_lock(its->dev->kvm, gpa, &val, cte_esz);
+ return ret;
+}
+
+/**
+ * vgic_its_restore_collection_table - reads the collection table
+ * in guest memory and restores the ITS internal state. Requires the
+ * BASER registers to be restored before.
+ */
+static int vgic_its_restore_collection_table(struct vgic_its *its)
+{
+ const struct vgic_its_abi *abi = vgic_its_get_abi(its);
+ u64 baser = its->baser_coll_table;
+ int cte_esz = abi->cte_esz;
+ size_t max_size, read = 0;
+ gpa_t gpa;
+ int ret;
+
+ if (!(baser & GITS_BASER_VALID))
+ return 0;
+
+ gpa = GITS_BASER_ADDR_48_to_52(baser);
+
+ max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
+
+ while (read < max_size) {
+ ret = vgic_its_restore_cte(its, gpa, cte_esz);
+ if (ret <= 0)
+ break;
+ gpa += cte_esz;
+ read += cte_esz;
+ }
+
+ if (ret > 0)
+ return 0;
+
+ if (ret < 0)
+ vgic_its_free_collection_list(its->dev->kvm, its);
+
+ return ret;
+}
+
+/**
+ * vgic_its_save_tables_v0 - Save the ITS tables into guest ARM
+ * according to v0 ABI
+ */
+static int vgic_its_save_tables_v0(struct vgic_its *its)
+{
+ int ret;
+
+ ret = vgic_its_save_device_tables(its);
+ if (ret)
+ return ret;
+
+ return vgic_its_save_collection_table(its);
+}
+
+/**
+ * vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM
+ * to internal data structs according to V0 ABI
+ *
+ */
+static int vgic_its_restore_tables_v0(struct vgic_its *its)
+{
+ int ret;
+
+ ret = vgic_its_restore_collection_table(its);
+ if (ret)
+ return ret;
+
+ ret = vgic_its_restore_device_tables(its);
+ if (ret)
+ vgic_its_free_collection_list(its->dev->kvm, its);
+ return ret;
+}
+
+static int vgic_its_commit_v0(struct vgic_its *its)
+{
+ const struct vgic_its_abi *abi;
+
+ abi = vgic_its_get_abi(its);
+ its->baser_coll_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
+ its->baser_device_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
+
+ its->baser_coll_table |= (GIC_ENCODE_SZ(abi->cte_esz, 5)
+ << GITS_BASER_ENTRY_SIZE_SHIFT);
+
+ its->baser_device_table |= (GIC_ENCODE_SZ(abi->dte_esz, 5)
+ << GITS_BASER_ENTRY_SIZE_SHIFT);
+ return 0;
+}
+
+static void vgic_its_reset(struct kvm *kvm, struct vgic_its *its)
+{
+ /* We need to keep the ABI specific field values */
+ its->baser_coll_table &= ~GITS_BASER_VALID;
+ its->baser_device_table &= ~GITS_BASER_VALID;
+ its->cbaser = 0;
+ its->creadr = 0;
+ its->cwriter = 0;
+ its->enabled = 0;
+ vgic_its_free_device_list(kvm, its);
+ vgic_its_free_collection_list(kvm, its);
+}
+
+static int vgic_its_has_attr(struct kvm_device *dev,
+ struct kvm_device_attr *attr)
+{
+ switch (attr->group) {
+ case KVM_DEV_ARM_VGIC_GRP_ADDR:
+ switch (attr->attr) {
+ case KVM_VGIC_ITS_ADDR_TYPE:
+ return 0;
+ }
+ break;
+ case KVM_DEV_ARM_VGIC_GRP_CTRL:
+ switch (attr->attr) {
+ case KVM_DEV_ARM_VGIC_CTRL_INIT:
+ return 0;
+ case KVM_DEV_ARM_ITS_CTRL_RESET:
+ return 0;
+ case KVM_DEV_ARM_ITS_SAVE_TABLES:
+ return 0;
+ case KVM_DEV_ARM_ITS_RESTORE_TABLES:
+ return 0;
+ }
+ break;
+ case KVM_DEV_ARM_VGIC_GRP_ITS_REGS:
+ return vgic_its_has_attr_regs(dev, attr);
+ }
+ return -ENXIO;
+}
+
+static int vgic_its_ctrl(struct kvm *kvm, struct vgic_its *its, u64 attr)
+{
+ const struct vgic_its_abi *abi = vgic_its_get_abi(its);
+ int ret = 0;
+
+ if (attr == KVM_DEV_ARM_VGIC_CTRL_INIT) /* Nothing to do */
+ return 0;
+
+ mutex_lock(&kvm->lock);
+
+ if (!lock_all_vcpus(kvm)) {
+ mutex_unlock(&kvm->lock);
+ return -EBUSY;
+ }
+
+ mutex_lock(&kvm->arch.config_lock);
+ mutex_lock(&its->its_lock);
+
+ switch (attr) {
+ case KVM_DEV_ARM_ITS_CTRL_RESET:
+ vgic_its_reset(kvm, its);
+ break;
+ case KVM_DEV_ARM_ITS_SAVE_TABLES:
+ ret = abi->save_tables(its);
+ break;
+ case KVM_DEV_ARM_ITS_RESTORE_TABLES:
+ ret = abi->restore_tables(its);
+ break;
+ }
+
+ mutex_unlock(&its->its_lock);
+ mutex_unlock(&kvm->arch.config_lock);
+ unlock_all_vcpus(kvm);
+ mutex_unlock(&kvm->lock);
+ return ret;
+}
+
+/*
+ * kvm_arch_allow_write_without_running_vcpu - allow writing guest memory
+ * without the running VCPU when dirty ring is enabled.
+ *
+ * The running VCPU is required to track dirty guest pages when dirty ring
+ * is enabled. Otherwise, the backup bitmap should be used to track the
+ * dirty guest pages. When vgic/its tables are being saved, the backup
+ * bitmap is used to track the dirty guest pages due to the missed running
+ * VCPU in the period.
+ */
+bool kvm_arch_allow_write_without_running_vcpu(struct kvm *kvm)
+{
+ struct vgic_dist *dist = &kvm->arch.vgic;
+
+ return dist->table_write_in_progress;
+}
+
+static int vgic_its_set_attr(struct kvm_device *dev,
+ struct kvm_device_attr *attr)
+{
+ struct vgic_its *its = dev->private;
+ int ret;
+
+ switch (attr->group) {
+ case KVM_DEV_ARM_VGIC_GRP_ADDR: {
+ u64 __user *uaddr = (u64 __user *)(long)attr->addr;
+ unsigned long type = (unsigned long)attr->attr;
+ u64 addr;
+
+ if (type != KVM_VGIC_ITS_ADDR_TYPE)
+ return -ENODEV;
+
+ if (copy_from_user(&addr, uaddr, sizeof(addr)))
+ return -EFAULT;
+
+ ret = vgic_check_iorange(dev->kvm, its->vgic_its_base,
+ addr, SZ_64K, KVM_VGIC_V3_ITS_SIZE);
+ if (ret)
+ return ret;
+
+ return vgic_register_its_iodev(dev->kvm, its, addr);
+ }
+ case KVM_DEV_ARM_VGIC_GRP_CTRL:
+ return vgic_its_ctrl(dev->kvm, its, attr->attr);
+ case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
+ u64 __user *uaddr = (u64 __user *)(long)attr->addr;
+ u64 reg;
+
+ if (get_user(reg, uaddr))
+ return -EFAULT;
+
+ return vgic_its_attr_regs_access(dev, attr, &reg, true);
+ }
+ }
+ return -ENXIO;
+}
+
+static int vgic_its_get_attr(struct kvm_device *dev,
+ struct kvm_device_attr *attr)
+{
+ switch (attr->group) {
+ case KVM_DEV_ARM_VGIC_GRP_ADDR: {
+ struct vgic_its *its = dev->private;
+ u64 addr = its->vgic_its_base;
+ u64 __user *uaddr = (u64 __user *)(long)attr->addr;
+ unsigned long type = (unsigned long)attr->attr;
+
+ if (type != KVM_VGIC_ITS_ADDR_TYPE)
+ return -ENODEV;
+
+ if (copy_to_user(uaddr, &addr, sizeof(addr)))
+ return -EFAULT;
+ break;
+ }
+ case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
+ u64 __user *uaddr = (u64 __user *)(long)attr->addr;
+ u64 reg;
+ int ret;
+
+ ret = vgic_its_attr_regs_access(dev, attr, &reg, false);
+ if (ret)
+ return ret;
+ return put_user(reg, uaddr);
+ }
+ default:
+ return -ENXIO;
+ }
+
+ return 0;
+}
+
+static struct kvm_device_ops kvm_arm_vgic_its_ops = {
+ .name = "kvm-arm-vgic-its",
+ .create = vgic_its_create,
+ .destroy = vgic_its_destroy,
+ .set_attr = vgic_its_set_attr,
+ .get_attr = vgic_its_get_attr,
+ .has_attr = vgic_its_has_attr,
+};
+
+int kvm_vgic_register_its_device(void)
+{
+ return kvm_register_device_ops(&kvm_arm_vgic_its_ops,
+ KVM_DEV_TYPE_ARM_VGIC_ITS);
+}
diff --git a/arch/arm64/kvm/vgic/vgic-kvm-device.c b/arch/arm64/kvm/vgic/vgic-kvm-device.c
new file mode 100644
index 0000000000..212b73a715
--- /dev/null
+++ b/arch/arm64/kvm/vgic/vgic-kvm-device.c
@@ -0,0 +1,672 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * VGIC: KVM DEVICE API
+ *
+ * Copyright (C) 2015 ARM Ltd.
+ * Author: Marc Zyngier <marc.zyngier@arm.com>
+ */
+#include <linux/kvm_host.h>
+#include <kvm/arm_vgic.h>
+#include <linux/uaccess.h>
+#include <asm/kvm_mmu.h>
+#include <asm/cputype.h>
+#include "vgic.h"
+
+/* common helpers */
+
+int vgic_check_iorange(struct kvm *kvm, phys_addr_t ioaddr,
+ phys_addr_t addr, phys_addr_t alignment,
+ phys_addr_t size)
+{
+ if (!IS_VGIC_ADDR_UNDEF(ioaddr))
+ return -EEXIST;
+
+ if (!IS_ALIGNED(addr, alignment) || !IS_ALIGNED(size, alignment))
+ return -EINVAL;
+
+ if (addr + size < addr)
+ return -EINVAL;
+
+ if (addr & ~kvm_phys_mask(kvm) || addr + size > kvm_phys_size(kvm))
+ return -E2BIG;
+
+ return 0;
+}
+
+static int vgic_check_type(struct kvm *kvm, int type_needed)
+{
+ if (kvm->arch.vgic.vgic_model != type_needed)
+ return -ENODEV;
+ else
+ return 0;
+}
+
+int kvm_set_legacy_vgic_v2_addr(struct kvm *kvm, struct kvm_arm_device_addr *dev_addr)
+{
+ struct vgic_dist *vgic = &kvm->arch.vgic;
+ int r;
+
+ mutex_lock(&kvm->arch.config_lock);
+ switch (FIELD_GET(KVM_ARM_DEVICE_TYPE_MASK, dev_addr->id)) {
+ case KVM_VGIC_V2_ADDR_TYPE_DIST:
+ r = vgic_check_type(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
+ if (!r)
+ r = vgic_check_iorange(kvm, vgic->vgic_dist_base, dev_addr->addr,
+ SZ_4K, KVM_VGIC_V2_DIST_SIZE);
+ if (!r)
+ vgic->vgic_dist_base = dev_addr->addr;
+ break;
+ case KVM_VGIC_V2_ADDR_TYPE_CPU:
+ r = vgic_check_type(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
+ if (!r)
+ r = vgic_check_iorange(kvm, vgic->vgic_cpu_base, dev_addr->addr,
+ SZ_4K, KVM_VGIC_V2_CPU_SIZE);
+ if (!r)
+ vgic->vgic_cpu_base = dev_addr->addr;
+ break;
+ default:
+ r = -ENODEV;
+ }
+
+ mutex_unlock(&kvm->arch.config_lock);
+
+ return r;
+}
+
+/**
+ * kvm_vgic_addr - set or get vgic VM base addresses
+ * @kvm: pointer to the vm struct
+ * @attr: pointer to the attribute being retrieved/updated
+ * @write: if true set the address in the VM address space, if false read the
+ * address
+ *
+ * Set or get the vgic base addresses for the distributor and the virtual CPU
+ * interface in the VM physical address space. These addresses are properties
+ * of the emulated core/SoC and therefore user space initially knows this
+ * information.
+ * Check them for sanity (alignment, double assignment). We can't check for
+ * overlapping regions in case of a virtual GICv3 here, since we don't know
+ * the number of VCPUs yet, so we defer this check to map_resources().
+ */
+static int kvm_vgic_addr(struct kvm *kvm, struct kvm_device_attr *attr, bool write)
+{
+ u64 __user *uaddr = (u64 __user *)attr->addr;
+ struct vgic_dist *vgic = &kvm->arch.vgic;
+ phys_addr_t *addr_ptr, alignment, size;
+ u64 undef_value = VGIC_ADDR_UNDEF;
+ u64 addr;
+ int r;
+
+ /* Reading a redistributor region addr implies getting the index */
+ if (write || attr->attr == KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION)
+ if (get_user(addr, uaddr))
+ return -EFAULT;
+
+ /*
+ * Since we can't hold config_lock while registering the redistributor
+ * iodevs, take the slots_lock immediately.
+ */
+ mutex_lock(&kvm->slots_lock);
+ switch (attr->attr) {
+ case KVM_VGIC_V2_ADDR_TYPE_DIST:
+ r = vgic_check_type(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
+ addr_ptr = &vgic->vgic_dist_base;
+ alignment = SZ_4K;
+ size = KVM_VGIC_V2_DIST_SIZE;
+ break;
+ case KVM_VGIC_V2_ADDR_TYPE_CPU:
+ r = vgic_check_type(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
+ addr_ptr = &vgic->vgic_cpu_base;
+ alignment = SZ_4K;
+ size = KVM_VGIC_V2_CPU_SIZE;
+ break;
+ case KVM_VGIC_V3_ADDR_TYPE_DIST:
+ r = vgic_check_type(kvm, KVM_DEV_TYPE_ARM_VGIC_V3);
+ addr_ptr = &vgic->vgic_dist_base;
+ alignment = SZ_64K;
+ size = KVM_VGIC_V3_DIST_SIZE;
+ break;
+ case KVM_VGIC_V3_ADDR_TYPE_REDIST: {
+ struct vgic_redist_region *rdreg;
+
+ r = vgic_check_type(kvm, KVM_DEV_TYPE_ARM_VGIC_V3);
+ if (r)
+ break;
+ if (write) {
+ r = vgic_v3_set_redist_base(kvm, 0, addr, 0);
+ goto out;
+ }
+ rdreg = list_first_entry_or_null(&vgic->rd_regions,
+ struct vgic_redist_region, list);
+ if (!rdreg)
+ addr_ptr = &undef_value;
+ else
+ addr_ptr = &rdreg->base;
+ break;
+ }
+ case KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION:
+ {
+ struct vgic_redist_region *rdreg;
+ u8 index;
+
+ r = vgic_check_type(kvm, KVM_DEV_TYPE_ARM_VGIC_V3);
+ if (r)
+ break;
+
+ index = addr & KVM_VGIC_V3_RDIST_INDEX_MASK;
+
+ if (write) {
+ gpa_t base = addr & KVM_VGIC_V3_RDIST_BASE_MASK;
+ u32 count = FIELD_GET(KVM_VGIC_V3_RDIST_COUNT_MASK, addr);
+ u8 flags = FIELD_GET(KVM_VGIC_V3_RDIST_FLAGS_MASK, addr);
+
+ if (!count || flags)
+ r = -EINVAL;
+ else
+ r = vgic_v3_set_redist_base(kvm, index,
+ base, count);
+ goto out;
+ }
+
+ rdreg = vgic_v3_rdist_region_from_index(kvm, index);
+ if (!rdreg) {
+ r = -ENOENT;
+ goto out;
+ }
+
+ addr = index;
+ addr |= rdreg->base;
+ addr |= (u64)rdreg->count << KVM_VGIC_V3_RDIST_COUNT_SHIFT;
+ goto out;
+ }
+ default:
+ r = -ENODEV;
+ }
+
+ if (r)
+ goto out;
+
+ mutex_lock(&kvm->arch.config_lock);
+ if (write) {
+ r = vgic_check_iorange(kvm, *addr_ptr, addr, alignment, size);
+ if (!r)
+ *addr_ptr = addr;
+ } else {
+ addr = *addr_ptr;
+ }
+ mutex_unlock(&kvm->arch.config_lock);
+
+out:
+ mutex_unlock(&kvm->slots_lock);
+
+ if (!r && !write)
+ r = put_user(addr, uaddr);
+
+ return r;
+}
+
+static int vgic_set_common_attr(struct kvm_device *dev,
+ struct kvm_device_attr *attr)
+{
+ int r;
+
+ switch (attr->group) {
+ case KVM_DEV_ARM_VGIC_GRP_ADDR:
+ r = kvm_vgic_addr(dev->kvm, attr, true);
+ return (r == -ENODEV) ? -ENXIO : r;
+ case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
+ u32 __user *uaddr = (u32 __user *)(long)attr->addr;
+ u32 val;
+ int ret = 0;
+
+ if (get_user(val, uaddr))
+ return -EFAULT;
+
+ /*
+ * We require:
+ * - at least 32 SPIs on top of the 16 SGIs and 16 PPIs
+ * - at most 1024 interrupts
+ * - a multiple of 32 interrupts
+ */
+ if (val < (VGIC_NR_PRIVATE_IRQS + 32) ||
+ val > VGIC_MAX_RESERVED ||
+ (val & 31))
+ return -EINVAL;
+
+ mutex_lock(&dev->kvm->arch.config_lock);
+
+ if (vgic_ready(dev->kvm) || dev->kvm->arch.vgic.nr_spis)
+ ret = -EBUSY;
+ else
+ dev->kvm->arch.vgic.nr_spis =
+ val - VGIC_NR_PRIVATE_IRQS;
+
+ mutex_unlock(&dev->kvm->arch.config_lock);
+
+ return ret;
+ }
+ case KVM_DEV_ARM_VGIC_GRP_CTRL: {
+ switch (attr->attr) {
+ case KVM_DEV_ARM_VGIC_CTRL_INIT:
+ mutex_lock(&dev->kvm->arch.config_lock);
+ r = vgic_init(dev->kvm);
+ mutex_unlock(&dev->kvm->arch.config_lock);
+ return r;
+ case KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES:
+ /*
+ * OK, this one isn't common at all, but we
+ * want to handle all control group attributes
+ * in a single place.
+ */
+ if (vgic_check_type(dev->kvm, KVM_DEV_TYPE_ARM_VGIC_V3))
+ return -ENXIO;
+ mutex_lock(&dev->kvm->lock);
+
+ if (!lock_all_vcpus(dev->kvm)) {
+ mutex_unlock(&dev->kvm->lock);
+ return -EBUSY;
+ }
+
+ mutex_lock(&dev->kvm->arch.config_lock);
+ r = vgic_v3_save_pending_tables(dev->kvm);
+ mutex_unlock(&dev->kvm->arch.config_lock);
+ unlock_all_vcpus(dev->kvm);
+ mutex_unlock(&dev->kvm->lock);
+ return r;
+ }
+ break;
+ }
+ }
+
+ return -ENXIO;
+}
+
+static int vgic_get_common_attr(struct kvm_device *dev,
+ struct kvm_device_attr *attr)
+{
+ int r = -ENXIO;
+
+ switch (attr->group) {
+ case KVM_DEV_ARM_VGIC_GRP_ADDR:
+ r = kvm_vgic_addr(dev->kvm, attr, false);
+ return (r == -ENODEV) ? -ENXIO : r;
+ case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
+ u32 __user *uaddr = (u32 __user *)(long)attr->addr;
+
+ r = put_user(dev->kvm->arch.vgic.nr_spis +
+ VGIC_NR_PRIVATE_IRQS, uaddr);
+ break;
+ }
+ }
+
+ return r;
+}
+
+static int vgic_create(struct kvm_device *dev, u32 type)
+{
+ return kvm_vgic_create(dev->kvm, type);
+}
+
+static void vgic_destroy(struct kvm_device *dev)
+{
+ kfree(dev);
+}
+
+int kvm_register_vgic_device(unsigned long type)
+{
+ int ret = -ENODEV;
+
+ switch (type) {
+ case KVM_DEV_TYPE_ARM_VGIC_V2:
+ ret = kvm_register_device_ops(&kvm_arm_vgic_v2_ops,
+ KVM_DEV_TYPE_ARM_VGIC_V2);
+ break;
+ case KVM_DEV_TYPE_ARM_VGIC_V3:
+ ret = kvm_register_device_ops(&kvm_arm_vgic_v3_ops,
+ KVM_DEV_TYPE_ARM_VGIC_V3);
+
+ if (ret)
+ break;
+ ret = kvm_vgic_register_its_device();
+ break;
+ }
+
+ return ret;
+}
+
+int vgic_v2_parse_attr(struct kvm_device *dev, struct kvm_device_attr *attr,
+ struct vgic_reg_attr *reg_attr)
+{
+ int cpuid;
+
+ cpuid = (attr->attr & KVM_DEV_ARM_VGIC_CPUID_MASK) >>
+ KVM_DEV_ARM_VGIC_CPUID_SHIFT;
+
+ if (cpuid >= atomic_read(&dev->kvm->online_vcpus))
+ return -EINVAL;
+
+ reg_attr->vcpu = kvm_get_vcpu(dev->kvm, cpuid);
+ reg_attr->addr = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
+
+ return 0;
+}
+
+/**
+ * vgic_v2_attr_regs_access - allows user space to access VGIC v2 state
+ *
+ * @dev: kvm device handle
+ * @attr: kvm device attribute
+ * @is_write: true if userspace is writing a register
+ */
+static int vgic_v2_attr_regs_access(struct kvm_device *dev,
+ struct kvm_device_attr *attr,
+ bool is_write)
+{
+ u32 __user *uaddr = (u32 __user *)(unsigned long)attr->addr;
+ struct vgic_reg_attr reg_attr;
+ gpa_t addr;
+ struct kvm_vcpu *vcpu;
+ int ret;
+ u32 val;
+
+ ret = vgic_v2_parse_attr(dev, attr, &reg_attr);
+ if (ret)
+ return ret;
+
+ vcpu = reg_attr.vcpu;
+ addr = reg_attr.addr;
+
+ if (is_write)
+ if (get_user(val, uaddr))
+ return -EFAULT;
+
+ mutex_lock(&dev->kvm->lock);
+
+ if (!lock_all_vcpus(dev->kvm)) {
+ mutex_unlock(&dev->kvm->lock);
+ return -EBUSY;
+ }
+
+ mutex_lock(&dev->kvm->arch.config_lock);
+
+ ret = vgic_init(dev->kvm);
+ if (ret)
+ goto out;
+
+ switch (attr->group) {
+ case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
+ ret = vgic_v2_cpuif_uaccess(vcpu, is_write, addr, &val);
+ break;
+ case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
+ ret = vgic_v2_dist_uaccess(vcpu, is_write, addr, &val);
+ break;
+ default:
+ ret = -EINVAL;
+ break;
+ }
+
+out:
+ mutex_unlock(&dev->kvm->arch.config_lock);
+ unlock_all_vcpus(dev->kvm);
+ mutex_unlock(&dev->kvm->lock);
+
+ if (!ret && !is_write)
+ ret = put_user(val, uaddr);
+
+ return ret;
+}
+
+static int vgic_v2_set_attr(struct kvm_device *dev,
+ struct kvm_device_attr *attr)
+{
+ switch (attr->group) {
+ case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
+ case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
+ return vgic_v2_attr_regs_access(dev, attr, true);
+ default:
+ return vgic_set_common_attr(dev, attr);
+ }
+}
+
+static int vgic_v2_get_attr(struct kvm_device *dev,
+ struct kvm_device_attr *attr)
+{
+ switch (attr->group) {
+ case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
+ case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
+ return vgic_v2_attr_regs_access(dev, attr, false);
+ default:
+ return vgic_get_common_attr(dev, attr);
+ }
+}
+
+static int vgic_v2_has_attr(struct kvm_device *dev,
+ struct kvm_device_attr *attr)
+{
+ switch (attr->group) {
+ case KVM_DEV_ARM_VGIC_GRP_ADDR:
+ switch (attr->attr) {
+ case KVM_VGIC_V2_ADDR_TYPE_DIST:
+ case KVM_VGIC_V2_ADDR_TYPE_CPU:
+ return 0;
+ }
+ break;
+ case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
+ case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
+ return vgic_v2_has_attr_regs(dev, attr);
+ case KVM_DEV_ARM_VGIC_GRP_NR_IRQS:
+ return 0;
+ case KVM_DEV_ARM_VGIC_GRP_CTRL:
+ switch (attr->attr) {
+ case KVM_DEV_ARM_VGIC_CTRL_INIT:
+ return 0;
+ }
+ }
+ return -ENXIO;
+}
+
+struct kvm_device_ops kvm_arm_vgic_v2_ops = {
+ .name = "kvm-arm-vgic-v2",
+ .create = vgic_create,
+ .destroy = vgic_destroy,
+ .set_attr = vgic_v2_set_attr,
+ .get_attr = vgic_v2_get_attr,
+ .has_attr = vgic_v2_has_attr,
+};
+
+int vgic_v3_parse_attr(struct kvm_device *dev, struct kvm_device_attr *attr,
+ struct vgic_reg_attr *reg_attr)
+{
+ unsigned long vgic_mpidr, mpidr_reg;
+
+ /*
+ * For KVM_DEV_ARM_VGIC_GRP_DIST_REGS group,
+ * attr might not hold MPIDR. Hence assume vcpu0.
+ */
+ if (attr->group != KVM_DEV_ARM_VGIC_GRP_DIST_REGS) {
+ vgic_mpidr = (attr->attr & KVM_DEV_ARM_VGIC_V3_MPIDR_MASK) >>
+ KVM_DEV_ARM_VGIC_V3_MPIDR_SHIFT;
+
+ mpidr_reg = VGIC_TO_MPIDR(vgic_mpidr);
+ reg_attr->vcpu = kvm_mpidr_to_vcpu(dev->kvm, mpidr_reg);
+ } else {
+ reg_attr->vcpu = kvm_get_vcpu(dev->kvm, 0);
+ }
+
+ if (!reg_attr->vcpu)
+ return -EINVAL;
+
+ reg_attr->addr = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
+
+ return 0;
+}
+
+/*
+ * vgic_v3_attr_regs_access - allows user space to access VGIC v3 state
+ *
+ * @dev: kvm device handle
+ * @attr: kvm device attribute
+ * @is_write: true if userspace is writing a register
+ */
+static int vgic_v3_attr_regs_access(struct kvm_device *dev,
+ struct kvm_device_attr *attr,
+ bool is_write)
+{
+ struct vgic_reg_attr reg_attr;
+ gpa_t addr;
+ struct kvm_vcpu *vcpu;
+ bool uaccess;
+ u32 val;
+ int ret;
+
+ ret = vgic_v3_parse_attr(dev, attr, &reg_attr);
+ if (ret)
+ return ret;
+
+ vcpu = reg_attr.vcpu;
+ addr = reg_attr.addr;
+
+ switch (attr->group) {
+ case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS:
+ /* Sysregs uaccess is performed by the sysreg handling code */
+ uaccess = false;
+ break;
+ default:
+ uaccess = true;
+ }
+
+ if (uaccess && is_write) {
+ u32 __user *uaddr = (u32 __user *)(unsigned long)attr->addr;
+ if (get_user(val, uaddr))
+ return -EFAULT;
+ }
+
+ mutex_lock(&dev->kvm->lock);
+
+ if (!lock_all_vcpus(dev->kvm)) {
+ mutex_unlock(&dev->kvm->lock);
+ return -EBUSY;
+ }
+
+ mutex_lock(&dev->kvm->arch.config_lock);
+
+ if (unlikely(!vgic_initialized(dev->kvm))) {
+ ret = -EBUSY;
+ goto out;
+ }
+
+ switch (attr->group) {
+ case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
+ ret = vgic_v3_dist_uaccess(vcpu, is_write, addr, &val);
+ break;
+ case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:
+ ret = vgic_v3_redist_uaccess(vcpu, is_write, addr, &val);
+ break;
+ case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS:
+ ret = vgic_v3_cpu_sysregs_uaccess(vcpu, attr, is_write);
+ break;
+ case KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO: {
+ unsigned int info, intid;
+
+ info = (attr->attr & KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_MASK) >>
+ KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_SHIFT;
+ if (info == VGIC_LEVEL_INFO_LINE_LEVEL) {
+ intid = attr->attr &
+ KVM_DEV_ARM_VGIC_LINE_LEVEL_INTID_MASK;
+ ret = vgic_v3_line_level_info_uaccess(vcpu, is_write,
+ intid, &val);
+ } else {
+ ret = -EINVAL;
+ }
+ break;
+ }
+ default:
+ ret = -EINVAL;
+ break;
+ }
+
+out:
+ mutex_unlock(&dev->kvm->arch.config_lock);
+ unlock_all_vcpus(dev->kvm);
+ mutex_unlock(&dev->kvm->lock);
+
+ if (!ret && uaccess && !is_write) {
+ u32 __user *uaddr = (u32 __user *)(unsigned long)attr->addr;
+ ret = put_user(val, uaddr);
+ }
+
+ return ret;
+}
+
+static int vgic_v3_set_attr(struct kvm_device *dev,
+ struct kvm_device_attr *attr)
+{
+ switch (attr->group) {
+ case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
+ case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:
+ case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS:
+ case KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO:
+ return vgic_v3_attr_regs_access(dev, attr, true);
+ default:
+ return vgic_set_common_attr(dev, attr);
+ }
+}
+
+static int vgic_v3_get_attr(struct kvm_device *dev,
+ struct kvm_device_attr *attr)
+{
+ switch (attr->group) {
+ case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
+ case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:
+ case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS:
+ case KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO:
+ return vgic_v3_attr_regs_access(dev, attr, false);
+ default:
+ return vgic_get_common_attr(dev, attr);
+ }
+}
+
+static int vgic_v3_has_attr(struct kvm_device *dev,
+ struct kvm_device_attr *attr)
+{
+ switch (attr->group) {
+ case KVM_DEV_ARM_VGIC_GRP_ADDR:
+ switch (attr->attr) {
+ case KVM_VGIC_V3_ADDR_TYPE_DIST:
+ case KVM_VGIC_V3_ADDR_TYPE_REDIST:
+ case KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION:
+ return 0;
+ }
+ break;
+ case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
+ case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:
+ case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS:
+ return vgic_v3_has_attr_regs(dev, attr);
+ case KVM_DEV_ARM_VGIC_GRP_NR_IRQS:
+ return 0;
+ case KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO: {
+ if (((attr->attr & KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_MASK) >>
+ KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_SHIFT) ==
+ VGIC_LEVEL_INFO_LINE_LEVEL)
+ return 0;
+ break;
+ }
+ case KVM_DEV_ARM_VGIC_GRP_CTRL:
+ switch (attr->attr) {
+ case KVM_DEV_ARM_VGIC_CTRL_INIT:
+ return 0;
+ case KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES:
+ return 0;
+ }
+ }
+ return -ENXIO;
+}
+
+struct kvm_device_ops kvm_arm_vgic_v3_ops = {
+ .name = "kvm-arm-vgic-v3",
+ .create = vgic_create,
+ .destroy = vgic_destroy,
+ .set_attr = vgic_v3_set_attr,
+ .get_attr = vgic_v3_get_attr,
+ .has_attr = vgic_v3_has_attr,
+};
diff --git a/arch/arm64/kvm/vgic/vgic-mmio-v2.c b/arch/arm64/kvm/vgic/vgic-mmio-v2.c
new file mode 100644
index 0000000000..e070cda86e
--- /dev/null
+++ b/arch/arm64/kvm/vgic/vgic-mmio-v2.c
@@ -0,0 +1,561 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * VGICv2 MMIO handling functions
+ */
+
+#include <linux/irqchip/arm-gic.h>
+#include <linux/kvm.h>
+#include <linux/kvm_host.h>
+#include <linux/nospec.h>
+
+#include <kvm/iodev.h>
+#include <kvm/arm_vgic.h>
+
+#include "vgic.h"
+#include "vgic-mmio.h"
+
+/*
+ * The Revision field in the IIDR have the following meanings:
+ *
+ * Revision 1: Report GICv2 interrupts as group 0 instead of group 1
+ * Revision 2: Interrupt groups are guest-configurable and signaled using
+ * their configured groups.
+ */
+
+static unsigned long vgic_mmio_read_v2_misc(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len)
+{
+ struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
+ u32 value;
+
+ switch (addr & 0x0c) {
+ case GIC_DIST_CTRL:
+ value = vgic->enabled ? GICD_ENABLE : 0;
+ break;
+ case GIC_DIST_CTR:
+ value = vgic->nr_spis + VGIC_NR_PRIVATE_IRQS;
+ value = (value >> 5) - 1;
+ value |= (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5;
+ break;
+ case GIC_DIST_IIDR:
+ value = (PRODUCT_ID_KVM << GICD_IIDR_PRODUCT_ID_SHIFT) |
+ (vgic->implementation_rev << GICD_IIDR_REVISION_SHIFT) |
+ (IMPLEMENTER_ARM << GICD_IIDR_IMPLEMENTER_SHIFT);
+ break;
+ default:
+ return 0;
+ }
+
+ return value;
+}
+
+static void vgic_mmio_write_v2_misc(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
+ bool was_enabled = dist->enabled;
+
+ switch (addr & 0x0c) {
+ case GIC_DIST_CTRL:
+ dist->enabled = val & GICD_ENABLE;
+ if (!was_enabled && dist->enabled)
+ vgic_kick_vcpus(vcpu->kvm);
+ break;
+ case GIC_DIST_CTR:
+ case GIC_DIST_IIDR:
+ /* Nothing to do */
+ return;
+ }
+}
+
+static int vgic_mmio_uaccess_write_v2_misc(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
+ u32 reg;
+
+ switch (addr & 0x0c) {
+ case GIC_DIST_IIDR:
+ reg = vgic_mmio_read_v2_misc(vcpu, addr, len);
+ if ((reg ^ val) & ~GICD_IIDR_REVISION_MASK)
+ return -EINVAL;
+
+ /*
+ * If we observe a write to GICD_IIDR we know that userspace
+ * has been updated and has had a chance to cope with older
+ * kernels (VGICv2 IIDR.Revision == 0) incorrectly reporting
+ * interrupts as group 1, and therefore we now allow groups to
+ * be user writable. Doing this by default would break
+ * migration from old kernels to new kernels with legacy
+ * userspace.
+ */
+ reg = FIELD_GET(GICD_IIDR_REVISION_MASK, reg);
+ switch (reg) {
+ case KVM_VGIC_IMP_REV_2:
+ case KVM_VGIC_IMP_REV_3:
+ vcpu->kvm->arch.vgic.v2_groups_user_writable = true;
+ dist->implementation_rev = reg;
+ return 0;
+ default:
+ return -EINVAL;
+ }
+ }
+
+ vgic_mmio_write_v2_misc(vcpu, addr, len, val);
+ return 0;
+}
+
+static int vgic_mmio_uaccess_write_v2_group(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ if (vcpu->kvm->arch.vgic.v2_groups_user_writable)
+ vgic_mmio_write_group(vcpu, addr, len, val);
+
+ return 0;
+}
+
+static void vgic_mmio_write_sgir(struct kvm_vcpu *source_vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ int nr_vcpus = atomic_read(&source_vcpu->kvm->online_vcpus);
+ int intid = val & 0xf;
+ int targets = (val >> 16) & 0xff;
+ int mode = (val >> 24) & 0x03;
+ struct kvm_vcpu *vcpu;
+ unsigned long flags, c;
+
+ switch (mode) {
+ case 0x0: /* as specified by targets */
+ break;
+ case 0x1:
+ targets = (1U << nr_vcpus) - 1; /* all, ... */
+ targets &= ~(1U << source_vcpu->vcpu_id); /* but self */
+ break;
+ case 0x2: /* this very vCPU only */
+ targets = (1U << source_vcpu->vcpu_id);
+ break;
+ case 0x3: /* reserved */
+ return;
+ }
+
+ kvm_for_each_vcpu(c, vcpu, source_vcpu->kvm) {
+ struct vgic_irq *irq;
+
+ if (!(targets & (1U << c)))
+ continue;
+
+ irq = vgic_get_irq(source_vcpu->kvm, vcpu, intid);
+
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+ irq->pending_latch = true;
+ irq->source |= 1U << source_vcpu->vcpu_id;
+
+ vgic_queue_irq_unlock(source_vcpu->kvm, irq, flags);
+ vgic_put_irq(source_vcpu->kvm, irq);
+ }
+}
+
+static unsigned long vgic_mmio_read_target(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len)
+{
+ u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
+ int i;
+ u64 val = 0;
+
+ for (i = 0; i < len; i++) {
+ struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
+
+ val |= (u64)irq->targets << (i * 8);
+
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+
+ return val;
+}
+
+static void vgic_mmio_write_target(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
+ u8 cpu_mask = GENMASK(atomic_read(&vcpu->kvm->online_vcpus) - 1, 0);
+ int i;
+ unsigned long flags;
+
+ /* GICD_ITARGETSR[0-7] are read-only */
+ if (intid < VGIC_NR_PRIVATE_IRQS)
+ return;
+
+ for (i = 0; i < len; i++) {
+ struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid + i);
+ int target;
+
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+
+ irq->targets = (val >> (i * 8)) & cpu_mask;
+ target = irq->targets ? __ffs(irq->targets) : 0;
+ irq->target_vcpu = kvm_get_vcpu(vcpu->kvm, target);
+
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+}
+
+static unsigned long vgic_mmio_read_sgipend(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len)
+{
+ u32 intid = addr & 0x0f;
+ int i;
+ u64 val = 0;
+
+ for (i = 0; i < len; i++) {
+ struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
+
+ val |= (u64)irq->source << (i * 8);
+
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+ return val;
+}
+
+static void vgic_mmio_write_sgipendc(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ u32 intid = addr & 0x0f;
+ int i;
+ unsigned long flags;
+
+ for (i = 0; i < len; i++) {
+ struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
+
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+
+ irq->source &= ~((val >> (i * 8)) & 0xff);
+ if (!irq->source)
+ irq->pending_latch = false;
+
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+}
+
+static void vgic_mmio_write_sgipends(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ u32 intid = addr & 0x0f;
+ int i;
+ unsigned long flags;
+
+ for (i = 0; i < len; i++) {
+ struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
+
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+
+ irq->source |= (val >> (i * 8)) & 0xff;
+
+ if (irq->source) {
+ irq->pending_latch = true;
+ vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
+ } else {
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+ }
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+}
+
+#define GICC_ARCH_VERSION_V2 0x2
+
+/* These are for userland accesses only, there is no guest-facing emulation. */
+static unsigned long vgic_mmio_read_vcpuif(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len)
+{
+ struct vgic_vmcr vmcr;
+ u32 val;
+
+ vgic_get_vmcr(vcpu, &vmcr);
+
+ switch (addr & 0xff) {
+ case GIC_CPU_CTRL:
+ val = vmcr.grpen0 << GIC_CPU_CTRL_EnableGrp0_SHIFT;
+ val |= vmcr.grpen1 << GIC_CPU_CTRL_EnableGrp1_SHIFT;
+ val |= vmcr.ackctl << GIC_CPU_CTRL_AckCtl_SHIFT;
+ val |= vmcr.fiqen << GIC_CPU_CTRL_FIQEn_SHIFT;
+ val |= vmcr.cbpr << GIC_CPU_CTRL_CBPR_SHIFT;
+ val |= vmcr.eoim << GIC_CPU_CTRL_EOImodeNS_SHIFT;
+
+ break;
+ case GIC_CPU_PRIMASK:
+ /*
+ * Our KVM_DEV_TYPE_ARM_VGIC_V2 device ABI exports the
+ * PMR field as GICH_VMCR.VMPriMask rather than
+ * GICC_PMR.Priority, so we expose the upper five bits of
+ * priority mask to userspace using the lower bits in the
+ * unsigned long.
+ */
+ val = (vmcr.pmr & GICV_PMR_PRIORITY_MASK) >>
+ GICV_PMR_PRIORITY_SHIFT;
+ break;
+ case GIC_CPU_BINPOINT:
+ val = vmcr.bpr;
+ break;
+ case GIC_CPU_ALIAS_BINPOINT:
+ val = vmcr.abpr;
+ break;
+ case GIC_CPU_IDENT:
+ val = ((PRODUCT_ID_KVM << 20) |
+ (GICC_ARCH_VERSION_V2 << 16) |
+ IMPLEMENTER_ARM);
+ break;
+ default:
+ return 0;
+ }
+
+ return val;
+}
+
+static void vgic_mmio_write_vcpuif(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ struct vgic_vmcr vmcr;
+
+ vgic_get_vmcr(vcpu, &vmcr);
+
+ switch (addr & 0xff) {
+ case GIC_CPU_CTRL:
+ vmcr.grpen0 = !!(val & GIC_CPU_CTRL_EnableGrp0);
+ vmcr.grpen1 = !!(val & GIC_CPU_CTRL_EnableGrp1);
+ vmcr.ackctl = !!(val & GIC_CPU_CTRL_AckCtl);
+ vmcr.fiqen = !!(val & GIC_CPU_CTRL_FIQEn);
+ vmcr.cbpr = !!(val & GIC_CPU_CTRL_CBPR);
+ vmcr.eoim = !!(val & GIC_CPU_CTRL_EOImodeNS);
+
+ break;
+ case GIC_CPU_PRIMASK:
+ /*
+ * Our KVM_DEV_TYPE_ARM_VGIC_V2 device ABI exports the
+ * PMR field as GICH_VMCR.VMPriMask rather than
+ * GICC_PMR.Priority, so we expose the upper five bits of
+ * priority mask to userspace using the lower bits in the
+ * unsigned long.
+ */
+ vmcr.pmr = (val << GICV_PMR_PRIORITY_SHIFT) &
+ GICV_PMR_PRIORITY_MASK;
+ break;
+ case GIC_CPU_BINPOINT:
+ vmcr.bpr = val;
+ break;
+ case GIC_CPU_ALIAS_BINPOINT:
+ vmcr.abpr = val;
+ break;
+ }
+
+ vgic_set_vmcr(vcpu, &vmcr);
+}
+
+static unsigned long vgic_mmio_read_apr(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len)
+{
+ int n; /* which APRn is this */
+
+ n = (addr >> 2) & 0x3;
+
+ if (kvm_vgic_global_state.type == VGIC_V2) {
+ /* GICv2 hardware systems support max. 32 groups */
+ if (n != 0)
+ return 0;
+ return vcpu->arch.vgic_cpu.vgic_v2.vgic_apr;
+ } else {
+ struct vgic_v3_cpu_if *vgicv3 = &vcpu->arch.vgic_cpu.vgic_v3;
+
+ if (n > vgic_v3_max_apr_idx(vcpu))
+ return 0;
+
+ n = array_index_nospec(n, 4);
+
+ /* GICv3 only uses ICH_AP1Rn for memory mapped (GICv2) guests */
+ return vgicv3->vgic_ap1r[n];
+ }
+}
+
+static void vgic_mmio_write_apr(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ int n; /* which APRn is this */
+
+ n = (addr >> 2) & 0x3;
+
+ if (kvm_vgic_global_state.type == VGIC_V2) {
+ /* GICv2 hardware systems support max. 32 groups */
+ if (n != 0)
+ return;
+ vcpu->arch.vgic_cpu.vgic_v2.vgic_apr = val;
+ } else {
+ struct vgic_v3_cpu_if *vgicv3 = &vcpu->arch.vgic_cpu.vgic_v3;
+
+ if (n > vgic_v3_max_apr_idx(vcpu))
+ return;
+
+ n = array_index_nospec(n, 4);
+
+ /* GICv3 only uses ICH_AP1Rn for memory mapped (GICv2) guests */
+ vgicv3->vgic_ap1r[n] = val;
+ }
+}
+
+static const struct vgic_register_region vgic_v2_dist_registers[] = {
+ REGISTER_DESC_WITH_LENGTH_UACCESS(GIC_DIST_CTRL,
+ vgic_mmio_read_v2_misc, vgic_mmio_write_v2_misc,
+ NULL, vgic_mmio_uaccess_write_v2_misc,
+ 12, VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_IGROUP,
+ vgic_mmio_read_group, vgic_mmio_write_group,
+ NULL, vgic_mmio_uaccess_write_v2_group, 1,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ENABLE_SET,
+ vgic_mmio_read_enable, vgic_mmio_write_senable,
+ NULL, vgic_uaccess_write_senable, 1,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ENABLE_CLEAR,
+ vgic_mmio_read_enable, vgic_mmio_write_cenable,
+ NULL, vgic_uaccess_write_cenable, 1,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_PENDING_SET,
+ vgic_mmio_read_pending, vgic_mmio_write_spending,
+ vgic_uaccess_read_pending, vgic_uaccess_write_spending, 1,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_PENDING_CLEAR,
+ vgic_mmio_read_pending, vgic_mmio_write_cpending,
+ vgic_uaccess_read_pending, vgic_uaccess_write_cpending, 1,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ACTIVE_SET,
+ vgic_mmio_read_active, vgic_mmio_write_sactive,
+ vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 1,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ACTIVE_CLEAR,
+ vgic_mmio_read_active, vgic_mmio_write_cactive,
+ vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive, 1,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_PRI,
+ vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL,
+ 8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
+ REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_TARGET,
+ vgic_mmio_read_target, vgic_mmio_write_target, NULL, NULL, 8,
+ VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
+ REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_CONFIG,
+ vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_LENGTH(GIC_DIST_SOFTINT,
+ vgic_mmio_read_raz, vgic_mmio_write_sgir, 4,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_LENGTH(GIC_DIST_SGI_PENDING_CLEAR,
+ vgic_mmio_read_sgipend, vgic_mmio_write_sgipendc, 16,
+ VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
+ REGISTER_DESC_WITH_LENGTH(GIC_DIST_SGI_PENDING_SET,
+ vgic_mmio_read_sgipend, vgic_mmio_write_sgipends, 16,
+ VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
+};
+
+static const struct vgic_register_region vgic_v2_cpu_registers[] = {
+ REGISTER_DESC_WITH_LENGTH(GIC_CPU_CTRL,
+ vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_LENGTH(GIC_CPU_PRIMASK,
+ vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_LENGTH(GIC_CPU_BINPOINT,
+ vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_LENGTH(GIC_CPU_ALIAS_BINPOINT,
+ vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_LENGTH(GIC_CPU_ACTIVEPRIO,
+ vgic_mmio_read_apr, vgic_mmio_write_apr, 16,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_LENGTH(GIC_CPU_IDENT,
+ vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4,
+ VGIC_ACCESS_32bit),
+};
+
+unsigned int vgic_v2_init_dist_iodev(struct vgic_io_device *dev)
+{
+ dev->regions = vgic_v2_dist_registers;
+ dev->nr_regions = ARRAY_SIZE(vgic_v2_dist_registers);
+
+ kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
+
+ return SZ_4K;
+}
+
+int vgic_v2_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)
+{
+ const struct vgic_register_region *region;
+ struct vgic_io_device iodev;
+ struct vgic_reg_attr reg_attr;
+ struct kvm_vcpu *vcpu;
+ gpa_t addr;
+ int ret;
+
+ ret = vgic_v2_parse_attr(dev, attr, &reg_attr);
+ if (ret)
+ return ret;
+
+ vcpu = reg_attr.vcpu;
+ addr = reg_attr.addr;
+
+ switch (attr->group) {
+ case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
+ iodev.regions = vgic_v2_dist_registers;
+ iodev.nr_regions = ARRAY_SIZE(vgic_v2_dist_registers);
+ iodev.base_addr = 0;
+ break;
+ case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
+ iodev.regions = vgic_v2_cpu_registers;
+ iodev.nr_regions = ARRAY_SIZE(vgic_v2_cpu_registers);
+ iodev.base_addr = 0;
+ break;
+ default:
+ return -ENXIO;
+ }
+
+ /* We only support aligned 32-bit accesses. */
+ if (addr & 3)
+ return -ENXIO;
+
+ region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32));
+ if (!region)
+ return -ENXIO;
+
+ return 0;
+}
+
+int vgic_v2_cpuif_uaccess(struct kvm_vcpu *vcpu, bool is_write,
+ int offset, u32 *val)
+{
+ struct vgic_io_device dev = {
+ .regions = vgic_v2_cpu_registers,
+ .nr_regions = ARRAY_SIZE(vgic_v2_cpu_registers),
+ .iodev_type = IODEV_CPUIF,
+ };
+
+ return vgic_uaccess(vcpu, &dev, is_write, offset, val);
+}
+
+int vgic_v2_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
+ int offset, u32 *val)
+{
+ struct vgic_io_device dev = {
+ .regions = vgic_v2_dist_registers,
+ .nr_regions = ARRAY_SIZE(vgic_v2_dist_registers),
+ .iodev_type = IODEV_DIST,
+ };
+
+ return vgic_uaccess(vcpu, &dev, is_write, offset, val);
+}
diff --git a/arch/arm64/kvm/vgic/vgic-mmio-v3.c b/arch/arm64/kvm/vgic/vgic-mmio-v3.c
new file mode 100644
index 0000000000..ae5a3a7176
--- /dev/null
+++ b/arch/arm64/kvm/vgic/vgic-mmio-v3.c
@@ -0,0 +1,1186 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * VGICv3 MMIO handling functions
+ */
+
+#include <linux/bitfield.h>
+#include <linux/irqchip/arm-gic-v3.h>
+#include <linux/kvm.h>
+#include <linux/kvm_host.h>
+#include <linux/interrupt.h>
+#include <kvm/iodev.h>
+#include <kvm/arm_vgic.h>
+
+#include <asm/kvm_emulate.h>
+#include <asm/kvm_arm.h>
+#include <asm/kvm_mmu.h>
+
+#include "vgic.h"
+#include "vgic-mmio.h"
+
+/* extract @num bytes at @offset bytes offset in data */
+unsigned long extract_bytes(u64 data, unsigned int offset,
+ unsigned int num)
+{
+ return (data >> (offset * 8)) & GENMASK_ULL(num * 8 - 1, 0);
+}
+
+/* allows updates of any half of a 64-bit register (or the whole thing) */
+u64 update_64bit_reg(u64 reg, unsigned int offset, unsigned int len,
+ unsigned long val)
+{
+ int lower = (offset & 4) * 8;
+ int upper = lower + 8 * len - 1;
+
+ reg &= ~GENMASK_ULL(upper, lower);
+ val &= GENMASK_ULL(len * 8 - 1, 0);
+
+ return reg | ((u64)val << lower);
+}
+
+bool vgic_has_its(struct kvm *kvm)
+{
+ struct vgic_dist *dist = &kvm->arch.vgic;
+
+ if (dist->vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3)
+ return false;
+
+ return dist->has_its;
+}
+
+bool vgic_supports_direct_msis(struct kvm *kvm)
+{
+ return (kvm_vgic_global_state.has_gicv4_1 ||
+ (kvm_vgic_global_state.has_gicv4 && vgic_has_its(kvm)));
+}
+
+/*
+ * The Revision field in the IIDR have the following meanings:
+ *
+ * Revision 2: Interrupt groups are guest-configurable and signaled using
+ * their configured groups.
+ */
+
+static unsigned long vgic_mmio_read_v3_misc(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len)
+{
+ struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
+ u32 value = 0;
+
+ switch (addr & 0x0c) {
+ case GICD_CTLR:
+ if (vgic->enabled)
+ value |= GICD_CTLR_ENABLE_SS_G1;
+ value |= GICD_CTLR_ARE_NS | GICD_CTLR_DS;
+ if (vgic->nassgireq)
+ value |= GICD_CTLR_nASSGIreq;
+ break;
+ case GICD_TYPER:
+ value = vgic->nr_spis + VGIC_NR_PRIVATE_IRQS;
+ value = (value >> 5) - 1;
+ if (vgic_has_its(vcpu->kvm)) {
+ value |= (INTERRUPT_ID_BITS_ITS - 1) << 19;
+ value |= GICD_TYPER_LPIS;
+ } else {
+ value |= (INTERRUPT_ID_BITS_SPIS - 1) << 19;
+ }
+ break;
+ case GICD_TYPER2:
+ if (kvm_vgic_global_state.has_gicv4_1 && gic_cpuif_has_vsgi())
+ value = GICD_TYPER2_nASSGIcap;
+ break;
+ case GICD_IIDR:
+ value = (PRODUCT_ID_KVM << GICD_IIDR_PRODUCT_ID_SHIFT) |
+ (vgic->implementation_rev << GICD_IIDR_REVISION_SHIFT) |
+ (IMPLEMENTER_ARM << GICD_IIDR_IMPLEMENTER_SHIFT);
+ break;
+ default:
+ return 0;
+ }
+
+ return value;
+}
+
+static void vgic_mmio_write_v3_misc(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
+
+ switch (addr & 0x0c) {
+ case GICD_CTLR: {
+ bool was_enabled, is_hwsgi;
+
+ mutex_lock(&vcpu->kvm->arch.config_lock);
+
+ was_enabled = dist->enabled;
+ is_hwsgi = dist->nassgireq;
+
+ dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
+
+ /* Not a GICv4.1? No HW SGIs */
+ if (!kvm_vgic_global_state.has_gicv4_1 || !gic_cpuif_has_vsgi())
+ val &= ~GICD_CTLR_nASSGIreq;
+
+ /* Dist stays enabled? nASSGIreq is RO */
+ if (was_enabled && dist->enabled) {
+ val &= ~GICD_CTLR_nASSGIreq;
+ val |= FIELD_PREP(GICD_CTLR_nASSGIreq, is_hwsgi);
+ }
+
+ /* Switching HW SGIs? */
+ dist->nassgireq = val & GICD_CTLR_nASSGIreq;
+ if (is_hwsgi != dist->nassgireq)
+ vgic_v4_configure_vsgis(vcpu->kvm);
+
+ if (kvm_vgic_global_state.has_gicv4_1 &&
+ was_enabled != dist->enabled)
+ kvm_make_all_cpus_request(vcpu->kvm, KVM_REQ_RELOAD_GICv4);
+ else if (!was_enabled && dist->enabled)
+ vgic_kick_vcpus(vcpu->kvm);
+
+ mutex_unlock(&vcpu->kvm->arch.config_lock);
+ break;
+ }
+ case GICD_TYPER:
+ case GICD_TYPER2:
+ case GICD_IIDR:
+ /* This is at best for documentation purposes... */
+ return;
+ }
+}
+
+static int vgic_mmio_uaccess_write_v3_misc(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
+ u32 reg;
+
+ switch (addr & 0x0c) {
+ case GICD_TYPER2:
+ if (val != vgic_mmio_read_v3_misc(vcpu, addr, len))
+ return -EINVAL;
+ return 0;
+ case GICD_IIDR:
+ reg = vgic_mmio_read_v3_misc(vcpu, addr, len);
+ if ((reg ^ val) & ~GICD_IIDR_REVISION_MASK)
+ return -EINVAL;
+
+ reg = FIELD_GET(GICD_IIDR_REVISION_MASK, reg);
+ switch (reg) {
+ case KVM_VGIC_IMP_REV_2:
+ case KVM_VGIC_IMP_REV_3:
+ dist->implementation_rev = reg;
+ return 0;
+ default:
+ return -EINVAL;
+ }
+ case GICD_CTLR:
+ /* Not a GICv4.1? No HW SGIs */
+ if (!kvm_vgic_global_state.has_gicv4_1)
+ val &= ~GICD_CTLR_nASSGIreq;
+
+ dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
+ dist->nassgireq = val & GICD_CTLR_nASSGIreq;
+ return 0;
+ }
+
+ vgic_mmio_write_v3_misc(vcpu, addr, len, val);
+ return 0;
+}
+
+static unsigned long vgic_mmio_read_irouter(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len)
+{
+ int intid = VGIC_ADDR_TO_INTID(addr, 64);
+ struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid);
+ unsigned long ret = 0;
+
+ if (!irq)
+ return 0;
+
+ /* The upper word is RAZ for us. */
+ if (!(addr & 4))
+ ret = extract_bytes(READ_ONCE(irq->mpidr), addr & 7, len);
+
+ vgic_put_irq(vcpu->kvm, irq);
+ return ret;
+}
+
+static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ int intid = VGIC_ADDR_TO_INTID(addr, 64);
+ struct vgic_irq *irq;
+ unsigned long flags;
+
+ /* The upper word is WI for us since we don't implement Aff3. */
+ if (addr & 4)
+ return;
+
+ irq = vgic_get_irq(vcpu->kvm, NULL, intid);
+
+ if (!irq)
+ return;
+
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+
+ /* We only care about and preserve Aff0, Aff1 and Aff2. */
+ irq->mpidr = val & GENMASK(23, 0);
+ irq->target_vcpu = kvm_mpidr_to_vcpu(vcpu->kvm, irq->mpidr);
+
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+ vgic_put_irq(vcpu->kvm, irq);
+}
+
+bool vgic_lpis_enabled(struct kvm_vcpu *vcpu)
+{
+ struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
+
+ return atomic_read(&vgic_cpu->ctlr) == GICR_CTLR_ENABLE_LPIS;
+}
+
+static unsigned long vgic_mmio_read_v3r_ctlr(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len)
+{
+ struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
+ unsigned long val;
+
+ val = atomic_read(&vgic_cpu->ctlr);
+ if (vgic_get_implementation_rev(vcpu) >= KVM_VGIC_IMP_REV_3)
+ val |= GICR_CTLR_IR | GICR_CTLR_CES;
+
+ return val;
+}
+
+static void vgic_mmio_write_v3r_ctlr(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
+ u32 ctlr;
+
+ if (!vgic_has_its(vcpu->kvm))
+ return;
+
+ if (!(val & GICR_CTLR_ENABLE_LPIS)) {
+ /*
+ * Don't disable if RWP is set, as there already an
+ * ongoing disable. Funky guest...
+ */
+ ctlr = atomic_cmpxchg_acquire(&vgic_cpu->ctlr,
+ GICR_CTLR_ENABLE_LPIS,
+ GICR_CTLR_RWP);
+ if (ctlr != GICR_CTLR_ENABLE_LPIS)
+ return;
+
+ vgic_flush_pending_lpis(vcpu);
+ vgic_its_invalidate_cache(vcpu->kvm);
+ atomic_set_release(&vgic_cpu->ctlr, 0);
+ } else {
+ ctlr = atomic_cmpxchg_acquire(&vgic_cpu->ctlr, 0,
+ GICR_CTLR_ENABLE_LPIS);
+ if (ctlr != 0)
+ return;
+
+ vgic_enable_lpis(vcpu);
+ }
+}
+
+static bool vgic_mmio_vcpu_rdist_is_last(struct kvm_vcpu *vcpu)
+{
+ struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
+ struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
+ struct vgic_redist_region *iter, *rdreg = vgic_cpu->rdreg;
+
+ if (!rdreg)
+ return false;
+
+ if (vgic_cpu->rdreg_index < rdreg->free_index - 1) {
+ return false;
+ } else if (rdreg->count && vgic_cpu->rdreg_index == (rdreg->count - 1)) {
+ struct list_head *rd_regions = &vgic->rd_regions;
+ gpa_t end = rdreg->base + rdreg->count * KVM_VGIC_V3_REDIST_SIZE;
+
+ /*
+ * the rdist is the last one of the redist region,
+ * check whether there is no other contiguous rdist region
+ */
+ list_for_each_entry(iter, rd_regions, list) {
+ if (iter->base == end && iter->free_index > 0)
+ return false;
+ }
+ }
+ return true;
+}
+
+static unsigned long vgic_mmio_read_v3r_typer(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len)
+{
+ unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
+ int target_vcpu_id = vcpu->vcpu_id;
+ u64 value;
+
+ value = (u64)(mpidr & GENMASK(23, 0)) << 32;
+ value |= ((target_vcpu_id & 0xffff) << 8);
+
+ if (vgic_has_its(vcpu->kvm))
+ value |= GICR_TYPER_PLPIS;
+
+ if (vgic_mmio_vcpu_rdist_is_last(vcpu))
+ value |= GICR_TYPER_LAST;
+
+ return extract_bytes(value, addr & 7, len);
+}
+
+static unsigned long vgic_mmio_read_v3r_iidr(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len)
+{
+ return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
+}
+
+static unsigned long vgic_mmio_read_v3_idregs(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len)
+{
+ switch (addr & 0xffff) {
+ case GICD_PIDR2:
+ /* report a GICv3 compliant implementation */
+ return 0x3b;
+ }
+
+ return 0;
+}
+
+static int vgic_v3_uaccess_write_pending(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
+ int i;
+ unsigned long flags;
+
+ for (i = 0; i < len * 8; i++) {
+ struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
+
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+
+ /*
+ * pending_latch is set irrespective of irq type
+ * (level or edge) to avoid dependency that VM should
+ * restore irq config before pending info.
+ */
+ irq->pending_latch = test_bit(i, &val);
+
+ if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
+ irq_set_irqchip_state(irq->host_irq,
+ IRQCHIP_STATE_PENDING,
+ irq->pending_latch);
+ irq->pending_latch = false;
+ }
+
+ if (irq->pending_latch)
+ vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
+ else
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+
+ return 0;
+}
+
+/* We want to avoid outer shareable. */
+u64 vgic_sanitise_shareability(u64 field)
+{
+ switch (field) {
+ case GIC_BASER_OuterShareable:
+ return GIC_BASER_InnerShareable;
+ default:
+ return field;
+ }
+}
+
+/* Avoid any inner non-cacheable mapping. */
+u64 vgic_sanitise_inner_cacheability(u64 field)
+{
+ switch (field) {
+ case GIC_BASER_CACHE_nCnB:
+ case GIC_BASER_CACHE_nC:
+ return GIC_BASER_CACHE_RaWb;
+ default:
+ return field;
+ }
+}
+
+/* Non-cacheable or same-as-inner are OK. */
+u64 vgic_sanitise_outer_cacheability(u64 field)
+{
+ switch (field) {
+ case GIC_BASER_CACHE_SameAsInner:
+ case GIC_BASER_CACHE_nC:
+ return field;
+ default:
+ return GIC_BASER_CACHE_SameAsInner;
+ }
+}
+
+u64 vgic_sanitise_field(u64 reg, u64 field_mask, int field_shift,
+ u64 (*sanitise_fn)(u64))
+{
+ u64 field = (reg & field_mask) >> field_shift;
+
+ field = sanitise_fn(field) << field_shift;
+ return (reg & ~field_mask) | field;
+}
+
+#define PROPBASER_RES0_MASK \
+ (GENMASK_ULL(63, 59) | GENMASK_ULL(55, 52) | GENMASK_ULL(6, 5))
+#define PENDBASER_RES0_MASK \
+ (BIT_ULL(63) | GENMASK_ULL(61, 59) | GENMASK_ULL(55, 52) | \
+ GENMASK_ULL(15, 12) | GENMASK_ULL(6, 0))
+
+static u64 vgic_sanitise_pendbaser(u64 reg)
+{
+ reg = vgic_sanitise_field(reg, GICR_PENDBASER_SHAREABILITY_MASK,
+ GICR_PENDBASER_SHAREABILITY_SHIFT,
+ vgic_sanitise_shareability);
+ reg = vgic_sanitise_field(reg, GICR_PENDBASER_INNER_CACHEABILITY_MASK,
+ GICR_PENDBASER_INNER_CACHEABILITY_SHIFT,
+ vgic_sanitise_inner_cacheability);
+ reg = vgic_sanitise_field(reg, GICR_PENDBASER_OUTER_CACHEABILITY_MASK,
+ GICR_PENDBASER_OUTER_CACHEABILITY_SHIFT,
+ vgic_sanitise_outer_cacheability);
+
+ reg &= ~PENDBASER_RES0_MASK;
+
+ return reg;
+}
+
+static u64 vgic_sanitise_propbaser(u64 reg)
+{
+ reg = vgic_sanitise_field(reg, GICR_PROPBASER_SHAREABILITY_MASK,
+ GICR_PROPBASER_SHAREABILITY_SHIFT,
+ vgic_sanitise_shareability);
+ reg = vgic_sanitise_field(reg, GICR_PROPBASER_INNER_CACHEABILITY_MASK,
+ GICR_PROPBASER_INNER_CACHEABILITY_SHIFT,
+ vgic_sanitise_inner_cacheability);
+ reg = vgic_sanitise_field(reg, GICR_PROPBASER_OUTER_CACHEABILITY_MASK,
+ GICR_PROPBASER_OUTER_CACHEABILITY_SHIFT,
+ vgic_sanitise_outer_cacheability);
+
+ reg &= ~PROPBASER_RES0_MASK;
+ return reg;
+}
+
+static unsigned long vgic_mmio_read_propbase(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len)
+{
+ struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
+
+ return extract_bytes(dist->propbaser, addr & 7, len);
+}
+
+static void vgic_mmio_write_propbase(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
+ u64 old_propbaser, propbaser;
+
+ /* Storing a value with LPIs already enabled is undefined */
+ if (vgic_lpis_enabled(vcpu))
+ return;
+
+ do {
+ old_propbaser = READ_ONCE(dist->propbaser);
+ propbaser = old_propbaser;
+ propbaser = update_64bit_reg(propbaser, addr & 4, len, val);
+ propbaser = vgic_sanitise_propbaser(propbaser);
+ } while (cmpxchg64(&dist->propbaser, old_propbaser,
+ propbaser) != old_propbaser);
+}
+
+static unsigned long vgic_mmio_read_pendbase(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len)
+{
+ struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
+ u64 value = vgic_cpu->pendbaser;
+
+ value &= ~GICR_PENDBASER_PTZ;
+
+ return extract_bytes(value, addr & 7, len);
+}
+
+static void vgic_mmio_write_pendbase(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
+ u64 old_pendbaser, pendbaser;
+
+ /* Storing a value with LPIs already enabled is undefined */
+ if (vgic_lpis_enabled(vcpu))
+ return;
+
+ do {
+ old_pendbaser = READ_ONCE(vgic_cpu->pendbaser);
+ pendbaser = old_pendbaser;
+ pendbaser = update_64bit_reg(pendbaser, addr & 4, len, val);
+ pendbaser = vgic_sanitise_pendbaser(pendbaser);
+ } while (cmpxchg64(&vgic_cpu->pendbaser, old_pendbaser,
+ pendbaser) != old_pendbaser);
+}
+
+static unsigned long vgic_mmio_read_sync(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len)
+{
+ return !!atomic_read(&vcpu->arch.vgic_cpu.syncr_busy);
+}
+
+static void vgic_set_rdist_busy(struct kvm_vcpu *vcpu, bool busy)
+{
+ if (busy) {
+ atomic_inc(&vcpu->arch.vgic_cpu.syncr_busy);
+ smp_mb__after_atomic();
+ } else {
+ smp_mb__before_atomic();
+ atomic_dec(&vcpu->arch.vgic_cpu.syncr_busy);
+ }
+}
+
+static void vgic_mmio_write_invlpi(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ struct vgic_irq *irq;
+
+ /*
+ * If the guest wrote only to the upper 32bit part of the
+ * register, drop the write on the floor, as it is only for
+ * vPEs (which we don't support for obvious reasons).
+ *
+ * Also discard the access if LPIs are not enabled.
+ */
+ if ((addr & 4) || !vgic_lpis_enabled(vcpu))
+ return;
+
+ vgic_set_rdist_busy(vcpu, true);
+
+ irq = vgic_get_irq(vcpu->kvm, NULL, lower_32_bits(val));
+ if (irq) {
+ vgic_its_inv_lpi(vcpu->kvm, irq);
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+
+ vgic_set_rdist_busy(vcpu, false);
+}
+
+static void vgic_mmio_write_invall(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ /* See vgic_mmio_write_invlpi() for the early return rationale */
+ if ((addr & 4) || !vgic_lpis_enabled(vcpu))
+ return;
+
+ vgic_set_rdist_busy(vcpu, true);
+ vgic_its_invall(vcpu);
+ vgic_set_rdist_busy(vcpu, false);
+}
+
+/*
+ * The GICv3 per-IRQ registers are split to control PPIs and SGIs in the
+ * redistributors, while SPIs are covered by registers in the distributor
+ * block. Trying to set private IRQs in this block gets ignored.
+ * We take some special care here to fix the calculation of the register
+ * offset.
+ */
+#define REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(off, rd, wr, ur, uw, bpi, acc) \
+ { \
+ .reg_offset = off, \
+ .bits_per_irq = bpi, \
+ .len = (bpi * VGIC_NR_PRIVATE_IRQS) / 8, \
+ .access_flags = acc, \
+ .read = vgic_mmio_read_raz, \
+ .write = vgic_mmio_write_wi, \
+ }, { \
+ .reg_offset = off + (bpi * VGIC_NR_PRIVATE_IRQS) / 8, \
+ .bits_per_irq = bpi, \
+ .len = (bpi * (1024 - VGIC_NR_PRIVATE_IRQS)) / 8, \
+ .access_flags = acc, \
+ .read = rd, \
+ .write = wr, \
+ .uaccess_read = ur, \
+ .uaccess_write = uw, \
+ }
+
+static const struct vgic_register_region vgic_v3_dist_registers[] = {
+ REGISTER_DESC_WITH_LENGTH_UACCESS(GICD_CTLR,
+ vgic_mmio_read_v3_misc, vgic_mmio_write_v3_misc,
+ NULL, vgic_mmio_uaccess_write_v3_misc,
+ 16, VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_LENGTH(GICD_STATUSR,
+ vgic_mmio_read_rao, vgic_mmio_write_wi, 4,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGROUPR,
+ vgic_mmio_read_group, vgic_mmio_write_group, NULL, NULL, 1,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISENABLER,
+ vgic_mmio_read_enable, vgic_mmio_write_senable,
+ NULL, vgic_uaccess_write_senable, 1,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICENABLER,
+ vgic_mmio_read_enable, vgic_mmio_write_cenable,
+ NULL, vgic_uaccess_write_cenable, 1,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISPENDR,
+ vgic_mmio_read_pending, vgic_mmio_write_spending,
+ vgic_uaccess_read_pending, vgic_v3_uaccess_write_pending, 1,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICPENDR,
+ vgic_mmio_read_pending, vgic_mmio_write_cpending,
+ vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 1,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISACTIVER,
+ vgic_mmio_read_active, vgic_mmio_write_sactive,
+ vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 1,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICACTIVER,
+ vgic_mmio_read_active, vgic_mmio_write_cactive,
+ vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive,
+ 1, VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IPRIORITYR,
+ vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL,
+ 8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
+ REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ITARGETSR,
+ vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 8,
+ VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
+ REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICFGR,
+ vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGRPMODR,
+ vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 1,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IROUTER,
+ vgic_mmio_read_irouter, vgic_mmio_write_irouter, NULL, NULL, 64,
+ VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_LENGTH(GICD_IDREGS,
+ vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
+ VGIC_ACCESS_32bit),
+};
+
+static const struct vgic_register_region vgic_v3_rd_registers[] = {
+ /* RD_base registers */
+ REGISTER_DESC_WITH_LENGTH(GICR_CTLR,
+ vgic_mmio_read_v3r_ctlr, vgic_mmio_write_v3r_ctlr, 4,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_LENGTH(GICR_STATUSR,
+ vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_LENGTH(GICR_IIDR,
+ vgic_mmio_read_v3r_iidr, vgic_mmio_write_wi, 4,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_TYPER,
+ vgic_mmio_read_v3r_typer, vgic_mmio_write_wi,
+ NULL, vgic_mmio_uaccess_write_wi, 8,
+ VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_LENGTH(GICR_WAKER,
+ vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_LENGTH(GICR_PROPBASER,
+ vgic_mmio_read_propbase, vgic_mmio_write_propbase, 8,
+ VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_LENGTH(GICR_PENDBASER,
+ vgic_mmio_read_pendbase, vgic_mmio_write_pendbase, 8,
+ VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_LENGTH(GICR_INVLPIR,
+ vgic_mmio_read_raz, vgic_mmio_write_invlpi, 8,
+ VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_LENGTH(GICR_INVALLR,
+ vgic_mmio_read_raz, vgic_mmio_write_invall, 8,
+ VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_LENGTH(GICR_SYNCR,
+ vgic_mmio_read_sync, vgic_mmio_write_wi, 4,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_LENGTH(GICR_IDREGS,
+ vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
+ VGIC_ACCESS_32bit),
+ /* SGI_base registers */
+ REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGROUPR0,
+ vgic_mmio_read_group, vgic_mmio_write_group, 4,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISENABLER0,
+ vgic_mmio_read_enable, vgic_mmio_write_senable,
+ NULL, vgic_uaccess_write_senable, 4,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICENABLER0,
+ vgic_mmio_read_enable, vgic_mmio_write_cenable,
+ NULL, vgic_uaccess_write_cenable, 4,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISPENDR0,
+ vgic_mmio_read_pending, vgic_mmio_write_spending,
+ vgic_uaccess_read_pending, vgic_v3_uaccess_write_pending, 4,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICPENDR0,
+ vgic_mmio_read_pending, vgic_mmio_write_cpending,
+ vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 4,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISACTIVER0,
+ vgic_mmio_read_active, vgic_mmio_write_sactive,
+ vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 4,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICACTIVER0,
+ vgic_mmio_read_active, vgic_mmio_write_cactive,
+ vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive, 4,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IPRIORITYR0,
+ vgic_mmio_read_priority, vgic_mmio_write_priority, 32,
+ VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
+ REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_ICFGR0,
+ vgic_mmio_read_config, vgic_mmio_write_config, 8,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGRPMODR0,
+ vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
+ VGIC_ACCESS_32bit),
+ REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_NSACR,
+ vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
+ VGIC_ACCESS_32bit),
+};
+
+unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev)
+{
+ dev->regions = vgic_v3_dist_registers;
+ dev->nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
+
+ kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
+
+ return SZ_64K;
+}
+
+/**
+ * vgic_register_redist_iodev - register a single redist iodev
+ * @vcpu: The VCPU to which the redistributor belongs
+ *
+ * Register a KVM iodev for this VCPU's redistributor using the address
+ * provided.
+ *
+ * Return 0 on success, -ERRNO otherwise.
+ */
+int vgic_register_redist_iodev(struct kvm_vcpu *vcpu)
+{
+ struct kvm *kvm = vcpu->kvm;
+ struct vgic_dist *vgic = &kvm->arch.vgic;
+ struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
+ struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
+ struct vgic_redist_region *rdreg;
+ gpa_t rd_base;
+ int ret = 0;
+
+ lockdep_assert_held(&kvm->slots_lock);
+ mutex_lock(&kvm->arch.config_lock);
+
+ if (!IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr))
+ goto out_unlock;
+
+ /*
+ * We may be creating VCPUs before having set the base address for the
+ * redistributor region, in which case we will come back to this
+ * function for all VCPUs when the base address is set. Just return
+ * without doing any work for now.
+ */
+ rdreg = vgic_v3_rdist_free_slot(&vgic->rd_regions);
+ if (!rdreg)
+ goto out_unlock;
+
+ if (!vgic_v3_check_base(kvm)) {
+ ret = -EINVAL;
+ goto out_unlock;
+ }
+
+ vgic_cpu->rdreg = rdreg;
+ vgic_cpu->rdreg_index = rdreg->free_index;
+
+ rd_base = rdreg->base + rdreg->free_index * KVM_VGIC_V3_REDIST_SIZE;
+
+ kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops);
+ rd_dev->base_addr = rd_base;
+ rd_dev->iodev_type = IODEV_REDIST;
+ rd_dev->regions = vgic_v3_rd_registers;
+ rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rd_registers);
+ rd_dev->redist_vcpu = vcpu;
+
+ mutex_unlock(&kvm->arch.config_lock);
+
+ ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, rd_base,
+ 2 * SZ_64K, &rd_dev->dev);
+ if (ret)
+ return ret;
+
+ /* Protected by slots_lock */
+ rdreg->free_index++;
+ return 0;
+
+out_unlock:
+ mutex_unlock(&kvm->arch.config_lock);
+ return ret;
+}
+
+void vgic_unregister_redist_iodev(struct kvm_vcpu *vcpu)
+{
+ struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
+
+ kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &rd_dev->dev);
+}
+
+static int vgic_register_all_redist_iodevs(struct kvm *kvm)
+{
+ struct kvm_vcpu *vcpu;
+ unsigned long c;
+ int ret = 0;
+
+ kvm_for_each_vcpu(c, vcpu, kvm) {
+ ret = vgic_register_redist_iodev(vcpu);
+ if (ret)
+ break;
+ }
+
+ if (ret) {
+ /* The current c failed, so iterate over the previous ones. */
+ int i;
+
+ for (i = 0; i < c; i++) {
+ vcpu = kvm_get_vcpu(kvm, i);
+ vgic_unregister_redist_iodev(vcpu);
+ }
+ }
+
+ return ret;
+}
+
+/**
+ * vgic_v3_alloc_redist_region - Allocate a new redistributor region
+ *
+ * Performs various checks before inserting the rdist region in the list.
+ * Those tests depend on whether the size of the rdist region is known
+ * (ie. count != 0). The list is sorted by rdist region index.
+ *
+ * @kvm: kvm handle
+ * @index: redist region index
+ * @base: base of the new rdist region
+ * @count: number of redistributors the region is made of (0 in the old style
+ * single region, whose size is induced from the number of vcpus)
+ *
+ * Return 0 on success, < 0 otherwise
+ */
+static int vgic_v3_alloc_redist_region(struct kvm *kvm, uint32_t index,
+ gpa_t base, uint32_t count)
+{
+ struct vgic_dist *d = &kvm->arch.vgic;
+ struct vgic_redist_region *rdreg;
+ struct list_head *rd_regions = &d->rd_regions;
+ int nr_vcpus = atomic_read(&kvm->online_vcpus);
+ size_t size = count ? count * KVM_VGIC_V3_REDIST_SIZE
+ : nr_vcpus * KVM_VGIC_V3_REDIST_SIZE;
+ int ret;
+
+ /* cross the end of memory ? */
+ if (base + size < base)
+ return -EINVAL;
+
+ if (list_empty(rd_regions)) {
+ if (index != 0)
+ return -EINVAL;
+ } else {
+ rdreg = list_last_entry(rd_regions,
+ struct vgic_redist_region, list);
+
+ /* Don't mix single region and discrete redist regions */
+ if (!count && rdreg->count)
+ return -EINVAL;
+
+ if (!count)
+ return -EEXIST;
+
+ if (index != rdreg->index + 1)
+ return -EINVAL;
+ }
+
+ /*
+ * For legacy single-region redistributor regions (!count),
+ * check that the redistributor region does not overlap with the
+ * distributor's address space.
+ */
+ if (!count && !IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
+ vgic_dist_overlap(kvm, base, size))
+ return -EINVAL;
+
+ /* collision with any other rdist region? */
+ if (vgic_v3_rdist_overlap(kvm, base, size))
+ return -EINVAL;
+
+ rdreg = kzalloc(sizeof(*rdreg), GFP_KERNEL_ACCOUNT);
+ if (!rdreg)
+ return -ENOMEM;
+
+ rdreg->base = VGIC_ADDR_UNDEF;
+
+ ret = vgic_check_iorange(kvm, rdreg->base, base, SZ_64K, size);
+ if (ret)
+ goto free;
+
+ rdreg->base = base;
+ rdreg->count = count;
+ rdreg->free_index = 0;
+ rdreg->index = index;
+
+ list_add_tail(&rdreg->list, rd_regions);
+ return 0;
+free:
+ kfree(rdreg);
+ return ret;
+}
+
+void vgic_v3_free_redist_region(struct vgic_redist_region *rdreg)
+{
+ list_del(&rdreg->list);
+ kfree(rdreg);
+}
+
+int vgic_v3_set_redist_base(struct kvm *kvm, u32 index, u64 addr, u32 count)
+{
+ int ret;
+
+ mutex_lock(&kvm->arch.config_lock);
+ ret = vgic_v3_alloc_redist_region(kvm, index, addr, count);
+ mutex_unlock(&kvm->arch.config_lock);
+ if (ret)
+ return ret;
+
+ /*
+ * Register iodevs for each existing VCPU. Adding more VCPUs
+ * afterwards will register the iodevs when needed.
+ */
+ ret = vgic_register_all_redist_iodevs(kvm);
+ if (ret) {
+ struct vgic_redist_region *rdreg;
+
+ mutex_lock(&kvm->arch.config_lock);
+ rdreg = vgic_v3_rdist_region_from_index(kvm, index);
+ vgic_v3_free_redist_region(rdreg);
+ mutex_unlock(&kvm->arch.config_lock);
+ return ret;
+ }
+
+ return 0;
+}
+
+int vgic_v3_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)
+{
+ const struct vgic_register_region *region;
+ struct vgic_io_device iodev;
+ struct vgic_reg_attr reg_attr;
+ struct kvm_vcpu *vcpu;
+ gpa_t addr;
+ int ret;
+
+ ret = vgic_v3_parse_attr(dev, attr, &reg_attr);
+ if (ret)
+ return ret;
+
+ vcpu = reg_attr.vcpu;
+ addr = reg_attr.addr;
+
+ switch (attr->group) {
+ case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
+ iodev.regions = vgic_v3_dist_registers;
+ iodev.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
+ iodev.base_addr = 0;
+ break;
+ case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:{
+ iodev.regions = vgic_v3_rd_registers;
+ iodev.nr_regions = ARRAY_SIZE(vgic_v3_rd_registers);
+ iodev.base_addr = 0;
+ break;
+ }
+ case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS:
+ return vgic_v3_has_cpu_sysregs_attr(vcpu, attr);
+ default:
+ return -ENXIO;
+ }
+
+ /* We only support aligned 32-bit accesses. */
+ if (addr & 3)
+ return -ENXIO;
+
+ region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32));
+ if (!region)
+ return -ENXIO;
+
+ return 0;
+}
+/*
+ * Compare a given affinity (level 1-3 and a level 0 mask, from the SGI
+ * generation register ICC_SGI1R_EL1) with a given VCPU.
+ * If the VCPU's MPIDR matches, return the level0 affinity, otherwise
+ * return -1.
+ */
+static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu)
+{
+ unsigned long affinity;
+ int level0;
+
+ /*
+ * Split the current VCPU's MPIDR into affinity level 0 and the
+ * rest as this is what we have to compare against.
+ */
+ affinity = kvm_vcpu_get_mpidr_aff(vcpu);
+ level0 = MPIDR_AFFINITY_LEVEL(affinity, 0);
+ affinity &= ~MPIDR_LEVEL_MASK;
+
+ /* bail out if the upper three levels don't match */
+ if (sgi_aff != affinity)
+ return -1;
+
+ /* Is this VCPU's bit set in the mask ? */
+ if (!(sgi_cpu_mask & BIT(level0)))
+ return -1;
+
+ return level0;
+}
+
+/*
+ * The ICC_SGI* registers encode the affinity differently from the MPIDR,
+ * so provide a wrapper to use the existing defines to isolate a certain
+ * affinity level.
+ */
+#define SGI_AFFINITY_LEVEL(reg, level) \
+ ((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \
+ >> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level))
+
+/**
+ * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs
+ * @vcpu: The VCPU requesting a SGI
+ * @reg: The value written into ICC_{ASGI1,SGI0,SGI1}R by that VCPU
+ * @allow_group1: Does the sysreg access allow generation of G1 SGIs
+ *
+ * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register.
+ * This will trap in sys_regs.c and call this function.
+ * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the
+ * target processors as well as a bitmask of 16 Aff0 CPUs.
+ * If the interrupt routing mode bit is not set, we iterate over all VCPUs to
+ * check for matching ones. If this bit is set, we signal all, but not the
+ * calling VCPU.
+ */
+void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg, bool allow_group1)
+{
+ struct kvm *kvm = vcpu->kvm;
+ struct kvm_vcpu *c_vcpu;
+ u16 target_cpus;
+ u64 mpidr;
+ int sgi;
+ int vcpu_id = vcpu->vcpu_id;
+ bool broadcast;
+ unsigned long c, flags;
+
+ sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT;
+ broadcast = reg & BIT_ULL(ICC_SGI1R_IRQ_ROUTING_MODE_BIT);
+ target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT;
+ mpidr = SGI_AFFINITY_LEVEL(reg, 3);
+ mpidr |= SGI_AFFINITY_LEVEL(reg, 2);
+ mpidr |= SGI_AFFINITY_LEVEL(reg, 1);
+
+ /*
+ * We iterate over all VCPUs to find the MPIDRs matching the request.
+ * If we have handled one CPU, we clear its bit to detect early
+ * if we are already finished. This avoids iterating through all
+ * VCPUs when most of the times we just signal a single VCPU.
+ */
+ kvm_for_each_vcpu(c, c_vcpu, kvm) {
+ struct vgic_irq *irq;
+
+ /* Exit early if we have dealt with all requested CPUs */
+ if (!broadcast && target_cpus == 0)
+ break;
+
+ /* Don't signal the calling VCPU */
+ if (broadcast && c == vcpu_id)
+ continue;
+
+ if (!broadcast) {
+ int level0;
+
+ level0 = match_mpidr(mpidr, target_cpus, c_vcpu);
+ if (level0 == -1)
+ continue;
+
+ /* remove this matching VCPU from the mask */
+ target_cpus &= ~BIT(level0);
+ }
+
+ irq = vgic_get_irq(vcpu->kvm, c_vcpu, sgi);
+
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+
+ /*
+ * An access targeting Group0 SGIs can only generate
+ * those, while an access targeting Group1 SGIs can
+ * generate interrupts of either group.
+ */
+ if (!irq->group || allow_group1) {
+ if (!irq->hw) {
+ irq->pending_latch = true;
+ vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
+ } else {
+ /* HW SGI? Ask the GIC to inject it */
+ int err;
+ err = irq_set_irqchip_state(irq->host_irq,
+ IRQCHIP_STATE_PENDING,
+ true);
+ WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+ }
+ } else {
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+ }
+
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+}
+
+int vgic_v3_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
+ int offset, u32 *val)
+{
+ struct vgic_io_device dev = {
+ .regions = vgic_v3_dist_registers,
+ .nr_regions = ARRAY_SIZE(vgic_v3_dist_registers),
+ };
+
+ return vgic_uaccess(vcpu, &dev, is_write, offset, val);
+}
+
+int vgic_v3_redist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
+ int offset, u32 *val)
+{
+ struct vgic_io_device rd_dev = {
+ .regions = vgic_v3_rd_registers,
+ .nr_regions = ARRAY_SIZE(vgic_v3_rd_registers),
+ };
+
+ return vgic_uaccess(vcpu, &rd_dev, is_write, offset, val);
+}
+
+int vgic_v3_line_level_info_uaccess(struct kvm_vcpu *vcpu, bool is_write,
+ u32 intid, u32 *val)
+{
+ if (intid % 32)
+ return -EINVAL;
+
+ if (is_write)
+ vgic_write_irq_line_level_info(vcpu, intid, *val);
+ else
+ *val = vgic_read_irq_line_level_info(vcpu, intid);
+
+ return 0;
+}
diff --git a/arch/arm64/kvm/vgic/vgic-mmio.c b/arch/arm64/kvm/vgic/vgic-mmio.c
new file mode 100644
index 0000000000..ff558c05e9
--- /dev/null
+++ b/arch/arm64/kvm/vgic/vgic-mmio.c
@@ -0,0 +1,1118 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * VGIC MMIO handling functions
+ */
+
+#include <linux/bitops.h>
+#include <linux/bsearch.h>
+#include <linux/interrupt.h>
+#include <linux/irq.h>
+#include <linux/kvm.h>
+#include <linux/kvm_host.h>
+#include <kvm/iodev.h>
+#include <kvm/arm_arch_timer.h>
+#include <kvm/arm_vgic.h>
+
+#include "vgic.h"
+#include "vgic-mmio.h"
+
+unsigned long vgic_mmio_read_raz(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len)
+{
+ return 0;
+}
+
+unsigned long vgic_mmio_read_rao(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len)
+{
+ return -1UL;
+}
+
+void vgic_mmio_write_wi(struct kvm_vcpu *vcpu, gpa_t addr,
+ unsigned int len, unsigned long val)
+{
+ /* Ignore */
+}
+
+int vgic_mmio_uaccess_write_wi(struct kvm_vcpu *vcpu, gpa_t addr,
+ unsigned int len, unsigned long val)
+{
+ /* Ignore */
+ return 0;
+}
+
+unsigned long vgic_mmio_read_group(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len)
+{
+ u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
+ u32 value = 0;
+ int i;
+
+ /* Loop over all IRQs affected by this read */
+ for (i = 0; i < len * 8; i++) {
+ struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
+
+ if (irq->group)
+ value |= BIT(i);
+
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+
+ return value;
+}
+
+static void vgic_update_vsgi(struct vgic_irq *irq)
+{
+ WARN_ON(its_prop_update_vsgi(irq->host_irq, irq->priority, irq->group));
+}
+
+void vgic_mmio_write_group(struct kvm_vcpu *vcpu, gpa_t addr,
+ unsigned int len, unsigned long val)
+{
+ u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
+ int i;
+ unsigned long flags;
+
+ for (i = 0; i < len * 8; i++) {
+ struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
+
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+ irq->group = !!(val & BIT(i));
+ if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
+ vgic_update_vsgi(irq);
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+ } else {
+ vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
+ }
+
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+}
+
+/*
+ * Read accesses to both GICD_ICENABLER and GICD_ISENABLER return the value
+ * of the enabled bit, so there is only one function for both here.
+ */
+unsigned long vgic_mmio_read_enable(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len)
+{
+ u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
+ u32 value = 0;
+ int i;
+
+ /* Loop over all IRQs affected by this read */
+ for (i = 0; i < len * 8; i++) {
+ struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
+
+ if (irq->enabled)
+ value |= (1U << i);
+
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+
+ return value;
+}
+
+void vgic_mmio_write_senable(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
+ int i;
+ unsigned long flags;
+
+ for_each_set_bit(i, &val, len * 8) {
+ struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
+
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+ if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
+ if (!irq->enabled) {
+ struct irq_data *data;
+
+ irq->enabled = true;
+ data = &irq_to_desc(irq->host_irq)->irq_data;
+ while (irqd_irq_disabled(data))
+ enable_irq(irq->host_irq);
+ }
+
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+ vgic_put_irq(vcpu->kvm, irq);
+
+ continue;
+ } else if (vgic_irq_is_mapped_level(irq)) {
+ bool was_high = irq->line_level;
+
+ /*
+ * We need to update the state of the interrupt because
+ * the guest might have changed the state of the device
+ * while the interrupt was disabled at the VGIC level.
+ */
+ irq->line_level = vgic_get_phys_line_level(irq);
+ /*
+ * Deactivate the physical interrupt so the GIC will let
+ * us know when it is asserted again.
+ */
+ if (!irq->active && was_high && !irq->line_level)
+ vgic_irq_set_phys_active(irq, false);
+ }
+ irq->enabled = true;
+ vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
+
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+}
+
+void vgic_mmio_write_cenable(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
+ int i;
+ unsigned long flags;
+
+ for_each_set_bit(i, &val, len * 8) {
+ struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
+
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+ if (irq->hw && vgic_irq_is_sgi(irq->intid) && irq->enabled)
+ disable_irq_nosync(irq->host_irq);
+
+ irq->enabled = false;
+
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+}
+
+int vgic_uaccess_write_senable(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
+ int i;
+ unsigned long flags;
+
+ for_each_set_bit(i, &val, len * 8) {
+ struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
+
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+ irq->enabled = true;
+ vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
+
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+
+ return 0;
+}
+
+int vgic_uaccess_write_cenable(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
+ int i;
+ unsigned long flags;
+
+ for_each_set_bit(i, &val, len * 8) {
+ struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
+
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+ irq->enabled = false;
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+
+ return 0;
+}
+
+static unsigned long __read_pending(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ bool is_user)
+{
+ u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
+ u32 value = 0;
+ int i;
+
+ /* Loop over all IRQs affected by this read */
+ for (i = 0; i < len * 8; i++) {
+ struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
+ unsigned long flags;
+ bool val;
+
+ /*
+ * When used from userspace with a GICv3 model:
+ *
+ * Pending state of interrupt is latched in pending_latch
+ * variable. Userspace will save and restore pending state
+ * and line_level separately.
+ * Refer to Documentation/virt/kvm/devices/arm-vgic-v3.rst
+ * for handling of ISPENDR and ICPENDR.
+ */
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+ if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
+ int err;
+
+ val = false;
+ err = irq_get_irqchip_state(irq->host_irq,
+ IRQCHIP_STATE_PENDING,
+ &val);
+ WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
+ } else if (!is_user && vgic_irq_is_mapped_level(irq)) {
+ val = vgic_get_phys_line_level(irq);
+ } else {
+ switch (vcpu->kvm->arch.vgic.vgic_model) {
+ case KVM_DEV_TYPE_ARM_VGIC_V3:
+ if (is_user) {
+ val = irq->pending_latch;
+ break;
+ }
+ fallthrough;
+ default:
+ val = irq_is_pending(irq);
+ break;
+ }
+ }
+
+ value |= ((u32)val << i);
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+
+ return value;
+}
+
+unsigned long vgic_mmio_read_pending(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len)
+{
+ return __read_pending(vcpu, addr, len, false);
+}
+
+unsigned long vgic_uaccess_read_pending(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len)
+{
+ return __read_pending(vcpu, addr, len, true);
+}
+
+static bool is_vgic_v2_sgi(struct kvm_vcpu *vcpu, struct vgic_irq *irq)
+{
+ return (vgic_irq_is_sgi(irq->intid) &&
+ vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V2);
+}
+
+void vgic_mmio_write_spending(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
+ int i;
+ unsigned long flags;
+
+ for_each_set_bit(i, &val, len * 8) {
+ struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
+
+ /* GICD_ISPENDR0 SGI bits are WI */
+ if (is_vgic_v2_sgi(vcpu, irq)) {
+ vgic_put_irq(vcpu->kvm, irq);
+ continue;
+ }
+
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+
+ if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
+ /* HW SGI? Ask the GIC to inject it */
+ int err;
+ err = irq_set_irqchip_state(irq->host_irq,
+ IRQCHIP_STATE_PENDING,
+ true);
+ WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
+
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+ vgic_put_irq(vcpu->kvm, irq);
+
+ continue;
+ }
+
+ irq->pending_latch = true;
+ if (irq->hw)
+ vgic_irq_set_phys_active(irq, true);
+
+ vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+}
+
+int vgic_uaccess_write_spending(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
+ int i;
+ unsigned long flags;
+
+ for_each_set_bit(i, &val, len * 8) {
+ struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
+
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+ irq->pending_latch = true;
+
+ /*
+ * GICv2 SGIs are terribly broken. We can't restore
+ * the source of the interrupt, so just pick the vcpu
+ * itself as the source...
+ */
+ if (is_vgic_v2_sgi(vcpu, irq))
+ irq->source |= BIT(vcpu->vcpu_id);
+
+ vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
+
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+
+ return 0;
+}
+
+/* Must be called with irq->irq_lock held */
+static void vgic_hw_irq_cpending(struct kvm_vcpu *vcpu, struct vgic_irq *irq)
+{
+ irq->pending_latch = false;
+
+ /*
+ * We don't want the guest to effectively mask the physical
+ * interrupt by doing a write to SPENDR followed by a write to
+ * CPENDR for HW interrupts, so we clear the active state on
+ * the physical side if the virtual interrupt is not active.
+ * This may lead to taking an additional interrupt on the
+ * host, but that should not be a problem as the worst that
+ * can happen is an additional vgic injection. We also clear
+ * the pending state to maintain proper semantics for edge HW
+ * interrupts.
+ */
+ vgic_irq_set_phys_pending(irq, false);
+ if (!irq->active)
+ vgic_irq_set_phys_active(irq, false);
+}
+
+void vgic_mmio_write_cpending(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
+ int i;
+ unsigned long flags;
+
+ for_each_set_bit(i, &val, len * 8) {
+ struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
+
+ /* GICD_ICPENDR0 SGI bits are WI */
+ if (is_vgic_v2_sgi(vcpu, irq)) {
+ vgic_put_irq(vcpu->kvm, irq);
+ continue;
+ }
+
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+
+ if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
+ /* HW SGI? Ask the GIC to clear its pending bit */
+ int err;
+ err = irq_set_irqchip_state(irq->host_irq,
+ IRQCHIP_STATE_PENDING,
+ false);
+ WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
+
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+ vgic_put_irq(vcpu->kvm, irq);
+
+ continue;
+ }
+
+ if (irq->hw)
+ vgic_hw_irq_cpending(vcpu, irq);
+ else
+ irq->pending_latch = false;
+
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+}
+
+int vgic_uaccess_write_cpending(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
+ int i;
+ unsigned long flags;
+
+ for_each_set_bit(i, &val, len * 8) {
+ struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
+
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+ /*
+ * More fun with GICv2 SGIs! If we're clearing one of them
+ * from userspace, which source vcpu to clear? Let's not
+ * even think of it, and blow the whole set.
+ */
+ if (is_vgic_v2_sgi(vcpu, irq))
+ irq->source = 0;
+
+ irq->pending_latch = false;
+
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+
+ return 0;
+}
+
+/*
+ * If we are fiddling with an IRQ's active state, we have to make sure the IRQ
+ * is not queued on some running VCPU's LRs, because then the change to the
+ * active state can be overwritten when the VCPU's state is synced coming back
+ * from the guest.
+ *
+ * For shared interrupts as well as GICv3 private interrupts accessed from the
+ * non-owning CPU, we have to stop all the VCPUs because interrupts can be
+ * migrated while we don't hold the IRQ locks and we don't want to be chasing
+ * moving targets.
+ *
+ * For GICv2 private interrupts we don't have to do anything because
+ * userspace accesses to the VGIC state already require all VCPUs to be
+ * stopped, and only the VCPU itself can modify its private interrupts
+ * active state, which guarantees that the VCPU is not running.
+ */
+static void vgic_access_active_prepare(struct kvm_vcpu *vcpu, u32 intid)
+{
+ if ((vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3 &&
+ vcpu != kvm_get_running_vcpu()) ||
+ intid >= VGIC_NR_PRIVATE_IRQS)
+ kvm_arm_halt_guest(vcpu->kvm);
+}
+
+/* See vgic_access_active_prepare */
+static void vgic_access_active_finish(struct kvm_vcpu *vcpu, u32 intid)
+{
+ if ((vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3 &&
+ vcpu != kvm_get_running_vcpu()) ||
+ intid >= VGIC_NR_PRIVATE_IRQS)
+ kvm_arm_resume_guest(vcpu->kvm);
+}
+
+static unsigned long __vgic_mmio_read_active(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len)
+{
+ u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
+ u32 value = 0;
+ int i;
+
+ /* Loop over all IRQs affected by this read */
+ for (i = 0; i < len * 8; i++) {
+ struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
+
+ /*
+ * Even for HW interrupts, don't evaluate the HW state as
+ * all the guest is interested in is the virtual state.
+ */
+ if (irq->active)
+ value |= (1U << i);
+
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+
+ return value;
+}
+
+unsigned long vgic_mmio_read_active(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len)
+{
+ u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
+ u32 val;
+
+ mutex_lock(&vcpu->kvm->arch.config_lock);
+ vgic_access_active_prepare(vcpu, intid);
+
+ val = __vgic_mmio_read_active(vcpu, addr, len);
+
+ vgic_access_active_finish(vcpu, intid);
+ mutex_unlock(&vcpu->kvm->arch.config_lock);
+
+ return val;
+}
+
+unsigned long vgic_uaccess_read_active(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len)
+{
+ return __vgic_mmio_read_active(vcpu, addr, len);
+}
+
+/* Must be called with irq->irq_lock held */
+static void vgic_hw_irq_change_active(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
+ bool active, bool is_uaccess)
+{
+ if (is_uaccess)
+ return;
+
+ irq->active = active;
+ vgic_irq_set_phys_active(irq, active);
+}
+
+static void vgic_mmio_change_active(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
+ bool active)
+{
+ unsigned long flags;
+ struct kvm_vcpu *requester_vcpu = kvm_get_running_vcpu();
+
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+
+ if (irq->hw && !vgic_irq_is_sgi(irq->intid)) {
+ vgic_hw_irq_change_active(vcpu, irq, active, !requester_vcpu);
+ } else if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
+ /*
+ * GICv4.1 VSGI feature doesn't track an active state,
+ * so let's not kid ourselves, there is nothing we can
+ * do here.
+ */
+ irq->active = false;
+ } else {
+ u32 model = vcpu->kvm->arch.vgic.vgic_model;
+ u8 active_source;
+
+ irq->active = active;
+
+ /*
+ * The GICv2 architecture indicates that the source CPUID for
+ * an SGI should be provided during an EOI which implies that
+ * the active state is stored somewhere, but at the same time
+ * this state is not architecturally exposed anywhere and we
+ * have no way of knowing the right source.
+ *
+ * This may lead to a VCPU not being able to receive
+ * additional instances of a particular SGI after migration
+ * for a GICv2 VM on some GIC implementations. Oh well.
+ */
+ active_source = (requester_vcpu) ? requester_vcpu->vcpu_id : 0;
+
+ if (model == KVM_DEV_TYPE_ARM_VGIC_V2 &&
+ active && vgic_irq_is_sgi(irq->intid))
+ irq->active_source = active_source;
+ }
+
+ if (irq->active)
+ vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
+ else
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+}
+
+static void __vgic_mmio_write_cactive(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
+ int i;
+
+ for_each_set_bit(i, &val, len * 8) {
+ struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
+ vgic_mmio_change_active(vcpu, irq, false);
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+}
+
+void vgic_mmio_write_cactive(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
+
+ mutex_lock(&vcpu->kvm->arch.config_lock);
+ vgic_access_active_prepare(vcpu, intid);
+
+ __vgic_mmio_write_cactive(vcpu, addr, len, val);
+
+ vgic_access_active_finish(vcpu, intid);
+ mutex_unlock(&vcpu->kvm->arch.config_lock);
+}
+
+int vgic_mmio_uaccess_write_cactive(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ __vgic_mmio_write_cactive(vcpu, addr, len, val);
+ return 0;
+}
+
+static void __vgic_mmio_write_sactive(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
+ int i;
+
+ for_each_set_bit(i, &val, len * 8) {
+ struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
+ vgic_mmio_change_active(vcpu, irq, true);
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+}
+
+void vgic_mmio_write_sactive(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
+
+ mutex_lock(&vcpu->kvm->arch.config_lock);
+ vgic_access_active_prepare(vcpu, intid);
+
+ __vgic_mmio_write_sactive(vcpu, addr, len, val);
+
+ vgic_access_active_finish(vcpu, intid);
+ mutex_unlock(&vcpu->kvm->arch.config_lock);
+}
+
+int vgic_mmio_uaccess_write_sactive(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ __vgic_mmio_write_sactive(vcpu, addr, len, val);
+ return 0;
+}
+
+unsigned long vgic_mmio_read_priority(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len)
+{
+ u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
+ int i;
+ u64 val = 0;
+
+ for (i = 0; i < len; i++) {
+ struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
+
+ val |= (u64)irq->priority << (i * 8);
+
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+
+ return val;
+}
+
+/*
+ * We currently don't handle changing the priority of an interrupt that
+ * is already pending on a VCPU. If there is a need for this, we would
+ * need to make this VCPU exit and re-evaluate the priorities, potentially
+ * leading to this interrupt getting presented now to the guest (if it has
+ * been masked by the priority mask before).
+ */
+void vgic_mmio_write_priority(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
+ int i;
+ unsigned long flags;
+
+ for (i = 0; i < len; i++) {
+ struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
+
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+ /* Narrow the priority range to what we actually support */
+ irq->priority = (val >> (i * 8)) & GENMASK(7, 8 - VGIC_PRI_BITS);
+ if (irq->hw && vgic_irq_is_sgi(irq->intid))
+ vgic_update_vsgi(irq);
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+}
+
+unsigned long vgic_mmio_read_config(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len)
+{
+ u32 intid = VGIC_ADDR_TO_INTID(addr, 2);
+ u32 value = 0;
+ int i;
+
+ for (i = 0; i < len * 4; i++) {
+ struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
+
+ if (irq->config == VGIC_CONFIG_EDGE)
+ value |= (2U << (i * 2));
+
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+
+ return value;
+}
+
+void vgic_mmio_write_config(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ u32 intid = VGIC_ADDR_TO_INTID(addr, 2);
+ int i;
+ unsigned long flags;
+
+ for (i = 0; i < len * 4; i++) {
+ struct vgic_irq *irq;
+
+ /*
+ * The configuration cannot be changed for SGIs in general,
+ * for PPIs this is IMPLEMENTATION DEFINED. The arch timer
+ * code relies on PPIs being level triggered, so we also
+ * make them read-only here.
+ */
+ if (intid + i < VGIC_NR_PRIVATE_IRQS)
+ continue;
+
+ irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+
+ if (test_bit(i * 2 + 1, &val))
+ irq->config = VGIC_CONFIG_EDGE;
+ else
+ irq->config = VGIC_CONFIG_LEVEL;
+
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+}
+
+u32 vgic_read_irq_line_level_info(struct kvm_vcpu *vcpu, u32 intid)
+{
+ int i;
+ u32 val = 0;
+ int nr_irqs = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
+
+ for (i = 0; i < 32; i++) {
+ struct vgic_irq *irq;
+
+ if ((intid + i) < VGIC_NR_SGIS || (intid + i) >= nr_irqs)
+ continue;
+
+ irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
+ if (irq->config == VGIC_CONFIG_LEVEL && irq->line_level)
+ val |= (1U << i);
+
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+
+ return val;
+}
+
+void vgic_write_irq_line_level_info(struct kvm_vcpu *vcpu, u32 intid,
+ const u32 val)
+{
+ int i;
+ int nr_irqs = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
+ unsigned long flags;
+
+ for (i = 0; i < 32; i++) {
+ struct vgic_irq *irq;
+ bool new_level;
+
+ if ((intid + i) < VGIC_NR_SGIS || (intid + i) >= nr_irqs)
+ continue;
+
+ irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
+
+ /*
+ * Line level is set irrespective of irq type
+ * (level or edge) to avoid dependency that VM should
+ * restore irq config before line level.
+ */
+ new_level = !!(val & (1U << i));
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+ irq->line_level = new_level;
+ if (new_level)
+ vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
+ else
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+}
+
+static int match_region(const void *key, const void *elt)
+{
+ const unsigned int offset = (unsigned long)key;
+ const struct vgic_register_region *region = elt;
+
+ if (offset < region->reg_offset)
+ return -1;
+
+ if (offset >= region->reg_offset + region->len)
+ return 1;
+
+ return 0;
+}
+
+const struct vgic_register_region *
+vgic_find_mmio_region(const struct vgic_register_region *regions,
+ int nr_regions, unsigned int offset)
+{
+ return bsearch((void *)(uintptr_t)offset, regions, nr_regions,
+ sizeof(regions[0]), match_region);
+}
+
+void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
+{
+ if (kvm_vgic_global_state.type == VGIC_V2)
+ vgic_v2_set_vmcr(vcpu, vmcr);
+ else
+ vgic_v3_set_vmcr(vcpu, vmcr);
+}
+
+void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
+{
+ if (kvm_vgic_global_state.type == VGIC_V2)
+ vgic_v2_get_vmcr(vcpu, vmcr);
+ else
+ vgic_v3_get_vmcr(vcpu, vmcr);
+}
+
+/*
+ * kvm_mmio_read_buf() returns a value in a format where it can be converted
+ * to a byte array and be directly observed as the guest wanted it to appear
+ * in memory if it had done the store itself, which is LE for the GIC, as the
+ * guest knows the GIC is always LE.
+ *
+ * We convert this value to the CPUs native format to deal with it as a data
+ * value.
+ */
+unsigned long vgic_data_mmio_bus_to_host(const void *val, unsigned int len)
+{
+ unsigned long data = kvm_mmio_read_buf(val, len);
+
+ switch (len) {
+ case 1:
+ return data;
+ case 2:
+ return le16_to_cpu(data);
+ case 4:
+ return le32_to_cpu(data);
+ default:
+ return le64_to_cpu(data);
+ }
+}
+
+/*
+ * kvm_mmio_write_buf() expects a value in a format such that if converted to
+ * a byte array it is observed as the guest would see it if it could perform
+ * the load directly. Since the GIC is LE, and the guest knows this, the
+ * guest expects a value in little endian format.
+ *
+ * We convert the data value from the CPUs native format to LE so that the
+ * value is returned in the proper format.
+ */
+void vgic_data_host_to_mmio_bus(void *buf, unsigned int len,
+ unsigned long data)
+{
+ switch (len) {
+ case 1:
+ break;
+ case 2:
+ data = cpu_to_le16(data);
+ break;
+ case 4:
+ data = cpu_to_le32(data);
+ break;
+ default:
+ data = cpu_to_le64(data);
+ }
+
+ kvm_mmio_write_buf(buf, len, data);
+}
+
+static
+struct vgic_io_device *kvm_to_vgic_iodev(const struct kvm_io_device *dev)
+{
+ return container_of(dev, struct vgic_io_device, dev);
+}
+
+static bool check_region(const struct kvm *kvm,
+ const struct vgic_register_region *region,
+ gpa_t addr, int len)
+{
+ int flags, nr_irqs = kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
+
+ switch (len) {
+ case sizeof(u8):
+ flags = VGIC_ACCESS_8bit;
+ break;
+ case sizeof(u32):
+ flags = VGIC_ACCESS_32bit;
+ break;
+ case sizeof(u64):
+ flags = VGIC_ACCESS_64bit;
+ break;
+ default:
+ return false;
+ }
+
+ if ((region->access_flags & flags) && IS_ALIGNED(addr, len)) {
+ if (!region->bits_per_irq)
+ return true;
+
+ /* Do we access a non-allocated IRQ? */
+ return VGIC_ADDR_TO_INTID(addr, region->bits_per_irq) < nr_irqs;
+ }
+
+ return false;
+}
+
+const struct vgic_register_region *
+vgic_get_mmio_region(struct kvm_vcpu *vcpu, struct vgic_io_device *iodev,
+ gpa_t addr, int len)
+{
+ const struct vgic_register_region *region;
+
+ region = vgic_find_mmio_region(iodev->regions, iodev->nr_regions,
+ addr - iodev->base_addr);
+ if (!region || !check_region(vcpu->kvm, region, addr, len))
+ return NULL;
+
+ return region;
+}
+
+static int vgic_uaccess_read(struct kvm_vcpu *vcpu, struct vgic_io_device *iodev,
+ gpa_t addr, u32 *val)
+{
+ const struct vgic_register_region *region;
+ struct kvm_vcpu *r_vcpu;
+
+ region = vgic_get_mmio_region(vcpu, iodev, addr, sizeof(u32));
+ if (!region) {
+ *val = 0;
+ return 0;
+ }
+
+ r_vcpu = iodev->redist_vcpu ? iodev->redist_vcpu : vcpu;
+ if (region->uaccess_read)
+ *val = region->uaccess_read(r_vcpu, addr, sizeof(u32));
+ else
+ *val = region->read(r_vcpu, addr, sizeof(u32));
+
+ return 0;
+}
+
+static int vgic_uaccess_write(struct kvm_vcpu *vcpu, struct vgic_io_device *iodev,
+ gpa_t addr, const u32 *val)
+{
+ const struct vgic_register_region *region;
+ struct kvm_vcpu *r_vcpu;
+
+ region = vgic_get_mmio_region(vcpu, iodev, addr, sizeof(u32));
+ if (!region)
+ return 0;
+
+ r_vcpu = iodev->redist_vcpu ? iodev->redist_vcpu : vcpu;
+ if (region->uaccess_write)
+ return region->uaccess_write(r_vcpu, addr, sizeof(u32), *val);
+
+ region->write(r_vcpu, addr, sizeof(u32), *val);
+ return 0;
+}
+
+/*
+ * Userland access to VGIC registers.
+ */
+int vgic_uaccess(struct kvm_vcpu *vcpu, struct vgic_io_device *dev,
+ bool is_write, int offset, u32 *val)
+{
+ if (is_write)
+ return vgic_uaccess_write(vcpu, dev, offset, val);
+ else
+ return vgic_uaccess_read(vcpu, dev, offset, val);
+}
+
+static int dispatch_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
+ gpa_t addr, int len, void *val)
+{
+ struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
+ const struct vgic_register_region *region;
+ unsigned long data = 0;
+
+ region = vgic_get_mmio_region(vcpu, iodev, addr, len);
+ if (!region) {
+ memset(val, 0, len);
+ return 0;
+ }
+
+ switch (iodev->iodev_type) {
+ case IODEV_CPUIF:
+ data = region->read(vcpu, addr, len);
+ break;
+ case IODEV_DIST:
+ data = region->read(vcpu, addr, len);
+ break;
+ case IODEV_REDIST:
+ data = region->read(iodev->redist_vcpu, addr, len);
+ break;
+ case IODEV_ITS:
+ data = region->its_read(vcpu->kvm, iodev->its, addr, len);
+ break;
+ }
+
+ vgic_data_host_to_mmio_bus(val, len, data);
+ return 0;
+}
+
+static int dispatch_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
+ gpa_t addr, int len, const void *val)
+{
+ struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
+ const struct vgic_register_region *region;
+ unsigned long data = vgic_data_mmio_bus_to_host(val, len);
+
+ region = vgic_get_mmio_region(vcpu, iodev, addr, len);
+ if (!region)
+ return 0;
+
+ switch (iodev->iodev_type) {
+ case IODEV_CPUIF:
+ region->write(vcpu, addr, len, data);
+ break;
+ case IODEV_DIST:
+ region->write(vcpu, addr, len, data);
+ break;
+ case IODEV_REDIST:
+ region->write(iodev->redist_vcpu, addr, len, data);
+ break;
+ case IODEV_ITS:
+ region->its_write(vcpu->kvm, iodev->its, addr, len, data);
+ break;
+ }
+
+ return 0;
+}
+
+const struct kvm_io_device_ops kvm_io_gic_ops = {
+ .read = dispatch_mmio_read,
+ .write = dispatch_mmio_write,
+};
+
+int vgic_register_dist_iodev(struct kvm *kvm, gpa_t dist_base_address,
+ enum vgic_type type)
+{
+ struct vgic_io_device *io_device = &kvm->arch.vgic.dist_iodev;
+ unsigned int len;
+
+ switch (type) {
+ case VGIC_V2:
+ len = vgic_v2_init_dist_iodev(io_device);
+ break;
+ case VGIC_V3:
+ len = vgic_v3_init_dist_iodev(io_device);
+ break;
+ default:
+ BUG_ON(1);
+ }
+
+ io_device->base_addr = dist_base_address;
+ io_device->iodev_type = IODEV_DIST;
+ io_device->redist_vcpu = NULL;
+
+ return kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, dist_base_address,
+ len, &io_device->dev);
+}
diff --git a/arch/arm64/kvm/vgic/vgic-mmio.h b/arch/arm64/kvm/vgic/vgic-mmio.h
new file mode 100644
index 0000000000..5b490a4dfa
--- /dev/null
+++ b/arch/arm64/kvm/vgic/vgic-mmio.h
@@ -0,0 +1,230 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+/*
+ * Copyright (C) 2015, 2016 ARM Ltd.
+ */
+#ifndef __KVM_ARM_VGIC_MMIO_H__
+#define __KVM_ARM_VGIC_MMIO_H__
+
+struct vgic_register_region {
+ unsigned int reg_offset;
+ unsigned int len;
+ unsigned int bits_per_irq;
+ unsigned int access_flags;
+ union {
+ unsigned long (*read)(struct kvm_vcpu *vcpu, gpa_t addr,
+ unsigned int len);
+ unsigned long (*its_read)(struct kvm *kvm, struct vgic_its *its,
+ gpa_t addr, unsigned int len);
+ };
+ union {
+ void (*write)(struct kvm_vcpu *vcpu, gpa_t addr,
+ unsigned int len, unsigned long val);
+ void (*its_write)(struct kvm *kvm, struct vgic_its *its,
+ gpa_t addr, unsigned int len,
+ unsigned long val);
+ };
+ unsigned long (*uaccess_read)(struct kvm_vcpu *vcpu, gpa_t addr,
+ unsigned int len);
+ union {
+ int (*uaccess_write)(struct kvm_vcpu *vcpu, gpa_t addr,
+ unsigned int len, unsigned long val);
+ int (*uaccess_its_write)(struct kvm *kvm, struct vgic_its *its,
+ gpa_t addr, unsigned int len,
+ unsigned long val);
+ };
+};
+
+extern const struct kvm_io_device_ops kvm_io_gic_ops;
+
+#define VGIC_ACCESS_8bit 1
+#define VGIC_ACCESS_32bit 2
+#define VGIC_ACCESS_64bit 4
+
+/*
+ * Generate a mask that covers the number of bytes required to address
+ * up to 1024 interrupts, each represented by <bits> bits. This assumes
+ * that <bits> is a power of two.
+ */
+#define VGIC_ADDR_IRQ_MASK(bits) (((bits) * 1024 / 8) - 1)
+
+/*
+ * (addr & mask) gives us the _byte_ offset for the INT ID.
+ * We multiply this by 8 the get the _bit_ offset, then divide this by
+ * the number of bits to learn the actual INT ID.
+ * But instead of a division (which requires a "long long div" implementation),
+ * we shift by the binary logarithm of <bits>.
+ * This assumes that <bits> is a power of two.
+ */
+#define VGIC_ADDR_TO_INTID(addr, bits) (((addr) & VGIC_ADDR_IRQ_MASK(bits)) * \
+ 8 >> ilog2(bits))
+
+/*
+ * Some VGIC registers store per-IRQ information, with a different number
+ * of bits per IRQ. For those registers this macro is used.
+ * The _WITH_LENGTH version instantiates registers with a fixed length
+ * and is mutually exclusive with the _PER_IRQ version.
+ */
+#define REGISTER_DESC_WITH_BITS_PER_IRQ(off, rd, wr, ur, uw, bpi, acc) \
+ { \
+ .reg_offset = off, \
+ .bits_per_irq = bpi, \
+ .len = bpi * 1024 / 8, \
+ .access_flags = acc, \
+ .read = rd, \
+ .write = wr, \
+ .uaccess_read = ur, \
+ .uaccess_write = uw, \
+ }
+
+#define REGISTER_DESC_WITH_LENGTH(off, rd, wr, length, acc) \
+ { \
+ .reg_offset = off, \
+ .bits_per_irq = 0, \
+ .len = length, \
+ .access_flags = acc, \
+ .read = rd, \
+ .write = wr, \
+ }
+
+#define REGISTER_DESC_WITH_LENGTH_UACCESS(off, rd, wr, urd, uwr, length, acc) \
+ { \
+ .reg_offset = off, \
+ .bits_per_irq = 0, \
+ .len = length, \
+ .access_flags = acc, \
+ .read = rd, \
+ .write = wr, \
+ .uaccess_read = urd, \
+ .uaccess_write = uwr, \
+ }
+
+unsigned long vgic_data_mmio_bus_to_host(const void *val, unsigned int len);
+
+void vgic_data_host_to_mmio_bus(void *buf, unsigned int len,
+ unsigned long data);
+
+unsigned long extract_bytes(u64 data, unsigned int offset,
+ unsigned int num);
+
+u64 update_64bit_reg(u64 reg, unsigned int offset, unsigned int len,
+ unsigned long val);
+
+unsigned long vgic_mmio_read_raz(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len);
+
+unsigned long vgic_mmio_read_rao(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len);
+
+void vgic_mmio_write_wi(struct kvm_vcpu *vcpu, gpa_t addr,
+ unsigned int len, unsigned long val);
+
+int vgic_mmio_uaccess_write_wi(struct kvm_vcpu *vcpu, gpa_t addr,
+ unsigned int len, unsigned long val);
+
+unsigned long vgic_mmio_read_group(struct kvm_vcpu *vcpu, gpa_t addr,
+ unsigned int len);
+
+void vgic_mmio_write_group(struct kvm_vcpu *vcpu, gpa_t addr,
+ unsigned int len, unsigned long val);
+
+unsigned long vgic_mmio_read_enable(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len);
+
+void vgic_mmio_write_senable(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val);
+
+void vgic_mmio_write_cenable(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val);
+
+int vgic_uaccess_write_senable(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val);
+
+int vgic_uaccess_write_cenable(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val);
+
+unsigned long vgic_mmio_read_pending(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len);
+
+unsigned long vgic_uaccess_read_pending(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len);
+
+void vgic_mmio_write_spending(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val);
+
+void vgic_mmio_write_cpending(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val);
+
+int vgic_uaccess_write_spending(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val);
+
+int vgic_uaccess_write_cpending(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val);
+
+unsigned long vgic_mmio_read_active(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len);
+
+unsigned long vgic_uaccess_read_active(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len);
+
+void vgic_mmio_write_cactive(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val);
+
+void vgic_mmio_write_sactive(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val);
+
+int vgic_mmio_uaccess_write_cactive(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val);
+
+int vgic_mmio_uaccess_write_sactive(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val);
+
+unsigned long vgic_mmio_read_priority(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len);
+
+void vgic_mmio_write_priority(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val);
+
+unsigned long vgic_mmio_read_config(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len);
+
+void vgic_mmio_write_config(struct kvm_vcpu *vcpu,
+ gpa_t addr, unsigned int len,
+ unsigned long val);
+
+int vgic_uaccess(struct kvm_vcpu *vcpu, struct vgic_io_device *dev,
+ bool is_write, int offset, u32 *val);
+
+u32 vgic_read_irq_line_level_info(struct kvm_vcpu *vcpu, u32 intid);
+
+void vgic_write_irq_line_level_info(struct kvm_vcpu *vcpu, u32 intid,
+ const u32 val);
+
+unsigned int vgic_v2_init_dist_iodev(struct vgic_io_device *dev);
+
+unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev);
+
+u64 vgic_sanitise_outer_cacheability(u64 reg);
+u64 vgic_sanitise_inner_cacheability(u64 reg);
+u64 vgic_sanitise_shareability(u64 reg);
+u64 vgic_sanitise_field(u64 reg, u64 field_mask, int field_shift,
+ u64 (*sanitise_fn)(u64));
+
+/* Find the proper register handler entry given a certain address offset */
+const struct vgic_register_region *
+vgic_find_mmio_region(const struct vgic_register_region *regions,
+ int nr_regions, unsigned int offset);
+
+#endif
diff --git a/arch/arm64/kvm/vgic/vgic-v2.c b/arch/arm64/kvm/vgic/vgic-v2.c
new file mode 100644
index 0000000000..7e9cdb78f7
--- /dev/null
+++ b/arch/arm64/kvm/vgic/vgic-v2.c
@@ -0,0 +1,480 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2015, 2016 ARM Ltd.
+ */
+
+#include <linux/irqchip/arm-gic.h>
+#include <linux/kvm.h>
+#include <linux/kvm_host.h>
+#include <kvm/arm_vgic.h>
+#include <asm/kvm_mmu.h>
+
+#include "vgic.h"
+
+static inline void vgic_v2_write_lr(int lr, u32 val)
+{
+ void __iomem *base = kvm_vgic_global_state.vctrl_base;
+
+ writel_relaxed(val, base + GICH_LR0 + (lr * 4));
+}
+
+void vgic_v2_init_lrs(void)
+{
+ int i;
+
+ for (i = 0; i < kvm_vgic_global_state.nr_lr; i++)
+ vgic_v2_write_lr(i, 0);
+}
+
+void vgic_v2_set_underflow(struct kvm_vcpu *vcpu)
+{
+ struct vgic_v2_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v2;
+
+ cpuif->vgic_hcr |= GICH_HCR_UIE;
+}
+
+static bool lr_signals_eoi_mi(u32 lr_val)
+{
+ return !(lr_val & GICH_LR_STATE) && (lr_val & GICH_LR_EOI) &&
+ !(lr_val & GICH_LR_HW);
+}
+
+/*
+ * transfer the content of the LRs back into the corresponding ap_list:
+ * - active bit is transferred as is
+ * - pending bit is
+ * - transferred as is in case of edge sensitive IRQs
+ * - set to the line-level (resample time) for level sensitive IRQs
+ */
+void vgic_v2_fold_lr_state(struct kvm_vcpu *vcpu)
+{
+ struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
+ struct vgic_v2_cpu_if *cpuif = &vgic_cpu->vgic_v2;
+ int lr;
+
+ DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
+
+ cpuif->vgic_hcr &= ~GICH_HCR_UIE;
+
+ for (lr = 0; lr < vgic_cpu->vgic_v2.used_lrs; lr++) {
+ u32 val = cpuif->vgic_lr[lr];
+ u32 cpuid, intid = val & GICH_LR_VIRTUALID;
+ struct vgic_irq *irq;
+ bool deactivated;
+
+ /* Extract the source vCPU id from the LR */
+ cpuid = val & GICH_LR_PHYSID_CPUID;
+ cpuid >>= GICH_LR_PHYSID_CPUID_SHIFT;
+ cpuid &= 7;
+
+ /* Notify fds when the guest EOI'ed a level-triggered SPI */
+ if (lr_signals_eoi_mi(val) && vgic_valid_spi(vcpu->kvm, intid))
+ kvm_notify_acked_irq(vcpu->kvm, 0,
+ intid - VGIC_NR_PRIVATE_IRQS);
+
+ irq = vgic_get_irq(vcpu->kvm, vcpu, intid);
+
+ raw_spin_lock(&irq->irq_lock);
+
+ /* Always preserve the active bit, note deactivation */
+ deactivated = irq->active && !(val & GICH_LR_ACTIVE_BIT);
+ irq->active = !!(val & GICH_LR_ACTIVE_BIT);
+
+ if (irq->active && vgic_irq_is_sgi(intid))
+ irq->active_source = cpuid;
+
+ /* Edge is the only case where we preserve the pending bit */
+ if (irq->config == VGIC_CONFIG_EDGE &&
+ (val & GICH_LR_PENDING_BIT)) {
+ irq->pending_latch = true;
+
+ if (vgic_irq_is_sgi(intid))
+ irq->source |= (1 << cpuid);
+ }
+
+ /*
+ * Clear soft pending state when level irqs have been acked.
+ */
+ if (irq->config == VGIC_CONFIG_LEVEL && !(val & GICH_LR_STATE))
+ irq->pending_latch = false;
+
+ /* Handle resampling for mapped interrupts if required */
+ vgic_irq_handle_resampling(irq, deactivated, val & GICH_LR_PENDING_BIT);
+
+ raw_spin_unlock(&irq->irq_lock);
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+
+ cpuif->used_lrs = 0;
+}
+
+/*
+ * Populates the particular LR with the state of a given IRQ:
+ * - for an edge sensitive IRQ the pending state is cleared in struct vgic_irq
+ * - for a level sensitive IRQ the pending state value is unchanged;
+ * it is dictated directly by the input level
+ *
+ * If @irq describes an SGI with multiple sources, we choose the
+ * lowest-numbered source VCPU and clear that bit in the source bitmap.
+ *
+ * The irq_lock must be held by the caller.
+ */
+void vgic_v2_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr)
+{
+ u32 val = irq->intid;
+ bool allow_pending = true;
+
+ if (irq->active) {
+ val |= GICH_LR_ACTIVE_BIT;
+ if (vgic_irq_is_sgi(irq->intid))
+ val |= irq->active_source << GICH_LR_PHYSID_CPUID_SHIFT;
+ if (vgic_irq_is_multi_sgi(irq)) {
+ allow_pending = false;
+ val |= GICH_LR_EOI;
+ }
+ }
+
+ if (irq->group)
+ val |= GICH_LR_GROUP1;
+
+ if (irq->hw && !vgic_irq_needs_resampling(irq)) {
+ val |= GICH_LR_HW;
+ val |= irq->hwintid << GICH_LR_PHYSID_CPUID_SHIFT;
+ /*
+ * Never set pending+active on a HW interrupt, as the
+ * pending state is kept at the physical distributor
+ * level.
+ */
+ if (irq->active)
+ allow_pending = false;
+ } else {
+ if (irq->config == VGIC_CONFIG_LEVEL) {
+ val |= GICH_LR_EOI;
+
+ /*
+ * Software resampling doesn't work very well
+ * if we allow P+A, so let's not do that.
+ */
+ if (irq->active)
+ allow_pending = false;
+ }
+ }
+
+ if (allow_pending && irq_is_pending(irq)) {
+ val |= GICH_LR_PENDING_BIT;
+
+ if (irq->config == VGIC_CONFIG_EDGE)
+ irq->pending_latch = false;
+
+ if (vgic_irq_is_sgi(irq->intid)) {
+ u32 src = ffs(irq->source);
+
+ if (WARN_RATELIMIT(!src, "No SGI source for INTID %d\n",
+ irq->intid))
+ return;
+
+ val |= (src - 1) << GICH_LR_PHYSID_CPUID_SHIFT;
+ irq->source &= ~(1 << (src - 1));
+ if (irq->source) {
+ irq->pending_latch = true;
+ val |= GICH_LR_EOI;
+ }
+ }
+ }
+
+ /*
+ * Level-triggered mapped IRQs are special because we only observe
+ * rising edges as input to the VGIC. We therefore lower the line
+ * level here, so that we can take new virtual IRQs. See
+ * vgic_v2_fold_lr_state for more info.
+ */
+ if (vgic_irq_is_mapped_level(irq) && (val & GICH_LR_PENDING_BIT))
+ irq->line_level = false;
+
+ /* The GICv2 LR only holds five bits of priority. */
+ val |= (irq->priority >> 3) << GICH_LR_PRIORITY_SHIFT;
+
+ vcpu->arch.vgic_cpu.vgic_v2.vgic_lr[lr] = val;
+}
+
+void vgic_v2_clear_lr(struct kvm_vcpu *vcpu, int lr)
+{
+ vcpu->arch.vgic_cpu.vgic_v2.vgic_lr[lr] = 0;
+}
+
+void vgic_v2_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
+{
+ struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
+ u32 vmcr;
+
+ vmcr = (vmcrp->grpen0 << GICH_VMCR_ENABLE_GRP0_SHIFT) &
+ GICH_VMCR_ENABLE_GRP0_MASK;
+ vmcr |= (vmcrp->grpen1 << GICH_VMCR_ENABLE_GRP1_SHIFT) &
+ GICH_VMCR_ENABLE_GRP1_MASK;
+ vmcr |= (vmcrp->ackctl << GICH_VMCR_ACK_CTL_SHIFT) &
+ GICH_VMCR_ACK_CTL_MASK;
+ vmcr |= (vmcrp->fiqen << GICH_VMCR_FIQ_EN_SHIFT) &
+ GICH_VMCR_FIQ_EN_MASK;
+ vmcr |= (vmcrp->cbpr << GICH_VMCR_CBPR_SHIFT) &
+ GICH_VMCR_CBPR_MASK;
+ vmcr |= (vmcrp->eoim << GICH_VMCR_EOI_MODE_SHIFT) &
+ GICH_VMCR_EOI_MODE_MASK;
+ vmcr |= (vmcrp->abpr << GICH_VMCR_ALIAS_BINPOINT_SHIFT) &
+ GICH_VMCR_ALIAS_BINPOINT_MASK;
+ vmcr |= (vmcrp->bpr << GICH_VMCR_BINPOINT_SHIFT) &
+ GICH_VMCR_BINPOINT_MASK;
+ vmcr |= ((vmcrp->pmr >> GICV_PMR_PRIORITY_SHIFT) <<
+ GICH_VMCR_PRIMASK_SHIFT) & GICH_VMCR_PRIMASK_MASK;
+
+ cpu_if->vgic_vmcr = vmcr;
+}
+
+void vgic_v2_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
+{
+ struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
+ u32 vmcr;
+
+ vmcr = cpu_if->vgic_vmcr;
+
+ vmcrp->grpen0 = (vmcr & GICH_VMCR_ENABLE_GRP0_MASK) >>
+ GICH_VMCR_ENABLE_GRP0_SHIFT;
+ vmcrp->grpen1 = (vmcr & GICH_VMCR_ENABLE_GRP1_MASK) >>
+ GICH_VMCR_ENABLE_GRP1_SHIFT;
+ vmcrp->ackctl = (vmcr & GICH_VMCR_ACK_CTL_MASK) >>
+ GICH_VMCR_ACK_CTL_SHIFT;
+ vmcrp->fiqen = (vmcr & GICH_VMCR_FIQ_EN_MASK) >>
+ GICH_VMCR_FIQ_EN_SHIFT;
+ vmcrp->cbpr = (vmcr & GICH_VMCR_CBPR_MASK) >>
+ GICH_VMCR_CBPR_SHIFT;
+ vmcrp->eoim = (vmcr & GICH_VMCR_EOI_MODE_MASK) >>
+ GICH_VMCR_EOI_MODE_SHIFT;
+
+ vmcrp->abpr = (vmcr & GICH_VMCR_ALIAS_BINPOINT_MASK) >>
+ GICH_VMCR_ALIAS_BINPOINT_SHIFT;
+ vmcrp->bpr = (vmcr & GICH_VMCR_BINPOINT_MASK) >>
+ GICH_VMCR_BINPOINT_SHIFT;
+ vmcrp->pmr = ((vmcr & GICH_VMCR_PRIMASK_MASK) >>
+ GICH_VMCR_PRIMASK_SHIFT) << GICV_PMR_PRIORITY_SHIFT;
+}
+
+void vgic_v2_enable(struct kvm_vcpu *vcpu)
+{
+ /*
+ * By forcing VMCR to zero, the GIC will restore the binary
+ * points to their reset values. Anything else resets to zero
+ * anyway.
+ */
+ vcpu->arch.vgic_cpu.vgic_v2.vgic_vmcr = 0;
+
+ /* Get the show on the road... */
+ vcpu->arch.vgic_cpu.vgic_v2.vgic_hcr = GICH_HCR_EN;
+}
+
+/* check for overlapping regions and for regions crossing the end of memory */
+static bool vgic_v2_check_base(gpa_t dist_base, gpa_t cpu_base)
+{
+ if (dist_base + KVM_VGIC_V2_DIST_SIZE < dist_base)
+ return false;
+ if (cpu_base + KVM_VGIC_V2_CPU_SIZE < cpu_base)
+ return false;
+
+ if (dist_base + KVM_VGIC_V2_DIST_SIZE <= cpu_base)
+ return true;
+ if (cpu_base + KVM_VGIC_V2_CPU_SIZE <= dist_base)
+ return true;
+
+ return false;
+}
+
+int vgic_v2_map_resources(struct kvm *kvm)
+{
+ struct vgic_dist *dist = &kvm->arch.vgic;
+ int ret = 0;
+
+ if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base) ||
+ IS_VGIC_ADDR_UNDEF(dist->vgic_cpu_base)) {
+ kvm_debug("Need to set vgic cpu and dist addresses first\n");
+ return -ENXIO;
+ }
+
+ if (!vgic_v2_check_base(dist->vgic_dist_base, dist->vgic_cpu_base)) {
+ kvm_debug("VGIC CPU and dist frames overlap\n");
+ return -EINVAL;
+ }
+
+ /*
+ * Initialize the vgic if this hasn't already been done on demand by
+ * accessing the vgic state from userspace.
+ */
+ ret = vgic_init(kvm);
+ if (ret) {
+ kvm_err("Unable to initialize VGIC dynamic data structures\n");
+ return ret;
+ }
+
+ if (!static_branch_unlikely(&vgic_v2_cpuif_trap)) {
+ ret = kvm_phys_addr_ioremap(kvm, dist->vgic_cpu_base,
+ kvm_vgic_global_state.vcpu_base,
+ KVM_VGIC_V2_CPU_SIZE, true);
+ if (ret) {
+ kvm_err("Unable to remap VGIC CPU to VCPU\n");
+ return ret;
+ }
+ }
+
+ return 0;
+}
+
+DEFINE_STATIC_KEY_FALSE(vgic_v2_cpuif_trap);
+
+/**
+ * vgic_v2_probe - probe for a VGICv2 compatible interrupt controller
+ * @info: pointer to the GIC description
+ *
+ * Returns 0 if the VGICv2 has been probed successfully, returns an error code
+ * otherwise
+ */
+int vgic_v2_probe(const struct gic_kvm_info *info)
+{
+ int ret;
+ u32 vtr;
+
+ if (is_protected_kvm_enabled()) {
+ kvm_err("GICv2 not supported in protected mode\n");
+ return -ENXIO;
+ }
+
+ if (!info->vctrl.start) {
+ kvm_err("GICH not present in the firmware table\n");
+ return -ENXIO;
+ }
+
+ if (!PAGE_ALIGNED(info->vcpu.start) ||
+ !PAGE_ALIGNED(resource_size(&info->vcpu))) {
+ kvm_info("GICV region size/alignment is unsafe, using trapping (reduced performance)\n");
+
+ ret = create_hyp_io_mappings(info->vcpu.start,
+ resource_size(&info->vcpu),
+ &kvm_vgic_global_state.vcpu_base_va,
+ &kvm_vgic_global_state.vcpu_hyp_va);
+ if (ret) {
+ kvm_err("Cannot map GICV into hyp\n");
+ goto out;
+ }
+
+ static_branch_enable(&vgic_v2_cpuif_trap);
+ }
+
+ ret = create_hyp_io_mappings(info->vctrl.start,
+ resource_size(&info->vctrl),
+ &kvm_vgic_global_state.vctrl_base,
+ &kvm_vgic_global_state.vctrl_hyp);
+ if (ret) {
+ kvm_err("Cannot map VCTRL into hyp\n");
+ goto out;
+ }
+
+ vtr = readl_relaxed(kvm_vgic_global_state.vctrl_base + GICH_VTR);
+ kvm_vgic_global_state.nr_lr = (vtr & 0x3f) + 1;
+
+ ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V2);
+ if (ret) {
+ kvm_err("Cannot register GICv2 KVM device\n");
+ goto out;
+ }
+
+ kvm_vgic_global_state.can_emulate_gicv2 = true;
+ kvm_vgic_global_state.vcpu_base = info->vcpu.start;
+ kvm_vgic_global_state.type = VGIC_V2;
+ kvm_vgic_global_state.max_gic_vcpus = VGIC_V2_MAX_CPUS;
+
+ kvm_debug("vgic-v2@%llx\n", info->vctrl.start);
+
+ return 0;
+out:
+ if (kvm_vgic_global_state.vctrl_base)
+ iounmap(kvm_vgic_global_state.vctrl_base);
+ if (kvm_vgic_global_state.vcpu_base_va)
+ iounmap(kvm_vgic_global_state.vcpu_base_va);
+
+ return ret;
+}
+
+static void save_lrs(struct kvm_vcpu *vcpu, void __iomem *base)
+{
+ struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
+ u64 used_lrs = cpu_if->used_lrs;
+ u64 elrsr;
+ int i;
+
+ elrsr = readl_relaxed(base + GICH_ELRSR0);
+ if (unlikely(used_lrs > 32))
+ elrsr |= ((u64)readl_relaxed(base + GICH_ELRSR1)) << 32;
+
+ for (i = 0; i < used_lrs; i++) {
+ if (elrsr & (1UL << i))
+ cpu_if->vgic_lr[i] &= ~GICH_LR_STATE;
+ else
+ cpu_if->vgic_lr[i] = readl_relaxed(base + GICH_LR0 + (i * 4));
+
+ writel_relaxed(0, base + GICH_LR0 + (i * 4));
+ }
+}
+
+void vgic_v2_save_state(struct kvm_vcpu *vcpu)
+{
+ void __iomem *base = kvm_vgic_global_state.vctrl_base;
+ u64 used_lrs = vcpu->arch.vgic_cpu.vgic_v2.used_lrs;
+
+ if (!base)
+ return;
+
+ if (used_lrs) {
+ save_lrs(vcpu, base);
+ writel_relaxed(0, base + GICH_HCR);
+ }
+}
+
+void vgic_v2_restore_state(struct kvm_vcpu *vcpu)
+{
+ struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
+ void __iomem *base = kvm_vgic_global_state.vctrl_base;
+ u64 used_lrs = cpu_if->used_lrs;
+ int i;
+
+ if (!base)
+ return;
+
+ if (used_lrs) {
+ writel_relaxed(cpu_if->vgic_hcr, base + GICH_HCR);
+ for (i = 0; i < used_lrs; i++) {
+ writel_relaxed(cpu_if->vgic_lr[i],
+ base + GICH_LR0 + (i * 4));
+ }
+ }
+}
+
+void vgic_v2_load(struct kvm_vcpu *vcpu)
+{
+ struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
+
+ writel_relaxed(cpu_if->vgic_vmcr,
+ kvm_vgic_global_state.vctrl_base + GICH_VMCR);
+ writel_relaxed(cpu_if->vgic_apr,
+ kvm_vgic_global_state.vctrl_base + GICH_APR);
+}
+
+void vgic_v2_vmcr_sync(struct kvm_vcpu *vcpu)
+{
+ struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
+
+ cpu_if->vgic_vmcr = readl_relaxed(kvm_vgic_global_state.vctrl_base + GICH_VMCR);
+}
+
+void vgic_v2_put(struct kvm_vcpu *vcpu)
+{
+ struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
+
+ vgic_v2_vmcr_sync(vcpu);
+ cpu_if->vgic_apr = readl_relaxed(kvm_vgic_global_state.vctrl_base + GICH_APR);
+}
diff --git a/arch/arm64/kvm/vgic/vgic-v3.c b/arch/arm64/kvm/vgic/vgic-v3.c
new file mode 100644
index 0000000000..3dfc8b84e0
--- /dev/null
+++ b/arch/arm64/kvm/vgic/vgic-v3.c
@@ -0,0 +1,760 @@
+// SPDX-License-Identifier: GPL-2.0-only
+
+#include <linux/irqchip/arm-gic-v3.h>
+#include <linux/irq.h>
+#include <linux/irqdomain.h>
+#include <linux/kstrtox.h>
+#include <linux/kvm.h>
+#include <linux/kvm_host.h>
+#include <kvm/arm_vgic.h>
+#include <asm/kvm_hyp.h>
+#include <asm/kvm_mmu.h>
+#include <asm/kvm_asm.h>
+
+#include "vgic.h"
+
+static bool group0_trap;
+static bool group1_trap;
+static bool common_trap;
+static bool dir_trap;
+static bool gicv4_enable;
+
+void vgic_v3_set_underflow(struct kvm_vcpu *vcpu)
+{
+ struct vgic_v3_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v3;
+
+ cpuif->vgic_hcr |= ICH_HCR_UIE;
+}
+
+static bool lr_signals_eoi_mi(u64 lr_val)
+{
+ return !(lr_val & ICH_LR_STATE) && (lr_val & ICH_LR_EOI) &&
+ !(lr_val & ICH_LR_HW);
+}
+
+void vgic_v3_fold_lr_state(struct kvm_vcpu *vcpu)
+{
+ struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
+ struct vgic_v3_cpu_if *cpuif = &vgic_cpu->vgic_v3;
+ u32 model = vcpu->kvm->arch.vgic.vgic_model;
+ int lr;
+
+ DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
+
+ cpuif->vgic_hcr &= ~ICH_HCR_UIE;
+
+ for (lr = 0; lr < cpuif->used_lrs; lr++) {
+ u64 val = cpuif->vgic_lr[lr];
+ u32 intid, cpuid;
+ struct vgic_irq *irq;
+ bool is_v2_sgi = false;
+ bool deactivated;
+
+ cpuid = val & GICH_LR_PHYSID_CPUID;
+ cpuid >>= GICH_LR_PHYSID_CPUID_SHIFT;
+
+ if (model == KVM_DEV_TYPE_ARM_VGIC_V3) {
+ intid = val & ICH_LR_VIRTUAL_ID_MASK;
+ } else {
+ intid = val & GICH_LR_VIRTUALID;
+ is_v2_sgi = vgic_irq_is_sgi(intid);
+ }
+
+ /* Notify fds when the guest EOI'ed a level-triggered IRQ */
+ if (lr_signals_eoi_mi(val) && vgic_valid_spi(vcpu->kvm, intid))
+ kvm_notify_acked_irq(vcpu->kvm, 0,
+ intid - VGIC_NR_PRIVATE_IRQS);
+
+ irq = vgic_get_irq(vcpu->kvm, vcpu, intid);
+ if (!irq) /* An LPI could have been unmapped. */
+ continue;
+
+ raw_spin_lock(&irq->irq_lock);
+
+ /* Always preserve the active bit, note deactivation */
+ deactivated = irq->active && !(val & ICH_LR_ACTIVE_BIT);
+ irq->active = !!(val & ICH_LR_ACTIVE_BIT);
+
+ if (irq->active && is_v2_sgi)
+ irq->active_source = cpuid;
+
+ /* Edge is the only case where we preserve the pending bit */
+ if (irq->config == VGIC_CONFIG_EDGE &&
+ (val & ICH_LR_PENDING_BIT)) {
+ irq->pending_latch = true;
+
+ if (is_v2_sgi)
+ irq->source |= (1 << cpuid);
+ }
+
+ /*
+ * Clear soft pending state when level irqs have been acked.
+ */
+ if (irq->config == VGIC_CONFIG_LEVEL && !(val & ICH_LR_STATE))
+ irq->pending_latch = false;
+
+ /* Handle resampling for mapped interrupts if required */
+ vgic_irq_handle_resampling(irq, deactivated, val & ICH_LR_PENDING_BIT);
+
+ raw_spin_unlock(&irq->irq_lock);
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+
+ cpuif->used_lrs = 0;
+}
+
+/* Requires the irq to be locked already */
+void vgic_v3_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr)
+{
+ u32 model = vcpu->kvm->arch.vgic.vgic_model;
+ u64 val = irq->intid;
+ bool allow_pending = true, is_v2_sgi;
+
+ is_v2_sgi = (vgic_irq_is_sgi(irq->intid) &&
+ model == KVM_DEV_TYPE_ARM_VGIC_V2);
+
+ if (irq->active) {
+ val |= ICH_LR_ACTIVE_BIT;
+ if (is_v2_sgi)
+ val |= irq->active_source << GICH_LR_PHYSID_CPUID_SHIFT;
+ if (vgic_irq_is_multi_sgi(irq)) {
+ allow_pending = false;
+ val |= ICH_LR_EOI;
+ }
+ }
+
+ if (irq->hw && !vgic_irq_needs_resampling(irq)) {
+ val |= ICH_LR_HW;
+ val |= ((u64)irq->hwintid) << ICH_LR_PHYS_ID_SHIFT;
+ /*
+ * Never set pending+active on a HW interrupt, as the
+ * pending state is kept at the physical distributor
+ * level.
+ */
+ if (irq->active)
+ allow_pending = false;
+ } else {
+ if (irq->config == VGIC_CONFIG_LEVEL) {
+ val |= ICH_LR_EOI;
+
+ /*
+ * Software resampling doesn't work very well
+ * if we allow P+A, so let's not do that.
+ */
+ if (irq->active)
+ allow_pending = false;
+ }
+ }
+
+ if (allow_pending && irq_is_pending(irq)) {
+ val |= ICH_LR_PENDING_BIT;
+
+ if (irq->config == VGIC_CONFIG_EDGE)
+ irq->pending_latch = false;
+
+ if (vgic_irq_is_sgi(irq->intid) &&
+ model == KVM_DEV_TYPE_ARM_VGIC_V2) {
+ u32 src = ffs(irq->source);
+
+ if (WARN_RATELIMIT(!src, "No SGI source for INTID %d\n",
+ irq->intid))
+ return;
+
+ val |= (src - 1) << GICH_LR_PHYSID_CPUID_SHIFT;
+ irq->source &= ~(1 << (src - 1));
+ if (irq->source) {
+ irq->pending_latch = true;
+ val |= ICH_LR_EOI;
+ }
+ }
+ }
+
+ /*
+ * Level-triggered mapped IRQs are special because we only observe
+ * rising edges as input to the VGIC. We therefore lower the line
+ * level here, so that we can take new virtual IRQs. See
+ * vgic_v3_fold_lr_state for more info.
+ */
+ if (vgic_irq_is_mapped_level(irq) && (val & ICH_LR_PENDING_BIT))
+ irq->line_level = false;
+
+ if (irq->group)
+ val |= ICH_LR_GROUP;
+
+ val |= (u64)irq->priority << ICH_LR_PRIORITY_SHIFT;
+
+ vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = val;
+}
+
+void vgic_v3_clear_lr(struct kvm_vcpu *vcpu, int lr)
+{
+ vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = 0;
+}
+
+void vgic_v3_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
+{
+ struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
+ u32 model = vcpu->kvm->arch.vgic.vgic_model;
+ u32 vmcr;
+
+ if (model == KVM_DEV_TYPE_ARM_VGIC_V2) {
+ vmcr = (vmcrp->ackctl << ICH_VMCR_ACK_CTL_SHIFT) &
+ ICH_VMCR_ACK_CTL_MASK;
+ vmcr |= (vmcrp->fiqen << ICH_VMCR_FIQ_EN_SHIFT) &
+ ICH_VMCR_FIQ_EN_MASK;
+ } else {
+ /*
+ * When emulating GICv3 on GICv3 with SRE=1 on the
+ * VFIQEn bit is RES1 and the VAckCtl bit is RES0.
+ */
+ vmcr = ICH_VMCR_FIQ_EN_MASK;
+ }
+
+ vmcr |= (vmcrp->cbpr << ICH_VMCR_CBPR_SHIFT) & ICH_VMCR_CBPR_MASK;
+ vmcr |= (vmcrp->eoim << ICH_VMCR_EOIM_SHIFT) & ICH_VMCR_EOIM_MASK;
+ vmcr |= (vmcrp->abpr << ICH_VMCR_BPR1_SHIFT) & ICH_VMCR_BPR1_MASK;
+ vmcr |= (vmcrp->bpr << ICH_VMCR_BPR0_SHIFT) & ICH_VMCR_BPR0_MASK;
+ vmcr |= (vmcrp->pmr << ICH_VMCR_PMR_SHIFT) & ICH_VMCR_PMR_MASK;
+ vmcr |= (vmcrp->grpen0 << ICH_VMCR_ENG0_SHIFT) & ICH_VMCR_ENG0_MASK;
+ vmcr |= (vmcrp->grpen1 << ICH_VMCR_ENG1_SHIFT) & ICH_VMCR_ENG1_MASK;
+
+ cpu_if->vgic_vmcr = vmcr;
+}
+
+void vgic_v3_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
+{
+ struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
+ u32 model = vcpu->kvm->arch.vgic.vgic_model;
+ u32 vmcr;
+
+ vmcr = cpu_if->vgic_vmcr;
+
+ if (model == KVM_DEV_TYPE_ARM_VGIC_V2) {
+ vmcrp->ackctl = (vmcr & ICH_VMCR_ACK_CTL_MASK) >>
+ ICH_VMCR_ACK_CTL_SHIFT;
+ vmcrp->fiqen = (vmcr & ICH_VMCR_FIQ_EN_MASK) >>
+ ICH_VMCR_FIQ_EN_SHIFT;
+ } else {
+ /*
+ * When emulating GICv3 on GICv3 with SRE=1 on the
+ * VFIQEn bit is RES1 and the VAckCtl bit is RES0.
+ */
+ vmcrp->fiqen = 1;
+ vmcrp->ackctl = 0;
+ }
+
+ vmcrp->cbpr = (vmcr & ICH_VMCR_CBPR_MASK) >> ICH_VMCR_CBPR_SHIFT;
+ vmcrp->eoim = (vmcr & ICH_VMCR_EOIM_MASK) >> ICH_VMCR_EOIM_SHIFT;
+ vmcrp->abpr = (vmcr & ICH_VMCR_BPR1_MASK) >> ICH_VMCR_BPR1_SHIFT;
+ vmcrp->bpr = (vmcr & ICH_VMCR_BPR0_MASK) >> ICH_VMCR_BPR0_SHIFT;
+ vmcrp->pmr = (vmcr & ICH_VMCR_PMR_MASK) >> ICH_VMCR_PMR_SHIFT;
+ vmcrp->grpen0 = (vmcr & ICH_VMCR_ENG0_MASK) >> ICH_VMCR_ENG0_SHIFT;
+ vmcrp->grpen1 = (vmcr & ICH_VMCR_ENG1_MASK) >> ICH_VMCR_ENG1_SHIFT;
+}
+
+#define INITIAL_PENDBASER_VALUE \
+ (GIC_BASER_CACHEABILITY(GICR_PENDBASER, INNER, RaWb) | \
+ GIC_BASER_CACHEABILITY(GICR_PENDBASER, OUTER, SameAsInner) | \
+ GIC_BASER_SHAREABILITY(GICR_PENDBASER, InnerShareable))
+
+void vgic_v3_enable(struct kvm_vcpu *vcpu)
+{
+ struct vgic_v3_cpu_if *vgic_v3 = &vcpu->arch.vgic_cpu.vgic_v3;
+
+ /*
+ * By forcing VMCR to zero, the GIC will restore the binary
+ * points to their reset values. Anything else resets to zero
+ * anyway.
+ */
+ vgic_v3->vgic_vmcr = 0;
+
+ /*
+ * If we are emulating a GICv3, we do it in an non-GICv2-compatible
+ * way, so we force SRE to 1 to demonstrate this to the guest.
+ * Also, we don't support any form of IRQ/FIQ bypass.
+ * This goes with the spec allowing the value to be RAO/WI.
+ */
+ if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) {
+ vgic_v3->vgic_sre = (ICC_SRE_EL1_DIB |
+ ICC_SRE_EL1_DFB |
+ ICC_SRE_EL1_SRE);
+ vcpu->arch.vgic_cpu.pendbaser = INITIAL_PENDBASER_VALUE;
+ } else {
+ vgic_v3->vgic_sre = 0;
+ }
+
+ vcpu->arch.vgic_cpu.num_id_bits = (kvm_vgic_global_state.ich_vtr_el2 &
+ ICH_VTR_ID_BITS_MASK) >>
+ ICH_VTR_ID_BITS_SHIFT;
+ vcpu->arch.vgic_cpu.num_pri_bits = ((kvm_vgic_global_state.ich_vtr_el2 &
+ ICH_VTR_PRI_BITS_MASK) >>
+ ICH_VTR_PRI_BITS_SHIFT) + 1;
+
+ /* Get the show on the road... */
+ vgic_v3->vgic_hcr = ICH_HCR_EN;
+ if (group0_trap)
+ vgic_v3->vgic_hcr |= ICH_HCR_TALL0;
+ if (group1_trap)
+ vgic_v3->vgic_hcr |= ICH_HCR_TALL1;
+ if (common_trap)
+ vgic_v3->vgic_hcr |= ICH_HCR_TC;
+ if (dir_trap)
+ vgic_v3->vgic_hcr |= ICH_HCR_TDIR;
+}
+
+int vgic_v3_lpi_sync_pending_status(struct kvm *kvm, struct vgic_irq *irq)
+{
+ struct kvm_vcpu *vcpu;
+ int byte_offset, bit_nr;
+ gpa_t pendbase, ptr;
+ bool status;
+ u8 val;
+ int ret;
+ unsigned long flags;
+
+retry:
+ vcpu = irq->target_vcpu;
+ if (!vcpu)
+ return 0;
+
+ pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
+
+ byte_offset = irq->intid / BITS_PER_BYTE;
+ bit_nr = irq->intid % BITS_PER_BYTE;
+ ptr = pendbase + byte_offset;
+
+ ret = kvm_read_guest_lock(kvm, ptr, &val, 1);
+ if (ret)
+ return ret;
+
+ status = val & (1 << bit_nr);
+
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+ if (irq->target_vcpu != vcpu) {
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+ goto retry;
+ }
+ irq->pending_latch = status;
+ vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
+
+ if (status) {
+ /* clear consumed data */
+ val &= ~(1 << bit_nr);
+ ret = vgic_write_guest_lock(kvm, ptr, &val, 1);
+ if (ret)
+ return ret;
+ }
+ return 0;
+}
+
+/*
+ * The deactivation of the doorbell interrupt will trigger the
+ * unmapping of the associated vPE.
+ */
+static void unmap_all_vpes(struct kvm *kvm)
+{
+ struct vgic_dist *dist = &kvm->arch.vgic;
+ int i;
+
+ for (i = 0; i < dist->its_vm.nr_vpes; i++)
+ free_irq(dist->its_vm.vpes[i]->irq, kvm_get_vcpu(kvm, i));
+}
+
+static void map_all_vpes(struct kvm *kvm)
+{
+ struct vgic_dist *dist = &kvm->arch.vgic;
+ int i;
+
+ for (i = 0; i < dist->its_vm.nr_vpes; i++)
+ WARN_ON(vgic_v4_request_vpe_irq(kvm_get_vcpu(kvm, i),
+ dist->its_vm.vpes[i]->irq));
+}
+
+/**
+ * vgic_v3_save_pending_tables - Save the pending tables into guest RAM
+ * kvm lock and all vcpu lock must be held
+ */
+int vgic_v3_save_pending_tables(struct kvm *kvm)
+{
+ struct vgic_dist *dist = &kvm->arch.vgic;
+ struct vgic_irq *irq;
+ gpa_t last_ptr = ~(gpa_t)0;
+ bool vlpi_avail = false;
+ int ret = 0;
+ u8 val;
+
+ if (unlikely(!vgic_initialized(kvm)))
+ return -ENXIO;
+
+ /*
+ * A preparation for getting any VLPI states.
+ * The above vgic initialized check also ensures that the allocation
+ * and enabling of the doorbells have already been done.
+ */
+ if (kvm_vgic_global_state.has_gicv4_1) {
+ unmap_all_vpes(kvm);
+ vlpi_avail = true;
+ }
+
+ list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
+ int byte_offset, bit_nr;
+ struct kvm_vcpu *vcpu;
+ gpa_t pendbase, ptr;
+ bool is_pending;
+ bool stored;
+
+ vcpu = irq->target_vcpu;
+ if (!vcpu)
+ continue;
+
+ pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
+
+ byte_offset = irq->intid / BITS_PER_BYTE;
+ bit_nr = irq->intid % BITS_PER_BYTE;
+ ptr = pendbase + byte_offset;
+
+ if (ptr != last_ptr) {
+ ret = kvm_read_guest_lock(kvm, ptr, &val, 1);
+ if (ret)
+ goto out;
+ last_ptr = ptr;
+ }
+
+ stored = val & (1U << bit_nr);
+
+ is_pending = irq->pending_latch;
+
+ if (irq->hw && vlpi_avail)
+ vgic_v4_get_vlpi_state(irq, &is_pending);
+
+ if (stored == is_pending)
+ continue;
+
+ if (is_pending)
+ val |= 1 << bit_nr;
+ else
+ val &= ~(1 << bit_nr);
+
+ ret = vgic_write_guest_lock(kvm, ptr, &val, 1);
+ if (ret)
+ goto out;
+ }
+
+out:
+ if (vlpi_avail)
+ map_all_vpes(kvm);
+
+ return ret;
+}
+
+/**
+ * vgic_v3_rdist_overlap - check if a region overlaps with any
+ * existing redistributor region
+ *
+ * @kvm: kvm handle
+ * @base: base of the region
+ * @size: size of region
+ *
+ * Return: true if there is an overlap
+ */
+bool vgic_v3_rdist_overlap(struct kvm *kvm, gpa_t base, size_t size)
+{
+ struct vgic_dist *d = &kvm->arch.vgic;
+ struct vgic_redist_region *rdreg;
+
+ list_for_each_entry(rdreg, &d->rd_regions, list) {
+ if ((base + size > rdreg->base) &&
+ (base < rdreg->base + vgic_v3_rd_region_size(kvm, rdreg)))
+ return true;
+ }
+ return false;
+}
+
+/*
+ * Check for overlapping regions and for regions crossing the end of memory
+ * for base addresses which have already been set.
+ */
+bool vgic_v3_check_base(struct kvm *kvm)
+{
+ struct vgic_dist *d = &kvm->arch.vgic;
+ struct vgic_redist_region *rdreg;
+
+ if (!IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
+ d->vgic_dist_base + KVM_VGIC_V3_DIST_SIZE < d->vgic_dist_base)
+ return false;
+
+ list_for_each_entry(rdreg, &d->rd_regions, list) {
+ size_t sz = vgic_v3_rd_region_size(kvm, rdreg);
+
+ if (vgic_check_iorange(kvm, VGIC_ADDR_UNDEF,
+ rdreg->base, SZ_64K, sz))
+ return false;
+ }
+
+ if (IS_VGIC_ADDR_UNDEF(d->vgic_dist_base))
+ return true;
+
+ return !vgic_v3_rdist_overlap(kvm, d->vgic_dist_base,
+ KVM_VGIC_V3_DIST_SIZE);
+}
+
+/**
+ * vgic_v3_rdist_free_slot - Look up registered rdist regions and identify one
+ * which has free space to put a new rdist region.
+ *
+ * @rd_regions: redistributor region list head
+ *
+ * A redistributor regions maps n redistributors, n = region size / (2 x 64kB).
+ * Stride between redistributors is 0 and regions are filled in the index order.
+ *
+ * Return: the redist region handle, if any, that has space to map a new rdist
+ * region.
+ */
+struct vgic_redist_region *vgic_v3_rdist_free_slot(struct list_head *rd_regions)
+{
+ struct vgic_redist_region *rdreg;
+
+ list_for_each_entry(rdreg, rd_regions, list) {
+ if (!vgic_v3_redist_region_full(rdreg))
+ return rdreg;
+ }
+ return NULL;
+}
+
+struct vgic_redist_region *vgic_v3_rdist_region_from_index(struct kvm *kvm,
+ u32 index)
+{
+ struct list_head *rd_regions = &kvm->arch.vgic.rd_regions;
+ struct vgic_redist_region *rdreg;
+
+ list_for_each_entry(rdreg, rd_regions, list) {
+ if (rdreg->index == index)
+ return rdreg;
+ }
+ return NULL;
+}
+
+
+int vgic_v3_map_resources(struct kvm *kvm)
+{
+ struct vgic_dist *dist = &kvm->arch.vgic;
+ struct kvm_vcpu *vcpu;
+ unsigned long c;
+
+ kvm_for_each_vcpu(c, vcpu, kvm) {
+ struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
+
+ if (IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr)) {
+ kvm_debug("vcpu %ld redistributor base not set\n", c);
+ return -ENXIO;
+ }
+ }
+
+ if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base)) {
+ kvm_debug("Need to set vgic distributor addresses first\n");
+ return -ENXIO;
+ }
+
+ if (!vgic_v3_check_base(kvm)) {
+ kvm_debug("VGIC redist and dist frames overlap\n");
+ return -EINVAL;
+ }
+
+ /*
+ * For a VGICv3 we require the userland to explicitly initialize
+ * the VGIC before we need to use it.
+ */
+ if (!vgic_initialized(kvm)) {
+ return -EBUSY;
+ }
+
+ if (kvm_vgic_global_state.has_gicv4_1)
+ vgic_v4_configure_vsgis(kvm);
+
+ return 0;
+}
+
+DEFINE_STATIC_KEY_FALSE(vgic_v3_cpuif_trap);
+
+static int __init early_group0_trap_cfg(char *buf)
+{
+ return kstrtobool(buf, &group0_trap);
+}
+early_param("kvm-arm.vgic_v3_group0_trap", early_group0_trap_cfg);
+
+static int __init early_group1_trap_cfg(char *buf)
+{
+ return kstrtobool(buf, &group1_trap);
+}
+early_param("kvm-arm.vgic_v3_group1_trap", early_group1_trap_cfg);
+
+static int __init early_common_trap_cfg(char *buf)
+{
+ return kstrtobool(buf, &common_trap);
+}
+early_param("kvm-arm.vgic_v3_common_trap", early_common_trap_cfg);
+
+static int __init early_gicv4_enable(char *buf)
+{
+ return kstrtobool(buf, &gicv4_enable);
+}
+early_param("kvm-arm.vgic_v4_enable", early_gicv4_enable);
+
+static const struct midr_range broken_seis[] = {
+ MIDR_ALL_VERSIONS(MIDR_APPLE_M1_ICESTORM),
+ MIDR_ALL_VERSIONS(MIDR_APPLE_M1_FIRESTORM),
+ MIDR_ALL_VERSIONS(MIDR_APPLE_M1_ICESTORM_PRO),
+ MIDR_ALL_VERSIONS(MIDR_APPLE_M1_FIRESTORM_PRO),
+ MIDR_ALL_VERSIONS(MIDR_APPLE_M1_ICESTORM_MAX),
+ MIDR_ALL_VERSIONS(MIDR_APPLE_M1_FIRESTORM_MAX),
+ MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD),
+ MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE),
+ MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD_PRO),
+ MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE_PRO),
+ MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD_MAX),
+ MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE_MAX),
+ {},
+};
+
+static bool vgic_v3_broken_seis(void)
+{
+ return ((kvm_vgic_global_state.ich_vtr_el2 & ICH_VTR_SEIS_MASK) &&
+ is_midr_in_range_list(read_cpuid_id(), broken_seis));
+}
+
+/**
+ * vgic_v3_probe - probe for a VGICv3 compatible interrupt controller
+ * @info: pointer to the GIC description
+ *
+ * Returns 0 if the VGICv3 has been probed successfully, returns an error code
+ * otherwise
+ */
+int vgic_v3_probe(const struct gic_kvm_info *info)
+{
+ u64 ich_vtr_el2 = kvm_call_hyp_ret(__vgic_v3_get_gic_config);
+ bool has_v2;
+ int ret;
+
+ has_v2 = ich_vtr_el2 >> 63;
+ ich_vtr_el2 = (u32)ich_vtr_el2;
+
+ /*
+ * The ListRegs field is 5 bits, but there is an architectural
+ * maximum of 16 list registers. Just ignore bit 4...
+ */
+ kvm_vgic_global_state.nr_lr = (ich_vtr_el2 & 0xf) + 1;
+ kvm_vgic_global_state.can_emulate_gicv2 = false;
+ kvm_vgic_global_state.ich_vtr_el2 = ich_vtr_el2;
+
+ /* GICv4 support? */
+ if (info->has_v4) {
+ kvm_vgic_global_state.has_gicv4 = gicv4_enable;
+ kvm_vgic_global_state.has_gicv4_1 = info->has_v4_1 && gicv4_enable;
+ kvm_info("GICv4%s support %sabled\n",
+ kvm_vgic_global_state.has_gicv4_1 ? ".1" : "",
+ gicv4_enable ? "en" : "dis");
+ }
+
+ kvm_vgic_global_state.vcpu_base = 0;
+
+ if (!info->vcpu.start) {
+ kvm_info("GICv3: no GICV resource entry\n");
+ } else if (!has_v2) {
+ pr_warn(FW_BUG "CPU interface incapable of MMIO access\n");
+ } else if (!PAGE_ALIGNED(info->vcpu.start)) {
+ pr_warn("GICV physical address 0x%llx not page aligned\n",
+ (unsigned long long)info->vcpu.start);
+ } else if (kvm_get_mode() != KVM_MODE_PROTECTED) {
+ kvm_vgic_global_state.vcpu_base = info->vcpu.start;
+ kvm_vgic_global_state.can_emulate_gicv2 = true;
+ ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V2);
+ if (ret) {
+ kvm_err("Cannot register GICv2 KVM device.\n");
+ return ret;
+ }
+ kvm_info("vgic-v2@%llx\n", info->vcpu.start);
+ }
+ ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V3);
+ if (ret) {
+ kvm_err("Cannot register GICv3 KVM device.\n");
+ kvm_unregister_device_ops(KVM_DEV_TYPE_ARM_VGIC_V2);
+ return ret;
+ }
+
+ if (kvm_vgic_global_state.vcpu_base == 0)
+ kvm_info("disabling GICv2 emulation\n");
+
+ if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_30115)) {
+ group0_trap = true;
+ group1_trap = true;
+ }
+
+ if (vgic_v3_broken_seis()) {
+ kvm_info("GICv3 with broken locally generated SEI\n");
+
+ kvm_vgic_global_state.ich_vtr_el2 &= ~ICH_VTR_SEIS_MASK;
+ group0_trap = true;
+ group1_trap = true;
+ if (ich_vtr_el2 & ICH_VTR_TDS_MASK)
+ dir_trap = true;
+ else
+ common_trap = true;
+ }
+
+ if (group0_trap || group1_trap || common_trap | dir_trap) {
+ kvm_info("GICv3 sysreg trapping enabled ([%s%s%s%s], reduced performance)\n",
+ group0_trap ? "G0" : "",
+ group1_trap ? "G1" : "",
+ common_trap ? "C" : "",
+ dir_trap ? "D" : "");
+ static_branch_enable(&vgic_v3_cpuif_trap);
+ }
+
+ kvm_vgic_global_state.vctrl_base = NULL;
+ kvm_vgic_global_state.type = VGIC_V3;
+ kvm_vgic_global_state.max_gic_vcpus = VGIC_V3_MAX_CPUS;
+
+ return 0;
+}
+
+void vgic_v3_load(struct kvm_vcpu *vcpu)
+{
+ struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
+
+ /*
+ * If dealing with a GICv2 emulation on GICv3, VMCR_EL2.VFIQen
+ * is dependent on ICC_SRE_EL1.SRE, and we have to perform the
+ * VMCR_EL2 save/restore in the world switch.
+ */
+ if (likely(cpu_if->vgic_sre))
+ kvm_call_hyp(__vgic_v3_write_vmcr, cpu_if->vgic_vmcr);
+
+ kvm_call_hyp(__vgic_v3_restore_aprs, cpu_if);
+
+ if (has_vhe())
+ __vgic_v3_activate_traps(cpu_if);
+
+ WARN_ON(vgic_v4_load(vcpu));
+}
+
+void vgic_v3_vmcr_sync(struct kvm_vcpu *vcpu)
+{
+ struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
+
+ if (likely(cpu_if->vgic_sre))
+ cpu_if->vgic_vmcr = kvm_call_hyp_ret(__vgic_v3_read_vmcr);
+}
+
+void vgic_v3_put(struct kvm_vcpu *vcpu)
+{
+ struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
+
+ WARN_ON(vgic_v4_put(vcpu));
+
+ vgic_v3_vmcr_sync(vcpu);
+
+ kvm_call_hyp(__vgic_v3_save_aprs, cpu_if);
+
+ if (has_vhe())
+ __vgic_v3_deactivate_traps(cpu_if);
+}
diff --git a/arch/arm64/kvm/vgic/vgic-v4.c b/arch/arm64/kvm/vgic/vgic-v4.c
new file mode 100644
index 0000000000..339a55194b
--- /dev/null
+++ b/arch/arm64/kvm/vgic/vgic-v4.c
@@ -0,0 +1,521 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2017 ARM Ltd.
+ * Author: Marc Zyngier <marc.zyngier@arm.com>
+ */
+
+#include <linux/interrupt.h>
+#include <linux/irq.h>
+#include <linux/irqdomain.h>
+#include <linux/kvm_host.h>
+#include <linux/irqchip/arm-gic-v3.h>
+
+#include "vgic.h"
+
+/*
+ * How KVM uses GICv4 (insert rude comments here):
+ *
+ * The vgic-v4 layer acts as a bridge between several entities:
+ * - The GICv4 ITS representation offered by the ITS driver
+ * - VFIO, which is in charge of the PCI endpoint
+ * - The virtual ITS, which is the only thing the guest sees
+ *
+ * The configuration of VLPIs is triggered by a callback from VFIO,
+ * instructing KVM that a PCI device has been configured to deliver
+ * MSIs to a vITS.
+ *
+ * kvm_vgic_v4_set_forwarding() is thus called with the routing entry,
+ * and this is used to find the corresponding vITS data structures
+ * (ITS instance, device, event and irq) using a process that is
+ * extremely similar to the injection of an MSI.
+ *
+ * At this stage, we can link the guest's view of an LPI (uniquely
+ * identified by the routing entry) and the host irq, using the GICv4
+ * driver mapping operation. Should the mapping succeed, we've then
+ * successfully upgraded the guest's LPI to a VLPI. We can then start
+ * with updating GICv4's view of the property table and generating an
+ * INValidation in order to kickstart the delivery of this VLPI to the
+ * guest directly, without software intervention. Well, almost.
+ *
+ * When the PCI endpoint is deconfigured, this operation is reversed
+ * with VFIO calling kvm_vgic_v4_unset_forwarding().
+ *
+ * Once the VLPI has been mapped, it needs to follow any change the
+ * guest performs on its LPI through the vITS. For that, a number of
+ * command handlers have hooks to communicate these changes to the HW:
+ * - Any invalidation triggers a call to its_prop_update_vlpi()
+ * - The INT command results in a irq_set_irqchip_state(), which
+ * generates an INT on the corresponding VLPI.
+ * - The CLEAR command results in a irq_set_irqchip_state(), which
+ * generates an CLEAR on the corresponding VLPI.
+ * - DISCARD translates into an unmap, similar to a call to
+ * kvm_vgic_v4_unset_forwarding().
+ * - MOVI is translated by an update of the existing mapping, changing
+ * the target vcpu, resulting in a VMOVI being generated.
+ * - MOVALL is translated by a string of mapping updates (similar to
+ * the handling of MOVI). MOVALL is horrible.
+ *
+ * Note that a DISCARD/MAPTI sequence emitted from the guest without
+ * reprogramming the PCI endpoint after MAPTI does not result in a
+ * VLPI being mapped, as there is no callback from VFIO (the guest
+ * will get the interrupt via the normal SW injection). Fixing this is
+ * not trivial, and requires some horrible messing with the VFIO
+ * internals. Not fun. Don't do that.
+ *
+ * Then there is the scheduling. Each time a vcpu is about to run on a
+ * physical CPU, KVM must tell the corresponding redistributor about
+ * it. And if we've migrated our vcpu from one CPU to another, we must
+ * tell the ITS (so that the messages reach the right redistributor).
+ * This is done in two steps: first issue a irq_set_affinity() on the
+ * irq corresponding to the vcpu, then call its_make_vpe_resident().
+ * You must be in a non-preemptible context. On exit, a call to
+ * its_make_vpe_non_resident() tells the redistributor that we're done
+ * with the vcpu.
+ *
+ * Finally, the doorbell handling: Each vcpu is allocated an interrupt
+ * which will fire each time a VLPI is made pending whilst the vcpu is
+ * not running. Each time the vcpu gets blocked, the doorbell
+ * interrupt gets enabled. When the vcpu is unblocked (for whatever
+ * reason), the doorbell interrupt is disabled.
+ */
+
+#define DB_IRQ_FLAGS (IRQ_NOAUTOEN | IRQ_DISABLE_UNLAZY | IRQ_NO_BALANCING)
+
+static irqreturn_t vgic_v4_doorbell_handler(int irq, void *info)
+{
+ struct kvm_vcpu *vcpu = info;
+
+ /* We got the message, no need to fire again */
+ if (!kvm_vgic_global_state.has_gicv4_1 &&
+ !irqd_irq_disabled(&irq_to_desc(irq)->irq_data))
+ disable_irq_nosync(irq);
+
+ /*
+ * The v4.1 doorbell can fire concurrently with the vPE being
+ * made non-resident. Ensure we only update pending_last
+ * *after* the non-residency sequence has completed.
+ */
+ raw_spin_lock(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vpe_lock);
+ vcpu->arch.vgic_cpu.vgic_v3.its_vpe.pending_last = true;
+ raw_spin_unlock(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vpe_lock);
+
+ kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
+ kvm_vcpu_kick(vcpu);
+
+ return IRQ_HANDLED;
+}
+
+static void vgic_v4_sync_sgi_config(struct its_vpe *vpe, struct vgic_irq *irq)
+{
+ vpe->sgi_config[irq->intid].enabled = irq->enabled;
+ vpe->sgi_config[irq->intid].group = irq->group;
+ vpe->sgi_config[irq->intid].priority = irq->priority;
+}
+
+static void vgic_v4_enable_vsgis(struct kvm_vcpu *vcpu)
+{
+ struct its_vpe *vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
+ int i;
+
+ /*
+ * With GICv4.1, every virtual SGI can be directly injected. So
+ * let's pretend that they are HW interrupts, tied to a host
+ * IRQ. The SGI code will do its magic.
+ */
+ for (i = 0; i < VGIC_NR_SGIS; i++) {
+ struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, i);
+ struct irq_desc *desc;
+ unsigned long flags;
+ int ret;
+
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+
+ if (irq->hw)
+ goto unlock;
+
+ irq->hw = true;
+ irq->host_irq = irq_find_mapping(vpe->sgi_domain, i);
+
+ /* Transfer the full irq state to the vPE */
+ vgic_v4_sync_sgi_config(vpe, irq);
+ desc = irq_to_desc(irq->host_irq);
+ ret = irq_domain_activate_irq(irq_desc_get_irq_data(desc),
+ false);
+ if (!WARN_ON(ret)) {
+ /* Transfer pending state */
+ ret = irq_set_irqchip_state(irq->host_irq,
+ IRQCHIP_STATE_PENDING,
+ irq->pending_latch);
+ WARN_ON(ret);
+ irq->pending_latch = false;
+ }
+ unlock:
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+}
+
+static void vgic_v4_disable_vsgis(struct kvm_vcpu *vcpu)
+{
+ int i;
+
+ for (i = 0; i < VGIC_NR_SGIS; i++) {
+ struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, i);
+ struct irq_desc *desc;
+ unsigned long flags;
+ int ret;
+
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+
+ if (!irq->hw)
+ goto unlock;
+
+ irq->hw = false;
+ ret = irq_get_irqchip_state(irq->host_irq,
+ IRQCHIP_STATE_PENDING,
+ &irq->pending_latch);
+ WARN_ON(ret);
+
+ desc = irq_to_desc(irq->host_irq);
+ irq_domain_deactivate_irq(irq_desc_get_irq_data(desc));
+ unlock:
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+}
+
+void vgic_v4_configure_vsgis(struct kvm *kvm)
+{
+ struct vgic_dist *dist = &kvm->arch.vgic;
+ struct kvm_vcpu *vcpu;
+ unsigned long i;
+
+ lockdep_assert_held(&kvm->arch.config_lock);
+
+ kvm_arm_halt_guest(kvm);
+
+ kvm_for_each_vcpu(i, vcpu, kvm) {
+ if (dist->nassgireq)
+ vgic_v4_enable_vsgis(vcpu);
+ else
+ vgic_v4_disable_vsgis(vcpu);
+ }
+
+ kvm_arm_resume_guest(kvm);
+}
+
+/*
+ * Must be called with GICv4.1 and the vPE unmapped, which
+ * indicates the invalidation of any VPT caches associated
+ * with the vPE, thus we can get the VLPI state by peeking
+ * at the VPT.
+ */
+void vgic_v4_get_vlpi_state(struct vgic_irq *irq, bool *val)
+{
+ struct its_vpe *vpe = &irq->target_vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
+ int mask = BIT(irq->intid % BITS_PER_BYTE);
+ void *va;
+ u8 *ptr;
+
+ va = page_address(vpe->vpt_page);
+ ptr = va + irq->intid / BITS_PER_BYTE;
+
+ *val = !!(*ptr & mask);
+}
+
+int vgic_v4_request_vpe_irq(struct kvm_vcpu *vcpu, int irq)
+{
+ return request_irq(irq, vgic_v4_doorbell_handler, 0, "vcpu", vcpu);
+}
+
+/**
+ * vgic_v4_init - Initialize the GICv4 data structures
+ * @kvm: Pointer to the VM being initialized
+ *
+ * We may be called each time a vITS is created, or when the
+ * vgic is initialized. In both cases, the number of vcpus
+ * should now be fixed.
+ */
+int vgic_v4_init(struct kvm *kvm)
+{
+ struct vgic_dist *dist = &kvm->arch.vgic;
+ struct kvm_vcpu *vcpu;
+ int nr_vcpus, ret;
+ unsigned long i;
+
+ lockdep_assert_held(&kvm->arch.config_lock);
+
+ if (!kvm_vgic_global_state.has_gicv4)
+ return 0; /* Nothing to see here... move along. */
+
+ if (dist->its_vm.vpes)
+ return 0;
+
+ nr_vcpus = atomic_read(&kvm->online_vcpus);
+
+ dist->its_vm.vpes = kcalloc(nr_vcpus, sizeof(*dist->its_vm.vpes),
+ GFP_KERNEL_ACCOUNT);
+ if (!dist->its_vm.vpes)
+ return -ENOMEM;
+
+ dist->its_vm.nr_vpes = nr_vcpus;
+
+ kvm_for_each_vcpu(i, vcpu, kvm)
+ dist->its_vm.vpes[i] = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
+
+ ret = its_alloc_vcpu_irqs(&dist->its_vm);
+ if (ret < 0) {
+ kvm_err("VPE IRQ allocation failure\n");
+ kfree(dist->its_vm.vpes);
+ dist->its_vm.nr_vpes = 0;
+ dist->its_vm.vpes = NULL;
+ return ret;
+ }
+
+ kvm_for_each_vcpu(i, vcpu, kvm) {
+ int irq = dist->its_vm.vpes[i]->irq;
+ unsigned long irq_flags = DB_IRQ_FLAGS;
+
+ /*
+ * Don't automatically enable the doorbell, as we're
+ * flipping it back and forth when the vcpu gets
+ * blocked. Also disable the lazy disabling, as the
+ * doorbell could kick us out of the guest too
+ * early...
+ *
+ * On GICv4.1, the doorbell is managed in HW and must
+ * be left enabled.
+ */
+ if (kvm_vgic_global_state.has_gicv4_1)
+ irq_flags &= ~IRQ_NOAUTOEN;
+ irq_set_status_flags(irq, irq_flags);
+
+ ret = vgic_v4_request_vpe_irq(vcpu, irq);
+ if (ret) {
+ kvm_err("failed to allocate vcpu IRQ%d\n", irq);
+ /*
+ * Trick: adjust the number of vpes so we know
+ * how many to nuke on teardown...
+ */
+ dist->its_vm.nr_vpes = i;
+ break;
+ }
+ }
+
+ if (ret)
+ vgic_v4_teardown(kvm);
+
+ return ret;
+}
+
+/**
+ * vgic_v4_teardown - Free the GICv4 data structures
+ * @kvm: Pointer to the VM being destroyed
+ */
+void vgic_v4_teardown(struct kvm *kvm)
+{
+ struct its_vm *its_vm = &kvm->arch.vgic.its_vm;
+ int i;
+
+ lockdep_assert_held(&kvm->arch.config_lock);
+
+ if (!its_vm->vpes)
+ return;
+
+ for (i = 0; i < its_vm->nr_vpes; i++) {
+ struct kvm_vcpu *vcpu = kvm_get_vcpu(kvm, i);
+ int irq = its_vm->vpes[i]->irq;
+
+ irq_clear_status_flags(irq, DB_IRQ_FLAGS);
+ free_irq(irq, vcpu);
+ }
+
+ its_free_vcpu_irqs(its_vm);
+ kfree(its_vm->vpes);
+ its_vm->nr_vpes = 0;
+ its_vm->vpes = NULL;
+}
+
+int vgic_v4_put(struct kvm_vcpu *vcpu)
+{
+ struct its_vpe *vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
+
+ if (!vgic_supports_direct_msis(vcpu->kvm) || !vpe->resident)
+ return 0;
+
+ return its_make_vpe_non_resident(vpe, !!vcpu_get_flag(vcpu, IN_WFI));
+}
+
+int vgic_v4_load(struct kvm_vcpu *vcpu)
+{
+ struct its_vpe *vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
+ int err;
+
+ if (!vgic_supports_direct_msis(vcpu->kvm) || vpe->resident)
+ return 0;
+
+ if (vcpu_get_flag(vcpu, IN_WFI))
+ return 0;
+
+ /*
+ * Before making the VPE resident, make sure the redistributor
+ * corresponding to our current CPU expects us here. See the
+ * doc in drivers/irqchip/irq-gic-v4.c to understand how this
+ * turns into a VMOVP command at the ITS level.
+ */
+ err = irq_set_affinity(vpe->irq, cpumask_of(smp_processor_id()));
+ if (err)
+ return err;
+
+ err = its_make_vpe_resident(vpe, false, vcpu->kvm->arch.vgic.enabled);
+ if (err)
+ return err;
+
+ /*
+ * Now that the VPE is resident, let's get rid of a potential
+ * doorbell interrupt that would still be pending. This is a
+ * GICv4.0 only "feature"...
+ */
+ if (!kvm_vgic_global_state.has_gicv4_1)
+ err = irq_set_irqchip_state(vpe->irq, IRQCHIP_STATE_PENDING, false);
+
+ return err;
+}
+
+void vgic_v4_commit(struct kvm_vcpu *vcpu)
+{
+ struct its_vpe *vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
+
+ /*
+ * No need to wait for the vPE to be ready across a shallow guest
+ * exit, as only a vcpu_put will invalidate it.
+ */
+ if (!vpe->ready)
+ its_commit_vpe(vpe);
+}
+
+static struct vgic_its *vgic_get_its(struct kvm *kvm,
+ struct kvm_kernel_irq_routing_entry *irq_entry)
+{
+ struct kvm_msi msi = (struct kvm_msi) {
+ .address_lo = irq_entry->msi.address_lo,
+ .address_hi = irq_entry->msi.address_hi,
+ .data = irq_entry->msi.data,
+ .flags = irq_entry->msi.flags,
+ .devid = irq_entry->msi.devid,
+ };
+
+ return vgic_msi_to_its(kvm, &msi);
+}
+
+int kvm_vgic_v4_set_forwarding(struct kvm *kvm, int virq,
+ struct kvm_kernel_irq_routing_entry *irq_entry)
+{
+ struct vgic_its *its;
+ struct vgic_irq *irq;
+ struct its_vlpi_map map;
+ unsigned long flags;
+ int ret;
+
+ if (!vgic_supports_direct_msis(kvm))
+ return 0;
+
+ /*
+ * Get the ITS, and escape early on error (not a valid
+ * doorbell for any of our vITSs).
+ */
+ its = vgic_get_its(kvm, irq_entry);
+ if (IS_ERR(its))
+ return 0;
+
+ mutex_lock(&its->its_lock);
+
+ /* Perform the actual DevID/EventID -> LPI translation. */
+ ret = vgic_its_resolve_lpi(kvm, its, irq_entry->msi.devid,
+ irq_entry->msi.data, &irq);
+ if (ret)
+ goto out;
+
+ /*
+ * Emit the mapping request. If it fails, the ITS probably
+ * isn't v4 compatible, so let's silently bail out. Holding
+ * the ITS lock should ensure that nothing can modify the
+ * target vcpu.
+ */
+ map = (struct its_vlpi_map) {
+ .vm = &kvm->arch.vgic.its_vm,
+ .vpe = &irq->target_vcpu->arch.vgic_cpu.vgic_v3.its_vpe,
+ .vintid = irq->intid,
+ .properties = ((irq->priority & 0xfc) |
+ (irq->enabled ? LPI_PROP_ENABLED : 0) |
+ LPI_PROP_GROUP1),
+ .db_enabled = true,
+ };
+
+ ret = its_map_vlpi(virq, &map);
+ if (ret)
+ goto out;
+
+ irq->hw = true;
+ irq->host_irq = virq;
+ atomic_inc(&map.vpe->vlpi_count);
+
+ /* Transfer pending state */
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+ if (irq->pending_latch) {
+ ret = irq_set_irqchip_state(irq->host_irq,
+ IRQCHIP_STATE_PENDING,
+ irq->pending_latch);
+ WARN_RATELIMIT(ret, "IRQ %d", irq->host_irq);
+
+ /*
+ * Clear pending_latch and communicate this state
+ * change via vgic_queue_irq_unlock.
+ */
+ irq->pending_latch = false;
+ vgic_queue_irq_unlock(kvm, irq, flags);
+ } else {
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+ }
+
+out:
+ mutex_unlock(&its->its_lock);
+ return ret;
+}
+
+int kvm_vgic_v4_unset_forwarding(struct kvm *kvm, int virq,
+ struct kvm_kernel_irq_routing_entry *irq_entry)
+{
+ struct vgic_its *its;
+ struct vgic_irq *irq;
+ int ret;
+
+ if (!vgic_supports_direct_msis(kvm))
+ return 0;
+
+ /*
+ * Get the ITS, and escape early on error (not a valid
+ * doorbell for any of our vITSs).
+ */
+ its = vgic_get_its(kvm, irq_entry);
+ if (IS_ERR(its))
+ return 0;
+
+ mutex_lock(&its->its_lock);
+
+ ret = vgic_its_resolve_lpi(kvm, its, irq_entry->msi.devid,
+ irq_entry->msi.data, &irq);
+ if (ret)
+ goto out;
+
+ WARN_ON(!(irq->hw && irq->host_irq == virq));
+ if (irq->hw) {
+ atomic_dec(&irq->target_vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vlpi_count);
+ irq->hw = false;
+ ret = its_unmap_vlpi(virq);
+ }
+
+out:
+ mutex_unlock(&its->its_lock);
+ return ret;
+}
diff --git a/arch/arm64/kvm/vgic/vgic.c b/arch/arm64/kvm/vgic/vgic.c
new file mode 100644
index 0000000000..8be4c1ebde
--- /dev/null
+++ b/arch/arm64/kvm/vgic/vgic.c
@@ -0,0 +1,1078 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2015, 2016 ARM Ltd.
+ */
+
+#include <linux/interrupt.h>
+#include <linux/irq.h>
+#include <linux/kvm.h>
+#include <linux/kvm_host.h>
+#include <linux/list_sort.h>
+#include <linux/nospec.h>
+
+#include <asm/kvm_hyp.h>
+
+#include "vgic.h"
+
+#define CREATE_TRACE_POINTS
+#include "trace.h"
+
+struct vgic_global kvm_vgic_global_state __ro_after_init = {
+ .gicv3_cpuif = STATIC_KEY_FALSE_INIT,
+};
+
+/*
+ * Locking order is always:
+ * kvm->lock (mutex)
+ * vcpu->mutex (mutex)
+ * kvm->arch.config_lock (mutex)
+ * its->cmd_lock (mutex)
+ * its->its_lock (mutex)
+ * vgic_cpu->ap_list_lock must be taken with IRQs disabled
+ * kvm->lpi_list_lock must be taken with IRQs disabled
+ * vgic_irq->irq_lock must be taken with IRQs disabled
+ *
+ * As the ap_list_lock might be taken from the timer interrupt handler,
+ * we have to disable IRQs before taking this lock and everything lower
+ * than it.
+ *
+ * If you need to take multiple locks, always take the upper lock first,
+ * then the lower ones, e.g. first take the its_lock, then the irq_lock.
+ * If you are already holding a lock and need to take a higher one, you
+ * have to drop the lower ranking lock first and re-acquire it after having
+ * taken the upper one.
+ *
+ * When taking more than one ap_list_lock at the same time, always take the
+ * lowest numbered VCPU's ap_list_lock first, so:
+ * vcpuX->vcpu_id < vcpuY->vcpu_id:
+ * raw_spin_lock(vcpuX->arch.vgic_cpu.ap_list_lock);
+ * raw_spin_lock(vcpuY->arch.vgic_cpu.ap_list_lock);
+ *
+ * Since the VGIC must support injecting virtual interrupts from ISRs, we have
+ * to use the raw_spin_lock_irqsave/raw_spin_unlock_irqrestore versions of outer
+ * spinlocks for any lock that may be taken while injecting an interrupt.
+ */
+
+/*
+ * Iterate over the VM's list of mapped LPIs to find the one with a
+ * matching interrupt ID and return a reference to the IRQ structure.
+ */
+static struct vgic_irq *vgic_get_lpi(struct kvm *kvm, u32 intid)
+{
+ struct vgic_dist *dist = &kvm->arch.vgic;
+ struct vgic_irq *irq = NULL;
+ unsigned long flags;
+
+ raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
+
+ list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
+ if (irq->intid != intid)
+ continue;
+
+ /*
+ * This increases the refcount, the caller is expected to
+ * call vgic_put_irq() later once it's finished with the IRQ.
+ */
+ vgic_get_irq_kref(irq);
+ goto out_unlock;
+ }
+ irq = NULL;
+
+out_unlock:
+ raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
+
+ return irq;
+}
+
+/*
+ * This looks up the virtual interrupt ID to get the corresponding
+ * struct vgic_irq. It also increases the refcount, so any caller is expected
+ * to call vgic_put_irq() once it's finished with this IRQ.
+ */
+struct vgic_irq *vgic_get_irq(struct kvm *kvm, struct kvm_vcpu *vcpu,
+ u32 intid)
+{
+ /* SGIs and PPIs */
+ if (intid <= VGIC_MAX_PRIVATE) {
+ intid = array_index_nospec(intid, VGIC_MAX_PRIVATE + 1);
+ return &vcpu->arch.vgic_cpu.private_irqs[intid];
+ }
+
+ /* SPIs */
+ if (intid < (kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS)) {
+ intid = array_index_nospec(intid, kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS);
+ return &kvm->arch.vgic.spis[intid - VGIC_NR_PRIVATE_IRQS];
+ }
+
+ /* LPIs */
+ if (intid >= VGIC_MIN_LPI)
+ return vgic_get_lpi(kvm, intid);
+
+ return NULL;
+}
+
+/*
+ * We can't do anything in here, because we lack the kvm pointer to
+ * lock and remove the item from the lpi_list. So we keep this function
+ * empty and use the return value of kref_put() to trigger the freeing.
+ */
+static void vgic_irq_release(struct kref *ref)
+{
+}
+
+/*
+ * Drop the refcount on the LPI. Must be called with lpi_list_lock held.
+ */
+void __vgic_put_lpi_locked(struct kvm *kvm, struct vgic_irq *irq)
+{
+ struct vgic_dist *dist = &kvm->arch.vgic;
+
+ if (!kref_put(&irq->refcount, vgic_irq_release))
+ return;
+
+ list_del(&irq->lpi_list);
+ dist->lpi_list_count--;
+
+ kfree(irq);
+}
+
+void vgic_put_irq(struct kvm *kvm, struct vgic_irq *irq)
+{
+ struct vgic_dist *dist = &kvm->arch.vgic;
+ unsigned long flags;
+
+ if (irq->intid < VGIC_MIN_LPI)
+ return;
+
+ raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
+ __vgic_put_lpi_locked(kvm, irq);
+ raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
+}
+
+void vgic_flush_pending_lpis(struct kvm_vcpu *vcpu)
+{
+ struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
+ struct vgic_irq *irq, *tmp;
+ unsigned long flags;
+
+ raw_spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags);
+
+ list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) {
+ if (irq->intid >= VGIC_MIN_LPI) {
+ raw_spin_lock(&irq->irq_lock);
+ list_del(&irq->ap_list);
+ irq->vcpu = NULL;
+ raw_spin_unlock(&irq->irq_lock);
+ vgic_put_irq(vcpu->kvm, irq);
+ }
+ }
+
+ raw_spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags);
+}
+
+void vgic_irq_set_phys_pending(struct vgic_irq *irq, bool pending)
+{
+ WARN_ON(irq_set_irqchip_state(irq->host_irq,
+ IRQCHIP_STATE_PENDING,
+ pending));
+}
+
+bool vgic_get_phys_line_level(struct vgic_irq *irq)
+{
+ bool line_level;
+
+ BUG_ON(!irq->hw);
+
+ if (irq->ops && irq->ops->get_input_level)
+ return irq->ops->get_input_level(irq->intid);
+
+ WARN_ON(irq_get_irqchip_state(irq->host_irq,
+ IRQCHIP_STATE_PENDING,
+ &line_level));
+ return line_level;
+}
+
+/* Set/Clear the physical active state */
+void vgic_irq_set_phys_active(struct vgic_irq *irq, bool active)
+{
+
+ BUG_ON(!irq->hw);
+ WARN_ON(irq_set_irqchip_state(irq->host_irq,
+ IRQCHIP_STATE_ACTIVE,
+ active));
+}
+
+/**
+ * kvm_vgic_target_oracle - compute the target vcpu for an irq
+ *
+ * @irq: The irq to route. Must be already locked.
+ *
+ * Based on the current state of the interrupt (enabled, pending,
+ * active, vcpu and target_vcpu), compute the next vcpu this should be
+ * given to. Return NULL if this shouldn't be injected at all.
+ *
+ * Requires the IRQ lock to be held.
+ */
+static struct kvm_vcpu *vgic_target_oracle(struct vgic_irq *irq)
+{
+ lockdep_assert_held(&irq->irq_lock);
+
+ /* If the interrupt is active, it must stay on the current vcpu */
+ if (irq->active)
+ return irq->vcpu ? : irq->target_vcpu;
+
+ /*
+ * If the IRQ is not active but enabled and pending, we should direct
+ * it to its configured target VCPU.
+ * If the distributor is disabled, pending interrupts shouldn't be
+ * forwarded.
+ */
+ if (irq->enabled && irq_is_pending(irq)) {
+ if (unlikely(irq->target_vcpu &&
+ !irq->target_vcpu->kvm->arch.vgic.enabled))
+ return NULL;
+
+ return irq->target_vcpu;
+ }
+
+ /* If neither active nor pending and enabled, then this IRQ should not
+ * be queued to any VCPU.
+ */
+ return NULL;
+}
+
+/*
+ * The order of items in the ap_lists defines how we'll pack things in LRs as
+ * well, the first items in the list being the first things populated in the
+ * LRs.
+ *
+ * A hard rule is that active interrupts can never be pushed out of the LRs
+ * (and therefore take priority) since we cannot reliably trap on deactivation
+ * of IRQs and therefore they have to be present in the LRs.
+ *
+ * Otherwise things should be sorted by the priority field and the GIC
+ * hardware support will take care of preemption of priority groups etc.
+ *
+ * Return negative if "a" sorts before "b", 0 to preserve order, and positive
+ * to sort "b" before "a".
+ */
+static int vgic_irq_cmp(void *priv, const struct list_head *a,
+ const struct list_head *b)
+{
+ struct vgic_irq *irqa = container_of(a, struct vgic_irq, ap_list);
+ struct vgic_irq *irqb = container_of(b, struct vgic_irq, ap_list);
+ bool penda, pendb;
+ int ret;
+
+ /*
+ * list_sort may call this function with the same element when
+ * the list is fairly long.
+ */
+ if (unlikely(irqa == irqb))
+ return 0;
+
+ raw_spin_lock(&irqa->irq_lock);
+ raw_spin_lock_nested(&irqb->irq_lock, SINGLE_DEPTH_NESTING);
+
+ if (irqa->active || irqb->active) {
+ ret = (int)irqb->active - (int)irqa->active;
+ goto out;
+ }
+
+ penda = irqa->enabled && irq_is_pending(irqa);
+ pendb = irqb->enabled && irq_is_pending(irqb);
+
+ if (!penda || !pendb) {
+ ret = (int)pendb - (int)penda;
+ goto out;
+ }
+
+ /* Both pending and enabled, sort by priority */
+ ret = irqa->priority - irqb->priority;
+out:
+ raw_spin_unlock(&irqb->irq_lock);
+ raw_spin_unlock(&irqa->irq_lock);
+ return ret;
+}
+
+/* Must be called with the ap_list_lock held */
+static void vgic_sort_ap_list(struct kvm_vcpu *vcpu)
+{
+ struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
+
+ lockdep_assert_held(&vgic_cpu->ap_list_lock);
+
+ list_sort(NULL, &vgic_cpu->ap_list_head, vgic_irq_cmp);
+}
+
+/*
+ * Only valid injection if changing level for level-triggered IRQs or for a
+ * rising edge, and in-kernel connected IRQ lines can only be controlled by
+ * their owner.
+ */
+static bool vgic_validate_injection(struct vgic_irq *irq, bool level, void *owner)
+{
+ if (irq->owner != owner)
+ return false;
+
+ switch (irq->config) {
+ case VGIC_CONFIG_LEVEL:
+ return irq->line_level != level;
+ case VGIC_CONFIG_EDGE:
+ return level;
+ }
+
+ return false;
+}
+
+/*
+ * Check whether an IRQ needs to (and can) be queued to a VCPU's ap list.
+ * Do the queuing if necessary, taking the right locks in the right order.
+ * Returns true when the IRQ was queued, false otherwise.
+ *
+ * Needs to be entered with the IRQ lock already held, but will return
+ * with all locks dropped.
+ */
+bool vgic_queue_irq_unlock(struct kvm *kvm, struct vgic_irq *irq,
+ unsigned long flags)
+{
+ struct kvm_vcpu *vcpu;
+
+ lockdep_assert_held(&irq->irq_lock);
+
+retry:
+ vcpu = vgic_target_oracle(irq);
+ if (irq->vcpu || !vcpu) {
+ /*
+ * If this IRQ is already on a VCPU's ap_list, then it
+ * cannot be moved or modified and there is no more work for
+ * us to do.
+ *
+ * Otherwise, if the irq is not pending and enabled, it does
+ * not need to be inserted into an ap_list and there is also
+ * no more work for us to do.
+ */
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+
+ /*
+ * We have to kick the VCPU here, because we could be
+ * queueing an edge-triggered interrupt for which we
+ * get no EOI maintenance interrupt. In that case,
+ * while the IRQ is already on the VCPU's AP list, the
+ * VCPU could have EOI'ed the original interrupt and
+ * won't see this one until it exits for some other
+ * reason.
+ */
+ if (vcpu) {
+ kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
+ kvm_vcpu_kick(vcpu);
+ }
+ return false;
+ }
+
+ /*
+ * We must unlock the irq lock to take the ap_list_lock where
+ * we are going to insert this new pending interrupt.
+ */
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+
+ /* someone can do stuff here, which we re-check below */
+
+ raw_spin_lock_irqsave(&vcpu->arch.vgic_cpu.ap_list_lock, flags);
+ raw_spin_lock(&irq->irq_lock);
+
+ /*
+ * Did something change behind our backs?
+ *
+ * There are two cases:
+ * 1) The irq lost its pending state or was disabled behind our
+ * backs and/or it was queued to another VCPU's ap_list.
+ * 2) Someone changed the affinity on this irq behind our
+ * backs and we are now holding the wrong ap_list_lock.
+ *
+ * In both cases, drop the locks and retry.
+ */
+
+ if (unlikely(irq->vcpu || vcpu != vgic_target_oracle(irq))) {
+ raw_spin_unlock(&irq->irq_lock);
+ raw_spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock,
+ flags);
+
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+ goto retry;
+ }
+
+ /*
+ * Grab a reference to the irq to reflect the fact that it is
+ * now in the ap_list.
+ */
+ vgic_get_irq_kref(irq);
+ list_add_tail(&irq->ap_list, &vcpu->arch.vgic_cpu.ap_list_head);
+ irq->vcpu = vcpu;
+
+ raw_spin_unlock(&irq->irq_lock);
+ raw_spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock, flags);
+
+ kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
+ kvm_vcpu_kick(vcpu);
+
+ return true;
+}
+
+/**
+ * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
+ * @kvm: The VM structure pointer
+ * @cpuid: The CPU for PPIs
+ * @intid: The INTID to inject a new state to.
+ * @level: Edge-triggered: true: to trigger the interrupt
+ * false: to ignore the call
+ * Level-sensitive true: raise the input signal
+ * false: lower the input signal
+ * @owner: The opaque pointer to the owner of the IRQ being raised to verify
+ * that the caller is allowed to inject this IRQ. Userspace
+ * injections will have owner == NULL.
+ *
+ * The VGIC is not concerned with devices being active-LOW or active-HIGH for
+ * level-sensitive interrupts. You can think of the level parameter as 1
+ * being HIGH and 0 being LOW and all devices being active-HIGH.
+ */
+int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int intid,
+ bool level, void *owner)
+{
+ struct kvm_vcpu *vcpu;
+ struct vgic_irq *irq;
+ unsigned long flags;
+ int ret;
+
+ trace_vgic_update_irq_pending(cpuid, intid, level);
+
+ ret = vgic_lazy_init(kvm);
+ if (ret)
+ return ret;
+
+ vcpu = kvm_get_vcpu(kvm, cpuid);
+ if (!vcpu && intid < VGIC_NR_PRIVATE_IRQS)
+ return -EINVAL;
+
+ irq = vgic_get_irq(kvm, vcpu, intid);
+ if (!irq)
+ return -EINVAL;
+
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+
+ if (!vgic_validate_injection(irq, level, owner)) {
+ /* Nothing to see here, move along... */
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+ vgic_put_irq(kvm, irq);
+ return 0;
+ }
+
+ if (irq->config == VGIC_CONFIG_LEVEL)
+ irq->line_level = level;
+ else
+ irq->pending_latch = true;
+
+ vgic_queue_irq_unlock(kvm, irq, flags);
+ vgic_put_irq(kvm, irq);
+
+ return 0;
+}
+
+/* @irq->irq_lock must be held */
+static int kvm_vgic_map_irq(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
+ unsigned int host_irq,
+ struct irq_ops *ops)
+{
+ struct irq_desc *desc;
+ struct irq_data *data;
+
+ /*
+ * Find the physical IRQ number corresponding to @host_irq
+ */
+ desc = irq_to_desc(host_irq);
+ if (!desc) {
+ kvm_err("%s: no interrupt descriptor\n", __func__);
+ return -EINVAL;
+ }
+ data = irq_desc_get_irq_data(desc);
+ while (data->parent_data)
+ data = data->parent_data;
+
+ irq->hw = true;
+ irq->host_irq = host_irq;
+ irq->hwintid = data->hwirq;
+ irq->ops = ops;
+ return 0;
+}
+
+/* @irq->irq_lock must be held */
+static inline void kvm_vgic_unmap_irq(struct vgic_irq *irq)
+{
+ irq->hw = false;
+ irq->hwintid = 0;
+ irq->ops = NULL;
+}
+
+int kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu, unsigned int host_irq,
+ u32 vintid, struct irq_ops *ops)
+{
+ struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
+ unsigned long flags;
+ int ret;
+
+ BUG_ON(!irq);
+
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+ ret = kvm_vgic_map_irq(vcpu, irq, host_irq, ops);
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+ vgic_put_irq(vcpu->kvm, irq);
+
+ return ret;
+}
+
+/**
+ * kvm_vgic_reset_mapped_irq - Reset a mapped IRQ
+ * @vcpu: The VCPU pointer
+ * @vintid: The INTID of the interrupt
+ *
+ * Reset the active and pending states of a mapped interrupt. Kernel
+ * subsystems injecting mapped interrupts should reset their interrupt lines
+ * when we are doing a reset of the VM.
+ */
+void kvm_vgic_reset_mapped_irq(struct kvm_vcpu *vcpu, u32 vintid)
+{
+ struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
+ unsigned long flags;
+
+ if (!irq->hw)
+ goto out;
+
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+ irq->active = false;
+ irq->pending_latch = false;
+ irq->line_level = false;
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+out:
+ vgic_put_irq(vcpu->kvm, irq);
+}
+
+int kvm_vgic_unmap_phys_irq(struct kvm_vcpu *vcpu, unsigned int vintid)
+{
+ struct vgic_irq *irq;
+ unsigned long flags;
+
+ if (!vgic_initialized(vcpu->kvm))
+ return -EAGAIN;
+
+ irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
+ BUG_ON(!irq);
+
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+ kvm_vgic_unmap_irq(irq);
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+ vgic_put_irq(vcpu->kvm, irq);
+
+ return 0;
+}
+
+int kvm_vgic_get_map(struct kvm_vcpu *vcpu, unsigned int vintid)
+{
+ struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
+ unsigned long flags;
+ int ret = -1;
+
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+ if (irq->hw)
+ ret = irq->hwintid;
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+
+ vgic_put_irq(vcpu->kvm, irq);
+ return ret;
+}
+
+/**
+ * kvm_vgic_set_owner - Set the owner of an interrupt for a VM
+ *
+ * @vcpu: Pointer to the VCPU (used for PPIs)
+ * @intid: The virtual INTID identifying the interrupt (PPI or SPI)
+ * @owner: Opaque pointer to the owner
+ *
+ * Returns 0 if intid is not already used by another in-kernel device and the
+ * owner is set, otherwise returns an error code.
+ */
+int kvm_vgic_set_owner(struct kvm_vcpu *vcpu, unsigned int intid, void *owner)
+{
+ struct vgic_irq *irq;
+ unsigned long flags;
+ int ret = 0;
+
+ if (!vgic_initialized(vcpu->kvm))
+ return -EAGAIN;
+
+ /* SGIs and LPIs cannot be wired up to any device */
+ if (!irq_is_ppi(intid) && !vgic_valid_spi(vcpu->kvm, intid))
+ return -EINVAL;
+
+ irq = vgic_get_irq(vcpu->kvm, vcpu, intid);
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+ if (irq->owner && irq->owner != owner)
+ ret = -EEXIST;
+ else
+ irq->owner = owner;
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+
+ return ret;
+}
+
+/**
+ * vgic_prune_ap_list - Remove non-relevant interrupts from the list
+ *
+ * @vcpu: The VCPU pointer
+ *
+ * Go over the list of "interesting" interrupts, and prune those that we
+ * won't have to consider in the near future.
+ */
+static void vgic_prune_ap_list(struct kvm_vcpu *vcpu)
+{
+ struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
+ struct vgic_irq *irq, *tmp;
+
+ DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
+
+retry:
+ raw_spin_lock(&vgic_cpu->ap_list_lock);
+
+ list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) {
+ struct kvm_vcpu *target_vcpu, *vcpuA, *vcpuB;
+ bool target_vcpu_needs_kick = false;
+
+ raw_spin_lock(&irq->irq_lock);
+
+ BUG_ON(vcpu != irq->vcpu);
+
+ target_vcpu = vgic_target_oracle(irq);
+
+ if (!target_vcpu) {
+ /*
+ * We don't need to process this interrupt any
+ * further, move it off the list.
+ */
+ list_del(&irq->ap_list);
+ irq->vcpu = NULL;
+ raw_spin_unlock(&irq->irq_lock);
+
+ /*
+ * This vgic_put_irq call matches the
+ * vgic_get_irq_kref in vgic_queue_irq_unlock,
+ * where we added the LPI to the ap_list. As
+ * we remove the irq from the list, we drop
+ * also drop the refcount.
+ */
+ vgic_put_irq(vcpu->kvm, irq);
+ continue;
+ }
+
+ if (target_vcpu == vcpu) {
+ /* We're on the right CPU */
+ raw_spin_unlock(&irq->irq_lock);
+ continue;
+ }
+
+ /* This interrupt looks like it has to be migrated. */
+
+ raw_spin_unlock(&irq->irq_lock);
+ raw_spin_unlock(&vgic_cpu->ap_list_lock);
+
+ /*
+ * Ensure locking order by always locking the smallest
+ * ID first.
+ */
+ if (vcpu->vcpu_id < target_vcpu->vcpu_id) {
+ vcpuA = vcpu;
+ vcpuB = target_vcpu;
+ } else {
+ vcpuA = target_vcpu;
+ vcpuB = vcpu;
+ }
+
+ raw_spin_lock(&vcpuA->arch.vgic_cpu.ap_list_lock);
+ raw_spin_lock_nested(&vcpuB->arch.vgic_cpu.ap_list_lock,
+ SINGLE_DEPTH_NESTING);
+ raw_spin_lock(&irq->irq_lock);
+
+ /*
+ * If the affinity has been preserved, move the
+ * interrupt around. Otherwise, it means things have
+ * changed while the interrupt was unlocked, and we
+ * need to replay this.
+ *
+ * In all cases, we cannot trust the list not to have
+ * changed, so we restart from the beginning.
+ */
+ if (target_vcpu == vgic_target_oracle(irq)) {
+ struct vgic_cpu *new_cpu = &target_vcpu->arch.vgic_cpu;
+
+ list_del(&irq->ap_list);
+ irq->vcpu = target_vcpu;
+ list_add_tail(&irq->ap_list, &new_cpu->ap_list_head);
+ target_vcpu_needs_kick = true;
+ }
+
+ raw_spin_unlock(&irq->irq_lock);
+ raw_spin_unlock(&vcpuB->arch.vgic_cpu.ap_list_lock);
+ raw_spin_unlock(&vcpuA->arch.vgic_cpu.ap_list_lock);
+
+ if (target_vcpu_needs_kick) {
+ kvm_make_request(KVM_REQ_IRQ_PENDING, target_vcpu);
+ kvm_vcpu_kick(target_vcpu);
+ }
+
+ goto retry;
+ }
+
+ raw_spin_unlock(&vgic_cpu->ap_list_lock);
+}
+
+static inline void vgic_fold_lr_state(struct kvm_vcpu *vcpu)
+{
+ if (kvm_vgic_global_state.type == VGIC_V2)
+ vgic_v2_fold_lr_state(vcpu);
+ else
+ vgic_v3_fold_lr_state(vcpu);
+}
+
+/* Requires the irq_lock to be held. */
+static inline void vgic_populate_lr(struct kvm_vcpu *vcpu,
+ struct vgic_irq *irq, int lr)
+{
+ lockdep_assert_held(&irq->irq_lock);
+
+ if (kvm_vgic_global_state.type == VGIC_V2)
+ vgic_v2_populate_lr(vcpu, irq, lr);
+ else
+ vgic_v3_populate_lr(vcpu, irq, lr);
+}
+
+static inline void vgic_clear_lr(struct kvm_vcpu *vcpu, int lr)
+{
+ if (kvm_vgic_global_state.type == VGIC_V2)
+ vgic_v2_clear_lr(vcpu, lr);
+ else
+ vgic_v3_clear_lr(vcpu, lr);
+}
+
+static inline void vgic_set_underflow(struct kvm_vcpu *vcpu)
+{
+ if (kvm_vgic_global_state.type == VGIC_V2)
+ vgic_v2_set_underflow(vcpu);
+ else
+ vgic_v3_set_underflow(vcpu);
+}
+
+/* Requires the ap_list_lock to be held. */
+static int compute_ap_list_depth(struct kvm_vcpu *vcpu,
+ bool *multi_sgi)
+{
+ struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
+ struct vgic_irq *irq;
+ int count = 0;
+
+ *multi_sgi = false;
+
+ lockdep_assert_held(&vgic_cpu->ap_list_lock);
+
+ list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
+ int w;
+
+ raw_spin_lock(&irq->irq_lock);
+ /* GICv2 SGIs can count for more than one... */
+ w = vgic_irq_get_lr_count(irq);
+ raw_spin_unlock(&irq->irq_lock);
+
+ count += w;
+ *multi_sgi |= (w > 1);
+ }
+ return count;
+}
+
+/* Requires the VCPU's ap_list_lock to be held. */
+static void vgic_flush_lr_state(struct kvm_vcpu *vcpu)
+{
+ struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
+ struct vgic_irq *irq;
+ int count;
+ bool multi_sgi;
+ u8 prio = 0xff;
+ int i = 0;
+
+ lockdep_assert_held(&vgic_cpu->ap_list_lock);
+
+ count = compute_ap_list_depth(vcpu, &multi_sgi);
+ if (count > kvm_vgic_global_state.nr_lr || multi_sgi)
+ vgic_sort_ap_list(vcpu);
+
+ count = 0;
+
+ list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
+ raw_spin_lock(&irq->irq_lock);
+
+ /*
+ * If we have multi-SGIs in the pipeline, we need to
+ * guarantee that they are all seen before any IRQ of
+ * lower priority. In that case, we need to filter out
+ * these interrupts by exiting early. This is easy as
+ * the AP list has been sorted already.
+ */
+ if (multi_sgi && irq->priority > prio) {
+ _raw_spin_unlock(&irq->irq_lock);
+ break;
+ }
+
+ if (likely(vgic_target_oracle(irq) == vcpu)) {
+ vgic_populate_lr(vcpu, irq, count++);
+
+ if (irq->source)
+ prio = irq->priority;
+ }
+
+ raw_spin_unlock(&irq->irq_lock);
+
+ if (count == kvm_vgic_global_state.nr_lr) {
+ if (!list_is_last(&irq->ap_list,
+ &vgic_cpu->ap_list_head))
+ vgic_set_underflow(vcpu);
+ break;
+ }
+ }
+
+ /* Nuke remaining LRs */
+ for (i = count ; i < kvm_vgic_global_state.nr_lr; i++)
+ vgic_clear_lr(vcpu, i);
+
+ if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
+ vcpu->arch.vgic_cpu.vgic_v2.used_lrs = count;
+ else
+ vcpu->arch.vgic_cpu.vgic_v3.used_lrs = count;
+}
+
+static inline bool can_access_vgic_from_kernel(void)
+{
+ /*
+ * GICv2 can always be accessed from the kernel because it is
+ * memory-mapped, and VHE systems can access GICv3 EL2 system
+ * registers.
+ */
+ return !static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif) || has_vhe();
+}
+
+static inline void vgic_save_state(struct kvm_vcpu *vcpu)
+{
+ if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
+ vgic_v2_save_state(vcpu);
+ else
+ __vgic_v3_save_state(&vcpu->arch.vgic_cpu.vgic_v3);
+}
+
+/* Sync back the hardware VGIC state into our emulation after a guest's run. */
+void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
+{
+ int used_lrs;
+
+ /* An empty ap_list_head implies used_lrs == 0 */
+ if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head))
+ return;
+
+ if (can_access_vgic_from_kernel())
+ vgic_save_state(vcpu);
+
+ if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
+ used_lrs = vcpu->arch.vgic_cpu.vgic_v2.used_lrs;
+ else
+ used_lrs = vcpu->arch.vgic_cpu.vgic_v3.used_lrs;
+
+ if (used_lrs)
+ vgic_fold_lr_state(vcpu);
+ vgic_prune_ap_list(vcpu);
+}
+
+static inline void vgic_restore_state(struct kvm_vcpu *vcpu)
+{
+ if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
+ vgic_v2_restore_state(vcpu);
+ else
+ __vgic_v3_restore_state(&vcpu->arch.vgic_cpu.vgic_v3);
+}
+
+/* Flush our emulation state into the GIC hardware before entering the guest. */
+void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
+{
+ /*
+ * If there are no virtual interrupts active or pending for this
+ * VCPU, then there is no work to do and we can bail out without
+ * taking any lock. There is a potential race with someone injecting
+ * interrupts to the VCPU, but it is a benign race as the VCPU will
+ * either observe the new interrupt before or after doing this check,
+ * and introducing additional synchronization mechanism doesn't change
+ * this.
+ *
+ * Note that we still need to go through the whole thing if anything
+ * can be directly injected (GICv4).
+ */
+ if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head) &&
+ !vgic_supports_direct_msis(vcpu->kvm))
+ return;
+
+ DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
+
+ if (!list_empty(&vcpu->arch.vgic_cpu.ap_list_head)) {
+ raw_spin_lock(&vcpu->arch.vgic_cpu.ap_list_lock);
+ vgic_flush_lr_state(vcpu);
+ raw_spin_unlock(&vcpu->arch.vgic_cpu.ap_list_lock);
+ }
+
+ if (can_access_vgic_from_kernel())
+ vgic_restore_state(vcpu);
+
+ if (vgic_supports_direct_msis(vcpu->kvm))
+ vgic_v4_commit(vcpu);
+}
+
+void kvm_vgic_load(struct kvm_vcpu *vcpu)
+{
+ if (unlikely(!vgic_initialized(vcpu->kvm)))
+ return;
+
+ if (kvm_vgic_global_state.type == VGIC_V2)
+ vgic_v2_load(vcpu);
+ else
+ vgic_v3_load(vcpu);
+}
+
+void kvm_vgic_put(struct kvm_vcpu *vcpu)
+{
+ if (unlikely(!vgic_initialized(vcpu->kvm)))
+ return;
+
+ if (kvm_vgic_global_state.type == VGIC_V2)
+ vgic_v2_put(vcpu);
+ else
+ vgic_v3_put(vcpu);
+}
+
+void kvm_vgic_vmcr_sync(struct kvm_vcpu *vcpu)
+{
+ if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
+ return;
+
+ if (kvm_vgic_global_state.type == VGIC_V2)
+ vgic_v2_vmcr_sync(vcpu);
+ else
+ vgic_v3_vmcr_sync(vcpu);
+}
+
+int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
+{
+ struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
+ struct vgic_irq *irq;
+ bool pending = false;
+ unsigned long flags;
+ struct vgic_vmcr vmcr;
+
+ if (!vcpu->kvm->arch.vgic.enabled)
+ return false;
+
+ if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.pending_last)
+ return true;
+
+ vgic_get_vmcr(vcpu, &vmcr);
+
+ raw_spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags);
+
+ list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
+ raw_spin_lock(&irq->irq_lock);
+ pending = irq_is_pending(irq) && irq->enabled &&
+ !irq->active &&
+ irq->priority < vmcr.pmr;
+ raw_spin_unlock(&irq->irq_lock);
+
+ if (pending)
+ break;
+ }
+
+ raw_spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags);
+
+ return pending;
+}
+
+void vgic_kick_vcpus(struct kvm *kvm)
+{
+ struct kvm_vcpu *vcpu;
+ unsigned long c;
+
+ /*
+ * We've injected an interrupt, time to find out who deserves
+ * a good kick...
+ */
+ kvm_for_each_vcpu(c, vcpu, kvm) {
+ if (kvm_vgic_vcpu_pending_irq(vcpu)) {
+ kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
+ kvm_vcpu_kick(vcpu);
+ }
+ }
+}
+
+bool kvm_vgic_map_is_active(struct kvm_vcpu *vcpu, unsigned int vintid)
+{
+ struct vgic_irq *irq;
+ bool map_is_active;
+ unsigned long flags;
+
+ if (!vgic_initialized(vcpu->kvm))
+ return false;
+
+ irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
+ raw_spin_lock_irqsave(&irq->irq_lock, flags);
+ map_is_active = irq->hw && irq->active;
+ raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
+ vgic_put_irq(vcpu->kvm, irq);
+
+ return map_is_active;
+}
+
+/*
+ * Level-triggered mapped IRQs are special because we only observe rising
+ * edges as input to the VGIC.
+ *
+ * If the guest never acked the interrupt we have to sample the physical
+ * line and set the line level, because the device state could have changed
+ * or we simply need to process the still pending interrupt later.
+ *
+ * We could also have entered the guest with the interrupt active+pending.
+ * On the next exit, we need to re-evaluate the pending state, as it could
+ * otherwise result in a spurious interrupt by injecting a now potentially
+ * stale pending state.
+ *
+ * If this causes us to lower the level, we have to also clear the physical
+ * active state, since we will otherwise never be told when the interrupt
+ * becomes asserted again.
+ *
+ * Another case is when the interrupt requires a helping hand on
+ * deactivation (no HW deactivation, for example).
+ */
+void vgic_irq_handle_resampling(struct vgic_irq *irq,
+ bool lr_deactivated, bool lr_pending)
+{
+ if (vgic_irq_is_mapped_level(irq)) {
+ bool resample = false;
+
+ if (unlikely(vgic_irq_needs_resampling(irq))) {
+ resample = !(irq->active || irq->pending_latch);
+ } else if (lr_pending || (lr_deactivated && irq->line_level)) {
+ irq->line_level = vgic_get_phys_line_level(irq);
+ resample = !irq->line_level;
+ }
+
+ if (resample)
+ vgic_irq_set_phys_active(irq, false);
+ }
+}
diff --git a/arch/arm64/kvm/vgic/vgic.h b/arch/arm64/kvm/vgic/vgic.h
new file mode 100644
index 0000000000..8d134569d0
--- /dev/null
+++ b/arch/arm64/kvm/vgic/vgic.h
@@ -0,0 +1,346 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+/*
+ * Copyright (C) 2015, 2016 ARM Ltd.
+ */
+#ifndef __KVM_ARM_VGIC_NEW_H__
+#define __KVM_ARM_VGIC_NEW_H__
+
+#include <linux/irqchip/arm-gic-common.h>
+#include <asm/kvm_mmu.h>
+
+#define PRODUCT_ID_KVM 0x4b /* ASCII code K */
+#define IMPLEMENTER_ARM 0x43b
+
+#define VGIC_ADDR_UNDEF (-1)
+#define IS_VGIC_ADDR_UNDEF(_x) ((_x) == VGIC_ADDR_UNDEF)
+
+#define INTERRUPT_ID_BITS_SPIS 10
+#define INTERRUPT_ID_BITS_ITS 16
+#define VGIC_PRI_BITS 5
+
+#define vgic_irq_is_sgi(intid) ((intid) < VGIC_NR_SGIS)
+
+#define VGIC_AFFINITY_0_SHIFT 0
+#define VGIC_AFFINITY_0_MASK (0xffUL << VGIC_AFFINITY_0_SHIFT)
+#define VGIC_AFFINITY_1_SHIFT 8
+#define VGIC_AFFINITY_1_MASK (0xffUL << VGIC_AFFINITY_1_SHIFT)
+#define VGIC_AFFINITY_2_SHIFT 16
+#define VGIC_AFFINITY_2_MASK (0xffUL << VGIC_AFFINITY_2_SHIFT)
+#define VGIC_AFFINITY_3_SHIFT 24
+#define VGIC_AFFINITY_3_MASK (0xffUL << VGIC_AFFINITY_3_SHIFT)
+
+#define VGIC_AFFINITY_LEVEL(reg, level) \
+ ((((reg) & VGIC_AFFINITY_## level ##_MASK) \
+ >> VGIC_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level))
+
+/*
+ * The Userspace encodes the affinity differently from the MPIDR,
+ * Below macro converts vgic userspace format to MPIDR reg format.
+ */
+#define VGIC_TO_MPIDR(val) (VGIC_AFFINITY_LEVEL(val, 0) | \
+ VGIC_AFFINITY_LEVEL(val, 1) | \
+ VGIC_AFFINITY_LEVEL(val, 2) | \
+ VGIC_AFFINITY_LEVEL(val, 3))
+
+/*
+ * As per Documentation/virt/kvm/devices/arm-vgic-v3.rst,
+ * below macros are defined for CPUREG encoding.
+ */
+#define KVM_REG_ARM_VGIC_SYSREG_OP0_MASK 0x000000000000c000
+#define KVM_REG_ARM_VGIC_SYSREG_OP0_SHIFT 14
+#define KVM_REG_ARM_VGIC_SYSREG_OP1_MASK 0x0000000000003800
+#define KVM_REG_ARM_VGIC_SYSREG_OP1_SHIFT 11
+#define KVM_REG_ARM_VGIC_SYSREG_CRN_MASK 0x0000000000000780
+#define KVM_REG_ARM_VGIC_SYSREG_CRN_SHIFT 7
+#define KVM_REG_ARM_VGIC_SYSREG_CRM_MASK 0x0000000000000078
+#define KVM_REG_ARM_VGIC_SYSREG_CRM_SHIFT 3
+#define KVM_REG_ARM_VGIC_SYSREG_OP2_MASK 0x0000000000000007
+#define KVM_REG_ARM_VGIC_SYSREG_OP2_SHIFT 0
+
+#define KVM_DEV_ARM_VGIC_SYSREG_MASK (KVM_REG_ARM_VGIC_SYSREG_OP0_MASK | \
+ KVM_REG_ARM_VGIC_SYSREG_OP1_MASK | \
+ KVM_REG_ARM_VGIC_SYSREG_CRN_MASK | \
+ KVM_REG_ARM_VGIC_SYSREG_CRM_MASK | \
+ KVM_REG_ARM_VGIC_SYSREG_OP2_MASK)
+
+/*
+ * As per Documentation/virt/kvm/devices/arm-vgic-its.rst,
+ * below macros are defined for ITS table entry encoding.
+ */
+#define KVM_ITS_CTE_VALID_SHIFT 63
+#define KVM_ITS_CTE_VALID_MASK BIT_ULL(63)
+#define KVM_ITS_CTE_RDBASE_SHIFT 16
+#define KVM_ITS_CTE_ICID_MASK GENMASK_ULL(15, 0)
+#define KVM_ITS_ITE_NEXT_SHIFT 48
+#define KVM_ITS_ITE_PINTID_SHIFT 16
+#define KVM_ITS_ITE_PINTID_MASK GENMASK_ULL(47, 16)
+#define KVM_ITS_ITE_ICID_MASK GENMASK_ULL(15, 0)
+#define KVM_ITS_DTE_VALID_SHIFT 63
+#define KVM_ITS_DTE_VALID_MASK BIT_ULL(63)
+#define KVM_ITS_DTE_NEXT_SHIFT 49
+#define KVM_ITS_DTE_NEXT_MASK GENMASK_ULL(62, 49)
+#define KVM_ITS_DTE_ITTADDR_SHIFT 5
+#define KVM_ITS_DTE_ITTADDR_MASK GENMASK_ULL(48, 5)
+#define KVM_ITS_DTE_SIZE_MASK GENMASK_ULL(4, 0)
+#define KVM_ITS_L1E_VALID_MASK BIT_ULL(63)
+/* we only support 64 kB translation table page size */
+#define KVM_ITS_L1E_ADDR_MASK GENMASK_ULL(51, 16)
+
+#define KVM_VGIC_V3_RDIST_INDEX_MASK GENMASK_ULL(11, 0)
+#define KVM_VGIC_V3_RDIST_FLAGS_MASK GENMASK_ULL(15, 12)
+#define KVM_VGIC_V3_RDIST_FLAGS_SHIFT 12
+#define KVM_VGIC_V3_RDIST_BASE_MASK GENMASK_ULL(51, 16)
+#define KVM_VGIC_V3_RDIST_COUNT_MASK GENMASK_ULL(63, 52)
+#define KVM_VGIC_V3_RDIST_COUNT_SHIFT 52
+
+#ifdef CONFIG_DEBUG_SPINLOCK
+#define DEBUG_SPINLOCK_BUG_ON(p) BUG_ON(p)
+#else
+#define DEBUG_SPINLOCK_BUG_ON(p)
+#endif
+
+static inline u32 vgic_get_implementation_rev(struct kvm_vcpu *vcpu)
+{
+ return vcpu->kvm->arch.vgic.implementation_rev;
+}
+
+/* Requires the irq_lock to be held by the caller. */
+static inline bool irq_is_pending(struct vgic_irq *irq)
+{
+ if (irq->config == VGIC_CONFIG_EDGE)
+ return irq->pending_latch;
+ else
+ return irq->pending_latch || irq->line_level;
+}
+
+static inline bool vgic_irq_is_mapped_level(struct vgic_irq *irq)
+{
+ return irq->config == VGIC_CONFIG_LEVEL && irq->hw;
+}
+
+static inline int vgic_irq_get_lr_count(struct vgic_irq *irq)
+{
+ /* Account for the active state as an interrupt */
+ if (vgic_irq_is_sgi(irq->intid) && irq->source)
+ return hweight8(irq->source) + irq->active;
+
+ return irq_is_pending(irq) || irq->active;
+}
+
+static inline bool vgic_irq_is_multi_sgi(struct vgic_irq *irq)
+{
+ return vgic_irq_get_lr_count(irq) > 1;
+}
+
+static inline int vgic_write_guest_lock(struct kvm *kvm, gpa_t gpa,
+ const void *data, unsigned long len)
+{
+ struct vgic_dist *dist = &kvm->arch.vgic;
+ int ret;
+
+ dist->table_write_in_progress = true;
+ ret = kvm_write_guest_lock(kvm, gpa, data, len);
+ dist->table_write_in_progress = false;
+
+ return ret;
+}
+
+/*
+ * This struct provides an intermediate representation of the fields contained
+ * in the GICH_VMCR and ICH_VMCR registers, such that code exporting the GIC
+ * state to userspace can generate either GICv2 or GICv3 CPU interface
+ * registers regardless of the hardware backed GIC used.
+ */
+struct vgic_vmcr {
+ u32 grpen0;
+ u32 grpen1;
+
+ u32 ackctl;
+ u32 fiqen;
+ u32 cbpr;
+ u32 eoim;
+
+ u32 abpr;
+ u32 bpr;
+ u32 pmr; /* Priority mask field in the GICC_PMR and
+ * ICC_PMR_EL1 priority field format */
+};
+
+struct vgic_reg_attr {
+ struct kvm_vcpu *vcpu;
+ gpa_t addr;
+};
+
+int vgic_v3_parse_attr(struct kvm_device *dev, struct kvm_device_attr *attr,
+ struct vgic_reg_attr *reg_attr);
+int vgic_v2_parse_attr(struct kvm_device *dev, struct kvm_device_attr *attr,
+ struct vgic_reg_attr *reg_attr);
+const struct vgic_register_region *
+vgic_get_mmio_region(struct kvm_vcpu *vcpu, struct vgic_io_device *iodev,
+ gpa_t addr, int len);
+struct vgic_irq *vgic_get_irq(struct kvm *kvm, struct kvm_vcpu *vcpu,
+ u32 intid);
+void __vgic_put_lpi_locked(struct kvm *kvm, struct vgic_irq *irq);
+void vgic_put_irq(struct kvm *kvm, struct vgic_irq *irq);
+bool vgic_get_phys_line_level(struct vgic_irq *irq);
+void vgic_irq_set_phys_pending(struct vgic_irq *irq, bool pending);
+void vgic_irq_set_phys_active(struct vgic_irq *irq, bool active);
+bool vgic_queue_irq_unlock(struct kvm *kvm, struct vgic_irq *irq,
+ unsigned long flags);
+void vgic_kick_vcpus(struct kvm *kvm);
+void vgic_irq_handle_resampling(struct vgic_irq *irq,
+ bool lr_deactivated, bool lr_pending);
+
+int vgic_check_iorange(struct kvm *kvm, phys_addr_t ioaddr,
+ phys_addr_t addr, phys_addr_t alignment,
+ phys_addr_t size);
+
+void vgic_v2_fold_lr_state(struct kvm_vcpu *vcpu);
+void vgic_v2_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr);
+void vgic_v2_clear_lr(struct kvm_vcpu *vcpu, int lr);
+void vgic_v2_set_underflow(struct kvm_vcpu *vcpu);
+int vgic_v2_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr);
+int vgic_v2_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
+ int offset, u32 *val);
+int vgic_v2_cpuif_uaccess(struct kvm_vcpu *vcpu, bool is_write,
+ int offset, u32 *val);
+void vgic_v2_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr);
+void vgic_v2_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr);
+void vgic_v2_enable(struct kvm_vcpu *vcpu);
+int vgic_v2_probe(const struct gic_kvm_info *info);
+int vgic_v2_map_resources(struct kvm *kvm);
+int vgic_register_dist_iodev(struct kvm *kvm, gpa_t dist_base_address,
+ enum vgic_type);
+
+void vgic_v2_init_lrs(void);
+void vgic_v2_load(struct kvm_vcpu *vcpu);
+void vgic_v2_put(struct kvm_vcpu *vcpu);
+void vgic_v2_vmcr_sync(struct kvm_vcpu *vcpu);
+
+void vgic_v2_save_state(struct kvm_vcpu *vcpu);
+void vgic_v2_restore_state(struct kvm_vcpu *vcpu);
+
+static inline void vgic_get_irq_kref(struct vgic_irq *irq)
+{
+ if (irq->intid < VGIC_MIN_LPI)
+ return;
+
+ kref_get(&irq->refcount);
+}
+
+void vgic_v3_fold_lr_state(struct kvm_vcpu *vcpu);
+void vgic_v3_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr);
+void vgic_v3_clear_lr(struct kvm_vcpu *vcpu, int lr);
+void vgic_v3_set_underflow(struct kvm_vcpu *vcpu);
+void vgic_v3_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr);
+void vgic_v3_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr);
+void vgic_v3_enable(struct kvm_vcpu *vcpu);
+int vgic_v3_probe(const struct gic_kvm_info *info);
+int vgic_v3_map_resources(struct kvm *kvm);
+int vgic_v3_lpi_sync_pending_status(struct kvm *kvm, struct vgic_irq *irq);
+int vgic_v3_save_pending_tables(struct kvm *kvm);
+int vgic_v3_set_redist_base(struct kvm *kvm, u32 index, u64 addr, u32 count);
+int vgic_register_redist_iodev(struct kvm_vcpu *vcpu);
+void vgic_unregister_redist_iodev(struct kvm_vcpu *vcpu);
+bool vgic_v3_check_base(struct kvm *kvm);
+
+void vgic_v3_load(struct kvm_vcpu *vcpu);
+void vgic_v3_put(struct kvm_vcpu *vcpu);
+void vgic_v3_vmcr_sync(struct kvm_vcpu *vcpu);
+
+bool vgic_has_its(struct kvm *kvm);
+int kvm_vgic_register_its_device(void);
+void vgic_enable_lpis(struct kvm_vcpu *vcpu);
+void vgic_flush_pending_lpis(struct kvm_vcpu *vcpu);
+int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi);
+int vgic_v3_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr);
+int vgic_v3_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
+ int offset, u32 *val);
+int vgic_v3_redist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
+ int offset, u32 *val);
+int vgic_v3_cpu_sysregs_uaccess(struct kvm_vcpu *vcpu,
+ struct kvm_device_attr *attr, bool is_write);
+int vgic_v3_has_cpu_sysregs_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr);
+int vgic_v3_line_level_info_uaccess(struct kvm_vcpu *vcpu, bool is_write,
+ u32 intid, u32 *val);
+int kvm_register_vgic_device(unsigned long type);
+void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr);
+void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr);
+int vgic_lazy_init(struct kvm *kvm);
+int vgic_init(struct kvm *kvm);
+
+void vgic_debug_init(struct kvm *kvm);
+void vgic_debug_destroy(struct kvm *kvm);
+
+static inline int vgic_v3_max_apr_idx(struct kvm_vcpu *vcpu)
+{
+ struct vgic_cpu *cpu_if = &vcpu->arch.vgic_cpu;
+
+ /*
+ * num_pri_bits are initialized with HW supported values.
+ * We can rely safely on num_pri_bits even if VM has not
+ * restored ICC_CTLR_EL1 before restoring APnR registers.
+ */
+ switch (cpu_if->num_pri_bits) {
+ case 7: return 3;
+ case 6: return 1;
+ default: return 0;
+ }
+}
+
+static inline bool
+vgic_v3_redist_region_full(struct vgic_redist_region *region)
+{
+ if (!region->count)
+ return false;
+
+ return (region->free_index >= region->count);
+}
+
+struct vgic_redist_region *vgic_v3_rdist_free_slot(struct list_head *rdregs);
+
+static inline size_t
+vgic_v3_rd_region_size(struct kvm *kvm, struct vgic_redist_region *rdreg)
+{
+ if (!rdreg->count)
+ return atomic_read(&kvm->online_vcpus) * KVM_VGIC_V3_REDIST_SIZE;
+ else
+ return rdreg->count * KVM_VGIC_V3_REDIST_SIZE;
+}
+
+struct vgic_redist_region *vgic_v3_rdist_region_from_index(struct kvm *kvm,
+ u32 index);
+void vgic_v3_free_redist_region(struct vgic_redist_region *rdreg);
+
+bool vgic_v3_rdist_overlap(struct kvm *kvm, gpa_t base, size_t size);
+
+static inline bool vgic_dist_overlap(struct kvm *kvm, gpa_t base, size_t size)
+{
+ struct vgic_dist *d = &kvm->arch.vgic;
+
+ return (base + size > d->vgic_dist_base) &&
+ (base < d->vgic_dist_base + KVM_VGIC_V3_DIST_SIZE);
+}
+
+bool vgic_lpis_enabled(struct kvm_vcpu *vcpu);
+int vgic_copy_lpi_list(struct kvm *kvm, struct kvm_vcpu *vcpu, u32 **intid_ptr);
+int vgic_its_resolve_lpi(struct kvm *kvm, struct vgic_its *its,
+ u32 devid, u32 eventid, struct vgic_irq **irq);
+struct vgic_its *vgic_msi_to_its(struct kvm *kvm, struct kvm_msi *msi);
+int vgic_its_inject_cached_translation(struct kvm *kvm, struct kvm_msi *msi);
+void vgic_lpi_translation_cache_init(struct kvm *kvm);
+void vgic_lpi_translation_cache_destroy(struct kvm *kvm);
+void vgic_its_invalidate_cache(struct kvm *kvm);
+
+/* GICv4.1 MMIO interface */
+int vgic_its_inv_lpi(struct kvm *kvm, struct vgic_irq *irq);
+int vgic_its_invall(struct kvm_vcpu *vcpu);
+
+bool vgic_supports_direct_msis(struct kvm *kvm);
+int vgic_v4_init(struct kvm *kvm);
+void vgic_v4_teardown(struct kvm *kvm);
+void vgic_v4_configure_vsgis(struct kvm *kvm);
+void vgic_v4_get_vlpi_state(struct vgic_irq *irq, bool *val);
+int vgic_v4_request_vpe_irq(struct kvm_vcpu *vcpu, int irq);
+
+#endif
diff --git a/arch/arm64/kvm/vmid.c b/arch/arm64/kvm/vmid.c
new file mode 100644
index 0000000000..7fe8ba1a28
--- /dev/null
+++ b/arch/arm64/kvm/vmid.c
@@ -0,0 +1,195 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * VMID allocator.
+ *
+ * Based on Arm64 ASID allocator algorithm.
+ * Please refer arch/arm64/mm/context.c for detailed
+ * comments on algorithm.
+ *
+ * Copyright (C) 2002-2003 Deep Blue Solutions Ltd, all rights reserved.
+ * Copyright (C) 2012 ARM Ltd.
+ */
+
+#include <linux/bitfield.h>
+#include <linux/bitops.h>
+
+#include <asm/kvm_asm.h>
+#include <asm/kvm_mmu.h>
+
+unsigned int __ro_after_init kvm_arm_vmid_bits;
+static DEFINE_RAW_SPINLOCK(cpu_vmid_lock);
+
+static atomic64_t vmid_generation;
+static unsigned long *vmid_map;
+
+static DEFINE_PER_CPU(atomic64_t, active_vmids);
+static DEFINE_PER_CPU(u64, reserved_vmids);
+
+#define VMID_MASK (~GENMASK(kvm_arm_vmid_bits - 1, 0))
+#define VMID_FIRST_VERSION (1UL << kvm_arm_vmid_bits)
+
+#define NUM_USER_VMIDS VMID_FIRST_VERSION
+#define vmid2idx(vmid) ((vmid) & ~VMID_MASK)
+#define idx2vmid(idx) vmid2idx(idx)
+
+/*
+ * As vmid #0 is always reserved, we will never allocate one
+ * as below and can be treated as invalid. This is used to
+ * set the active_vmids on vCPU schedule out.
+ */
+#define VMID_ACTIVE_INVALID VMID_FIRST_VERSION
+
+#define vmid_gen_match(vmid) \
+ (!(((vmid) ^ atomic64_read(&vmid_generation)) >> kvm_arm_vmid_bits))
+
+static void flush_context(void)
+{
+ int cpu;
+ u64 vmid;
+
+ bitmap_zero(vmid_map, NUM_USER_VMIDS);
+
+ for_each_possible_cpu(cpu) {
+ vmid = atomic64_xchg_relaxed(&per_cpu(active_vmids, cpu), 0);
+
+ /* Preserve reserved VMID */
+ if (vmid == 0)
+ vmid = per_cpu(reserved_vmids, cpu);
+ __set_bit(vmid2idx(vmid), vmid_map);
+ per_cpu(reserved_vmids, cpu) = vmid;
+ }
+
+ /*
+ * Unlike ASID allocator, we expect less frequent rollover in
+ * case of VMIDs. Hence, instead of marking the CPU as
+ * flush_pending and issuing a local context invalidation on
+ * the next context-switch, we broadcast TLB flush + I-cache
+ * invalidation over the inner shareable domain on rollover.
+ */
+ kvm_call_hyp(__kvm_flush_vm_context);
+}
+
+static bool check_update_reserved_vmid(u64 vmid, u64 newvmid)
+{
+ int cpu;
+ bool hit = false;
+
+ /*
+ * Iterate over the set of reserved VMIDs looking for a match
+ * and update to use newvmid (i.e. the same VMID in the current
+ * generation).
+ */
+ for_each_possible_cpu(cpu) {
+ if (per_cpu(reserved_vmids, cpu) == vmid) {
+ hit = true;
+ per_cpu(reserved_vmids, cpu) = newvmid;
+ }
+ }
+
+ return hit;
+}
+
+static u64 new_vmid(struct kvm_vmid *kvm_vmid)
+{
+ static u32 cur_idx = 1;
+ u64 vmid = atomic64_read(&kvm_vmid->id);
+ u64 generation = atomic64_read(&vmid_generation);
+
+ if (vmid != 0) {
+ u64 newvmid = generation | (vmid & ~VMID_MASK);
+
+ if (check_update_reserved_vmid(vmid, newvmid)) {
+ atomic64_set(&kvm_vmid->id, newvmid);
+ return newvmid;
+ }
+
+ if (!__test_and_set_bit(vmid2idx(vmid), vmid_map)) {
+ atomic64_set(&kvm_vmid->id, newvmid);
+ return newvmid;
+ }
+ }
+
+ vmid = find_next_zero_bit(vmid_map, NUM_USER_VMIDS, cur_idx);
+ if (vmid != NUM_USER_VMIDS)
+ goto set_vmid;
+
+ /* We're out of VMIDs, so increment the global generation count */
+ generation = atomic64_add_return_relaxed(VMID_FIRST_VERSION,
+ &vmid_generation);
+ flush_context();
+
+ /* We have more VMIDs than CPUs, so this will always succeed */
+ vmid = find_next_zero_bit(vmid_map, NUM_USER_VMIDS, 1);
+
+set_vmid:
+ __set_bit(vmid, vmid_map);
+ cur_idx = vmid;
+ vmid = idx2vmid(vmid) | generation;
+ atomic64_set(&kvm_vmid->id, vmid);
+ return vmid;
+}
+
+/* Called from vCPU sched out with preemption disabled */
+void kvm_arm_vmid_clear_active(void)
+{
+ atomic64_set(this_cpu_ptr(&active_vmids), VMID_ACTIVE_INVALID);
+}
+
+void kvm_arm_vmid_update(struct kvm_vmid *kvm_vmid)
+{
+ unsigned long flags;
+ u64 vmid, old_active_vmid;
+
+ vmid = atomic64_read(&kvm_vmid->id);
+
+ /*
+ * Please refer comments in check_and_switch_context() in
+ * arch/arm64/mm/context.c.
+ *
+ * Unlike ASID allocator, we set the active_vmids to
+ * VMID_ACTIVE_INVALID on vCPU schedule out to avoid
+ * reserving the VMID space needlessly on rollover.
+ * Hence explicitly check here for a "!= 0" to
+ * handle the sync with a concurrent rollover.
+ */
+ old_active_vmid = atomic64_read(this_cpu_ptr(&active_vmids));
+ if (old_active_vmid != 0 && vmid_gen_match(vmid) &&
+ 0 != atomic64_cmpxchg_relaxed(this_cpu_ptr(&active_vmids),
+ old_active_vmid, vmid))
+ return;
+
+ raw_spin_lock_irqsave(&cpu_vmid_lock, flags);
+
+ /* Check that our VMID belongs to the current generation. */
+ vmid = atomic64_read(&kvm_vmid->id);
+ if (!vmid_gen_match(vmid))
+ vmid = new_vmid(kvm_vmid);
+
+ atomic64_set(this_cpu_ptr(&active_vmids), vmid);
+ raw_spin_unlock_irqrestore(&cpu_vmid_lock, flags);
+}
+
+/*
+ * Initialize the VMID allocator
+ */
+int __init kvm_arm_vmid_alloc_init(void)
+{
+ kvm_arm_vmid_bits = kvm_get_vmid_bits();
+
+ /*
+ * Expect allocation after rollover to fail if we don't have
+ * at least one more VMID than CPUs. VMID #0 is always reserved.
+ */
+ WARN_ON(NUM_USER_VMIDS - 1 <= num_possible_cpus());
+ atomic64_set(&vmid_generation, VMID_FIRST_VERSION);
+ vmid_map = bitmap_zalloc(NUM_USER_VMIDS, GFP_KERNEL);
+ if (!vmid_map)
+ return -ENOMEM;
+
+ return 0;
+}
+
+void __init kvm_arm_vmid_alloc_free(void)
+{
+ bitmap_free(vmid_map);
+}