summaryrefslogtreecommitdiffstats
path: root/arch/s390/crypto/crc32le-vx.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-08-07 13:11:22 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-08-07 13:11:22 +0000
commitb20732900e4636a467c0183a47f7396700f5f743 (patch)
tree42f079ff82e701ebcb76829974b4caca3e5b6798 /arch/s390/crypto/crc32le-vx.c
parentAdding upstream version 6.8.12. (diff)
downloadlinux-b20732900e4636a467c0183a47f7396700f5f743.tar.xz
linux-b20732900e4636a467c0183a47f7396700f5f743.zip
Adding upstream version 6.9.7.upstream/6.9.7
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'arch/s390/crypto/crc32le-vx.c')
-rw-r--r--arch/s390/crypto/crc32le-vx.c240
1 files changed, 240 insertions, 0 deletions
diff --git a/arch/s390/crypto/crc32le-vx.c b/arch/s390/crypto/crc32le-vx.c
new file mode 100644
index 0000000000..2f629f394d
--- /dev/null
+++ b/arch/s390/crypto/crc32le-vx.c
@@ -0,0 +1,240 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+/*
+ * Hardware-accelerated CRC-32 variants for Linux on z Systems
+ *
+ * Use the z/Architecture Vector Extension Facility to accelerate the
+ * computing of bitreflected CRC-32 checksums for IEEE 802.3 Ethernet
+ * and Castagnoli.
+ *
+ * This CRC-32 implementation algorithm is bitreflected and processes
+ * the least-significant bit first (Little-Endian).
+ *
+ * Copyright IBM Corp. 2015
+ * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
+ */
+
+#include <linux/types.h>
+#include <asm/fpu.h>
+#include "crc32-vx.h"
+
+/* Vector register range containing CRC-32 constants */
+#define CONST_PERM_LE2BE 9
+#define CONST_R2R1 10
+#define CONST_R4R3 11
+#define CONST_R5 12
+#define CONST_RU_POLY 13
+#define CONST_CRC_POLY 14
+
+/*
+ * The CRC-32 constant block contains reduction constants to fold and
+ * process particular chunks of the input data stream in parallel.
+ *
+ * For the CRC-32 variants, the constants are precomputed according to
+ * these definitions:
+ *
+ * R1 = [(x4*128+32 mod P'(x) << 32)]' << 1
+ * R2 = [(x4*128-32 mod P'(x) << 32)]' << 1
+ * R3 = [(x128+32 mod P'(x) << 32)]' << 1
+ * R4 = [(x128-32 mod P'(x) << 32)]' << 1
+ * R5 = [(x64 mod P'(x) << 32)]' << 1
+ * R6 = [(x32 mod P'(x) << 32)]' << 1
+ *
+ * The bitreflected Barret reduction constant, u', is defined as
+ * the bit reversal of floor(x**64 / P(x)).
+ *
+ * where P(x) is the polynomial in the normal domain and the P'(x) is the
+ * polynomial in the reversed (bitreflected) domain.
+ *
+ * CRC-32 (IEEE 802.3 Ethernet, ...) polynomials:
+ *
+ * P(x) = 0x04C11DB7
+ * P'(x) = 0xEDB88320
+ *
+ * CRC-32C (Castagnoli) polynomials:
+ *
+ * P(x) = 0x1EDC6F41
+ * P'(x) = 0x82F63B78
+ */
+
+static unsigned long constants_CRC_32_LE[] = {
+ 0x0f0e0d0c0b0a0908, 0x0706050403020100, /* BE->LE mask */
+ 0x1c6e41596, 0x154442bd4, /* R2, R1 */
+ 0x0ccaa009e, 0x1751997d0, /* R4, R3 */
+ 0x0, 0x163cd6124, /* R5 */
+ 0x0, 0x1f7011641, /* u' */
+ 0x0, 0x1db710641 /* P'(x) << 1 */
+};
+
+static unsigned long constants_CRC_32C_LE[] = {
+ 0x0f0e0d0c0b0a0908, 0x0706050403020100, /* BE->LE mask */
+ 0x09e4addf8, 0x740eef02, /* R2, R1 */
+ 0x14cd00bd6, 0xf20c0dfe, /* R4, R3 */
+ 0x0, 0x0dd45aab8, /* R5 */
+ 0x0, 0x0dea713f1, /* u' */
+ 0x0, 0x105ec76f0 /* P'(x) << 1 */
+};
+
+/**
+ * crc32_le_vgfm_generic - Compute CRC-32 (LE variant) with vector registers
+ * @crc: Initial CRC value, typically ~0.
+ * @buf: Input buffer pointer, performance might be improved if the
+ * buffer is on a doubleword boundary.
+ * @size: Size of the buffer, must be 64 bytes or greater.
+ * @constants: CRC-32 constant pool base pointer.
+ *
+ * Register usage:
+ * V0: Initial CRC value and intermediate constants and results.
+ * V1..V4: Data for CRC computation.
+ * V5..V8: Next data chunks that are fetched from the input buffer.
+ * V9: Constant for BE->LE conversion and shift operations
+ * V10..V14: CRC-32 constants.
+ */
+static u32 crc32_le_vgfm_generic(u32 crc, unsigned char const *buf, size_t size, unsigned long *constants)
+{
+ /* Load CRC-32 constants */
+ fpu_vlm(CONST_PERM_LE2BE, CONST_CRC_POLY, constants);
+
+ /*
+ * Load the initial CRC value.
+ *
+ * The CRC value is loaded into the rightmost word of the
+ * vector register and is later XORed with the LSB portion
+ * of the loaded input data.
+ */
+ fpu_vzero(0); /* Clear V0 */
+ fpu_vlvgf(0, crc, 3); /* Load CRC into rightmost word */
+
+ /* Load a 64-byte data chunk and XOR with CRC */
+ fpu_vlm(1, 4, buf);
+ fpu_vperm(1, 1, 1, CONST_PERM_LE2BE);
+ fpu_vperm(2, 2, 2, CONST_PERM_LE2BE);
+ fpu_vperm(3, 3, 3, CONST_PERM_LE2BE);
+ fpu_vperm(4, 4, 4, CONST_PERM_LE2BE);
+
+ fpu_vx(1, 0, 1); /* V1 ^= CRC */
+ buf += 64;
+ size -= 64;
+
+ while (size >= 64) {
+ fpu_vlm(5, 8, buf);
+ fpu_vperm(5, 5, 5, CONST_PERM_LE2BE);
+ fpu_vperm(6, 6, 6, CONST_PERM_LE2BE);
+ fpu_vperm(7, 7, 7, CONST_PERM_LE2BE);
+ fpu_vperm(8, 8, 8, CONST_PERM_LE2BE);
+ /*
+ * Perform a GF(2) multiplication of the doublewords in V1 with
+ * the R1 and R2 reduction constants in V0. The intermediate
+ * result is then folded (accumulated) with the next data chunk
+ * in V5 and stored in V1. Repeat this step for the register
+ * contents in V2, V3, and V4 respectively.
+ */
+ fpu_vgfmag(1, CONST_R2R1, 1, 5);
+ fpu_vgfmag(2, CONST_R2R1, 2, 6);
+ fpu_vgfmag(3, CONST_R2R1, 3, 7);
+ fpu_vgfmag(4, CONST_R2R1, 4, 8);
+ buf += 64;
+ size -= 64;
+ }
+
+ /*
+ * Fold V1 to V4 into a single 128-bit value in V1. Multiply V1 with R3
+ * and R4 and accumulating the next 128-bit chunk until a single 128-bit
+ * value remains.
+ */
+ fpu_vgfmag(1, CONST_R4R3, 1, 2);
+ fpu_vgfmag(1, CONST_R4R3, 1, 3);
+ fpu_vgfmag(1, CONST_R4R3, 1, 4);
+
+ while (size >= 16) {
+ fpu_vl(2, buf);
+ fpu_vperm(2, 2, 2, CONST_PERM_LE2BE);
+ fpu_vgfmag(1, CONST_R4R3, 1, 2);
+ buf += 16;
+ size -= 16;
+ }
+
+ /*
+ * Set up a vector register for byte shifts. The shift value must
+ * be loaded in bits 1-4 in byte element 7 of a vector register.
+ * Shift by 8 bytes: 0x40
+ * Shift by 4 bytes: 0x20
+ */
+ fpu_vleib(9, 0x40, 7);
+
+ /*
+ * Prepare V0 for the next GF(2) multiplication: shift V0 by 8 bytes
+ * to move R4 into the rightmost doubleword and set the leftmost
+ * doubleword to 0x1.
+ */
+ fpu_vsrlb(0, CONST_R4R3, 9);
+ fpu_vleig(0, 1, 0);
+
+ /*
+ * Compute GF(2) product of V1 and V0. The rightmost doubleword
+ * of V1 is multiplied with R4. The leftmost doubleword of V1 is
+ * multiplied by 0x1 and is then XORed with rightmost product.
+ * Implicitly, the intermediate leftmost product becomes padded
+ */
+ fpu_vgfmg(1, 0, 1);
+
+ /*
+ * Now do the final 32-bit fold by multiplying the rightmost word
+ * in V1 with R5 and XOR the result with the remaining bits in V1.
+ *
+ * To achieve this by a single VGFMAG, right shift V1 by a word
+ * and store the result in V2 which is then accumulated. Use the
+ * vector unpack instruction to load the rightmost half of the
+ * doubleword into the rightmost doubleword element of V1; the other
+ * half is loaded in the leftmost doubleword.
+ * The vector register with CONST_R5 contains the R5 constant in the
+ * rightmost doubleword and the leftmost doubleword is zero to ignore
+ * the leftmost product of V1.
+ */
+ fpu_vleib(9, 0x20, 7); /* Shift by words */
+ fpu_vsrlb(2, 1, 9); /* Store remaining bits in V2 */
+ fpu_vupllf(1, 1); /* Split rightmost doubleword */
+ fpu_vgfmag(1, CONST_R5, 1, 2); /* V1 = (V1 * R5) XOR V2 */
+
+ /*
+ * Apply a Barret reduction to compute the final 32-bit CRC value.
+ *
+ * The input values to the Barret reduction are the degree-63 polynomial
+ * in V1 (R(x)), degree-32 generator polynomial, and the reduction
+ * constant u. The Barret reduction result is the CRC value of R(x) mod
+ * P(x).
+ *
+ * The Barret reduction algorithm is defined as:
+ *
+ * 1. T1(x) = floor( R(x) / x^32 ) GF2MUL u
+ * 2. T2(x) = floor( T1(x) / x^32 ) GF2MUL P(x)
+ * 3. C(x) = R(x) XOR T2(x) mod x^32
+ *
+ * Note: The leftmost doubleword of vector register containing
+ * CONST_RU_POLY is zero and, thus, the intermediate GF(2) product
+ * is zero and does not contribute to the final result.
+ */
+
+ /* T1(x) = floor( R(x) / x^32 ) GF2MUL u */
+ fpu_vupllf(2, 1);
+ fpu_vgfmg(2, CONST_RU_POLY, 2);
+
+ /*
+ * Compute the GF(2) product of the CRC polynomial with T1(x) in
+ * V2 and XOR the intermediate result, T2(x), with the value in V1.
+ * The final result is stored in word element 2 of V2.
+ */
+ fpu_vupllf(2, 2);
+ fpu_vgfmag(2, CONST_CRC_POLY, 2, 1);
+
+ return fpu_vlgvf(2, 2);
+}
+
+u32 crc32_le_vgfm_16(u32 crc, unsigned char const *buf, size_t size)
+{
+ return crc32_le_vgfm_generic(crc, buf, size, &constants_CRC_32_LE[0]);
+}
+
+u32 crc32c_le_vgfm_16(u32 crc, unsigned char const *buf, size_t size)
+{
+ return crc32_le_vgfm_generic(crc, buf, size, &constants_CRC_32C_LE[0]);
+}