diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-11 08:27:49 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-11 08:27:49 +0000 |
commit | ace9429bb58fd418f0c81d4c2835699bddf6bde6 (patch) | |
tree | b2d64bc10158fdd5497876388cd68142ca374ed3 /arch/x86/entry/entry_32.S | |
parent | Initial commit. (diff) | |
download | linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.tar.xz linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.zip |
Adding upstream version 6.6.15.upstream/6.6.15
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'arch/x86/entry/entry_32.S')
-rw-r--r-- | arch/x86/entry/entry_32.S | 1225 |
1 files changed, 1225 insertions, 0 deletions
diff --git a/arch/x86/entry/entry_32.S b/arch/x86/entry/entry_32.S new file mode 100644 index 0000000000..6e6af42e04 --- /dev/null +++ b/arch/x86/entry/entry_32.S @@ -0,0 +1,1225 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * Copyright (C) 1991,1992 Linus Torvalds + * + * entry_32.S contains the system-call and low-level fault and trap handling routines. + * + * Stack layout while running C code: + * ptrace needs to have all registers on the stack. + * If the order here is changed, it needs to be + * updated in fork.c:copy_process(), signal.c:do_signal(), + * ptrace.c and ptrace.h + * + * 0(%esp) - %ebx + * 4(%esp) - %ecx + * 8(%esp) - %edx + * C(%esp) - %esi + * 10(%esp) - %edi + * 14(%esp) - %ebp + * 18(%esp) - %eax + * 1C(%esp) - %ds + * 20(%esp) - %es + * 24(%esp) - %fs + * 28(%esp) - unused -- was %gs on old stackprotector kernels + * 2C(%esp) - orig_eax + * 30(%esp) - %eip + * 34(%esp) - %cs + * 38(%esp) - %eflags + * 3C(%esp) - %oldesp + * 40(%esp) - %oldss + */ + +#include <linux/linkage.h> +#include <linux/err.h> +#include <asm/thread_info.h> +#include <asm/irqflags.h> +#include <asm/errno.h> +#include <asm/segment.h> +#include <asm/smp.h> +#include <asm/percpu.h> +#include <asm/processor-flags.h> +#include <asm/irq_vectors.h> +#include <asm/cpufeatures.h> +#include <asm/alternative.h> +#include <asm/asm.h> +#include <asm/smap.h> +#include <asm/frame.h> +#include <asm/trapnr.h> +#include <asm/nospec-branch.h> + +#include "calling.h" + + .section .entry.text, "ax" + +#define PTI_SWITCH_MASK (1 << PAGE_SHIFT) + +/* Unconditionally switch to user cr3 */ +.macro SWITCH_TO_USER_CR3 scratch_reg:req + ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI + + movl %cr3, \scratch_reg + orl $PTI_SWITCH_MASK, \scratch_reg + movl \scratch_reg, %cr3 +.Lend_\@: +.endm + +.macro BUG_IF_WRONG_CR3 no_user_check=0 +#ifdef CONFIG_DEBUG_ENTRY + ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI + .if \no_user_check == 0 + /* coming from usermode? */ + testl $USER_SEGMENT_RPL_MASK, PT_CS(%esp) + jz .Lend_\@ + .endif + /* On user-cr3? */ + movl %cr3, %eax + testl $PTI_SWITCH_MASK, %eax + jnz .Lend_\@ + /* From userspace with kernel cr3 - BUG */ + ud2 +.Lend_\@: +#endif +.endm + +/* + * Switch to kernel cr3 if not already loaded and return current cr3 in + * \scratch_reg + */ +.macro SWITCH_TO_KERNEL_CR3 scratch_reg:req + ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI + movl %cr3, \scratch_reg + /* Test if we are already on kernel CR3 */ + testl $PTI_SWITCH_MASK, \scratch_reg + jz .Lend_\@ + andl $(~PTI_SWITCH_MASK), \scratch_reg + movl \scratch_reg, %cr3 + /* Return original CR3 in \scratch_reg */ + orl $PTI_SWITCH_MASK, \scratch_reg +.Lend_\@: +.endm + +#define CS_FROM_ENTRY_STACK (1 << 31) +#define CS_FROM_USER_CR3 (1 << 30) +#define CS_FROM_KERNEL (1 << 29) +#define CS_FROM_ESPFIX (1 << 28) + +.macro FIXUP_FRAME + /* + * The high bits of the CS dword (__csh) are used for CS_FROM_*. + * Clear them in case hardware didn't do this for us. + */ + andl $0x0000ffff, 4*4(%esp) + +#ifdef CONFIG_VM86 + testl $X86_EFLAGS_VM, 5*4(%esp) + jnz .Lfrom_usermode_no_fixup_\@ +#endif + testl $USER_SEGMENT_RPL_MASK, 4*4(%esp) + jnz .Lfrom_usermode_no_fixup_\@ + + orl $CS_FROM_KERNEL, 4*4(%esp) + + /* + * When we're here from kernel mode; the (exception) stack looks like: + * + * 6*4(%esp) - <previous context> + * 5*4(%esp) - flags + * 4*4(%esp) - cs + * 3*4(%esp) - ip + * 2*4(%esp) - orig_eax + * 1*4(%esp) - gs / function + * 0*4(%esp) - fs + * + * Lets build a 5 entry IRET frame after that, such that struct pt_regs + * is complete and in particular regs->sp is correct. This gives us + * the original 6 entries as gap: + * + * 14*4(%esp) - <previous context> + * 13*4(%esp) - gap / flags + * 12*4(%esp) - gap / cs + * 11*4(%esp) - gap / ip + * 10*4(%esp) - gap / orig_eax + * 9*4(%esp) - gap / gs / function + * 8*4(%esp) - gap / fs + * 7*4(%esp) - ss + * 6*4(%esp) - sp + * 5*4(%esp) - flags + * 4*4(%esp) - cs + * 3*4(%esp) - ip + * 2*4(%esp) - orig_eax + * 1*4(%esp) - gs / function + * 0*4(%esp) - fs + */ + + pushl %ss # ss + pushl %esp # sp (points at ss) + addl $7*4, (%esp) # point sp back at the previous context + pushl 7*4(%esp) # flags + pushl 7*4(%esp) # cs + pushl 7*4(%esp) # ip + pushl 7*4(%esp) # orig_eax + pushl 7*4(%esp) # gs / function + pushl 7*4(%esp) # fs +.Lfrom_usermode_no_fixup_\@: +.endm + +.macro IRET_FRAME + /* + * We're called with %ds, %es, %fs, and %gs from the interrupted + * frame, so we shouldn't use them. Also, we may be in ESPFIX + * mode and therefore have a nonzero SS base and an offset ESP, + * so any attempt to access the stack needs to use SS. (except for + * accesses through %esp, which automatically use SS.) + */ + testl $CS_FROM_KERNEL, 1*4(%esp) + jz .Lfinished_frame_\@ + + /* + * Reconstruct the 3 entry IRET frame right after the (modified) + * regs->sp without lowering %esp in between, such that an NMI in the + * middle doesn't scribble our stack. + */ + pushl %eax + pushl %ecx + movl 5*4(%esp), %eax # (modified) regs->sp + + movl 4*4(%esp), %ecx # flags + movl %ecx, %ss:-1*4(%eax) + + movl 3*4(%esp), %ecx # cs + andl $0x0000ffff, %ecx + movl %ecx, %ss:-2*4(%eax) + + movl 2*4(%esp), %ecx # ip + movl %ecx, %ss:-3*4(%eax) + + movl 1*4(%esp), %ecx # eax + movl %ecx, %ss:-4*4(%eax) + + popl %ecx + lea -4*4(%eax), %esp + popl %eax +.Lfinished_frame_\@: +.endm + +.macro SAVE_ALL pt_regs_ax=%eax switch_stacks=0 skip_gs=0 unwind_espfix=0 + cld +.if \skip_gs == 0 + pushl $0 +.endif + pushl %fs + + pushl %eax + movl $(__KERNEL_PERCPU), %eax + movl %eax, %fs +.if \unwind_espfix > 0 + UNWIND_ESPFIX_STACK +.endif + popl %eax + + FIXUP_FRAME + pushl %es + pushl %ds + pushl \pt_regs_ax + pushl %ebp + pushl %edi + pushl %esi + pushl %edx + pushl %ecx + pushl %ebx + movl $(__USER_DS), %edx + movl %edx, %ds + movl %edx, %es + /* Switch to kernel stack if necessary */ +.if \switch_stacks > 0 + SWITCH_TO_KERNEL_STACK +.endif +.endm + +.macro SAVE_ALL_NMI cr3_reg:req unwind_espfix=0 + SAVE_ALL unwind_espfix=\unwind_espfix + + BUG_IF_WRONG_CR3 + + /* + * Now switch the CR3 when PTI is enabled. + * + * We can enter with either user or kernel cr3, the code will + * store the old cr3 in \cr3_reg and switches to the kernel cr3 + * if necessary. + */ + SWITCH_TO_KERNEL_CR3 scratch_reg=\cr3_reg + +.Lend_\@: +.endm + +.macro RESTORE_INT_REGS + popl %ebx + popl %ecx + popl %edx + popl %esi + popl %edi + popl %ebp + popl %eax +.endm + +.macro RESTORE_REGS pop=0 + RESTORE_INT_REGS +1: popl %ds +2: popl %es +3: popl %fs +4: addl $(4 + \pop), %esp /* pop the unused "gs" slot */ + IRET_FRAME + + /* + * There is no _ASM_EXTABLE_TYPE_REG() for ASM, however since this is + * ASM the registers are known and we can trivially hard-code them. + */ + _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_POP_ZERO|EX_REG_DS) + _ASM_EXTABLE_TYPE(2b, 3b, EX_TYPE_POP_ZERO|EX_REG_ES) + _ASM_EXTABLE_TYPE(3b, 4b, EX_TYPE_POP_ZERO|EX_REG_FS) +.endm + +.macro RESTORE_ALL_NMI cr3_reg:req pop=0 + /* + * Now switch the CR3 when PTI is enabled. + * + * We enter with kernel cr3 and switch the cr3 to the value + * stored on \cr3_reg, which is either a user or a kernel cr3. + */ + ALTERNATIVE "jmp .Lswitched_\@", "", X86_FEATURE_PTI + + testl $PTI_SWITCH_MASK, \cr3_reg + jz .Lswitched_\@ + + /* User cr3 in \cr3_reg - write it to hardware cr3 */ + movl \cr3_reg, %cr3 + +.Lswitched_\@: + + BUG_IF_WRONG_CR3 + + RESTORE_REGS pop=\pop +.endm + +.macro CHECK_AND_APPLY_ESPFIX +#ifdef CONFIG_X86_ESPFIX32 +#define GDT_ESPFIX_OFFSET (GDT_ENTRY_ESPFIX_SS * 8) +#define GDT_ESPFIX_SS PER_CPU_VAR(gdt_page) + GDT_ESPFIX_OFFSET + + ALTERNATIVE "jmp .Lend_\@", "", X86_BUG_ESPFIX + + movl PT_EFLAGS(%esp), %eax # mix EFLAGS, SS and CS + /* + * Warning: PT_OLDSS(%esp) contains the wrong/random values if we + * are returning to the kernel. + * See comments in process.c:copy_thread() for details. + */ + movb PT_OLDSS(%esp), %ah + movb PT_CS(%esp), %al + andl $(X86_EFLAGS_VM | (SEGMENT_TI_MASK << 8) | SEGMENT_RPL_MASK), %eax + cmpl $((SEGMENT_LDT << 8) | USER_RPL), %eax + jne .Lend_\@ # returning to user-space with LDT SS + + /* + * Setup and switch to ESPFIX stack + * + * We're returning to userspace with a 16 bit stack. The CPU will not + * restore the high word of ESP for us on executing iret... This is an + * "official" bug of all the x86-compatible CPUs, which we can work + * around to make dosemu and wine happy. We do this by preloading the + * high word of ESP with the high word of the userspace ESP while + * compensating for the offset by changing to the ESPFIX segment with + * a base address that matches for the difference. + */ + mov %esp, %edx /* load kernel esp */ + mov PT_OLDESP(%esp), %eax /* load userspace esp */ + mov %dx, %ax /* eax: new kernel esp */ + sub %eax, %edx /* offset (low word is 0) */ + shr $16, %edx + mov %dl, GDT_ESPFIX_SS + 4 /* bits 16..23 */ + mov %dh, GDT_ESPFIX_SS + 7 /* bits 24..31 */ + pushl $__ESPFIX_SS + pushl %eax /* new kernel esp */ + /* + * Disable interrupts, but do not irqtrace this section: we + * will soon execute iret and the tracer was already set to + * the irqstate after the IRET: + */ + cli + lss (%esp), %esp /* switch to espfix segment */ +.Lend_\@: +#endif /* CONFIG_X86_ESPFIX32 */ +.endm + +/* + * Called with pt_regs fully populated and kernel segments loaded, + * so we can access PER_CPU and use the integer registers. + * + * We need to be very careful here with the %esp switch, because an NMI + * can happen everywhere. If the NMI handler finds itself on the + * entry-stack, it will overwrite the task-stack and everything we + * copied there. So allocate the stack-frame on the task-stack and + * switch to it before we do any copying. + */ + +.macro SWITCH_TO_KERNEL_STACK + + BUG_IF_WRONG_CR3 + + SWITCH_TO_KERNEL_CR3 scratch_reg=%eax + + /* + * %eax now contains the entry cr3 and we carry it forward in + * that register for the time this macro runs + */ + + /* Are we on the entry stack? Bail out if not! */ + movl PER_CPU_VAR(cpu_entry_area), %ecx + addl $CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx + subl %esp, %ecx /* ecx = (end of entry_stack) - esp */ + cmpl $SIZEOF_entry_stack, %ecx + jae .Lend_\@ + + /* Load stack pointer into %esi and %edi */ + movl %esp, %esi + movl %esi, %edi + + /* Move %edi to the top of the entry stack */ + andl $(MASK_entry_stack), %edi + addl $(SIZEOF_entry_stack), %edi + + /* Load top of task-stack into %edi */ + movl TSS_entry2task_stack(%edi), %edi + + /* Special case - entry from kernel mode via entry stack */ +#ifdef CONFIG_VM86 + movl PT_EFLAGS(%esp), %ecx # mix EFLAGS and CS + movb PT_CS(%esp), %cl + andl $(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %ecx +#else + movl PT_CS(%esp), %ecx + andl $SEGMENT_RPL_MASK, %ecx +#endif + cmpl $USER_RPL, %ecx + jb .Lentry_from_kernel_\@ + + /* Bytes to copy */ + movl $PTREGS_SIZE, %ecx + +#ifdef CONFIG_VM86 + testl $X86_EFLAGS_VM, PT_EFLAGS(%esi) + jz .Lcopy_pt_regs_\@ + + /* + * Stack-frame contains 4 additional segment registers when + * coming from VM86 mode + */ + addl $(4 * 4), %ecx + +#endif +.Lcopy_pt_regs_\@: + + /* Allocate frame on task-stack */ + subl %ecx, %edi + + /* Switch to task-stack */ + movl %edi, %esp + + /* + * We are now on the task-stack and can safely copy over the + * stack-frame + */ + shrl $2, %ecx + cld + rep movsl + + jmp .Lend_\@ + +.Lentry_from_kernel_\@: + + /* + * This handles the case when we enter the kernel from + * kernel-mode and %esp points to the entry-stack. When this + * happens we need to switch to the task-stack to run C code, + * but switch back to the entry-stack again when we approach + * iret and return to the interrupted code-path. This usually + * happens when we hit an exception while restoring user-space + * segment registers on the way back to user-space or when the + * sysenter handler runs with eflags.tf set. + * + * When we switch to the task-stack here, we can't trust the + * contents of the entry-stack anymore, as the exception handler + * might be scheduled out or moved to another CPU. Therefore we + * copy the complete entry-stack to the task-stack and set a + * marker in the iret-frame (bit 31 of the CS dword) to detect + * what we've done on the iret path. + * + * On the iret path we copy everything back and switch to the + * entry-stack, so that the interrupted kernel code-path + * continues on the same stack it was interrupted with. + * + * Be aware that an NMI can happen anytime in this code. + * + * %esi: Entry-Stack pointer (same as %esp) + * %edi: Top of the task stack + * %eax: CR3 on kernel entry + */ + + /* Calculate number of bytes on the entry stack in %ecx */ + movl %esi, %ecx + + /* %ecx to the top of entry-stack */ + andl $(MASK_entry_stack), %ecx + addl $(SIZEOF_entry_stack), %ecx + + /* Number of bytes on the entry stack to %ecx */ + sub %esi, %ecx + + /* Mark stackframe as coming from entry stack */ + orl $CS_FROM_ENTRY_STACK, PT_CS(%esp) + + /* + * Test the cr3 used to enter the kernel and add a marker + * so that we can switch back to it before iret. + */ + testl $PTI_SWITCH_MASK, %eax + jz .Lcopy_pt_regs_\@ + orl $CS_FROM_USER_CR3, PT_CS(%esp) + + /* + * %esi and %edi are unchanged, %ecx contains the number of + * bytes to copy. The code at .Lcopy_pt_regs_\@ will allocate + * the stack-frame on task-stack and copy everything over + */ + jmp .Lcopy_pt_regs_\@ + +.Lend_\@: +.endm + +/* + * Switch back from the kernel stack to the entry stack. + * + * The %esp register must point to pt_regs on the task stack. It will + * first calculate the size of the stack-frame to copy, depending on + * whether we return to VM86 mode or not. With that it uses 'rep movsl' + * to copy the contents of the stack over to the entry stack. + * + * We must be very careful here, as we can't trust the contents of the + * task-stack once we switched to the entry-stack. When an NMI happens + * while on the entry-stack, the NMI handler will switch back to the top + * of the task stack, overwriting our stack-frame we are about to copy. + * Therefore we switch the stack only after everything is copied over. + */ +.macro SWITCH_TO_ENTRY_STACK + + /* Bytes to copy */ + movl $PTREGS_SIZE, %ecx + +#ifdef CONFIG_VM86 + testl $(X86_EFLAGS_VM), PT_EFLAGS(%esp) + jz .Lcopy_pt_regs_\@ + + /* Additional 4 registers to copy when returning to VM86 mode */ + addl $(4 * 4), %ecx + +.Lcopy_pt_regs_\@: +#endif + + /* Initialize source and destination for movsl */ + movl PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi + subl %ecx, %edi + movl %esp, %esi + + /* Save future stack pointer in %ebx */ + movl %edi, %ebx + + /* Copy over the stack-frame */ + shrl $2, %ecx + cld + rep movsl + + /* + * Switch to entry-stack - needs to happen after everything is + * copied because the NMI handler will overwrite the task-stack + * when on entry-stack + */ + movl %ebx, %esp + +.Lend_\@: +.endm + +/* + * This macro handles the case when we return to kernel-mode on the iret + * path and have to switch back to the entry stack and/or user-cr3 + * + * See the comments below the .Lentry_from_kernel_\@ label in the + * SWITCH_TO_KERNEL_STACK macro for more details. + */ +.macro PARANOID_EXIT_TO_KERNEL_MODE + + /* + * Test if we entered the kernel with the entry-stack. Most + * likely we did not, because this code only runs on the + * return-to-kernel path. + */ + testl $CS_FROM_ENTRY_STACK, PT_CS(%esp) + jz .Lend_\@ + + /* Unlikely slow-path */ + + /* Clear marker from stack-frame */ + andl $(~CS_FROM_ENTRY_STACK), PT_CS(%esp) + + /* Copy the remaining task-stack contents to entry-stack */ + movl %esp, %esi + movl PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi + + /* Bytes on the task-stack to ecx */ + movl PER_CPU_VAR(cpu_tss_rw + TSS_sp1), %ecx + subl %esi, %ecx + + /* Allocate stack-frame on entry-stack */ + subl %ecx, %edi + + /* + * Save future stack-pointer, we must not switch until the + * copy is done, otherwise the NMI handler could destroy the + * contents of the task-stack we are about to copy. + */ + movl %edi, %ebx + + /* Do the copy */ + shrl $2, %ecx + cld + rep movsl + + /* Safe to switch to entry-stack now */ + movl %ebx, %esp + + /* + * We came from entry-stack and need to check if we also need to + * switch back to user cr3. + */ + testl $CS_FROM_USER_CR3, PT_CS(%esp) + jz .Lend_\@ + + /* Clear marker from stack-frame */ + andl $(~CS_FROM_USER_CR3), PT_CS(%esp) + + SWITCH_TO_USER_CR3 scratch_reg=%eax + +.Lend_\@: +.endm + +/** + * idtentry - Macro to generate entry stubs for simple IDT entries + * @vector: Vector number + * @asmsym: ASM symbol for the entry point + * @cfunc: C function to be called + * @has_error_code: Hardware pushed error code on stack + */ +.macro idtentry vector asmsym cfunc has_error_code:req +SYM_CODE_START(\asmsym) + ASM_CLAC + cld + + .if \has_error_code == 0 + pushl $0 /* Clear the error code */ + .endif + + /* Push the C-function address into the GS slot */ + pushl $\cfunc + /* Invoke the common exception entry */ + jmp handle_exception +SYM_CODE_END(\asmsym) +.endm + +.macro idtentry_irq vector cfunc + .p2align CONFIG_X86_L1_CACHE_SHIFT +SYM_CODE_START_LOCAL(asm_\cfunc) + ASM_CLAC + SAVE_ALL switch_stacks=1 + ENCODE_FRAME_POINTER + movl %esp, %eax + movl PT_ORIG_EAX(%esp), %edx /* get the vector from stack */ + movl $-1, PT_ORIG_EAX(%esp) /* no syscall to restart */ + call \cfunc + jmp handle_exception_return +SYM_CODE_END(asm_\cfunc) +.endm + +.macro idtentry_sysvec vector cfunc + idtentry \vector asm_\cfunc \cfunc has_error_code=0 +.endm + +/* + * Include the defines which emit the idt entries which are shared + * shared between 32 and 64 bit and emit the __irqentry_text_* markers + * so the stacktrace boundary checks work. + */ + .align 16 + .globl __irqentry_text_start +__irqentry_text_start: + +#include <asm/idtentry.h> + + .align 16 + .globl __irqentry_text_end +__irqentry_text_end: + +/* + * %eax: prev task + * %edx: next task + */ +.pushsection .text, "ax" +SYM_CODE_START(__switch_to_asm) + /* + * Save callee-saved registers + * This must match the order in struct inactive_task_frame + */ + pushl %ebp + pushl %ebx + pushl %edi + pushl %esi + /* + * Flags are saved to prevent AC leakage. This could go + * away if objtool would have 32bit support to verify + * the STAC/CLAC correctness. + */ + pushfl + + /* switch stack */ + movl %esp, TASK_threadsp(%eax) + movl TASK_threadsp(%edx), %esp + +#ifdef CONFIG_STACKPROTECTOR + movl TASK_stack_canary(%edx), %ebx + movl %ebx, PER_CPU_VAR(__stack_chk_guard) +#endif + + /* + * When switching from a shallower to a deeper call stack + * the RSB may either underflow or use entries populated + * with userspace addresses. On CPUs where those concerns + * exist, overwrite the RSB with entries which capture + * speculative execution to prevent attack. + */ + FILL_RETURN_BUFFER %ebx, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW + + /* Restore flags or the incoming task to restore AC state. */ + popfl + /* restore callee-saved registers */ + popl %esi + popl %edi + popl %ebx + popl %ebp + + jmp __switch_to +SYM_CODE_END(__switch_to_asm) +.popsection + +/* + * A newly forked process directly context switches into this address. + * + * eax: prev task we switched from + * ebx: kernel thread func (NULL for user thread) + * edi: kernel thread arg + */ +.pushsection .text, "ax" +SYM_CODE_START(ret_from_fork_asm) + movl %esp, %edx /* regs */ + + /* return address for the stack unwinder */ + pushl $.Lsyscall_32_done + + FRAME_BEGIN + /* prev already in EAX */ + movl %ebx, %ecx /* fn */ + pushl %edi /* fn_arg */ + call ret_from_fork + addl $4, %esp + FRAME_END + + RET +SYM_CODE_END(ret_from_fork_asm) +.popsection + +SYM_ENTRY(__begin_SYSENTER_singlestep_region, SYM_L_GLOBAL, SYM_A_NONE) +/* + * All code from here through __end_SYSENTER_singlestep_region is subject + * to being single-stepped if a user program sets TF and executes SYSENTER. + * There is absolutely nothing that we can do to prevent this from happening + * (thanks Intel!). To keep our handling of this situation as simple as + * possible, we handle TF just like AC and NT, except that our #DB handler + * will ignore all of the single-step traps generated in this range. + */ + +/* + * 32-bit SYSENTER entry. + * + * 32-bit system calls through the vDSO's __kernel_vsyscall enter here + * if X86_FEATURE_SEP is available. This is the preferred system call + * entry on 32-bit systems. + * + * The SYSENTER instruction, in principle, should *only* occur in the + * vDSO. In practice, a small number of Android devices were shipped + * with a copy of Bionic that inlined a SYSENTER instruction. This + * never happened in any of Google's Bionic versions -- it only happened + * in a narrow range of Intel-provided versions. + * + * SYSENTER loads SS, ESP, CS, and EIP from previously programmed MSRs. + * IF and VM in RFLAGS are cleared (IOW: interrupts are off). + * SYSENTER does not save anything on the stack, + * and does not save old EIP (!!!), ESP, or EFLAGS. + * + * To avoid losing track of EFLAGS.VM (and thus potentially corrupting + * user and/or vm86 state), we explicitly disable the SYSENTER + * instruction in vm86 mode by reprogramming the MSRs. + * + * Arguments: + * eax system call number + * ebx arg1 + * ecx arg2 + * edx arg3 + * esi arg4 + * edi arg5 + * ebp user stack + * 0(%ebp) arg6 + */ +SYM_FUNC_START(entry_SYSENTER_32) + /* + * On entry-stack with all userspace-regs live - save and + * restore eflags and %eax to use it as scratch-reg for the cr3 + * switch. + */ + pushfl + pushl %eax + BUG_IF_WRONG_CR3 no_user_check=1 + SWITCH_TO_KERNEL_CR3 scratch_reg=%eax + popl %eax + popfl + + /* Stack empty again, switch to task stack */ + movl TSS_entry2task_stack(%esp), %esp + +.Lsysenter_past_esp: + pushl $__USER_DS /* pt_regs->ss */ + pushl $0 /* pt_regs->sp (placeholder) */ + pushfl /* pt_regs->flags (except IF = 0) */ + pushl $__USER_CS /* pt_regs->cs */ + pushl $0 /* pt_regs->ip = 0 (placeholder) */ + pushl %eax /* pt_regs->orig_ax */ + SAVE_ALL pt_regs_ax=$-ENOSYS /* save rest, stack already switched */ + + /* + * SYSENTER doesn't filter flags, so we need to clear NT, AC + * and TF ourselves. To save a few cycles, we can check whether + * either was set instead of doing an unconditional popfq. + * This needs to happen before enabling interrupts so that + * we don't get preempted with NT set. + * + * If TF is set, we will single-step all the way to here -- do_debug + * will ignore all the traps. (Yes, this is slow, but so is + * single-stepping in general. This allows us to avoid having + * a more complicated code to handle the case where a user program + * forces us to single-step through the SYSENTER entry code.) + * + * NB.: .Lsysenter_fix_flags is a label with the code under it moved + * out-of-line as an optimization: NT is unlikely to be set in the + * majority of the cases and instead of polluting the I$ unnecessarily, + * we're keeping that code behind a branch which will predict as + * not-taken and therefore its instructions won't be fetched. + */ + testl $X86_EFLAGS_NT|X86_EFLAGS_AC|X86_EFLAGS_TF, PT_EFLAGS(%esp) + jnz .Lsysenter_fix_flags +.Lsysenter_flags_fixed: + + movl %esp, %eax + call do_SYSENTER_32 + testl %eax, %eax + jz .Lsyscall_32_done + + STACKLEAK_ERASE + + /* Opportunistic SYSEXIT */ + + /* + * Setup entry stack - we keep the pointer in %eax and do the + * switch after almost all user-state is restored. + */ + + /* Load entry stack pointer and allocate frame for eflags/eax */ + movl PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %eax + subl $(2*4), %eax + + /* Copy eflags and eax to entry stack */ + movl PT_EFLAGS(%esp), %edi + movl PT_EAX(%esp), %esi + movl %edi, (%eax) + movl %esi, 4(%eax) + + /* Restore user registers and segments */ + movl PT_EIP(%esp), %edx /* pt_regs->ip */ + movl PT_OLDESP(%esp), %ecx /* pt_regs->sp */ +1: mov PT_FS(%esp), %fs + + popl %ebx /* pt_regs->bx */ + addl $2*4, %esp /* skip pt_regs->cx and pt_regs->dx */ + popl %esi /* pt_regs->si */ + popl %edi /* pt_regs->di */ + popl %ebp /* pt_regs->bp */ + + /* Switch to entry stack */ + movl %eax, %esp + + /* Now ready to switch the cr3 */ + SWITCH_TO_USER_CR3 scratch_reg=%eax + + /* + * Restore all flags except IF. (We restore IF separately because + * STI gives a one-instruction window in which we won't be interrupted, + * whereas POPF does not.) + */ + btrl $X86_EFLAGS_IF_BIT, (%esp) + BUG_IF_WRONG_CR3 no_user_check=1 + popfl + popl %eax + + /* + * Return back to the vDSO, which will pop ecx and edx. + * Don't bother with DS and ES (they already contain __USER_DS). + */ + sti + sysexit + +2: movl $0, PT_FS(%esp) + jmp 1b + _ASM_EXTABLE(1b, 2b) + +.Lsysenter_fix_flags: + pushl $X86_EFLAGS_FIXED + popfl + jmp .Lsysenter_flags_fixed +SYM_ENTRY(__end_SYSENTER_singlestep_region, SYM_L_GLOBAL, SYM_A_NONE) +SYM_FUNC_END(entry_SYSENTER_32) + +/* + * 32-bit legacy system call entry. + * + * 32-bit x86 Linux system calls traditionally used the INT $0x80 + * instruction. INT $0x80 lands here. + * + * This entry point can be used by any 32-bit perform system calls. + * Instances of INT $0x80 can be found inline in various programs and + * libraries. It is also used by the vDSO's __kernel_vsyscall + * fallback for hardware that doesn't support a faster entry method. + * Restarted 32-bit system calls also fall back to INT $0x80 + * regardless of what instruction was originally used to do the system + * call. (64-bit programs can use INT $0x80 as well, but they can + * only run on 64-bit kernels and therefore land in + * entry_INT80_compat.) + * + * This is considered a slow path. It is not used by most libc + * implementations on modern hardware except during process startup. + * + * Arguments: + * eax system call number + * ebx arg1 + * ecx arg2 + * edx arg3 + * esi arg4 + * edi arg5 + * ebp arg6 + */ +SYM_FUNC_START(entry_INT80_32) + ASM_CLAC + pushl %eax /* pt_regs->orig_ax */ + + SAVE_ALL pt_regs_ax=$-ENOSYS switch_stacks=1 /* save rest */ + + movl %esp, %eax + call do_int80_syscall_32 +.Lsyscall_32_done: + STACKLEAK_ERASE + +restore_all_switch_stack: + SWITCH_TO_ENTRY_STACK + CHECK_AND_APPLY_ESPFIX + + /* Switch back to user CR3 */ + SWITCH_TO_USER_CR3 scratch_reg=%eax + + BUG_IF_WRONG_CR3 + + /* Restore user state */ + RESTORE_REGS pop=4 # skip orig_eax/error_code +.Lirq_return: + /* + * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization + * when returning from IPI handler and when returning from + * scheduler to user-space. + */ + iret + +.Lasm_iret_error: + pushl $0 # no error code + pushl $iret_error + +#ifdef CONFIG_DEBUG_ENTRY + /* + * The stack-frame here is the one that iret faulted on, so its a + * return-to-user frame. We are on kernel-cr3 because we come here from + * the fixup code. This confuses the CR3 checker, so switch to user-cr3 + * as the checker expects it. + */ + pushl %eax + SWITCH_TO_USER_CR3 scratch_reg=%eax + popl %eax +#endif + + jmp handle_exception + + _ASM_EXTABLE(.Lirq_return, .Lasm_iret_error) +SYM_FUNC_END(entry_INT80_32) + +.macro FIXUP_ESPFIX_STACK +/* + * Switch back for ESPFIX stack to the normal zerobased stack + * + * We can't call C functions using the ESPFIX stack. This code reads + * the high word of the segment base from the GDT and swiches to the + * normal stack and adjusts ESP with the matching offset. + * + * We might be on user CR3 here, so percpu data is not mapped and we can't + * access the GDT through the percpu segment. Instead, use SGDT to find + * the cpu_entry_area alias of the GDT. + */ +#ifdef CONFIG_X86_ESPFIX32 + /* fixup the stack */ + pushl %ecx + subl $2*4, %esp + sgdt (%esp) + movl 2(%esp), %ecx /* GDT address */ + /* + * Careful: ECX is a linear pointer, so we need to force base + * zero. %cs is the only known-linear segment we have right now. + */ + mov %cs:GDT_ESPFIX_OFFSET + 4(%ecx), %al /* bits 16..23 */ + mov %cs:GDT_ESPFIX_OFFSET + 7(%ecx), %ah /* bits 24..31 */ + shl $16, %eax + addl $2*4, %esp + popl %ecx + addl %esp, %eax /* the adjusted stack pointer */ + pushl $__KERNEL_DS + pushl %eax + lss (%esp), %esp /* switch to the normal stack segment */ +#endif +.endm + +.macro UNWIND_ESPFIX_STACK + /* It's safe to clobber %eax, all other regs need to be preserved */ +#ifdef CONFIG_X86_ESPFIX32 + movl %ss, %eax + /* see if on espfix stack */ + cmpw $__ESPFIX_SS, %ax + jne .Lno_fixup_\@ + /* switch to normal stack */ + FIXUP_ESPFIX_STACK +.Lno_fixup_\@: +#endif +.endm + +SYM_CODE_START_LOCAL_NOALIGN(handle_exception) + /* the function address is in %gs's slot on the stack */ + SAVE_ALL switch_stacks=1 skip_gs=1 unwind_espfix=1 + ENCODE_FRAME_POINTER + + movl PT_GS(%esp), %edi # get the function address + + /* fixup orig %eax */ + movl PT_ORIG_EAX(%esp), %edx # get the error code + movl $-1, PT_ORIG_EAX(%esp) # no syscall to restart + + movl %esp, %eax # pt_regs pointer + CALL_NOSPEC edi + +handle_exception_return: +#ifdef CONFIG_VM86 + movl PT_EFLAGS(%esp), %eax # mix EFLAGS and CS + movb PT_CS(%esp), %al + andl $(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %eax +#else + /* + * We can be coming here from child spawned by kernel_thread(). + */ + movl PT_CS(%esp), %eax + andl $SEGMENT_RPL_MASK, %eax +#endif + cmpl $USER_RPL, %eax # returning to v8086 or userspace ? + jnb ret_to_user + + PARANOID_EXIT_TO_KERNEL_MODE + BUG_IF_WRONG_CR3 + RESTORE_REGS 4 + jmp .Lirq_return + +ret_to_user: + movl %esp, %eax + jmp restore_all_switch_stack +SYM_CODE_END(handle_exception) + +SYM_CODE_START(asm_exc_double_fault) +1: + /* + * This is a task gate handler, not an interrupt gate handler. + * The error code is on the stack, but the stack is otherwise + * empty. Interrupts are off. Our state is sane with the following + * exceptions: + * + * - CR0.TS is set. "TS" literally means "task switched". + * - EFLAGS.NT is set because we're a "nested task". + * - The doublefault TSS has back_link set and has been marked busy. + * - TR points to the doublefault TSS and the normal TSS is busy. + * - CR3 is the normal kernel PGD. This would be delightful, except + * that the CPU didn't bother to save the old CR3 anywhere. This + * would make it very awkward to return back to the context we came + * from. + * + * The rest of EFLAGS is sanitized for us, so we don't need to + * worry about AC or DF. + * + * Don't even bother popping the error code. It's always zero, + * and ignoring it makes us a bit more robust against buggy + * hypervisor task gate implementations. + * + * We will manually undo the task switch instead of doing a + * task-switching IRET. + */ + + clts /* clear CR0.TS */ + pushl $X86_EFLAGS_FIXED + popfl /* clear EFLAGS.NT */ + + call doublefault_shim + + /* We don't support returning, so we have no IRET here. */ +1: + hlt + jmp 1b +SYM_CODE_END(asm_exc_double_fault) + +/* + * NMI is doubly nasty. It can happen on the first instruction of + * entry_SYSENTER_32 (just like #DB), but it can also interrupt the beginning + * of the #DB handler even if that #DB in turn hit before entry_SYSENTER_32 + * switched stacks. We handle both conditions by simply checking whether we + * interrupted kernel code running on the SYSENTER stack. + */ +SYM_CODE_START(asm_exc_nmi) + ASM_CLAC + +#ifdef CONFIG_X86_ESPFIX32 + /* + * ESPFIX_SS is only ever set on the return to user path + * after we've switched to the entry stack. + */ + pushl %eax + movl %ss, %eax + cmpw $__ESPFIX_SS, %ax + popl %eax + je .Lnmi_espfix_stack +#endif + + pushl %eax # pt_regs->orig_ax + SAVE_ALL_NMI cr3_reg=%edi + ENCODE_FRAME_POINTER + xorl %edx, %edx # zero error code + movl %esp, %eax # pt_regs pointer + + /* Are we currently on the SYSENTER stack? */ + movl PER_CPU_VAR(cpu_entry_area), %ecx + addl $CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx + subl %eax, %ecx /* ecx = (end of entry_stack) - esp */ + cmpl $SIZEOF_entry_stack, %ecx + jb .Lnmi_from_sysenter_stack + + /* Not on SYSENTER stack. */ + call exc_nmi + jmp .Lnmi_return + +.Lnmi_from_sysenter_stack: + /* + * We're on the SYSENTER stack. Switch off. No one (not even debug) + * is using the thread stack right now, so it's safe for us to use it. + */ + movl %esp, %ebx + movl PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %esp + call exc_nmi + movl %ebx, %esp + +.Lnmi_return: +#ifdef CONFIG_X86_ESPFIX32 + testl $CS_FROM_ESPFIX, PT_CS(%esp) + jnz .Lnmi_from_espfix +#endif + + CHECK_AND_APPLY_ESPFIX + RESTORE_ALL_NMI cr3_reg=%edi pop=4 + jmp .Lirq_return + +#ifdef CONFIG_X86_ESPFIX32 +.Lnmi_espfix_stack: + /* + * Create the pointer to LSS back + */ + pushl %ss + pushl %esp + addl $4, (%esp) + + /* Copy the (short) IRET frame */ + pushl 4*4(%esp) # flags + pushl 4*4(%esp) # cs + pushl 4*4(%esp) # ip + + pushl %eax # orig_ax + + SAVE_ALL_NMI cr3_reg=%edi unwind_espfix=1 + ENCODE_FRAME_POINTER + + /* clear CS_FROM_KERNEL, set CS_FROM_ESPFIX */ + xorl $(CS_FROM_ESPFIX | CS_FROM_KERNEL), PT_CS(%esp) + + xorl %edx, %edx # zero error code + movl %esp, %eax # pt_regs pointer + jmp .Lnmi_from_sysenter_stack + +.Lnmi_from_espfix: + RESTORE_ALL_NMI cr3_reg=%edi + /* + * Because we cleared CS_FROM_KERNEL, IRET_FRAME 'forgot' to + * fix up the gap and long frame: + * + * 3 - original frame (exception) + * 2 - ESPFIX block (above) + * 6 - gap (FIXUP_FRAME) + * 5 - long frame (FIXUP_FRAME) + * 1 - orig_ax + */ + lss (1+5+6)*4(%esp), %esp # back to espfix stack + jmp .Lirq_return +#endif +SYM_CODE_END(asm_exc_nmi) + +.pushsection .text, "ax" +SYM_CODE_START(rewind_stack_and_make_dead) + /* Prevent any naive code from trying to unwind to our caller. */ + xorl %ebp, %ebp + + movl PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %esi + leal -TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%esi), %esp + + call make_task_dead +1: jmp 1b +SYM_CODE_END(rewind_stack_and_make_dead) +.popsection |