diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-11 08:27:49 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-11 08:27:49 +0000 |
commit | ace9429bb58fd418f0c81d4c2835699bddf6bde6 (patch) | |
tree | b2d64bc10158fdd5497876388cd68142ca374ed3 /arch/x86/kernel/alternative.c | |
parent | Initial commit. (diff) | |
download | linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.tar.xz linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.zip |
Adding upstream version 6.6.15.upstream/6.6.15
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'arch/x86/kernel/alternative.c')
-rw-r--r-- | arch/x86/kernel/alternative.c | 2454 |
1 files changed, 2454 insertions, 0 deletions
diff --git a/arch/x86/kernel/alternative.c b/arch/x86/kernel/alternative.c new file mode 100644 index 0000000000..aae7456ece --- /dev/null +++ b/arch/x86/kernel/alternative.c @@ -0,0 +1,2454 @@ +// SPDX-License-Identifier: GPL-2.0-only +#define pr_fmt(fmt) "SMP alternatives: " fmt + +#include <linux/module.h> +#include <linux/sched.h> +#include <linux/perf_event.h> +#include <linux/mutex.h> +#include <linux/list.h> +#include <linux/stringify.h> +#include <linux/highmem.h> +#include <linux/mm.h> +#include <linux/vmalloc.h> +#include <linux/memory.h> +#include <linux/stop_machine.h> +#include <linux/slab.h> +#include <linux/kdebug.h> +#include <linux/kprobes.h> +#include <linux/mmu_context.h> +#include <linux/bsearch.h> +#include <linux/sync_core.h> +#include <asm/text-patching.h> +#include <asm/alternative.h> +#include <asm/sections.h> +#include <asm/mce.h> +#include <asm/nmi.h> +#include <asm/cacheflush.h> +#include <asm/tlbflush.h> +#include <asm/insn.h> +#include <asm/io.h> +#include <asm/fixmap.h> +#include <asm/paravirt.h> +#include <asm/asm-prototypes.h> + +int __read_mostly alternatives_patched; + +EXPORT_SYMBOL_GPL(alternatives_patched); + +#define MAX_PATCH_LEN (255-1) + +#define DA_ALL (~0) +#define DA_ALT 0x01 +#define DA_RET 0x02 +#define DA_RETPOLINE 0x04 +#define DA_ENDBR 0x08 +#define DA_SMP 0x10 + +static unsigned int __initdata_or_module debug_alternative; + +static int __init debug_alt(char *str) +{ + if (str && *str == '=') + str++; + + if (!str || kstrtouint(str, 0, &debug_alternative)) + debug_alternative = DA_ALL; + + return 1; +} +__setup("debug-alternative", debug_alt); + +static int noreplace_smp; + +static int __init setup_noreplace_smp(char *str) +{ + noreplace_smp = 1; + return 1; +} +__setup("noreplace-smp", setup_noreplace_smp); + +#define DPRINTK(type, fmt, args...) \ +do { \ + if (debug_alternative & DA_##type) \ + printk(KERN_DEBUG pr_fmt(fmt) "\n", ##args); \ +} while (0) + +#define DUMP_BYTES(type, buf, len, fmt, args...) \ +do { \ + if (unlikely(debug_alternative & DA_##type)) { \ + int j; \ + \ + if (!(len)) \ + break; \ + \ + printk(KERN_DEBUG pr_fmt(fmt), ##args); \ + for (j = 0; j < (len) - 1; j++) \ + printk(KERN_CONT "%02hhx ", buf[j]); \ + printk(KERN_CONT "%02hhx\n", buf[j]); \ + } \ +} while (0) + +static const unsigned char x86nops[] = +{ + BYTES_NOP1, + BYTES_NOP2, + BYTES_NOP3, + BYTES_NOP4, + BYTES_NOP5, + BYTES_NOP6, + BYTES_NOP7, + BYTES_NOP8, +#ifdef CONFIG_64BIT + BYTES_NOP9, + BYTES_NOP10, + BYTES_NOP11, +#endif +}; + +const unsigned char * const x86_nops[ASM_NOP_MAX+1] = +{ + NULL, + x86nops, + x86nops + 1, + x86nops + 1 + 2, + x86nops + 1 + 2 + 3, + x86nops + 1 + 2 + 3 + 4, + x86nops + 1 + 2 + 3 + 4 + 5, + x86nops + 1 + 2 + 3 + 4 + 5 + 6, + x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7, +#ifdef CONFIG_64BIT + x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8, + x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9, + x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10, +#endif +}; + +/* + * Fill the buffer with a single effective instruction of size @len. + * + * In order not to issue an ORC stack depth tracking CFI entry (Call Frame Info) + * for every single-byte NOP, try to generate the maximally available NOP of + * size <= ASM_NOP_MAX such that only a single CFI entry is generated (vs one for + * each single-byte NOPs). If @len to fill out is > ASM_NOP_MAX, pad with INT3 and + * *jump* over instead of executing long and daft NOPs. + */ +static void __init_or_module add_nop(u8 *instr, unsigned int len) +{ + u8 *target = instr + len; + + if (!len) + return; + + if (len <= ASM_NOP_MAX) { + memcpy(instr, x86_nops[len], len); + return; + } + + if (len < 128) { + __text_gen_insn(instr, JMP8_INSN_OPCODE, instr, target, JMP8_INSN_SIZE); + instr += JMP8_INSN_SIZE; + } else { + __text_gen_insn(instr, JMP32_INSN_OPCODE, instr, target, JMP32_INSN_SIZE); + instr += JMP32_INSN_SIZE; + } + + for (;instr < target; instr++) + *instr = INT3_INSN_OPCODE; +} + +extern s32 __retpoline_sites[], __retpoline_sites_end[]; +extern s32 __return_sites[], __return_sites_end[]; +extern s32 __cfi_sites[], __cfi_sites_end[]; +extern s32 __ibt_endbr_seal[], __ibt_endbr_seal_end[]; +extern struct alt_instr __alt_instructions[], __alt_instructions_end[]; +extern s32 __smp_locks[], __smp_locks_end[]; +void text_poke_early(void *addr, const void *opcode, size_t len); + +/* + * Matches NOP and NOPL, not any of the other possible NOPs. + */ +static bool insn_is_nop(struct insn *insn) +{ + /* Anything NOP, but no REP NOP */ + if (insn->opcode.bytes[0] == 0x90 && + (!insn->prefixes.nbytes || insn->prefixes.bytes[0] != 0xF3)) + return true; + + /* NOPL */ + if (insn->opcode.bytes[0] == 0x0F && insn->opcode.bytes[1] == 0x1F) + return true; + + /* TODO: more nops */ + + return false; +} + +/* + * Find the offset of the first non-NOP instruction starting at @offset + * but no further than @len. + */ +static int skip_nops(u8 *instr, int offset, int len) +{ + struct insn insn; + + for (; offset < len; offset += insn.length) { + if (insn_decode_kernel(&insn, &instr[offset])) + break; + + if (!insn_is_nop(&insn)) + break; + } + + return offset; +} + +/* + * Optimize a sequence of NOPs, possibly preceded by an unconditional jump + * to the end of the NOP sequence into a single NOP. + */ +static bool __init_or_module +__optimize_nops(u8 *instr, size_t len, struct insn *insn, int *next, int *prev, int *target) +{ + int i = *next - insn->length; + + switch (insn->opcode.bytes[0]) { + case JMP8_INSN_OPCODE: + case JMP32_INSN_OPCODE: + *prev = i; + *target = *next + insn->immediate.value; + return false; + } + + if (insn_is_nop(insn)) { + int nop = i; + + *next = skip_nops(instr, *next, len); + if (*target && *next == *target) + nop = *prev; + + add_nop(instr + nop, *next - nop); + DUMP_BYTES(ALT, instr, len, "%px: [%d:%d) optimized NOPs: ", instr, nop, *next); + return true; + } + + *target = 0; + return false; +} + +/* + * "noinline" to cause control flow change and thus invalidate I$ and + * cause refetch after modification. + */ +static void __init_or_module noinline optimize_nops(u8 *instr, size_t len) +{ + int prev, target = 0; + + for (int next, i = 0; i < len; i = next) { + struct insn insn; + + if (insn_decode_kernel(&insn, &instr[i])) + return; + + next = i + insn.length; + + __optimize_nops(instr, len, &insn, &next, &prev, &target); + } +} + +static void __init_or_module noinline optimize_nops_inplace(u8 *instr, size_t len) +{ + unsigned long flags; + + local_irq_save(flags); + optimize_nops(instr, len); + sync_core(); + local_irq_restore(flags); +} + +/* + * In this context, "source" is where the instructions are placed in the + * section .altinstr_replacement, for example during kernel build by the + * toolchain. + * "Destination" is where the instructions are being patched in by this + * machinery. + * + * The source offset is: + * + * src_imm = target - src_next_ip (1) + * + * and the target offset is: + * + * dst_imm = target - dst_next_ip (2) + * + * so rework (1) as an expression for target like: + * + * target = src_imm + src_next_ip (1a) + * + * and substitute in (2) to get: + * + * dst_imm = (src_imm + src_next_ip) - dst_next_ip (3) + * + * Now, since the instruction stream is 'identical' at src and dst (it + * is being copied after all) it can be stated that: + * + * src_next_ip = src + ip_offset + * dst_next_ip = dst + ip_offset (4) + * + * Substitute (4) in (3) and observe ip_offset being cancelled out to + * obtain: + * + * dst_imm = src_imm + (src + ip_offset) - (dst + ip_offset) + * = src_imm + src - dst + ip_offset - ip_offset + * = src_imm + src - dst (5) + * + * IOW, only the relative displacement of the code block matters. + */ + +#define apply_reloc_n(n_, p_, d_) \ + do { \ + s32 v = *(s##n_ *)(p_); \ + v += (d_); \ + BUG_ON((v >> 31) != (v >> (n_-1))); \ + *(s##n_ *)(p_) = (s##n_)v; \ + } while (0) + + +static __always_inline +void apply_reloc(int n, void *ptr, uintptr_t diff) +{ + switch (n) { + case 1: apply_reloc_n(8, ptr, diff); break; + case 2: apply_reloc_n(16, ptr, diff); break; + case 4: apply_reloc_n(32, ptr, diff); break; + default: BUG(); + } +} + +static __always_inline +bool need_reloc(unsigned long offset, u8 *src, size_t src_len) +{ + u8 *target = src + offset; + /* + * If the target is inside the patched block, it's relative to the + * block itself and does not need relocation. + */ + return (target < src || target > src + src_len); +} + +static void __init_or_module noinline +apply_relocation(u8 *buf, size_t len, u8 *dest, u8 *src, size_t src_len) +{ + int prev, target = 0; + + for (int next, i = 0; i < len; i = next) { + struct insn insn; + + if (WARN_ON_ONCE(insn_decode_kernel(&insn, &buf[i]))) + return; + + next = i + insn.length; + + if (__optimize_nops(buf, len, &insn, &next, &prev, &target)) + continue; + + switch (insn.opcode.bytes[0]) { + case 0x0f: + if (insn.opcode.bytes[1] < 0x80 || + insn.opcode.bytes[1] > 0x8f) + break; + + fallthrough; /* Jcc.d32 */ + case 0x70 ... 0x7f: /* Jcc.d8 */ + case JMP8_INSN_OPCODE: + case JMP32_INSN_OPCODE: + case CALL_INSN_OPCODE: + if (need_reloc(next + insn.immediate.value, src, src_len)) { + apply_reloc(insn.immediate.nbytes, + buf + i + insn_offset_immediate(&insn), + src - dest); + } + + /* + * Where possible, convert JMP.d32 into JMP.d8. + */ + if (insn.opcode.bytes[0] == JMP32_INSN_OPCODE) { + s32 imm = insn.immediate.value; + imm += src - dest; + imm += JMP32_INSN_SIZE - JMP8_INSN_SIZE; + if ((imm >> 31) == (imm >> 7)) { + buf[i+0] = JMP8_INSN_OPCODE; + buf[i+1] = (s8)imm; + + memset(&buf[i+2], INT3_INSN_OPCODE, insn.length - 2); + } + } + break; + } + + if (insn_rip_relative(&insn)) { + if (need_reloc(next + insn.displacement.value, src, src_len)) { + apply_reloc(insn.displacement.nbytes, + buf + i + insn_offset_displacement(&insn), + src - dest); + } + } + } +} + +/* + * Replace instructions with better alternatives for this CPU type. This runs + * before SMP is initialized to avoid SMP problems with self modifying code. + * This implies that asymmetric systems where APs have less capabilities than + * the boot processor are not handled. Tough. Make sure you disable such + * features by hand. + * + * Marked "noinline" to cause control flow change and thus insn cache + * to refetch changed I$ lines. + */ +void __init_or_module noinline apply_alternatives(struct alt_instr *start, + struct alt_instr *end) +{ + struct alt_instr *a; + u8 *instr, *replacement; + u8 insn_buff[MAX_PATCH_LEN]; + + DPRINTK(ALT, "alt table %px, -> %px", start, end); + + /* + * In the case CONFIG_X86_5LEVEL=y, KASAN_SHADOW_START is defined using + * cpu_feature_enabled(X86_FEATURE_LA57) and is therefore patched here. + * During the process, KASAN becomes confused seeing partial LA57 + * conversion and triggers a false-positive out-of-bound report. + * + * Disable KASAN until the patching is complete. + */ + kasan_disable_current(); + + /* + * The scan order should be from start to end. A later scanned + * alternative code can overwrite previously scanned alternative code. + * Some kernel functions (e.g. memcpy, memset, etc) use this order to + * patch code. + * + * So be careful if you want to change the scan order to any other + * order. + */ + for (a = start; a < end; a++) { + int insn_buff_sz = 0; + + instr = (u8 *)&a->instr_offset + a->instr_offset; + replacement = (u8 *)&a->repl_offset + a->repl_offset; + BUG_ON(a->instrlen > sizeof(insn_buff)); + BUG_ON(a->cpuid >= (NCAPINTS + NBUGINTS) * 32); + + /* + * Patch if either: + * - feature is present + * - feature not present but ALT_FLAG_NOT is set to mean, + * patch if feature is *NOT* present. + */ + if (!boot_cpu_has(a->cpuid) == !(a->flags & ALT_FLAG_NOT)) { + optimize_nops_inplace(instr, a->instrlen); + continue; + } + + DPRINTK(ALT, "feat: %s%d*32+%d, old: (%pS (%px) len: %d), repl: (%px, len: %d)", + (a->flags & ALT_FLAG_NOT) ? "!" : "", + a->cpuid >> 5, + a->cpuid & 0x1f, + instr, instr, a->instrlen, + replacement, a->replacementlen); + + memcpy(insn_buff, replacement, a->replacementlen); + insn_buff_sz = a->replacementlen; + + for (; insn_buff_sz < a->instrlen; insn_buff_sz++) + insn_buff[insn_buff_sz] = 0x90; + + apply_relocation(insn_buff, a->instrlen, instr, replacement, a->replacementlen); + + DUMP_BYTES(ALT, instr, a->instrlen, "%px: old_insn: ", instr); + DUMP_BYTES(ALT, replacement, a->replacementlen, "%px: rpl_insn: ", replacement); + DUMP_BYTES(ALT, insn_buff, insn_buff_sz, "%px: final_insn: ", instr); + + text_poke_early(instr, insn_buff, insn_buff_sz); + } + + kasan_enable_current(); +} + +static inline bool is_jcc32(struct insn *insn) +{ + /* Jcc.d32 second opcode byte is in the range: 0x80-0x8f */ + return insn->opcode.bytes[0] == 0x0f && (insn->opcode.bytes[1] & 0xf0) == 0x80; +} + +#if defined(CONFIG_RETPOLINE) && defined(CONFIG_OBJTOOL) + +/* + * CALL/JMP *%\reg + */ +static int emit_indirect(int op, int reg, u8 *bytes) +{ + int i = 0; + u8 modrm; + + switch (op) { + case CALL_INSN_OPCODE: + modrm = 0x10; /* Reg = 2; CALL r/m */ + break; + + case JMP32_INSN_OPCODE: + modrm = 0x20; /* Reg = 4; JMP r/m */ + break; + + default: + WARN_ON_ONCE(1); + return -1; + } + + if (reg >= 8) { + bytes[i++] = 0x41; /* REX.B prefix */ + reg -= 8; + } + + modrm |= 0xc0; /* Mod = 3 */ + modrm += reg; + + bytes[i++] = 0xff; /* opcode */ + bytes[i++] = modrm; + + return i; +} + +static int emit_call_track_retpoline(void *addr, struct insn *insn, int reg, u8 *bytes) +{ + u8 op = insn->opcode.bytes[0]; + int i = 0; + + /* + * Clang does 'weird' Jcc __x86_indirect_thunk_r11 conditional + * tail-calls. Deal with them. + */ + if (is_jcc32(insn)) { + bytes[i++] = op; + op = insn->opcode.bytes[1]; + goto clang_jcc; + } + + if (insn->length == 6) + bytes[i++] = 0x2e; /* CS-prefix */ + + switch (op) { + case CALL_INSN_OPCODE: + __text_gen_insn(bytes+i, op, addr+i, + __x86_indirect_call_thunk_array[reg], + CALL_INSN_SIZE); + i += CALL_INSN_SIZE; + break; + + case JMP32_INSN_OPCODE: +clang_jcc: + __text_gen_insn(bytes+i, op, addr+i, + __x86_indirect_jump_thunk_array[reg], + JMP32_INSN_SIZE); + i += JMP32_INSN_SIZE; + break; + + default: + WARN(1, "%pS %px %*ph\n", addr, addr, 6, addr); + return -1; + } + + WARN_ON_ONCE(i != insn->length); + + return i; +} + +/* + * Rewrite the compiler generated retpoline thunk calls. + * + * For spectre_v2=off (!X86_FEATURE_RETPOLINE), rewrite them into immediate + * indirect instructions, avoiding the extra indirection. + * + * For example, convert: + * + * CALL __x86_indirect_thunk_\reg + * + * into: + * + * CALL *%\reg + * + * It also tries to inline spectre_v2=retpoline,lfence when size permits. + */ +static int patch_retpoline(void *addr, struct insn *insn, u8 *bytes) +{ + retpoline_thunk_t *target; + int reg, ret, i = 0; + u8 op, cc; + + target = addr + insn->length + insn->immediate.value; + reg = target - __x86_indirect_thunk_array; + + if (WARN_ON_ONCE(reg & ~0xf)) + return -1; + + /* If anyone ever does: CALL/JMP *%rsp, we're in deep trouble. */ + BUG_ON(reg == 4); + + if (cpu_feature_enabled(X86_FEATURE_RETPOLINE) && + !cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) { + if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH)) + return emit_call_track_retpoline(addr, insn, reg, bytes); + + return -1; + } + + op = insn->opcode.bytes[0]; + + /* + * Convert: + * + * Jcc.d32 __x86_indirect_thunk_\reg + * + * into: + * + * Jncc.d8 1f + * [ LFENCE ] + * JMP *%\reg + * [ NOP ] + * 1: + */ + if (is_jcc32(insn)) { + cc = insn->opcode.bytes[1] & 0xf; + cc ^= 1; /* invert condition */ + + bytes[i++] = 0x70 + cc; /* Jcc.d8 */ + bytes[i++] = insn->length - 2; /* sizeof(Jcc.d8) == 2 */ + + /* Continue as if: JMP.d32 __x86_indirect_thunk_\reg */ + op = JMP32_INSN_OPCODE; + } + + /* + * For RETPOLINE_LFENCE: prepend the indirect CALL/JMP with an LFENCE. + */ + if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) { + bytes[i++] = 0x0f; + bytes[i++] = 0xae; + bytes[i++] = 0xe8; /* LFENCE */ + } + + ret = emit_indirect(op, reg, bytes + i); + if (ret < 0) + return ret; + i += ret; + + /* + * The compiler is supposed to EMIT an INT3 after every unconditional + * JMP instruction due to AMD BTC. However, if the compiler is too old + * or SLS isn't enabled, we still need an INT3 after indirect JMPs + * even on Intel. + */ + if (op == JMP32_INSN_OPCODE && i < insn->length) + bytes[i++] = INT3_INSN_OPCODE; + + for (; i < insn->length;) + bytes[i++] = BYTES_NOP1; + + return i; +} + +/* + * Generated by 'objtool --retpoline'. + */ +void __init_or_module noinline apply_retpolines(s32 *start, s32 *end) +{ + s32 *s; + + for (s = start; s < end; s++) { + void *addr = (void *)s + *s; + struct insn insn; + int len, ret; + u8 bytes[16]; + u8 op1, op2; + + ret = insn_decode_kernel(&insn, addr); + if (WARN_ON_ONCE(ret < 0)) + continue; + + op1 = insn.opcode.bytes[0]; + op2 = insn.opcode.bytes[1]; + + switch (op1) { + case CALL_INSN_OPCODE: + case JMP32_INSN_OPCODE: + break; + + case 0x0f: /* escape */ + if (op2 >= 0x80 && op2 <= 0x8f) + break; + fallthrough; + default: + WARN_ON_ONCE(1); + continue; + } + + DPRINTK(RETPOLINE, "retpoline at: %pS (%px) len: %d to: %pS", + addr, addr, insn.length, + addr + insn.length + insn.immediate.value); + + len = patch_retpoline(addr, &insn, bytes); + if (len == insn.length) { + optimize_nops(bytes, len); + DUMP_BYTES(RETPOLINE, ((u8*)addr), len, "%px: orig: ", addr); + DUMP_BYTES(RETPOLINE, ((u8*)bytes), len, "%px: repl: ", addr); + text_poke_early(addr, bytes, len); + } + } +} + +#ifdef CONFIG_RETHUNK + +/* + * Rewrite the compiler generated return thunk tail-calls. + * + * For example, convert: + * + * JMP __x86_return_thunk + * + * into: + * + * RET + */ +static int patch_return(void *addr, struct insn *insn, u8 *bytes) +{ + int i = 0; + + /* Patch the custom return thunks... */ + if (cpu_feature_enabled(X86_FEATURE_RETHUNK)) { + i = JMP32_INSN_SIZE; + __text_gen_insn(bytes, JMP32_INSN_OPCODE, addr, x86_return_thunk, i); + } else { + /* ... or patch them out if not needed. */ + bytes[i++] = RET_INSN_OPCODE; + } + + for (; i < insn->length;) + bytes[i++] = INT3_INSN_OPCODE; + return i; +} + +void __init_or_module noinline apply_returns(s32 *start, s32 *end) +{ + s32 *s; + + if (cpu_feature_enabled(X86_FEATURE_RETHUNK)) + static_call_force_reinit(); + + for (s = start; s < end; s++) { + void *dest = NULL, *addr = (void *)s + *s; + struct insn insn; + int len, ret; + u8 bytes[16]; + u8 op; + + ret = insn_decode_kernel(&insn, addr); + if (WARN_ON_ONCE(ret < 0)) + continue; + + op = insn.opcode.bytes[0]; + if (op == JMP32_INSN_OPCODE) + dest = addr + insn.length + insn.immediate.value; + + if (__static_call_fixup(addr, op, dest) || + WARN_ONCE(dest != &__x86_return_thunk, + "missing return thunk: %pS-%pS: %*ph", + addr, dest, 5, addr)) + continue; + + DPRINTK(RET, "return thunk at: %pS (%px) len: %d to: %pS", + addr, addr, insn.length, + addr + insn.length + insn.immediate.value); + + len = patch_return(addr, &insn, bytes); + if (len == insn.length) { + DUMP_BYTES(RET, ((u8*)addr), len, "%px: orig: ", addr); + DUMP_BYTES(RET, ((u8*)bytes), len, "%px: repl: ", addr); + text_poke_early(addr, bytes, len); + } + } +} +#else +void __init_or_module noinline apply_returns(s32 *start, s32 *end) { } +#endif /* CONFIG_RETHUNK */ + +#else /* !CONFIG_RETPOLINE || !CONFIG_OBJTOOL */ + +void __init_or_module noinline apply_retpolines(s32 *start, s32 *end) { } +void __init_or_module noinline apply_returns(s32 *start, s32 *end) { } + +#endif /* CONFIG_RETPOLINE && CONFIG_OBJTOOL */ + +#ifdef CONFIG_X86_KERNEL_IBT + +static void poison_cfi(void *addr); + +static void __init_or_module poison_endbr(void *addr, bool warn) +{ + u32 endbr, poison = gen_endbr_poison(); + + if (WARN_ON_ONCE(get_kernel_nofault(endbr, addr))) + return; + + if (!is_endbr(endbr)) { + WARN_ON_ONCE(warn); + return; + } + + DPRINTK(ENDBR, "ENDBR at: %pS (%px)", addr, addr); + + /* + * When we have IBT, the lack of ENDBR will trigger #CP + */ + DUMP_BYTES(ENDBR, ((u8*)addr), 4, "%px: orig: ", addr); + DUMP_BYTES(ENDBR, ((u8*)&poison), 4, "%px: repl: ", addr); + text_poke_early(addr, &poison, 4); +} + +/* + * Generated by: objtool --ibt + * + * Seal the functions for indirect calls by clobbering the ENDBR instructions + * and the kCFI hash value. + */ +void __init_or_module noinline apply_seal_endbr(s32 *start, s32 *end) +{ + s32 *s; + + for (s = start; s < end; s++) { + void *addr = (void *)s + *s; + + poison_endbr(addr, true); + if (IS_ENABLED(CONFIG_FINEIBT)) + poison_cfi(addr - 16); + } +} + +#else + +void __init_or_module apply_seal_endbr(s32 *start, s32 *end) { } + +#endif /* CONFIG_X86_KERNEL_IBT */ + +#ifdef CONFIG_FINEIBT + +enum cfi_mode { + CFI_DEFAULT, + CFI_OFF, + CFI_KCFI, + CFI_FINEIBT, +}; + +static enum cfi_mode cfi_mode __ro_after_init = CFI_DEFAULT; +static bool cfi_rand __ro_after_init = true; +static u32 cfi_seed __ro_after_init; + +/* + * Re-hash the CFI hash with a boot-time seed while making sure the result is + * not a valid ENDBR instruction. + */ +static u32 cfi_rehash(u32 hash) +{ + hash ^= cfi_seed; + while (unlikely(is_endbr(hash) || is_endbr(-hash))) { + bool lsb = hash & 1; + hash >>= 1; + if (lsb) + hash ^= 0x80200003; + } + return hash; +} + +static __init int cfi_parse_cmdline(char *str) +{ + if (!str) + return -EINVAL; + + while (str) { + char *next = strchr(str, ','); + if (next) { + *next = 0; + next++; + } + + if (!strcmp(str, "auto")) { + cfi_mode = CFI_DEFAULT; + } else if (!strcmp(str, "off")) { + cfi_mode = CFI_OFF; + cfi_rand = false; + } else if (!strcmp(str, "kcfi")) { + cfi_mode = CFI_KCFI; + } else if (!strcmp(str, "fineibt")) { + cfi_mode = CFI_FINEIBT; + } else if (!strcmp(str, "norand")) { + cfi_rand = false; + } else { + pr_err("Ignoring unknown cfi option (%s).", str); + } + + str = next; + } + + return 0; +} +early_param("cfi", cfi_parse_cmdline); + +/* + * kCFI FineIBT + * + * __cfi_\func: __cfi_\func: + * movl $0x12345678,%eax // 5 endbr64 // 4 + * nop subl $0x12345678,%r10d // 7 + * nop jz 1f // 2 + * nop ud2 // 2 + * nop 1: nop // 1 + * nop + * nop + * nop + * nop + * nop + * nop + * nop + * + * + * caller: caller: + * movl $(-0x12345678),%r10d // 6 movl $0x12345678,%r10d // 6 + * addl $-15(%r11),%r10d // 4 sub $16,%r11 // 4 + * je 1f // 2 nop4 // 4 + * ud2 // 2 + * 1: call __x86_indirect_thunk_r11 // 5 call *%r11; nop2; // 5 + * + */ + +asm( ".pushsection .rodata \n" + "fineibt_preamble_start: \n" + " endbr64 \n" + " subl $0x12345678, %r10d \n" + " je fineibt_preamble_end \n" + " ud2 \n" + " nop \n" + "fineibt_preamble_end: \n" + ".popsection\n" +); + +extern u8 fineibt_preamble_start[]; +extern u8 fineibt_preamble_end[]; + +#define fineibt_preamble_size (fineibt_preamble_end - fineibt_preamble_start) +#define fineibt_preamble_hash 7 + +asm( ".pushsection .rodata \n" + "fineibt_caller_start: \n" + " movl $0x12345678, %r10d \n" + " sub $16, %r11 \n" + ASM_NOP4 + "fineibt_caller_end: \n" + ".popsection \n" +); + +extern u8 fineibt_caller_start[]; +extern u8 fineibt_caller_end[]; + +#define fineibt_caller_size (fineibt_caller_end - fineibt_caller_start) +#define fineibt_caller_hash 2 + +#define fineibt_caller_jmp (fineibt_caller_size - 2) + +static u32 decode_preamble_hash(void *addr) +{ + u8 *p = addr; + + /* b8 78 56 34 12 mov $0x12345678,%eax */ + if (p[0] == 0xb8) + return *(u32 *)(addr + 1); + + return 0; /* invalid hash value */ +} + +static u32 decode_caller_hash(void *addr) +{ + u8 *p = addr; + + /* 41 ba 78 56 34 12 mov $0x12345678,%r10d */ + if (p[0] == 0x41 && p[1] == 0xba) + return -*(u32 *)(addr + 2); + + /* e8 0c 78 56 34 12 jmp.d8 +12 */ + if (p[0] == JMP8_INSN_OPCODE && p[1] == fineibt_caller_jmp) + return -*(u32 *)(addr + 2); + + return 0; /* invalid hash value */ +} + +/* .retpoline_sites */ +static int cfi_disable_callers(s32 *start, s32 *end) +{ + /* + * Disable kCFI by patching in a JMP.d8, this leaves the hash immediate + * in tact for later usage. Also see decode_caller_hash() and + * cfi_rewrite_callers(). + */ + const u8 jmp[] = { JMP8_INSN_OPCODE, fineibt_caller_jmp }; + s32 *s; + + for (s = start; s < end; s++) { + void *addr = (void *)s + *s; + u32 hash; + + addr -= fineibt_caller_size; + hash = decode_caller_hash(addr); + if (!hash) /* nocfi callers */ + continue; + + text_poke_early(addr, jmp, 2); + } + + return 0; +} + +static int cfi_enable_callers(s32 *start, s32 *end) +{ + /* + * Re-enable kCFI, undo what cfi_disable_callers() did. + */ + const u8 mov[] = { 0x41, 0xba }; + s32 *s; + + for (s = start; s < end; s++) { + void *addr = (void *)s + *s; + u32 hash; + + addr -= fineibt_caller_size; + hash = decode_caller_hash(addr); + if (!hash) /* nocfi callers */ + continue; + + text_poke_early(addr, mov, 2); + } + + return 0; +} + +/* .cfi_sites */ +static int cfi_rand_preamble(s32 *start, s32 *end) +{ + s32 *s; + + for (s = start; s < end; s++) { + void *addr = (void *)s + *s; + u32 hash; + + hash = decode_preamble_hash(addr); + if (WARN(!hash, "no CFI hash found at: %pS %px %*ph\n", + addr, addr, 5, addr)) + return -EINVAL; + + hash = cfi_rehash(hash); + text_poke_early(addr + 1, &hash, 4); + } + + return 0; +} + +static int cfi_rewrite_preamble(s32 *start, s32 *end) +{ + s32 *s; + + for (s = start; s < end; s++) { + void *addr = (void *)s + *s; + u32 hash; + + hash = decode_preamble_hash(addr); + if (WARN(!hash, "no CFI hash found at: %pS %px %*ph\n", + addr, addr, 5, addr)) + return -EINVAL; + + text_poke_early(addr, fineibt_preamble_start, fineibt_preamble_size); + WARN_ON(*(u32 *)(addr + fineibt_preamble_hash) != 0x12345678); + text_poke_early(addr + fineibt_preamble_hash, &hash, 4); + } + + return 0; +} + +static void cfi_rewrite_endbr(s32 *start, s32 *end) +{ + s32 *s; + + for (s = start; s < end; s++) { + void *addr = (void *)s + *s; + + poison_endbr(addr+16, false); + } +} + +/* .retpoline_sites */ +static int cfi_rand_callers(s32 *start, s32 *end) +{ + s32 *s; + + for (s = start; s < end; s++) { + void *addr = (void *)s + *s; + u32 hash; + + addr -= fineibt_caller_size; + hash = decode_caller_hash(addr); + if (hash) { + hash = -cfi_rehash(hash); + text_poke_early(addr + 2, &hash, 4); + } + } + + return 0; +} + +static int cfi_rewrite_callers(s32 *start, s32 *end) +{ + s32 *s; + + for (s = start; s < end; s++) { + void *addr = (void *)s + *s; + u32 hash; + + addr -= fineibt_caller_size; + hash = decode_caller_hash(addr); + if (hash) { + text_poke_early(addr, fineibt_caller_start, fineibt_caller_size); + WARN_ON(*(u32 *)(addr + fineibt_caller_hash) != 0x12345678); + text_poke_early(addr + fineibt_caller_hash, &hash, 4); + } + /* rely on apply_retpolines() */ + } + + return 0; +} + +static void __apply_fineibt(s32 *start_retpoline, s32 *end_retpoline, + s32 *start_cfi, s32 *end_cfi, bool builtin) +{ + int ret; + + if (WARN_ONCE(fineibt_preamble_size != 16, + "FineIBT preamble wrong size: %ld", fineibt_preamble_size)) + return; + + if (cfi_mode == CFI_DEFAULT) { + cfi_mode = CFI_KCFI; + if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT)) + cfi_mode = CFI_FINEIBT; + } + + /* + * Rewrite the callers to not use the __cfi_ stubs, such that we might + * rewrite them. This disables all CFI. If this succeeds but any of the + * later stages fails, we're without CFI. + */ + ret = cfi_disable_callers(start_retpoline, end_retpoline); + if (ret) + goto err; + + if (cfi_rand) { + if (builtin) + cfi_seed = get_random_u32(); + + ret = cfi_rand_preamble(start_cfi, end_cfi); + if (ret) + goto err; + + ret = cfi_rand_callers(start_retpoline, end_retpoline); + if (ret) + goto err; + } + + switch (cfi_mode) { + case CFI_OFF: + if (builtin) + pr_info("Disabling CFI\n"); + return; + + case CFI_KCFI: + ret = cfi_enable_callers(start_retpoline, end_retpoline); + if (ret) + goto err; + + if (builtin) + pr_info("Using kCFI\n"); + return; + + case CFI_FINEIBT: + /* place the FineIBT preamble at func()-16 */ + ret = cfi_rewrite_preamble(start_cfi, end_cfi); + if (ret) + goto err; + + /* rewrite the callers to target func()-16 */ + ret = cfi_rewrite_callers(start_retpoline, end_retpoline); + if (ret) + goto err; + + /* now that nobody targets func()+0, remove ENDBR there */ + cfi_rewrite_endbr(start_cfi, end_cfi); + + if (builtin) + pr_info("Using FineIBT CFI\n"); + return; + + default: + break; + } + +err: + pr_err("Something went horribly wrong trying to rewrite the CFI implementation.\n"); +} + +static inline void poison_hash(void *addr) +{ + *(u32 *)addr = 0; +} + +static void poison_cfi(void *addr) +{ + switch (cfi_mode) { + case CFI_FINEIBT: + /* + * __cfi_\func: + * osp nopl (%rax) + * subl $0, %r10d + * jz 1f + * ud2 + * 1: nop + */ + poison_endbr(addr, false); + poison_hash(addr + fineibt_preamble_hash); + break; + + case CFI_KCFI: + /* + * __cfi_\func: + * movl $0, %eax + * .skip 11, 0x90 + */ + poison_hash(addr + 1); + break; + + default: + break; + } +} + +#else + +static void __apply_fineibt(s32 *start_retpoline, s32 *end_retpoline, + s32 *start_cfi, s32 *end_cfi, bool builtin) +{ +} + +#ifdef CONFIG_X86_KERNEL_IBT +static void poison_cfi(void *addr) { } +#endif + +#endif + +void apply_fineibt(s32 *start_retpoline, s32 *end_retpoline, + s32 *start_cfi, s32 *end_cfi) +{ + return __apply_fineibt(start_retpoline, end_retpoline, + start_cfi, end_cfi, + /* .builtin = */ false); +} + +#ifdef CONFIG_SMP +static void alternatives_smp_lock(const s32 *start, const s32 *end, + u8 *text, u8 *text_end) +{ + const s32 *poff; + + for (poff = start; poff < end; poff++) { + u8 *ptr = (u8 *)poff + *poff; + + if (!*poff || ptr < text || ptr >= text_end) + continue; + /* turn DS segment override prefix into lock prefix */ + if (*ptr == 0x3e) + text_poke(ptr, ((unsigned char []){0xf0}), 1); + } +} + +static void alternatives_smp_unlock(const s32 *start, const s32 *end, + u8 *text, u8 *text_end) +{ + const s32 *poff; + + for (poff = start; poff < end; poff++) { + u8 *ptr = (u8 *)poff + *poff; + + if (!*poff || ptr < text || ptr >= text_end) + continue; + /* turn lock prefix into DS segment override prefix */ + if (*ptr == 0xf0) + text_poke(ptr, ((unsigned char []){0x3E}), 1); + } +} + +struct smp_alt_module { + /* what is this ??? */ + struct module *mod; + char *name; + + /* ptrs to lock prefixes */ + const s32 *locks; + const s32 *locks_end; + + /* .text segment, needed to avoid patching init code ;) */ + u8 *text; + u8 *text_end; + + struct list_head next; +}; +static LIST_HEAD(smp_alt_modules); +static bool uniproc_patched = false; /* protected by text_mutex */ + +void __init_or_module alternatives_smp_module_add(struct module *mod, + char *name, + void *locks, void *locks_end, + void *text, void *text_end) +{ + struct smp_alt_module *smp; + + mutex_lock(&text_mutex); + if (!uniproc_patched) + goto unlock; + + if (num_possible_cpus() == 1) + /* Don't bother remembering, we'll never have to undo it. */ + goto smp_unlock; + + smp = kzalloc(sizeof(*smp), GFP_KERNEL); + if (NULL == smp) + /* we'll run the (safe but slow) SMP code then ... */ + goto unlock; + + smp->mod = mod; + smp->name = name; + smp->locks = locks; + smp->locks_end = locks_end; + smp->text = text; + smp->text_end = text_end; + DPRINTK(SMP, "locks %p -> %p, text %p -> %p, name %s\n", + smp->locks, smp->locks_end, + smp->text, smp->text_end, smp->name); + + list_add_tail(&smp->next, &smp_alt_modules); +smp_unlock: + alternatives_smp_unlock(locks, locks_end, text, text_end); +unlock: + mutex_unlock(&text_mutex); +} + +void __init_or_module alternatives_smp_module_del(struct module *mod) +{ + struct smp_alt_module *item; + + mutex_lock(&text_mutex); + list_for_each_entry(item, &smp_alt_modules, next) { + if (mod != item->mod) + continue; + list_del(&item->next); + kfree(item); + break; + } + mutex_unlock(&text_mutex); +} + +void alternatives_enable_smp(void) +{ + struct smp_alt_module *mod; + + /* Why bother if there are no other CPUs? */ + BUG_ON(num_possible_cpus() == 1); + + mutex_lock(&text_mutex); + + if (uniproc_patched) { + pr_info("switching to SMP code\n"); + BUG_ON(num_online_cpus() != 1); + clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP); + clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP); + list_for_each_entry(mod, &smp_alt_modules, next) + alternatives_smp_lock(mod->locks, mod->locks_end, + mod->text, mod->text_end); + uniproc_patched = false; + } + mutex_unlock(&text_mutex); +} + +/* + * Return 1 if the address range is reserved for SMP-alternatives. + * Must hold text_mutex. + */ +int alternatives_text_reserved(void *start, void *end) +{ + struct smp_alt_module *mod; + const s32 *poff; + u8 *text_start = start; + u8 *text_end = end; + + lockdep_assert_held(&text_mutex); + + list_for_each_entry(mod, &smp_alt_modules, next) { + if (mod->text > text_end || mod->text_end < text_start) + continue; + for (poff = mod->locks; poff < mod->locks_end; poff++) { + const u8 *ptr = (const u8 *)poff + *poff; + + if (text_start <= ptr && text_end > ptr) + return 1; + } + } + + return 0; +} +#endif /* CONFIG_SMP */ + +#ifdef CONFIG_PARAVIRT + +/* Use this to add nops to a buffer, then text_poke the whole buffer. */ +static void __init_or_module add_nops(void *insns, unsigned int len) +{ + while (len > 0) { + unsigned int noplen = len; + if (noplen > ASM_NOP_MAX) + noplen = ASM_NOP_MAX; + memcpy(insns, x86_nops[noplen], noplen); + insns += noplen; + len -= noplen; + } +} + +void __init_or_module apply_paravirt(struct paravirt_patch_site *start, + struct paravirt_patch_site *end) +{ + struct paravirt_patch_site *p; + char insn_buff[MAX_PATCH_LEN]; + + for (p = start; p < end; p++) { + unsigned int used; + + BUG_ON(p->len > MAX_PATCH_LEN); + /* prep the buffer with the original instructions */ + memcpy(insn_buff, p->instr, p->len); + used = paravirt_patch(p->type, insn_buff, (unsigned long)p->instr, p->len); + + BUG_ON(used > p->len); + + /* Pad the rest with nops */ + add_nops(insn_buff + used, p->len - used); + text_poke_early(p->instr, insn_buff, p->len); + } +} +extern struct paravirt_patch_site __start_parainstructions[], + __stop_parainstructions[]; +#endif /* CONFIG_PARAVIRT */ + +/* + * Self-test for the INT3 based CALL emulation code. + * + * This exercises int3_emulate_call() to make sure INT3 pt_regs are set up + * properly and that there is a stack gap between the INT3 frame and the + * previous context. Without this gap doing a virtual PUSH on the interrupted + * stack would corrupt the INT3 IRET frame. + * + * See entry_{32,64}.S for more details. + */ + +/* + * We define the int3_magic() function in assembly to control the calling + * convention such that we can 'call' it from assembly. + */ + +extern void int3_magic(unsigned int *ptr); /* defined in asm */ + +asm ( +" .pushsection .init.text, \"ax\", @progbits\n" +" .type int3_magic, @function\n" +"int3_magic:\n" + ANNOTATE_NOENDBR +" movl $1, (%" _ASM_ARG1 ")\n" + ASM_RET +" .size int3_magic, .-int3_magic\n" +" .popsection\n" +); + +extern void int3_selftest_ip(void); /* defined in asm below */ + +static int __init +int3_exception_notify(struct notifier_block *self, unsigned long val, void *data) +{ + unsigned long selftest = (unsigned long)&int3_selftest_ip; + struct die_args *args = data; + struct pt_regs *regs = args->regs; + + OPTIMIZER_HIDE_VAR(selftest); + + if (!regs || user_mode(regs)) + return NOTIFY_DONE; + + if (val != DIE_INT3) + return NOTIFY_DONE; + + if (regs->ip - INT3_INSN_SIZE != selftest) + return NOTIFY_DONE; + + int3_emulate_call(regs, (unsigned long)&int3_magic); + return NOTIFY_STOP; +} + +/* Must be noinline to ensure uniqueness of int3_selftest_ip. */ +static noinline void __init int3_selftest(void) +{ + static __initdata struct notifier_block int3_exception_nb = { + .notifier_call = int3_exception_notify, + .priority = INT_MAX-1, /* last */ + }; + unsigned int val = 0; + + BUG_ON(register_die_notifier(&int3_exception_nb)); + + /* + * Basically: int3_magic(&val); but really complicated :-) + * + * INT3 padded with NOP to CALL_INSN_SIZE. The int3_exception_nb + * notifier above will emulate CALL for us. + */ + asm volatile ("int3_selftest_ip:\n\t" + ANNOTATE_NOENDBR + " int3; nop; nop; nop; nop\n\t" + : ASM_CALL_CONSTRAINT + : __ASM_SEL_RAW(a, D) (&val) + : "memory"); + + BUG_ON(val != 1); + + unregister_die_notifier(&int3_exception_nb); +} + +static __initdata int __alt_reloc_selftest_addr; + +extern void __init __alt_reloc_selftest(void *arg); +__visible noinline void __init __alt_reloc_selftest(void *arg) +{ + WARN_ON(arg != &__alt_reloc_selftest_addr); +} + +static noinline void __init alt_reloc_selftest(void) +{ + /* + * Tests apply_relocation(). + * + * This has a relative immediate (CALL) in a place other than the first + * instruction and additionally on x86_64 we get a RIP-relative LEA: + * + * lea 0x0(%rip),%rdi # 5d0: R_X86_64_PC32 .init.data+0x5566c + * call +0 # 5d5: R_X86_64_PLT32 __alt_reloc_selftest-0x4 + * + * Getting this wrong will either crash and burn or tickle the WARN + * above. + */ + asm_inline volatile ( + ALTERNATIVE("", "lea %[mem], %%" _ASM_ARG1 "; call __alt_reloc_selftest;", X86_FEATURE_ALWAYS) + : /* output */ + : [mem] "m" (__alt_reloc_selftest_addr) + : _ASM_ARG1 + ); +} + +void __init alternative_instructions(void) +{ + int3_selftest(); + + /* + * The patching is not fully atomic, so try to avoid local + * interruptions that might execute the to be patched code. + * Other CPUs are not running. + */ + stop_nmi(); + + /* + * Don't stop machine check exceptions while patching. + * MCEs only happen when something got corrupted and in this + * case we must do something about the corruption. + * Ignoring it is worse than an unlikely patching race. + * Also machine checks tend to be broadcast and if one CPU + * goes into machine check the others follow quickly, so we don't + * expect a machine check to cause undue problems during to code + * patching. + */ + + /* + * Paravirt patching and alternative patching can be combined to + * replace a function call with a short direct code sequence (e.g. + * by setting a constant return value instead of doing that in an + * external function). + * In order to make this work the following sequence is required: + * 1. set (artificial) features depending on used paravirt + * functions which can later influence alternative patching + * 2. apply paravirt patching (generally replacing an indirect + * function call with a direct one) + * 3. apply alternative patching (e.g. replacing a direct function + * call with a custom code sequence) + * Doing paravirt patching after alternative patching would clobber + * the optimization of the custom code with a function call again. + */ + paravirt_set_cap(); + + /* + * First patch paravirt functions, such that we overwrite the indirect + * call with the direct call. + */ + apply_paravirt(__parainstructions, __parainstructions_end); + + __apply_fineibt(__retpoline_sites, __retpoline_sites_end, + __cfi_sites, __cfi_sites_end, true); + + /* + * Rewrite the retpolines, must be done before alternatives since + * those can rewrite the retpoline thunks. + */ + apply_retpolines(__retpoline_sites, __retpoline_sites_end); + apply_returns(__return_sites, __return_sites_end); + + /* + * Then patch alternatives, such that those paravirt calls that are in + * alternatives can be overwritten by their immediate fragments. + */ + apply_alternatives(__alt_instructions, __alt_instructions_end); + + /* + * Now all calls are established. Apply the call thunks if + * required. + */ + callthunks_patch_builtin_calls(); + + /* + * Seal all functions that do not have their address taken. + */ + apply_seal_endbr(__ibt_endbr_seal, __ibt_endbr_seal_end); + +#ifdef CONFIG_SMP + /* Patch to UP if other cpus not imminent. */ + if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) { + uniproc_patched = true; + alternatives_smp_module_add(NULL, "core kernel", + __smp_locks, __smp_locks_end, + _text, _etext); + } + + if (!uniproc_patched || num_possible_cpus() == 1) { + free_init_pages("SMP alternatives", + (unsigned long)__smp_locks, + (unsigned long)__smp_locks_end); + } +#endif + + restart_nmi(); + alternatives_patched = 1; + + alt_reloc_selftest(); +} + +/** + * text_poke_early - Update instructions on a live kernel at boot time + * @addr: address to modify + * @opcode: source of the copy + * @len: length to copy + * + * When you use this code to patch more than one byte of an instruction + * you need to make sure that other CPUs cannot execute this code in parallel. + * Also no thread must be currently preempted in the middle of these + * instructions. And on the local CPU you need to be protected against NMI or + * MCE handlers seeing an inconsistent instruction while you patch. + */ +void __init_or_module text_poke_early(void *addr, const void *opcode, + size_t len) +{ + unsigned long flags; + + if (boot_cpu_has(X86_FEATURE_NX) && + is_module_text_address((unsigned long)addr)) { + /* + * Modules text is marked initially as non-executable, so the + * code cannot be running and speculative code-fetches are + * prevented. Just change the code. + */ + memcpy(addr, opcode, len); + } else { + local_irq_save(flags); + memcpy(addr, opcode, len); + sync_core(); + local_irq_restore(flags); + + /* + * Could also do a CLFLUSH here to speed up CPU recovery; but + * that causes hangs on some VIA CPUs. + */ + } +} + +typedef struct { + struct mm_struct *mm; +} temp_mm_state_t; + +/* + * Using a temporary mm allows to set temporary mappings that are not accessible + * by other CPUs. Such mappings are needed to perform sensitive memory writes + * that override the kernel memory protections (e.g., W^X), without exposing the + * temporary page-table mappings that are required for these write operations to + * other CPUs. Using a temporary mm also allows to avoid TLB shootdowns when the + * mapping is torn down. + * + * Context: The temporary mm needs to be used exclusively by a single core. To + * harden security IRQs must be disabled while the temporary mm is + * loaded, thereby preventing interrupt handler bugs from overriding + * the kernel memory protection. + */ +static inline temp_mm_state_t use_temporary_mm(struct mm_struct *mm) +{ + temp_mm_state_t temp_state; + + lockdep_assert_irqs_disabled(); + + /* + * Make sure not to be in TLB lazy mode, as otherwise we'll end up + * with a stale address space WITHOUT being in lazy mode after + * restoring the previous mm. + */ + if (this_cpu_read(cpu_tlbstate_shared.is_lazy)) + leave_mm(smp_processor_id()); + + temp_state.mm = this_cpu_read(cpu_tlbstate.loaded_mm); + switch_mm_irqs_off(NULL, mm, current); + + /* + * If breakpoints are enabled, disable them while the temporary mm is + * used. Userspace might set up watchpoints on addresses that are used + * in the temporary mm, which would lead to wrong signals being sent or + * crashes. + * + * Note that breakpoints are not disabled selectively, which also causes + * kernel breakpoints (e.g., perf's) to be disabled. This might be + * undesirable, but still seems reasonable as the code that runs in the + * temporary mm should be short. + */ + if (hw_breakpoint_active()) + hw_breakpoint_disable(); + + return temp_state; +} + +static inline void unuse_temporary_mm(temp_mm_state_t prev_state) +{ + lockdep_assert_irqs_disabled(); + switch_mm_irqs_off(NULL, prev_state.mm, current); + + /* + * Restore the breakpoints if they were disabled before the temporary mm + * was loaded. + */ + if (hw_breakpoint_active()) + hw_breakpoint_restore(); +} + +__ro_after_init struct mm_struct *poking_mm; +__ro_after_init unsigned long poking_addr; + +static void text_poke_memcpy(void *dst, const void *src, size_t len) +{ + memcpy(dst, src, len); +} + +static void text_poke_memset(void *dst, const void *src, size_t len) +{ + int c = *(const int *)src; + + memset(dst, c, len); +} + +typedef void text_poke_f(void *dst, const void *src, size_t len); + +static void *__text_poke(text_poke_f func, void *addr, const void *src, size_t len) +{ + bool cross_page_boundary = offset_in_page(addr) + len > PAGE_SIZE; + struct page *pages[2] = {NULL}; + temp_mm_state_t prev; + unsigned long flags; + pte_t pte, *ptep; + spinlock_t *ptl; + pgprot_t pgprot; + + /* + * While boot memory allocator is running we cannot use struct pages as + * they are not yet initialized. There is no way to recover. + */ + BUG_ON(!after_bootmem); + + if (!core_kernel_text((unsigned long)addr)) { + pages[0] = vmalloc_to_page(addr); + if (cross_page_boundary) + pages[1] = vmalloc_to_page(addr + PAGE_SIZE); + } else { + pages[0] = virt_to_page(addr); + WARN_ON(!PageReserved(pages[0])); + if (cross_page_boundary) + pages[1] = virt_to_page(addr + PAGE_SIZE); + } + /* + * If something went wrong, crash and burn since recovery paths are not + * implemented. + */ + BUG_ON(!pages[0] || (cross_page_boundary && !pages[1])); + + /* + * Map the page without the global bit, as TLB flushing is done with + * flush_tlb_mm_range(), which is intended for non-global PTEs. + */ + pgprot = __pgprot(pgprot_val(PAGE_KERNEL) & ~_PAGE_GLOBAL); + + /* + * The lock is not really needed, but this allows to avoid open-coding. + */ + ptep = get_locked_pte(poking_mm, poking_addr, &ptl); + + /* + * This must not fail; preallocated in poking_init(). + */ + VM_BUG_ON(!ptep); + + local_irq_save(flags); + + pte = mk_pte(pages[0], pgprot); + set_pte_at(poking_mm, poking_addr, ptep, pte); + + if (cross_page_boundary) { + pte = mk_pte(pages[1], pgprot); + set_pte_at(poking_mm, poking_addr + PAGE_SIZE, ptep + 1, pte); + } + + /* + * Loading the temporary mm behaves as a compiler barrier, which + * guarantees that the PTE will be set at the time memcpy() is done. + */ + prev = use_temporary_mm(poking_mm); + + kasan_disable_current(); + func((u8 *)poking_addr + offset_in_page(addr), src, len); + kasan_enable_current(); + + /* + * Ensure that the PTE is only cleared after the instructions of memcpy + * were issued by using a compiler barrier. + */ + barrier(); + + pte_clear(poking_mm, poking_addr, ptep); + if (cross_page_boundary) + pte_clear(poking_mm, poking_addr + PAGE_SIZE, ptep + 1); + + /* + * Loading the previous page-table hierarchy requires a serializing + * instruction that already allows the core to see the updated version. + * Xen-PV is assumed to serialize execution in a similar manner. + */ + unuse_temporary_mm(prev); + + /* + * Flushing the TLB might involve IPIs, which would require enabled + * IRQs, but not if the mm is not used, as it is in this point. + */ + flush_tlb_mm_range(poking_mm, poking_addr, poking_addr + + (cross_page_boundary ? 2 : 1) * PAGE_SIZE, + PAGE_SHIFT, false); + + if (func == text_poke_memcpy) { + /* + * If the text does not match what we just wrote then something is + * fundamentally screwy; there's nothing we can really do about that. + */ + BUG_ON(memcmp(addr, src, len)); + } + + local_irq_restore(flags); + pte_unmap_unlock(ptep, ptl); + return addr; +} + +/** + * text_poke - Update instructions on a live kernel + * @addr: address to modify + * @opcode: source of the copy + * @len: length to copy + * + * Only atomic text poke/set should be allowed when not doing early patching. + * It means the size must be writable atomically and the address must be aligned + * in a way that permits an atomic write. It also makes sure we fit on a single + * page. + * + * Note that the caller must ensure that if the modified code is part of a + * module, the module would not be removed during poking. This can be achieved + * by registering a module notifier, and ordering module removal and patching + * trough a mutex. + */ +void *text_poke(void *addr, const void *opcode, size_t len) +{ + lockdep_assert_held(&text_mutex); + + return __text_poke(text_poke_memcpy, addr, opcode, len); +} + +/** + * text_poke_kgdb - Update instructions on a live kernel by kgdb + * @addr: address to modify + * @opcode: source of the copy + * @len: length to copy + * + * Only atomic text poke/set should be allowed when not doing early patching. + * It means the size must be writable atomically and the address must be aligned + * in a way that permits an atomic write. It also makes sure we fit on a single + * page. + * + * Context: should only be used by kgdb, which ensures no other core is running, + * despite the fact it does not hold the text_mutex. + */ +void *text_poke_kgdb(void *addr, const void *opcode, size_t len) +{ + return __text_poke(text_poke_memcpy, addr, opcode, len); +} + +void *text_poke_copy_locked(void *addr, const void *opcode, size_t len, + bool core_ok) +{ + unsigned long start = (unsigned long)addr; + size_t patched = 0; + + if (WARN_ON_ONCE(!core_ok && core_kernel_text(start))) + return NULL; + + while (patched < len) { + unsigned long ptr = start + patched; + size_t s; + + s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched); + + __text_poke(text_poke_memcpy, (void *)ptr, opcode + patched, s); + patched += s; + } + return addr; +} + +/** + * text_poke_copy - Copy instructions into (an unused part of) RX memory + * @addr: address to modify + * @opcode: source of the copy + * @len: length to copy, could be more than 2x PAGE_SIZE + * + * Not safe against concurrent execution; useful for JITs to dump + * new code blocks into unused regions of RX memory. Can be used in + * conjunction with synchronize_rcu_tasks() to wait for existing + * execution to quiesce after having made sure no existing functions + * pointers are live. + */ +void *text_poke_copy(void *addr, const void *opcode, size_t len) +{ + mutex_lock(&text_mutex); + addr = text_poke_copy_locked(addr, opcode, len, false); + mutex_unlock(&text_mutex); + return addr; +} + +/** + * text_poke_set - memset into (an unused part of) RX memory + * @addr: address to modify + * @c: the byte to fill the area with + * @len: length to copy, could be more than 2x PAGE_SIZE + * + * This is useful to overwrite unused regions of RX memory with illegal + * instructions. + */ +void *text_poke_set(void *addr, int c, size_t len) +{ + unsigned long start = (unsigned long)addr; + size_t patched = 0; + + if (WARN_ON_ONCE(core_kernel_text(start))) + return NULL; + + mutex_lock(&text_mutex); + while (patched < len) { + unsigned long ptr = start + patched; + size_t s; + + s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched); + + __text_poke(text_poke_memset, (void *)ptr, (void *)&c, s); + patched += s; + } + mutex_unlock(&text_mutex); + return addr; +} + +static void do_sync_core(void *info) +{ + sync_core(); +} + +void text_poke_sync(void) +{ + on_each_cpu(do_sync_core, NULL, 1); +} + +/* + * NOTE: crazy scheme to allow patching Jcc.d32 but not increase the size of + * this thing. When len == 6 everything is prefixed with 0x0f and we map + * opcode to Jcc.d8, using len to distinguish. + */ +struct text_poke_loc { + /* addr := _stext + rel_addr */ + s32 rel_addr; + s32 disp; + u8 len; + u8 opcode; + const u8 text[POKE_MAX_OPCODE_SIZE]; + /* see text_poke_bp_batch() */ + u8 old; +}; + +struct bp_patching_desc { + struct text_poke_loc *vec; + int nr_entries; + atomic_t refs; +}; + +static struct bp_patching_desc bp_desc; + +static __always_inline +struct bp_patching_desc *try_get_desc(void) +{ + struct bp_patching_desc *desc = &bp_desc; + + if (!raw_atomic_inc_not_zero(&desc->refs)) + return NULL; + + return desc; +} + +static __always_inline void put_desc(void) +{ + struct bp_patching_desc *desc = &bp_desc; + + smp_mb__before_atomic(); + raw_atomic_dec(&desc->refs); +} + +static __always_inline void *text_poke_addr(struct text_poke_loc *tp) +{ + return _stext + tp->rel_addr; +} + +static __always_inline int patch_cmp(const void *key, const void *elt) +{ + struct text_poke_loc *tp = (struct text_poke_loc *) elt; + + if (key < text_poke_addr(tp)) + return -1; + if (key > text_poke_addr(tp)) + return 1; + return 0; +} + +noinstr int poke_int3_handler(struct pt_regs *regs) +{ + struct bp_patching_desc *desc; + struct text_poke_loc *tp; + int ret = 0; + void *ip; + + if (user_mode(regs)) + return 0; + + /* + * Having observed our INT3 instruction, we now must observe + * bp_desc with non-zero refcount: + * + * bp_desc.refs = 1 INT3 + * WMB RMB + * write INT3 if (bp_desc.refs != 0) + */ + smp_rmb(); + + desc = try_get_desc(); + if (!desc) + return 0; + + /* + * Discount the INT3. See text_poke_bp_batch(). + */ + ip = (void *) regs->ip - INT3_INSN_SIZE; + + /* + * Skip the binary search if there is a single member in the vector. + */ + if (unlikely(desc->nr_entries > 1)) { + tp = __inline_bsearch(ip, desc->vec, desc->nr_entries, + sizeof(struct text_poke_loc), + patch_cmp); + if (!tp) + goto out_put; + } else { + tp = desc->vec; + if (text_poke_addr(tp) != ip) + goto out_put; + } + + ip += tp->len; + + switch (tp->opcode) { + case INT3_INSN_OPCODE: + /* + * Someone poked an explicit INT3, they'll want to handle it, + * do not consume. + */ + goto out_put; + + case RET_INSN_OPCODE: + int3_emulate_ret(regs); + break; + + case CALL_INSN_OPCODE: + int3_emulate_call(regs, (long)ip + tp->disp); + break; + + case JMP32_INSN_OPCODE: + case JMP8_INSN_OPCODE: + int3_emulate_jmp(regs, (long)ip + tp->disp); + break; + + case 0x70 ... 0x7f: /* Jcc */ + int3_emulate_jcc(regs, tp->opcode & 0xf, (long)ip, tp->disp); + break; + + default: + BUG(); + } + + ret = 1; + +out_put: + put_desc(); + return ret; +} + +#define TP_VEC_MAX (PAGE_SIZE / sizeof(struct text_poke_loc)) +static struct text_poke_loc tp_vec[TP_VEC_MAX]; +static int tp_vec_nr; + +/** + * text_poke_bp_batch() -- update instructions on live kernel on SMP + * @tp: vector of instructions to patch + * @nr_entries: number of entries in the vector + * + * Modify multi-byte instruction by using int3 breakpoint on SMP. + * We completely avoid stop_machine() here, and achieve the + * synchronization using int3 breakpoint. + * + * The way it is done: + * - For each entry in the vector: + * - add a int3 trap to the address that will be patched + * - sync cores + * - For each entry in the vector: + * - update all but the first byte of the patched range + * - sync cores + * - For each entry in the vector: + * - replace the first byte (int3) by the first byte of + * replacing opcode + * - sync cores + */ +static void text_poke_bp_batch(struct text_poke_loc *tp, unsigned int nr_entries) +{ + unsigned char int3 = INT3_INSN_OPCODE; + unsigned int i; + int do_sync; + + lockdep_assert_held(&text_mutex); + + bp_desc.vec = tp; + bp_desc.nr_entries = nr_entries; + + /* + * Corresponds to the implicit memory barrier in try_get_desc() to + * ensure reading a non-zero refcount provides up to date bp_desc data. + */ + atomic_set_release(&bp_desc.refs, 1); + + /* + * Function tracing can enable thousands of places that need to be + * updated. This can take quite some time, and with full kernel debugging + * enabled, this could cause the softlockup watchdog to trigger. + * This function gets called every 256 entries added to be patched. + * Call cond_resched() here to make sure that other tasks can get scheduled + * while processing all the functions being patched. + */ + cond_resched(); + + /* + * Corresponding read barrier in int3 notifier for making sure the + * nr_entries and handler are correctly ordered wrt. patching. + */ + smp_wmb(); + + /* + * First step: add a int3 trap to the address that will be patched. + */ + for (i = 0; i < nr_entries; i++) { + tp[i].old = *(u8 *)text_poke_addr(&tp[i]); + text_poke(text_poke_addr(&tp[i]), &int3, INT3_INSN_SIZE); + } + + text_poke_sync(); + + /* + * Second step: update all but the first byte of the patched range. + */ + for (do_sync = 0, i = 0; i < nr_entries; i++) { + u8 old[POKE_MAX_OPCODE_SIZE+1] = { tp[i].old, }; + u8 _new[POKE_MAX_OPCODE_SIZE+1]; + const u8 *new = tp[i].text; + int len = tp[i].len; + + if (len - INT3_INSN_SIZE > 0) { + memcpy(old + INT3_INSN_SIZE, + text_poke_addr(&tp[i]) + INT3_INSN_SIZE, + len - INT3_INSN_SIZE); + + if (len == 6) { + _new[0] = 0x0f; + memcpy(_new + 1, new, 5); + new = _new; + } + + text_poke(text_poke_addr(&tp[i]) + INT3_INSN_SIZE, + new + INT3_INSN_SIZE, + len - INT3_INSN_SIZE); + + do_sync++; + } + + /* + * Emit a perf event to record the text poke, primarily to + * support Intel PT decoding which must walk the executable code + * to reconstruct the trace. The flow up to here is: + * - write INT3 byte + * - IPI-SYNC + * - write instruction tail + * At this point the actual control flow will be through the + * INT3 and handler and not hit the old or new instruction. + * Intel PT outputs FUP/TIP packets for the INT3, so the flow + * can still be decoded. Subsequently: + * - emit RECORD_TEXT_POKE with the new instruction + * - IPI-SYNC + * - write first byte + * - IPI-SYNC + * So before the text poke event timestamp, the decoder will see + * either the old instruction flow or FUP/TIP of INT3. After the + * text poke event timestamp, the decoder will see either the + * new instruction flow or FUP/TIP of INT3. Thus decoders can + * use the timestamp as the point at which to modify the + * executable code. + * The old instruction is recorded so that the event can be + * processed forwards or backwards. + */ + perf_event_text_poke(text_poke_addr(&tp[i]), old, len, new, len); + } + + if (do_sync) { + /* + * According to Intel, this core syncing is very likely + * not necessary and we'd be safe even without it. But + * better safe than sorry (plus there's not only Intel). + */ + text_poke_sync(); + } + + /* + * Third step: replace the first byte (int3) by the first byte of + * replacing opcode. + */ + for (do_sync = 0, i = 0; i < nr_entries; i++) { + u8 byte = tp[i].text[0]; + + if (tp[i].len == 6) + byte = 0x0f; + + if (byte == INT3_INSN_OPCODE) + continue; + + text_poke(text_poke_addr(&tp[i]), &byte, INT3_INSN_SIZE); + do_sync++; + } + + if (do_sync) + text_poke_sync(); + + /* + * Remove and wait for refs to be zero. + */ + if (!atomic_dec_and_test(&bp_desc.refs)) + atomic_cond_read_acquire(&bp_desc.refs, !VAL); +} + +static void text_poke_loc_init(struct text_poke_loc *tp, void *addr, + const void *opcode, size_t len, const void *emulate) +{ + struct insn insn; + int ret, i = 0; + + if (len == 6) + i = 1; + memcpy((void *)tp->text, opcode+i, len-i); + if (!emulate) + emulate = opcode; + + ret = insn_decode_kernel(&insn, emulate); + BUG_ON(ret < 0); + + tp->rel_addr = addr - (void *)_stext; + tp->len = len; + tp->opcode = insn.opcode.bytes[0]; + + if (is_jcc32(&insn)) { + /* + * Map Jcc.d32 onto Jcc.d8 and use len to distinguish. + */ + tp->opcode = insn.opcode.bytes[1] - 0x10; + } + + switch (tp->opcode) { + case RET_INSN_OPCODE: + case JMP32_INSN_OPCODE: + case JMP8_INSN_OPCODE: + /* + * Control flow instructions without implied execution of the + * next instruction can be padded with INT3. + */ + for (i = insn.length; i < len; i++) + BUG_ON(tp->text[i] != INT3_INSN_OPCODE); + break; + + default: + BUG_ON(len != insn.length); + } + + switch (tp->opcode) { + case INT3_INSN_OPCODE: + case RET_INSN_OPCODE: + break; + + case CALL_INSN_OPCODE: + case JMP32_INSN_OPCODE: + case JMP8_INSN_OPCODE: + case 0x70 ... 0x7f: /* Jcc */ + tp->disp = insn.immediate.value; + break; + + default: /* assume NOP */ + switch (len) { + case 2: /* NOP2 -- emulate as JMP8+0 */ + BUG_ON(memcmp(emulate, x86_nops[len], len)); + tp->opcode = JMP8_INSN_OPCODE; + tp->disp = 0; + break; + + case 5: /* NOP5 -- emulate as JMP32+0 */ + BUG_ON(memcmp(emulate, x86_nops[len], len)); + tp->opcode = JMP32_INSN_OPCODE; + tp->disp = 0; + break; + + default: /* unknown instruction */ + BUG(); + } + break; + } +} + +/* + * We hard rely on the tp_vec being ordered; ensure this is so by flushing + * early if needed. + */ +static bool tp_order_fail(void *addr) +{ + struct text_poke_loc *tp; + + if (!tp_vec_nr) + return false; + + if (!addr) /* force */ + return true; + + tp = &tp_vec[tp_vec_nr - 1]; + if ((unsigned long)text_poke_addr(tp) > (unsigned long)addr) + return true; + + return false; +} + +static void text_poke_flush(void *addr) +{ + if (tp_vec_nr == TP_VEC_MAX || tp_order_fail(addr)) { + text_poke_bp_batch(tp_vec, tp_vec_nr); + tp_vec_nr = 0; + } +} + +void text_poke_finish(void) +{ + text_poke_flush(NULL); +} + +void __ref text_poke_queue(void *addr, const void *opcode, size_t len, const void *emulate) +{ + struct text_poke_loc *tp; + + text_poke_flush(addr); + + tp = &tp_vec[tp_vec_nr++]; + text_poke_loc_init(tp, addr, opcode, len, emulate); +} + +/** + * text_poke_bp() -- update instructions on live kernel on SMP + * @addr: address to patch + * @opcode: opcode of new instruction + * @len: length to copy + * @emulate: instruction to be emulated + * + * Update a single instruction with the vector in the stack, avoiding + * dynamically allocated memory. This function should be used when it is + * not possible to allocate memory. + */ +void __ref text_poke_bp(void *addr, const void *opcode, size_t len, const void *emulate) +{ + struct text_poke_loc tp; + + text_poke_loc_init(&tp, addr, opcode, len, emulate); + text_poke_bp_batch(&tp, 1); +} |