summaryrefslogtreecommitdiffstats
path: root/arch/x86/kernel/nmi.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-11 08:27:49 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-11 08:27:49 +0000
commitace9429bb58fd418f0c81d4c2835699bddf6bde6 (patch)
treeb2d64bc10158fdd5497876388cd68142ca374ed3 /arch/x86/kernel/nmi.c
parentInitial commit. (diff)
downloadlinux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.tar.xz
linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.zip
Adding upstream version 6.6.15.upstream/6.6.15
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'arch/x86/kernel/nmi.c')
-rw-r--r--arch/x86/kernel/nmi.c662
1 files changed, 662 insertions, 0 deletions
diff --git a/arch/x86/kernel/nmi.c b/arch/x86/kernel/nmi.c
new file mode 100644
index 0000000000..4766b6bed4
--- /dev/null
+++ b/arch/x86/kernel/nmi.c
@@ -0,0 +1,662 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 1991, 1992 Linus Torvalds
+ * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
+ * Copyright (C) 2011 Don Zickus Red Hat, Inc.
+ *
+ * Pentium III FXSR, SSE support
+ * Gareth Hughes <gareth@valinux.com>, May 2000
+ */
+
+/*
+ * Handle hardware traps and faults.
+ */
+#include <linux/spinlock.h>
+#include <linux/kprobes.h>
+#include <linux/kdebug.h>
+#include <linux/sched/debug.h>
+#include <linux/nmi.h>
+#include <linux/debugfs.h>
+#include <linux/delay.h>
+#include <linux/hardirq.h>
+#include <linux/ratelimit.h>
+#include <linux/slab.h>
+#include <linux/export.h>
+#include <linux/atomic.h>
+#include <linux/sched/clock.h>
+
+#include <asm/cpu_entry_area.h>
+#include <asm/traps.h>
+#include <asm/mach_traps.h>
+#include <asm/nmi.h>
+#include <asm/x86_init.h>
+#include <asm/reboot.h>
+#include <asm/cache.h>
+#include <asm/nospec-branch.h>
+#include <asm/sev.h>
+
+#define CREATE_TRACE_POINTS
+#include <trace/events/nmi.h>
+
+struct nmi_desc {
+ raw_spinlock_t lock;
+ struct list_head head;
+};
+
+static struct nmi_desc nmi_desc[NMI_MAX] =
+{
+ {
+ .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
+ .head = LIST_HEAD_INIT(nmi_desc[0].head),
+ },
+ {
+ .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
+ .head = LIST_HEAD_INIT(nmi_desc[1].head),
+ },
+ {
+ .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
+ .head = LIST_HEAD_INIT(nmi_desc[2].head),
+ },
+ {
+ .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
+ .head = LIST_HEAD_INIT(nmi_desc[3].head),
+ },
+
+};
+
+struct nmi_stats {
+ unsigned int normal;
+ unsigned int unknown;
+ unsigned int external;
+ unsigned int swallow;
+ unsigned long recv_jiffies;
+ unsigned long idt_seq;
+ unsigned long idt_nmi_seq;
+ unsigned long idt_ignored;
+ atomic_long_t idt_calls;
+ unsigned long idt_seq_snap;
+ unsigned long idt_nmi_seq_snap;
+ unsigned long idt_ignored_snap;
+ long idt_calls_snap;
+};
+
+static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
+
+static int ignore_nmis __read_mostly;
+
+int unknown_nmi_panic;
+/*
+ * Prevent NMI reason port (0x61) being accessed simultaneously, can
+ * only be used in NMI handler.
+ */
+static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
+
+static int __init setup_unknown_nmi_panic(char *str)
+{
+ unknown_nmi_panic = 1;
+ return 1;
+}
+__setup("unknown_nmi_panic", setup_unknown_nmi_panic);
+
+#define nmi_to_desc(type) (&nmi_desc[type])
+
+static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC;
+
+static int __init nmi_warning_debugfs(void)
+{
+ debugfs_create_u64("nmi_longest_ns", 0644,
+ arch_debugfs_dir, &nmi_longest_ns);
+ return 0;
+}
+fs_initcall(nmi_warning_debugfs);
+
+static void nmi_check_duration(struct nmiaction *action, u64 duration)
+{
+ int remainder_ns, decimal_msecs;
+
+ if (duration < nmi_longest_ns || duration < action->max_duration)
+ return;
+
+ action->max_duration = duration;
+
+ remainder_ns = do_div(duration, (1000 * 1000));
+ decimal_msecs = remainder_ns / 1000;
+
+ printk_ratelimited(KERN_INFO
+ "INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n",
+ action->handler, duration, decimal_msecs);
+}
+
+static int nmi_handle(unsigned int type, struct pt_regs *regs)
+{
+ struct nmi_desc *desc = nmi_to_desc(type);
+ struct nmiaction *a;
+ int handled=0;
+
+ rcu_read_lock();
+
+ /*
+ * NMIs are edge-triggered, which means if you have enough
+ * of them concurrently, you can lose some because only one
+ * can be latched at any given time. Walk the whole list
+ * to handle those situations.
+ */
+ list_for_each_entry_rcu(a, &desc->head, list) {
+ int thishandled;
+ u64 delta;
+
+ delta = sched_clock();
+ thishandled = a->handler(type, regs);
+ handled += thishandled;
+ delta = sched_clock() - delta;
+ trace_nmi_handler(a->handler, (int)delta, thishandled);
+
+ nmi_check_duration(a, delta);
+ }
+
+ rcu_read_unlock();
+
+ /* return total number of NMI events handled */
+ return handled;
+}
+NOKPROBE_SYMBOL(nmi_handle);
+
+int __register_nmi_handler(unsigned int type, struct nmiaction *action)
+{
+ struct nmi_desc *desc = nmi_to_desc(type);
+ unsigned long flags;
+
+ if (WARN_ON_ONCE(!action->handler || !list_empty(&action->list)))
+ return -EINVAL;
+
+ raw_spin_lock_irqsave(&desc->lock, flags);
+
+ /*
+ * Indicate if there are multiple registrations on the
+ * internal NMI handler call chains (SERR and IO_CHECK).
+ */
+ WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
+ WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));
+
+ /*
+ * some handlers need to be executed first otherwise a fake
+ * event confuses some handlers (kdump uses this flag)
+ */
+ if (action->flags & NMI_FLAG_FIRST)
+ list_add_rcu(&action->list, &desc->head);
+ else
+ list_add_tail_rcu(&action->list, &desc->head);
+
+ raw_spin_unlock_irqrestore(&desc->lock, flags);
+ return 0;
+}
+EXPORT_SYMBOL(__register_nmi_handler);
+
+void unregister_nmi_handler(unsigned int type, const char *name)
+{
+ struct nmi_desc *desc = nmi_to_desc(type);
+ struct nmiaction *n, *found = NULL;
+ unsigned long flags;
+
+ raw_spin_lock_irqsave(&desc->lock, flags);
+
+ list_for_each_entry_rcu(n, &desc->head, list) {
+ /*
+ * the name passed in to describe the nmi handler
+ * is used as the lookup key
+ */
+ if (!strcmp(n->name, name)) {
+ WARN(in_nmi(),
+ "Trying to free NMI (%s) from NMI context!\n", n->name);
+ list_del_rcu(&n->list);
+ found = n;
+ break;
+ }
+ }
+
+ raw_spin_unlock_irqrestore(&desc->lock, flags);
+ if (found) {
+ synchronize_rcu();
+ INIT_LIST_HEAD(&found->list);
+ }
+}
+EXPORT_SYMBOL_GPL(unregister_nmi_handler);
+
+static void
+pci_serr_error(unsigned char reason, struct pt_regs *regs)
+{
+ /* check to see if anyone registered against these types of errors */
+ if (nmi_handle(NMI_SERR, regs))
+ return;
+
+ pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
+ reason, smp_processor_id());
+
+ if (panic_on_unrecovered_nmi)
+ nmi_panic(regs, "NMI: Not continuing");
+
+ pr_emerg("Dazed and confused, but trying to continue\n");
+
+ /* Clear and disable the PCI SERR error line. */
+ reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
+ outb(reason, NMI_REASON_PORT);
+}
+NOKPROBE_SYMBOL(pci_serr_error);
+
+static void
+io_check_error(unsigned char reason, struct pt_regs *regs)
+{
+ unsigned long i;
+
+ /* check to see if anyone registered against these types of errors */
+ if (nmi_handle(NMI_IO_CHECK, regs))
+ return;
+
+ pr_emerg(
+ "NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
+ reason, smp_processor_id());
+ show_regs(regs);
+
+ if (panic_on_io_nmi) {
+ nmi_panic(regs, "NMI IOCK error: Not continuing");
+
+ /*
+ * If we end up here, it means we have received an NMI while
+ * processing panic(). Simply return without delaying and
+ * re-enabling NMIs.
+ */
+ return;
+ }
+
+ /* Re-enable the IOCK line, wait for a few seconds */
+ reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
+ outb(reason, NMI_REASON_PORT);
+
+ i = 20000;
+ while (--i) {
+ touch_nmi_watchdog();
+ udelay(100);
+ }
+
+ reason &= ~NMI_REASON_CLEAR_IOCHK;
+ outb(reason, NMI_REASON_PORT);
+}
+NOKPROBE_SYMBOL(io_check_error);
+
+static void
+unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
+{
+ int handled;
+
+ /*
+ * Use 'false' as back-to-back NMIs are dealt with one level up.
+ * Of course this makes having multiple 'unknown' handlers useless
+ * as only the first one is ever run (unless it can actually determine
+ * if it caused the NMI)
+ */
+ handled = nmi_handle(NMI_UNKNOWN, regs);
+ if (handled) {
+ __this_cpu_add(nmi_stats.unknown, handled);
+ return;
+ }
+
+ __this_cpu_add(nmi_stats.unknown, 1);
+
+ pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
+ reason, smp_processor_id());
+
+ if (unknown_nmi_panic || panic_on_unrecovered_nmi)
+ nmi_panic(regs, "NMI: Not continuing");
+
+ pr_emerg("Dazed and confused, but trying to continue\n");
+}
+NOKPROBE_SYMBOL(unknown_nmi_error);
+
+static DEFINE_PER_CPU(bool, swallow_nmi);
+static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
+
+static noinstr void default_do_nmi(struct pt_regs *regs)
+{
+ unsigned char reason = 0;
+ int handled;
+ bool b2b = false;
+
+ /*
+ * CPU-specific NMI must be processed before non-CPU-specific
+ * NMI, otherwise we may lose it, because the CPU-specific
+ * NMI can not be detected/processed on other CPUs.
+ */
+
+ /*
+ * Back-to-back NMIs are interesting because they can either
+ * be two NMI or more than two NMIs (any thing over two is dropped
+ * due to NMI being edge-triggered). If this is the second half
+ * of the back-to-back NMI, assume we dropped things and process
+ * more handlers. Otherwise reset the 'swallow' NMI behaviour
+ */
+ if (regs->ip == __this_cpu_read(last_nmi_rip))
+ b2b = true;
+ else
+ __this_cpu_write(swallow_nmi, false);
+
+ __this_cpu_write(last_nmi_rip, regs->ip);
+
+ instrumentation_begin();
+
+ handled = nmi_handle(NMI_LOCAL, regs);
+ __this_cpu_add(nmi_stats.normal, handled);
+ if (handled) {
+ /*
+ * There are cases when a NMI handler handles multiple
+ * events in the current NMI. One of these events may
+ * be queued for in the next NMI. Because the event is
+ * already handled, the next NMI will result in an unknown
+ * NMI. Instead lets flag this for a potential NMI to
+ * swallow.
+ */
+ if (handled > 1)
+ __this_cpu_write(swallow_nmi, true);
+ goto out;
+ }
+
+ /*
+ * Non-CPU-specific NMI: NMI sources can be processed on any CPU.
+ *
+ * Another CPU may be processing panic routines while holding
+ * nmi_reason_lock. Check if the CPU issued the IPI for crash dumping,
+ * and if so, call its callback directly. If there is no CPU preparing
+ * crash dump, we simply loop here.
+ */
+ while (!raw_spin_trylock(&nmi_reason_lock)) {
+ run_crash_ipi_callback(regs);
+ cpu_relax();
+ }
+
+ reason = x86_platform.get_nmi_reason();
+
+ if (reason & NMI_REASON_MASK) {
+ if (reason & NMI_REASON_SERR)
+ pci_serr_error(reason, regs);
+ else if (reason & NMI_REASON_IOCHK)
+ io_check_error(reason, regs);
+#ifdef CONFIG_X86_32
+ /*
+ * Reassert NMI in case it became active
+ * meanwhile as it's edge-triggered:
+ */
+ reassert_nmi();
+#endif
+ __this_cpu_add(nmi_stats.external, 1);
+ raw_spin_unlock(&nmi_reason_lock);
+ goto out;
+ }
+ raw_spin_unlock(&nmi_reason_lock);
+
+ /*
+ * Only one NMI can be latched at a time. To handle
+ * this we may process multiple nmi handlers at once to
+ * cover the case where an NMI is dropped. The downside
+ * to this approach is we may process an NMI prematurely,
+ * while its real NMI is sitting latched. This will cause
+ * an unknown NMI on the next run of the NMI processing.
+ *
+ * We tried to flag that condition above, by setting the
+ * swallow_nmi flag when we process more than one event.
+ * This condition is also only present on the second half
+ * of a back-to-back NMI, so we flag that condition too.
+ *
+ * If both are true, we assume we already processed this
+ * NMI previously and we swallow it. Otherwise we reset
+ * the logic.
+ *
+ * There are scenarios where we may accidentally swallow
+ * a 'real' unknown NMI. For example, while processing
+ * a perf NMI another perf NMI comes in along with a
+ * 'real' unknown NMI. These two NMIs get combined into
+ * one (as described above). When the next NMI gets
+ * processed, it will be flagged by perf as handled, but
+ * no one will know that there was a 'real' unknown NMI sent
+ * also. As a result it gets swallowed. Or if the first
+ * perf NMI returns two events handled then the second
+ * NMI will get eaten by the logic below, again losing a
+ * 'real' unknown NMI. But this is the best we can do
+ * for now.
+ */
+ if (b2b && __this_cpu_read(swallow_nmi))
+ __this_cpu_add(nmi_stats.swallow, 1);
+ else
+ unknown_nmi_error(reason, regs);
+
+out:
+ instrumentation_end();
+}
+
+/*
+ * NMIs can page fault or hit breakpoints which will cause it to lose
+ * its NMI context with the CPU when the breakpoint or page fault does an IRET.
+ *
+ * As a result, NMIs can nest if NMIs get unmasked due an IRET during
+ * NMI processing. On x86_64, the asm glue protects us from nested NMIs
+ * if the outer NMI came from kernel mode, but we can still nest if the
+ * outer NMI came from user mode.
+ *
+ * To handle these nested NMIs, we have three states:
+ *
+ * 1) not running
+ * 2) executing
+ * 3) latched
+ *
+ * When no NMI is in progress, it is in the "not running" state.
+ * When an NMI comes in, it goes into the "executing" state.
+ * Normally, if another NMI is triggered, it does not interrupt
+ * the running NMI and the HW will simply latch it so that when
+ * the first NMI finishes, it will restart the second NMI.
+ * (Note, the latch is binary, thus multiple NMIs triggering,
+ * when one is running, are ignored. Only one NMI is restarted.)
+ *
+ * If an NMI executes an iret, another NMI can preempt it. We do not
+ * want to allow this new NMI to run, but we want to execute it when the
+ * first one finishes. We set the state to "latched", and the exit of
+ * the first NMI will perform a dec_return, if the result is zero
+ * (NOT_RUNNING), then it will simply exit the NMI handler. If not, the
+ * dec_return would have set the state to NMI_EXECUTING (what we want it
+ * to be when we are running). In this case, we simply jump back to
+ * rerun the NMI handler again, and restart the 'latched' NMI.
+ *
+ * No trap (breakpoint or page fault) should be hit before nmi_restart,
+ * thus there is no race between the first check of state for NOT_RUNNING
+ * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
+ * at this point.
+ *
+ * In case the NMI takes a page fault, we need to save off the CR2
+ * because the NMI could have preempted another page fault and corrupt
+ * the CR2 that is about to be read. As nested NMIs must be restarted
+ * and they can not take breakpoints or page faults, the update of the
+ * CR2 must be done before converting the nmi state back to NOT_RUNNING.
+ * Otherwise, there would be a race of another nested NMI coming in
+ * after setting state to NOT_RUNNING but before updating the nmi_cr2.
+ */
+enum nmi_states {
+ NMI_NOT_RUNNING = 0,
+ NMI_EXECUTING,
+ NMI_LATCHED,
+};
+static DEFINE_PER_CPU(enum nmi_states, nmi_state);
+static DEFINE_PER_CPU(unsigned long, nmi_cr2);
+static DEFINE_PER_CPU(unsigned long, nmi_dr7);
+
+DEFINE_IDTENTRY_RAW(exc_nmi)
+{
+ irqentry_state_t irq_state;
+ struct nmi_stats *nsp = this_cpu_ptr(&nmi_stats);
+
+ /*
+ * Re-enable NMIs right here when running as an SEV-ES guest. This might
+ * cause nested NMIs, but those can be handled safely.
+ */
+ sev_es_nmi_complete();
+ if (IS_ENABLED(CONFIG_NMI_CHECK_CPU))
+ raw_atomic_long_inc(&nsp->idt_calls);
+
+ if (IS_ENABLED(CONFIG_SMP) && arch_cpu_is_offline(smp_processor_id()))
+ return;
+
+ if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) {
+ this_cpu_write(nmi_state, NMI_LATCHED);
+ return;
+ }
+ this_cpu_write(nmi_state, NMI_EXECUTING);
+ this_cpu_write(nmi_cr2, read_cr2());
+
+nmi_restart:
+ if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) {
+ WRITE_ONCE(nsp->idt_seq, nsp->idt_seq + 1);
+ WARN_ON_ONCE(!(nsp->idt_seq & 0x1));
+ WRITE_ONCE(nsp->recv_jiffies, jiffies);
+ }
+
+ /*
+ * Needs to happen before DR7 is accessed, because the hypervisor can
+ * intercept DR7 reads/writes, turning those into #VC exceptions.
+ */
+ sev_es_ist_enter(regs);
+
+ this_cpu_write(nmi_dr7, local_db_save());
+
+ irq_state = irqentry_nmi_enter(regs);
+
+ inc_irq_stat(__nmi_count);
+
+ if (IS_ENABLED(CONFIG_NMI_CHECK_CPU) && ignore_nmis) {
+ WRITE_ONCE(nsp->idt_ignored, nsp->idt_ignored + 1);
+ } else if (!ignore_nmis) {
+ if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) {
+ WRITE_ONCE(nsp->idt_nmi_seq, nsp->idt_nmi_seq + 1);
+ WARN_ON_ONCE(!(nsp->idt_nmi_seq & 0x1));
+ }
+ default_do_nmi(regs);
+ if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) {
+ WRITE_ONCE(nsp->idt_nmi_seq, nsp->idt_nmi_seq + 1);
+ WARN_ON_ONCE(nsp->idt_nmi_seq & 0x1);
+ }
+ }
+
+ irqentry_nmi_exit(regs, irq_state);
+
+ local_db_restore(this_cpu_read(nmi_dr7));
+
+ sev_es_ist_exit();
+
+ if (unlikely(this_cpu_read(nmi_cr2) != read_cr2()))
+ write_cr2(this_cpu_read(nmi_cr2));
+ if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) {
+ WRITE_ONCE(nsp->idt_seq, nsp->idt_seq + 1);
+ WARN_ON_ONCE(nsp->idt_seq & 0x1);
+ WRITE_ONCE(nsp->recv_jiffies, jiffies);
+ }
+ if (this_cpu_dec_return(nmi_state))
+ goto nmi_restart;
+
+ if (user_mode(regs))
+ mds_user_clear_cpu_buffers();
+}
+
+#if IS_ENABLED(CONFIG_KVM_INTEL)
+DEFINE_IDTENTRY_RAW(exc_nmi_kvm_vmx)
+{
+ exc_nmi(regs);
+}
+#if IS_MODULE(CONFIG_KVM_INTEL)
+EXPORT_SYMBOL_GPL(asm_exc_nmi_kvm_vmx);
+#endif
+#endif
+
+#ifdef CONFIG_NMI_CHECK_CPU
+
+static char *nmi_check_stall_msg[] = {
+/* */
+/* +--------- nsp->idt_seq_snap & 0x1: CPU is in NMI handler. */
+/* | +------ cpu_is_offline(cpu) */
+/* | | +--- nsp->idt_calls_snap != atomic_long_read(&nsp->idt_calls): */
+/* | | | NMI handler has been invoked. */
+/* | | | */
+/* V V V */
+/* 0 0 0 */ "NMIs are not reaching exc_nmi() handler",
+/* 0 0 1 */ "exc_nmi() handler is ignoring NMIs",
+/* 0 1 0 */ "CPU is offline and NMIs are not reaching exc_nmi() handler",
+/* 0 1 1 */ "CPU is offline and exc_nmi() handler is legitimately ignoring NMIs",
+/* 1 0 0 */ "CPU is in exc_nmi() handler and no further NMIs are reaching handler",
+/* 1 0 1 */ "CPU is in exc_nmi() handler which is legitimately ignoring NMIs",
+/* 1 1 0 */ "CPU is offline in exc_nmi() handler and no more NMIs are reaching exc_nmi() handler",
+/* 1 1 1 */ "CPU is offline in exc_nmi() handler which is legitimately ignoring NMIs",
+};
+
+void nmi_backtrace_stall_snap(const struct cpumask *btp)
+{
+ int cpu;
+ struct nmi_stats *nsp;
+
+ for_each_cpu(cpu, btp) {
+ nsp = per_cpu_ptr(&nmi_stats, cpu);
+ nsp->idt_seq_snap = READ_ONCE(nsp->idt_seq);
+ nsp->idt_nmi_seq_snap = READ_ONCE(nsp->idt_nmi_seq);
+ nsp->idt_ignored_snap = READ_ONCE(nsp->idt_ignored);
+ nsp->idt_calls_snap = atomic_long_read(&nsp->idt_calls);
+ }
+}
+
+void nmi_backtrace_stall_check(const struct cpumask *btp)
+{
+ int cpu;
+ int idx;
+ unsigned long nmi_seq;
+ unsigned long j = jiffies;
+ char *modp;
+ char *msgp;
+ char *msghp;
+ struct nmi_stats *nsp;
+
+ for_each_cpu(cpu, btp) {
+ nsp = per_cpu_ptr(&nmi_stats, cpu);
+ modp = "";
+ msghp = "";
+ nmi_seq = READ_ONCE(nsp->idt_nmi_seq);
+ if (nsp->idt_nmi_seq_snap + 1 == nmi_seq && (nmi_seq & 0x1)) {
+ msgp = "CPU entered NMI handler function, but has not exited";
+ } else if ((nsp->idt_nmi_seq_snap & 0x1) != (nmi_seq & 0x1)) {
+ msgp = "CPU is handling NMIs";
+ } else {
+ idx = ((nsp->idt_seq_snap & 0x1) << 2) |
+ (cpu_is_offline(cpu) << 1) |
+ (nsp->idt_calls_snap != atomic_long_read(&nsp->idt_calls));
+ msgp = nmi_check_stall_msg[idx];
+ if (nsp->idt_ignored_snap != READ_ONCE(nsp->idt_ignored) && (idx & 0x1))
+ modp = ", but OK because ignore_nmis was set";
+ if (nmi_seq & ~0x1)
+ msghp = " (CPU currently in NMI handler function)";
+ else if (nsp->idt_nmi_seq_snap + 1 == nmi_seq)
+ msghp = " (CPU exited one NMI handler function)";
+ }
+ pr_alert("%s: CPU %d: %s%s%s, last activity: %lu jiffies ago.\n",
+ __func__, cpu, msgp, modp, msghp, j - READ_ONCE(nsp->recv_jiffies));
+ }
+}
+
+#endif
+
+void stop_nmi(void)
+{
+ ignore_nmis++;
+}
+
+void restart_nmi(void)
+{
+ ignore_nmis--;
+}
+
+/* reset the back-to-back NMI logic */
+void local_touch_nmi(void)
+{
+ __this_cpu_write(last_nmi_rip, 0);
+}
+EXPORT_SYMBOL_GPL(local_touch_nmi);