summaryrefslogtreecommitdiffstats
path: root/arch/x86/kernel/traps.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-11 08:27:49 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-11 08:27:49 +0000
commitace9429bb58fd418f0c81d4c2835699bddf6bde6 (patch)
treeb2d64bc10158fdd5497876388cd68142ca374ed3 /arch/x86/kernel/traps.c
parentInitial commit. (diff)
downloadlinux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.tar.xz
linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.zip
Adding upstream version 6.6.15.upstream/6.6.15
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'arch/x86/kernel/traps.c')
-rw-r--r--arch/x86/kernel/traps.c1384
1 files changed, 1384 insertions, 0 deletions
diff --git a/arch/x86/kernel/traps.c b/arch/x86/kernel/traps.c
new file mode 100644
index 0000000000..c876f1d36a
--- /dev/null
+++ b/arch/x86/kernel/traps.c
@@ -0,0 +1,1384 @@
+/*
+ * Copyright (C) 1991, 1992 Linus Torvalds
+ * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
+ *
+ * Pentium III FXSR, SSE support
+ * Gareth Hughes <gareth@valinux.com>, May 2000
+ */
+
+/*
+ * Handle hardware traps and faults.
+ */
+
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
+#include <linux/context_tracking.h>
+#include <linux/interrupt.h>
+#include <linux/kallsyms.h>
+#include <linux/kmsan.h>
+#include <linux/spinlock.h>
+#include <linux/kprobes.h>
+#include <linux/uaccess.h>
+#include <linux/kdebug.h>
+#include <linux/kgdb.h>
+#include <linux/kernel.h>
+#include <linux/export.h>
+#include <linux/ptrace.h>
+#include <linux/uprobes.h>
+#include <linux/string.h>
+#include <linux/delay.h>
+#include <linux/errno.h>
+#include <linux/kexec.h>
+#include <linux/sched.h>
+#include <linux/sched/task_stack.h>
+#include <linux/timer.h>
+#include <linux/init.h>
+#include <linux/bug.h>
+#include <linux/nmi.h>
+#include <linux/mm.h>
+#include <linux/smp.h>
+#include <linux/io.h>
+#include <linux/hardirq.h>
+#include <linux/atomic.h>
+#include <linux/iommu.h>
+
+#include <asm/stacktrace.h>
+#include <asm/processor.h>
+#include <asm/debugreg.h>
+#include <asm/realmode.h>
+#include <asm/text-patching.h>
+#include <asm/ftrace.h>
+#include <asm/traps.h>
+#include <asm/desc.h>
+#include <asm/fpu/api.h>
+#include <asm/cpu.h>
+#include <asm/cpu_entry_area.h>
+#include <asm/mce.h>
+#include <asm/fixmap.h>
+#include <asm/mach_traps.h>
+#include <asm/alternative.h>
+#include <asm/fpu/xstate.h>
+#include <asm/vm86.h>
+#include <asm/umip.h>
+#include <asm/insn.h>
+#include <asm/insn-eval.h>
+#include <asm/vdso.h>
+#include <asm/tdx.h>
+#include <asm/cfi.h>
+
+#ifdef CONFIG_X86_64
+#include <asm/x86_init.h>
+#else
+#include <asm/processor-flags.h>
+#include <asm/setup.h>
+#endif
+
+#include <asm/proto.h>
+
+DECLARE_BITMAP(system_vectors, NR_VECTORS);
+
+__always_inline int is_valid_bugaddr(unsigned long addr)
+{
+ if (addr < TASK_SIZE_MAX)
+ return 0;
+
+ /*
+ * We got #UD, if the text isn't readable we'd have gotten
+ * a different exception.
+ */
+ return *(unsigned short *)addr == INSN_UD2;
+}
+
+static nokprobe_inline int
+do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str,
+ struct pt_regs *regs, long error_code)
+{
+ if (v8086_mode(regs)) {
+ /*
+ * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
+ * On nmi (interrupt 2), do_trap should not be called.
+ */
+ if (trapnr < X86_TRAP_UD) {
+ if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
+ error_code, trapnr))
+ return 0;
+ }
+ } else if (!user_mode(regs)) {
+ if (fixup_exception(regs, trapnr, error_code, 0))
+ return 0;
+
+ tsk->thread.error_code = error_code;
+ tsk->thread.trap_nr = trapnr;
+ die(str, regs, error_code);
+ } else {
+ if (fixup_vdso_exception(regs, trapnr, error_code, 0))
+ return 0;
+ }
+
+ /*
+ * We want error_code and trap_nr set for userspace faults and
+ * kernelspace faults which result in die(), but not
+ * kernelspace faults which are fixed up. die() gives the
+ * process no chance to handle the signal and notice the
+ * kernel fault information, so that won't result in polluting
+ * the information about previously queued, but not yet
+ * delivered, faults. See also exc_general_protection below.
+ */
+ tsk->thread.error_code = error_code;
+ tsk->thread.trap_nr = trapnr;
+
+ return -1;
+}
+
+static void show_signal(struct task_struct *tsk, int signr,
+ const char *type, const char *desc,
+ struct pt_regs *regs, long error_code)
+{
+ if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
+ printk_ratelimit()) {
+ pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
+ tsk->comm, task_pid_nr(tsk), type, desc,
+ regs->ip, regs->sp, error_code);
+ print_vma_addr(KERN_CONT " in ", regs->ip);
+ pr_cont("\n");
+ }
+}
+
+static void
+do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
+ long error_code, int sicode, void __user *addr)
+{
+ struct task_struct *tsk = current;
+
+ if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
+ return;
+
+ show_signal(tsk, signr, "trap ", str, regs, error_code);
+
+ if (!sicode)
+ force_sig(signr);
+ else
+ force_sig_fault(signr, sicode, addr);
+}
+NOKPROBE_SYMBOL(do_trap);
+
+static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
+ unsigned long trapnr, int signr, int sicode, void __user *addr)
+{
+ RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
+
+ if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
+ NOTIFY_STOP) {
+ cond_local_irq_enable(regs);
+ do_trap(trapnr, signr, str, regs, error_code, sicode, addr);
+ cond_local_irq_disable(regs);
+ }
+}
+
+/*
+ * Posix requires to provide the address of the faulting instruction for
+ * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t.
+ *
+ * This address is usually regs->ip, but when an uprobe moved the code out
+ * of line then regs->ip points to the XOL code which would confuse
+ * anything which analyzes the fault address vs. the unmodified binary. If
+ * a trap happened in XOL code then uprobe maps regs->ip back to the
+ * original instruction address.
+ */
+static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs)
+{
+ return (void __user *)uprobe_get_trap_addr(regs);
+}
+
+DEFINE_IDTENTRY(exc_divide_error)
+{
+ do_error_trap(regs, 0, "divide error", X86_TRAP_DE, SIGFPE,
+ FPE_INTDIV, error_get_trap_addr(regs));
+}
+
+DEFINE_IDTENTRY(exc_overflow)
+{
+ do_error_trap(regs, 0, "overflow", X86_TRAP_OF, SIGSEGV, 0, NULL);
+}
+
+#ifdef CONFIG_X86_F00F_BUG
+void handle_invalid_op(struct pt_regs *regs)
+#else
+static inline void handle_invalid_op(struct pt_regs *regs)
+#endif
+{
+ do_error_trap(regs, 0, "invalid opcode", X86_TRAP_UD, SIGILL,
+ ILL_ILLOPN, error_get_trap_addr(regs));
+}
+
+static noinstr bool handle_bug(struct pt_regs *regs)
+{
+ bool handled = false;
+
+ /*
+ * Normally @regs are unpoisoned by irqentry_enter(), but handle_bug()
+ * is a rare case that uses @regs without passing them to
+ * irqentry_enter().
+ */
+ kmsan_unpoison_entry_regs(regs);
+ if (!is_valid_bugaddr(regs->ip))
+ return handled;
+
+ /*
+ * All lies, just get the WARN/BUG out.
+ */
+ instrumentation_begin();
+ /*
+ * Since we're emulating a CALL with exceptions, restore the interrupt
+ * state to what it was at the exception site.
+ */
+ if (regs->flags & X86_EFLAGS_IF)
+ raw_local_irq_enable();
+ if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN ||
+ handle_cfi_failure(regs) == BUG_TRAP_TYPE_WARN) {
+ regs->ip += LEN_UD2;
+ handled = true;
+ }
+ if (regs->flags & X86_EFLAGS_IF)
+ raw_local_irq_disable();
+ instrumentation_end();
+
+ return handled;
+}
+
+DEFINE_IDTENTRY_RAW(exc_invalid_op)
+{
+ irqentry_state_t state;
+
+ /*
+ * We use UD2 as a short encoding for 'CALL __WARN', as such
+ * handle it before exception entry to avoid recursive WARN
+ * in case exception entry is the one triggering WARNs.
+ */
+ if (!user_mode(regs) && handle_bug(regs))
+ return;
+
+ state = irqentry_enter(regs);
+ instrumentation_begin();
+ handle_invalid_op(regs);
+ instrumentation_end();
+ irqentry_exit(regs, state);
+}
+
+DEFINE_IDTENTRY(exc_coproc_segment_overrun)
+{
+ do_error_trap(regs, 0, "coprocessor segment overrun",
+ X86_TRAP_OLD_MF, SIGFPE, 0, NULL);
+}
+
+DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss)
+{
+ do_error_trap(regs, error_code, "invalid TSS", X86_TRAP_TS, SIGSEGV,
+ 0, NULL);
+}
+
+DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present)
+{
+ do_error_trap(regs, error_code, "segment not present", X86_TRAP_NP,
+ SIGBUS, 0, NULL);
+}
+
+DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment)
+{
+ do_error_trap(regs, error_code, "stack segment", X86_TRAP_SS, SIGBUS,
+ 0, NULL);
+}
+
+DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check)
+{
+ char *str = "alignment check";
+
+ if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP)
+ return;
+
+ if (!user_mode(regs))
+ die("Split lock detected\n", regs, error_code);
+
+ local_irq_enable();
+
+ if (handle_user_split_lock(regs, error_code))
+ goto out;
+
+ do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs,
+ error_code, BUS_ADRALN, NULL);
+
+out:
+ local_irq_disable();
+}
+
+#ifdef CONFIG_VMAP_STACK
+__visible void __noreturn handle_stack_overflow(struct pt_regs *regs,
+ unsigned long fault_address,
+ struct stack_info *info)
+{
+ const char *name = stack_type_name(info->type);
+
+ printk(KERN_EMERG "BUG: %s stack guard page was hit at %p (stack is %p..%p)\n",
+ name, (void *)fault_address, info->begin, info->end);
+
+ die("stack guard page", regs, 0);
+
+ /* Be absolutely certain we don't return. */
+ panic("%s stack guard hit", name);
+}
+#endif
+
+/*
+ * Runs on an IST stack for x86_64 and on a special task stack for x86_32.
+ *
+ * On x86_64, this is more or less a normal kernel entry. Notwithstanding the
+ * SDM's warnings about double faults being unrecoverable, returning works as
+ * expected. Presumably what the SDM actually means is that the CPU may get
+ * the register state wrong on entry, so returning could be a bad idea.
+ *
+ * Various CPU engineers have promised that double faults due to an IRET fault
+ * while the stack is read-only are, in fact, recoverable.
+ *
+ * On x86_32, this is entered through a task gate, and regs are synthesized
+ * from the TSS. Returning is, in principle, okay, but changes to regs will
+ * be lost. If, for some reason, we need to return to a context with modified
+ * regs, the shim code could be adjusted to synchronize the registers.
+ *
+ * The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs
+ * to be read before doing anything else.
+ */
+DEFINE_IDTENTRY_DF(exc_double_fault)
+{
+ static const char str[] = "double fault";
+ struct task_struct *tsk = current;
+
+#ifdef CONFIG_VMAP_STACK
+ unsigned long address = read_cr2();
+ struct stack_info info;
+#endif
+
+#ifdef CONFIG_X86_ESPFIX64
+ extern unsigned char native_irq_return_iret[];
+
+ /*
+ * If IRET takes a non-IST fault on the espfix64 stack, then we
+ * end up promoting it to a doublefault. In that case, take
+ * advantage of the fact that we're not using the normal (TSS.sp0)
+ * stack right now. We can write a fake #GP(0) frame at TSS.sp0
+ * and then modify our own IRET frame so that, when we return,
+ * we land directly at the #GP(0) vector with the stack already
+ * set up according to its expectations.
+ *
+ * The net result is that our #GP handler will think that we
+ * entered from usermode with the bad user context.
+ *
+ * No need for nmi_enter() here because we don't use RCU.
+ */
+ if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
+ regs->cs == __KERNEL_CS &&
+ regs->ip == (unsigned long)native_irq_return_iret)
+ {
+ struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
+ unsigned long *p = (unsigned long *)regs->sp;
+
+ /*
+ * regs->sp points to the failing IRET frame on the
+ * ESPFIX64 stack. Copy it to the entry stack. This fills
+ * in gpregs->ss through gpregs->ip.
+ *
+ */
+ gpregs->ip = p[0];
+ gpregs->cs = p[1];
+ gpregs->flags = p[2];
+ gpregs->sp = p[3];
+ gpregs->ss = p[4];
+ gpregs->orig_ax = 0; /* Missing (lost) #GP error code */
+
+ /*
+ * Adjust our frame so that we return straight to the #GP
+ * vector with the expected RSP value. This is safe because
+ * we won't enable interrupts or schedule before we invoke
+ * general_protection, so nothing will clobber the stack
+ * frame we just set up.
+ *
+ * We will enter general_protection with kernel GSBASE,
+ * which is what the stub expects, given that the faulting
+ * RIP will be the IRET instruction.
+ */
+ regs->ip = (unsigned long)asm_exc_general_protection;
+ regs->sp = (unsigned long)&gpregs->orig_ax;
+
+ return;
+ }
+#endif
+
+ irqentry_nmi_enter(regs);
+ instrumentation_begin();
+ notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
+
+ tsk->thread.error_code = error_code;
+ tsk->thread.trap_nr = X86_TRAP_DF;
+
+#ifdef CONFIG_VMAP_STACK
+ /*
+ * If we overflow the stack into a guard page, the CPU will fail
+ * to deliver #PF and will send #DF instead. Similarly, if we
+ * take any non-IST exception while too close to the bottom of
+ * the stack, the processor will get a page fault while
+ * delivering the exception and will generate a double fault.
+ *
+ * According to the SDM (footnote in 6.15 under "Interrupt 14 -
+ * Page-Fault Exception (#PF):
+ *
+ * Processors update CR2 whenever a page fault is detected. If a
+ * second page fault occurs while an earlier page fault is being
+ * delivered, the faulting linear address of the second fault will
+ * overwrite the contents of CR2 (replacing the previous
+ * address). These updates to CR2 occur even if the page fault
+ * results in a double fault or occurs during the delivery of a
+ * double fault.
+ *
+ * The logic below has a small possibility of incorrectly diagnosing
+ * some errors as stack overflows. For example, if the IDT or GDT
+ * gets corrupted such that #GP delivery fails due to a bad descriptor
+ * causing #GP and we hit this condition while CR2 coincidentally
+ * points to the stack guard page, we'll think we overflowed the
+ * stack. Given that we're going to panic one way or another
+ * if this happens, this isn't necessarily worth fixing.
+ *
+ * If necessary, we could improve the test by only diagnosing
+ * a stack overflow if the saved RSP points within 47 bytes of
+ * the bottom of the stack: if RSP == tsk_stack + 48 and we
+ * take an exception, the stack is already aligned and there
+ * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
+ * possible error code, so a stack overflow would *not* double
+ * fault. With any less space left, exception delivery could
+ * fail, and, as a practical matter, we've overflowed the
+ * stack even if the actual trigger for the double fault was
+ * something else.
+ */
+ if (get_stack_guard_info((void *)address, &info))
+ handle_stack_overflow(regs, address, &info);
+#endif
+
+ pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code);
+ die("double fault", regs, error_code);
+ panic("Machine halted.");
+ instrumentation_end();
+}
+
+DEFINE_IDTENTRY(exc_bounds)
+{
+ if (notify_die(DIE_TRAP, "bounds", regs, 0,
+ X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
+ return;
+ cond_local_irq_enable(regs);
+
+ if (!user_mode(regs))
+ die("bounds", regs, 0);
+
+ do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, 0, 0, NULL);
+
+ cond_local_irq_disable(regs);
+}
+
+enum kernel_gp_hint {
+ GP_NO_HINT,
+ GP_NON_CANONICAL,
+ GP_CANONICAL
+};
+
+/*
+ * When an uncaught #GP occurs, try to determine the memory address accessed by
+ * the instruction and return that address to the caller. Also, try to figure
+ * out whether any part of the access to that address was non-canonical.
+ */
+static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs,
+ unsigned long *addr)
+{
+ u8 insn_buf[MAX_INSN_SIZE];
+ struct insn insn;
+ int ret;
+
+ if (copy_from_kernel_nofault(insn_buf, (void *)regs->ip,
+ MAX_INSN_SIZE))
+ return GP_NO_HINT;
+
+ ret = insn_decode_kernel(&insn, insn_buf);
+ if (ret < 0)
+ return GP_NO_HINT;
+
+ *addr = (unsigned long)insn_get_addr_ref(&insn, regs);
+ if (*addr == -1UL)
+ return GP_NO_HINT;
+
+#ifdef CONFIG_X86_64
+ /*
+ * Check that:
+ * - the operand is not in the kernel half
+ * - the last byte of the operand is not in the user canonical half
+ */
+ if (*addr < ~__VIRTUAL_MASK &&
+ *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK)
+ return GP_NON_CANONICAL;
+#endif
+
+ return GP_CANONICAL;
+}
+
+#define GPFSTR "general protection fault"
+
+static bool fixup_iopl_exception(struct pt_regs *regs)
+{
+ struct thread_struct *t = &current->thread;
+ unsigned char byte;
+ unsigned long ip;
+
+ if (!IS_ENABLED(CONFIG_X86_IOPL_IOPERM) || t->iopl_emul != 3)
+ return false;
+
+ if (insn_get_effective_ip(regs, &ip))
+ return false;
+
+ if (get_user(byte, (const char __user *)ip))
+ return false;
+
+ if (byte != 0xfa && byte != 0xfb)
+ return false;
+
+ if (!t->iopl_warn && printk_ratelimit()) {
+ pr_err("%s[%d] attempts to use CLI/STI, pretending it's a NOP, ip:%lx",
+ current->comm, task_pid_nr(current), ip);
+ print_vma_addr(KERN_CONT " in ", ip);
+ pr_cont("\n");
+ t->iopl_warn = 1;
+ }
+
+ regs->ip += 1;
+ return true;
+}
+
+/*
+ * The unprivileged ENQCMD instruction generates #GPs if the
+ * IA32_PASID MSR has not been populated. If possible, populate
+ * the MSR from a PASID previously allocated to the mm.
+ */
+static bool try_fixup_enqcmd_gp(void)
+{
+#ifdef CONFIG_IOMMU_SVA
+ u32 pasid;
+
+ /*
+ * MSR_IA32_PASID is managed using XSAVE. Directly
+ * writing to the MSR is only possible when fpregs
+ * are valid and the fpstate is not. This is
+ * guaranteed when handling a userspace exception
+ * in *before* interrupts are re-enabled.
+ */
+ lockdep_assert_irqs_disabled();
+
+ /*
+ * Hardware without ENQCMD will not generate
+ * #GPs that can be fixed up here.
+ */
+ if (!cpu_feature_enabled(X86_FEATURE_ENQCMD))
+ return false;
+
+ /*
+ * If the mm has not been allocated a
+ * PASID, the #GP can not be fixed up.
+ */
+ if (!mm_valid_pasid(current->mm))
+ return false;
+
+ pasid = current->mm->pasid;
+
+ /*
+ * Did this thread already have its PASID activated?
+ * If so, the #GP must be from something else.
+ */
+ if (current->pasid_activated)
+ return false;
+
+ wrmsrl(MSR_IA32_PASID, pasid | MSR_IA32_PASID_VALID);
+ current->pasid_activated = 1;
+
+ return true;
+#else
+ return false;
+#endif
+}
+
+static bool gp_try_fixup_and_notify(struct pt_regs *regs, int trapnr,
+ unsigned long error_code, const char *str,
+ unsigned long address)
+{
+ if (fixup_exception(regs, trapnr, error_code, address))
+ return true;
+
+ current->thread.error_code = error_code;
+ current->thread.trap_nr = trapnr;
+
+ /*
+ * To be potentially processing a kprobe fault and to trust the result
+ * from kprobe_running(), we have to be non-preemptible.
+ */
+ if (!preemptible() && kprobe_running() &&
+ kprobe_fault_handler(regs, trapnr))
+ return true;
+
+ return notify_die(DIE_GPF, str, regs, error_code, trapnr, SIGSEGV) == NOTIFY_STOP;
+}
+
+static void gp_user_force_sig_segv(struct pt_regs *regs, int trapnr,
+ unsigned long error_code, const char *str)
+{
+ current->thread.error_code = error_code;
+ current->thread.trap_nr = trapnr;
+ show_signal(current, SIGSEGV, "", str, regs, error_code);
+ force_sig(SIGSEGV);
+}
+
+DEFINE_IDTENTRY_ERRORCODE(exc_general_protection)
+{
+ char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR;
+ enum kernel_gp_hint hint = GP_NO_HINT;
+ unsigned long gp_addr;
+
+ if (user_mode(regs) && try_fixup_enqcmd_gp())
+ return;
+
+ cond_local_irq_enable(regs);
+
+ if (static_cpu_has(X86_FEATURE_UMIP)) {
+ if (user_mode(regs) && fixup_umip_exception(regs))
+ goto exit;
+ }
+
+ if (v8086_mode(regs)) {
+ local_irq_enable();
+ handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
+ local_irq_disable();
+ return;
+ }
+
+ if (user_mode(regs)) {
+ if (fixup_iopl_exception(regs))
+ goto exit;
+
+ if (fixup_vdso_exception(regs, X86_TRAP_GP, error_code, 0))
+ goto exit;
+
+ gp_user_force_sig_segv(regs, X86_TRAP_GP, error_code, desc);
+ goto exit;
+ }
+
+ if (gp_try_fixup_and_notify(regs, X86_TRAP_GP, error_code, desc, 0))
+ goto exit;
+
+ if (error_code)
+ snprintf(desc, sizeof(desc), "segment-related " GPFSTR);
+ else
+ hint = get_kernel_gp_address(regs, &gp_addr);
+
+ if (hint != GP_NO_HINT)
+ snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx",
+ (hint == GP_NON_CANONICAL) ? "probably for non-canonical address"
+ : "maybe for address",
+ gp_addr);
+
+ /*
+ * KASAN is interested only in the non-canonical case, clear it
+ * otherwise.
+ */
+ if (hint != GP_NON_CANONICAL)
+ gp_addr = 0;
+
+ die_addr(desc, regs, error_code, gp_addr);
+
+exit:
+ cond_local_irq_disable(regs);
+}
+
+static bool do_int3(struct pt_regs *regs)
+{
+ int res;
+
+#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
+ if (kgdb_ll_trap(DIE_INT3, "int3", regs, 0, X86_TRAP_BP,
+ SIGTRAP) == NOTIFY_STOP)
+ return true;
+#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
+
+#ifdef CONFIG_KPROBES
+ if (kprobe_int3_handler(regs))
+ return true;
+#endif
+ res = notify_die(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, SIGTRAP);
+
+ return res == NOTIFY_STOP;
+}
+NOKPROBE_SYMBOL(do_int3);
+
+static void do_int3_user(struct pt_regs *regs)
+{
+ if (do_int3(regs))
+ return;
+
+ cond_local_irq_enable(regs);
+ do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, 0, 0, NULL);
+ cond_local_irq_disable(regs);
+}
+
+DEFINE_IDTENTRY_RAW(exc_int3)
+{
+ /*
+ * poke_int3_handler() is completely self contained code; it does (and
+ * must) *NOT* call out to anything, lest it hits upon yet another
+ * INT3.
+ */
+ if (poke_int3_handler(regs))
+ return;
+
+ /*
+ * irqentry_enter_from_user_mode() uses static_branch_{,un}likely()
+ * and therefore can trigger INT3, hence poke_int3_handler() must
+ * be done before. If the entry came from kernel mode, then use
+ * nmi_enter() because the INT3 could have been hit in any context
+ * including NMI.
+ */
+ if (user_mode(regs)) {
+ irqentry_enter_from_user_mode(regs);
+ instrumentation_begin();
+ do_int3_user(regs);
+ instrumentation_end();
+ irqentry_exit_to_user_mode(regs);
+ } else {
+ irqentry_state_t irq_state = irqentry_nmi_enter(regs);
+
+ instrumentation_begin();
+ if (!do_int3(regs))
+ die("int3", regs, 0);
+ instrumentation_end();
+ irqentry_nmi_exit(regs, irq_state);
+ }
+}
+
+#ifdef CONFIG_X86_64
+/*
+ * Help handler running on a per-cpu (IST or entry trampoline) stack
+ * to switch to the normal thread stack if the interrupted code was in
+ * user mode. The actual stack switch is done in entry_64.S
+ */
+asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs)
+{
+ struct pt_regs *regs = (struct pt_regs *)this_cpu_read(pcpu_hot.top_of_stack) - 1;
+ if (regs != eregs)
+ *regs = *eregs;
+ return regs;
+}
+
+#ifdef CONFIG_AMD_MEM_ENCRYPT
+asmlinkage __visible noinstr struct pt_regs *vc_switch_off_ist(struct pt_regs *regs)
+{
+ unsigned long sp, *stack;
+ struct stack_info info;
+ struct pt_regs *regs_ret;
+
+ /*
+ * In the SYSCALL entry path the RSP value comes from user-space - don't
+ * trust it and switch to the current kernel stack
+ */
+ if (ip_within_syscall_gap(regs)) {
+ sp = this_cpu_read(pcpu_hot.top_of_stack);
+ goto sync;
+ }
+
+ /*
+ * From here on the RSP value is trusted. Now check whether entry
+ * happened from a safe stack. Not safe are the entry or unknown stacks,
+ * use the fall-back stack instead in this case.
+ */
+ sp = regs->sp;
+ stack = (unsigned long *)sp;
+
+ if (!get_stack_info_noinstr(stack, current, &info) || info.type == STACK_TYPE_ENTRY ||
+ info.type > STACK_TYPE_EXCEPTION_LAST)
+ sp = __this_cpu_ist_top_va(VC2);
+
+sync:
+ /*
+ * Found a safe stack - switch to it as if the entry didn't happen via
+ * IST stack. The code below only copies pt_regs, the real switch happens
+ * in assembly code.
+ */
+ sp = ALIGN_DOWN(sp, 8) - sizeof(*regs_ret);
+
+ regs_ret = (struct pt_regs *)sp;
+ *regs_ret = *regs;
+
+ return regs_ret;
+}
+#endif
+
+asmlinkage __visible noinstr struct pt_regs *fixup_bad_iret(struct pt_regs *bad_regs)
+{
+ struct pt_regs tmp, *new_stack;
+
+ /*
+ * This is called from entry_64.S early in handling a fault
+ * caused by a bad iret to user mode. To handle the fault
+ * correctly, we want to move our stack frame to where it would
+ * be had we entered directly on the entry stack (rather than
+ * just below the IRET frame) and we want to pretend that the
+ * exception came from the IRET target.
+ */
+ new_stack = (struct pt_regs *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
+
+ /* Copy the IRET target to the temporary storage. */
+ __memcpy(&tmp.ip, (void *)bad_regs->sp, 5*8);
+
+ /* Copy the remainder of the stack from the current stack. */
+ __memcpy(&tmp, bad_regs, offsetof(struct pt_regs, ip));
+
+ /* Update the entry stack */
+ __memcpy(new_stack, &tmp, sizeof(tmp));
+
+ BUG_ON(!user_mode(new_stack));
+ return new_stack;
+}
+#endif
+
+static bool is_sysenter_singlestep(struct pt_regs *regs)
+{
+ /*
+ * We don't try for precision here. If we're anywhere in the region of
+ * code that can be single-stepped in the SYSENTER entry path, then
+ * assume that this is a useless single-step trap due to SYSENTER
+ * being invoked with TF set. (We don't know in advance exactly
+ * which instructions will be hit because BTF could plausibly
+ * be set.)
+ */
+#ifdef CONFIG_X86_32
+ return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
+ (unsigned long)__end_SYSENTER_singlestep_region -
+ (unsigned long)__begin_SYSENTER_singlestep_region;
+#elif defined(CONFIG_IA32_EMULATION)
+ return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
+ (unsigned long)__end_entry_SYSENTER_compat -
+ (unsigned long)entry_SYSENTER_compat;
+#else
+ return false;
+#endif
+}
+
+static __always_inline unsigned long debug_read_clear_dr6(void)
+{
+ unsigned long dr6;
+
+ /*
+ * The Intel SDM says:
+ *
+ * Certain debug exceptions may clear bits 0-3. The remaining
+ * contents of the DR6 register are never cleared by the
+ * processor. To avoid confusion in identifying debug
+ * exceptions, debug handlers should clear the register before
+ * returning to the interrupted task.
+ *
+ * Keep it simple: clear DR6 immediately.
+ */
+ get_debugreg(dr6, 6);
+ set_debugreg(DR6_RESERVED, 6);
+ dr6 ^= DR6_RESERVED; /* Flip to positive polarity */
+
+ return dr6;
+}
+
+/*
+ * Our handling of the processor debug registers is non-trivial.
+ * We do not clear them on entry and exit from the kernel. Therefore
+ * it is possible to get a watchpoint trap here from inside the kernel.
+ * However, the code in ./ptrace.c has ensured that the user can
+ * only set watchpoints on userspace addresses. Therefore the in-kernel
+ * watchpoint trap can only occur in code which is reading/writing
+ * from user space. Such code must not hold kernel locks (since it
+ * can equally take a page fault), therefore it is safe to call
+ * force_sig_info even though that claims and releases locks.
+ *
+ * Code in ./signal.c ensures that the debug control register
+ * is restored before we deliver any signal, and therefore that
+ * user code runs with the correct debug control register even though
+ * we clear it here.
+ *
+ * Being careful here means that we don't have to be as careful in a
+ * lot of more complicated places (task switching can be a bit lazy
+ * about restoring all the debug state, and ptrace doesn't have to
+ * find every occurrence of the TF bit that could be saved away even
+ * by user code)
+ *
+ * May run on IST stack.
+ */
+
+static bool notify_debug(struct pt_regs *regs, unsigned long *dr6)
+{
+ /*
+ * Notifiers will clear bits in @dr6 to indicate the event has been
+ * consumed - hw_breakpoint_handler(), single_stop_cont().
+ *
+ * Notifiers will set bits in @virtual_dr6 to indicate the desire
+ * for signals - ptrace_triggered(), kgdb_hw_overflow_handler().
+ */
+ if (notify_die(DIE_DEBUG, "debug", regs, (long)dr6, 0, SIGTRAP) == NOTIFY_STOP)
+ return true;
+
+ return false;
+}
+
+static __always_inline void exc_debug_kernel(struct pt_regs *regs,
+ unsigned long dr6)
+{
+ /*
+ * Disable breakpoints during exception handling; recursive exceptions
+ * are exceedingly 'fun'.
+ *
+ * Since this function is NOKPROBE, and that also applies to
+ * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a
+ * HW_BREAKPOINT_W on our stack)
+ *
+ * Entry text is excluded for HW_BP_X and cpu_entry_area, which
+ * includes the entry stack is excluded for everything.
+ */
+ unsigned long dr7 = local_db_save();
+ irqentry_state_t irq_state = irqentry_nmi_enter(regs);
+ instrumentation_begin();
+
+ /*
+ * If something gets miswired and we end up here for a user mode
+ * #DB, we will malfunction.
+ */
+ WARN_ON_ONCE(user_mode(regs));
+
+ if (test_thread_flag(TIF_BLOCKSTEP)) {
+ /*
+ * The SDM says "The processor clears the BTF flag when it
+ * generates a debug exception." but PTRACE_BLOCKSTEP requested
+ * it for userspace, but we just took a kernel #DB, so re-set
+ * BTF.
+ */
+ unsigned long debugctl;
+
+ rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
+ debugctl |= DEBUGCTLMSR_BTF;
+ wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
+ }
+
+ /*
+ * Catch SYSENTER with TF set and clear DR_STEP. If this hit a
+ * watchpoint at the same time then that will still be handled.
+ */
+ if ((dr6 & DR_STEP) && is_sysenter_singlestep(regs))
+ dr6 &= ~DR_STEP;
+
+ /*
+ * The kernel doesn't use INT1
+ */
+ if (!dr6)
+ goto out;
+
+ if (notify_debug(regs, &dr6))
+ goto out;
+
+ /*
+ * The kernel doesn't use TF single-step outside of:
+ *
+ * - Kprobes, consumed through kprobe_debug_handler()
+ * - KGDB, consumed through notify_debug()
+ *
+ * So if we get here with DR_STEP set, something is wonky.
+ *
+ * A known way to trigger this is through QEMU's GDB stub,
+ * which leaks #DB into the guest and causes IST recursion.
+ */
+ if (WARN_ON_ONCE(dr6 & DR_STEP))
+ regs->flags &= ~X86_EFLAGS_TF;
+out:
+ instrumentation_end();
+ irqentry_nmi_exit(regs, irq_state);
+
+ local_db_restore(dr7);
+}
+
+static __always_inline void exc_debug_user(struct pt_regs *regs,
+ unsigned long dr6)
+{
+ bool icebp;
+
+ /*
+ * If something gets miswired and we end up here for a kernel mode
+ * #DB, we will malfunction.
+ */
+ WARN_ON_ONCE(!user_mode(regs));
+
+ /*
+ * NB: We can't easily clear DR7 here because
+ * irqentry_exit_to_usermode() can invoke ptrace, schedule, access
+ * user memory, etc. This means that a recursive #DB is possible. If
+ * this happens, that #DB will hit exc_debug_kernel() and clear DR7.
+ * Since we're not on the IST stack right now, everything will be
+ * fine.
+ */
+
+ irqentry_enter_from_user_mode(regs);
+ instrumentation_begin();
+
+ /*
+ * Start the virtual/ptrace DR6 value with just the DR_STEP mask
+ * of the real DR6. ptrace_triggered() will set the DR_TRAPn bits.
+ *
+ * Userspace expects DR_STEP to be visible in ptrace_get_debugreg(6)
+ * even if it is not the result of PTRACE_SINGLESTEP.
+ */
+ current->thread.virtual_dr6 = (dr6 & DR_STEP);
+
+ /*
+ * The SDM says "The processor clears the BTF flag when it
+ * generates a debug exception." Clear TIF_BLOCKSTEP to keep
+ * TIF_BLOCKSTEP in sync with the hardware BTF flag.
+ */
+ clear_thread_flag(TIF_BLOCKSTEP);
+
+ /*
+ * If dr6 has no reason to give us about the origin of this trap,
+ * then it's very likely the result of an icebp/int01 trap.
+ * User wants a sigtrap for that.
+ */
+ icebp = !dr6;
+
+ if (notify_debug(regs, &dr6))
+ goto out;
+
+ /* It's safe to allow irq's after DR6 has been saved */
+ local_irq_enable();
+
+ if (v8086_mode(regs)) {
+ handle_vm86_trap((struct kernel_vm86_regs *)regs, 0, X86_TRAP_DB);
+ goto out_irq;
+ }
+
+ /* #DB for bus lock can only be triggered from userspace. */
+ if (dr6 & DR_BUS_LOCK)
+ handle_bus_lock(regs);
+
+ /* Add the virtual_dr6 bits for signals. */
+ dr6 |= current->thread.virtual_dr6;
+ if (dr6 & (DR_STEP | DR_TRAP_BITS) || icebp)
+ send_sigtrap(regs, 0, get_si_code(dr6));
+
+out_irq:
+ local_irq_disable();
+out:
+ instrumentation_end();
+ irqentry_exit_to_user_mode(regs);
+}
+
+#ifdef CONFIG_X86_64
+/* IST stack entry */
+DEFINE_IDTENTRY_DEBUG(exc_debug)
+{
+ exc_debug_kernel(regs, debug_read_clear_dr6());
+}
+
+/* User entry, runs on regular task stack */
+DEFINE_IDTENTRY_DEBUG_USER(exc_debug)
+{
+ exc_debug_user(regs, debug_read_clear_dr6());
+}
+#else
+/* 32 bit does not have separate entry points. */
+DEFINE_IDTENTRY_RAW(exc_debug)
+{
+ unsigned long dr6 = debug_read_clear_dr6();
+
+ if (user_mode(regs))
+ exc_debug_user(regs, dr6);
+ else
+ exc_debug_kernel(regs, dr6);
+}
+#endif
+
+/*
+ * Note that we play around with the 'TS' bit in an attempt to get
+ * the correct behaviour even in the presence of the asynchronous
+ * IRQ13 behaviour
+ */
+static void math_error(struct pt_regs *regs, int trapnr)
+{
+ struct task_struct *task = current;
+ struct fpu *fpu = &task->thread.fpu;
+ int si_code;
+ char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
+ "simd exception";
+
+ cond_local_irq_enable(regs);
+
+ if (!user_mode(regs)) {
+ if (fixup_exception(regs, trapnr, 0, 0))
+ goto exit;
+
+ task->thread.error_code = 0;
+ task->thread.trap_nr = trapnr;
+
+ if (notify_die(DIE_TRAP, str, regs, 0, trapnr,
+ SIGFPE) != NOTIFY_STOP)
+ die(str, regs, 0);
+ goto exit;
+ }
+
+ /*
+ * Synchronize the FPU register state to the memory register state
+ * if necessary. This allows the exception handler to inspect it.
+ */
+ fpu_sync_fpstate(fpu);
+
+ task->thread.trap_nr = trapnr;
+ task->thread.error_code = 0;
+
+ si_code = fpu__exception_code(fpu, trapnr);
+ /* Retry when we get spurious exceptions: */
+ if (!si_code)
+ goto exit;
+
+ if (fixup_vdso_exception(regs, trapnr, 0, 0))
+ goto exit;
+
+ force_sig_fault(SIGFPE, si_code,
+ (void __user *)uprobe_get_trap_addr(regs));
+exit:
+ cond_local_irq_disable(regs);
+}
+
+DEFINE_IDTENTRY(exc_coprocessor_error)
+{
+ math_error(regs, X86_TRAP_MF);
+}
+
+DEFINE_IDTENTRY(exc_simd_coprocessor_error)
+{
+ if (IS_ENABLED(CONFIG_X86_INVD_BUG)) {
+ /* AMD 486 bug: INVD in CPL 0 raises #XF instead of #GP */
+ if (!static_cpu_has(X86_FEATURE_XMM)) {
+ __exc_general_protection(regs, 0);
+ return;
+ }
+ }
+ math_error(regs, X86_TRAP_XF);
+}
+
+DEFINE_IDTENTRY(exc_spurious_interrupt_bug)
+{
+ /*
+ * This addresses a Pentium Pro Erratum:
+ *
+ * PROBLEM: If the APIC subsystem is configured in mixed mode with
+ * Virtual Wire mode implemented through the local APIC, an
+ * interrupt vector of 0Fh (Intel reserved encoding) may be
+ * generated by the local APIC (Int 15). This vector may be
+ * generated upon receipt of a spurious interrupt (an interrupt
+ * which is removed before the system receives the INTA sequence)
+ * instead of the programmed 8259 spurious interrupt vector.
+ *
+ * IMPLICATION: The spurious interrupt vector programmed in the
+ * 8259 is normally handled by an operating system's spurious
+ * interrupt handler. However, a vector of 0Fh is unknown to some
+ * operating systems, which would crash if this erratum occurred.
+ *
+ * In theory this could be limited to 32bit, but the handler is not
+ * hurting and who knows which other CPUs suffer from this.
+ */
+}
+
+static bool handle_xfd_event(struct pt_regs *regs)
+{
+ u64 xfd_err;
+ int err;
+
+ if (!IS_ENABLED(CONFIG_X86_64) || !cpu_feature_enabled(X86_FEATURE_XFD))
+ return false;
+
+ rdmsrl(MSR_IA32_XFD_ERR, xfd_err);
+ if (!xfd_err)
+ return false;
+
+ wrmsrl(MSR_IA32_XFD_ERR, 0);
+
+ /* Die if that happens in kernel space */
+ if (WARN_ON(!user_mode(regs)))
+ return false;
+
+ local_irq_enable();
+
+ err = xfd_enable_feature(xfd_err);
+
+ switch (err) {
+ case -EPERM:
+ force_sig_fault(SIGILL, ILL_ILLOPC, error_get_trap_addr(regs));
+ break;
+ case -EFAULT:
+ force_sig(SIGSEGV);
+ break;
+ }
+
+ local_irq_disable();
+ return true;
+}
+
+DEFINE_IDTENTRY(exc_device_not_available)
+{
+ unsigned long cr0 = read_cr0();
+
+ if (handle_xfd_event(regs))
+ return;
+
+#ifdef CONFIG_MATH_EMULATION
+ if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) {
+ struct math_emu_info info = { };
+
+ cond_local_irq_enable(regs);
+
+ info.regs = regs;
+ math_emulate(&info);
+
+ cond_local_irq_disable(regs);
+ return;
+ }
+#endif
+
+ /* This should not happen. */
+ if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
+ /* Try to fix it up and carry on. */
+ write_cr0(cr0 & ~X86_CR0_TS);
+ } else {
+ /*
+ * Something terrible happened, and we're better off trying
+ * to kill the task than getting stuck in a never-ending
+ * loop of #NM faults.
+ */
+ die("unexpected #NM exception", regs, 0);
+ }
+}
+
+#ifdef CONFIG_INTEL_TDX_GUEST
+
+#define VE_FAULT_STR "VE fault"
+
+static void ve_raise_fault(struct pt_regs *regs, long error_code,
+ unsigned long address)
+{
+ if (user_mode(regs)) {
+ gp_user_force_sig_segv(regs, X86_TRAP_VE, error_code, VE_FAULT_STR);
+ return;
+ }
+
+ if (gp_try_fixup_and_notify(regs, X86_TRAP_VE, error_code,
+ VE_FAULT_STR, address)) {
+ return;
+ }
+
+ die_addr(VE_FAULT_STR, regs, error_code, address);
+}
+
+/*
+ * Virtualization Exceptions (#VE) are delivered to TDX guests due to
+ * specific guest actions which may happen in either user space or the
+ * kernel:
+ *
+ * * Specific instructions (WBINVD, for example)
+ * * Specific MSR accesses
+ * * Specific CPUID leaf accesses
+ * * Access to specific guest physical addresses
+ *
+ * In the settings that Linux will run in, virtualization exceptions are
+ * never generated on accesses to normal, TD-private memory that has been
+ * accepted (by BIOS or with tdx_enc_status_changed()).
+ *
+ * Syscall entry code has a critical window where the kernel stack is not
+ * yet set up. Any exception in this window leads to hard to debug issues
+ * and can be exploited for privilege escalation. Exceptions in the NMI
+ * entry code also cause issues. Returning from the exception handler with
+ * IRET will re-enable NMIs and nested NMI will corrupt the NMI stack.
+ *
+ * For these reasons, the kernel avoids #VEs during the syscall gap and
+ * the NMI entry code. Entry code paths do not access TD-shared memory,
+ * MMIO regions, use #VE triggering MSRs, instructions, or CPUID leaves
+ * that might generate #VE. VMM can remove memory from TD at any point,
+ * but access to unaccepted (or missing) private memory leads to VM
+ * termination, not to #VE.
+ *
+ * Similarly to page faults and breakpoints, #VEs are allowed in NMI
+ * handlers once the kernel is ready to deal with nested NMIs.
+ *
+ * During #VE delivery, all interrupts, including NMIs, are blocked until
+ * TDGETVEINFO is called. It prevents #VE nesting until the kernel reads
+ * the VE info.
+ *
+ * If a guest kernel action which would normally cause a #VE occurs in
+ * the interrupt-disabled region before TDGETVEINFO, a #DF (fault
+ * exception) is delivered to the guest which will result in an oops.
+ *
+ * The entry code has been audited carefully for following these expectations.
+ * Changes in the entry code have to be audited for correctness vs. this
+ * aspect. Similarly to #PF, #VE in these places will expose kernel to
+ * privilege escalation or may lead to random crashes.
+ */
+DEFINE_IDTENTRY(exc_virtualization_exception)
+{
+ struct ve_info ve;
+
+ /*
+ * NMIs/Machine-checks/Interrupts will be in a disabled state
+ * till TDGETVEINFO TDCALL is executed. This ensures that VE
+ * info cannot be overwritten by a nested #VE.
+ */
+ tdx_get_ve_info(&ve);
+
+ cond_local_irq_enable(regs);
+
+ /*
+ * If tdx_handle_virt_exception() could not process
+ * it successfully, treat it as #GP(0) and handle it.
+ */
+ if (!tdx_handle_virt_exception(regs, &ve))
+ ve_raise_fault(regs, 0, ve.gla);
+
+ cond_local_irq_disable(regs);
+}
+
+#endif
+
+#ifdef CONFIG_X86_32
+DEFINE_IDTENTRY_SW(iret_error)
+{
+ local_irq_enable();
+ if (notify_die(DIE_TRAP, "iret exception", regs, 0,
+ X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
+ do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, 0,
+ ILL_BADSTK, (void __user *)NULL);
+ }
+ local_irq_disable();
+}
+#endif
+
+void __init trap_init(void)
+{
+ /* Init cpu_entry_area before IST entries are set up */
+ setup_cpu_entry_areas();
+
+ /* Init GHCB memory pages when running as an SEV-ES guest */
+ sev_es_init_vc_handling();
+
+ /* Initialize TSS before setting up traps so ISTs work */
+ cpu_init_exception_handling();
+ /* Setup traps as cpu_init() might #GP */
+ idt_setup_traps();
+ cpu_init();
+}