summaryrefslogtreecommitdiffstats
path: root/arch/x86/kvm/mmu/spte.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-11 08:27:49 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-11 08:27:49 +0000
commitace9429bb58fd418f0c81d4c2835699bddf6bde6 (patch)
treeb2d64bc10158fdd5497876388cd68142ca374ed3 /arch/x86/kvm/mmu/spte.c
parentInitial commit. (diff)
downloadlinux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.tar.xz
linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.zip
Adding upstream version 6.6.15.upstream/6.6.15
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'arch/x86/kvm/mmu/spte.c')
-rw-r--r--arch/x86/kvm/mmu/spte.c517
1 files changed, 517 insertions, 0 deletions
diff --git a/arch/x86/kvm/mmu/spte.c b/arch/x86/kvm/mmu/spte.c
new file mode 100644
index 000000000..4a599130e
--- /dev/null
+++ b/arch/x86/kvm/mmu/spte.c
@@ -0,0 +1,517 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Kernel-based Virtual Machine driver for Linux
+ *
+ * Macros and functions to access KVM PTEs (also known as SPTEs)
+ *
+ * Copyright (C) 2006 Qumranet, Inc.
+ * Copyright 2020 Red Hat, Inc. and/or its affiliates.
+ */
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
+#include <linux/kvm_host.h>
+#include "mmu.h"
+#include "mmu_internal.h"
+#include "x86.h"
+#include "spte.h"
+
+#include <asm/e820/api.h>
+#include <asm/memtype.h>
+#include <asm/vmx.h>
+
+bool __read_mostly enable_mmio_caching = true;
+static bool __ro_after_init allow_mmio_caching;
+module_param_named(mmio_caching, enable_mmio_caching, bool, 0444);
+EXPORT_SYMBOL_GPL(enable_mmio_caching);
+
+u64 __read_mostly shadow_host_writable_mask;
+u64 __read_mostly shadow_mmu_writable_mask;
+u64 __read_mostly shadow_nx_mask;
+u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
+u64 __read_mostly shadow_user_mask;
+u64 __read_mostly shadow_accessed_mask;
+u64 __read_mostly shadow_dirty_mask;
+u64 __read_mostly shadow_mmio_value;
+u64 __read_mostly shadow_mmio_mask;
+u64 __read_mostly shadow_mmio_access_mask;
+u64 __read_mostly shadow_present_mask;
+u64 __read_mostly shadow_memtype_mask;
+u64 __read_mostly shadow_me_value;
+u64 __read_mostly shadow_me_mask;
+u64 __read_mostly shadow_acc_track_mask;
+
+u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
+u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
+
+u8 __read_mostly shadow_phys_bits;
+
+void __init kvm_mmu_spte_module_init(void)
+{
+ /*
+ * Snapshot userspace's desire to allow MMIO caching. Whether or not
+ * KVM can actually enable MMIO caching depends on vendor-specific
+ * hardware capabilities and other module params that can't be resolved
+ * until the vendor module is loaded, i.e. enable_mmio_caching can and
+ * will change when the vendor module is (re)loaded.
+ */
+ allow_mmio_caching = enable_mmio_caching;
+}
+
+static u64 generation_mmio_spte_mask(u64 gen)
+{
+ u64 mask;
+
+ WARN_ON_ONCE(gen & ~MMIO_SPTE_GEN_MASK);
+
+ mask = (gen << MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_SPTE_GEN_LOW_MASK;
+ mask |= (gen << MMIO_SPTE_GEN_HIGH_SHIFT) & MMIO_SPTE_GEN_HIGH_MASK;
+ return mask;
+}
+
+u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access)
+{
+ u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
+ u64 spte = generation_mmio_spte_mask(gen);
+ u64 gpa = gfn << PAGE_SHIFT;
+
+ WARN_ON_ONCE(!shadow_mmio_value);
+
+ access &= shadow_mmio_access_mask;
+ spte |= shadow_mmio_value | access;
+ spte |= gpa | shadow_nonpresent_or_rsvd_mask;
+ spte |= (gpa & shadow_nonpresent_or_rsvd_mask)
+ << SHADOW_NONPRESENT_OR_RSVD_MASK_LEN;
+
+ return spte;
+}
+
+static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
+{
+ if (pfn_valid(pfn))
+ return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
+ /*
+ * Some reserved pages, such as those from NVDIMM
+ * DAX devices, are not for MMIO, and can be mapped
+ * with cached memory type for better performance.
+ * However, the above check misconceives those pages
+ * as MMIO, and results in KVM mapping them with UC
+ * memory type, which would hurt the performance.
+ * Therefore, we check the host memory type in addition
+ * and only treat UC/UC-/WC pages as MMIO.
+ */
+ (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
+
+ return !e820__mapped_raw_any(pfn_to_hpa(pfn),
+ pfn_to_hpa(pfn + 1) - 1,
+ E820_TYPE_RAM);
+}
+
+/*
+ * Returns true if the SPTE has bits that may be set without holding mmu_lock.
+ * The caller is responsible for checking if the SPTE is shadow-present, and
+ * for determining whether or not the caller cares about non-leaf SPTEs.
+ */
+bool spte_has_volatile_bits(u64 spte)
+{
+ /*
+ * Always atomically update spte if it can be updated
+ * out of mmu-lock, it can ensure dirty bit is not lost,
+ * also, it can help us to get a stable is_writable_pte()
+ * to ensure tlb flush is not missed.
+ */
+ if (!is_writable_pte(spte) && is_mmu_writable_spte(spte))
+ return true;
+
+ if (is_access_track_spte(spte))
+ return true;
+
+ if (spte_ad_enabled(spte)) {
+ if (!(spte & shadow_accessed_mask) ||
+ (is_writable_pte(spte) && !(spte & shadow_dirty_mask)))
+ return true;
+ }
+
+ return false;
+}
+
+bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
+ const struct kvm_memory_slot *slot,
+ unsigned int pte_access, gfn_t gfn, kvm_pfn_t pfn,
+ u64 old_spte, bool prefetch, bool can_unsync,
+ bool host_writable, u64 *new_spte)
+{
+ int level = sp->role.level;
+ u64 spte = SPTE_MMU_PRESENT_MASK;
+ bool wrprot = false;
+
+ WARN_ON_ONCE(!pte_access && !shadow_present_mask);
+
+ if (sp->role.ad_disabled)
+ spte |= SPTE_TDP_AD_DISABLED;
+ else if (kvm_mmu_page_ad_need_write_protect(sp))
+ spte |= SPTE_TDP_AD_WRPROT_ONLY;
+
+ /*
+ * For the EPT case, shadow_present_mask is 0 if hardware
+ * supports exec-only page table entries. In that case,
+ * ACC_USER_MASK and shadow_user_mask are used to represent
+ * read access. See FNAME(gpte_access) in paging_tmpl.h.
+ */
+ spte |= shadow_present_mask;
+ if (!prefetch)
+ spte |= spte_shadow_accessed_mask(spte);
+
+ /*
+ * For simplicity, enforce the NX huge page mitigation even if not
+ * strictly necessary. KVM could ignore the mitigation if paging is
+ * disabled in the guest, as the guest doesn't have any page tables to
+ * abuse. But to safely ignore the mitigation, KVM would have to
+ * ensure a new MMU is loaded (or all shadow pages zapped) when CR0.PG
+ * is toggled on, and that's a net negative for performance when TDP is
+ * enabled. When TDP is disabled, KVM will always switch to a new MMU
+ * when CR0.PG is toggled, but leveraging that to ignore the mitigation
+ * would tie make_spte() further to vCPU/MMU state, and add complexity
+ * just to optimize a mode that is anything but performance critical.
+ */
+ if (level > PG_LEVEL_4K && (pte_access & ACC_EXEC_MASK) &&
+ is_nx_huge_page_enabled(vcpu->kvm)) {
+ pte_access &= ~ACC_EXEC_MASK;
+ }
+
+ if (pte_access & ACC_EXEC_MASK)
+ spte |= shadow_x_mask;
+ else
+ spte |= shadow_nx_mask;
+
+ if (pte_access & ACC_USER_MASK)
+ spte |= shadow_user_mask;
+
+ if (level > PG_LEVEL_4K)
+ spte |= PT_PAGE_SIZE_MASK;
+
+ if (shadow_memtype_mask)
+ spte |= static_call(kvm_x86_get_mt_mask)(vcpu, gfn,
+ kvm_is_mmio_pfn(pfn));
+ if (host_writable)
+ spte |= shadow_host_writable_mask;
+ else
+ pte_access &= ~ACC_WRITE_MASK;
+
+ if (shadow_me_value && !kvm_is_mmio_pfn(pfn))
+ spte |= shadow_me_value;
+
+ spte |= (u64)pfn << PAGE_SHIFT;
+
+ if (pte_access & ACC_WRITE_MASK) {
+ spte |= PT_WRITABLE_MASK | shadow_mmu_writable_mask;
+
+ /*
+ * Optimization: for pte sync, if spte was writable the hash
+ * lookup is unnecessary (and expensive). Write protection
+ * is responsibility of kvm_mmu_get_page / kvm_mmu_sync_roots.
+ * Same reasoning can be applied to dirty page accounting.
+ */
+ if (is_writable_pte(old_spte))
+ goto out;
+
+ /*
+ * Unsync shadow pages that are reachable by the new, writable
+ * SPTE. Write-protect the SPTE if the page can't be unsync'd,
+ * e.g. it's write-tracked (upper-level SPs) or has one or more
+ * shadow pages and unsync'ing pages is not allowed.
+ */
+ if (mmu_try_to_unsync_pages(vcpu->kvm, slot, gfn, can_unsync, prefetch)) {
+ wrprot = true;
+ pte_access &= ~ACC_WRITE_MASK;
+ spte &= ~(PT_WRITABLE_MASK | shadow_mmu_writable_mask);
+ }
+ }
+
+ if (pte_access & ACC_WRITE_MASK)
+ spte |= spte_shadow_dirty_mask(spte);
+
+out:
+ if (prefetch)
+ spte = mark_spte_for_access_track(spte);
+
+ WARN_ONCE(is_rsvd_spte(&vcpu->arch.mmu->shadow_zero_check, spte, level),
+ "spte = 0x%llx, level = %d, rsvd bits = 0x%llx", spte, level,
+ get_rsvd_bits(&vcpu->arch.mmu->shadow_zero_check, spte, level));
+
+ if ((spte & PT_WRITABLE_MASK) && kvm_slot_dirty_track_enabled(slot)) {
+ /* Enforced by kvm_mmu_hugepage_adjust. */
+ WARN_ON_ONCE(level > PG_LEVEL_4K);
+ mark_page_dirty_in_slot(vcpu->kvm, slot, gfn);
+ }
+
+ *new_spte = spte;
+ return wrprot;
+}
+
+static u64 make_spte_executable(u64 spte)
+{
+ bool is_access_track = is_access_track_spte(spte);
+
+ if (is_access_track)
+ spte = restore_acc_track_spte(spte);
+
+ spte &= ~shadow_nx_mask;
+ spte |= shadow_x_mask;
+
+ if (is_access_track)
+ spte = mark_spte_for_access_track(spte);
+
+ return spte;
+}
+
+/*
+ * Construct an SPTE that maps a sub-page of the given huge page SPTE where
+ * `index` identifies which sub-page.
+ *
+ * This is used during huge page splitting to build the SPTEs that make up the
+ * new page table.
+ */
+u64 make_huge_page_split_spte(struct kvm *kvm, u64 huge_spte, union kvm_mmu_page_role role,
+ int index)
+{
+ u64 child_spte;
+
+ if (WARN_ON_ONCE(!is_shadow_present_pte(huge_spte)))
+ return 0;
+
+ if (WARN_ON_ONCE(!is_large_pte(huge_spte)))
+ return 0;
+
+ child_spte = huge_spte;
+
+ /*
+ * The child_spte already has the base address of the huge page being
+ * split. So we just have to OR in the offset to the page at the next
+ * lower level for the given index.
+ */
+ child_spte |= (index * KVM_PAGES_PER_HPAGE(role.level)) << PAGE_SHIFT;
+
+ if (role.level == PG_LEVEL_4K) {
+ child_spte &= ~PT_PAGE_SIZE_MASK;
+
+ /*
+ * When splitting to a 4K page where execution is allowed, mark
+ * the page executable as the NX hugepage mitigation no longer
+ * applies.
+ */
+ if ((role.access & ACC_EXEC_MASK) && is_nx_huge_page_enabled(kvm))
+ child_spte = make_spte_executable(child_spte);
+ }
+
+ return child_spte;
+}
+
+
+u64 make_nonleaf_spte(u64 *child_pt, bool ad_disabled)
+{
+ u64 spte = SPTE_MMU_PRESENT_MASK;
+
+ spte |= __pa(child_pt) | shadow_present_mask | PT_WRITABLE_MASK |
+ shadow_user_mask | shadow_x_mask | shadow_me_value;
+
+ if (ad_disabled)
+ spte |= SPTE_TDP_AD_DISABLED;
+ else
+ spte |= shadow_accessed_mask;
+
+ return spte;
+}
+
+u64 kvm_mmu_changed_pte_notifier_make_spte(u64 old_spte, kvm_pfn_t new_pfn)
+{
+ u64 new_spte;
+
+ new_spte = old_spte & ~SPTE_BASE_ADDR_MASK;
+ new_spte |= (u64)new_pfn << PAGE_SHIFT;
+
+ new_spte &= ~PT_WRITABLE_MASK;
+ new_spte &= ~shadow_host_writable_mask;
+ new_spte &= ~shadow_mmu_writable_mask;
+
+ new_spte = mark_spte_for_access_track(new_spte);
+
+ return new_spte;
+}
+
+u64 mark_spte_for_access_track(u64 spte)
+{
+ if (spte_ad_enabled(spte))
+ return spte & ~shadow_accessed_mask;
+
+ if (is_access_track_spte(spte))
+ return spte;
+
+ check_spte_writable_invariants(spte);
+
+ WARN_ONCE(spte & (SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
+ SHADOW_ACC_TRACK_SAVED_BITS_SHIFT),
+ "Access Tracking saved bit locations are not zero\n");
+
+ spte |= (spte & SHADOW_ACC_TRACK_SAVED_BITS_MASK) <<
+ SHADOW_ACC_TRACK_SAVED_BITS_SHIFT;
+ spte &= ~shadow_acc_track_mask;
+
+ return spte;
+}
+
+void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask)
+{
+ BUG_ON((u64)(unsigned)access_mask != access_mask);
+ WARN_ON(mmio_value & shadow_nonpresent_or_rsvd_lower_gfn_mask);
+
+ /*
+ * Reset to the original module param value to honor userspace's desire
+ * to (dis)allow MMIO caching. Update the param itself so that
+ * userspace can see whether or not KVM is actually using MMIO caching.
+ */
+ enable_mmio_caching = allow_mmio_caching;
+ if (!enable_mmio_caching)
+ mmio_value = 0;
+
+ /*
+ * The mask must contain only bits that are carved out specifically for
+ * the MMIO SPTE mask, e.g. to ensure there's no overlap with the MMIO
+ * generation.
+ */
+ if (WARN_ON(mmio_mask & ~SPTE_MMIO_ALLOWED_MASK))
+ mmio_value = 0;
+
+ /*
+ * Disable MMIO caching if the MMIO value collides with the bits that
+ * are used to hold the relocated GFN when the L1TF mitigation is
+ * enabled. This should never fire as there is no known hardware that
+ * can trigger this condition, e.g. SME/SEV CPUs that require a custom
+ * MMIO value are not susceptible to L1TF.
+ */
+ if (WARN_ON(mmio_value & (shadow_nonpresent_or_rsvd_mask <<
+ SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)))
+ mmio_value = 0;
+
+ /*
+ * The masked MMIO value must obviously match itself and a removed SPTE
+ * must not get a false positive. Removed SPTEs and MMIO SPTEs should
+ * never collide as MMIO must set some RWX bits, and removed SPTEs must
+ * not set any RWX bits.
+ */
+ if (WARN_ON((mmio_value & mmio_mask) != mmio_value) ||
+ WARN_ON(mmio_value && (REMOVED_SPTE & mmio_mask) == mmio_value))
+ mmio_value = 0;
+
+ if (!mmio_value)
+ enable_mmio_caching = false;
+
+ shadow_mmio_value = mmio_value;
+ shadow_mmio_mask = mmio_mask;
+ shadow_mmio_access_mask = access_mask;
+}
+EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
+
+void kvm_mmu_set_me_spte_mask(u64 me_value, u64 me_mask)
+{
+ /* shadow_me_value must be a subset of shadow_me_mask */
+ if (WARN_ON(me_value & ~me_mask))
+ me_value = me_mask = 0;
+
+ shadow_me_value = me_value;
+ shadow_me_mask = me_mask;
+}
+EXPORT_SYMBOL_GPL(kvm_mmu_set_me_spte_mask);
+
+void kvm_mmu_set_ept_masks(bool has_ad_bits, bool has_exec_only)
+{
+ shadow_user_mask = VMX_EPT_READABLE_MASK;
+ shadow_accessed_mask = has_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull;
+ shadow_dirty_mask = has_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull;
+ shadow_nx_mask = 0ull;
+ shadow_x_mask = VMX_EPT_EXECUTABLE_MASK;
+ shadow_present_mask = has_exec_only ? 0ull : VMX_EPT_READABLE_MASK;
+ /*
+ * EPT overrides the host MTRRs, and so KVM must program the desired
+ * memtype directly into the SPTEs. Note, this mask is just the mask
+ * of all bits that factor into the memtype, the actual memtype must be
+ * dynamically calculated, e.g. to ensure host MMIO is mapped UC.
+ */
+ shadow_memtype_mask = VMX_EPT_MT_MASK | VMX_EPT_IPAT_BIT;
+ shadow_acc_track_mask = VMX_EPT_RWX_MASK;
+ shadow_host_writable_mask = EPT_SPTE_HOST_WRITABLE;
+ shadow_mmu_writable_mask = EPT_SPTE_MMU_WRITABLE;
+
+ /*
+ * EPT Misconfigurations are generated if the value of bits 2:0
+ * of an EPT paging-structure entry is 110b (write/execute).
+ */
+ kvm_mmu_set_mmio_spte_mask(VMX_EPT_MISCONFIG_WX_VALUE,
+ VMX_EPT_RWX_MASK, 0);
+}
+EXPORT_SYMBOL_GPL(kvm_mmu_set_ept_masks);
+
+void kvm_mmu_reset_all_pte_masks(void)
+{
+ u8 low_phys_bits;
+ u64 mask;
+
+ shadow_phys_bits = kvm_get_shadow_phys_bits();
+
+ /*
+ * If the CPU has 46 or less physical address bits, then set an
+ * appropriate mask to guard against L1TF attacks. Otherwise, it is
+ * assumed that the CPU is not vulnerable to L1TF.
+ *
+ * Some Intel CPUs address the L1 cache using more PA bits than are
+ * reported by CPUID. Use the PA width of the L1 cache when possible
+ * to achieve more effective mitigation, e.g. if system RAM overlaps
+ * the most significant bits of legal physical address space.
+ */
+ shadow_nonpresent_or_rsvd_mask = 0;
+ low_phys_bits = boot_cpu_data.x86_phys_bits;
+ if (boot_cpu_has_bug(X86_BUG_L1TF) &&
+ !WARN_ON_ONCE(boot_cpu_data.x86_cache_bits >=
+ 52 - SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)) {
+ low_phys_bits = boot_cpu_data.x86_cache_bits
+ - SHADOW_NONPRESENT_OR_RSVD_MASK_LEN;
+ shadow_nonpresent_or_rsvd_mask =
+ rsvd_bits(low_phys_bits, boot_cpu_data.x86_cache_bits - 1);
+ }
+
+ shadow_nonpresent_or_rsvd_lower_gfn_mask =
+ GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
+
+ shadow_user_mask = PT_USER_MASK;
+ shadow_accessed_mask = PT_ACCESSED_MASK;
+ shadow_dirty_mask = PT_DIRTY_MASK;
+ shadow_nx_mask = PT64_NX_MASK;
+ shadow_x_mask = 0;
+ shadow_present_mask = PT_PRESENT_MASK;
+
+ /*
+ * For shadow paging and NPT, KVM uses PAT entry '0' to encode WB
+ * memtype in the SPTEs, i.e. relies on host MTRRs to provide the
+ * correct memtype (WB is the "weakest" memtype).
+ */
+ shadow_memtype_mask = 0;
+ shadow_acc_track_mask = 0;
+ shadow_me_mask = 0;
+ shadow_me_value = 0;
+
+ shadow_host_writable_mask = DEFAULT_SPTE_HOST_WRITABLE;
+ shadow_mmu_writable_mask = DEFAULT_SPTE_MMU_WRITABLE;
+
+ /*
+ * Set a reserved PA bit in MMIO SPTEs to generate page faults with
+ * PFEC.RSVD=1 on MMIO accesses. 64-bit PTEs (PAE, x86-64, and EPT
+ * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
+ * 52-bit physical addresses then there are no reserved PA bits in the
+ * PTEs and so the reserved PA approach must be disabled.
+ */
+ if (shadow_phys_bits < 52)
+ mask = BIT_ULL(51) | PT_PRESENT_MASK;
+ else
+ mask = 0;
+
+ kvm_mmu_set_mmio_spte_mask(mask, mask, ACC_WRITE_MASK | ACC_USER_MASK);
+}