diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-11 08:27:49 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-11 08:27:49 +0000 |
commit | ace9429bb58fd418f0c81d4c2835699bddf6bde6 (patch) | |
tree | b2d64bc10158fdd5497876388cd68142ca374ed3 /arch/x86/kvm/xen.c | |
parent | Initial commit. (diff) | |
download | linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.tar.xz linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.zip |
Adding upstream version 6.6.15.upstream/6.6.15
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'arch/x86/kvm/xen.c')
-rw-r--r-- | arch/x86/kvm/xen.c | 2129 |
1 files changed, 2129 insertions, 0 deletions
diff --git a/arch/x86/kvm/xen.c b/arch/x86/kvm/xen.c new file mode 100644 index 0000000000..40edf4d197 --- /dev/null +++ b/arch/x86/kvm/xen.c @@ -0,0 +1,2129 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright © 2019 Oracle and/or its affiliates. All rights reserved. + * Copyright © 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. + * + * KVM Xen emulation + */ +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + +#include "x86.h" +#include "xen.h" +#include "hyperv.h" +#include "lapic.h" + +#include <linux/eventfd.h> +#include <linux/kvm_host.h> +#include <linux/sched/stat.h> + +#include <trace/events/kvm.h> +#include <xen/interface/xen.h> +#include <xen/interface/vcpu.h> +#include <xen/interface/version.h> +#include <xen/interface/event_channel.h> +#include <xen/interface/sched.h> + +#include <asm/xen/cpuid.h> + +#include "cpuid.h" +#include "trace.h" + +static int kvm_xen_set_evtchn(struct kvm_xen_evtchn *xe, struct kvm *kvm); +static int kvm_xen_setattr_evtchn(struct kvm *kvm, struct kvm_xen_hvm_attr *data); +static bool kvm_xen_hcall_evtchn_send(struct kvm_vcpu *vcpu, u64 param, u64 *r); + +DEFINE_STATIC_KEY_DEFERRED_FALSE(kvm_xen_enabled, HZ); + +static int kvm_xen_shared_info_init(struct kvm *kvm, gfn_t gfn) +{ + struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache; + struct pvclock_wall_clock *wc; + gpa_t gpa = gfn_to_gpa(gfn); + u32 *wc_sec_hi; + u32 wc_version; + u64 wall_nsec; + int ret = 0; + int idx = srcu_read_lock(&kvm->srcu); + + if (gfn == KVM_XEN_INVALID_GFN) { + kvm_gpc_deactivate(gpc); + goto out; + } + + do { + ret = kvm_gpc_activate(gpc, gpa, PAGE_SIZE); + if (ret) + goto out; + + /* + * This code mirrors kvm_write_wall_clock() except that it writes + * directly through the pfn cache and doesn't mark the page dirty. + */ + wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm); + + /* It could be invalid again already, so we need to check */ + read_lock_irq(&gpc->lock); + + if (gpc->valid) + break; + + read_unlock_irq(&gpc->lock); + } while (1); + + /* Paranoia checks on the 32-bit struct layout */ + BUILD_BUG_ON(offsetof(struct compat_shared_info, wc) != 0x900); + BUILD_BUG_ON(offsetof(struct compat_shared_info, arch.wc_sec_hi) != 0x924); + BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0); + +#ifdef CONFIG_X86_64 + /* Paranoia checks on the 64-bit struct layout */ + BUILD_BUG_ON(offsetof(struct shared_info, wc) != 0xc00); + BUILD_BUG_ON(offsetof(struct shared_info, wc_sec_hi) != 0xc0c); + + if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) { + struct shared_info *shinfo = gpc->khva; + + wc_sec_hi = &shinfo->wc_sec_hi; + wc = &shinfo->wc; + } else +#endif + { + struct compat_shared_info *shinfo = gpc->khva; + + wc_sec_hi = &shinfo->arch.wc_sec_hi; + wc = &shinfo->wc; + } + + /* Increment and ensure an odd value */ + wc_version = wc->version = (wc->version + 1) | 1; + smp_wmb(); + + wc->nsec = do_div(wall_nsec, 1000000000); + wc->sec = (u32)wall_nsec; + *wc_sec_hi = wall_nsec >> 32; + smp_wmb(); + + wc->version = wc_version + 1; + read_unlock_irq(&gpc->lock); + + kvm_make_all_cpus_request(kvm, KVM_REQ_MASTERCLOCK_UPDATE); + +out: + srcu_read_unlock(&kvm->srcu, idx); + return ret; +} + +void kvm_xen_inject_timer_irqs(struct kvm_vcpu *vcpu) +{ + if (atomic_read(&vcpu->arch.xen.timer_pending) > 0) { + struct kvm_xen_evtchn e; + + e.vcpu_id = vcpu->vcpu_id; + e.vcpu_idx = vcpu->vcpu_idx; + e.port = vcpu->arch.xen.timer_virq; + e.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL; + + kvm_xen_set_evtchn(&e, vcpu->kvm); + + vcpu->arch.xen.timer_expires = 0; + atomic_set(&vcpu->arch.xen.timer_pending, 0); + } +} + +static enum hrtimer_restart xen_timer_callback(struct hrtimer *timer) +{ + struct kvm_vcpu *vcpu = container_of(timer, struct kvm_vcpu, + arch.xen.timer); + if (atomic_read(&vcpu->arch.xen.timer_pending)) + return HRTIMER_NORESTART; + + atomic_inc(&vcpu->arch.xen.timer_pending); + kvm_make_request(KVM_REQ_UNBLOCK, vcpu); + kvm_vcpu_kick(vcpu); + + return HRTIMER_NORESTART; +} + +static void kvm_xen_start_timer(struct kvm_vcpu *vcpu, u64 guest_abs, s64 delta_ns) +{ + atomic_set(&vcpu->arch.xen.timer_pending, 0); + vcpu->arch.xen.timer_expires = guest_abs; + + if (delta_ns <= 0) { + xen_timer_callback(&vcpu->arch.xen.timer); + } else { + ktime_t ktime_now = ktime_get(); + hrtimer_start(&vcpu->arch.xen.timer, + ktime_add_ns(ktime_now, delta_ns), + HRTIMER_MODE_ABS_HARD); + } +} + +static void kvm_xen_stop_timer(struct kvm_vcpu *vcpu) +{ + hrtimer_cancel(&vcpu->arch.xen.timer); + vcpu->arch.xen.timer_expires = 0; + atomic_set(&vcpu->arch.xen.timer_pending, 0); +} + +static void kvm_xen_init_timer(struct kvm_vcpu *vcpu) +{ + hrtimer_init(&vcpu->arch.xen.timer, CLOCK_MONOTONIC, + HRTIMER_MODE_ABS_HARD); + vcpu->arch.xen.timer.function = xen_timer_callback; +} + +static void kvm_xen_update_runstate_guest(struct kvm_vcpu *v, bool atomic) +{ + struct kvm_vcpu_xen *vx = &v->arch.xen; + struct gfn_to_pfn_cache *gpc1 = &vx->runstate_cache; + struct gfn_to_pfn_cache *gpc2 = &vx->runstate2_cache; + size_t user_len, user_len1, user_len2; + struct vcpu_runstate_info rs; + unsigned long flags; + size_t times_ofs; + uint8_t *update_bit = NULL; + uint64_t entry_time; + uint64_t *rs_times; + int *rs_state; + + /* + * The only difference between 32-bit and 64-bit versions of the + * runstate struct is the alignment of uint64_t in 32-bit, which + * means that the 64-bit version has an additional 4 bytes of + * padding after the first field 'state'. Let's be really really + * paranoid about that, and matching it with our internal data + * structures that we memcpy into it... + */ + BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) != 0); + BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state) != 0); + BUILD_BUG_ON(sizeof(struct compat_vcpu_runstate_info) != 0x2c); +#ifdef CONFIG_X86_64 + /* + * The 64-bit structure has 4 bytes of padding before 'state_entry_time' + * so each subsequent field is shifted by 4, and it's 4 bytes longer. + */ + BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) != + offsetof(struct compat_vcpu_runstate_info, state_entry_time) + 4); + BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, time) != + offsetof(struct compat_vcpu_runstate_info, time) + 4); + BUILD_BUG_ON(sizeof(struct vcpu_runstate_info) != 0x2c + 4); +#endif + /* + * The state field is in the same place at the start of both structs, + * and is the same size (int) as vx->current_runstate. + */ + BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) != + offsetof(struct compat_vcpu_runstate_info, state)); + BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state) != + sizeof(vx->current_runstate)); + BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state) != + sizeof(vx->current_runstate)); + + /* + * The state_entry_time field is 64 bits in both versions, and the + * XEN_RUNSTATE_UPDATE flag is in the top bit, which given that x86 + * is little-endian means that it's in the last *byte* of the word. + * That detail is important later. + */ + BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state_entry_time) != + sizeof(uint64_t)); + BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state_entry_time) != + sizeof(uint64_t)); + BUILD_BUG_ON((XEN_RUNSTATE_UPDATE >> 56) != 0x80); + + /* + * The time array is four 64-bit quantities in both versions, matching + * the vx->runstate_times and immediately following state_entry_time. + */ + BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) != + offsetof(struct vcpu_runstate_info, time) - sizeof(uint64_t)); + BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state_entry_time) != + offsetof(struct compat_vcpu_runstate_info, time) - sizeof(uint64_t)); + BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) != + sizeof_field(struct compat_vcpu_runstate_info, time)); + BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) != + sizeof(vx->runstate_times)); + + if (IS_ENABLED(CONFIG_64BIT) && v->kvm->arch.xen.long_mode) { + user_len = sizeof(struct vcpu_runstate_info); + times_ofs = offsetof(struct vcpu_runstate_info, + state_entry_time); + } else { + user_len = sizeof(struct compat_vcpu_runstate_info); + times_ofs = offsetof(struct compat_vcpu_runstate_info, + state_entry_time); + } + + /* + * There are basically no alignment constraints. The guest can set it + * up so it crosses from one page to the next, and at arbitrary byte + * alignment (and the 32-bit ABI doesn't align the 64-bit integers + * anyway, even if the overall struct had been 64-bit aligned). + */ + if ((gpc1->gpa & ~PAGE_MASK) + user_len >= PAGE_SIZE) { + user_len1 = PAGE_SIZE - (gpc1->gpa & ~PAGE_MASK); + user_len2 = user_len - user_len1; + } else { + user_len1 = user_len; + user_len2 = 0; + } + BUG_ON(user_len1 + user_len2 != user_len); + + retry: + /* + * Attempt to obtain the GPC lock on *both* (if there are two) + * gfn_to_pfn caches that cover the region. + */ + if (atomic) { + local_irq_save(flags); + if (!read_trylock(&gpc1->lock)) { + local_irq_restore(flags); + return; + } + } else { + read_lock_irqsave(&gpc1->lock, flags); + } + while (!kvm_gpc_check(gpc1, user_len1)) { + read_unlock_irqrestore(&gpc1->lock, flags); + + /* When invoked from kvm_sched_out() we cannot sleep */ + if (atomic) + return; + + if (kvm_gpc_refresh(gpc1, user_len1)) + return; + + read_lock_irqsave(&gpc1->lock, flags); + } + + if (likely(!user_len2)) { + /* + * Set up three pointers directly to the runstate_info + * struct in the guest (via the GPC). + * + * • @rs_state → state field + * • @rs_times → state_entry_time field. + * • @update_bit → last byte of state_entry_time, which + * contains the XEN_RUNSTATE_UPDATE bit. + */ + rs_state = gpc1->khva; + rs_times = gpc1->khva + times_ofs; + if (v->kvm->arch.xen.runstate_update_flag) + update_bit = ((void *)(&rs_times[1])) - 1; + } else { + /* + * The guest's runstate_info is split across two pages and we + * need to hold and validate both GPCs simultaneously. We can + * declare a lock ordering GPC1 > GPC2 because nothing else + * takes them more than one at a time. Set a subclass on the + * gpc1 lock to make lockdep shut up about it. + */ + lock_set_subclass(&gpc1->lock.dep_map, 1, _THIS_IP_); + if (atomic) { + if (!read_trylock(&gpc2->lock)) { + read_unlock_irqrestore(&gpc1->lock, flags); + return; + } + } else { + read_lock(&gpc2->lock); + } + + if (!kvm_gpc_check(gpc2, user_len2)) { + read_unlock(&gpc2->lock); + read_unlock_irqrestore(&gpc1->lock, flags); + + /* When invoked from kvm_sched_out() we cannot sleep */ + if (atomic) + return; + + /* + * Use kvm_gpc_activate() here because if the runstate + * area was configured in 32-bit mode and only extends + * to the second page now because the guest changed to + * 64-bit mode, the second GPC won't have been set up. + */ + if (kvm_gpc_activate(gpc2, gpc1->gpa + user_len1, + user_len2)) + return; + + /* + * We dropped the lock on GPC1 so we have to go all the + * way back and revalidate that too. + */ + goto retry; + } + + /* + * In this case, the runstate_info struct will be assembled on + * the kernel stack (compat or not as appropriate) and will + * be copied to GPC1/GPC2 with a dual memcpy. Set up the three + * rs pointers accordingly. + */ + rs_times = &rs.state_entry_time; + + /* + * The rs_state pointer points to the start of what we'll + * copy to the guest, which in the case of a compat guest + * is the 32-bit field that the compiler thinks is padding. + */ + rs_state = ((void *)rs_times) - times_ofs; + + /* + * The update_bit is still directly in the guest memory, + * via one GPC or the other. + */ + if (v->kvm->arch.xen.runstate_update_flag) { + if (user_len1 >= times_ofs + sizeof(uint64_t)) + update_bit = gpc1->khva + times_ofs + + sizeof(uint64_t) - 1; + else + update_bit = gpc2->khva + times_ofs + + sizeof(uint64_t) - 1 - user_len1; + } + +#ifdef CONFIG_X86_64 + /* + * Don't leak kernel memory through the padding in the 64-bit + * version of the struct. + */ + memset(&rs, 0, offsetof(struct vcpu_runstate_info, state_entry_time)); +#endif + } + + /* + * First, set the XEN_RUNSTATE_UPDATE bit in the top bit of the + * state_entry_time field, directly in the guest. We need to set + * that (and write-barrier) before writing to the rest of the + * structure, and clear it last. Just as Xen does, we address the + * single *byte* in which it resides because it might be in a + * different cache line to the rest of the 64-bit word, due to + * the (lack of) alignment constraints. + */ + entry_time = vx->runstate_entry_time; + if (update_bit) { + entry_time |= XEN_RUNSTATE_UPDATE; + *update_bit = (vx->runstate_entry_time | XEN_RUNSTATE_UPDATE) >> 56; + smp_wmb(); + } + + /* + * Now assemble the actual structure, either on our kernel stack + * or directly in the guest according to how the rs_state and + * rs_times pointers were set up above. + */ + *rs_state = vx->current_runstate; + rs_times[0] = entry_time; + memcpy(rs_times + 1, vx->runstate_times, sizeof(vx->runstate_times)); + + /* For the split case, we have to then copy it to the guest. */ + if (user_len2) { + memcpy(gpc1->khva, rs_state, user_len1); + memcpy(gpc2->khva, ((void *)rs_state) + user_len1, user_len2); + } + smp_wmb(); + + /* Finally, clear the XEN_RUNSTATE_UPDATE bit. */ + if (update_bit) { + entry_time &= ~XEN_RUNSTATE_UPDATE; + *update_bit = entry_time >> 56; + smp_wmb(); + } + + if (user_len2) + read_unlock(&gpc2->lock); + + read_unlock_irqrestore(&gpc1->lock, flags); + + mark_page_dirty_in_slot(v->kvm, gpc1->memslot, gpc1->gpa >> PAGE_SHIFT); + if (user_len2) + mark_page_dirty_in_slot(v->kvm, gpc2->memslot, gpc2->gpa >> PAGE_SHIFT); +} + +void kvm_xen_update_runstate(struct kvm_vcpu *v, int state) +{ + struct kvm_vcpu_xen *vx = &v->arch.xen; + u64 now = get_kvmclock_ns(v->kvm); + u64 delta_ns = now - vx->runstate_entry_time; + u64 run_delay = current->sched_info.run_delay; + + if (unlikely(!vx->runstate_entry_time)) + vx->current_runstate = RUNSTATE_offline; + + /* + * Time waiting for the scheduler isn't "stolen" if the + * vCPU wasn't running anyway. + */ + if (vx->current_runstate == RUNSTATE_running) { + u64 steal_ns = run_delay - vx->last_steal; + + delta_ns -= steal_ns; + + vx->runstate_times[RUNSTATE_runnable] += steal_ns; + } + vx->last_steal = run_delay; + + vx->runstate_times[vx->current_runstate] += delta_ns; + vx->current_runstate = state; + vx->runstate_entry_time = now; + + if (vx->runstate_cache.active) + kvm_xen_update_runstate_guest(v, state == RUNSTATE_runnable); +} + +static void kvm_xen_inject_vcpu_vector(struct kvm_vcpu *v) +{ + struct kvm_lapic_irq irq = { }; + int r; + + irq.dest_id = v->vcpu_id; + irq.vector = v->arch.xen.upcall_vector; + irq.dest_mode = APIC_DEST_PHYSICAL; + irq.shorthand = APIC_DEST_NOSHORT; + irq.delivery_mode = APIC_DM_FIXED; + irq.level = 1; + + /* The fast version will always work for physical unicast */ + WARN_ON_ONCE(!kvm_irq_delivery_to_apic_fast(v->kvm, NULL, &irq, &r, NULL)); +} + +/* + * On event channel delivery, the vcpu_info may not have been accessible. + * In that case, there are bits in vcpu->arch.xen.evtchn_pending_sel which + * need to be marked into the vcpu_info (and evtchn_upcall_pending set). + * Do so now that we can sleep in the context of the vCPU to bring the + * page in, and refresh the pfn cache for it. + */ +void kvm_xen_inject_pending_events(struct kvm_vcpu *v) +{ + unsigned long evtchn_pending_sel = READ_ONCE(v->arch.xen.evtchn_pending_sel); + struct gfn_to_pfn_cache *gpc = &v->arch.xen.vcpu_info_cache; + unsigned long flags; + + if (!evtchn_pending_sel) + return; + + /* + * Yes, this is an open-coded loop. But that's just what put_user() + * does anyway. Page it in and retry the instruction. We're just a + * little more honest about it. + */ + read_lock_irqsave(&gpc->lock, flags); + while (!kvm_gpc_check(gpc, sizeof(struct vcpu_info))) { + read_unlock_irqrestore(&gpc->lock, flags); + + if (kvm_gpc_refresh(gpc, sizeof(struct vcpu_info))) + return; + + read_lock_irqsave(&gpc->lock, flags); + } + + /* Now gpc->khva is a valid kernel address for the vcpu_info */ + if (IS_ENABLED(CONFIG_64BIT) && v->kvm->arch.xen.long_mode) { + struct vcpu_info *vi = gpc->khva; + + asm volatile(LOCK_PREFIX "orq %0, %1\n" + "notq %0\n" + LOCK_PREFIX "andq %0, %2\n" + : "=r" (evtchn_pending_sel), + "+m" (vi->evtchn_pending_sel), + "+m" (v->arch.xen.evtchn_pending_sel) + : "0" (evtchn_pending_sel)); + WRITE_ONCE(vi->evtchn_upcall_pending, 1); + } else { + u32 evtchn_pending_sel32 = evtchn_pending_sel; + struct compat_vcpu_info *vi = gpc->khva; + + asm volatile(LOCK_PREFIX "orl %0, %1\n" + "notl %0\n" + LOCK_PREFIX "andl %0, %2\n" + : "=r" (evtchn_pending_sel32), + "+m" (vi->evtchn_pending_sel), + "+m" (v->arch.xen.evtchn_pending_sel) + : "0" (evtchn_pending_sel32)); + WRITE_ONCE(vi->evtchn_upcall_pending, 1); + } + read_unlock_irqrestore(&gpc->lock, flags); + + /* For the per-vCPU lapic vector, deliver it as MSI. */ + if (v->arch.xen.upcall_vector) + kvm_xen_inject_vcpu_vector(v); + + mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT); +} + +int __kvm_xen_has_interrupt(struct kvm_vcpu *v) +{ + struct gfn_to_pfn_cache *gpc = &v->arch.xen.vcpu_info_cache; + unsigned long flags; + u8 rc = 0; + + /* + * If the global upcall vector (HVMIRQ_callback_vector) is set and + * the vCPU's evtchn_upcall_pending flag is set, the IRQ is pending. + */ + + /* No need for compat handling here */ + BUILD_BUG_ON(offsetof(struct vcpu_info, evtchn_upcall_pending) != + offsetof(struct compat_vcpu_info, evtchn_upcall_pending)); + BUILD_BUG_ON(sizeof(rc) != + sizeof_field(struct vcpu_info, evtchn_upcall_pending)); + BUILD_BUG_ON(sizeof(rc) != + sizeof_field(struct compat_vcpu_info, evtchn_upcall_pending)); + + read_lock_irqsave(&gpc->lock, flags); + while (!kvm_gpc_check(gpc, sizeof(struct vcpu_info))) { + read_unlock_irqrestore(&gpc->lock, flags); + + /* + * This function gets called from kvm_vcpu_block() after setting the + * task to TASK_INTERRUPTIBLE, to see if it needs to wake immediately + * from a HLT. So we really mustn't sleep. If the page ended up absent + * at that point, just return 1 in order to trigger an immediate wake, + * and we'll end up getting called again from a context where we *can* + * fault in the page and wait for it. + */ + if (in_atomic() || !task_is_running(current)) + return 1; + + if (kvm_gpc_refresh(gpc, sizeof(struct vcpu_info))) { + /* + * If this failed, userspace has screwed up the + * vcpu_info mapping. No interrupts for you. + */ + return 0; + } + read_lock_irqsave(&gpc->lock, flags); + } + + rc = ((struct vcpu_info *)gpc->khva)->evtchn_upcall_pending; + read_unlock_irqrestore(&gpc->lock, flags); + return rc; +} + +int kvm_xen_hvm_set_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data) +{ + int r = -ENOENT; + + + switch (data->type) { + case KVM_XEN_ATTR_TYPE_LONG_MODE: + if (!IS_ENABLED(CONFIG_64BIT) && data->u.long_mode) { + r = -EINVAL; + } else { + mutex_lock(&kvm->arch.xen.xen_lock); + kvm->arch.xen.long_mode = !!data->u.long_mode; + mutex_unlock(&kvm->arch.xen.xen_lock); + r = 0; + } + break; + + case KVM_XEN_ATTR_TYPE_SHARED_INFO: + mutex_lock(&kvm->arch.xen.xen_lock); + r = kvm_xen_shared_info_init(kvm, data->u.shared_info.gfn); + mutex_unlock(&kvm->arch.xen.xen_lock); + break; + + case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR: + if (data->u.vector && data->u.vector < 0x10) + r = -EINVAL; + else { + mutex_lock(&kvm->arch.xen.xen_lock); + kvm->arch.xen.upcall_vector = data->u.vector; + mutex_unlock(&kvm->arch.xen.xen_lock); + r = 0; + } + break; + + case KVM_XEN_ATTR_TYPE_EVTCHN: + r = kvm_xen_setattr_evtchn(kvm, data); + break; + + case KVM_XEN_ATTR_TYPE_XEN_VERSION: + mutex_lock(&kvm->arch.xen.xen_lock); + kvm->arch.xen.xen_version = data->u.xen_version; + mutex_unlock(&kvm->arch.xen.xen_lock); + r = 0; + break; + + case KVM_XEN_ATTR_TYPE_RUNSTATE_UPDATE_FLAG: + if (!sched_info_on()) { + r = -EOPNOTSUPP; + break; + } + mutex_lock(&kvm->arch.xen.xen_lock); + kvm->arch.xen.runstate_update_flag = !!data->u.runstate_update_flag; + mutex_unlock(&kvm->arch.xen.xen_lock); + r = 0; + break; + + default: + break; + } + + return r; +} + +int kvm_xen_hvm_get_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data) +{ + int r = -ENOENT; + + mutex_lock(&kvm->arch.xen.xen_lock); + + switch (data->type) { + case KVM_XEN_ATTR_TYPE_LONG_MODE: + data->u.long_mode = kvm->arch.xen.long_mode; + r = 0; + break; + + case KVM_XEN_ATTR_TYPE_SHARED_INFO: + if (kvm->arch.xen.shinfo_cache.active) + data->u.shared_info.gfn = gpa_to_gfn(kvm->arch.xen.shinfo_cache.gpa); + else + data->u.shared_info.gfn = KVM_XEN_INVALID_GFN; + r = 0; + break; + + case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR: + data->u.vector = kvm->arch.xen.upcall_vector; + r = 0; + break; + + case KVM_XEN_ATTR_TYPE_XEN_VERSION: + data->u.xen_version = kvm->arch.xen.xen_version; + r = 0; + break; + + case KVM_XEN_ATTR_TYPE_RUNSTATE_UPDATE_FLAG: + if (!sched_info_on()) { + r = -EOPNOTSUPP; + break; + } + data->u.runstate_update_flag = kvm->arch.xen.runstate_update_flag; + r = 0; + break; + + default: + break; + } + + mutex_unlock(&kvm->arch.xen.xen_lock); + return r; +} + +int kvm_xen_vcpu_set_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data) +{ + int idx, r = -ENOENT; + + mutex_lock(&vcpu->kvm->arch.xen.xen_lock); + idx = srcu_read_lock(&vcpu->kvm->srcu); + + switch (data->type) { + case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO: + /* No compat necessary here. */ + BUILD_BUG_ON(sizeof(struct vcpu_info) != + sizeof(struct compat_vcpu_info)); + BUILD_BUG_ON(offsetof(struct vcpu_info, time) != + offsetof(struct compat_vcpu_info, time)); + + if (data->u.gpa == KVM_XEN_INVALID_GPA) { + kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_info_cache); + r = 0; + break; + } + + r = kvm_gpc_activate(&vcpu->arch.xen.vcpu_info_cache, + data->u.gpa, sizeof(struct vcpu_info)); + if (!r) + kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); + + break; + + case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO: + if (data->u.gpa == KVM_XEN_INVALID_GPA) { + kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_time_info_cache); + r = 0; + break; + } + + r = kvm_gpc_activate(&vcpu->arch.xen.vcpu_time_info_cache, + data->u.gpa, + sizeof(struct pvclock_vcpu_time_info)); + if (!r) + kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); + break; + + case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR: { + size_t sz, sz1, sz2; + + if (!sched_info_on()) { + r = -EOPNOTSUPP; + break; + } + if (data->u.gpa == KVM_XEN_INVALID_GPA) { + r = 0; + deactivate_out: + kvm_gpc_deactivate(&vcpu->arch.xen.runstate_cache); + kvm_gpc_deactivate(&vcpu->arch.xen.runstate2_cache); + break; + } + + /* + * If the guest switches to 64-bit mode after setting the runstate + * address, that's actually OK. kvm_xen_update_runstate_guest() + * will cope. + */ + if (IS_ENABLED(CONFIG_64BIT) && vcpu->kvm->arch.xen.long_mode) + sz = sizeof(struct vcpu_runstate_info); + else + sz = sizeof(struct compat_vcpu_runstate_info); + + /* How much fits in the (first) page? */ + sz1 = PAGE_SIZE - (data->u.gpa & ~PAGE_MASK); + r = kvm_gpc_activate(&vcpu->arch.xen.runstate_cache, + data->u.gpa, sz1); + if (r) + goto deactivate_out; + + /* Either map the second page, or deactivate the second GPC */ + if (sz1 >= sz) { + kvm_gpc_deactivate(&vcpu->arch.xen.runstate2_cache); + } else { + sz2 = sz - sz1; + BUG_ON((data->u.gpa + sz1) & ~PAGE_MASK); + r = kvm_gpc_activate(&vcpu->arch.xen.runstate2_cache, + data->u.gpa + sz1, sz2); + if (r) + goto deactivate_out; + } + + kvm_xen_update_runstate_guest(vcpu, false); + break; + } + case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT: + if (!sched_info_on()) { + r = -EOPNOTSUPP; + break; + } + if (data->u.runstate.state > RUNSTATE_offline) { + r = -EINVAL; + break; + } + + kvm_xen_update_runstate(vcpu, data->u.runstate.state); + r = 0; + break; + + case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA: + if (!sched_info_on()) { + r = -EOPNOTSUPP; + break; + } + if (data->u.runstate.state > RUNSTATE_offline) { + r = -EINVAL; + break; + } + if (data->u.runstate.state_entry_time != + (data->u.runstate.time_running + + data->u.runstate.time_runnable + + data->u.runstate.time_blocked + + data->u.runstate.time_offline)) { + r = -EINVAL; + break; + } + if (get_kvmclock_ns(vcpu->kvm) < + data->u.runstate.state_entry_time) { + r = -EINVAL; + break; + } + + vcpu->arch.xen.current_runstate = data->u.runstate.state; + vcpu->arch.xen.runstate_entry_time = + data->u.runstate.state_entry_time; + vcpu->arch.xen.runstate_times[RUNSTATE_running] = + data->u.runstate.time_running; + vcpu->arch.xen.runstate_times[RUNSTATE_runnable] = + data->u.runstate.time_runnable; + vcpu->arch.xen.runstate_times[RUNSTATE_blocked] = + data->u.runstate.time_blocked; + vcpu->arch.xen.runstate_times[RUNSTATE_offline] = + data->u.runstate.time_offline; + vcpu->arch.xen.last_steal = current->sched_info.run_delay; + r = 0; + break; + + case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST: + if (!sched_info_on()) { + r = -EOPNOTSUPP; + break; + } + if (data->u.runstate.state > RUNSTATE_offline && + data->u.runstate.state != (u64)-1) { + r = -EINVAL; + break; + } + /* The adjustment must add up */ + if (data->u.runstate.state_entry_time != + (data->u.runstate.time_running + + data->u.runstate.time_runnable + + data->u.runstate.time_blocked + + data->u.runstate.time_offline)) { + r = -EINVAL; + break; + } + + if (get_kvmclock_ns(vcpu->kvm) < + (vcpu->arch.xen.runstate_entry_time + + data->u.runstate.state_entry_time)) { + r = -EINVAL; + break; + } + + vcpu->arch.xen.runstate_entry_time += + data->u.runstate.state_entry_time; + vcpu->arch.xen.runstate_times[RUNSTATE_running] += + data->u.runstate.time_running; + vcpu->arch.xen.runstate_times[RUNSTATE_runnable] += + data->u.runstate.time_runnable; + vcpu->arch.xen.runstate_times[RUNSTATE_blocked] += + data->u.runstate.time_blocked; + vcpu->arch.xen.runstate_times[RUNSTATE_offline] += + data->u.runstate.time_offline; + + if (data->u.runstate.state <= RUNSTATE_offline) + kvm_xen_update_runstate(vcpu, data->u.runstate.state); + else if (vcpu->arch.xen.runstate_cache.active) + kvm_xen_update_runstate_guest(vcpu, false); + r = 0; + break; + + case KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID: + if (data->u.vcpu_id >= KVM_MAX_VCPUS) + r = -EINVAL; + else { + vcpu->arch.xen.vcpu_id = data->u.vcpu_id; + r = 0; + } + break; + + case KVM_XEN_VCPU_ATTR_TYPE_TIMER: + if (data->u.timer.port && + data->u.timer.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL) { + r = -EINVAL; + break; + } + + if (!vcpu->arch.xen.timer.function) + kvm_xen_init_timer(vcpu); + + /* Stop the timer (if it's running) before changing the vector */ + kvm_xen_stop_timer(vcpu); + vcpu->arch.xen.timer_virq = data->u.timer.port; + + /* Start the timer if the new value has a valid vector+expiry. */ + if (data->u.timer.port && data->u.timer.expires_ns) + kvm_xen_start_timer(vcpu, data->u.timer.expires_ns, + data->u.timer.expires_ns - + get_kvmclock_ns(vcpu->kvm)); + + r = 0; + break; + + case KVM_XEN_VCPU_ATTR_TYPE_UPCALL_VECTOR: + if (data->u.vector && data->u.vector < 0x10) + r = -EINVAL; + else { + vcpu->arch.xen.upcall_vector = data->u.vector; + r = 0; + } + break; + + default: + break; + } + + srcu_read_unlock(&vcpu->kvm->srcu, idx); + mutex_unlock(&vcpu->kvm->arch.xen.xen_lock); + return r; +} + +int kvm_xen_vcpu_get_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data) +{ + int r = -ENOENT; + + mutex_lock(&vcpu->kvm->arch.xen.xen_lock); + + switch (data->type) { + case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO: + if (vcpu->arch.xen.vcpu_info_cache.active) + data->u.gpa = vcpu->arch.xen.vcpu_info_cache.gpa; + else + data->u.gpa = KVM_XEN_INVALID_GPA; + r = 0; + break; + + case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO: + if (vcpu->arch.xen.vcpu_time_info_cache.active) + data->u.gpa = vcpu->arch.xen.vcpu_time_info_cache.gpa; + else + data->u.gpa = KVM_XEN_INVALID_GPA; + r = 0; + break; + + case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR: + if (!sched_info_on()) { + r = -EOPNOTSUPP; + break; + } + if (vcpu->arch.xen.runstate_cache.active) { + data->u.gpa = vcpu->arch.xen.runstate_cache.gpa; + r = 0; + } + break; + + case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT: + if (!sched_info_on()) { + r = -EOPNOTSUPP; + break; + } + data->u.runstate.state = vcpu->arch.xen.current_runstate; + r = 0; + break; + + case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA: + if (!sched_info_on()) { + r = -EOPNOTSUPP; + break; + } + data->u.runstate.state = vcpu->arch.xen.current_runstate; + data->u.runstate.state_entry_time = + vcpu->arch.xen.runstate_entry_time; + data->u.runstate.time_running = + vcpu->arch.xen.runstate_times[RUNSTATE_running]; + data->u.runstate.time_runnable = + vcpu->arch.xen.runstate_times[RUNSTATE_runnable]; + data->u.runstate.time_blocked = + vcpu->arch.xen.runstate_times[RUNSTATE_blocked]; + data->u.runstate.time_offline = + vcpu->arch.xen.runstate_times[RUNSTATE_offline]; + r = 0; + break; + + case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST: + r = -EINVAL; + break; + + case KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID: + data->u.vcpu_id = vcpu->arch.xen.vcpu_id; + r = 0; + break; + + case KVM_XEN_VCPU_ATTR_TYPE_TIMER: + data->u.timer.port = vcpu->arch.xen.timer_virq; + data->u.timer.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL; + data->u.timer.expires_ns = vcpu->arch.xen.timer_expires; + r = 0; + break; + + case KVM_XEN_VCPU_ATTR_TYPE_UPCALL_VECTOR: + data->u.vector = vcpu->arch.xen.upcall_vector; + r = 0; + break; + + default: + break; + } + + mutex_unlock(&vcpu->kvm->arch.xen.xen_lock); + return r; +} + +int kvm_xen_write_hypercall_page(struct kvm_vcpu *vcpu, u64 data) +{ + struct kvm *kvm = vcpu->kvm; + u32 page_num = data & ~PAGE_MASK; + u64 page_addr = data & PAGE_MASK; + bool lm = is_long_mode(vcpu); + + /* Latch long_mode for shared_info pages etc. */ + vcpu->kvm->arch.xen.long_mode = lm; + + /* + * If Xen hypercall intercept is enabled, fill the hypercall + * page with VMCALL/VMMCALL instructions since that's what + * we catch. Else the VMM has provided the hypercall pages + * with instructions of its own choosing, so use those. + */ + if (kvm_xen_hypercall_enabled(kvm)) { + u8 instructions[32]; + int i; + + if (page_num) + return 1; + + /* mov imm32, %eax */ + instructions[0] = 0xb8; + + /* vmcall / vmmcall */ + static_call(kvm_x86_patch_hypercall)(vcpu, instructions + 5); + + /* ret */ + instructions[8] = 0xc3; + + /* int3 to pad */ + memset(instructions + 9, 0xcc, sizeof(instructions) - 9); + + for (i = 0; i < PAGE_SIZE / sizeof(instructions); i++) { + *(u32 *)&instructions[1] = i; + if (kvm_vcpu_write_guest(vcpu, + page_addr + (i * sizeof(instructions)), + instructions, sizeof(instructions))) + return 1; + } + } else { + /* + * Note, truncation is a non-issue as 'lm' is guaranteed to be + * false for a 32-bit kernel, i.e. when hva_t is only 4 bytes. + */ + hva_t blob_addr = lm ? kvm->arch.xen_hvm_config.blob_addr_64 + : kvm->arch.xen_hvm_config.blob_addr_32; + u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 + : kvm->arch.xen_hvm_config.blob_size_32; + u8 *page; + int ret; + + if (page_num >= blob_size) + return 1; + + blob_addr += page_num * PAGE_SIZE; + + page = memdup_user((u8 __user *)blob_addr, PAGE_SIZE); + if (IS_ERR(page)) + return PTR_ERR(page); + + ret = kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE); + kfree(page); + if (ret) + return 1; + } + return 0; +} + +int kvm_xen_hvm_config(struct kvm *kvm, struct kvm_xen_hvm_config *xhc) +{ + /* Only some feature flags need to be *enabled* by userspace */ + u32 permitted_flags = KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | + KVM_XEN_HVM_CONFIG_EVTCHN_SEND; + + if (xhc->flags & ~permitted_flags) + return -EINVAL; + + /* + * With hypercall interception the kernel generates its own + * hypercall page so it must not be provided. + */ + if ((xhc->flags & KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL) && + (xhc->blob_addr_32 || xhc->blob_addr_64 || + xhc->blob_size_32 || xhc->blob_size_64)) + return -EINVAL; + + mutex_lock(&kvm->arch.xen.xen_lock); + + if (xhc->msr && !kvm->arch.xen_hvm_config.msr) + static_branch_inc(&kvm_xen_enabled.key); + else if (!xhc->msr && kvm->arch.xen_hvm_config.msr) + static_branch_slow_dec_deferred(&kvm_xen_enabled); + + memcpy(&kvm->arch.xen_hvm_config, xhc, sizeof(*xhc)); + + mutex_unlock(&kvm->arch.xen.xen_lock); + return 0; +} + +static int kvm_xen_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result) +{ + kvm_rax_write(vcpu, result); + return kvm_skip_emulated_instruction(vcpu); +} + +static int kvm_xen_hypercall_complete_userspace(struct kvm_vcpu *vcpu) +{ + struct kvm_run *run = vcpu->run; + + if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.xen.hypercall_rip))) + return 1; + + return kvm_xen_hypercall_set_result(vcpu, run->xen.u.hcall.result); +} + +static inline int max_evtchn_port(struct kvm *kvm) +{ + if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) + return EVTCHN_2L_NR_CHANNELS; + else + return COMPAT_EVTCHN_2L_NR_CHANNELS; +} + +static bool wait_pending_event(struct kvm_vcpu *vcpu, int nr_ports, + evtchn_port_t *ports) +{ + struct kvm *kvm = vcpu->kvm; + struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache; + unsigned long *pending_bits; + unsigned long flags; + bool ret = true; + int idx, i; + + idx = srcu_read_lock(&kvm->srcu); + read_lock_irqsave(&gpc->lock, flags); + if (!kvm_gpc_check(gpc, PAGE_SIZE)) + goto out_rcu; + + ret = false; + if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) { + struct shared_info *shinfo = gpc->khva; + pending_bits = (unsigned long *)&shinfo->evtchn_pending; + } else { + struct compat_shared_info *shinfo = gpc->khva; + pending_bits = (unsigned long *)&shinfo->evtchn_pending; + } + + for (i = 0; i < nr_ports; i++) { + if (test_bit(ports[i], pending_bits)) { + ret = true; + break; + } + } + + out_rcu: + read_unlock_irqrestore(&gpc->lock, flags); + srcu_read_unlock(&kvm->srcu, idx); + + return ret; +} + +static bool kvm_xen_schedop_poll(struct kvm_vcpu *vcpu, bool longmode, + u64 param, u64 *r) +{ + struct sched_poll sched_poll; + evtchn_port_t port, *ports; + struct x86_exception e; + int i; + + if (!lapic_in_kernel(vcpu) || + !(vcpu->kvm->arch.xen_hvm_config.flags & KVM_XEN_HVM_CONFIG_EVTCHN_SEND)) + return false; + + if (IS_ENABLED(CONFIG_64BIT) && !longmode) { + struct compat_sched_poll sp32; + + /* Sanity check that the compat struct definition is correct */ + BUILD_BUG_ON(sizeof(sp32) != 16); + + if (kvm_read_guest_virt(vcpu, param, &sp32, sizeof(sp32), &e)) { + *r = -EFAULT; + return true; + } + + /* + * This is a 32-bit pointer to an array of evtchn_port_t which + * are uint32_t, so once it's converted no further compat + * handling is needed. + */ + sched_poll.ports = (void *)(unsigned long)(sp32.ports); + sched_poll.nr_ports = sp32.nr_ports; + sched_poll.timeout = sp32.timeout; + } else { + if (kvm_read_guest_virt(vcpu, param, &sched_poll, + sizeof(sched_poll), &e)) { + *r = -EFAULT; + return true; + } + } + + if (unlikely(sched_poll.nr_ports > 1)) { + /* Xen (unofficially) limits number of pollers to 128 */ + if (sched_poll.nr_ports > 128) { + *r = -EINVAL; + return true; + } + + ports = kmalloc_array(sched_poll.nr_ports, + sizeof(*ports), GFP_KERNEL); + if (!ports) { + *r = -ENOMEM; + return true; + } + } else + ports = &port; + + if (kvm_read_guest_virt(vcpu, (gva_t)sched_poll.ports, ports, + sched_poll.nr_ports * sizeof(*ports), &e)) { + *r = -EFAULT; + return true; + } + + for (i = 0; i < sched_poll.nr_ports; i++) { + if (ports[i] >= max_evtchn_port(vcpu->kvm)) { + *r = -EINVAL; + goto out; + } + } + + if (sched_poll.nr_ports == 1) + vcpu->arch.xen.poll_evtchn = port; + else + vcpu->arch.xen.poll_evtchn = -1; + + set_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask); + + if (!wait_pending_event(vcpu, sched_poll.nr_ports, ports)) { + vcpu->arch.mp_state = KVM_MP_STATE_HALTED; + + if (sched_poll.timeout) + mod_timer(&vcpu->arch.xen.poll_timer, + jiffies + nsecs_to_jiffies(sched_poll.timeout)); + + kvm_vcpu_halt(vcpu); + + if (sched_poll.timeout) + del_timer(&vcpu->arch.xen.poll_timer); + + vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; + } + + vcpu->arch.xen.poll_evtchn = 0; + *r = 0; +out: + /* Really, this is only needed in case of timeout */ + clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask); + + if (unlikely(sched_poll.nr_ports > 1)) + kfree(ports); + return true; +} + +static void cancel_evtchn_poll(struct timer_list *t) +{ + struct kvm_vcpu *vcpu = from_timer(vcpu, t, arch.xen.poll_timer); + + kvm_make_request(KVM_REQ_UNBLOCK, vcpu); + kvm_vcpu_kick(vcpu); +} + +static bool kvm_xen_hcall_sched_op(struct kvm_vcpu *vcpu, bool longmode, + int cmd, u64 param, u64 *r) +{ + switch (cmd) { + case SCHEDOP_poll: + if (kvm_xen_schedop_poll(vcpu, longmode, param, r)) + return true; + fallthrough; + case SCHEDOP_yield: + kvm_vcpu_on_spin(vcpu, true); + *r = 0; + return true; + default: + break; + } + + return false; +} + +struct compat_vcpu_set_singleshot_timer { + uint64_t timeout_abs_ns; + uint32_t flags; +} __attribute__((packed)); + +static bool kvm_xen_hcall_vcpu_op(struct kvm_vcpu *vcpu, bool longmode, int cmd, + int vcpu_id, u64 param, u64 *r) +{ + struct vcpu_set_singleshot_timer oneshot; + struct x86_exception e; + s64 delta; + + if (!kvm_xen_timer_enabled(vcpu)) + return false; + + switch (cmd) { + case VCPUOP_set_singleshot_timer: + if (vcpu->arch.xen.vcpu_id != vcpu_id) { + *r = -EINVAL; + return true; + } + + /* + * The only difference for 32-bit compat is the 4 bytes of + * padding after the interesting part of the structure. So + * for a faithful emulation of Xen we have to *try* to copy + * the padding and return -EFAULT if we can't. Otherwise we + * might as well just have copied the 12-byte 32-bit struct. + */ + BUILD_BUG_ON(offsetof(struct compat_vcpu_set_singleshot_timer, timeout_abs_ns) != + offsetof(struct vcpu_set_singleshot_timer, timeout_abs_ns)); + BUILD_BUG_ON(sizeof_field(struct compat_vcpu_set_singleshot_timer, timeout_abs_ns) != + sizeof_field(struct vcpu_set_singleshot_timer, timeout_abs_ns)); + BUILD_BUG_ON(offsetof(struct compat_vcpu_set_singleshot_timer, flags) != + offsetof(struct vcpu_set_singleshot_timer, flags)); + BUILD_BUG_ON(sizeof_field(struct compat_vcpu_set_singleshot_timer, flags) != + sizeof_field(struct vcpu_set_singleshot_timer, flags)); + + if (kvm_read_guest_virt(vcpu, param, &oneshot, longmode ? sizeof(oneshot) : + sizeof(struct compat_vcpu_set_singleshot_timer), &e)) { + *r = -EFAULT; + return true; + } + + delta = oneshot.timeout_abs_ns - get_kvmclock_ns(vcpu->kvm); + if ((oneshot.flags & VCPU_SSHOTTMR_future) && delta < 0) { + *r = -ETIME; + return true; + } + + kvm_xen_start_timer(vcpu, oneshot.timeout_abs_ns, delta); + *r = 0; + return true; + + case VCPUOP_stop_singleshot_timer: + if (vcpu->arch.xen.vcpu_id != vcpu_id) { + *r = -EINVAL; + return true; + } + kvm_xen_stop_timer(vcpu); + *r = 0; + return true; + } + + return false; +} + +static bool kvm_xen_hcall_set_timer_op(struct kvm_vcpu *vcpu, uint64_t timeout, + u64 *r) +{ + if (!kvm_xen_timer_enabled(vcpu)) + return false; + + if (timeout) { + uint64_t guest_now = get_kvmclock_ns(vcpu->kvm); + int64_t delta = timeout - guest_now; + + /* Xen has a 'Linux workaround' in do_set_timer_op() which + * checks for negative absolute timeout values (caused by + * integer overflow), and for values about 13 days in the + * future (2^50ns) which would be caused by jiffies + * overflow. For those cases, it sets the timeout 100ms in + * the future (not *too* soon, since if a guest really did + * set a long timeout on purpose we don't want to keep + * churning CPU time by waking it up). + */ + if (unlikely((int64_t)timeout < 0 || + (delta > 0 && (uint32_t) (delta >> 50) != 0))) { + delta = 100 * NSEC_PER_MSEC; + timeout = guest_now + delta; + } + + kvm_xen_start_timer(vcpu, timeout, delta); + } else { + kvm_xen_stop_timer(vcpu); + } + + *r = 0; + return true; +} + +int kvm_xen_hypercall(struct kvm_vcpu *vcpu) +{ + bool longmode; + u64 input, params[6], r = -ENOSYS; + bool handled = false; + u8 cpl; + + input = (u64)kvm_register_read(vcpu, VCPU_REGS_RAX); + + /* Hyper-V hypercalls get bit 31 set in EAX */ + if ((input & 0x80000000) && + kvm_hv_hypercall_enabled(vcpu)) + return kvm_hv_hypercall(vcpu); + + longmode = is_64_bit_hypercall(vcpu); + if (!longmode) { + params[0] = (u32)kvm_rbx_read(vcpu); + params[1] = (u32)kvm_rcx_read(vcpu); + params[2] = (u32)kvm_rdx_read(vcpu); + params[3] = (u32)kvm_rsi_read(vcpu); + params[4] = (u32)kvm_rdi_read(vcpu); + params[5] = (u32)kvm_rbp_read(vcpu); + } +#ifdef CONFIG_X86_64 + else { + params[0] = (u64)kvm_rdi_read(vcpu); + params[1] = (u64)kvm_rsi_read(vcpu); + params[2] = (u64)kvm_rdx_read(vcpu); + params[3] = (u64)kvm_r10_read(vcpu); + params[4] = (u64)kvm_r8_read(vcpu); + params[5] = (u64)kvm_r9_read(vcpu); + } +#endif + cpl = static_call(kvm_x86_get_cpl)(vcpu); + trace_kvm_xen_hypercall(cpl, input, params[0], params[1], params[2], + params[3], params[4], params[5]); + + /* + * Only allow hypercall acceleration for CPL0. The rare hypercalls that + * are permitted in guest userspace can be handled by the VMM. + */ + if (unlikely(cpl > 0)) + goto handle_in_userspace; + + switch (input) { + case __HYPERVISOR_xen_version: + if (params[0] == XENVER_version && vcpu->kvm->arch.xen.xen_version) { + r = vcpu->kvm->arch.xen.xen_version; + handled = true; + } + break; + case __HYPERVISOR_event_channel_op: + if (params[0] == EVTCHNOP_send) + handled = kvm_xen_hcall_evtchn_send(vcpu, params[1], &r); + break; + case __HYPERVISOR_sched_op: + handled = kvm_xen_hcall_sched_op(vcpu, longmode, params[0], + params[1], &r); + break; + case __HYPERVISOR_vcpu_op: + handled = kvm_xen_hcall_vcpu_op(vcpu, longmode, params[0], params[1], + params[2], &r); + break; + case __HYPERVISOR_set_timer_op: { + u64 timeout = params[0]; + /* In 32-bit mode, the 64-bit timeout is in two 32-bit params. */ + if (!longmode) + timeout |= params[1] << 32; + handled = kvm_xen_hcall_set_timer_op(vcpu, timeout, &r); + break; + } + default: + break; + } + + if (handled) + return kvm_xen_hypercall_set_result(vcpu, r); + +handle_in_userspace: + vcpu->run->exit_reason = KVM_EXIT_XEN; + vcpu->run->xen.type = KVM_EXIT_XEN_HCALL; + vcpu->run->xen.u.hcall.longmode = longmode; + vcpu->run->xen.u.hcall.cpl = cpl; + vcpu->run->xen.u.hcall.input = input; + vcpu->run->xen.u.hcall.params[0] = params[0]; + vcpu->run->xen.u.hcall.params[1] = params[1]; + vcpu->run->xen.u.hcall.params[2] = params[2]; + vcpu->run->xen.u.hcall.params[3] = params[3]; + vcpu->run->xen.u.hcall.params[4] = params[4]; + vcpu->run->xen.u.hcall.params[5] = params[5]; + vcpu->arch.xen.hypercall_rip = kvm_get_linear_rip(vcpu); + vcpu->arch.complete_userspace_io = + kvm_xen_hypercall_complete_userspace; + + return 0; +} + +static void kvm_xen_check_poller(struct kvm_vcpu *vcpu, int port) +{ + int poll_evtchn = vcpu->arch.xen.poll_evtchn; + + if ((poll_evtchn == port || poll_evtchn == -1) && + test_and_clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask)) { + kvm_make_request(KVM_REQ_UNBLOCK, vcpu); + kvm_vcpu_kick(vcpu); + } +} + +/* + * The return value from this function is propagated to kvm_set_irq() API, + * so it returns: + * < 0 Interrupt was ignored (masked or not delivered for other reasons) + * = 0 Interrupt was coalesced (previous irq is still pending) + * > 0 Number of CPUs interrupt was delivered to + * + * It is also called directly from kvm_arch_set_irq_inatomic(), where the + * only check on its return value is a comparison with -EWOULDBLOCK'. + */ +int kvm_xen_set_evtchn_fast(struct kvm_xen_evtchn *xe, struct kvm *kvm) +{ + struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache; + struct kvm_vcpu *vcpu; + unsigned long *pending_bits, *mask_bits; + unsigned long flags; + int port_word_bit; + bool kick_vcpu = false; + int vcpu_idx, idx, rc; + + vcpu_idx = READ_ONCE(xe->vcpu_idx); + if (vcpu_idx >= 0) + vcpu = kvm_get_vcpu(kvm, vcpu_idx); + else { + vcpu = kvm_get_vcpu_by_id(kvm, xe->vcpu_id); + if (!vcpu) + return -EINVAL; + WRITE_ONCE(xe->vcpu_idx, vcpu->vcpu_idx); + } + + if (!vcpu->arch.xen.vcpu_info_cache.active) + return -EINVAL; + + if (xe->port >= max_evtchn_port(kvm)) + return -EINVAL; + + rc = -EWOULDBLOCK; + + idx = srcu_read_lock(&kvm->srcu); + + read_lock_irqsave(&gpc->lock, flags); + if (!kvm_gpc_check(gpc, PAGE_SIZE)) + goto out_rcu; + + if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) { + struct shared_info *shinfo = gpc->khva; + pending_bits = (unsigned long *)&shinfo->evtchn_pending; + mask_bits = (unsigned long *)&shinfo->evtchn_mask; + port_word_bit = xe->port / 64; + } else { + struct compat_shared_info *shinfo = gpc->khva; + pending_bits = (unsigned long *)&shinfo->evtchn_pending; + mask_bits = (unsigned long *)&shinfo->evtchn_mask; + port_word_bit = xe->port / 32; + } + + /* + * If this port wasn't already set, and if it isn't masked, then + * we try to set the corresponding bit in the in-kernel shadow of + * evtchn_pending_sel for the target vCPU. And if *that* wasn't + * already set, then we kick the vCPU in question to write to the + * *real* evtchn_pending_sel in its own guest vcpu_info struct. + */ + if (test_and_set_bit(xe->port, pending_bits)) { + rc = 0; /* It was already raised */ + } else if (test_bit(xe->port, mask_bits)) { + rc = -ENOTCONN; /* Masked */ + kvm_xen_check_poller(vcpu, xe->port); + } else { + rc = 1; /* Delivered to the bitmap in shared_info. */ + /* Now switch to the vCPU's vcpu_info to set the index and pending_sel */ + read_unlock_irqrestore(&gpc->lock, flags); + gpc = &vcpu->arch.xen.vcpu_info_cache; + + read_lock_irqsave(&gpc->lock, flags); + if (!kvm_gpc_check(gpc, sizeof(struct vcpu_info))) { + /* + * Could not access the vcpu_info. Set the bit in-kernel + * and prod the vCPU to deliver it for itself. + */ + if (!test_and_set_bit(port_word_bit, &vcpu->arch.xen.evtchn_pending_sel)) + kick_vcpu = true; + goto out_rcu; + } + + if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) { + struct vcpu_info *vcpu_info = gpc->khva; + if (!test_and_set_bit(port_word_bit, &vcpu_info->evtchn_pending_sel)) { + WRITE_ONCE(vcpu_info->evtchn_upcall_pending, 1); + kick_vcpu = true; + } + } else { + struct compat_vcpu_info *vcpu_info = gpc->khva; + if (!test_and_set_bit(port_word_bit, + (unsigned long *)&vcpu_info->evtchn_pending_sel)) { + WRITE_ONCE(vcpu_info->evtchn_upcall_pending, 1); + kick_vcpu = true; + } + } + + /* For the per-vCPU lapic vector, deliver it as MSI. */ + if (kick_vcpu && vcpu->arch.xen.upcall_vector) { + kvm_xen_inject_vcpu_vector(vcpu); + kick_vcpu = false; + } + } + + out_rcu: + read_unlock_irqrestore(&gpc->lock, flags); + srcu_read_unlock(&kvm->srcu, idx); + + if (kick_vcpu) { + kvm_make_request(KVM_REQ_UNBLOCK, vcpu); + kvm_vcpu_kick(vcpu); + } + + return rc; +} + +static int kvm_xen_set_evtchn(struct kvm_xen_evtchn *xe, struct kvm *kvm) +{ + bool mm_borrowed = false; + int rc; + + rc = kvm_xen_set_evtchn_fast(xe, kvm); + if (rc != -EWOULDBLOCK) + return rc; + + if (current->mm != kvm->mm) { + /* + * If not on a thread which already belongs to this KVM, + * we'd better be in the irqfd workqueue. + */ + if (WARN_ON_ONCE(current->mm)) + return -EINVAL; + + kthread_use_mm(kvm->mm); + mm_borrowed = true; + } + + mutex_lock(&kvm->arch.xen.xen_lock); + + /* + * It is theoretically possible for the page to be unmapped + * and the MMU notifier to invalidate the shared_info before + * we even get to use it. In that case, this looks like an + * infinite loop. It was tempting to do it via the userspace + * HVA instead... but that just *hides* the fact that it's + * an infinite loop, because if a fault occurs and it waits + * for the page to come back, it can *still* immediately + * fault and have to wait again, repeatedly. + * + * Conversely, the page could also have been reinstated by + * another thread before we even obtain the mutex above, so + * check again *first* before remapping it. + */ + do { + struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache; + int idx; + + rc = kvm_xen_set_evtchn_fast(xe, kvm); + if (rc != -EWOULDBLOCK) + break; + + idx = srcu_read_lock(&kvm->srcu); + rc = kvm_gpc_refresh(gpc, PAGE_SIZE); + srcu_read_unlock(&kvm->srcu, idx); + } while(!rc); + + mutex_unlock(&kvm->arch.xen.xen_lock); + + if (mm_borrowed) + kthread_unuse_mm(kvm->mm); + + return rc; +} + +/* This is the version called from kvm_set_irq() as the .set function */ +static int evtchn_set_fn(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm, + int irq_source_id, int level, bool line_status) +{ + if (!level) + return -EINVAL; + + return kvm_xen_set_evtchn(&e->xen_evtchn, kvm); +} + +/* + * Set up an event channel interrupt from the KVM IRQ routing table. + * Used for e.g. PIRQ from passed through physical devices. + */ +int kvm_xen_setup_evtchn(struct kvm *kvm, + struct kvm_kernel_irq_routing_entry *e, + const struct kvm_irq_routing_entry *ue) + +{ + struct kvm_vcpu *vcpu; + + if (ue->u.xen_evtchn.port >= max_evtchn_port(kvm)) + return -EINVAL; + + /* We only support 2 level event channels for now */ + if (ue->u.xen_evtchn.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL) + return -EINVAL; + + /* + * Xen gives us interesting mappings from vCPU index to APIC ID, + * which means kvm_get_vcpu_by_id() has to iterate over all vCPUs + * to find it. Do that once at setup time, instead of every time. + * But beware that on live update / live migration, the routing + * table might be reinstated before the vCPU threads have finished + * recreating their vCPUs. + */ + vcpu = kvm_get_vcpu_by_id(kvm, ue->u.xen_evtchn.vcpu); + if (vcpu) + e->xen_evtchn.vcpu_idx = vcpu->vcpu_idx; + else + e->xen_evtchn.vcpu_idx = -1; + + e->xen_evtchn.port = ue->u.xen_evtchn.port; + e->xen_evtchn.vcpu_id = ue->u.xen_evtchn.vcpu; + e->xen_evtchn.priority = ue->u.xen_evtchn.priority; + e->set = evtchn_set_fn; + + return 0; +} + +/* + * Explicit event sending from userspace with KVM_XEN_HVM_EVTCHN_SEND ioctl. + */ +int kvm_xen_hvm_evtchn_send(struct kvm *kvm, struct kvm_irq_routing_xen_evtchn *uxe) +{ + struct kvm_xen_evtchn e; + int ret; + + if (!uxe->port || uxe->port >= max_evtchn_port(kvm)) + return -EINVAL; + + /* We only support 2 level event channels for now */ + if (uxe->priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL) + return -EINVAL; + + e.port = uxe->port; + e.vcpu_id = uxe->vcpu; + e.vcpu_idx = -1; + e.priority = uxe->priority; + + ret = kvm_xen_set_evtchn(&e, kvm); + + /* + * None of that 'return 1 if it actually got delivered' nonsense. + * We don't care if it was masked (-ENOTCONN) either. + */ + if (ret > 0 || ret == -ENOTCONN) + ret = 0; + + return ret; +} + +/* + * Support for *outbound* event channel events via the EVTCHNOP_send hypercall. + */ +struct evtchnfd { + u32 send_port; + u32 type; + union { + struct kvm_xen_evtchn port; + struct { + u32 port; /* zero */ + struct eventfd_ctx *ctx; + } eventfd; + } deliver; +}; + +/* + * Update target vCPU or priority for a registered sending channel. + */ +static int kvm_xen_eventfd_update(struct kvm *kvm, + struct kvm_xen_hvm_attr *data) +{ + u32 port = data->u.evtchn.send_port; + struct evtchnfd *evtchnfd; + int ret; + + /* Protect writes to evtchnfd as well as the idr lookup. */ + mutex_lock(&kvm->arch.xen.xen_lock); + evtchnfd = idr_find(&kvm->arch.xen.evtchn_ports, port); + + ret = -ENOENT; + if (!evtchnfd) + goto out_unlock; + + /* For an UPDATE, nothing may change except the priority/vcpu */ + ret = -EINVAL; + if (evtchnfd->type != data->u.evtchn.type) + goto out_unlock; + + /* + * Port cannot change, and if it's zero that was an eventfd + * which can't be changed either. + */ + if (!evtchnfd->deliver.port.port || + evtchnfd->deliver.port.port != data->u.evtchn.deliver.port.port) + goto out_unlock; + + /* We only support 2 level event channels for now */ + if (data->u.evtchn.deliver.port.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL) + goto out_unlock; + + evtchnfd->deliver.port.priority = data->u.evtchn.deliver.port.priority; + if (evtchnfd->deliver.port.vcpu_id != data->u.evtchn.deliver.port.vcpu) { + evtchnfd->deliver.port.vcpu_id = data->u.evtchn.deliver.port.vcpu; + evtchnfd->deliver.port.vcpu_idx = -1; + } + ret = 0; +out_unlock: + mutex_unlock(&kvm->arch.xen.xen_lock); + return ret; +} + +/* + * Configure the target (eventfd or local port delivery) for sending on + * a given event channel. + */ +static int kvm_xen_eventfd_assign(struct kvm *kvm, + struct kvm_xen_hvm_attr *data) +{ + u32 port = data->u.evtchn.send_port; + struct eventfd_ctx *eventfd = NULL; + struct evtchnfd *evtchnfd; + int ret = -EINVAL; + + evtchnfd = kzalloc(sizeof(struct evtchnfd), GFP_KERNEL); + if (!evtchnfd) + return -ENOMEM; + + switch(data->u.evtchn.type) { + case EVTCHNSTAT_ipi: + /* IPI must map back to the same port# */ + if (data->u.evtchn.deliver.port.port != data->u.evtchn.send_port) + goto out_noeventfd; /* -EINVAL */ + break; + + case EVTCHNSTAT_interdomain: + if (data->u.evtchn.deliver.port.port) { + if (data->u.evtchn.deliver.port.port >= max_evtchn_port(kvm)) + goto out_noeventfd; /* -EINVAL */ + } else { + eventfd = eventfd_ctx_fdget(data->u.evtchn.deliver.eventfd.fd); + if (IS_ERR(eventfd)) { + ret = PTR_ERR(eventfd); + goto out_noeventfd; + } + } + break; + + case EVTCHNSTAT_virq: + case EVTCHNSTAT_closed: + case EVTCHNSTAT_unbound: + case EVTCHNSTAT_pirq: + default: /* Unknown event channel type */ + goto out; /* -EINVAL */ + } + + evtchnfd->send_port = data->u.evtchn.send_port; + evtchnfd->type = data->u.evtchn.type; + if (eventfd) { + evtchnfd->deliver.eventfd.ctx = eventfd; + } else { + /* We only support 2 level event channels for now */ + if (data->u.evtchn.deliver.port.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL) + goto out; /* -EINVAL; */ + + evtchnfd->deliver.port.port = data->u.evtchn.deliver.port.port; + evtchnfd->deliver.port.vcpu_id = data->u.evtchn.deliver.port.vcpu; + evtchnfd->deliver.port.vcpu_idx = -1; + evtchnfd->deliver.port.priority = data->u.evtchn.deliver.port.priority; + } + + mutex_lock(&kvm->arch.xen.xen_lock); + ret = idr_alloc(&kvm->arch.xen.evtchn_ports, evtchnfd, port, port + 1, + GFP_KERNEL); + mutex_unlock(&kvm->arch.xen.xen_lock); + if (ret >= 0) + return 0; + + if (ret == -ENOSPC) + ret = -EEXIST; +out: + if (eventfd) + eventfd_ctx_put(eventfd); +out_noeventfd: + kfree(evtchnfd); + return ret; +} + +static int kvm_xen_eventfd_deassign(struct kvm *kvm, u32 port) +{ + struct evtchnfd *evtchnfd; + + mutex_lock(&kvm->arch.xen.xen_lock); + evtchnfd = idr_remove(&kvm->arch.xen.evtchn_ports, port); + mutex_unlock(&kvm->arch.xen.xen_lock); + + if (!evtchnfd) + return -ENOENT; + + synchronize_srcu(&kvm->srcu); + if (!evtchnfd->deliver.port.port) + eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx); + kfree(evtchnfd); + return 0; +} + +static int kvm_xen_eventfd_reset(struct kvm *kvm) +{ + struct evtchnfd *evtchnfd, **all_evtchnfds; + int i; + int n = 0; + + mutex_lock(&kvm->arch.xen.xen_lock); + + /* + * Because synchronize_srcu() cannot be called inside the + * critical section, first collect all the evtchnfd objects + * in an array as they are removed from evtchn_ports. + */ + idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i) + n++; + + all_evtchnfds = kmalloc_array(n, sizeof(struct evtchnfd *), GFP_KERNEL); + if (!all_evtchnfds) { + mutex_unlock(&kvm->arch.xen.xen_lock); + return -ENOMEM; + } + + n = 0; + idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i) { + all_evtchnfds[n++] = evtchnfd; + idr_remove(&kvm->arch.xen.evtchn_ports, evtchnfd->send_port); + } + mutex_unlock(&kvm->arch.xen.xen_lock); + + synchronize_srcu(&kvm->srcu); + + while (n--) { + evtchnfd = all_evtchnfds[n]; + if (!evtchnfd->deliver.port.port) + eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx); + kfree(evtchnfd); + } + kfree(all_evtchnfds); + + return 0; +} + +static int kvm_xen_setattr_evtchn(struct kvm *kvm, struct kvm_xen_hvm_attr *data) +{ + u32 port = data->u.evtchn.send_port; + + if (data->u.evtchn.flags == KVM_XEN_EVTCHN_RESET) + return kvm_xen_eventfd_reset(kvm); + + if (!port || port >= max_evtchn_port(kvm)) + return -EINVAL; + + if (data->u.evtchn.flags == KVM_XEN_EVTCHN_DEASSIGN) + return kvm_xen_eventfd_deassign(kvm, port); + if (data->u.evtchn.flags == KVM_XEN_EVTCHN_UPDATE) + return kvm_xen_eventfd_update(kvm, data); + if (data->u.evtchn.flags) + return -EINVAL; + + return kvm_xen_eventfd_assign(kvm, data); +} + +static bool kvm_xen_hcall_evtchn_send(struct kvm_vcpu *vcpu, u64 param, u64 *r) +{ + struct evtchnfd *evtchnfd; + struct evtchn_send send; + struct x86_exception e; + + /* Sanity check: this structure is the same for 32-bit and 64-bit */ + BUILD_BUG_ON(sizeof(send) != 4); + if (kvm_read_guest_virt(vcpu, param, &send, sizeof(send), &e)) { + *r = -EFAULT; + return true; + } + + /* + * evtchnfd is protected by kvm->srcu; the idr lookup instead + * is protected by RCU. + */ + rcu_read_lock(); + evtchnfd = idr_find(&vcpu->kvm->arch.xen.evtchn_ports, send.port); + rcu_read_unlock(); + if (!evtchnfd) + return false; + + if (evtchnfd->deliver.port.port) { + int ret = kvm_xen_set_evtchn(&evtchnfd->deliver.port, vcpu->kvm); + if (ret < 0 && ret != -ENOTCONN) + return false; + } else { + eventfd_signal(evtchnfd->deliver.eventfd.ctx, 1); + } + + *r = 0; + return true; +} + +void kvm_xen_init_vcpu(struct kvm_vcpu *vcpu) +{ + vcpu->arch.xen.vcpu_id = vcpu->vcpu_idx; + vcpu->arch.xen.poll_evtchn = 0; + + timer_setup(&vcpu->arch.xen.poll_timer, cancel_evtchn_poll, 0); + + kvm_gpc_init(&vcpu->arch.xen.runstate_cache, vcpu->kvm, NULL, + KVM_HOST_USES_PFN); + kvm_gpc_init(&vcpu->arch.xen.runstate2_cache, vcpu->kvm, NULL, + KVM_HOST_USES_PFN); + kvm_gpc_init(&vcpu->arch.xen.vcpu_info_cache, vcpu->kvm, NULL, + KVM_HOST_USES_PFN); + kvm_gpc_init(&vcpu->arch.xen.vcpu_time_info_cache, vcpu->kvm, NULL, + KVM_HOST_USES_PFN); +} + +void kvm_xen_destroy_vcpu(struct kvm_vcpu *vcpu) +{ + if (kvm_xen_timer_enabled(vcpu)) + kvm_xen_stop_timer(vcpu); + + kvm_gpc_deactivate(&vcpu->arch.xen.runstate_cache); + kvm_gpc_deactivate(&vcpu->arch.xen.runstate2_cache); + kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_info_cache); + kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_time_info_cache); + + del_timer_sync(&vcpu->arch.xen.poll_timer); +} + +void kvm_xen_update_tsc_info(struct kvm_vcpu *vcpu) +{ + struct kvm_cpuid_entry2 *entry; + u32 function; + + if (!vcpu->arch.xen.cpuid.base) + return; + + function = vcpu->arch.xen.cpuid.base | XEN_CPUID_LEAF(3); + if (function > vcpu->arch.xen.cpuid.limit) + return; + + entry = kvm_find_cpuid_entry_index(vcpu, function, 1); + if (entry) { + entry->ecx = vcpu->arch.hv_clock.tsc_to_system_mul; + entry->edx = vcpu->arch.hv_clock.tsc_shift; + } + + entry = kvm_find_cpuid_entry_index(vcpu, function, 2); + if (entry) + entry->eax = vcpu->arch.hw_tsc_khz; +} + +void kvm_xen_init_vm(struct kvm *kvm) +{ + mutex_init(&kvm->arch.xen.xen_lock); + idr_init(&kvm->arch.xen.evtchn_ports); + kvm_gpc_init(&kvm->arch.xen.shinfo_cache, kvm, NULL, KVM_HOST_USES_PFN); +} + +void kvm_xen_destroy_vm(struct kvm *kvm) +{ + struct evtchnfd *evtchnfd; + int i; + + kvm_gpc_deactivate(&kvm->arch.xen.shinfo_cache); + + idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i) { + if (!evtchnfd->deliver.port.port) + eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx); + kfree(evtchnfd); + } + idr_destroy(&kvm->arch.xen.evtchn_ports); + + if (kvm->arch.xen_hvm_config.msr) + static_branch_slow_dec_deferred(&kvm_xen_enabled); +} |