diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-11 08:27:49 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-11 08:27:49 +0000 |
commit | ace9429bb58fd418f0c81d4c2835699bddf6bde6 (patch) | |
tree | b2d64bc10158fdd5497876388cd68142ca374ed3 /arch/x86/mm/init_64.c | |
parent | Initial commit. (diff) | |
download | linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.tar.xz linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.zip |
Adding upstream version 6.6.15.upstream/6.6.15
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'arch/x86/mm/init_64.c')
-rw-r--r-- | arch/x86/mm/init_64.c | 1636 |
1 files changed, 1636 insertions, 0 deletions
diff --git a/arch/x86/mm/init_64.c b/arch/x86/mm/init_64.c new file mode 100644 index 0000000000..a190aae8ce --- /dev/null +++ b/arch/x86/mm/init_64.c @@ -0,0 +1,1636 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * linux/arch/x86_64/mm/init.c + * + * Copyright (C) 1995 Linus Torvalds + * Copyright (C) 2000 Pavel Machek <pavel@ucw.cz> + * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de> + */ + +#include <linux/signal.h> +#include <linux/sched.h> +#include <linux/kernel.h> +#include <linux/errno.h> +#include <linux/string.h> +#include <linux/types.h> +#include <linux/ptrace.h> +#include <linux/mman.h> +#include <linux/mm.h> +#include <linux/swap.h> +#include <linux/smp.h> +#include <linux/init.h> +#include <linux/initrd.h> +#include <linux/pagemap.h> +#include <linux/memblock.h> +#include <linux/proc_fs.h> +#include <linux/pci.h> +#include <linux/pfn.h> +#include <linux/poison.h> +#include <linux/dma-mapping.h> +#include <linux/memory.h> +#include <linux/memory_hotplug.h> +#include <linux/memremap.h> +#include <linux/nmi.h> +#include <linux/gfp.h> +#include <linux/kcore.h> +#include <linux/bootmem_info.h> + +#include <asm/processor.h> +#include <asm/bios_ebda.h> +#include <linux/uaccess.h> +#include <asm/pgalloc.h> +#include <asm/dma.h> +#include <asm/fixmap.h> +#include <asm/e820/api.h> +#include <asm/apic.h> +#include <asm/tlb.h> +#include <asm/mmu_context.h> +#include <asm/proto.h> +#include <asm/smp.h> +#include <asm/sections.h> +#include <asm/kdebug.h> +#include <asm/numa.h> +#include <asm/set_memory.h> +#include <asm/init.h> +#include <asm/uv/uv.h> +#include <asm/setup.h> +#include <asm/ftrace.h> + +#include "mm_internal.h" + +#include "ident_map.c" + +#define DEFINE_POPULATE(fname, type1, type2, init) \ +static inline void fname##_init(struct mm_struct *mm, \ + type1##_t *arg1, type2##_t *arg2, bool init) \ +{ \ + if (init) \ + fname##_safe(mm, arg1, arg2); \ + else \ + fname(mm, arg1, arg2); \ +} + +DEFINE_POPULATE(p4d_populate, p4d, pud, init) +DEFINE_POPULATE(pgd_populate, pgd, p4d, init) +DEFINE_POPULATE(pud_populate, pud, pmd, init) +DEFINE_POPULATE(pmd_populate_kernel, pmd, pte, init) + +#define DEFINE_ENTRY(type1, type2, init) \ +static inline void set_##type1##_init(type1##_t *arg1, \ + type2##_t arg2, bool init) \ +{ \ + if (init) \ + set_##type1##_safe(arg1, arg2); \ + else \ + set_##type1(arg1, arg2); \ +} + +DEFINE_ENTRY(p4d, p4d, init) +DEFINE_ENTRY(pud, pud, init) +DEFINE_ENTRY(pmd, pmd, init) +DEFINE_ENTRY(pte, pte, init) + +static inline pgprot_t prot_sethuge(pgprot_t prot) +{ + WARN_ON_ONCE(pgprot_val(prot) & _PAGE_PAT); + + return __pgprot(pgprot_val(prot) | _PAGE_PSE); +} + +/* + * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the + * physical space so we can cache the place of the first one and move + * around without checking the pgd every time. + */ + +/* Bits supported by the hardware: */ +pteval_t __supported_pte_mask __read_mostly = ~0; +/* Bits allowed in normal kernel mappings: */ +pteval_t __default_kernel_pte_mask __read_mostly = ~0; +EXPORT_SYMBOL_GPL(__supported_pte_mask); +/* Used in PAGE_KERNEL_* macros which are reasonably used out-of-tree: */ +EXPORT_SYMBOL(__default_kernel_pte_mask); + +int force_personality32; + +/* + * noexec32=on|off + * Control non executable heap for 32bit processes. + * + * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default) + * off PROT_READ implies PROT_EXEC + */ +static int __init nonx32_setup(char *str) +{ + if (!strcmp(str, "on")) + force_personality32 &= ~READ_IMPLIES_EXEC; + else if (!strcmp(str, "off")) + force_personality32 |= READ_IMPLIES_EXEC; + return 1; +} +__setup("noexec32=", nonx32_setup); + +static void sync_global_pgds_l5(unsigned long start, unsigned long end) +{ + unsigned long addr; + + for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) { + const pgd_t *pgd_ref = pgd_offset_k(addr); + struct page *page; + + /* Check for overflow */ + if (addr < start) + break; + + if (pgd_none(*pgd_ref)) + continue; + + spin_lock(&pgd_lock); + list_for_each_entry(page, &pgd_list, lru) { + pgd_t *pgd; + spinlock_t *pgt_lock; + + pgd = (pgd_t *)page_address(page) + pgd_index(addr); + /* the pgt_lock only for Xen */ + pgt_lock = &pgd_page_get_mm(page)->page_table_lock; + spin_lock(pgt_lock); + + if (!pgd_none(*pgd_ref) && !pgd_none(*pgd)) + BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref)); + + if (pgd_none(*pgd)) + set_pgd(pgd, *pgd_ref); + + spin_unlock(pgt_lock); + } + spin_unlock(&pgd_lock); + } +} + +static void sync_global_pgds_l4(unsigned long start, unsigned long end) +{ + unsigned long addr; + + for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) { + pgd_t *pgd_ref = pgd_offset_k(addr); + const p4d_t *p4d_ref; + struct page *page; + + /* + * With folded p4d, pgd_none() is always false, we need to + * handle synchronization on p4d level. + */ + MAYBE_BUILD_BUG_ON(pgd_none(*pgd_ref)); + p4d_ref = p4d_offset(pgd_ref, addr); + + if (p4d_none(*p4d_ref)) + continue; + + spin_lock(&pgd_lock); + list_for_each_entry(page, &pgd_list, lru) { + pgd_t *pgd; + p4d_t *p4d; + spinlock_t *pgt_lock; + + pgd = (pgd_t *)page_address(page) + pgd_index(addr); + p4d = p4d_offset(pgd, addr); + /* the pgt_lock only for Xen */ + pgt_lock = &pgd_page_get_mm(page)->page_table_lock; + spin_lock(pgt_lock); + + if (!p4d_none(*p4d_ref) && !p4d_none(*p4d)) + BUG_ON(p4d_pgtable(*p4d) + != p4d_pgtable(*p4d_ref)); + + if (p4d_none(*p4d)) + set_p4d(p4d, *p4d_ref); + + spin_unlock(pgt_lock); + } + spin_unlock(&pgd_lock); + } +} + +/* + * When memory was added make sure all the processes MM have + * suitable PGD entries in the local PGD level page. + */ +static void sync_global_pgds(unsigned long start, unsigned long end) +{ + if (pgtable_l5_enabled()) + sync_global_pgds_l5(start, end); + else + sync_global_pgds_l4(start, end); +} + +/* + * NOTE: This function is marked __ref because it calls __init function + * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0. + */ +static __ref void *spp_getpage(void) +{ + void *ptr; + + if (after_bootmem) + ptr = (void *) get_zeroed_page(GFP_ATOMIC); + else + ptr = memblock_alloc(PAGE_SIZE, PAGE_SIZE); + + if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) { + panic("set_pte_phys: cannot allocate page data %s\n", + after_bootmem ? "after bootmem" : ""); + } + + pr_debug("spp_getpage %p\n", ptr); + + return ptr; +} + +static p4d_t *fill_p4d(pgd_t *pgd, unsigned long vaddr) +{ + if (pgd_none(*pgd)) { + p4d_t *p4d = (p4d_t *)spp_getpage(); + pgd_populate(&init_mm, pgd, p4d); + if (p4d != p4d_offset(pgd, 0)) + printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n", + p4d, p4d_offset(pgd, 0)); + } + return p4d_offset(pgd, vaddr); +} + +static pud_t *fill_pud(p4d_t *p4d, unsigned long vaddr) +{ + if (p4d_none(*p4d)) { + pud_t *pud = (pud_t *)spp_getpage(); + p4d_populate(&init_mm, p4d, pud); + if (pud != pud_offset(p4d, 0)) + printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n", + pud, pud_offset(p4d, 0)); + } + return pud_offset(p4d, vaddr); +} + +static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr) +{ + if (pud_none(*pud)) { + pmd_t *pmd = (pmd_t *) spp_getpage(); + pud_populate(&init_mm, pud, pmd); + if (pmd != pmd_offset(pud, 0)) + printk(KERN_ERR "PAGETABLE BUG #02! %p <-> %p\n", + pmd, pmd_offset(pud, 0)); + } + return pmd_offset(pud, vaddr); +} + +static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr) +{ + if (pmd_none(*pmd)) { + pte_t *pte = (pte_t *) spp_getpage(); + pmd_populate_kernel(&init_mm, pmd, pte); + if (pte != pte_offset_kernel(pmd, 0)) + printk(KERN_ERR "PAGETABLE BUG #03!\n"); + } + return pte_offset_kernel(pmd, vaddr); +} + +static void __set_pte_vaddr(pud_t *pud, unsigned long vaddr, pte_t new_pte) +{ + pmd_t *pmd = fill_pmd(pud, vaddr); + pte_t *pte = fill_pte(pmd, vaddr); + + set_pte(pte, new_pte); + + /* + * It's enough to flush this one mapping. + * (PGE mappings get flushed as well) + */ + flush_tlb_one_kernel(vaddr); +} + +void set_pte_vaddr_p4d(p4d_t *p4d_page, unsigned long vaddr, pte_t new_pte) +{ + p4d_t *p4d = p4d_page + p4d_index(vaddr); + pud_t *pud = fill_pud(p4d, vaddr); + + __set_pte_vaddr(pud, vaddr, new_pte); +} + +void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte) +{ + pud_t *pud = pud_page + pud_index(vaddr); + + __set_pte_vaddr(pud, vaddr, new_pte); +} + +void set_pte_vaddr(unsigned long vaddr, pte_t pteval) +{ + pgd_t *pgd; + p4d_t *p4d_page; + + pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval)); + + pgd = pgd_offset_k(vaddr); + if (pgd_none(*pgd)) { + printk(KERN_ERR + "PGD FIXMAP MISSING, it should be setup in head.S!\n"); + return; + } + + p4d_page = p4d_offset(pgd, 0); + set_pte_vaddr_p4d(p4d_page, vaddr, pteval); +} + +pmd_t * __init populate_extra_pmd(unsigned long vaddr) +{ + pgd_t *pgd; + p4d_t *p4d; + pud_t *pud; + + pgd = pgd_offset_k(vaddr); + p4d = fill_p4d(pgd, vaddr); + pud = fill_pud(p4d, vaddr); + return fill_pmd(pud, vaddr); +} + +pte_t * __init populate_extra_pte(unsigned long vaddr) +{ + pmd_t *pmd; + + pmd = populate_extra_pmd(vaddr); + return fill_pte(pmd, vaddr); +} + +/* + * Create large page table mappings for a range of physical addresses. + */ +static void __init __init_extra_mapping(unsigned long phys, unsigned long size, + enum page_cache_mode cache) +{ + pgd_t *pgd; + p4d_t *p4d; + pud_t *pud; + pmd_t *pmd; + pgprot_t prot; + + pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) | + protval_4k_2_large(cachemode2protval(cache)); + BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK)); + for (; size; phys += PMD_SIZE, size -= PMD_SIZE) { + pgd = pgd_offset_k((unsigned long)__va(phys)); + if (pgd_none(*pgd)) { + p4d = (p4d_t *) spp_getpage(); + set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE | + _PAGE_USER)); + } + p4d = p4d_offset(pgd, (unsigned long)__va(phys)); + if (p4d_none(*p4d)) { + pud = (pud_t *) spp_getpage(); + set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE | + _PAGE_USER)); + } + pud = pud_offset(p4d, (unsigned long)__va(phys)); + if (pud_none(*pud)) { + pmd = (pmd_t *) spp_getpage(); + set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE | + _PAGE_USER)); + } + pmd = pmd_offset(pud, phys); + BUG_ON(!pmd_none(*pmd)); + set_pmd(pmd, __pmd(phys | pgprot_val(prot))); + } +} + +void __init init_extra_mapping_wb(unsigned long phys, unsigned long size) +{ + __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB); +} + +void __init init_extra_mapping_uc(unsigned long phys, unsigned long size) +{ + __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC); +} + +/* + * The head.S code sets up the kernel high mapping: + * + * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text) + * + * phys_base holds the negative offset to the kernel, which is added + * to the compile time generated pmds. This results in invalid pmds up + * to the point where we hit the physaddr 0 mapping. + * + * We limit the mappings to the region from _text to _brk_end. _brk_end + * is rounded up to the 2MB boundary. This catches the invalid pmds as + * well, as they are located before _text: + */ +void __init cleanup_highmap(void) +{ + unsigned long vaddr = __START_KERNEL_map; + unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE; + unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1; + pmd_t *pmd = level2_kernel_pgt; + + /* + * Native path, max_pfn_mapped is not set yet. + * Xen has valid max_pfn_mapped set in + * arch/x86/xen/mmu.c:xen_setup_kernel_pagetable(). + */ + if (max_pfn_mapped) + vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT); + + for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) { + if (pmd_none(*pmd)) + continue; + if (vaddr < (unsigned long) _text || vaddr > end) + set_pmd(pmd, __pmd(0)); + } +} + +/* + * Create PTE level page table mapping for physical addresses. + * It returns the last physical address mapped. + */ +static unsigned long __meminit +phys_pte_init(pte_t *pte_page, unsigned long paddr, unsigned long paddr_end, + pgprot_t prot, bool init) +{ + unsigned long pages = 0, paddr_next; + unsigned long paddr_last = paddr_end; + pte_t *pte; + int i; + + pte = pte_page + pte_index(paddr); + i = pte_index(paddr); + + for (; i < PTRS_PER_PTE; i++, paddr = paddr_next, pte++) { + paddr_next = (paddr & PAGE_MASK) + PAGE_SIZE; + if (paddr >= paddr_end) { + if (!after_bootmem && + !e820__mapped_any(paddr & PAGE_MASK, paddr_next, + E820_TYPE_RAM) && + !e820__mapped_any(paddr & PAGE_MASK, paddr_next, + E820_TYPE_RESERVED_KERN)) + set_pte_init(pte, __pte(0), init); + continue; + } + + /* + * We will re-use the existing mapping. + * Xen for example has some special requirements, like mapping + * pagetable pages as RO. So assume someone who pre-setup + * these mappings are more intelligent. + */ + if (!pte_none(*pte)) { + if (!after_bootmem) + pages++; + continue; + } + + if (0) + pr_info(" pte=%p addr=%lx pte=%016lx\n", pte, paddr, + pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL).pte); + pages++; + set_pte_init(pte, pfn_pte(paddr >> PAGE_SHIFT, prot), init); + paddr_last = (paddr & PAGE_MASK) + PAGE_SIZE; + } + + update_page_count(PG_LEVEL_4K, pages); + + return paddr_last; +} + +/* + * Create PMD level page table mapping for physical addresses. The virtual + * and physical address have to be aligned at this level. + * It returns the last physical address mapped. + */ +static unsigned long __meminit +phys_pmd_init(pmd_t *pmd_page, unsigned long paddr, unsigned long paddr_end, + unsigned long page_size_mask, pgprot_t prot, bool init) +{ + unsigned long pages = 0, paddr_next; + unsigned long paddr_last = paddr_end; + + int i = pmd_index(paddr); + + for (; i < PTRS_PER_PMD; i++, paddr = paddr_next) { + pmd_t *pmd = pmd_page + pmd_index(paddr); + pte_t *pte; + pgprot_t new_prot = prot; + + paddr_next = (paddr & PMD_MASK) + PMD_SIZE; + if (paddr >= paddr_end) { + if (!after_bootmem && + !e820__mapped_any(paddr & PMD_MASK, paddr_next, + E820_TYPE_RAM) && + !e820__mapped_any(paddr & PMD_MASK, paddr_next, + E820_TYPE_RESERVED_KERN)) + set_pmd_init(pmd, __pmd(0), init); + continue; + } + + if (!pmd_none(*pmd)) { + if (!pmd_large(*pmd)) { + spin_lock(&init_mm.page_table_lock); + pte = (pte_t *)pmd_page_vaddr(*pmd); + paddr_last = phys_pte_init(pte, paddr, + paddr_end, prot, + init); + spin_unlock(&init_mm.page_table_lock); + continue; + } + /* + * If we are ok with PG_LEVEL_2M mapping, then we will + * use the existing mapping, + * + * Otherwise, we will split the large page mapping but + * use the same existing protection bits except for + * large page, so that we don't violate Intel's TLB + * Application note (317080) which says, while changing + * the page sizes, new and old translations should + * not differ with respect to page frame and + * attributes. + */ + if (page_size_mask & (1 << PG_LEVEL_2M)) { + if (!after_bootmem) + pages++; + paddr_last = paddr_next; + continue; + } + new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd)); + } + + if (page_size_mask & (1<<PG_LEVEL_2M)) { + pages++; + spin_lock(&init_mm.page_table_lock); + set_pmd_init(pmd, + pfn_pmd(paddr >> PAGE_SHIFT, prot_sethuge(prot)), + init); + spin_unlock(&init_mm.page_table_lock); + paddr_last = paddr_next; + continue; + } + + pte = alloc_low_page(); + paddr_last = phys_pte_init(pte, paddr, paddr_end, new_prot, init); + + spin_lock(&init_mm.page_table_lock); + pmd_populate_kernel_init(&init_mm, pmd, pte, init); + spin_unlock(&init_mm.page_table_lock); + } + update_page_count(PG_LEVEL_2M, pages); + return paddr_last; +} + +/* + * Create PUD level page table mapping for physical addresses. The virtual + * and physical address do not have to be aligned at this level. KASLR can + * randomize virtual addresses up to this level. + * It returns the last physical address mapped. + */ +static unsigned long __meminit +phys_pud_init(pud_t *pud_page, unsigned long paddr, unsigned long paddr_end, + unsigned long page_size_mask, pgprot_t _prot, bool init) +{ + unsigned long pages = 0, paddr_next; + unsigned long paddr_last = paddr_end; + unsigned long vaddr = (unsigned long)__va(paddr); + int i = pud_index(vaddr); + + for (; i < PTRS_PER_PUD; i++, paddr = paddr_next) { + pud_t *pud; + pmd_t *pmd; + pgprot_t prot = _prot; + + vaddr = (unsigned long)__va(paddr); + pud = pud_page + pud_index(vaddr); + paddr_next = (paddr & PUD_MASK) + PUD_SIZE; + + if (paddr >= paddr_end) { + if (!after_bootmem && + !e820__mapped_any(paddr & PUD_MASK, paddr_next, + E820_TYPE_RAM) && + !e820__mapped_any(paddr & PUD_MASK, paddr_next, + E820_TYPE_RESERVED_KERN)) + set_pud_init(pud, __pud(0), init); + continue; + } + + if (!pud_none(*pud)) { + if (!pud_large(*pud)) { + pmd = pmd_offset(pud, 0); + paddr_last = phys_pmd_init(pmd, paddr, + paddr_end, + page_size_mask, + prot, init); + continue; + } + /* + * If we are ok with PG_LEVEL_1G mapping, then we will + * use the existing mapping. + * + * Otherwise, we will split the gbpage mapping but use + * the same existing protection bits except for large + * page, so that we don't violate Intel's TLB + * Application note (317080) which says, while changing + * the page sizes, new and old translations should + * not differ with respect to page frame and + * attributes. + */ + if (page_size_mask & (1 << PG_LEVEL_1G)) { + if (!after_bootmem) + pages++; + paddr_last = paddr_next; + continue; + } + prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud)); + } + + if (page_size_mask & (1<<PG_LEVEL_1G)) { + pages++; + spin_lock(&init_mm.page_table_lock); + set_pud_init(pud, + pfn_pud(paddr >> PAGE_SHIFT, prot_sethuge(prot)), + init); + spin_unlock(&init_mm.page_table_lock); + paddr_last = paddr_next; + continue; + } + + pmd = alloc_low_page(); + paddr_last = phys_pmd_init(pmd, paddr, paddr_end, + page_size_mask, prot, init); + + spin_lock(&init_mm.page_table_lock); + pud_populate_init(&init_mm, pud, pmd, init); + spin_unlock(&init_mm.page_table_lock); + } + + update_page_count(PG_LEVEL_1G, pages); + + return paddr_last; +} + +static unsigned long __meminit +phys_p4d_init(p4d_t *p4d_page, unsigned long paddr, unsigned long paddr_end, + unsigned long page_size_mask, pgprot_t prot, bool init) +{ + unsigned long vaddr, vaddr_end, vaddr_next, paddr_next, paddr_last; + + paddr_last = paddr_end; + vaddr = (unsigned long)__va(paddr); + vaddr_end = (unsigned long)__va(paddr_end); + + if (!pgtable_l5_enabled()) + return phys_pud_init((pud_t *) p4d_page, paddr, paddr_end, + page_size_mask, prot, init); + + for (; vaddr < vaddr_end; vaddr = vaddr_next) { + p4d_t *p4d = p4d_page + p4d_index(vaddr); + pud_t *pud; + + vaddr_next = (vaddr & P4D_MASK) + P4D_SIZE; + paddr = __pa(vaddr); + + if (paddr >= paddr_end) { + paddr_next = __pa(vaddr_next); + if (!after_bootmem && + !e820__mapped_any(paddr & P4D_MASK, paddr_next, + E820_TYPE_RAM) && + !e820__mapped_any(paddr & P4D_MASK, paddr_next, + E820_TYPE_RESERVED_KERN)) + set_p4d_init(p4d, __p4d(0), init); + continue; + } + + if (!p4d_none(*p4d)) { + pud = pud_offset(p4d, 0); + paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end), + page_size_mask, prot, init); + continue; + } + + pud = alloc_low_page(); + paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end), + page_size_mask, prot, init); + + spin_lock(&init_mm.page_table_lock); + p4d_populate_init(&init_mm, p4d, pud, init); + spin_unlock(&init_mm.page_table_lock); + } + + return paddr_last; +} + +static unsigned long __meminit +__kernel_physical_mapping_init(unsigned long paddr_start, + unsigned long paddr_end, + unsigned long page_size_mask, + pgprot_t prot, bool init) +{ + bool pgd_changed = false; + unsigned long vaddr, vaddr_start, vaddr_end, vaddr_next, paddr_last; + + paddr_last = paddr_end; + vaddr = (unsigned long)__va(paddr_start); + vaddr_end = (unsigned long)__va(paddr_end); + vaddr_start = vaddr; + + for (; vaddr < vaddr_end; vaddr = vaddr_next) { + pgd_t *pgd = pgd_offset_k(vaddr); + p4d_t *p4d; + + vaddr_next = (vaddr & PGDIR_MASK) + PGDIR_SIZE; + + if (pgd_val(*pgd)) { + p4d = (p4d_t *)pgd_page_vaddr(*pgd); + paddr_last = phys_p4d_init(p4d, __pa(vaddr), + __pa(vaddr_end), + page_size_mask, + prot, init); + continue; + } + + p4d = alloc_low_page(); + paddr_last = phys_p4d_init(p4d, __pa(vaddr), __pa(vaddr_end), + page_size_mask, prot, init); + + spin_lock(&init_mm.page_table_lock); + if (pgtable_l5_enabled()) + pgd_populate_init(&init_mm, pgd, p4d, init); + else + p4d_populate_init(&init_mm, p4d_offset(pgd, vaddr), + (pud_t *) p4d, init); + + spin_unlock(&init_mm.page_table_lock); + pgd_changed = true; + } + + if (pgd_changed) + sync_global_pgds(vaddr_start, vaddr_end - 1); + + return paddr_last; +} + + +/* + * Create page table mapping for the physical memory for specific physical + * addresses. Note that it can only be used to populate non-present entries. + * The virtual and physical addresses have to be aligned on PMD level + * down. It returns the last physical address mapped. + */ +unsigned long __meminit +kernel_physical_mapping_init(unsigned long paddr_start, + unsigned long paddr_end, + unsigned long page_size_mask, pgprot_t prot) +{ + return __kernel_physical_mapping_init(paddr_start, paddr_end, + page_size_mask, prot, true); +} + +/* + * This function is similar to kernel_physical_mapping_init() above with the + * exception that it uses set_{pud,pmd}() instead of the set_{pud,pte}_safe() + * when updating the mapping. The caller is responsible to flush the TLBs after + * the function returns. + */ +unsigned long __meminit +kernel_physical_mapping_change(unsigned long paddr_start, + unsigned long paddr_end, + unsigned long page_size_mask) +{ + return __kernel_physical_mapping_init(paddr_start, paddr_end, + page_size_mask, PAGE_KERNEL, + false); +} + +#ifndef CONFIG_NUMA +void __init initmem_init(void) +{ + memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0); +} +#endif + +void __init paging_init(void) +{ + sparse_init(); + + /* + * clear the default setting with node 0 + * note: don't use nodes_clear here, that is really clearing when + * numa support is not compiled in, and later node_set_state + * will not set it back. + */ + node_clear_state(0, N_MEMORY); + node_clear_state(0, N_NORMAL_MEMORY); + + zone_sizes_init(); +} + +#ifdef CONFIG_SPARSEMEM_VMEMMAP +#define PAGE_UNUSED 0xFD + +/* + * The unused vmemmap range, which was not yet memset(PAGE_UNUSED), ranges + * from unused_pmd_start to next PMD_SIZE boundary. + */ +static unsigned long unused_pmd_start __meminitdata; + +static void __meminit vmemmap_flush_unused_pmd(void) +{ + if (!unused_pmd_start) + return; + /* + * Clears (unused_pmd_start, PMD_END] + */ + memset((void *)unused_pmd_start, PAGE_UNUSED, + ALIGN(unused_pmd_start, PMD_SIZE) - unused_pmd_start); + unused_pmd_start = 0; +} + +#ifdef CONFIG_MEMORY_HOTPLUG +/* Returns true if the PMD is completely unused and thus it can be freed */ +static bool __meminit vmemmap_pmd_is_unused(unsigned long addr, unsigned long end) +{ + unsigned long start = ALIGN_DOWN(addr, PMD_SIZE); + + /* + * Flush the unused range cache to ensure that memchr_inv() will work + * for the whole range. + */ + vmemmap_flush_unused_pmd(); + memset((void *)addr, PAGE_UNUSED, end - addr); + + return !memchr_inv((void *)start, PAGE_UNUSED, PMD_SIZE); +} +#endif + +static void __meminit __vmemmap_use_sub_pmd(unsigned long start) +{ + /* + * As we expect to add in the same granularity as we remove, it's + * sufficient to mark only some piece used to block the memmap page from + * getting removed when removing some other adjacent memmap (just in + * case the first memmap never gets initialized e.g., because the memory + * block never gets onlined). + */ + memset((void *)start, 0, sizeof(struct page)); +} + +static void __meminit vmemmap_use_sub_pmd(unsigned long start, unsigned long end) +{ + /* + * We only optimize if the new used range directly follows the + * previously unused range (esp., when populating consecutive sections). + */ + if (unused_pmd_start == start) { + if (likely(IS_ALIGNED(end, PMD_SIZE))) + unused_pmd_start = 0; + else + unused_pmd_start = end; + return; + } + + /* + * If the range does not contiguously follows previous one, make sure + * to mark the unused range of the previous one so it can be removed. + */ + vmemmap_flush_unused_pmd(); + __vmemmap_use_sub_pmd(start); +} + + +static void __meminit vmemmap_use_new_sub_pmd(unsigned long start, unsigned long end) +{ + const unsigned long page = ALIGN_DOWN(start, PMD_SIZE); + + vmemmap_flush_unused_pmd(); + + /* + * Could be our memmap page is filled with PAGE_UNUSED already from a + * previous remove. Make sure to reset it. + */ + __vmemmap_use_sub_pmd(start); + + /* + * Mark with PAGE_UNUSED the unused parts of the new memmap range + */ + if (!IS_ALIGNED(start, PMD_SIZE)) + memset((void *)page, PAGE_UNUSED, start - page); + + /* + * We want to avoid memset(PAGE_UNUSED) when populating the vmemmap of + * consecutive sections. Remember for the last added PMD where the + * unused range begins. + */ + if (!IS_ALIGNED(end, PMD_SIZE)) + unused_pmd_start = end; +} +#endif + +/* + * Memory hotplug specific functions + */ +#ifdef CONFIG_MEMORY_HOTPLUG +/* + * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need + * updating. + */ +static void update_end_of_memory_vars(u64 start, u64 size) +{ + unsigned long end_pfn = PFN_UP(start + size); + + if (end_pfn > max_pfn) { + max_pfn = end_pfn; + max_low_pfn = end_pfn; + high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1; + } +} + +int add_pages(int nid, unsigned long start_pfn, unsigned long nr_pages, + struct mhp_params *params) +{ + int ret; + + ret = __add_pages(nid, start_pfn, nr_pages, params); + WARN_ON_ONCE(ret); + + /* update max_pfn, max_low_pfn and high_memory */ + update_end_of_memory_vars(start_pfn << PAGE_SHIFT, + nr_pages << PAGE_SHIFT); + + return ret; +} + +int arch_add_memory(int nid, u64 start, u64 size, + struct mhp_params *params) +{ + unsigned long start_pfn = start >> PAGE_SHIFT; + unsigned long nr_pages = size >> PAGE_SHIFT; + + init_memory_mapping(start, start + size, params->pgprot); + + return add_pages(nid, start_pfn, nr_pages, params); +} + +static void __meminit free_pagetable(struct page *page, int order) +{ + unsigned long magic; + unsigned int nr_pages = 1 << order; + + /* bootmem page has reserved flag */ + if (PageReserved(page)) { + __ClearPageReserved(page); + + magic = page->index; + if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) { + while (nr_pages--) + put_page_bootmem(page++); + } else + while (nr_pages--) + free_reserved_page(page++); + } else + free_pages((unsigned long)page_address(page), order); +} + +static void __meminit free_hugepage_table(struct page *page, + struct vmem_altmap *altmap) +{ + if (altmap) + vmem_altmap_free(altmap, PMD_SIZE / PAGE_SIZE); + else + free_pagetable(page, get_order(PMD_SIZE)); +} + +static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd) +{ + pte_t *pte; + int i; + + for (i = 0; i < PTRS_PER_PTE; i++) { + pte = pte_start + i; + if (!pte_none(*pte)) + return; + } + + /* free a pte talbe */ + free_pagetable(pmd_page(*pmd), 0); + spin_lock(&init_mm.page_table_lock); + pmd_clear(pmd); + spin_unlock(&init_mm.page_table_lock); +} + +static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud) +{ + pmd_t *pmd; + int i; + + for (i = 0; i < PTRS_PER_PMD; i++) { + pmd = pmd_start + i; + if (!pmd_none(*pmd)) + return; + } + + /* free a pmd talbe */ + free_pagetable(pud_page(*pud), 0); + spin_lock(&init_mm.page_table_lock); + pud_clear(pud); + spin_unlock(&init_mm.page_table_lock); +} + +static void __meminit free_pud_table(pud_t *pud_start, p4d_t *p4d) +{ + pud_t *pud; + int i; + + for (i = 0; i < PTRS_PER_PUD; i++) { + pud = pud_start + i; + if (!pud_none(*pud)) + return; + } + + /* free a pud talbe */ + free_pagetable(p4d_page(*p4d), 0); + spin_lock(&init_mm.page_table_lock); + p4d_clear(p4d); + spin_unlock(&init_mm.page_table_lock); +} + +static void __meminit +remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end, + bool direct) +{ + unsigned long next, pages = 0; + pte_t *pte; + phys_addr_t phys_addr; + + pte = pte_start + pte_index(addr); + for (; addr < end; addr = next, pte++) { + next = (addr + PAGE_SIZE) & PAGE_MASK; + if (next > end) + next = end; + + if (!pte_present(*pte)) + continue; + + /* + * We mapped [0,1G) memory as identity mapping when + * initializing, in arch/x86/kernel/head_64.S. These + * pagetables cannot be removed. + */ + phys_addr = pte_val(*pte) + (addr & PAGE_MASK); + if (phys_addr < (phys_addr_t)0x40000000) + return; + + if (!direct) + free_pagetable(pte_page(*pte), 0); + + spin_lock(&init_mm.page_table_lock); + pte_clear(&init_mm, addr, pte); + spin_unlock(&init_mm.page_table_lock); + + /* For non-direct mapping, pages means nothing. */ + pages++; + } + + /* Call free_pte_table() in remove_pmd_table(). */ + flush_tlb_all(); + if (direct) + update_page_count(PG_LEVEL_4K, -pages); +} + +static void __meminit +remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end, + bool direct, struct vmem_altmap *altmap) +{ + unsigned long next, pages = 0; + pte_t *pte_base; + pmd_t *pmd; + + pmd = pmd_start + pmd_index(addr); + for (; addr < end; addr = next, pmd++) { + next = pmd_addr_end(addr, end); + + if (!pmd_present(*pmd)) + continue; + + if (pmd_large(*pmd)) { + if (IS_ALIGNED(addr, PMD_SIZE) && + IS_ALIGNED(next, PMD_SIZE)) { + if (!direct) + free_hugepage_table(pmd_page(*pmd), + altmap); + + spin_lock(&init_mm.page_table_lock); + pmd_clear(pmd); + spin_unlock(&init_mm.page_table_lock); + pages++; + } +#ifdef CONFIG_SPARSEMEM_VMEMMAP + else if (vmemmap_pmd_is_unused(addr, next)) { + free_hugepage_table(pmd_page(*pmd), + altmap); + spin_lock(&init_mm.page_table_lock); + pmd_clear(pmd); + spin_unlock(&init_mm.page_table_lock); + } +#endif + continue; + } + + pte_base = (pte_t *)pmd_page_vaddr(*pmd); + remove_pte_table(pte_base, addr, next, direct); + free_pte_table(pte_base, pmd); + } + + /* Call free_pmd_table() in remove_pud_table(). */ + if (direct) + update_page_count(PG_LEVEL_2M, -pages); +} + +static void __meminit +remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end, + struct vmem_altmap *altmap, bool direct) +{ + unsigned long next, pages = 0; + pmd_t *pmd_base; + pud_t *pud; + + pud = pud_start + pud_index(addr); + for (; addr < end; addr = next, pud++) { + next = pud_addr_end(addr, end); + + if (!pud_present(*pud)) + continue; + + if (pud_large(*pud) && + IS_ALIGNED(addr, PUD_SIZE) && + IS_ALIGNED(next, PUD_SIZE)) { + spin_lock(&init_mm.page_table_lock); + pud_clear(pud); + spin_unlock(&init_mm.page_table_lock); + pages++; + continue; + } + + pmd_base = pmd_offset(pud, 0); + remove_pmd_table(pmd_base, addr, next, direct, altmap); + free_pmd_table(pmd_base, pud); + } + + if (direct) + update_page_count(PG_LEVEL_1G, -pages); +} + +static void __meminit +remove_p4d_table(p4d_t *p4d_start, unsigned long addr, unsigned long end, + struct vmem_altmap *altmap, bool direct) +{ + unsigned long next, pages = 0; + pud_t *pud_base; + p4d_t *p4d; + + p4d = p4d_start + p4d_index(addr); + for (; addr < end; addr = next, p4d++) { + next = p4d_addr_end(addr, end); + + if (!p4d_present(*p4d)) + continue; + + BUILD_BUG_ON(p4d_large(*p4d)); + + pud_base = pud_offset(p4d, 0); + remove_pud_table(pud_base, addr, next, altmap, direct); + /* + * For 4-level page tables we do not want to free PUDs, but in the + * 5-level case we should free them. This code will have to change + * to adapt for boot-time switching between 4 and 5 level page tables. + */ + if (pgtable_l5_enabled()) + free_pud_table(pud_base, p4d); + } + + if (direct) + update_page_count(PG_LEVEL_512G, -pages); +} + +/* start and end are both virtual address. */ +static void __meminit +remove_pagetable(unsigned long start, unsigned long end, bool direct, + struct vmem_altmap *altmap) +{ + unsigned long next; + unsigned long addr; + pgd_t *pgd; + p4d_t *p4d; + + for (addr = start; addr < end; addr = next) { + next = pgd_addr_end(addr, end); + + pgd = pgd_offset_k(addr); + if (!pgd_present(*pgd)) + continue; + + p4d = p4d_offset(pgd, 0); + remove_p4d_table(p4d, addr, next, altmap, direct); + } + + flush_tlb_all(); +} + +void __ref vmemmap_free(unsigned long start, unsigned long end, + struct vmem_altmap *altmap) +{ + VM_BUG_ON(!PAGE_ALIGNED(start)); + VM_BUG_ON(!PAGE_ALIGNED(end)); + + remove_pagetable(start, end, false, altmap); +} + +static void __meminit +kernel_physical_mapping_remove(unsigned long start, unsigned long end) +{ + start = (unsigned long)__va(start); + end = (unsigned long)__va(end); + + remove_pagetable(start, end, true, NULL); +} + +void __ref arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap) +{ + unsigned long start_pfn = start >> PAGE_SHIFT; + unsigned long nr_pages = size >> PAGE_SHIFT; + + __remove_pages(start_pfn, nr_pages, altmap); + kernel_physical_mapping_remove(start, start + size); +} +#endif /* CONFIG_MEMORY_HOTPLUG */ + +static struct kcore_list kcore_vsyscall; + +static void __init register_page_bootmem_info(void) +{ +#if defined(CONFIG_NUMA) || defined(CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP) + int i; + + for_each_online_node(i) + register_page_bootmem_info_node(NODE_DATA(i)); +#endif +} + +/* + * Pre-allocates page-table pages for the vmalloc area in the kernel page-table. + * Only the level which needs to be synchronized between all page-tables is + * allocated because the synchronization can be expensive. + */ +static void __init preallocate_vmalloc_pages(void) +{ + unsigned long addr; + const char *lvl; + + for (addr = VMALLOC_START; addr <= VMEMORY_END; addr = ALIGN(addr + 1, PGDIR_SIZE)) { + pgd_t *pgd = pgd_offset_k(addr); + p4d_t *p4d; + pud_t *pud; + + lvl = "p4d"; + p4d = p4d_alloc(&init_mm, pgd, addr); + if (!p4d) + goto failed; + + if (pgtable_l5_enabled()) + continue; + + /* + * The goal here is to allocate all possibly required + * hardware page tables pointed to by the top hardware + * level. + * + * On 4-level systems, the P4D layer is folded away and + * the above code does no preallocation. Below, go down + * to the pud _software_ level to ensure the second + * hardware level is allocated on 4-level systems too. + */ + lvl = "pud"; + pud = pud_alloc(&init_mm, p4d, addr); + if (!pud) + goto failed; + } + + return; + +failed: + + /* + * The pages have to be there now or they will be missing in + * process page-tables later. + */ + panic("Failed to pre-allocate %s pages for vmalloc area\n", lvl); +} + +void __init mem_init(void) +{ + pci_iommu_alloc(); + + /* clear_bss() already clear the empty_zero_page */ + + /* this will put all memory onto the freelists */ + memblock_free_all(); + after_bootmem = 1; + x86_init.hyper.init_after_bootmem(); + + /* + * Must be done after boot memory is put on freelist, because here we + * might set fields in deferred struct pages that have not yet been + * initialized, and memblock_free_all() initializes all the reserved + * deferred pages for us. + */ + register_page_bootmem_info(); + + /* Register memory areas for /proc/kcore */ + if (get_gate_vma(&init_mm)) + kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR, PAGE_SIZE, KCORE_USER); + + preallocate_vmalloc_pages(); +} + +#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT +int __init deferred_page_init_max_threads(const struct cpumask *node_cpumask) +{ + /* + * More CPUs always led to greater speedups on tested systems, up to + * all the nodes' CPUs. Use all since the system is otherwise idle + * now. + */ + return max_t(int, cpumask_weight(node_cpumask), 1); +} +#endif + +int kernel_set_to_readonly; + +void mark_rodata_ro(void) +{ + unsigned long start = PFN_ALIGN(_text); + unsigned long rodata_start = PFN_ALIGN(__start_rodata); + unsigned long end = (unsigned long)__end_rodata_hpage_align; + unsigned long text_end = PFN_ALIGN(_etext); + unsigned long rodata_end = PFN_ALIGN(__end_rodata); + unsigned long all_end; + + printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n", + (end - start) >> 10); + set_memory_ro(start, (end - start) >> PAGE_SHIFT); + + kernel_set_to_readonly = 1; + + /* + * The rodata/data/bss/brk section (but not the kernel text!) + * should also be not-executable. + * + * We align all_end to PMD_SIZE because the existing mapping + * is a full PMD. If we would align _brk_end to PAGE_SIZE we + * split the PMD and the reminder between _brk_end and the end + * of the PMD will remain mapped executable. + * + * Any PMD which was setup after the one which covers _brk_end + * has been zapped already via cleanup_highmem(). + */ + all_end = roundup((unsigned long)_brk_end, PMD_SIZE); + set_memory_nx(text_end, (all_end - text_end) >> PAGE_SHIFT); + + set_ftrace_ops_ro(); + +#ifdef CONFIG_CPA_DEBUG + printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end); + set_memory_rw(start, (end-start) >> PAGE_SHIFT); + + printk(KERN_INFO "Testing CPA: again\n"); + set_memory_ro(start, (end-start) >> PAGE_SHIFT); +#endif + + free_kernel_image_pages("unused kernel image (text/rodata gap)", + (void *)text_end, (void *)rodata_start); + free_kernel_image_pages("unused kernel image (rodata/data gap)", + (void *)rodata_end, (void *)_sdata); + + debug_checkwx(); +} + +/* + * Block size is the minimum amount of memory which can be hotplugged or + * hotremoved. It must be power of two and must be equal or larger than + * MIN_MEMORY_BLOCK_SIZE. + */ +#define MAX_BLOCK_SIZE (2UL << 30) + +/* Amount of ram needed to start using large blocks */ +#define MEM_SIZE_FOR_LARGE_BLOCK (64UL << 30) + +/* Adjustable memory block size */ +static unsigned long set_memory_block_size; +int __init set_memory_block_size_order(unsigned int order) +{ + unsigned long size = 1UL << order; + + if (size > MEM_SIZE_FOR_LARGE_BLOCK || size < MIN_MEMORY_BLOCK_SIZE) + return -EINVAL; + + set_memory_block_size = size; + return 0; +} + +static unsigned long probe_memory_block_size(void) +{ + unsigned long boot_mem_end = max_pfn << PAGE_SHIFT; + unsigned long bz; + + /* If memory block size has been set, then use it */ + bz = set_memory_block_size; + if (bz) + goto done; + + /* Use regular block if RAM is smaller than MEM_SIZE_FOR_LARGE_BLOCK */ + if (boot_mem_end < MEM_SIZE_FOR_LARGE_BLOCK) { + bz = MIN_MEMORY_BLOCK_SIZE; + goto done; + } + + /* + * Use max block size to minimize overhead on bare metal, where + * alignment for memory hotplug isn't a concern. + */ + if (!boot_cpu_has(X86_FEATURE_HYPERVISOR)) { + bz = MAX_BLOCK_SIZE; + goto done; + } + + /* Find the largest allowed block size that aligns to memory end */ + for (bz = MAX_BLOCK_SIZE; bz > MIN_MEMORY_BLOCK_SIZE; bz >>= 1) { + if (IS_ALIGNED(boot_mem_end, bz)) + break; + } +done: + pr_info("x86/mm: Memory block size: %ldMB\n", bz >> 20); + + return bz; +} + +static unsigned long memory_block_size_probed; +unsigned long memory_block_size_bytes(void) +{ + if (!memory_block_size_probed) + memory_block_size_probed = probe_memory_block_size(); + + return memory_block_size_probed; +} + +#ifdef CONFIG_SPARSEMEM_VMEMMAP +/* + * Initialise the sparsemem vmemmap using huge-pages at the PMD level. + */ +static long __meminitdata addr_start, addr_end; +static void __meminitdata *p_start, *p_end; +static int __meminitdata node_start; + +void __meminit vmemmap_set_pmd(pmd_t *pmd, void *p, int node, + unsigned long addr, unsigned long next) +{ + pte_t entry; + + entry = pfn_pte(__pa(p) >> PAGE_SHIFT, + PAGE_KERNEL_LARGE); + set_pmd(pmd, __pmd(pte_val(entry))); + + /* check to see if we have contiguous blocks */ + if (p_end != p || node_start != node) { + if (p_start) + pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n", + addr_start, addr_end-1, p_start, p_end-1, node_start); + addr_start = addr; + node_start = node; + p_start = p; + } + + addr_end = addr + PMD_SIZE; + p_end = p + PMD_SIZE; + + if (!IS_ALIGNED(addr, PMD_SIZE) || + !IS_ALIGNED(next, PMD_SIZE)) + vmemmap_use_new_sub_pmd(addr, next); +} + +int __meminit vmemmap_check_pmd(pmd_t *pmd, int node, + unsigned long addr, unsigned long next) +{ + int large = pmd_large(*pmd); + + if (pmd_large(*pmd)) { + vmemmap_verify((pte_t *)pmd, node, addr, next); + vmemmap_use_sub_pmd(addr, next); + } + + return large; +} + +int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node, + struct vmem_altmap *altmap) +{ + int err; + + VM_BUG_ON(!PAGE_ALIGNED(start)); + VM_BUG_ON(!PAGE_ALIGNED(end)); + + if (end - start < PAGES_PER_SECTION * sizeof(struct page)) + err = vmemmap_populate_basepages(start, end, node, NULL); + else if (boot_cpu_has(X86_FEATURE_PSE)) + err = vmemmap_populate_hugepages(start, end, node, altmap); + else if (altmap) { + pr_err_once("%s: no cpu support for altmap allocations\n", + __func__); + err = -ENOMEM; + } else + err = vmemmap_populate_basepages(start, end, node, NULL); + if (!err) + sync_global_pgds(start, end - 1); + return err; +} + +#ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE +void register_page_bootmem_memmap(unsigned long section_nr, + struct page *start_page, unsigned long nr_pages) +{ + unsigned long addr = (unsigned long)start_page; + unsigned long end = (unsigned long)(start_page + nr_pages); + unsigned long next; + pgd_t *pgd; + p4d_t *p4d; + pud_t *pud; + pmd_t *pmd; + unsigned int nr_pmd_pages; + struct page *page; + + for (; addr < end; addr = next) { + pte_t *pte = NULL; + + pgd = pgd_offset_k(addr); + if (pgd_none(*pgd)) { + next = (addr + PAGE_SIZE) & PAGE_MASK; + continue; + } + get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO); + + p4d = p4d_offset(pgd, addr); + if (p4d_none(*p4d)) { + next = (addr + PAGE_SIZE) & PAGE_MASK; + continue; + } + get_page_bootmem(section_nr, p4d_page(*p4d), MIX_SECTION_INFO); + + pud = pud_offset(p4d, addr); + if (pud_none(*pud)) { + next = (addr + PAGE_SIZE) & PAGE_MASK; + continue; + } + get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO); + + if (!boot_cpu_has(X86_FEATURE_PSE)) { + next = (addr + PAGE_SIZE) & PAGE_MASK; + pmd = pmd_offset(pud, addr); + if (pmd_none(*pmd)) + continue; + get_page_bootmem(section_nr, pmd_page(*pmd), + MIX_SECTION_INFO); + + pte = pte_offset_kernel(pmd, addr); + if (pte_none(*pte)) + continue; + get_page_bootmem(section_nr, pte_page(*pte), + SECTION_INFO); + } else { + next = pmd_addr_end(addr, end); + + pmd = pmd_offset(pud, addr); + if (pmd_none(*pmd)) + continue; + + nr_pmd_pages = 1 << get_order(PMD_SIZE); + page = pmd_page(*pmd); + while (nr_pmd_pages--) + get_page_bootmem(section_nr, page++, + SECTION_INFO); + } + } +} +#endif + +void __meminit vmemmap_populate_print_last(void) +{ + if (p_start) { + pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n", + addr_start, addr_end-1, p_start, p_end-1, node_start); + p_start = NULL; + p_end = NULL; + node_start = 0; + } +} +#endif |