diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-11 08:27:49 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-11 08:27:49 +0000 |
commit | ace9429bb58fd418f0c81d4c2835699bddf6bde6 (patch) | |
tree | b2d64bc10158fdd5497876388cd68142ca374ed3 /arch/x86/mm/numa.c | |
parent | Initial commit. (diff) | |
download | linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.tar.xz linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.zip |
Adding upstream version 6.6.15.upstream/6.6.15
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'arch/x86/mm/numa.c')
-rw-r--r-- | arch/x86/mm/numa.c | 1037 |
1 files changed, 1037 insertions, 0 deletions
diff --git a/arch/x86/mm/numa.c b/arch/x86/mm/numa.c new file mode 100644 index 0000000000..aa39d678fe --- /dev/null +++ b/arch/x86/mm/numa.c @@ -0,0 +1,1037 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* Common code for 32 and 64-bit NUMA */ +#include <linux/acpi.h> +#include <linux/kernel.h> +#include <linux/mm.h> +#include <linux/string.h> +#include <linux/init.h> +#include <linux/memblock.h> +#include <linux/mmzone.h> +#include <linux/ctype.h> +#include <linux/nodemask.h> +#include <linux/sched.h> +#include <linux/topology.h> +#include <linux/sort.h> + +#include <asm/e820/api.h> +#include <asm/proto.h> +#include <asm/dma.h> +#include <asm/amd_nb.h> + +#include "numa_internal.h" + +int numa_off; +nodemask_t numa_nodes_parsed __initdata; + +struct pglist_data *node_data[MAX_NUMNODES] __read_mostly; +EXPORT_SYMBOL(node_data); + +static struct numa_meminfo numa_meminfo __initdata_or_meminfo; +static struct numa_meminfo numa_reserved_meminfo __initdata_or_meminfo; + +static int numa_distance_cnt; +static u8 *numa_distance; + +static __init int numa_setup(char *opt) +{ + if (!opt) + return -EINVAL; + if (!strncmp(opt, "off", 3)) + numa_off = 1; + if (!strncmp(opt, "fake=", 5)) + return numa_emu_cmdline(opt + 5); + if (!strncmp(opt, "noacpi", 6)) + disable_srat(); + if (!strncmp(opt, "nohmat", 6)) + disable_hmat(); + return 0; +} +early_param("numa", numa_setup); + +/* + * apicid, cpu, node mappings + */ +s16 __apicid_to_node[MAX_LOCAL_APIC] = { + [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE +}; + +int numa_cpu_node(int cpu) +{ + int apicid = early_per_cpu(x86_cpu_to_apicid, cpu); + + if (apicid != BAD_APICID) + return __apicid_to_node[apicid]; + return NUMA_NO_NODE; +} + +cpumask_var_t node_to_cpumask_map[MAX_NUMNODES]; +EXPORT_SYMBOL(node_to_cpumask_map); + +/* + * Map cpu index to node index + */ +DEFINE_EARLY_PER_CPU(int, x86_cpu_to_node_map, NUMA_NO_NODE); +EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_node_map); + +void numa_set_node(int cpu, int node) +{ + int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map); + + /* early setting, no percpu area yet */ + if (cpu_to_node_map) { + cpu_to_node_map[cpu] = node; + return; + } + +#ifdef CONFIG_DEBUG_PER_CPU_MAPS + if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) { + printk(KERN_ERR "numa_set_node: invalid cpu# (%d)\n", cpu); + dump_stack(); + return; + } +#endif + per_cpu(x86_cpu_to_node_map, cpu) = node; + + set_cpu_numa_node(cpu, node); +} + +void numa_clear_node(int cpu) +{ + numa_set_node(cpu, NUMA_NO_NODE); +} + +/* + * Allocate node_to_cpumask_map based on number of available nodes + * Requires node_possible_map to be valid. + * + * Note: cpumask_of_node() is not valid until after this is done. + * (Use CONFIG_DEBUG_PER_CPU_MAPS to check this.) + */ +void __init setup_node_to_cpumask_map(void) +{ + unsigned int node; + + /* setup nr_node_ids if not done yet */ + if (nr_node_ids == MAX_NUMNODES) + setup_nr_node_ids(); + + /* allocate the map */ + for (node = 0; node < nr_node_ids; node++) + alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]); + + /* cpumask_of_node() will now work */ + pr_debug("Node to cpumask map for %u nodes\n", nr_node_ids); +} + +static int __init numa_add_memblk_to(int nid, u64 start, u64 end, + struct numa_meminfo *mi) +{ + /* ignore zero length blks */ + if (start == end) + return 0; + + /* whine about and ignore invalid blks */ + if (start > end || nid < 0 || nid >= MAX_NUMNODES) { + pr_warn("Warning: invalid memblk node %d [mem %#010Lx-%#010Lx]\n", + nid, start, end - 1); + return 0; + } + + if (mi->nr_blks >= NR_NODE_MEMBLKS) { + pr_err("too many memblk ranges\n"); + return -EINVAL; + } + + mi->blk[mi->nr_blks].start = start; + mi->blk[mi->nr_blks].end = end; + mi->blk[mi->nr_blks].nid = nid; + mi->nr_blks++; + return 0; +} + +/** + * numa_remove_memblk_from - Remove one numa_memblk from a numa_meminfo + * @idx: Index of memblk to remove + * @mi: numa_meminfo to remove memblk from + * + * Remove @idx'th numa_memblk from @mi by shifting @mi->blk[] and + * decrementing @mi->nr_blks. + */ +void __init numa_remove_memblk_from(int idx, struct numa_meminfo *mi) +{ + mi->nr_blks--; + memmove(&mi->blk[idx], &mi->blk[idx + 1], + (mi->nr_blks - idx) * sizeof(mi->blk[0])); +} + +/** + * numa_move_tail_memblk - Move a numa_memblk from one numa_meminfo to another + * @dst: numa_meminfo to append block to + * @idx: Index of memblk to remove + * @src: numa_meminfo to remove memblk from + */ +static void __init numa_move_tail_memblk(struct numa_meminfo *dst, int idx, + struct numa_meminfo *src) +{ + dst->blk[dst->nr_blks++] = src->blk[idx]; + numa_remove_memblk_from(idx, src); +} + +/** + * numa_add_memblk - Add one numa_memblk to numa_meminfo + * @nid: NUMA node ID of the new memblk + * @start: Start address of the new memblk + * @end: End address of the new memblk + * + * Add a new memblk to the default numa_meminfo. + * + * RETURNS: + * 0 on success, -errno on failure. + */ +int __init numa_add_memblk(int nid, u64 start, u64 end) +{ + return numa_add_memblk_to(nid, start, end, &numa_meminfo); +} + +/* Allocate NODE_DATA for a node on the local memory */ +static void __init alloc_node_data(int nid) +{ + const size_t nd_size = roundup(sizeof(pg_data_t), PAGE_SIZE); + u64 nd_pa; + void *nd; + int tnid; + + /* + * Allocate node data. Try node-local memory and then any node. + * Never allocate in DMA zone. + */ + nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid); + if (!nd_pa) { + pr_err("Cannot find %zu bytes in any node (initial node: %d)\n", + nd_size, nid); + return; + } + nd = __va(nd_pa); + + /* report and initialize */ + printk(KERN_INFO "NODE_DATA(%d) allocated [mem %#010Lx-%#010Lx]\n", nid, + nd_pa, nd_pa + nd_size - 1); + tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT); + if (tnid != nid) + printk(KERN_INFO " NODE_DATA(%d) on node %d\n", nid, tnid); + + node_data[nid] = nd; + memset(NODE_DATA(nid), 0, sizeof(pg_data_t)); + + node_set_online(nid); +} + +/** + * numa_cleanup_meminfo - Cleanup a numa_meminfo + * @mi: numa_meminfo to clean up + * + * Sanitize @mi by merging and removing unnecessary memblks. Also check for + * conflicts and clear unused memblks. + * + * RETURNS: + * 0 on success, -errno on failure. + */ +int __init numa_cleanup_meminfo(struct numa_meminfo *mi) +{ + const u64 low = 0; + const u64 high = PFN_PHYS(max_pfn); + int i, j, k; + + /* first, trim all entries */ + for (i = 0; i < mi->nr_blks; i++) { + struct numa_memblk *bi = &mi->blk[i]; + + /* move / save reserved memory ranges */ + if (!memblock_overlaps_region(&memblock.memory, + bi->start, bi->end - bi->start)) { + numa_move_tail_memblk(&numa_reserved_meminfo, i--, mi); + continue; + } + + /* make sure all non-reserved blocks are inside the limits */ + bi->start = max(bi->start, low); + + /* preserve info for non-RAM areas above 'max_pfn': */ + if (bi->end > high) { + numa_add_memblk_to(bi->nid, high, bi->end, + &numa_reserved_meminfo); + bi->end = high; + } + + /* and there's no empty block */ + if (bi->start >= bi->end) + numa_remove_memblk_from(i--, mi); + } + + /* merge neighboring / overlapping entries */ + for (i = 0; i < mi->nr_blks; i++) { + struct numa_memblk *bi = &mi->blk[i]; + + for (j = i + 1; j < mi->nr_blks; j++) { + struct numa_memblk *bj = &mi->blk[j]; + u64 start, end; + + /* + * See whether there are overlapping blocks. Whine + * about but allow overlaps of the same nid. They + * will be merged below. + */ + if (bi->end > bj->start && bi->start < bj->end) { + if (bi->nid != bj->nid) { + pr_err("node %d [mem %#010Lx-%#010Lx] overlaps with node %d [mem %#010Lx-%#010Lx]\n", + bi->nid, bi->start, bi->end - 1, + bj->nid, bj->start, bj->end - 1); + return -EINVAL; + } + pr_warn("Warning: node %d [mem %#010Lx-%#010Lx] overlaps with itself [mem %#010Lx-%#010Lx]\n", + bi->nid, bi->start, bi->end - 1, + bj->start, bj->end - 1); + } + + /* + * Join together blocks on the same node, holes + * between which don't overlap with memory on other + * nodes. + */ + if (bi->nid != bj->nid) + continue; + start = min(bi->start, bj->start); + end = max(bi->end, bj->end); + for (k = 0; k < mi->nr_blks; k++) { + struct numa_memblk *bk = &mi->blk[k]; + + if (bi->nid == bk->nid) + continue; + if (start < bk->end && end > bk->start) + break; + } + if (k < mi->nr_blks) + continue; + printk(KERN_INFO "NUMA: Node %d [mem %#010Lx-%#010Lx] + [mem %#010Lx-%#010Lx] -> [mem %#010Lx-%#010Lx]\n", + bi->nid, bi->start, bi->end - 1, bj->start, + bj->end - 1, start, end - 1); + bi->start = start; + bi->end = end; + numa_remove_memblk_from(j--, mi); + } + } + + /* clear unused ones */ + for (i = mi->nr_blks; i < ARRAY_SIZE(mi->blk); i++) { + mi->blk[i].start = mi->blk[i].end = 0; + mi->blk[i].nid = NUMA_NO_NODE; + } + + return 0; +} + +/* + * Set nodes, which have memory in @mi, in *@nodemask. + */ +static void __init numa_nodemask_from_meminfo(nodemask_t *nodemask, + const struct numa_meminfo *mi) +{ + int i; + + for (i = 0; i < ARRAY_SIZE(mi->blk); i++) + if (mi->blk[i].start != mi->blk[i].end && + mi->blk[i].nid != NUMA_NO_NODE) + node_set(mi->blk[i].nid, *nodemask); +} + +/** + * numa_reset_distance - Reset NUMA distance table + * + * The current table is freed. The next numa_set_distance() call will + * create a new one. + */ +void __init numa_reset_distance(void) +{ + size_t size = numa_distance_cnt * numa_distance_cnt * sizeof(numa_distance[0]); + + /* numa_distance could be 1LU marking allocation failure, test cnt */ + if (numa_distance_cnt) + memblock_free(numa_distance, size); + numa_distance_cnt = 0; + numa_distance = NULL; /* enable table creation */ +} + +static int __init numa_alloc_distance(void) +{ + nodemask_t nodes_parsed; + size_t size; + int i, j, cnt = 0; + u64 phys; + + /* size the new table and allocate it */ + nodes_parsed = numa_nodes_parsed; + numa_nodemask_from_meminfo(&nodes_parsed, &numa_meminfo); + + for_each_node_mask(i, nodes_parsed) + cnt = i; + cnt++; + size = cnt * cnt * sizeof(numa_distance[0]); + + phys = memblock_phys_alloc_range(size, PAGE_SIZE, 0, + PFN_PHYS(max_pfn_mapped)); + if (!phys) { + pr_warn("Warning: can't allocate distance table!\n"); + /* don't retry until explicitly reset */ + numa_distance = (void *)1LU; + return -ENOMEM; + } + + numa_distance = __va(phys); + numa_distance_cnt = cnt; + + /* fill with the default distances */ + for (i = 0; i < cnt; i++) + for (j = 0; j < cnt; j++) + numa_distance[i * cnt + j] = i == j ? + LOCAL_DISTANCE : REMOTE_DISTANCE; + printk(KERN_DEBUG "NUMA: Initialized distance table, cnt=%d\n", cnt); + + return 0; +} + +/** + * numa_set_distance - Set NUMA distance from one NUMA to another + * @from: the 'from' node to set distance + * @to: the 'to' node to set distance + * @distance: NUMA distance + * + * Set the distance from node @from to @to to @distance. If distance table + * doesn't exist, one which is large enough to accommodate all the currently + * known nodes will be created. + * + * If such table cannot be allocated, a warning is printed and further + * calls are ignored until the distance table is reset with + * numa_reset_distance(). + * + * If @from or @to is higher than the highest known node or lower than zero + * at the time of table creation or @distance doesn't make sense, the call + * is ignored. + * This is to allow simplification of specific NUMA config implementations. + */ +void __init numa_set_distance(int from, int to, int distance) +{ + if (!numa_distance && numa_alloc_distance() < 0) + return; + + if (from >= numa_distance_cnt || to >= numa_distance_cnt || + from < 0 || to < 0) { + pr_warn_once("Warning: node ids are out of bound, from=%d to=%d distance=%d\n", + from, to, distance); + return; + } + + if ((u8)distance != distance || + (from == to && distance != LOCAL_DISTANCE)) { + pr_warn_once("Warning: invalid distance parameter, from=%d to=%d distance=%d\n", + from, to, distance); + return; + } + + numa_distance[from * numa_distance_cnt + to] = distance; +} + +int __node_distance(int from, int to) +{ + if (from >= numa_distance_cnt || to >= numa_distance_cnt) + return from == to ? LOCAL_DISTANCE : REMOTE_DISTANCE; + return numa_distance[from * numa_distance_cnt + to]; +} +EXPORT_SYMBOL(__node_distance); + +/* + * Sanity check to catch more bad NUMA configurations (they are amazingly + * common). Make sure the nodes cover all memory. + */ +static bool __init numa_meminfo_cover_memory(const struct numa_meminfo *mi) +{ + u64 numaram, e820ram; + int i; + + numaram = 0; + for (i = 0; i < mi->nr_blks; i++) { + u64 s = mi->blk[i].start >> PAGE_SHIFT; + u64 e = mi->blk[i].end >> PAGE_SHIFT; + numaram += e - s; + numaram -= __absent_pages_in_range(mi->blk[i].nid, s, e); + if ((s64)numaram < 0) + numaram = 0; + } + + e820ram = max_pfn - absent_pages_in_range(0, max_pfn); + + /* We seem to lose 3 pages somewhere. Allow 1M of slack. */ + if ((s64)(e820ram - numaram) >= (1 << (20 - PAGE_SHIFT))) { + printk(KERN_ERR "NUMA: nodes only cover %LuMB of your %LuMB e820 RAM. Not used.\n", + (numaram << PAGE_SHIFT) >> 20, + (e820ram << PAGE_SHIFT) >> 20); + return false; + } + return true; +} + +/* + * Mark all currently memblock-reserved physical memory (which covers the + * kernel's own memory ranges) as hot-unswappable. + */ +static void __init numa_clear_kernel_node_hotplug(void) +{ + nodemask_t reserved_nodemask = NODE_MASK_NONE; + struct memblock_region *mb_region; + int i; + + /* + * We have to do some preprocessing of memblock regions, to + * make them suitable for reservation. + * + * At this time, all memory regions reserved by memblock are + * used by the kernel, but those regions are not split up + * along node boundaries yet, and don't necessarily have their + * node ID set yet either. + * + * So iterate over all memory known to the x86 architecture, + * and use those ranges to set the nid in memblock.reserved. + * This will split up the memblock regions along node + * boundaries and will set the node IDs as well. + */ + for (i = 0; i < numa_meminfo.nr_blks; i++) { + struct numa_memblk *mb = numa_meminfo.blk + i; + int ret; + + ret = memblock_set_node(mb->start, mb->end - mb->start, &memblock.reserved, mb->nid); + WARN_ON_ONCE(ret); + } + + /* + * Now go over all reserved memblock regions, to construct a + * node mask of all kernel reserved memory areas. + * + * [ Note, when booting with mem=nn[kMG] or in a kdump kernel, + * numa_meminfo might not include all memblock.reserved + * memory ranges, because quirks such as trim_snb_memory() + * reserve specific pages for Sandy Bridge graphics. ] + */ + for_each_reserved_mem_region(mb_region) { + int nid = memblock_get_region_node(mb_region); + + if (nid != MAX_NUMNODES) + node_set(nid, reserved_nodemask); + } + + /* + * Finally, clear the MEMBLOCK_HOTPLUG flag for all memory + * belonging to the reserved node mask. + * + * Note that this will include memory regions that reside + * on nodes that contain kernel memory - entire nodes + * become hot-unpluggable: + */ + for (i = 0; i < numa_meminfo.nr_blks; i++) { + struct numa_memblk *mb = numa_meminfo.blk + i; + + if (!node_isset(mb->nid, reserved_nodemask)) + continue; + + memblock_clear_hotplug(mb->start, mb->end - mb->start); + } +} + +static int __init numa_register_memblks(struct numa_meminfo *mi) +{ + int i, nid; + + /* Account for nodes with cpus and no memory */ + node_possible_map = numa_nodes_parsed; + numa_nodemask_from_meminfo(&node_possible_map, mi); + if (WARN_ON(nodes_empty(node_possible_map))) + return -EINVAL; + + for (i = 0; i < mi->nr_blks; i++) { + struct numa_memblk *mb = &mi->blk[i]; + memblock_set_node(mb->start, mb->end - mb->start, + &memblock.memory, mb->nid); + } + + /* + * At very early time, the kernel have to use some memory such as + * loading the kernel image. We cannot prevent this anyway. So any + * node the kernel resides in should be un-hotpluggable. + * + * And when we come here, alloc node data won't fail. + */ + numa_clear_kernel_node_hotplug(); + + /* + * If sections array is gonna be used for pfn -> nid mapping, check + * whether its granularity is fine enough. + */ + if (IS_ENABLED(NODE_NOT_IN_PAGE_FLAGS)) { + unsigned long pfn_align = node_map_pfn_alignment(); + + if (pfn_align && pfn_align < PAGES_PER_SECTION) { + pr_warn("Node alignment %LuMB < min %LuMB, rejecting NUMA config\n", + PFN_PHYS(pfn_align) >> 20, + PFN_PHYS(PAGES_PER_SECTION) >> 20); + return -EINVAL; + } + } + if (!numa_meminfo_cover_memory(mi)) + return -EINVAL; + + /* Finally register nodes. */ + for_each_node_mask(nid, node_possible_map) { + u64 start = PFN_PHYS(max_pfn); + u64 end = 0; + + for (i = 0; i < mi->nr_blks; i++) { + if (nid != mi->blk[i].nid) + continue; + start = min(mi->blk[i].start, start); + end = max(mi->blk[i].end, end); + } + + if (start >= end) + continue; + + alloc_node_data(nid); + } + + /* Dump memblock with node info and return. */ + memblock_dump_all(); + return 0; +} + +/* + * There are unfortunately some poorly designed mainboards around that + * only connect memory to a single CPU. This breaks the 1:1 cpu->node + * mapping. To avoid this fill in the mapping for all possible CPUs, + * as the number of CPUs is not known yet. We round robin the existing + * nodes. + */ +static void __init numa_init_array(void) +{ + int rr, i; + + rr = first_node(node_online_map); + for (i = 0; i < nr_cpu_ids; i++) { + if (early_cpu_to_node(i) != NUMA_NO_NODE) + continue; + numa_set_node(i, rr); + rr = next_node_in(rr, node_online_map); + } +} + +static int __init numa_init(int (*init_func)(void)) +{ + int i; + int ret; + + for (i = 0; i < MAX_LOCAL_APIC; i++) + set_apicid_to_node(i, NUMA_NO_NODE); + + nodes_clear(numa_nodes_parsed); + nodes_clear(node_possible_map); + nodes_clear(node_online_map); + memset(&numa_meminfo, 0, sizeof(numa_meminfo)); + WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.memory, + MAX_NUMNODES)); + WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.reserved, + MAX_NUMNODES)); + /* In case that parsing SRAT failed. */ + WARN_ON(memblock_clear_hotplug(0, ULLONG_MAX)); + numa_reset_distance(); + + ret = init_func(); + if (ret < 0) + return ret; + + /* + * We reset memblock back to the top-down direction + * here because if we configured ACPI_NUMA, we have + * parsed SRAT in init_func(). It is ok to have the + * reset here even if we did't configure ACPI_NUMA + * or acpi numa init fails and fallbacks to dummy + * numa init. + */ + memblock_set_bottom_up(false); + + ret = numa_cleanup_meminfo(&numa_meminfo); + if (ret < 0) + return ret; + + numa_emulation(&numa_meminfo, numa_distance_cnt); + + ret = numa_register_memblks(&numa_meminfo); + if (ret < 0) + return ret; + + for (i = 0; i < nr_cpu_ids; i++) { + int nid = early_cpu_to_node(i); + + if (nid == NUMA_NO_NODE) + continue; + if (!node_online(nid)) + numa_clear_node(i); + } + numa_init_array(); + + return 0; +} + +/** + * dummy_numa_init - Fallback dummy NUMA init + * + * Used if there's no underlying NUMA architecture, NUMA initialization + * fails, or NUMA is disabled on the command line. + * + * Must online at least one node and add memory blocks that cover all + * allowed memory. This function must not fail. + */ +static int __init dummy_numa_init(void) +{ + printk(KERN_INFO "%s\n", + numa_off ? "NUMA turned off" : "No NUMA configuration found"); + printk(KERN_INFO "Faking a node at [mem %#018Lx-%#018Lx]\n", + 0LLU, PFN_PHYS(max_pfn) - 1); + + node_set(0, numa_nodes_parsed); + numa_add_memblk(0, 0, PFN_PHYS(max_pfn)); + + return 0; +} + +/** + * x86_numa_init - Initialize NUMA + * + * Try each configured NUMA initialization method until one succeeds. The + * last fallback is dummy single node config encompassing whole memory and + * never fails. + */ +void __init x86_numa_init(void) +{ + if (!numa_off) { +#ifdef CONFIG_ACPI_NUMA + if (!numa_init(x86_acpi_numa_init)) + return; +#endif +#ifdef CONFIG_AMD_NUMA + if (!numa_init(amd_numa_init)) + return; +#endif + } + + numa_init(dummy_numa_init); +} + + +/* + * A node may exist which has one or more Generic Initiators but no CPUs and no + * memory. + * + * This function must be called after init_cpu_to_node(), to ensure that any + * memoryless CPU nodes have already been brought online, and before the + * node_data[nid] is needed for zone list setup in build_all_zonelists(). + * + * When this function is called, any nodes containing either memory and/or CPUs + * will already be online and there is no need to do anything extra, even if + * they also contain one or more Generic Initiators. + */ +void __init init_gi_nodes(void) +{ + int nid; + + /* + * Exclude this node from + * bringup_nonboot_cpus + * cpu_up + * __try_online_node + * register_one_node + * because node_subsys is not initialized yet. + * TODO remove dependency on node_online + */ + for_each_node_state(nid, N_GENERIC_INITIATOR) + if (!node_online(nid)) + node_set_online(nid); +} + +/* + * Setup early cpu_to_node. + * + * Populate cpu_to_node[] only if x86_cpu_to_apicid[], + * and apicid_to_node[] tables have valid entries for a CPU. + * This means we skip cpu_to_node[] initialisation for NUMA + * emulation and faking node case (when running a kernel compiled + * for NUMA on a non NUMA box), which is OK as cpu_to_node[] + * is already initialized in a round robin manner at numa_init_array, + * prior to this call, and this initialization is good enough + * for the fake NUMA cases. + * + * Called before the per_cpu areas are setup. + */ +void __init init_cpu_to_node(void) +{ + int cpu; + u16 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid); + + BUG_ON(cpu_to_apicid == NULL); + + for_each_possible_cpu(cpu) { + int node = numa_cpu_node(cpu); + + if (node == NUMA_NO_NODE) + continue; + + /* + * Exclude this node from + * bringup_nonboot_cpus + * cpu_up + * __try_online_node + * register_one_node + * because node_subsys is not initialized yet. + * TODO remove dependency on node_online + */ + if (!node_online(node)) + node_set_online(node); + + numa_set_node(cpu, node); + } +} + +#ifndef CONFIG_DEBUG_PER_CPU_MAPS + +# ifndef CONFIG_NUMA_EMU +void numa_add_cpu(int cpu) +{ + cpumask_set_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]); +} + +void numa_remove_cpu(int cpu) +{ + cpumask_clear_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]); +} +# endif /* !CONFIG_NUMA_EMU */ + +#else /* !CONFIG_DEBUG_PER_CPU_MAPS */ + +int __cpu_to_node(int cpu) +{ + if (early_per_cpu_ptr(x86_cpu_to_node_map)) { + printk(KERN_WARNING + "cpu_to_node(%d): usage too early!\n", cpu); + dump_stack(); + return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu]; + } + return per_cpu(x86_cpu_to_node_map, cpu); +} +EXPORT_SYMBOL(__cpu_to_node); + +/* + * Same function as cpu_to_node() but used if called before the + * per_cpu areas are setup. + */ +int early_cpu_to_node(int cpu) +{ + if (early_per_cpu_ptr(x86_cpu_to_node_map)) + return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu]; + + if (!cpu_possible(cpu)) { + printk(KERN_WARNING + "early_cpu_to_node(%d): no per_cpu area!\n", cpu); + dump_stack(); + return NUMA_NO_NODE; + } + return per_cpu(x86_cpu_to_node_map, cpu); +} + +void debug_cpumask_set_cpu(int cpu, int node, bool enable) +{ + struct cpumask *mask; + + if (node == NUMA_NO_NODE) { + /* early_cpu_to_node() already emits a warning and trace */ + return; + } + mask = node_to_cpumask_map[node]; + if (!cpumask_available(mask)) { + pr_err("node_to_cpumask_map[%i] NULL\n", node); + dump_stack(); + return; + } + + if (enable) + cpumask_set_cpu(cpu, mask); + else + cpumask_clear_cpu(cpu, mask); + + printk(KERN_DEBUG "%s cpu %d node %d: mask now %*pbl\n", + enable ? "numa_add_cpu" : "numa_remove_cpu", + cpu, node, cpumask_pr_args(mask)); + return; +} + +# ifndef CONFIG_NUMA_EMU +static void numa_set_cpumask(int cpu, bool enable) +{ + debug_cpumask_set_cpu(cpu, early_cpu_to_node(cpu), enable); +} + +void numa_add_cpu(int cpu) +{ + numa_set_cpumask(cpu, true); +} + +void numa_remove_cpu(int cpu) +{ + numa_set_cpumask(cpu, false); +} +# endif /* !CONFIG_NUMA_EMU */ + +/* + * Returns a pointer to the bitmask of CPUs on Node 'node'. + */ +const struct cpumask *cpumask_of_node(int node) +{ + if ((unsigned)node >= nr_node_ids) { + printk(KERN_WARNING + "cpumask_of_node(%d): (unsigned)node >= nr_node_ids(%u)\n", + node, nr_node_ids); + dump_stack(); + return cpu_none_mask; + } + if (!cpumask_available(node_to_cpumask_map[node])) { + printk(KERN_WARNING + "cpumask_of_node(%d): no node_to_cpumask_map!\n", + node); + dump_stack(); + return cpu_online_mask; + } + return node_to_cpumask_map[node]; +} +EXPORT_SYMBOL(cpumask_of_node); + +#endif /* !CONFIG_DEBUG_PER_CPU_MAPS */ + +#ifdef CONFIG_NUMA_KEEP_MEMINFO +static int meminfo_to_nid(struct numa_meminfo *mi, u64 start) +{ + int i; + + for (i = 0; i < mi->nr_blks; i++) + if (mi->blk[i].start <= start && mi->blk[i].end > start) + return mi->blk[i].nid; + return NUMA_NO_NODE; +} + +int phys_to_target_node(phys_addr_t start) +{ + int nid = meminfo_to_nid(&numa_meminfo, start); + + /* + * Prefer online nodes, but if reserved memory might be + * hot-added continue the search with reserved ranges. + */ + if (nid != NUMA_NO_NODE) + return nid; + + return meminfo_to_nid(&numa_reserved_meminfo, start); +} +EXPORT_SYMBOL_GPL(phys_to_target_node); + +int memory_add_physaddr_to_nid(u64 start) +{ + int nid = meminfo_to_nid(&numa_meminfo, start); + + if (nid == NUMA_NO_NODE) + nid = numa_meminfo.blk[0].nid; + return nid; +} +EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid); + +static int __init cmp_memblk(const void *a, const void *b) +{ + const struct numa_memblk *ma = *(const struct numa_memblk **)a; + const struct numa_memblk *mb = *(const struct numa_memblk **)b; + + return ma->start - mb->start; +} + +static struct numa_memblk *numa_memblk_list[NR_NODE_MEMBLKS] __initdata; + +/** + * numa_fill_memblks - Fill gaps in numa_meminfo memblks + * @start: address to begin fill + * @end: address to end fill + * + * Find and extend numa_meminfo memblks to cover the @start-@end + * physical address range, such that the first memblk includes + * @start, the last memblk includes @end, and any gaps in between + * are filled. + * + * RETURNS: + * 0 : Success + * NUMA_NO_MEMBLK : No memblk exists in @start-@end range + */ + +int __init numa_fill_memblks(u64 start, u64 end) +{ + struct numa_memblk **blk = &numa_memblk_list[0]; + struct numa_meminfo *mi = &numa_meminfo; + int count = 0; + u64 prev_end; + + /* + * Create a list of pointers to numa_meminfo memblks that + * overlap start, end. Exclude (start == bi->end) since + * end addresses in both a CFMWS range and a memblk range + * are exclusive. + * + * This list of pointers is used to make in-place changes + * that fill out the numa_meminfo memblks. + */ + for (int i = 0; i < mi->nr_blks; i++) { + struct numa_memblk *bi = &mi->blk[i]; + + if (start < bi->end && end >= bi->start) { + blk[count] = &mi->blk[i]; + count++; + } + } + if (!count) + return NUMA_NO_MEMBLK; + + /* Sort the list of pointers in memblk->start order */ + sort(&blk[0], count, sizeof(blk[0]), cmp_memblk, NULL); + + /* Make sure the first/last memblks include start/end */ + blk[0]->start = min(blk[0]->start, start); + blk[count - 1]->end = max(blk[count - 1]->end, end); + + /* + * Fill any gaps by tracking the previous memblks + * end address and backfilling to it if needed. + */ + prev_end = blk[0]->end; + for (int i = 1; i < count; i++) { + struct numa_memblk *curr = blk[i]; + + if (prev_end >= curr->start) { + if (prev_end < curr->end) + prev_end = curr->end; + } else { + curr->start = prev_end; + prev_end = curr->end; + } + } + return 0; +} + +#endif |