summaryrefslogtreecommitdiffstats
path: root/arch/x86/mm
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-11 08:27:49 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-11 08:27:49 +0000
commitace9429bb58fd418f0c81d4c2835699bddf6bde6 (patch)
treeb2d64bc10158fdd5497876388cd68142ca374ed3 /arch/x86/mm
parentInitial commit. (diff)
downloadlinux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.tar.xz
linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.zip
Adding upstream version 6.6.15.upstream/6.6.15
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'arch/x86/mm')
-rw-r--r--arch/x86/mm/Makefile69
-rw-r--r--arch/x86/mm/amdtopology.c183
-rw-r--r--arch/x86/mm/cpu_entry_area.c279
-rw-r--r--arch/x86/mm/debug_pagetables.c75
-rw-r--r--arch/x86/mm/dump_pagetables.c471
-rw-r--r--arch/x86/mm/extable.c369
-rw-r--r--arch/x86/mm/fault.c1565
-rw-r--r--arch/x86/mm/highmem_32.c34
-rw-r--r--arch/x86/mm/hugetlbpage.c174
-rw-r--r--arch/x86/mm/ident_map.c147
-rw-r--r--arch/x86/mm/init.c1101
-rw-r--r--arch/x86/mm/init_32.c805
-rw-r--r--arch/x86/mm/init_64.c1636
-rw-r--r--arch/x86/mm/iomap_32.c65
-rw-r--r--arch/x86/mm/ioremap.c936
-rw-r--r--arch/x86/mm/kasan_init_64.c456
-rw-r--r--arch/x86/mm/kaslr.c181
-rw-r--r--arch/x86/mm/kmmio.c632
-rw-r--r--arch/x86/mm/kmsan_shadow.c20
-rw-r--r--arch/x86/mm/maccess.c33
-rw-r--r--arch/x86/mm/mem_encrypt.c88
-rw-r--r--arch/x86/mm/mem_encrypt_amd.c559
-rw-r--r--arch/x86/mm/mem_encrypt_boot.S162
-rw-r--r--arch/x86/mm/mem_encrypt_identity.c618
-rw-r--r--arch/x86/mm/mm_internal.h28
-rw-r--r--arch/x86/mm/mmap.c250
-rw-r--r--arch/x86/mm/mmio-mod.c463
-rw-r--r--arch/x86/mm/numa.c1037
-rw-r--r--arch/x86/mm/numa_32.c59
-rw-r--r--arch/x86/mm/numa_64.c13
-rw-r--r--arch/x86/mm/numa_emulation.c585
-rw-r--r--arch/x86/mm/numa_internal.h34
-rw-r--r--arch/x86/mm/pat/Makefile5
-rw-r--r--arch/x86/mm/pat/cpa-test.c277
-rw-r--r--arch/x86/mm/pat/memtype.c1194
-rw-r--r--arch/x86/mm/pat/memtype.h49
-rw-r--r--arch/x86/mm/pat/memtype_interval.c194
-rw-r--r--arch/x86/mm/pat/set_memory.c2477
-rw-r--r--arch/x86/mm/pf_in.c516
-rw-r--r--arch/x86/mm/pf_in.h24
-rw-r--r--arch/x86/mm/pgprot.c63
-rw-r--r--arch/x86/mm/pgtable.c923
-rw-r--r--arch/x86/mm/pgtable_32.c104
-rw-r--r--arch/x86/mm/physaddr.c100
-rw-r--r--arch/x86/mm/physaddr.h11
-rw-r--r--arch/x86/mm/pkeys.c197
-rw-r--r--arch/x86/mm/pti.c666
-rw-r--r--arch/x86/mm/srat.c113
-rw-r--r--arch/x86/mm/testmmiotrace.c146
-rw-r--r--arch/x86/mm/tlb.c1353
50 files changed, 21539 insertions, 0 deletions
diff --git a/arch/x86/mm/Makefile b/arch/x86/mm/Makefile
new file mode 100644
index 0000000000..c80febc44c
--- /dev/null
+++ b/arch/x86/mm/Makefile
@@ -0,0 +1,69 @@
+# SPDX-License-Identifier: GPL-2.0
+# Kernel does not boot with instrumentation of tlb.c and mem_encrypt*.c
+KCOV_INSTRUMENT_tlb.o := n
+KCOV_INSTRUMENT_mem_encrypt.o := n
+KCOV_INSTRUMENT_mem_encrypt_amd.o := n
+KCOV_INSTRUMENT_mem_encrypt_identity.o := n
+KCOV_INSTRUMENT_pgprot.o := n
+
+KASAN_SANITIZE_mem_encrypt.o := n
+KASAN_SANITIZE_mem_encrypt_amd.o := n
+KASAN_SANITIZE_mem_encrypt_identity.o := n
+KASAN_SANITIZE_pgprot.o := n
+
+# Disable KCSAN entirely, because otherwise we get warnings that some functions
+# reference __initdata sections.
+KCSAN_SANITIZE := n
+# Avoid recursion by not calling KMSAN hooks for CEA code.
+KMSAN_SANITIZE_cpu_entry_area.o := n
+
+ifdef CONFIG_FUNCTION_TRACER
+CFLAGS_REMOVE_mem_encrypt.o = -pg
+CFLAGS_REMOVE_mem_encrypt_amd.o = -pg
+CFLAGS_REMOVE_mem_encrypt_identity.o = -pg
+CFLAGS_REMOVE_pgprot.o = -pg
+endif
+
+obj-y := init.o init_$(BITS).o fault.o ioremap.o extable.o mmap.o \
+ pgtable.o physaddr.o tlb.o cpu_entry_area.o maccess.o pgprot.o
+
+obj-y += pat/
+
+# Make sure __phys_addr has no stackprotector
+CFLAGS_physaddr.o := -fno-stack-protector
+CFLAGS_mem_encrypt_identity.o := -fno-stack-protector
+
+CFLAGS_fault.o := -I $(srctree)/$(src)/../include/asm/trace
+
+obj-$(CONFIG_X86_32) += pgtable_32.o iomap_32.o
+
+obj-$(CONFIG_HUGETLB_PAGE) += hugetlbpage.o
+obj-$(CONFIG_PTDUMP_CORE) += dump_pagetables.o
+obj-$(CONFIG_PTDUMP_DEBUGFS) += debug_pagetables.o
+
+obj-$(CONFIG_HIGHMEM) += highmem_32.o
+
+KASAN_SANITIZE_kasan_init_$(BITS).o := n
+obj-$(CONFIG_KASAN) += kasan_init_$(BITS).o
+
+KMSAN_SANITIZE_kmsan_shadow.o := n
+obj-$(CONFIG_KMSAN) += kmsan_shadow.o
+
+obj-$(CONFIG_MMIOTRACE) += mmiotrace.o
+mmiotrace-y := kmmio.o pf_in.o mmio-mod.o
+obj-$(CONFIG_MMIOTRACE_TEST) += testmmiotrace.o
+
+obj-$(CONFIG_NUMA) += numa.o numa_$(BITS).o
+obj-$(CONFIG_AMD_NUMA) += amdtopology.o
+obj-$(CONFIG_ACPI_NUMA) += srat.o
+obj-$(CONFIG_NUMA_EMU) += numa_emulation.o
+
+obj-$(CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS) += pkeys.o
+obj-$(CONFIG_RANDOMIZE_MEMORY) += kaslr.o
+obj-$(CONFIG_PAGE_TABLE_ISOLATION) += pti.o
+
+obj-$(CONFIG_X86_MEM_ENCRYPT) += mem_encrypt.o
+obj-$(CONFIG_AMD_MEM_ENCRYPT) += mem_encrypt_amd.o
+
+obj-$(CONFIG_AMD_MEM_ENCRYPT) += mem_encrypt_identity.o
+obj-$(CONFIG_AMD_MEM_ENCRYPT) += mem_encrypt_boot.o
diff --git a/arch/x86/mm/amdtopology.c b/arch/x86/mm/amdtopology.c
new file mode 100644
index 0000000000..b3ca7d23e4
--- /dev/null
+++ b/arch/x86/mm/amdtopology.c
@@ -0,0 +1,183 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * AMD NUMA support.
+ * Discover the memory map and associated nodes.
+ *
+ * This version reads it directly from the AMD northbridge.
+ *
+ * Copyright 2002,2003 Andi Kleen, SuSE Labs.
+ */
+#include <linux/kernel.h>
+#include <linux/init.h>
+#include <linux/string.h>
+#include <linux/nodemask.h>
+#include <linux/memblock.h>
+
+#include <asm/io.h>
+#include <linux/pci_ids.h>
+#include <linux/acpi.h>
+#include <asm/types.h>
+#include <asm/mmzone.h>
+#include <asm/proto.h>
+#include <asm/e820/api.h>
+#include <asm/pci-direct.h>
+#include <asm/numa.h>
+#include <asm/mpspec.h>
+#include <asm/apic.h>
+#include <asm/amd_nb.h>
+
+static unsigned char __initdata nodeids[8];
+
+static __init int find_northbridge(void)
+{
+ int num;
+
+ for (num = 0; num < 32; num++) {
+ u32 header;
+
+ header = read_pci_config(0, num, 0, 0x00);
+ if (header != (PCI_VENDOR_ID_AMD | (0x1100<<16)) &&
+ header != (PCI_VENDOR_ID_AMD | (0x1200<<16)) &&
+ header != (PCI_VENDOR_ID_AMD | (0x1300<<16)))
+ continue;
+
+ header = read_pci_config(0, num, 1, 0x00);
+ if (header != (PCI_VENDOR_ID_AMD | (0x1101<<16)) &&
+ header != (PCI_VENDOR_ID_AMD | (0x1201<<16)) &&
+ header != (PCI_VENDOR_ID_AMD | (0x1301<<16)))
+ continue;
+ return num;
+ }
+
+ return -ENOENT;
+}
+
+int __init amd_numa_init(void)
+{
+ u64 start = PFN_PHYS(0);
+ u64 end = PFN_PHYS(max_pfn);
+ unsigned numnodes;
+ u64 prevbase;
+ int i, j, nb;
+ u32 nodeid, reg;
+ unsigned int bits, cores, apicid_base;
+
+ if (!early_pci_allowed())
+ return -EINVAL;
+
+ nb = find_northbridge();
+ if (nb < 0)
+ return nb;
+
+ pr_info("Scanning NUMA topology in Northbridge %d\n", nb);
+
+ reg = read_pci_config(0, nb, 0, 0x60);
+ numnodes = ((reg >> 4) & 0xF) + 1;
+ if (numnodes <= 1)
+ return -ENOENT;
+
+ pr_info("Number of physical nodes %d\n", numnodes);
+
+ prevbase = 0;
+ for (i = 0; i < 8; i++) {
+ u64 base, limit;
+
+ base = read_pci_config(0, nb, 1, 0x40 + i*8);
+ limit = read_pci_config(0, nb, 1, 0x44 + i*8);
+
+ nodeids[i] = nodeid = limit & 7;
+ if ((base & 3) == 0) {
+ if (i < numnodes)
+ pr_info("Skipping disabled node %d\n", i);
+ continue;
+ }
+ if (nodeid >= numnodes) {
+ pr_info("Ignoring excess node %d (%Lx:%Lx)\n", nodeid,
+ base, limit);
+ continue;
+ }
+
+ if (!limit) {
+ pr_info("Skipping node entry %d (base %Lx)\n",
+ i, base);
+ continue;
+ }
+ if ((base >> 8) & 3 || (limit >> 8) & 3) {
+ pr_err("Node %d using interleaving mode %Lx/%Lx\n",
+ nodeid, (base >> 8) & 3, (limit >> 8) & 3);
+ return -EINVAL;
+ }
+ if (node_isset(nodeid, numa_nodes_parsed)) {
+ pr_info("Node %d already present, skipping\n",
+ nodeid);
+ continue;
+ }
+
+ limit >>= 16;
+ limit++;
+ limit <<= 24;
+
+ if (limit > end)
+ limit = end;
+ if (limit <= base)
+ continue;
+
+ base >>= 16;
+ base <<= 24;
+
+ if (base < start)
+ base = start;
+ if (limit > end)
+ limit = end;
+ if (limit == base) {
+ pr_err("Empty node %d\n", nodeid);
+ continue;
+ }
+ if (limit < base) {
+ pr_err("Node %d bogus settings %Lx-%Lx.\n",
+ nodeid, base, limit);
+ continue;
+ }
+
+ /* Could sort here, but pun for now. Should not happen anyroads. */
+ if (prevbase > base) {
+ pr_err("Node map not sorted %Lx,%Lx\n",
+ prevbase, base);
+ return -EINVAL;
+ }
+
+ pr_info("Node %d MemBase %016Lx Limit %016Lx\n",
+ nodeid, base, limit);
+
+ prevbase = base;
+ numa_add_memblk(nodeid, base, limit);
+ node_set(nodeid, numa_nodes_parsed);
+ }
+
+ if (nodes_empty(numa_nodes_parsed))
+ return -ENOENT;
+
+ /*
+ * We seem to have valid NUMA configuration. Map apicids to nodes
+ * using the coreid bits from early_identify_cpu.
+ */
+ bits = boot_cpu_data.x86_coreid_bits;
+ cores = 1 << bits;
+ apicid_base = 0;
+
+ /*
+ * get boot-time SMP configuration:
+ */
+ early_get_smp_config();
+
+ if (boot_cpu_physical_apicid > 0) {
+ pr_info("BSP APIC ID: %02x\n", boot_cpu_physical_apicid);
+ apicid_base = boot_cpu_physical_apicid;
+ }
+
+ for_each_node_mask(i, numa_nodes_parsed)
+ for (j = apicid_base; j < cores + apicid_base; j++)
+ set_apicid_to_node((i << bits) + j, i);
+
+ return 0;
+}
diff --git a/arch/x86/mm/cpu_entry_area.c b/arch/x86/mm/cpu_entry_area.c
new file mode 100644
index 0000000000..e91500a809
--- /dev/null
+++ b/arch/x86/mm/cpu_entry_area.c
@@ -0,0 +1,279 @@
+// SPDX-License-Identifier: GPL-2.0
+
+#include <linux/spinlock.h>
+#include <linux/percpu.h>
+#include <linux/kallsyms.h>
+#include <linux/kcore.h>
+#include <linux/pgtable.h>
+
+#include <asm/cpu_entry_area.h>
+#include <asm/fixmap.h>
+#include <asm/desc.h>
+#include <asm/kasan.h>
+#include <asm/setup.h>
+
+static DEFINE_PER_CPU_PAGE_ALIGNED(struct entry_stack_page, entry_stack_storage);
+
+#ifdef CONFIG_X86_64
+static DEFINE_PER_CPU_PAGE_ALIGNED(struct exception_stacks, exception_stacks);
+DEFINE_PER_CPU(struct cea_exception_stacks*, cea_exception_stacks);
+
+static DEFINE_PER_CPU_READ_MOSTLY(unsigned long, _cea_offset);
+
+static __always_inline unsigned int cea_offset(unsigned int cpu)
+{
+ return per_cpu(_cea_offset, cpu);
+}
+
+static __init void init_cea_offsets(void)
+{
+ unsigned int max_cea;
+ unsigned int i, j;
+
+ if (!kaslr_enabled()) {
+ for_each_possible_cpu(i)
+ per_cpu(_cea_offset, i) = i;
+ return;
+ }
+
+ max_cea = (CPU_ENTRY_AREA_MAP_SIZE - PAGE_SIZE) / CPU_ENTRY_AREA_SIZE;
+
+ /* O(sodding terrible) */
+ for_each_possible_cpu(i) {
+ unsigned int cea;
+
+again:
+ cea = get_random_u32_below(max_cea);
+
+ for_each_possible_cpu(j) {
+ if (cea_offset(j) == cea)
+ goto again;
+
+ if (i == j)
+ break;
+ }
+
+ per_cpu(_cea_offset, i) = cea;
+ }
+}
+#else /* !X86_64 */
+DECLARE_PER_CPU_PAGE_ALIGNED(struct doublefault_stack, doublefault_stack);
+
+static __always_inline unsigned int cea_offset(unsigned int cpu)
+{
+ return cpu;
+}
+static inline void init_cea_offsets(void) { }
+#endif
+
+/* Is called from entry code, so must be noinstr */
+noinstr struct cpu_entry_area *get_cpu_entry_area(int cpu)
+{
+ unsigned long va = CPU_ENTRY_AREA_PER_CPU + cea_offset(cpu) * CPU_ENTRY_AREA_SIZE;
+ BUILD_BUG_ON(sizeof(struct cpu_entry_area) % PAGE_SIZE != 0);
+
+ return (struct cpu_entry_area *) va;
+}
+EXPORT_SYMBOL(get_cpu_entry_area);
+
+void cea_set_pte(void *cea_vaddr, phys_addr_t pa, pgprot_t flags)
+{
+ unsigned long va = (unsigned long) cea_vaddr;
+ pte_t pte = pfn_pte(pa >> PAGE_SHIFT, flags);
+
+ /*
+ * The cpu_entry_area is shared between the user and kernel
+ * page tables. All of its ptes can safely be global.
+ * _PAGE_GLOBAL gets reused to help indicate PROT_NONE for
+ * non-present PTEs, so be careful not to set it in that
+ * case to avoid confusion.
+ */
+ if (boot_cpu_has(X86_FEATURE_PGE) &&
+ (pgprot_val(flags) & _PAGE_PRESENT))
+ pte = pte_set_flags(pte, _PAGE_GLOBAL);
+
+ set_pte_vaddr(va, pte);
+}
+
+static void __init
+cea_map_percpu_pages(void *cea_vaddr, void *ptr, int pages, pgprot_t prot)
+{
+ for ( ; pages; pages--, cea_vaddr+= PAGE_SIZE, ptr += PAGE_SIZE)
+ cea_set_pte(cea_vaddr, per_cpu_ptr_to_phys(ptr), prot);
+}
+
+static void __init percpu_setup_debug_store(unsigned int cpu)
+{
+#ifdef CONFIG_CPU_SUP_INTEL
+ unsigned int npages;
+ void *cea;
+
+ if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
+ return;
+
+ cea = &get_cpu_entry_area(cpu)->cpu_debug_store;
+ npages = sizeof(struct debug_store) / PAGE_SIZE;
+ BUILD_BUG_ON(sizeof(struct debug_store) % PAGE_SIZE != 0);
+ cea_map_percpu_pages(cea, &per_cpu(cpu_debug_store, cpu), npages,
+ PAGE_KERNEL);
+
+ cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers;
+ /*
+ * Force the population of PMDs for not yet allocated per cpu
+ * memory like debug store buffers.
+ */
+ npages = sizeof(struct debug_store_buffers) / PAGE_SIZE;
+ for (; npages; npages--, cea += PAGE_SIZE)
+ cea_set_pte(cea, 0, PAGE_NONE);
+#endif
+}
+
+#ifdef CONFIG_X86_64
+
+#define cea_map_stack(name) do { \
+ npages = sizeof(estacks->name## _stack) / PAGE_SIZE; \
+ cea_map_percpu_pages(cea->estacks.name## _stack, \
+ estacks->name## _stack, npages, PAGE_KERNEL); \
+ } while (0)
+
+static void __init percpu_setup_exception_stacks(unsigned int cpu)
+{
+ struct exception_stacks *estacks = per_cpu_ptr(&exception_stacks, cpu);
+ struct cpu_entry_area *cea = get_cpu_entry_area(cpu);
+ unsigned int npages;
+
+ BUILD_BUG_ON(sizeof(exception_stacks) % PAGE_SIZE != 0);
+
+ per_cpu(cea_exception_stacks, cpu) = &cea->estacks;
+
+ /*
+ * The exceptions stack mappings in the per cpu area are protected
+ * by guard pages so each stack must be mapped separately. DB2 is
+ * not mapped; it just exists to catch triple nesting of #DB.
+ */
+ cea_map_stack(DF);
+ cea_map_stack(NMI);
+ cea_map_stack(DB);
+ cea_map_stack(MCE);
+
+ if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT)) {
+ if (cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT)) {
+ cea_map_stack(VC);
+ cea_map_stack(VC2);
+ }
+ }
+}
+#else
+static inline void percpu_setup_exception_stacks(unsigned int cpu)
+{
+ struct cpu_entry_area *cea = get_cpu_entry_area(cpu);
+
+ cea_map_percpu_pages(&cea->doublefault_stack,
+ &per_cpu(doublefault_stack, cpu), 1, PAGE_KERNEL);
+}
+#endif
+
+/* Setup the fixmap mappings only once per-processor */
+static void __init setup_cpu_entry_area(unsigned int cpu)
+{
+ struct cpu_entry_area *cea = get_cpu_entry_area(cpu);
+#ifdef CONFIG_X86_64
+ /* On 64-bit systems, we use a read-only fixmap GDT and TSS. */
+ pgprot_t gdt_prot = PAGE_KERNEL_RO;
+ pgprot_t tss_prot = PAGE_KERNEL_RO;
+#else
+ /*
+ * On 32-bit systems, the GDT cannot be read-only because
+ * our double fault handler uses a task gate, and entering through
+ * a task gate needs to change an available TSS to busy. If the
+ * GDT is read-only, that will triple fault. The TSS cannot be
+ * read-only because the CPU writes to it on task switches.
+ */
+ pgprot_t gdt_prot = PAGE_KERNEL;
+ pgprot_t tss_prot = PAGE_KERNEL;
+#endif
+
+ kasan_populate_shadow_for_vaddr(cea, CPU_ENTRY_AREA_SIZE,
+ early_cpu_to_node(cpu));
+
+ cea_set_pte(&cea->gdt, get_cpu_gdt_paddr(cpu), gdt_prot);
+
+ cea_map_percpu_pages(&cea->entry_stack_page,
+ per_cpu_ptr(&entry_stack_storage, cpu), 1,
+ PAGE_KERNEL);
+
+ /*
+ * The Intel SDM says (Volume 3, 7.2.1):
+ *
+ * Avoid placing a page boundary in the part of the TSS that the
+ * processor reads during a task switch (the first 104 bytes). The
+ * processor may not correctly perform address translations if a
+ * boundary occurs in this area. During a task switch, the processor
+ * reads and writes into the first 104 bytes of each TSS (using
+ * contiguous physical addresses beginning with the physical address
+ * of the first byte of the TSS). So, after TSS access begins, if
+ * part of the 104 bytes is not physically contiguous, the processor
+ * will access incorrect information without generating a page-fault
+ * exception.
+ *
+ * There are also a lot of errata involving the TSS spanning a page
+ * boundary. Assert that we're not doing that.
+ */
+ BUILD_BUG_ON((offsetof(struct tss_struct, x86_tss) ^
+ offsetofend(struct tss_struct, x86_tss)) & PAGE_MASK);
+ BUILD_BUG_ON(sizeof(struct tss_struct) % PAGE_SIZE != 0);
+ /*
+ * VMX changes the host TR limit to 0x67 after a VM exit. This is
+ * okay, since 0x67 covers the size of struct x86_hw_tss. Make sure
+ * that this is correct.
+ */
+ BUILD_BUG_ON(offsetof(struct tss_struct, x86_tss) != 0);
+ BUILD_BUG_ON(sizeof(struct x86_hw_tss) != 0x68);
+
+ cea_map_percpu_pages(&cea->tss, &per_cpu(cpu_tss_rw, cpu),
+ sizeof(struct tss_struct) / PAGE_SIZE, tss_prot);
+
+#ifdef CONFIG_X86_32
+ per_cpu(cpu_entry_area, cpu) = cea;
+#endif
+
+ percpu_setup_exception_stacks(cpu);
+
+ percpu_setup_debug_store(cpu);
+}
+
+static __init void setup_cpu_entry_area_ptes(void)
+{
+#ifdef CONFIG_X86_32
+ unsigned long start, end;
+
+ /* The +1 is for the readonly IDT: */
+ BUILD_BUG_ON((CPU_ENTRY_AREA_PAGES+1)*PAGE_SIZE != CPU_ENTRY_AREA_MAP_SIZE);
+ BUG_ON(CPU_ENTRY_AREA_BASE & ~PMD_MASK);
+
+ start = CPU_ENTRY_AREA_BASE;
+ end = start + CPU_ENTRY_AREA_MAP_SIZE;
+
+ /* Careful here: start + PMD_SIZE might wrap around */
+ for (; start < end && start >= CPU_ENTRY_AREA_BASE; start += PMD_SIZE)
+ populate_extra_pte(start);
+#endif
+}
+
+void __init setup_cpu_entry_areas(void)
+{
+ unsigned int cpu;
+
+ init_cea_offsets();
+
+ setup_cpu_entry_area_ptes();
+
+ for_each_possible_cpu(cpu)
+ setup_cpu_entry_area(cpu);
+
+ /*
+ * This is the last essential update to swapper_pgdir which needs
+ * to be synchronized to initial_page_table on 32bit.
+ */
+ sync_initial_page_table();
+}
diff --git a/arch/x86/mm/debug_pagetables.c b/arch/x86/mm/debug_pagetables.c
new file mode 100644
index 0000000000..b43301cb2a
--- /dev/null
+++ b/arch/x86/mm/debug_pagetables.c
@@ -0,0 +1,75 @@
+// SPDX-License-Identifier: GPL-2.0-only
+#include <linux/debugfs.h>
+#include <linux/efi.h>
+#include <linux/module.h>
+#include <linux/seq_file.h>
+#include <linux/pgtable.h>
+
+static int ptdump_show(struct seq_file *m, void *v)
+{
+ ptdump_walk_pgd_level_debugfs(m, &init_mm, false);
+ return 0;
+}
+
+DEFINE_SHOW_ATTRIBUTE(ptdump);
+
+static int ptdump_curknl_show(struct seq_file *m, void *v)
+{
+ if (current->mm->pgd)
+ ptdump_walk_pgd_level_debugfs(m, current->mm, false);
+ return 0;
+}
+
+DEFINE_SHOW_ATTRIBUTE(ptdump_curknl);
+
+#ifdef CONFIG_PAGE_TABLE_ISOLATION
+static int ptdump_curusr_show(struct seq_file *m, void *v)
+{
+ if (current->mm->pgd)
+ ptdump_walk_pgd_level_debugfs(m, current->mm, true);
+ return 0;
+}
+
+DEFINE_SHOW_ATTRIBUTE(ptdump_curusr);
+#endif
+
+#if defined(CONFIG_EFI) && defined(CONFIG_X86_64)
+static int ptdump_efi_show(struct seq_file *m, void *v)
+{
+ if (efi_mm.pgd)
+ ptdump_walk_pgd_level_debugfs(m, &efi_mm, false);
+ return 0;
+}
+
+DEFINE_SHOW_ATTRIBUTE(ptdump_efi);
+#endif
+
+static struct dentry *dir;
+
+static int __init pt_dump_debug_init(void)
+{
+ dir = debugfs_create_dir("page_tables", NULL);
+
+ debugfs_create_file("kernel", 0400, dir, NULL, &ptdump_fops);
+ debugfs_create_file("current_kernel", 0400, dir, NULL,
+ &ptdump_curknl_fops);
+
+#ifdef CONFIG_PAGE_TABLE_ISOLATION
+ debugfs_create_file("current_user", 0400, dir, NULL,
+ &ptdump_curusr_fops);
+#endif
+#if defined(CONFIG_EFI) && defined(CONFIG_X86_64)
+ debugfs_create_file("efi", 0400, dir, NULL, &ptdump_efi_fops);
+#endif
+ return 0;
+}
+
+static void __exit pt_dump_debug_exit(void)
+{
+ debugfs_remove_recursive(dir);
+}
+
+module_init(pt_dump_debug_init);
+module_exit(pt_dump_debug_exit);
+MODULE_AUTHOR("Arjan van de Ven <arjan@linux.intel.com>");
+MODULE_DESCRIPTION("Kernel debugging helper that dumps pagetables");
diff --git a/arch/x86/mm/dump_pagetables.c b/arch/x86/mm/dump_pagetables.c
new file mode 100644
index 0000000000..e1b599ecbb
--- /dev/null
+++ b/arch/x86/mm/dump_pagetables.c
@@ -0,0 +1,471 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Debug helper to dump the current kernel pagetables of the system
+ * so that we can see what the various memory ranges are set to.
+ *
+ * (C) Copyright 2008 Intel Corporation
+ *
+ * Author: Arjan van de Ven <arjan@linux.intel.com>
+ */
+
+#include <linux/debugfs.h>
+#include <linux/kasan.h>
+#include <linux/mm.h>
+#include <linux/init.h>
+#include <linux/sched.h>
+#include <linux/seq_file.h>
+#include <linux/highmem.h>
+#include <linux/pci.h>
+#include <linux/ptdump.h>
+
+#include <asm/e820/types.h>
+
+/*
+ * The dumper groups pagetable entries of the same type into one, and for
+ * that it needs to keep some state when walking, and flush this state
+ * when a "break" in the continuity is found.
+ */
+struct pg_state {
+ struct ptdump_state ptdump;
+ int level;
+ pgprotval_t current_prot;
+ pgprotval_t effective_prot;
+ pgprotval_t prot_levels[5];
+ unsigned long start_address;
+ const struct addr_marker *marker;
+ unsigned long lines;
+ bool to_dmesg;
+ bool check_wx;
+ unsigned long wx_pages;
+ struct seq_file *seq;
+};
+
+struct addr_marker {
+ unsigned long start_address;
+ const char *name;
+ unsigned long max_lines;
+};
+
+/* Address space markers hints */
+
+#ifdef CONFIG_X86_64
+
+enum address_markers_idx {
+ USER_SPACE_NR = 0,
+ KERNEL_SPACE_NR,
+#ifdef CONFIG_MODIFY_LDT_SYSCALL
+ LDT_NR,
+#endif
+ LOW_KERNEL_NR,
+ VMALLOC_START_NR,
+ VMEMMAP_START_NR,
+#ifdef CONFIG_KASAN
+ KASAN_SHADOW_START_NR,
+ KASAN_SHADOW_END_NR,
+#endif
+ CPU_ENTRY_AREA_NR,
+#ifdef CONFIG_X86_ESPFIX64
+ ESPFIX_START_NR,
+#endif
+#ifdef CONFIG_EFI
+ EFI_END_NR,
+#endif
+ HIGH_KERNEL_NR,
+ MODULES_VADDR_NR,
+ MODULES_END_NR,
+ FIXADDR_START_NR,
+ END_OF_SPACE_NR,
+};
+
+static struct addr_marker address_markers[] = {
+ [USER_SPACE_NR] = { 0, "User Space" },
+ [KERNEL_SPACE_NR] = { (1UL << 63), "Kernel Space" },
+ [LOW_KERNEL_NR] = { 0UL, "Low Kernel Mapping" },
+ [VMALLOC_START_NR] = { 0UL, "vmalloc() Area" },
+ [VMEMMAP_START_NR] = { 0UL, "Vmemmap" },
+#ifdef CONFIG_KASAN
+ /*
+ * These fields get initialized with the (dynamic)
+ * KASAN_SHADOW_{START,END} values in pt_dump_init().
+ */
+ [KASAN_SHADOW_START_NR] = { 0UL, "KASAN shadow" },
+ [KASAN_SHADOW_END_NR] = { 0UL, "KASAN shadow end" },
+#endif
+#ifdef CONFIG_MODIFY_LDT_SYSCALL
+ [LDT_NR] = { 0UL, "LDT remap" },
+#endif
+ [CPU_ENTRY_AREA_NR] = { CPU_ENTRY_AREA_BASE,"CPU entry Area" },
+#ifdef CONFIG_X86_ESPFIX64
+ [ESPFIX_START_NR] = { ESPFIX_BASE_ADDR, "ESPfix Area", 16 },
+#endif
+#ifdef CONFIG_EFI
+ [EFI_END_NR] = { EFI_VA_END, "EFI Runtime Services" },
+#endif
+ [HIGH_KERNEL_NR] = { __START_KERNEL_map, "High Kernel Mapping" },
+ [MODULES_VADDR_NR] = { MODULES_VADDR, "Modules" },
+ [MODULES_END_NR] = { MODULES_END, "End Modules" },
+ [FIXADDR_START_NR] = { FIXADDR_START, "Fixmap Area" },
+ [END_OF_SPACE_NR] = { -1, NULL }
+};
+
+#define INIT_PGD ((pgd_t *) &init_top_pgt)
+
+#else /* CONFIG_X86_64 */
+
+enum address_markers_idx {
+ USER_SPACE_NR = 0,
+ KERNEL_SPACE_NR,
+ VMALLOC_START_NR,
+ VMALLOC_END_NR,
+#ifdef CONFIG_HIGHMEM
+ PKMAP_BASE_NR,
+#endif
+#ifdef CONFIG_MODIFY_LDT_SYSCALL
+ LDT_NR,
+#endif
+ CPU_ENTRY_AREA_NR,
+ FIXADDR_START_NR,
+ END_OF_SPACE_NR,
+};
+
+static struct addr_marker address_markers[] = {
+ [USER_SPACE_NR] = { 0, "User Space" },
+ [KERNEL_SPACE_NR] = { PAGE_OFFSET, "Kernel Mapping" },
+ [VMALLOC_START_NR] = { 0UL, "vmalloc() Area" },
+ [VMALLOC_END_NR] = { 0UL, "vmalloc() End" },
+#ifdef CONFIG_HIGHMEM
+ [PKMAP_BASE_NR] = { 0UL, "Persistent kmap() Area" },
+#endif
+#ifdef CONFIG_MODIFY_LDT_SYSCALL
+ [LDT_NR] = { 0UL, "LDT remap" },
+#endif
+ [CPU_ENTRY_AREA_NR] = { 0UL, "CPU entry area" },
+ [FIXADDR_START_NR] = { 0UL, "Fixmap area" },
+ [END_OF_SPACE_NR] = { -1, NULL }
+};
+
+#define INIT_PGD (swapper_pg_dir)
+
+#endif /* !CONFIG_X86_64 */
+
+/* Multipliers for offsets within the PTEs */
+#define PTE_LEVEL_MULT (PAGE_SIZE)
+#define PMD_LEVEL_MULT (PTRS_PER_PTE * PTE_LEVEL_MULT)
+#define PUD_LEVEL_MULT (PTRS_PER_PMD * PMD_LEVEL_MULT)
+#define P4D_LEVEL_MULT (PTRS_PER_PUD * PUD_LEVEL_MULT)
+#define PGD_LEVEL_MULT (PTRS_PER_P4D * P4D_LEVEL_MULT)
+
+#define pt_dump_seq_printf(m, to_dmesg, fmt, args...) \
+({ \
+ if (to_dmesg) \
+ printk(KERN_INFO fmt, ##args); \
+ else \
+ if (m) \
+ seq_printf(m, fmt, ##args); \
+})
+
+#define pt_dump_cont_printf(m, to_dmesg, fmt, args...) \
+({ \
+ if (to_dmesg) \
+ printk(KERN_CONT fmt, ##args); \
+ else \
+ if (m) \
+ seq_printf(m, fmt, ##args); \
+})
+
+/*
+ * Print a readable form of a pgprot_t to the seq_file
+ */
+static void printk_prot(struct seq_file *m, pgprotval_t pr, int level, bool dmsg)
+{
+ static const char * const level_name[] =
+ { "pgd", "p4d", "pud", "pmd", "pte" };
+
+ if (!(pr & _PAGE_PRESENT)) {
+ /* Not present */
+ pt_dump_cont_printf(m, dmsg, " ");
+ } else {
+ if (pr & _PAGE_USER)
+ pt_dump_cont_printf(m, dmsg, "USR ");
+ else
+ pt_dump_cont_printf(m, dmsg, " ");
+ if (pr & _PAGE_RW)
+ pt_dump_cont_printf(m, dmsg, "RW ");
+ else
+ pt_dump_cont_printf(m, dmsg, "ro ");
+ if (pr & _PAGE_PWT)
+ pt_dump_cont_printf(m, dmsg, "PWT ");
+ else
+ pt_dump_cont_printf(m, dmsg, " ");
+ if (pr & _PAGE_PCD)
+ pt_dump_cont_printf(m, dmsg, "PCD ");
+ else
+ pt_dump_cont_printf(m, dmsg, " ");
+
+ /* Bit 7 has a different meaning on level 3 vs 4 */
+ if (level <= 3 && pr & _PAGE_PSE)
+ pt_dump_cont_printf(m, dmsg, "PSE ");
+ else
+ pt_dump_cont_printf(m, dmsg, " ");
+ if ((level == 4 && pr & _PAGE_PAT) ||
+ ((level == 3 || level == 2) && pr & _PAGE_PAT_LARGE))
+ pt_dump_cont_printf(m, dmsg, "PAT ");
+ else
+ pt_dump_cont_printf(m, dmsg, " ");
+ if (pr & _PAGE_GLOBAL)
+ pt_dump_cont_printf(m, dmsg, "GLB ");
+ else
+ pt_dump_cont_printf(m, dmsg, " ");
+ if (pr & _PAGE_NX)
+ pt_dump_cont_printf(m, dmsg, "NX ");
+ else
+ pt_dump_cont_printf(m, dmsg, "x ");
+ }
+ pt_dump_cont_printf(m, dmsg, "%s\n", level_name[level]);
+}
+
+static void note_wx(struct pg_state *st, unsigned long addr)
+{
+ unsigned long npages;
+
+ npages = (addr - st->start_address) / PAGE_SIZE;
+
+#ifdef CONFIG_PCI_BIOS
+ /*
+ * If PCI BIOS is enabled, the PCI BIOS area is forced to WX.
+ * Inform about it, but avoid the warning.
+ */
+ if (pcibios_enabled && st->start_address >= PAGE_OFFSET + BIOS_BEGIN &&
+ addr <= PAGE_OFFSET + BIOS_END) {
+ pr_warn_once("x86/mm: PCI BIOS W+X mapping %lu pages\n", npages);
+ return;
+ }
+#endif
+ /* Account the WX pages */
+ st->wx_pages += npages;
+ WARN_ONCE(__supported_pte_mask & _PAGE_NX,
+ "x86/mm: Found insecure W+X mapping at address %pS\n",
+ (void *)st->start_address);
+}
+
+static void effective_prot(struct ptdump_state *pt_st, int level, u64 val)
+{
+ struct pg_state *st = container_of(pt_st, struct pg_state, ptdump);
+ pgprotval_t prot = val & PTE_FLAGS_MASK;
+ pgprotval_t effective;
+
+ if (level > 0) {
+ pgprotval_t higher_prot = st->prot_levels[level - 1];
+
+ effective = (higher_prot & prot & (_PAGE_USER | _PAGE_RW)) |
+ ((higher_prot | prot) & _PAGE_NX);
+ } else {
+ effective = prot;
+ }
+
+ st->prot_levels[level] = effective;
+}
+
+/*
+ * This function gets called on a break in a continuous series
+ * of PTE entries; the next one is different so we need to
+ * print what we collected so far.
+ */
+static void note_page(struct ptdump_state *pt_st, unsigned long addr, int level,
+ u64 val)
+{
+ struct pg_state *st = container_of(pt_st, struct pg_state, ptdump);
+ pgprotval_t new_prot, new_eff;
+ pgprotval_t cur, eff;
+ static const char units[] = "BKMGTPE";
+ struct seq_file *m = st->seq;
+
+ new_prot = val & PTE_FLAGS_MASK;
+ if (!val)
+ new_eff = 0;
+ else
+ new_eff = st->prot_levels[level];
+
+ /*
+ * If we have a "break" in the series, we need to flush the state that
+ * we have now. "break" is either changing perms, levels or
+ * address space marker.
+ */
+ cur = st->current_prot;
+ eff = st->effective_prot;
+
+ if (st->level == -1) {
+ /* First entry */
+ st->current_prot = new_prot;
+ st->effective_prot = new_eff;
+ st->level = level;
+ st->marker = address_markers;
+ st->lines = 0;
+ pt_dump_seq_printf(m, st->to_dmesg, "---[ %s ]---\n",
+ st->marker->name);
+ } else if (new_prot != cur || new_eff != eff || level != st->level ||
+ addr >= st->marker[1].start_address) {
+ const char *unit = units;
+ unsigned long delta;
+ int width = sizeof(unsigned long) * 2;
+
+ if (st->check_wx && (eff & _PAGE_RW) && !(eff & _PAGE_NX))
+ note_wx(st, addr);
+
+ /*
+ * Now print the actual finished series
+ */
+ if (!st->marker->max_lines ||
+ st->lines < st->marker->max_lines) {
+ pt_dump_seq_printf(m, st->to_dmesg,
+ "0x%0*lx-0x%0*lx ",
+ width, st->start_address,
+ width, addr);
+
+ delta = addr - st->start_address;
+ while (!(delta & 1023) && unit[1]) {
+ delta >>= 10;
+ unit++;
+ }
+ pt_dump_cont_printf(m, st->to_dmesg, "%9lu%c ",
+ delta, *unit);
+ printk_prot(m, st->current_prot, st->level,
+ st->to_dmesg);
+ }
+ st->lines++;
+
+ /*
+ * We print markers for special areas of address space,
+ * such as the start of vmalloc space etc.
+ * This helps in the interpretation.
+ */
+ if (addr >= st->marker[1].start_address) {
+ if (st->marker->max_lines &&
+ st->lines > st->marker->max_lines) {
+ unsigned long nskip =
+ st->lines - st->marker->max_lines;
+ pt_dump_seq_printf(m, st->to_dmesg,
+ "... %lu entr%s skipped ... \n",
+ nskip,
+ nskip == 1 ? "y" : "ies");
+ }
+ st->marker++;
+ st->lines = 0;
+ pt_dump_seq_printf(m, st->to_dmesg, "---[ %s ]---\n",
+ st->marker->name);
+ }
+
+ st->start_address = addr;
+ st->current_prot = new_prot;
+ st->effective_prot = new_eff;
+ st->level = level;
+ }
+}
+
+static void ptdump_walk_pgd_level_core(struct seq_file *m,
+ struct mm_struct *mm, pgd_t *pgd,
+ bool checkwx, bool dmesg)
+{
+ const struct ptdump_range ptdump_ranges[] = {
+#ifdef CONFIG_X86_64
+ {0, PTRS_PER_PGD * PGD_LEVEL_MULT / 2},
+ {GUARD_HOLE_END_ADDR, ~0UL},
+#else
+ {0, ~0UL},
+#endif
+ {0, 0}
+};
+
+ struct pg_state st = {
+ .ptdump = {
+ .note_page = note_page,
+ .effective_prot = effective_prot,
+ .range = ptdump_ranges
+ },
+ .level = -1,
+ .to_dmesg = dmesg,
+ .check_wx = checkwx,
+ .seq = m
+ };
+
+ ptdump_walk_pgd(&st.ptdump, mm, pgd);
+
+ if (!checkwx)
+ return;
+ if (st.wx_pages)
+ pr_info("x86/mm: Checked W+X mappings: FAILED, %lu W+X pages found.\n",
+ st.wx_pages);
+ else
+ pr_info("x86/mm: Checked W+X mappings: passed, no W+X pages found.\n");
+}
+
+void ptdump_walk_pgd_level(struct seq_file *m, struct mm_struct *mm)
+{
+ ptdump_walk_pgd_level_core(m, mm, mm->pgd, false, true);
+}
+
+void ptdump_walk_pgd_level_debugfs(struct seq_file *m, struct mm_struct *mm,
+ bool user)
+{
+ pgd_t *pgd = mm->pgd;
+#ifdef CONFIG_PAGE_TABLE_ISOLATION
+ if (user && boot_cpu_has(X86_FEATURE_PTI))
+ pgd = kernel_to_user_pgdp(pgd);
+#endif
+ ptdump_walk_pgd_level_core(m, mm, pgd, false, false);
+}
+EXPORT_SYMBOL_GPL(ptdump_walk_pgd_level_debugfs);
+
+void ptdump_walk_user_pgd_level_checkwx(void)
+{
+#ifdef CONFIG_PAGE_TABLE_ISOLATION
+ pgd_t *pgd = INIT_PGD;
+
+ if (!(__supported_pte_mask & _PAGE_NX) ||
+ !boot_cpu_has(X86_FEATURE_PTI))
+ return;
+
+ pr_info("x86/mm: Checking user space page tables\n");
+ pgd = kernel_to_user_pgdp(pgd);
+ ptdump_walk_pgd_level_core(NULL, &init_mm, pgd, true, false);
+#endif
+}
+
+void ptdump_walk_pgd_level_checkwx(void)
+{
+ ptdump_walk_pgd_level_core(NULL, &init_mm, INIT_PGD, true, false);
+}
+
+static int __init pt_dump_init(void)
+{
+ /*
+ * Various markers are not compile-time constants, so assign them
+ * here.
+ */
+#ifdef CONFIG_X86_64
+ address_markers[LOW_KERNEL_NR].start_address = PAGE_OFFSET;
+ address_markers[VMALLOC_START_NR].start_address = VMALLOC_START;
+ address_markers[VMEMMAP_START_NR].start_address = VMEMMAP_START;
+#ifdef CONFIG_MODIFY_LDT_SYSCALL
+ address_markers[LDT_NR].start_address = LDT_BASE_ADDR;
+#endif
+#ifdef CONFIG_KASAN
+ address_markers[KASAN_SHADOW_START_NR].start_address = KASAN_SHADOW_START;
+ address_markers[KASAN_SHADOW_END_NR].start_address = KASAN_SHADOW_END;
+#endif
+#endif
+#ifdef CONFIG_X86_32
+ address_markers[VMALLOC_START_NR].start_address = VMALLOC_START;
+ address_markers[VMALLOC_END_NR].start_address = VMALLOC_END;
+# ifdef CONFIG_HIGHMEM
+ address_markers[PKMAP_BASE_NR].start_address = PKMAP_BASE;
+# endif
+ address_markers[FIXADDR_START_NR].start_address = FIXADDR_START;
+ address_markers[CPU_ENTRY_AREA_NR].start_address = CPU_ENTRY_AREA_BASE;
+# ifdef CONFIG_MODIFY_LDT_SYSCALL
+ address_markers[LDT_NR].start_address = LDT_BASE_ADDR;
+# endif
+#endif
+ return 0;
+}
+__initcall(pt_dump_init);
diff --git a/arch/x86/mm/extable.c b/arch/x86/mm/extable.c
new file mode 100644
index 0000000000..271dcb2dea
--- /dev/null
+++ b/arch/x86/mm/extable.c
@@ -0,0 +1,369 @@
+// SPDX-License-Identifier: GPL-2.0-only
+#include <linux/extable.h>
+#include <linux/uaccess.h>
+#include <linux/sched/debug.h>
+#include <linux/bitfield.h>
+#include <xen/xen.h>
+
+#include <asm/fpu/api.h>
+#include <asm/sev.h>
+#include <asm/traps.h>
+#include <asm/kdebug.h>
+#include <asm/insn-eval.h>
+#include <asm/sgx.h>
+
+static inline unsigned long *pt_regs_nr(struct pt_regs *regs, int nr)
+{
+ int reg_offset = pt_regs_offset(regs, nr);
+ static unsigned long __dummy;
+
+ if (WARN_ON_ONCE(reg_offset < 0))
+ return &__dummy;
+
+ return (unsigned long *)((unsigned long)regs + reg_offset);
+}
+
+static inline unsigned long
+ex_fixup_addr(const struct exception_table_entry *x)
+{
+ return (unsigned long)&x->fixup + x->fixup;
+}
+
+static bool ex_handler_default(const struct exception_table_entry *e,
+ struct pt_regs *regs)
+{
+ if (e->data & EX_FLAG_CLEAR_AX)
+ regs->ax = 0;
+ if (e->data & EX_FLAG_CLEAR_DX)
+ regs->dx = 0;
+
+ regs->ip = ex_fixup_addr(e);
+ return true;
+}
+
+/*
+ * This is the *very* rare case where we do a "load_unaligned_zeropad()"
+ * and it's a page crosser into a non-existent page.
+ *
+ * This happens when we optimistically load a pathname a word-at-a-time
+ * and the name is less than the full word and the next page is not
+ * mapped. Typically that only happens for CONFIG_DEBUG_PAGEALLOC.
+ *
+ * NOTE! The faulting address is always a 'mov mem,reg' type instruction
+ * of size 'long', and the exception fixup must always point to right
+ * after the instruction.
+ */
+static bool ex_handler_zeropad(const struct exception_table_entry *e,
+ struct pt_regs *regs,
+ unsigned long fault_addr)
+{
+ struct insn insn;
+ const unsigned long mask = sizeof(long) - 1;
+ unsigned long offset, addr, next_ip, len;
+ unsigned long *reg;
+
+ next_ip = ex_fixup_addr(e);
+ len = next_ip - regs->ip;
+ if (len > MAX_INSN_SIZE)
+ return false;
+
+ if (insn_decode(&insn, (void *) regs->ip, len, INSN_MODE_KERN))
+ return false;
+ if (insn.length != len)
+ return false;
+
+ if (insn.opcode.bytes[0] != 0x8b)
+ return false;
+ if (insn.opnd_bytes != sizeof(long))
+ return false;
+
+ addr = (unsigned long) insn_get_addr_ref(&insn, regs);
+ if (addr == ~0ul)
+ return false;
+
+ offset = addr & mask;
+ addr = addr & ~mask;
+ if (fault_addr != addr + sizeof(long))
+ return false;
+
+ reg = insn_get_modrm_reg_ptr(&insn, regs);
+ if (!reg)
+ return false;
+
+ *reg = *(unsigned long *)addr >> (offset * 8);
+ return ex_handler_default(e, regs);
+}
+
+static bool ex_handler_fault(const struct exception_table_entry *fixup,
+ struct pt_regs *regs, int trapnr)
+{
+ regs->ax = trapnr;
+ return ex_handler_default(fixup, regs);
+}
+
+static bool ex_handler_sgx(const struct exception_table_entry *fixup,
+ struct pt_regs *regs, int trapnr)
+{
+ regs->ax = trapnr | SGX_ENCLS_FAULT_FLAG;
+ return ex_handler_default(fixup, regs);
+}
+
+/*
+ * Handler for when we fail to restore a task's FPU state. We should never get
+ * here because the FPU state of a task using the FPU (task->thread.fpu.state)
+ * should always be valid. However, past bugs have allowed userspace to set
+ * reserved bits in the XSAVE area using PTRACE_SETREGSET or sys_rt_sigreturn().
+ * These caused XRSTOR to fail when switching to the task, leaking the FPU
+ * registers of the task previously executing on the CPU. Mitigate this class
+ * of vulnerability by restoring from the initial state (essentially, zeroing
+ * out all the FPU registers) if we can't restore from the task's FPU state.
+ */
+static bool ex_handler_fprestore(const struct exception_table_entry *fixup,
+ struct pt_regs *regs)
+{
+ regs->ip = ex_fixup_addr(fixup);
+
+ WARN_ONCE(1, "Bad FPU state detected at %pB, reinitializing FPU registers.",
+ (void *)instruction_pointer(regs));
+
+ fpu_reset_from_exception_fixup();
+ return true;
+}
+
+/*
+ * On x86-64, we end up being imprecise with 'access_ok()', and allow
+ * non-canonical user addresses to make the range comparisons simpler,
+ * and to not have to worry about LAM being enabled.
+ *
+ * In fact, we allow up to one page of "slop" at the sign boundary,
+ * which means that we can do access_ok() by just checking the sign
+ * of the pointer for the common case of having a small access size.
+ */
+static bool gp_fault_address_ok(unsigned long fault_address)
+{
+#ifdef CONFIG_X86_64
+ /* Is it in the "user space" part of the non-canonical space? */
+ if (valid_user_address(fault_address))
+ return true;
+
+ /* .. or just above it? */
+ fault_address -= PAGE_SIZE;
+ if (valid_user_address(fault_address))
+ return true;
+#endif
+ return false;
+}
+
+static bool ex_handler_uaccess(const struct exception_table_entry *fixup,
+ struct pt_regs *regs, int trapnr,
+ unsigned long fault_address)
+{
+ WARN_ONCE(trapnr == X86_TRAP_GP && !gp_fault_address_ok(fault_address),
+ "General protection fault in user access. Non-canonical address?");
+ return ex_handler_default(fixup, regs);
+}
+
+static bool ex_handler_copy(const struct exception_table_entry *fixup,
+ struct pt_regs *regs, int trapnr)
+{
+ WARN_ONCE(trapnr == X86_TRAP_GP, "General protection fault in user access. Non-canonical address?");
+ return ex_handler_fault(fixup, regs, trapnr);
+}
+
+static bool ex_handler_msr(const struct exception_table_entry *fixup,
+ struct pt_regs *regs, bool wrmsr, bool safe, int reg)
+{
+ if (__ONCE_LITE_IF(!safe && wrmsr)) {
+ pr_warn("unchecked MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pS)\n",
+ (unsigned int)regs->cx, (unsigned int)regs->dx,
+ (unsigned int)regs->ax, regs->ip, (void *)regs->ip);
+ show_stack_regs(regs);
+ }
+
+ if (__ONCE_LITE_IF(!safe && !wrmsr)) {
+ pr_warn("unchecked MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pS)\n",
+ (unsigned int)regs->cx, regs->ip, (void *)regs->ip);
+ show_stack_regs(regs);
+ }
+
+ if (!wrmsr) {
+ /* Pretend that the read succeeded and returned 0. */
+ regs->ax = 0;
+ regs->dx = 0;
+ }
+
+ if (safe)
+ *pt_regs_nr(regs, reg) = -EIO;
+
+ return ex_handler_default(fixup, regs);
+}
+
+static bool ex_handler_clear_fs(const struct exception_table_entry *fixup,
+ struct pt_regs *regs)
+{
+ if (static_cpu_has(X86_BUG_NULL_SEG))
+ asm volatile ("mov %0, %%fs" : : "rm" (__USER_DS));
+ asm volatile ("mov %0, %%fs" : : "rm" (0));
+ return ex_handler_default(fixup, regs);
+}
+
+static bool ex_handler_imm_reg(const struct exception_table_entry *fixup,
+ struct pt_regs *regs, int reg, int imm)
+{
+ *pt_regs_nr(regs, reg) = (long)imm;
+ return ex_handler_default(fixup, regs);
+}
+
+static bool ex_handler_ucopy_len(const struct exception_table_entry *fixup,
+ struct pt_regs *regs, int trapnr,
+ unsigned long fault_address,
+ int reg, int imm)
+{
+ regs->cx = imm * regs->cx + *pt_regs_nr(regs, reg);
+ return ex_handler_uaccess(fixup, regs, trapnr, fault_address);
+}
+
+int ex_get_fixup_type(unsigned long ip)
+{
+ const struct exception_table_entry *e = search_exception_tables(ip);
+
+ return e ? FIELD_GET(EX_DATA_TYPE_MASK, e->data) : EX_TYPE_NONE;
+}
+
+int fixup_exception(struct pt_regs *regs, int trapnr, unsigned long error_code,
+ unsigned long fault_addr)
+{
+ const struct exception_table_entry *e;
+ int type, reg, imm;
+
+#ifdef CONFIG_PNPBIOS
+ if (unlikely(SEGMENT_IS_PNP_CODE(regs->cs))) {
+ extern u32 pnp_bios_fault_eip, pnp_bios_fault_esp;
+ extern u32 pnp_bios_is_utter_crap;
+ pnp_bios_is_utter_crap = 1;
+ printk(KERN_CRIT "PNPBIOS fault.. attempting recovery.\n");
+ __asm__ volatile(
+ "movl %0, %%esp\n\t"
+ "jmp *%1\n\t"
+ : : "g" (pnp_bios_fault_esp), "g" (pnp_bios_fault_eip));
+ panic("do_trap: can't hit this");
+ }
+#endif
+
+ e = search_exception_tables(regs->ip);
+ if (!e)
+ return 0;
+
+ type = FIELD_GET(EX_DATA_TYPE_MASK, e->data);
+ reg = FIELD_GET(EX_DATA_REG_MASK, e->data);
+ imm = FIELD_GET(EX_DATA_IMM_MASK, e->data);
+
+ switch (type) {
+ case EX_TYPE_DEFAULT:
+ case EX_TYPE_DEFAULT_MCE_SAFE:
+ return ex_handler_default(e, regs);
+ case EX_TYPE_FAULT:
+ case EX_TYPE_FAULT_MCE_SAFE:
+ return ex_handler_fault(e, regs, trapnr);
+ case EX_TYPE_UACCESS:
+ return ex_handler_uaccess(e, regs, trapnr, fault_addr);
+ case EX_TYPE_COPY:
+ return ex_handler_copy(e, regs, trapnr);
+ case EX_TYPE_CLEAR_FS:
+ return ex_handler_clear_fs(e, regs);
+ case EX_TYPE_FPU_RESTORE:
+ return ex_handler_fprestore(e, regs);
+ case EX_TYPE_BPF:
+ return ex_handler_bpf(e, regs);
+ case EX_TYPE_WRMSR:
+ return ex_handler_msr(e, regs, true, false, reg);
+ case EX_TYPE_RDMSR:
+ return ex_handler_msr(e, regs, false, false, reg);
+ case EX_TYPE_WRMSR_SAFE:
+ return ex_handler_msr(e, regs, true, true, reg);
+ case EX_TYPE_RDMSR_SAFE:
+ return ex_handler_msr(e, regs, false, true, reg);
+ case EX_TYPE_WRMSR_IN_MCE:
+ ex_handler_msr_mce(regs, true);
+ break;
+ case EX_TYPE_RDMSR_IN_MCE:
+ ex_handler_msr_mce(regs, false);
+ break;
+ case EX_TYPE_POP_REG:
+ regs->sp += sizeof(long);
+ fallthrough;
+ case EX_TYPE_IMM_REG:
+ return ex_handler_imm_reg(e, regs, reg, imm);
+ case EX_TYPE_FAULT_SGX:
+ return ex_handler_sgx(e, regs, trapnr);
+ case EX_TYPE_UCOPY_LEN:
+ return ex_handler_ucopy_len(e, regs, trapnr, fault_addr, reg, imm);
+ case EX_TYPE_ZEROPAD:
+ return ex_handler_zeropad(e, regs, fault_addr);
+ }
+ BUG();
+}
+
+extern unsigned int early_recursion_flag;
+
+/* Restricted version used during very early boot */
+void __init early_fixup_exception(struct pt_regs *regs, int trapnr)
+{
+ /* Ignore early NMIs. */
+ if (trapnr == X86_TRAP_NMI)
+ return;
+
+ if (early_recursion_flag > 2)
+ goto halt_loop;
+
+ /*
+ * Old CPUs leave the high bits of CS on the stack
+ * undefined. I'm not sure which CPUs do this, but at least
+ * the 486 DX works this way.
+ * Xen pv domains are not using the default __KERNEL_CS.
+ */
+ if (!xen_pv_domain() && regs->cs != __KERNEL_CS)
+ goto fail;
+
+ /*
+ * The full exception fixup machinery is available as soon as
+ * the early IDT is loaded. This means that it is the
+ * responsibility of extable users to either function correctly
+ * when handlers are invoked early or to simply avoid causing
+ * exceptions before they're ready to handle them.
+ *
+ * This is better than filtering which handlers can be used,
+ * because refusing to call a handler here is guaranteed to
+ * result in a hard-to-debug panic.
+ *
+ * Keep in mind that not all vectors actually get here. Early
+ * page faults, for example, are special.
+ */
+ if (fixup_exception(regs, trapnr, regs->orig_ax, 0))
+ return;
+
+ if (trapnr == X86_TRAP_UD) {
+ if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN) {
+ /* Skip the ud2. */
+ regs->ip += LEN_UD2;
+ return;
+ }
+
+ /*
+ * If this was a BUG and report_bug returns or if this
+ * was just a normal #UD, we want to continue onward and
+ * crash.
+ */
+ }
+
+fail:
+ early_printk("PANIC: early exception 0x%02x IP %lx:%lx error %lx cr2 0x%lx\n",
+ (unsigned)trapnr, (unsigned long)regs->cs, regs->ip,
+ regs->orig_ax, read_cr2());
+
+ show_regs(regs);
+
+halt_loop:
+ while (true)
+ halt();
+}
diff --git a/arch/x86/mm/fault.c b/arch/x86/mm/fault.c
new file mode 100644
index 0000000000..ab778eac19
--- /dev/null
+++ b/arch/x86/mm/fault.c
@@ -0,0 +1,1565 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (C) 1995 Linus Torvalds
+ * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
+ * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
+ */
+#include <linux/sched.h> /* test_thread_flag(), ... */
+#include <linux/sched/task_stack.h> /* task_stack_*(), ... */
+#include <linux/kdebug.h> /* oops_begin/end, ... */
+#include <linux/extable.h> /* search_exception_tables */
+#include <linux/memblock.h> /* max_low_pfn */
+#include <linux/kfence.h> /* kfence_handle_page_fault */
+#include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
+#include <linux/mmiotrace.h> /* kmmio_handler, ... */
+#include <linux/perf_event.h> /* perf_sw_event */
+#include <linux/hugetlb.h> /* hstate_index_to_shift */
+#include <linux/prefetch.h> /* prefetchw */
+#include <linux/context_tracking.h> /* exception_enter(), ... */
+#include <linux/uaccess.h> /* faulthandler_disabled() */
+#include <linux/efi.h> /* efi_crash_gracefully_on_page_fault()*/
+#include <linux/mm_types.h>
+#include <linux/mm.h> /* find_and_lock_vma() */
+
+#include <asm/cpufeature.h> /* boot_cpu_has, ... */
+#include <asm/traps.h> /* dotraplinkage, ... */
+#include <asm/fixmap.h> /* VSYSCALL_ADDR */
+#include <asm/vsyscall.h> /* emulate_vsyscall */
+#include <asm/vm86.h> /* struct vm86 */
+#include <asm/mmu_context.h> /* vma_pkey() */
+#include <asm/efi.h> /* efi_crash_gracefully_on_page_fault()*/
+#include <asm/desc.h> /* store_idt(), ... */
+#include <asm/cpu_entry_area.h> /* exception stack */
+#include <asm/pgtable_areas.h> /* VMALLOC_START, ... */
+#include <asm/kvm_para.h> /* kvm_handle_async_pf */
+#include <asm/vdso.h> /* fixup_vdso_exception() */
+#include <asm/irq_stack.h>
+
+#define CREATE_TRACE_POINTS
+#include <asm/trace/exceptions.h>
+
+/*
+ * Returns 0 if mmiotrace is disabled, or if the fault is not
+ * handled by mmiotrace:
+ */
+static nokprobe_inline int
+kmmio_fault(struct pt_regs *regs, unsigned long addr)
+{
+ if (unlikely(is_kmmio_active()))
+ if (kmmio_handler(regs, addr) == 1)
+ return -1;
+ return 0;
+}
+
+/*
+ * Prefetch quirks:
+ *
+ * 32-bit mode:
+ *
+ * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
+ * Check that here and ignore it. This is AMD erratum #91.
+ *
+ * 64-bit mode:
+ *
+ * Sometimes the CPU reports invalid exceptions on prefetch.
+ * Check that here and ignore it.
+ *
+ * Opcode checker based on code by Richard Brunner.
+ */
+static inline int
+check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
+ unsigned char opcode, int *prefetch)
+{
+ unsigned char instr_hi = opcode & 0xf0;
+ unsigned char instr_lo = opcode & 0x0f;
+
+ switch (instr_hi) {
+ case 0x20:
+ case 0x30:
+ /*
+ * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
+ * In X86_64 long mode, the CPU will signal invalid
+ * opcode if some of these prefixes are present so
+ * X86_64 will never get here anyway
+ */
+ return ((instr_lo & 7) == 0x6);
+#ifdef CONFIG_X86_64
+ case 0x40:
+ /*
+ * In 64-bit mode 0x40..0x4F are valid REX prefixes
+ */
+ return (!user_mode(regs) || user_64bit_mode(regs));
+#endif
+ case 0x60:
+ /* 0x64 thru 0x67 are valid prefixes in all modes. */
+ return (instr_lo & 0xC) == 0x4;
+ case 0xF0:
+ /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
+ return !instr_lo || (instr_lo>>1) == 1;
+ case 0x00:
+ /* Prefetch instruction is 0x0F0D or 0x0F18 */
+ if (get_kernel_nofault(opcode, instr))
+ return 0;
+
+ *prefetch = (instr_lo == 0xF) &&
+ (opcode == 0x0D || opcode == 0x18);
+ return 0;
+ default:
+ return 0;
+ }
+}
+
+static bool is_amd_k8_pre_npt(void)
+{
+ struct cpuinfo_x86 *c = &boot_cpu_data;
+
+ return unlikely(IS_ENABLED(CONFIG_CPU_SUP_AMD) &&
+ c->x86_vendor == X86_VENDOR_AMD &&
+ c->x86 == 0xf && c->x86_model < 0x40);
+}
+
+static int
+is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
+{
+ unsigned char *max_instr;
+ unsigned char *instr;
+ int prefetch = 0;
+
+ /* Erratum #91 affects AMD K8, pre-NPT CPUs */
+ if (!is_amd_k8_pre_npt())
+ return 0;
+
+ /*
+ * If it was a exec (instruction fetch) fault on NX page, then
+ * do not ignore the fault:
+ */
+ if (error_code & X86_PF_INSTR)
+ return 0;
+
+ instr = (void *)convert_ip_to_linear(current, regs);
+ max_instr = instr + 15;
+
+ /*
+ * This code has historically always bailed out if IP points to a
+ * not-present page (e.g. due to a race). No one has ever
+ * complained about this.
+ */
+ pagefault_disable();
+
+ while (instr < max_instr) {
+ unsigned char opcode;
+
+ if (user_mode(regs)) {
+ if (get_user(opcode, (unsigned char __user *) instr))
+ break;
+ } else {
+ if (get_kernel_nofault(opcode, instr))
+ break;
+ }
+
+ instr++;
+
+ if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
+ break;
+ }
+
+ pagefault_enable();
+ return prefetch;
+}
+
+DEFINE_SPINLOCK(pgd_lock);
+LIST_HEAD(pgd_list);
+
+#ifdef CONFIG_X86_32
+static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
+{
+ unsigned index = pgd_index(address);
+ pgd_t *pgd_k;
+ p4d_t *p4d, *p4d_k;
+ pud_t *pud, *pud_k;
+ pmd_t *pmd, *pmd_k;
+
+ pgd += index;
+ pgd_k = init_mm.pgd + index;
+
+ if (!pgd_present(*pgd_k))
+ return NULL;
+
+ /*
+ * set_pgd(pgd, *pgd_k); here would be useless on PAE
+ * and redundant with the set_pmd() on non-PAE. As would
+ * set_p4d/set_pud.
+ */
+ p4d = p4d_offset(pgd, address);
+ p4d_k = p4d_offset(pgd_k, address);
+ if (!p4d_present(*p4d_k))
+ return NULL;
+
+ pud = pud_offset(p4d, address);
+ pud_k = pud_offset(p4d_k, address);
+ if (!pud_present(*pud_k))
+ return NULL;
+
+ pmd = pmd_offset(pud, address);
+ pmd_k = pmd_offset(pud_k, address);
+
+ if (pmd_present(*pmd) != pmd_present(*pmd_k))
+ set_pmd(pmd, *pmd_k);
+
+ if (!pmd_present(*pmd_k))
+ return NULL;
+ else
+ BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k));
+
+ return pmd_k;
+}
+
+/*
+ * Handle a fault on the vmalloc or module mapping area
+ *
+ * This is needed because there is a race condition between the time
+ * when the vmalloc mapping code updates the PMD to the point in time
+ * where it synchronizes this update with the other page-tables in the
+ * system.
+ *
+ * In this race window another thread/CPU can map an area on the same
+ * PMD, finds it already present and does not synchronize it with the
+ * rest of the system yet. As a result v[mz]alloc might return areas
+ * which are not mapped in every page-table in the system, causing an
+ * unhandled page-fault when they are accessed.
+ */
+static noinline int vmalloc_fault(unsigned long address)
+{
+ unsigned long pgd_paddr;
+ pmd_t *pmd_k;
+ pte_t *pte_k;
+
+ /* Make sure we are in vmalloc area: */
+ if (!(address >= VMALLOC_START && address < VMALLOC_END))
+ return -1;
+
+ /*
+ * Synchronize this task's top level page-table
+ * with the 'reference' page table.
+ *
+ * Do _not_ use "current" here. We might be inside
+ * an interrupt in the middle of a task switch..
+ */
+ pgd_paddr = read_cr3_pa();
+ pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
+ if (!pmd_k)
+ return -1;
+
+ if (pmd_large(*pmd_k))
+ return 0;
+
+ pte_k = pte_offset_kernel(pmd_k, address);
+ if (!pte_present(*pte_k))
+ return -1;
+
+ return 0;
+}
+NOKPROBE_SYMBOL(vmalloc_fault);
+
+void arch_sync_kernel_mappings(unsigned long start, unsigned long end)
+{
+ unsigned long addr;
+
+ for (addr = start & PMD_MASK;
+ addr >= TASK_SIZE_MAX && addr < VMALLOC_END;
+ addr += PMD_SIZE) {
+ struct page *page;
+
+ spin_lock(&pgd_lock);
+ list_for_each_entry(page, &pgd_list, lru) {
+ spinlock_t *pgt_lock;
+
+ /* the pgt_lock only for Xen */
+ pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
+
+ spin_lock(pgt_lock);
+ vmalloc_sync_one(page_address(page), addr);
+ spin_unlock(pgt_lock);
+ }
+ spin_unlock(&pgd_lock);
+ }
+}
+
+static bool low_pfn(unsigned long pfn)
+{
+ return pfn < max_low_pfn;
+}
+
+static void dump_pagetable(unsigned long address)
+{
+ pgd_t *base = __va(read_cr3_pa());
+ pgd_t *pgd = &base[pgd_index(address)];
+ p4d_t *p4d;
+ pud_t *pud;
+ pmd_t *pmd;
+ pte_t *pte;
+
+#ifdef CONFIG_X86_PAE
+ pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
+ if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
+ goto out;
+#define pr_pde pr_cont
+#else
+#define pr_pde pr_info
+#endif
+ p4d = p4d_offset(pgd, address);
+ pud = pud_offset(p4d, address);
+ pmd = pmd_offset(pud, address);
+ pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
+#undef pr_pde
+
+ /*
+ * We must not directly access the pte in the highpte
+ * case if the page table is located in highmem.
+ * And let's rather not kmap-atomic the pte, just in case
+ * it's allocated already:
+ */
+ if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
+ goto out;
+
+ pte = pte_offset_kernel(pmd, address);
+ pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
+out:
+ pr_cont("\n");
+}
+
+#else /* CONFIG_X86_64: */
+
+#ifdef CONFIG_CPU_SUP_AMD
+static const char errata93_warning[] =
+KERN_ERR
+"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
+"******* Working around it, but it may cause SEGVs or burn power.\n"
+"******* Please consider a BIOS update.\n"
+"******* Disabling USB legacy in the BIOS may also help.\n";
+#endif
+
+static int bad_address(void *p)
+{
+ unsigned long dummy;
+
+ return get_kernel_nofault(dummy, (unsigned long *)p);
+}
+
+static void dump_pagetable(unsigned long address)
+{
+ pgd_t *base = __va(read_cr3_pa());
+ pgd_t *pgd = base + pgd_index(address);
+ p4d_t *p4d;
+ pud_t *pud;
+ pmd_t *pmd;
+ pte_t *pte;
+
+ if (bad_address(pgd))
+ goto bad;
+
+ pr_info("PGD %lx ", pgd_val(*pgd));
+
+ if (!pgd_present(*pgd))
+ goto out;
+
+ p4d = p4d_offset(pgd, address);
+ if (bad_address(p4d))
+ goto bad;
+
+ pr_cont("P4D %lx ", p4d_val(*p4d));
+ if (!p4d_present(*p4d) || p4d_large(*p4d))
+ goto out;
+
+ pud = pud_offset(p4d, address);
+ if (bad_address(pud))
+ goto bad;
+
+ pr_cont("PUD %lx ", pud_val(*pud));
+ if (!pud_present(*pud) || pud_large(*pud))
+ goto out;
+
+ pmd = pmd_offset(pud, address);
+ if (bad_address(pmd))
+ goto bad;
+
+ pr_cont("PMD %lx ", pmd_val(*pmd));
+ if (!pmd_present(*pmd) || pmd_large(*pmd))
+ goto out;
+
+ pte = pte_offset_kernel(pmd, address);
+ if (bad_address(pte))
+ goto bad;
+
+ pr_cont("PTE %lx", pte_val(*pte));
+out:
+ pr_cont("\n");
+ return;
+bad:
+ pr_info("BAD\n");
+}
+
+#endif /* CONFIG_X86_64 */
+
+/*
+ * Workaround for K8 erratum #93 & buggy BIOS.
+ *
+ * BIOS SMM functions are required to use a specific workaround
+ * to avoid corruption of the 64bit RIP register on C stepping K8.
+ *
+ * A lot of BIOS that didn't get tested properly miss this.
+ *
+ * The OS sees this as a page fault with the upper 32bits of RIP cleared.
+ * Try to work around it here.
+ *
+ * Note we only handle faults in kernel here.
+ * Does nothing on 32-bit.
+ */
+static int is_errata93(struct pt_regs *regs, unsigned long address)
+{
+#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
+ if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
+ || boot_cpu_data.x86 != 0xf)
+ return 0;
+
+ if (user_mode(regs))
+ return 0;
+
+ if (address != regs->ip)
+ return 0;
+
+ if ((address >> 32) != 0)
+ return 0;
+
+ address |= 0xffffffffUL << 32;
+ if ((address >= (u64)_stext && address <= (u64)_etext) ||
+ (address >= MODULES_VADDR && address <= MODULES_END)) {
+ printk_once(errata93_warning);
+ regs->ip = address;
+ return 1;
+ }
+#endif
+ return 0;
+}
+
+/*
+ * Work around K8 erratum #100 K8 in compat mode occasionally jumps
+ * to illegal addresses >4GB.
+ *
+ * We catch this in the page fault handler because these addresses
+ * are not reachable. Just detect this case and return. Any code
+ * segment in LDT is compatibility mode.
+ */
+static int is_errata100(struct pt_regs *regs, unsigned long address)
+{
+#ifdef CONFIG_X86_64
+ if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
+ return 1;
+#endif
+ return 0;
+}
+
+/* Pentium F0 0F C7 C8 bug workaround: */
+static int is_f00f_bug(struct pt_regs *regs, unsigned long error_code,
+ unsigned long address)
+{
+#ifdef CONFIG_X86_F00F_BUG
+ if (boot_cpu_has_bug(X86_BUG_F00F) && !(error_code & X86_PF_USER) &&
+ idt_is_f00f_address(address)) {
+ handle_invalid_op(regs);
+ return 1;
+ }
+#endif
+ return 0;
+}
+
+static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index)
+{
+ u32 offset = (index >> 3) * sizeof(struct desc_struct);
+ unsigned long addr;
+ struct ldttss_desc desc;
+
+ if (index == 0) {
+ pr_alert("%s: NULL\n", name);
+ return;
+ }
+
+ if (offset + sizeof(struct ldttss_desc) >= gdt->size) {
+ pr_alert("%s: 0x%hx -- out of bounds\n", name, index);
+ return;
+ }
+
+ if (copy_from_kernel_nofault(&desc, (void *)(gdt->address + offset),
+ sizeof(struct ldttss_desc))) {
+ pr_alert("%s: 0x%hx -- GDT entry is not readable\n",
+ name, index);
+ return;
+ }
+
+ addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24);
+#ifdef CONFIG_X86_64
+ addr |= ((u64)desc.base3 << 32);
+#endif
+ pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n",
+ name, index, addr, (desc.limit0 | (desc.limit1 << 16)));
+}
+
+static void
+show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address)
+{
+ if (!oops_may_print())
+ return;
+
+ if (error_code & X86_PF_INSTR) {
+ unsigned int level;
+ pgd_t *pgd;
+ pte_t *pte;
+
+ pgd = __va(read_cr3_pa());
+ pgd += pgd_index(address);
+
+ pte = lookup_address_in_pgd(pgd, address, &level);
+
+ if (pte && pte_present(*pte) && !pte_exec(*pte))
+ pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
+ from_kuid(&init_user_ns, current_uid()));
+ if (pte && pte_present(*pte) && pte_exec(*pte) &&
+ (pgd_flags(*pgd) & _PAGE_USER) &&
+ (__read_cr4() & X86_CR4_SMEP))
+ pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
+ from_kuid(&init_user_ns, current_uid()));
+ }
+
+ if (address < PAGE_SIZE && !user_mode(regs))
+ pr_alert("BUG: kernel NULL pointer dereference, address: %px\n",
+ (void *)address);
+ else
+ pr_alert("BUG: unable to handle page fault for address: %px\n",
+ (void *)address);
+
+ pr_alert("#PF: %s %s in %s mode\n",
+ (error_code & X86_PF_USER) ? "user" : "supervisor",
+ (error_code & X86_PF_INSTR) ? "instruction fetch" :
+ (error_code & X86_PF_WRITE) ? "write access" :
+ "read access",
+ user_mode(regs) ? "user" : "kernel");
+ pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code,
+ !(error_code & X86_PF_PROT) ? "not-present page" :
+ (error_code & X86_PF_RSVD) ? "reserved bit violation" :
+ (error_code & X86_PF_PK) ? "protection keys violation" :
+ "permissions violation");
+
+ if (!(error_code & X86_PF_USER) && user_mode(regs)) {
+ struct desc_ptr idt, gdt;
+ u16 ldtr, tr;
+
+ /*
+ * This can happen for quite a few reasons. The more obvious
+ * ones are faults accessing the GDT, or LDT. Perhaps
+ * surprisingly, if the CPU tries to deliver a benign or
+ * contributory exception from user code and gets a page fault
+ * during delivery, the page fault can be delivered as though
+ * it originated directly from user code. This could happen
+ * due to wrong permissions on the IDT, GDT, LDT, TSS, or
+ * kernel or IST stack.
+ */
+ store_idt(&idt);
+
+ /* Usable even on Xen PV -- it's just slow. */
+ native_store_gdt(&gdt);
+
+ pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n",
+ idt.address, idt.size, gdt.address, gdt.size);
+
+ store_ldt(ldtr);
+ show_ldttss(&gdt, "LDTR", ldtr);
+
+ store_tr(tr);
+ show_ldttss(&gdt, "TR", tr);
+ }
+
+ dump_pagetable(address);
+}
+
+static noinline void
+pgtable_bad(struct pt_regs *regs, unsigned long error_code,
+ unsigned long address)
+{
+ struct task_struct *tsk;
+ unsigned long flags;
+ int sig;
+
+ flags = oops_begin();
+ tsk = current;
+ sig = SIGKILL;
+
+ printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
+ tsk->comm, address);
+ dump_pagetable(address);
+
+ if (__die("Bad pagetable", regs, error_code))
+ sig = 0;
+
+ oops_end(flags, regs, sig);
+}
+
+static void sanitize_error_code(unsigned long address,
+ unsigned long *error_code)
+{
+ /*
+ * To avoid leaking information about the kernel page
+ * table layout, pretend that user-mode accesses to
+ * kernel addresses are always protection faults.
+ *
+ * NB: This means that failed vsyscalls with vsyscall=none
+ * will have the PROT bit. This doesn't leak any
+ * information and does not appear to cause any problems.
+ */
+ if (address >= TASK_SIZE_MAX)
+ *error_code |= X86_PF_PROT;
+}
+
+static void set_signal_archinfo(unsigned long address,
+ unsigned long error_code)
+{
+ struct task_struct *tsk = current;
+
+ tsk->thread.trap_nr = X86_TRAP_PF;
+ tsk->thread.error_code = error_code | X86_PF_USER;
+ tsk->thread.cr2 = address;
+}
+
+static noinline void
+page_fault_oops(struct pt_regs *regs, unsigned long error_code,
+ unsigned long address)
+{
+#ifdef CONFIG_VMAP_STACK
+ struct stack_info info;
+#endif
+ unsigned long flags;
+ int sig;
+
+ if (user_mode(regs)) {
+ /*
+ * Implicit kernel access from user mode? Skip the stack
+ * overflow and EFI special cases.
+ */
+ goto oops;
+ }
+
+#ifdef CONFIG_VMAP_STACK
+ /*
+ * Stack overflow? During boot, we can fault near the initial
+ * stack in the direct map, but that's not an overflow -- check
+ * that we're in vmalloc space to avoid this.
+ */
+ if (is_vmalloc_addr((void *)address) &&
+ get_stack_guard_info((void *)address, &info)) {
+ /*
+ * We're likely to be running with very little stack space
+ * left. It's plausible that we'd hit this condition but
+ * double-fault even before we get this far, in which case
+ * we're fine: the double-fault handler will deal with it.
+ *
+ * We don't want to make it all the way into the oops code
+ * and then double-fault, though, because we're likely to
+ * break the console driver and lose most of the stack dump.
+ */
+ call_on_stack(__this_cpu_ist_top_va(DF) - sizeof(void*),
+ handle_stack_overflow,
+ ASM_CALL_ARG3,
+ , [arg1] "r" (regs), [arg2] "r" (address), [arg3] "r" (&info));
+
+ unreachable();
+ }
+#endif
+
+ /*
+ * Buggy firmware could access regions which might page fault. If
+ * this happens, EFI has a special OOPS path that will try to
+ * avoid hanging the system.
+ */
+ if (IS_ENABLED(CONFIG_EFI))
+ efi_crash_gracefully_on_page_fault(address);
+
+ /* Only not-present faults should be handled by KFENCE. */
+ if (!(error_code & X86_PF_PROT) &&
+ kfence_handle_page_fault(address, error_code & X86_PF_WRITE, regs))
+ return;
+
+oops:
+ /*
+ * Oops. The kernel tried to access some bad page. We'll have to
+ * terminate things with extreme prejudice:
+ */
+ flags = oops_begin();
+
+ show_fault_oops(regs, error_code, address);
+
+ if (task_stack_end_corrupted(current))
+ printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
+
+ sig = SIGKILL;
+ if (__die("Oops", regs, error_code))
+ sig = 0;
+
+ /* Executive summary in case the body of the oops scrolled away */
+ printk(KERN_DEFAULT "CR2: %016lx\n", address);
+
+ oops_end(flags, regs, sig);
+}
+
+static noinline void
+kernelmode_fixup_or_oops(struct pt_regs *regs, unsigned long error_code,
+ unsigned long address, int signal, int si_code,
+ u32 pkey)
+{
+ WARN_ON_ONCE(user_mode(regs));
+
+ /* Are we prepared to handle this kernel fault? */
+ if (fixup_exception(regs, X86_TRAP_PF, error_code, address)) {
+ /*
+ * Any interrupt that takes a fault gets the fixup. This makes
+ * the below recursive fault logic only apply to a faults from
+ * task context.
+ */
+ if (in_interrupt())
+ return;
+
+ /*
+ * Per the above we're !in_interrupt(), aka. task context.
+ *
+ * In this case we need to make sure we're not recursively
+ * faulting through the emulate_vsyscall() logic.
+ */
+ if (current->thread.sig_on_uaccess_err && signal) {
+ sanitize_error_code(address, &error_code);
+
+ set_signal_archinfo(address, error_code);
+
+ if (si_code == SEGV_PKUERR) {
+ force_sig_pkuerr((void __user *)address, pkey);
+ } else {
+ /* XXX: hwpoison faults will set the wrong code. */
+ force_sig_fault(signal, si_code, (void __user *)address);
+ }
+ }
+
+ /*
+ * Barring that, we can do the fixup and be happy.
+ */
+ return;
+ }
+
+ /*
+ * AMD erratum #91 manifests as a spurious page fault on a PREFETCH
+ * instruction.
+ */
+ if (is_prefetch(regs, error_code, address))
+ return;
+
+ page_fault_oops(regs, error_code, address);
+}
+
+/*
+ * Print out info about fatal segfaults, if the show_unhandled_signals
+ * sysctl is set:
+ */
+static inline void
+show_signal_msg(struct pt_regs *regs, unsigned long error_code,
+ unsigned long address, struct task_struct *tsk)
+{
+ const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
+ /* This is a racy snapshot, but it's better than nothing. */
+ int cpu = raw_smp_processor_id();
+
+ if (!unhandled_signal(tsk, SIGSEGV))
+ return;
+
+ if (!printk_ratelimit())
+ return;
+
+ printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
+ loglvl, tsk->comm, task_pid_nr(tsk), address,
+ (void *)regs->ip, (void *)regs->sp, error_code);
+
+ print_vma_addr(KERN_CONT " in ", regs->ip);
+
+ /*
+ * Dump the likely CPU where the fatal segfault happened.
+ * This can help identify faulty hardware.
+ */
+ printk(KERN_CONT " likely on CPU %d (core %d, socket %d)", cpu,
+ topology_core_id(cpu), topology_physical_package_id(cpu));
+
+
+ printk(KERN_CONT "\n");
+
+ show_opcodes(regs, loglvl);
+}
+
+/*
+ * The (legacy) vsyscall page is the long page in the kernel portion
+ * of the address space that has user-accessible permissions.
+ */
+static bool is_vsyscall_vaddr(unsigned long vaddr)
+{
+ return unlikely((vaddr & PAGE_MASK) == VSYSCALL_ADDR);
+}
+
+static void
+__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
+ unsigned long address, u32 pkey, int si_code)
+{
+ struct task_struct *tsk = current;
+
+ if (!user_mode(regs)) {
+ kernelmode_fixup_or_oops(regs, error_code, address,
+ SIGSEGV, si_code, pkey);
+ return;
+ }
+
+ if (!(error_code & X86_PF_USER)) {
+ /* Implicit user access to kernel memory -- just oops */
+ page_fault_oops(regs, error_code, address);
+ return;
+ }
+
+ /*
+ * User mode accesses just cause a SIGSEGV.
+ * It's possible to have interrupts off here:
+ */
+ local_irq_enable();
+
+ /*
+ * Valid to do another page fault here because this one came
+ * from user space:
+ */
+ if (is_prefetch(regs, error_code, address))
+ return;
+
+ if (is_errata100(regs, address))
+ return;
+
+ sanitize_error_code(address, &error_code);
+
+ if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
+ return;
+
+ if (likely(show_unhandled_signals))
+ show_signal_msg(regs, error_code, address, tsk);
+
+ set_signal_archinfo(address, error_code);
+
+ if (si_code == SEGV_PKUERR)
+ force_sig_pkuerr((void __user *)address, pkey);
+ else
+ force_sig_fault(SIGSEGV, si_code, (void __user *)address);
+
+ local_irq_disable();
+}
+
+static noinline void
+bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
+ unsigned long address)
+{
+ __bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR);
+}
+
+static void
+__bad_area(struct pt_regs *regs, unsigned long error_code,
+ unsigned long address, u32 pkey, int si_code)
+{
+ struct mm_struct *mm = current->mm;
+ /*
+ * Something tried to access memory that isn't in our memory map..
+ * Fix it, but check if it's kernel or user first..
+ */
+ mmap_read_unlock(mm);
+
+ __bad_area_nosemaphore(regs, error_code, address, pkey, si_code);
+}
+
+static inline bool bad_area_access_from_pkeys(unsigned long error_code,
+ struct vm_area_struct *vma)
+{
+ /* This code is always called on the current mm */
+ bool foreign = false;
+
+ if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
+ return false;
+ if (error_code & X86_PF_PK)
+ return true;
+ /* this checks permission keys on the VMA: */
+ if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
+ (error_code & X86_PF_INSTR), foreign))
+ return true;
+ return false;
+}
+
+static noinline void
+bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
+ unsigned long address, struct vm_area_struct *vma)
+{
+ /*
+ * This OSPKE check is not strictly necessary at runtime.
+ * But, doing it this way allows compiler optimizations
+ * if pkeys are compiled out.
+ */
+ if (bad_area_access_from_pkeys(error_code, vma)) {
+ /*
+ * A protection key fault means that the PKRU value did not allow
+ * access to some PTE. Userspace can figure out what PKRU was
+ * from the XSAVE state. This function captures the pkey from
+ * the vma and passes it to userspace so userspace can discover
+ * which protection key was set on the PTE.
+ *
+ * If we get here, we know that the hardware signaled a X86_PF_PK
+ * fault and that there was a VMA once we got in the fault
+ * handler. It does *not* guarantee that the VMA we find here
+ * was the one that we faulted on.
+ *
+ * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
+ * 2. T1 : set PKRU to deny access to pkey=4, touches page
+ * 3. T1 : faults...
+ * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
+ * 5. T1 : enters fault handler, takes mmap_lock, etc...
+ * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
+ * faulted on a pte with its pkey=4.
+ */
+ u32 pkey = vma_pkey(vma);
+
+ __bad_area(regs, error_code, address, pkey, SEGV_PKUERR);
+ } else {
+ __bad_area(regs, error_code, address, 0, SEGV_ACCERR);
+ }
+}
+
+static void
+do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
+ vm_fault_t fault)
+{
+ /* Kernel mode? Handle exceptions or die: */
+ if (!user_mode(regs)) {
+ kernelmode_fixup_or_oops(regs, error_code, address,
+ SIGBUS, BUS_ADRERR, ARCH_DEFAULT_PKEY);
+ return;
+ }
+
+ /* User-space => ok to do another page fault: */
+ if (is_prefetch(regs, error_code, address))
+ return;
+
+ sanitize_error_code(address, &error_code);
+
+ if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
+ return;
+
+ set_signal_archinfo(address, error_code);
+
+#ifdef CONFIG_MEMORY_FAILURE
+ if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
+ struct task_struct *tsk = current;
+ unsigned lsb = 0;
+
+ pr_err(
+ "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
+ tsk->comm, tsk->pid, address);
+ if (fault & VM_FAULT_HWPOISON_LARGE)
+ lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
+ if (fault & VM_FAULT_HWPOISON)
+ lsb = PAGE_SHIFT;
+ force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
+ return;
+ }
+#endif
+ force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
+}
+
+static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte)
+{
+ if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
+ return 0;
+
+ if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
+ return 0;
+
+ return 1;
+}
+
+/*
+ * Handle a spurious fault caused by a stale TLB entry.
+ *
+ * This allows us to lazily refresh the TLB when increasing the
+ * permissions of a kernel page (RO -> RW or NX -> X). Doing it
+ * eagerly is very expensive since that implies doing a full
+ * cross-processor TLB flush, even if no stale TLB entries exist
+ * on other processors.
+ *
+ * Spurious faults may only occur if the TLB contains an entry with
+ * fewer permission than the page table entry. Non-present (P = 0)
+ * and reserved bit (R = 1) faults are never spurious.
+ *
+ * There are no security implications to leaving a stale TLB when
+ * increasing the permissions on a page.
+ *
+ * Returns non-zero if a spurious fault was handled, zero otherwise.
+ *
+ * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
+ * (Optional Invalidation).
+ */
+static noinline int
+spurious_kernel_fault(unsigned long error_code, unsigned long address)
+{
+ pgd_t *pgd;
+ p4d_t *p4d;
+ pud_t *pud;
+ pmd_t *pmd;
+ pte_t *pte;
+ int ret;
+
+ /*
+ * Only writes to RO or instruction fetches from NX may cause
+ * spurious faults.
+ *
+ * These could be from user or supervisor accesses but the TLB
+ * is only lazily flushed after a kernel mapping protection
+ * change, so user accesses are not expected to cause spurious
+ * faults.
+ */
+ if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
+ error_code != (X86_PF_INSTR | X86_PF_PROT))
+ return 0;
+
+ pgd = init_mm.pgd + pgd_index(address);
+ if (!pgd_present(*pgd))
+ return 0;
+
+ p4d = p4d_offset(pgd, address);
+ if (!p4d_present(*p4d))
+ return 0;
+
+ if (p4d_large(*p4d))
+ return spurious_kernel_fault_check(error_code, (pte_t *) p4d);
+
+ pud = pud_offset(p4d, address);
+ if (!pud_present(*pud))
+ return 0;
+
+ if (pud_large(*pud))
+ return spurious_kernel_fault_check(error_code, (pte_t *) pud);
+
+ pmd = pmd_offset(pud, address);
+ if (!pmd_present(*pmd))
+ return 0;
+
+ if (pmd_large(*pmd))
+ return spurious_kernel_fault_check(error_code, (pte_t *) pmd);
+
+ pte = pte_offset_kernel(pmd, address);
+ if (!pte_present(*pte))
+ return 0;
+
+ ret = spurious_kernel_fault_check(error_code, pte);
+ if (!ret)
+ return 0;
+
+ /*
+ * Make sure we have permissions in PMD.
+ * If not, then there's a bug in the page tables:
+ */
+ ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd);
+ WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
+
+ return ret;
+}
+NOKPROBE_SYMBOL(spurious_kernel_fault);
+
+int show_unhandled_signals = 1;
+
+static inline int
+access_error(unsigned long error_code, struct vm_area_struct *vma)
+{
+ /* This is only called for the current mm, so: */
+ bool foreign = false;
+
+ /*
+ * Read or write was blocked by protection keys. This is
+ * always an unconditional error and can never result in
+ * a follow-up action to resolve the fault, like a COW.
+ */
+ if (error_code & X86_PF_PK)
+ return 1;
+
+ /*
+ * SGX hardware blocked the access. This usually happens
+ * when the enclave memory contents have been destroyed, like
+ * after a suspend/resume cycle. In any case, the kernel can't
+ * fix the cause of the fault. Handle the fault as an access
+ * error even in cases where no actual access violation
+ * occurred. This allows userspace to rebuild the enclave in
+ * response to the signal.
+ */
+ if (unlikely(error_code & X86_PF_SGX))
+ return 1;
+
+ /*
+ * Make sure to check the VMA so that we do not perform
+ * faults just to hit a X86_PF_PK as soon as we fill in a
+ * page.
+ */
+ if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
+ (error_code & X86_PF_INSTR), foreign))
+ return 1;
+
+ /*
+ * Shadow stack accesses (PF_SHSTK=1) are only permitted to
+ * shadow stack VMAs. All other accesses result in an error.
+ */
+ if (error_code & X86_PF_SHSTK) {
+ if (unlikely(!(vma->vm_flags & VM_SHADOW_STACK)))
+ return 1;
+ if (unlikely(!(vma->vm_flags & VM_WRITE)))
+ return 1;
+ return 0;
+ }
+
+ if (error_code & X86_PF_WRITE) {
+ /* write, present and write, not present: */
+ if (unlikely(vma->vm_flags & VM_SHADOW_STACK))
+ return 1;
+ if (unlikely(!(vma->vm_flags & VM_WRITE)))
+ return 1;
+ return 0;
+ }
+
+ /* read, present: */
+ if (unlikely(error_code & X86_PF_PROT))
+ return 1;
+
+ /* read, not present: */
+ if (unlikely(!vma_is_accessible(vma)))
+ return 1;
+
+ return 0;
+}
+
+bool fault_in_kernel_space(unsigned long address)
+{
+ /*
+ * On 64-bit systems, the vsyscall page is at an address above
+ * TASK_SIZE_MAX, but is not considered part of the kernel
+ * address space.
+ */
+ if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address))
+ return false;
+
+ return address >= TASK_SIZE_MAX;
+}
+
+/*
+ * Called for all faults where 'address' is part of the kernel address
+ * space. Might get called for faults that originate from *code* that
+ * ran in userspace or the kernel.
+ */
+static void
+do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code,
+ unsigned long address)
+{
+ /*
+ * Protection keys exceptions only happen on user pages. We
+ * have no user pages in the kernel portion of the address
+ * space, so do not expect them here.
+ */
+ WARN_ON_ONCE(hw_error_code & X86_PF_PK);
+
+#ifdef CONFIG_X86_32
+ /*
+ * We can fault-in kernel-space virtual memory on-demand. The
+ * 'reference' page table is init_mm.pgd.
+ *
+ * NOTE! We MUST NOT take any locks for this case. We may
+ * be in an interrupt or a critical region, and should
+ * only copy the information from the master page table,
+ * nothing more.
+ *
+ * Before doing this on-demand faulting, ensure that the
+ * fault is not any of the following:
+ * 1. A fault on a PTE with a reserved bit set.
+ * 2. A fault caused by a user-mode access. (Do not demand-
+ * fault kernel memory due to user-mode accesses).
+ * 3. A fault caused by a page-level protection violation.
+ * (A demand fault would be on a non-present page which
+ * would have X86_PF_PROT==0).
+ *
+ * This is only needed to close a race condition on x86-32 in
+ * the vmalloc mapping/unmapping code. See the comment above
+ * vmalloc_fault() for details. On x86-64 the race does not
+ * exist as the vmalloc mappings don't need to be synchronized
+ * there.
+ */
+ if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
+ if (vmalloc_fault(address) >= 0)
+ return;
+ }
+#endif
+
+ if (is_f00f_bug(regs, hw_error_code, address))
+ return;
+
+ /* Was the fault spurious, caused by lazy TLB invalidation? */
+ if (spurious_kernel_fault(hw_error_code, address))
+ return;
+
+ /* kprobes don't want to hook the spurious faults: */
+ if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF)))
+ return;
+
+ /*
+ * Note, despite being a "bad area", there are quite a few
+ * acceptable reasons to get here, such as erratum fixups
+ * and handling kernel code that can fault, like get_user().
+ *
+ * Don't take the mm semaphore here. If we fixup a prefetch
+ * fault we could otherwise deadlock:
+ */
+ bad_area_nosemaphore(regs, hw_error_code, address);
+}
+NOKPROBE_SYMBOL(do_kern_addr_fault);
+
+/*
+ * Handle faults in the user portion of the address space. Nothing in here
+ * should check X86_PF_USER without a specific justification: for almost
+ * all purposes, we should treat a normal kernel access to user memory
+ * (e.g. get_user(), put_user(), etc.) the same as the WRUSS instruction.
+ * The one exception is AC flag handling, which is, per the x86
+ * architecture, special for WRUSS.
+ */
+static inline
+void do_user_addr_fault(struct pt_regs *regs,
+ unsigned long error_code,
+ unsigned long address)
+{
+ struct vm_area_struct *vma;
+ struct task_struct *tsk;
+ struct mm_struct *mm;
+ vm_fault_t fault;
+ unsigned int flags = FAULT_FLAG_DEFAULT;
+
+ tsk = current;
+ mm = tsk->mm;
+
+ if (unlikely((error_code & (X86_PF_USER | X86_PF_INSTR)) == X86_PF_INSTR)) {
+ /*
+ * Whoops, this is kernel mode code trying to execute from
+ * user memory. Unless this is AMD erratum #93, which
+ * corrupts RIP such that it looks like a user address,
+ * this is unrecoverable. Don't even try to look up the
+ * VMA or look for extable entries.
+ */
+ if (is_errata93(regs, address))
+ return;
+
+ page_fault_oops(regs, error_code, address);
+ return;
+ }
+
+ /* kprobes don't want to hook the spurious faults: */
+ if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF)))
+ return;
+
+ /*
+ * Reserved bits are never expected to be set on
+ * entries in the user portion of the page tables.
+ */
+ if (unlikely(error_code & X86_PF_RSVD))
+ pgtable_bad(regs, error_code, address);
+
+ /*
+ * If SMAP is on, check for invalid kernel (supervisor) access to user
+ * pages in the user address space. The odd case here is WRUSS,
+ * which, according to the preliminary documentation, does not respect
+ * SMAP and will have the USER bit set so, in all cases, SMAP
+ * enforcement appears to be consistent with the USER bit.
+ */
+ if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) &&
+ !(error_code & X86_PF_USER) &&
+ !(regs->flags & X86_EFLAGS_AC))) {
+ /*
+ * No extable entry here. This was a kernel access to an
+ * invalid pointer. get_kernel_nofault() will not get here.
+ */
+ page_fault_oops(regs, error_code, address);
+ return;
+ }
+
+ /*
+ * If we're in an interrupt, have no user context or are running
+ * in a region with pagefaults disabled then we must not take the fault
+ */
+ if (unlikely(faulthandler_disabled() || !mm)) {
+ bad_area_nosemaphore(regs, error_code, address);
+ return;
+ }
+
+ /*
+ * It's safe to allow irq's after cr2 has been saved and the
+ * vmalloc fault has been handled.
+ *
+ * User-mode registers count as a user access even for any
+ * potential system fault or CPU buglet:
+ */
+ if (user_mode(regs)) {
+ local_irq_enable();
+ flags |= FAULT_FLAG_USER;
+ } else {
+ if (regs->flags & X86_EFLAGS_IF)
+ local_irq_enable();
+ }
+
+ perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
+
+ /*
+ * Read-only permissions can not be expressed in shadow stack PTEs.
+ * Treat all shadow stack accesses as WRITE faults. This ensures
+ * that the MM will prepare everything (e.g., break COW) such that
+ * maybe_mkwrite() can create a proper shadow stack PTE.
+ */
+ if (error_code & X86_PF_SHSTK)
+ flags |= FAULT_FLAG_WRITE;
+ if (error_code & X86_PF_WRITE)
+ flags |= FAULT_FLAG_WRITE;
+ if (error_code & X86_PF_INSTR)
+ flags |= FAULT_FLAG_INSTRUCTION;
+
+#ifdef CONFIG_X86_64
+ /*
+ * Faults in the vsyscall page might need emulation. The
+ * vsyscall page is at a high address (>PAGE_OFFSET), but is
+ * considered to be part of the user address space.
+ *
+ * The vsyscall page does not have a "real" VMA, so do this
+ * emulation before we go searching for VMAs.
+ *
+ * PKRU never rejects instruction fetches, so we don't need
+ * to consider the PF_PK bit.
+ */
+ if (is_vsyscall_vaddr(address)) {
+ if (emulate_vsyscall(error_code, regs, address))
+ return;
+ }
+#endif
+
+ if (!(flags & FAULT_FLAG_USER))
+ goto lock_mmap;
+
+ vma = lock_vma_under_rcu(mm, address);
+ if (!vma)
+ goto lock_mmap;
+
+ if (unlikely(access_error(error_code, vma))) {
+ vma_end_read(vma);
+ goto lock_mmap;
+ }
+ fault = handle_mm_fault(vma, address, flags | FAULT_FLAG_VMA_LOCK, regs);
+ if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
+ vma_end_read(vma);
+
+ if (!(fault & VM_FAULT_RETRY)) {
+ count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
+ goto done;
+ }
+ count_vm_vma_lock_event(VMA_LOCK_RETRY);
+
+ /* Quick path to respond to signals */
+ if (fault_signal_pending(fault, regs)) {
+ if (!user_mode(regs))
+ kernelmode_fixup_or_oops(regs, error_code, address,
+ SIGBUS, BUS_ADRERR,
+ ARCH_DEFAULT_PKEY);
+ return;
+ }
+lock_mmap:
+
+retry:
+ vma = lock_mm_and_find_vma(mm, address, regs);
+ if (unlikely(!vma)) {
+ bad_area_nosemaphore(regs, error_code, address);
+ return;
+ }
+
+ /*
+ * Ok, we have a good vm_area for this memory access, so
+ * we can handle it..
+ */
+ if (unlikely(access_error(error_code, vma))) {
+ bad_area_access_error(regs, error_code, address, vma);
+ return;
+ }
+
+ /*
+ * If for any reason at all we couldn't handle the fault,
+ * make sure we exit gracefully rather than endlessly redo
+ * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
+ * we get VM_FAULT_RETRY back, the mmap_lock has been unlocked.
+ *
+ * Note that handle_userfault() may also release and reacquire mmap_lock
+ * (and not return with VM_FAULT_RETRY), when returning to userland to
+ * repeat the page fault later with a VM_FAULT_NOPAGE retval
+ * (potentially after handling any pending signal during the return to
+ * userland). The return to userland is identified whenever
+ * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
+ */
+ fault = handle_mm_fault(vma, address, flags, regs);
+
+ if (fault_signal_pending(fault, regs)) {
+ /*
+ * Quick path to respond to signals. The core mm code
+ * has unlocked the mm for us if we get here.
+ */
+ if (!user_mode(regs))
+ kernelmode_fixup_or_oops(regs, error_code, address,
+ SIGBUS, BUS_ADRERR,
+ ARCH_DEFAULT_PKEY);
+ return;
+ }
+
+ /* The fault is fully completed (including releasing mmap lock) */
+ if (fault & VM_FAULT_COMPLETED)
+ return;
+
+ /*
+ * If we need to retry the mmap_lock has already been released,
+ * and if there is a fatal signal pending there is no guarantee
+ * that we made any progress. Handle this case first.
+ */
+ if (unlikely(fault & VM_FAULT_RETRY)) {
+ flags |= FAULT_FLAG_TRIED;
+ goto retry;
+ }
+
+ mmap_read_unlock(mm);
+done:
+ if (likely(!(fault & VM_FAULT_ERROR)))
+ return;
+
+ if (fatal_signal_pending(current) && !user_mode(regs)) {
+ kernelmode_fixup_or_oops(regs, error_code, address,
+ 0, 0, ARCH_DEFAULT_PKEY);
+ return;
+ }
+
+ if (fault & VM_FAULT_OOM) {
+ /* Kernel mode? Handle exceptions or die: */
+ if (!user_mode(regs)) {
+ kernelmode_fixup_or_oops(regs, error_code, address,
+ SIGSEGV, SEGV_MAPERR,
+ ARCH_DEFAULT_PKEY);
+ return;
+ }
+
+ /*
+ * We ran out of memory, call the OOM killer, and return the
+ * userspace (which will retry the fault, or kill us if we got
+ * oom-killed):
+ */
+ pagefault_out_of_memory();
+ } else {
+ if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
+ VM_FAULT_HWPOISON_LARGE))
+ do_sigbus(regs, error_code, address, fault);
+ else if (fault & VM_FAULT_SIGSEGV)
+ bad_area_nosemaphore(regs, error_code, address);
+ else
+ BUG();
+ }
+}
+NOKPROBE_SYMBOL(do_user_addr_fault);
+
+static __always_inline void
+trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code,
+ unsigned long address)
+{
+ if (!trace_pagefault_enabled())
+ return;
+
+ if (user_mode(regs))
+ trace_page_fault_user(address, regs, error_code);
+ else
+ trace_page_fault_kernel(address, regs, error_code);
+}
+
+static __always_inline void
+handle_page_fault(struct pt_regs *regs, unsigned long error_code,
+ unsigned long address)
+{
+ trace_page_fault_entries(regs, error_code, address);
+
+ if (unlikely(kmmio_fault(regs, address)))
+ return;
+
+ /* Was the fault on kernel-controlled part of the address space? */
+ if (unlikely(fault_in_kernel_space(address))) {
+ do_kern_addr_fault(regs, error_code, address);
+ } else {
+ do_user_addr_fault(regs, error_code, address);
+ /*
+ * User address page fault handling might have reenabled
+ * interrupts. Fixing up all potential exit points of
+ * do_user_addr_fault() and its leaf functions is just not
+ * doable w/o creating an unholy mess or turning the code
+ * upside down.
+ */
+ local_irq_disable();
+ }
+}
+
+DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault)
+{
+ unsigned long address = read_cr2();
+ irqentry_state_t state;
+
+ prefetchw(&current->mm->mmap_lock);
+
+ /*
+ * KVM uses #PF vector to deliver 'page not present' events to guests
+ * (asynchronous page fault mechanism). The event happens when a
+ * userspace task is trying to access some valid (from guest's point of
+ * view) memory which is not currently mapped by the host (e.g. the
+ * memory is swapped out). Note, the corresponding "page ready" event
+ * which is injected when the memory becomes available, is delivered via
+ * an interrupt mechanism and not a #PF exception
+ * (see arch/x86/kernel/kvm.c: sysvec_kvm_asyncpf_interrupt()).
+ *
+ * We are relying on the interrupted context being sane (valid RSP,
+ * relevant locks not held, etc.), which is fine as long as the
+ * interrupted context had IF=1. We are also relying on the KVM
+ * async pf type field and CR2 being read consistently instead of
+ * getting values from real and async page faults mixed up.
+ *
+ * Fingers crossed.
+ *
+ * The async #PF handling code takes care of idtentry handling
+ * itself.
+ */
+ if (kvm_handle_async_pf(regs, (u32)address))
+ return;
+
+ /*
+ * Entry handling for valid #PF from kernel mode is slightly
+ * different: RCU is already watching and ct_irq_enter() must not
+ * be invoked because a kernel fault on a user space address might
+ * sleep.
+ *
+ * In case the fault hit a RCU idle region the conditional entry
+ * code reenabled RCU to avoid subsequent wreckage which helps
+ * debuggability.
+ */
+ state = irqentry_enter(regs);
+
+ instrumentation_begin();
+ handle_page_fault(regs, error_code, address);
+ instrumentation_end();
+
+ irqentry_exit(regs, state);
+}
diff --git a/arch/x86/mm/highmem_32.c b/arch/x86/mm/highmem_32.c
new file mode 100644
index 0000000000..d9efa35711
--- /dev/null
+++ b/arch/x86/mm/highmem_32.c
@@ -0,0 +1,34 @@
+// SPDX-License-Identifier: GPL-2.0-only
+#include <linux/highmem.h>
+#include <linux/export.h>
+#include <linux/swap.h> /* for totalram_pages */
+#include <linux/memblock.h>
+#include <asm/numa.h>
+
+void __init set_highmem_pages_init(void)
+{
+ struct zone *zone;
+ int nid;
+
+ /*
+ * Explicitly reset zone->managed_pages because set_highmem_pages_init()
+ * is invoked before memblock_free_all()
+ */
+ reset_all_zones_managed_pages();
+ for_each_zone(zone) {
+ unsigned long zone_start_pfn, zone_end_pfn;
+
+ if (!is_highmem(zone))
+ continue;
+
+ zone_start_pfn = zone->zone_start_pfn;
+ zone_end_pfn = zone_start_pfn + zone->spanned_pages;
+
+ nid = zone_to_nid(zone);
+ printk(KERN_INFO "Initializing %s for node %d (%08lx:%08lx)\n",
+ zone->name, nid, zone_start_pfn, zone_end_pfn);
+
+ add_highpages_with_active_regions(nid, zone_start_pfn,
+ zone_end_pfn);
+ }
+}
diff --git a/arch/x86/mm/hugetlbpage.c b/arch/x86/mm/hugetlbpage.c
new file mode 100644
index 0000000000..5804bbae4f
--- /dev/null
+++ b/arch/x86/mm/hugetlbpage.c
@@ -0,0 +1,174 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * IA-32 Huge TLB Page Support for Kernel.
+ *
+ * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
+ */
+
+#include <linux/init.h>
+#include <linux/fs.h>
+#include <linux/mm.h>
+#include <linux/sched/mm.h>
+#include <linux/hugetlb.h>
+#include <linux/pagemap.h>
+#include <linux/err.h>
+#include <linux/sysctl.h>
+#include <linux/compat.h>
+#include <asm/mman.h>
+#include <asm/tlb.h>
+#include <asm/tlbflush.h>
+#include <asm/elf.h>
+
+/*
+ * pmd_huge() returns 1 if @pmd is hugetlb related entry, that is normal
+ * hugetlb entry or non-present (migration or hwpoisoned) hugetlb entry.
+ * Otherwise, returns 0.
+ */
+int pmd_huge(pmd_t pmd)
+{
+ return !pmd_none(pmd) &&
+ (pmd_val(pmd) & (_PAGE_PRESENT|_PAGE_PSE)) != _PAGE_PRESENT;
+}
+
+/*
+ * pud_huge() returns 1 if @pud is hugetlb related entry, that is normal
+ * hugetlb entry or non-present (migration or hwpoisoned) hugetlb entry.
+ * Otherwise, returns 0.
+ */
+int pud_huge(pud_t pud)
+{
+#if CONFIG_PGTABLE_LEVELS > 2
+ return !pud_none(pud) &&
+ (pud_val(pud) & (_PAGE_PRESENT|_PAGE_PSE)) != _PAGE_PRESENT;
+#else
+ return 0;
+#endif
+}
+
+#ifdef CONFIG_HUGETLB_PAGE
+static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *file,
+ unsigned long addr, unsigned long len,
+ unsigned long pgoff, unsigned long flags)
+{
+ struct hstate *h = hstate_file(file);
+ struct vm_unmapped_area_info info;
+
+ info.flags = 0;
+ info.length = len;
+ info.low_limit = get_mmap_base(1);
+
+ /*
+ * If hint address is above DEFAULT_MAP_WINDOW, look for unmapped area
+ * in the full address space.
+ */
+ info.high_limit = in_32bit_syscall() ?
+ task_size_32bit() : task_size_64bit(addr > DEFAULT_MAP_WINDOW);
+
+ info.align_mask = PAGE_MASK & ~huge_page_mask(h);
+ info.align_offset = 0;
+ return vm_unmapped_area(&info);
+}
+
+static unsigned long hugetlb_get_unmapped_area_topdown(struct file *file,
+ unsigned long addr, unsigned long len,
+ unsigned long pgoff, unsigned long flags)
+{
+ struct hstate *h = hstate_file(file);
+ struct vm_unmapped_area_info info;
+
+ info.flags = VM_UNMAPPED_AREA_TOPDOWN;
+ info.length = len;
+ info.low_limit = PAGE_SIZE;
+ info.high_limit = get_mmap_base(0);
+
+ /*
+ * If hint address is above DEFAULT_MAP_WINDOW, look for unmapped area
+ * in the full address space.
+ */
+ if (addr > DEFAULT_MAP_WINDOW && !in_32bit_syscall())
+ info.high_limit += TASK_SIZE_MAX - DEFAULT_MAP_WINDOW;
+
+ info.align_mask = PAGE_MASK & ~huge_page_mask(h);
+ info.align_offset = 0;
+ addr = vm_unmapped_area(&info);
+
+ /*
+ * A failed mmap() very likely causes application failure,
+ * so fall back to the bottom-up function here. This scenario
+ * can happen with large stack limits and large mmap()
+ * allocations.
+ */
+ if (addr & ~PAGE_MASK) {
+ VM_BUG_ON(addr != -ENOMEM);
+ info.flags = 0;
+ info.low_limit = TASK_UNMAPPED_BASE;
+ info.high_limit = TASK_SIZE_LOW;
+ addr = vm_unmapped_area(&info);
+ }
+
+ return addr;
+}
+
+unsigned long
+hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
+ unsigned long len, unsigned long pgoff, unsigned long flags)
+{
+ struct hstate *h = hstate_file(file);
+ struct mm_struct *mm = current->mm;
+ struct vm_area_struct *vma;
+
+ if (len & ~huge_page_mask(h))
+ return -EINVAL;
+
+ if (len > TASK_SIZE)
+ return -ENOMEM;
+
+ /* No address checking. See comment at mmap_address_hint_valid() */
+ if (flags & MAP_FIXED) {
+ if (prepare_hugepage_range(file, addr, len))
+ return -EINVAL;
+ return addr;
+ }
+
+ if (addr) {
+ addr &= huge_page_mask(h);
+ if (!mmap_address_hint_valid(addr, len))
+ goto get_unmapped_area;
+
+ vma = find_vma(mm, addr);
+ if (!vma || addr + len <= vm_start_gap(vma))
+ return addr;
+ }
+
+get_unmapped_area:
+ if (mm->get_unmapped_area == arch_get_unmapped_area)
+ return hugetlb_get_unmapped_area_bottomup(file, addr, len,
+ pgoff, flags);
+ else
+ return hugetlb_get_unmapped_area_topdown(file, addr, len,
+ pgoff, flags);
+}
+#endif /* CONFIG_HUGETLB_PAGE */
+
+#ifdef CONFIG_X86_64
+bool __init arch_hugetlb_valid_size(unsigned long size)
+{
+ if (size == PMD_SIZE)
+ return true;
+ else if (size == PUD_SIZE && boot_cpu_has(X86_FEATURE_GBPAGES))
+ return true;
+ else
+ return false;
+}
+
+#ifdef CONFIG_CONTIG_ALLOC
+static __init int gigantic_pages_init(void)
+{
+ /* With compaction or CMA we can allocate gigantic pages at runtime */
+ if (boot_cpu_has(X86_FEATURE_GBPAGES))
+ hugetlb_add_hstate(PUD_SHIFT - PAGE_SHIFT);
+ return 0;
+}
+arch_initcall(gigantic_pages_init);
+#endif
+#endif
diff --git a/arch/x86/mm/ident_map.c b/arch/x86/mm/ident_map.c
new file mode 100644
index 0000000000..968d7005f4
--- /dev/null
+++ b/arch/x86/mm/ident_map.c
@@ -0,0 +1,147 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Helper routines for building identity mapping page tables. This is
+ * included by both the compressed kernel and the regular kernel.
+ */
+
+static void ident_pmd_init(struct x86_mapping_info *info, pmd_t *pmd_page,
+ unsigned long addr, unsigned long end)
+{
+ addr &= PMD_MASK;
+ for (; addr < end; addr += PMD_SIZE) {
+ pmd_t *pmd = pmd_page + pmd_index(addr);
+
+ if (pmd_present(*pmd))
+ continue;
+
+ set_pmd(pmd, __pmd((addr - info->offset) | info->page_flag));
+ }
+}
+
+static int ident_pud_init(struct x86_mapping_info *info, pud_t *pud_page,
+ unsigned long addr, unsigned long end)
+{
+ unsigned long next;
+
+ for (; addr < end; addr = next) {
+ pud_t *pud = pud_page + pud_index(addr);
+ pmd_t *pmd;
+
+ next = (addr & PUD_MASK) + PUD_SIZE;
+ if (next > end)
+ next = end;
+
+ if (info->direct_gbpages) {
+ pud_t pudval;
+
+ if (pud_present(*pud))
+ continue;
+
+ addr &= PUD_MASK;
+ pudval = __pud((addr - info->offset) | info->page_flag);
+ set_pud(pud, pudval);
+ continue;
+ }
+
+ if (pud_present(*pud)) {
+ pmd = pmd_offset(pud, 0);
+ ident_pmd_init(info, pmd, addr, next);
+ continue;
+ }
+ pmd = (pmd_t *)info->alloc_pgt_page(info->context);
+ if (!pmd)
+ return -ENOMEM;
+ ident_pmd_init(info, pmd, addr, next);
+ set_pud(pud, __pud(__pa(pmd) | info->kernpg_flag));
+ }
+
+ return 0;
+}
+
+static int ident_p4d_init(struct x86_mapping_info *info, p4d_t *p4d_page,
+ unsigned long addr, unsigned long end)
+{
+ unsigned long next;
+ int result;
+
+ for (; addr < end; addr = next) {
+ p4d_t *p4d = p4d_page + p4d_index(addr);
+ pud_t *pud;
+
+ next = (addr & P4D_MASK) + P4D_SIZE;
+ if (next > end)
+ next = end;
+
+ if (p4d_present(*p4d)) {
+ pud = pud_offset(p4d, 0);
+ result = ident_pud_init(info, pud, addr, next);
+ if (result)
+ return result;
+
+ continue;
+ }
+ pud = (pud_t *)info->alloc_pgt_page(info->context);
+ if (!pud)
+ return -ENOMEM;
+
+ result = ident_pud_init(info, pud, addr, next);
+ if (result)
+ return result;
+
+ set_p4d(p4d, __p4d(__pa(pud) | info->kernpg_flag));
+ }
+
+ return 0;
+}
+
+int kernel_ident_mapping_init(struct x86_mapping_info *info, pgd_t *pgd_page,
+ unsigned long pstart, unsigned long pend)
+{
+ unsigned long addr = pstart + info->offset;
+ unsigned long end = pend + info->offset;
+ unsigned long next;
+ int result;
+
+ /* Set the default pagetable flags if not supplied */
+ if (!info->kernpg_flag)
+ info->kernpg_flag = _KERNPG_TABLE;
+
+ /* Filter out unsupported __PAGE_KERNEL_* bits: */
+ info->kernpg_flag &= __default_kernel_pte_mask;
+
+ for (; addr < end; addr = next) {
+ pgd_t *pgd = pgd_page + pgd_index(addr);
+ p4d_t *p4d;
+
+ next = (addr & PGDIR_MASK) + PGDIR_SIZE;
+ if (next > end)
+ next = end;
+
+ if (pgd_present(*pgd)) {
+ p4d = p4d_offset(pgd, 0);
+ result = ident_p4d_init(info, p4d, addr, next);
+ if (result)
+ return result;
+ continue;
+ }
+
+ p4d = (p4d_t *)info->alloc_pgt_page(info->context);
+ if (!p4d)
+ return -ENOMEM;
+ result = ident_p4d_init(info, p4d, addr, next);
+ if (result)
+ return result;
+ if (pgtable_l5_enabled()) {
+ set_pgd(pgd, __pgd(__pa(p4d) | info->kernpg_flag));
+ } else {
+ /*
+ * With p4d folded, pgd is equal to p4d.
+ * The pgd entry has to point to the pud page table in this case.
+ */
+ pud_t *pud = pud_offset(p4d, 0);
+ set_pgd(pgd, __pgd(__pa(pud) | info->kernpg_flag));
+ }
+ }
+
+ return 0;
+}
diff --git a/arch/x86/mm/init.c b/arch/x86/mm/init.c
new file mode 100644
index 0000000000..679893ea5e
--- /dev/null
+++ b/arch/x86/mm/init.c
@@ -0,0 +1,1101 @@
+#include <linux/gfp.h>
+#include <linux/initrd.h>
+#include <linux/ioport.h>
+#include <linux/swap.h>
+#include <linux/memblock.h>
+#include <linux/swapfile.h>
+#include <linux/swapops.h>
+#include <linux/kmemleak.h>
+#include <linux/sched/task.h>
+
+#include <asm/set_memory.h>
+#include <asm/cpu_device_id.h>
+#include <asm/e820/api.h>
+#include <asm/init.h>
+#include <asm/page.h>
+#include <asm/page_types.h>
+#include <asm/sections.h>
+#include <asm/setup.h>
+#include <asm/tlbflush.h>
+#include <asm/tlb.h>
+#include <asm/proto.h>
+#include <asm/dma.h> /* for MAX_DMA_PFN */
+#include <asm/kaslr.h>
+#include <asm/hypervisor.h>
+#include <asm/cpufeature.h>
+#include <asm/pti.h>
+#include <asm/text-patching.h>
+#include <asm/memtype.h>
+#include <asm/paravirt.h>
+
+/*
+ * We need to define the tracepoints somewhere, and tlb.c
+ * is only compiled when SMP=y.
+ */
+#include <trace/events/tlb.h>
+
+#include "mm_internal.h"
+
+/*
+ * Tables translating between page_cache_type_t and pte encoding.
+ *
+ * The default values are defined statically as minimal supported mode;
+ * WC and WT fall back to UC-. pat_init() updates these values to support
+ * more cache modes, WC and WT, when it is safe to do so. See pat_init()
+ * for the details. Note, __early_ioremap() used during early boot-time
+ * takes pgprot_t (pte encoding) and does not use these tables.
+ *
+ * Index into __cachemode2pte_tbl[] is the cachemode.
+ *
+ * Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
+ * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
+ */
+static uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
+ [_PAGE_CACHE_MODE_WB ] = 0 | 0 ,
+ [_PAGE_CACHE_MODE_WC ] = 0 | _PAGE_PCD,
+ [_PAGE_CACHE_MODE_UC_MINUS] = 0 | _PAGE_PCD,
+ [_PAGE_CACHE_MODE_UC ] = _PAGE_PWT | _PAGE_PCD,
+ [_PAGE_CACHE_MODE_WT ] = 0 | _PAGE_PCD,
+ [_PAGE_CACHE_MODE_WP ] = 0 | _PAGE_PCD,
+};
+
+unsigned long cachemode2protval(enum page_cache_mode pcm)
+{
+ if (likely(pcm == 0))
+ return 0;
+ return __cachemode2pte_tbl[pcm];
+}
+EXPORT_SYMBOL(cachemode2protval);
+
+static uint8_t __pte2cachemode_tbl[8] = {
+ [__pte2cm_idx( 0 | 0 | 0 )] = _PAGE_CACHE_MODE_WB,
+ [__pte2cm_idx(_PAGE_PWT | 0 | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
+ [__pte2cm_idx( 0 | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
+ [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC,
+ [__pte2cm_idx( 0 | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
+ [__pte2cm_idx(_PAGE_PWT | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
+ [__pte2cm_idx(0 | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
+ [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
+};
+
+/*
+ * Check that the write-protect PAT entry is set for write-protect.
+ * To do this without making assumptions how PAT has been set up (Xen has
+ * another layout than the kernel), translate the _PAGE_CACHE_MODE_WP cache
+ * mode via the __cachemode2pte_tbl[] into protection bits (those protection
+ * bits will select a cache mode of WP or better), and then translate the
+ * protection bits back into the cache mode using __pte2cm_idx() and the
+ * __pte2cachemode_tbl[] array. This will return the really used cache mode.
+ */
+bool x86_has_pat_wp(void)
+{
+ uint16_t prot = __cachemode2pte_tbl[_PAGE_CACHE_MODE_WP];
+
+ return __pte2cachemode_tbl[__pte2cm_idx(prot)] == _PAGE_CACHE_MODE_WP;
+}
+
+enum page_cache_mode pgprot2cachemode(pgprot_t pgprot)
+{
+ unsigned long masked;
+
+ masked = pgprot_val(pgprot) & _PAGE_CACHE_MASK;
+ if (likely(masked == 0))
+ return 0;
+ return __pte2cachemode_tbl[__pte2cm_idx(masked)];
+}
+
+static unsigned long __initdata pgt_buf_start;
+static unsigned long __initdata pgt_buf_end;
+static unsigned long __initdata pgt_buf_top;
+
+static unsigned long min_pfn_mapped;
+
+static bool __initdata can_use_brk_pgt = true;
+
+/*
+ * Pages returned are already directly mapped.
+ *
+ * Changing that is likely to break Xen, see commit:
+ *
+ * 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
+ *
+ * for detailed information.
+ */
+__ref void *alloc_low_pages(unsigned int num)
+{
+ unsigned long pfn;
+ int i;
+
+ if (after_bootmem) {
+ unsigned int order;
+
+ order = get_order((unsigned long)num << PAGE_SHIFT);
+ return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
+ }
+
+ if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
+ unsigned long ret = 0;
+
+ if (min_pfn_mapped < max_pfn_mapped) {
+ ret = memblock_phys_alloc_range(
+ PAGE_SIZE * num, PAGE_SIZE,
+ min_pfn_mapped << PAGE_SHIFT,
+ max_pfn_mapped << PAGE_SHIFT);
+ }
+ if (!ret && can_use_brk_pgt)
+ ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE));
+
+ if (!ret)
+ panic("alloc_low_pages: can not alloc memory");
+
+ pfn = ret >> PAGE_SHIFT;
+ } else {
+ pfn = pgt_buf_end;
+ pgt_buf_end += num;
+ }
+
+ for (i = 0; i < num; i++) {
+ void *adr;
+
+ adr = __va((pfn + i) << PAGE_SHIFT);
+ clear_page(adr);
+ }
+
+ return __va(pfn << PAGE_SHIFT);
+}
+
+/*
+ * By default need to be able to allocate page tables below PGD firstly for
+ * the 0-ISA_END_ADDRESS range and secondly for the initial PMD_SIZE mapping.
+ * With KASLR memory randomization, depending on the machine e820 memory and the
+ * PUD alignment, twice that many pages may be needed when KASLR memory
+ * randomization is enabled.
+ */
+
+#ifndef CONFIG_X86_5LEVEL
+#define INIT_PGD_PAGE_TABLES 3
+#else
+#define INIT_PGD_PAGE_TABLES 4
+#endif
+
+#ifndef CONFIG_RANDOMIZE_MEMORY
+#define INIT_PGD_PAGE_COUNT (2 * INIT_PGD_PAGE_TABLES)
+#else
+#define INIT_PGD_PAGE_COUNT (4 * INIT_PGD_PAGE_TABLES)
+#endif
+
+#define INIT_PGT_BUF_SIZE (INIT_PGD_PAGE_COUNT * PAGE_SIZE)
+RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
+void __init early_alloc_pgt_buf(void)
+{
+ unsigned long tables = INIT_PGT_BUF_SIZE;
+ phys_addr_t base;
+
+ base = __pa(extend_brk(tables, PAGE_SIZE));
+
+ pgt_buf_start = base >> PAGE_SHIFT;
+ pgt_buf_end = pgt_buf_start;
+ pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
+}
+
+int after_bootmem;
+
+early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
+
+struct map_range {
+ unsigned long start;
+ unsigned long end;
+ unsigned page_size_mask;
+};
+
+static int page_size_mask;
+
+/*
+ * Save some of cr4 feature set we're using (e.g. Pentium 4MB
+ * enable and PPro Global page enable), so that any CPU's that boot
+ * up after us can get the correct flags. Invoked on the boot CPU.
+ */
+static inline void cr4_set_bits_and_update_boot(unsigned long mask)
+{
+ mmu_cr4_features |= mask;
+ if (trampoline_cr4_features)
+ *trampoline_cr4_features = mmu_cr4_features;
+ cr4_set_bits(mask);
+}
+
+static void __init probe_page_size_mask(void)
+{
+ /*
+ * For pagealloc debugging, identity mapping will use small pages.
+ * This will simplify cpa(), which otherwise needs to support splitting
+ * large pages into small in interrupt context, etc.
+ */
+ if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
+ page_size_mask |= 1 << PG_LEVEL_2M;
+ else
+ direct_gbpages = 0;
+
+ /* Enable PSE if available */
+ if (boot_cpu_has(X86_FEATURE_PSE))
+ cr4_set_bits_and_update_boot(X86_CR4_PSE);
+
+ /* Enable PGE if available */
+ __supported_pte_mask &= ~_PAGE_GLOBAL;
+ if (boot_cpu_has(X86_FEATURE_PGE)) {
+ cr4_set_bits_and_update_boot(X86_CR4_PGE);
+ __supported_pte_mask |= _PAGE_GLOBAL;
+ }
+
+ /* By the default is everything supported: */
+ __default_kernel_pte_mask = __supported_pte_mask;
+ /* Except when with PTI where the kernel is mostly non-Global: */
+ if (cpu_feature_enabled(X86_FEATURE_PTI))
+ __default_kernel_pte_mask &= ~_PAGE_GLOBAL;
+
+ /* Enable 1 GB linear kernel mappings if available: */
+ if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
+ printk(KERN_INFO "Using GB pages for direct mapping\n");
+ page_size_mask |= 1 << PG_LEVEL_1G;
+ } else {
+ direct_gbpages = 0;
+ }
+}
+
+#define INTEL_MATCH(_model) { .vendor = X86_VENDOR_INTEL, \
+ .family = 6, \
+ .model = _model, \
+ }
+/*
+ * INVLPG may not properly flush Global entries
+ * on these CPUs when PCIDs are enabled.
+ */
+static const struct x86_cpu_id invlpg_miss_ids[] = {
+ INTEL_MATCH(INTEL_FAM6_ALDERLAKE ),
+ INTEL_MATCH(INTEL_FAM6_ALDERLAKE_L ),
+ INTEL_MATCH(INTEL_FAM6_ATOM_GRACEMONT ),
+ INTEL_MATCH(INTEL_FAM6_RAPTORLAKE ),
+ INTEL_MATCH(INTEL_FAM6_RAPTORLAKE_P),
+ INTEL_MATCH(INTEL_FAM6_RAPTORLAKE_S),
+ {}
+};
+
+static void setup_pcid(void)
+{
+ if (!IS_ENABLED(CONFIG_X86_64))
+ return;
+
+ if (!boot_cpu_has(X86_FEATURE_PCID))
+ return;
+
+ if (x86_match_cpu(invlpg_miss_ids)) {
+ pr_info("Incomplete global flushes, disabling PCID");
+ setup_clear_cpu_cap(X86_FEATURE_PCID);
+ return;
+ }
+
+ if (boot_cpu_has(X86_FEATURE_PGE)) {
+ /*
+ * This can't be cr4_set_bits_and_update_boot() -- the
+ * trampoline code can't handle CR4.PCIDE and it wouldn't
+ * do any good anyway. Despite the name,
+ * cr4_set_bits_and_update_boot() doesn't actually cause
+ * the bits in question to remain set all the way through
+ * the secondary boot asm.
+ *
+ * Instead, we brute-force it and set CR4.PCIDE manually in
+ * start_secondary().
+ */
+ cr4_set_bits(X86_CR4_PCIDE);
+ } else {
+ /*
+ * flush_tlb_all(), as currently implemented, won't work if
+ * PCID is on but PGE is not. Since that combination
+ * doesn't exist on real hardware, there's no reason to try
+ * to fully support it, but it's polite to avoid corrupting
+ * data if we're on an improperly configured VM.
+ */
+ setup_clear_cpu_cap(X86_FEATURE_PCID);
+ }
+}
+
+#ifdef CONFIG_X86_32
+#define NR_RANGE_MR 3
+#else /* CONFIG_X86_64 */
+#define NR_RANGE_MR 5
+#endif
+
+static int __meminit save_mr(struct map_range *mr, int nr_range,
+ unsigned long start_pfn, unsigned long end_pfn,
+ unsigned long page_size_mask)
+{
+ if (start_pfn < end_pfn) {
+ if (nr_range >= NR_RANGE_MR)
+ panic("run out of range for init_memory_mapping\n");
+ mr[nr_range].start = start_pfn<<PAGE_SHIFT;
+ mr[nr_range].end = end_pfn<<PAGE_SHIFT;
+ mr[nr_range].page_size_mask = page_size_mask;
+ nr_range++;
+ }
+
+ return nr_range;
+}
+
+/*
+ * adjust the page_size_mask for small range to go with
+ * big page size instead small one if nearby are ram too.
+ */
+static void __ref adjust_range_page_size_mask(struct map_range *mr,
+ int nr_range)
+{
+ int i;
+
+ for (i = 0; i < nr_range; i++) {
+ if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
+ !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
+ unsigned long start = round_down(mr[i].start, PMD_SIZE);
+ unsigned long end = round_up(mr[i].end, PMD_SIZE);
+
+#ifdef CONFIG_X86_32
+ if ((end >> PAGE_SHIFT) > max_low_pfn)
+ continue;
+#endif
+
+ if (memblock_is_region_memory(start, end - start))
+ mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
+ }
+ if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
+ !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
+ unsigned long start = round_down(mr[i].start, PUD_SIZE);
+ unsigned long end = round_up(mr[i].end, PUD_SIZE);
+
+ if (memblock_is_region_memory(start, end - start))
+ mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
+ }
+ }
+}
+
+static const char *page_size_string(struct map_range *mr)
+{
+ static const char str_1g[] = "1G";
+ static const char str_2m[] = "2M";
+ static const char str_4m[] = "4M";
+ static const char str_4k[] = "4k";
+
+ if (mr->page_size_mask & (1<<PG_LEVEL_1G))
+ return str_1g;
+ /*
+ * 32-bit without PAE has a 4M large page size.
+ * PG_LEVEL_2M is misnamed, but we can at least
+ * print out the right size in the string.
+ */
+ if (IS_ENABLED(CONFIG_X86_32) &&
+ !IS_ENABLED(CONFIG_X86_PAE) &&
+ mr->page_size_mask & (1<<PG_LEVEL_2M))
+ return str_4m;
+
+ if (mr->page_size_mask & (1<<PG_LEVEL_2M))
+ return str_2m;
+
+ return str_4k;
+}
+
+static int __meminit split_mem_range(struct map_range *mr, int nr_range,
+ unsigned long start,
+ unsigned long end)
+{
+ unsigned long start_pfn, end_pfn, limit_pfn;
+ unsigned long pfn;
+ int i;
+
+ limit_pfn = PFN_DOWN(end);
+
+ /* head if not big page alignment ? */
+ pfn = start_pfn = PFN_DOWN(start);
+#ifdef CONFIG_X86_32
+ /*
+ * Don't use a large page for the first 2/4MB of memory
+ * because there are often fixed size MTRRs in there
+ * and overlapping MTRRs into large pages can cause
+ * slowdowns.
+ */
+ if (pfn == 0)
+ end_pfn = PFN_DOWN(PMD_SIZE);
+ else
+ end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
+#else /* CONFIG_X86_64 */
+ end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
+#endif
+ if (end_pfn > limit_pfn)
+ end_pfn = limit_pfn;
+ if (start_pfn < end_pfn) {
+ nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
+ pfn = end_pfn;
+ }
+
+ /* big page (2M) range */
+ start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
+#ifdef CONFIG_X86_32
+ end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
+#else /* CONFIG_X86_64 */
+ end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
+ if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
+ end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
+#endif
+
+ if (start_pfn < end_pfn) {
+ nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
+ page_size_mask & (1<<PG_LEVEL_2M));
+ pfn = end_pfn;
+ }
+
+#ifdef CONFIG_X86_64
+ /* big page (1G) range */
+ start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
+ end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
+ if (start_pfn < end_pfn) {
+ nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
+ page_size_mask &
+ ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
+ pfn = end_pfn;
+ }
+
+ /* tail is not big page (1G) alignment */
+ start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
+ end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
+ if (start_pfn < end_pfn) {
+ nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
+ page_size_mask & (1<<PG_LEVEL_2M));
+ pfn = end_pfn;
+ }
+#endif
+
+ /* tail is not big page (2M) alignment */
+ start_pfn = pfn;
+ end_pfn = limit_pfn;
+ nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
+
+ if (!after_bootmem)
+ adjust_range_page_size_mask(mr, nr_range);
+
+ /* try to merge same page size and continuous */
+ for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
+ unsigned long old_start;
+ if (mr[i].end != mr[i+1].start ||
+ mr[i].page_size_mask != mr[i+1].page_size_mask)
+ continue;
+ /* move it */
+ old_start = mr[i].start;
+ memmove(&mr[i], &mr[i+1],
+ (nr_range - 1 - i) * sizeof(struct map_range));
+ mr[i--].start = old_start;
+ nr_range--;
+ }
+
+ for (i = 0; i < nr_range; i++)
+ pr_debug(" [mem %#010lx-%#010lx] page %s\n",
+ mr[i].start, mr[i].end - 1,
+ page_size_string(&mr[i]));
+
+ return nr_range;
+}
+
+struct range pfn_mapped[E820_MAX_ENTRIES];
+int nr_pfn_mapped;
+
+static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
+{
+ nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
+ nr_pfn_mapped, start_pfn, end_pfn);
+ nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
+
+ max_pfn_mapped = max(max_pfn_mapped, end_pfn);
+
+ if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
+ max_low_pfn_mapped = max(max_low_pfn_mapped,
+ min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
+}
+
+bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
+{
+ int i;
+
+ for (i = 0; i < nr_pfn_mapped; i++)
+ if ((start_pfn >= pfn_mapped[i].start) &&
+ (end_pfn <= pfn_mapped[i].end))
+ return true;
+
+ return false;
+}
+
+/*
+ * Setup the direct mapping of the physical memory at PAGE_OFFSET.
+ * This runs before bootmem is initialized and gets pages directly from
+ * the physical memory. To access them they are temporarily mapped.
+ */
+unsigned long __ref init_memory_mapping(unsigned long start,
+ unsigned long end, pgprot_t prot)
+{
+ struct map_range mr[NR_RANGE_MR];
+ unsigned long ret = 0;
+ int nr_range, i;
+
+ pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
+ start, end - 1);
+
+ memset(mr, 0, sizeof(mr));
+ nr_range = split_mem_range(mr, 0, start, end);
+
+ for (i = 0; i < nr_range; i++)
+ ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
+ mr[i].page_size_mask,
+ prot);
+
+ add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
+
+ return ret >> PAGE_SHIFT;
+}
+
+/*
+ * We need to iterate through the E820 memory map and create direct mappings
+ * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
+ * create direct mappings for all pfns from [0 to max_low_pfn) and
+ * [4GB to max_pfn) because of possible memory holes in high addresses
+ * that cannot be marked as UC by fixed/variable range MTRRs.
+ * Depending on the alignment of E820 ranges, this may possibly result
+ * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
+ *
+ * init_mem_mapping() calls init_range_memory_mapping() with big range.
+ * That range would have hole in the middle or ends, and only ram parts
+ * will be mapped in init_range_memory_mapping().
+ */
+static unsigned long __init init_range_memory_mapping(
+ unsigned long r_start,
+ unsigned long r_end)
+{
+ unsigned long start_pfn, end_pfn;
+ unsigned long mapped_ram_size = 0;
+ int i;
+
+ for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
+ u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
+ u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
+ if (start >= end)
+ continue;
+
+ /*
+ * if it is overlapping with brk pgt, we need to
+ * alloc pgt buf from memblock instead.
+ */
+ can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
+ min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
+ init_memory_mapping(start, end, PAGE_KERNEL);
+ mapped_ram_size += end - start;
+ can_use_brk_pgt = true;
+ }
+
+ return mapped_ram_size;
+}
+
+static unsigned long __init get_new_step_size(unsigned long step_size)
+{
+ /*
+ * Initial mapped size is PMD_SIZE (2M).
+ * We can not set step_size to be PUD_SIZE (1G) yet.
+ * In worse case, when we cross the 1G boundary, and
+ * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
+ * to map 1G range with PTE. Hence we use one less than the
+ * difference of page table level shifts.
+ *
+ * Don't need to worry about overflow in the top-down case, on 32bit,
+ * when step_size is 0, round_down() returns 0 for start, and that
+ * turns it into 0x100000000ULL.
+ * In the bottom-up case, round_up(x, 0) returns 0 though too, which
+ * needs to be taken into consideration by the code below.
+ */
+ return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
+}
+
+/**
+ * memory_map_top_down - Map [map_start, map_end) top down
+ * @map_start: start address of the target memory range
+ * @map_end: end address of the target memory range
+ *
+ * This function will setup direct mapping for memory range
+ * [map_start, map_end) in top-down. That said, the page tables
+ * will be allocated at the end of the memory, and we map the
+ * memory in top-down.
+ */
+static void __init memory_map_top_down(unsigned long map_start,
+ unsigned long map_end)
+{
+ unsigned long real_end, last_start;
+ unsigned long step_size;
+ unsigned long addr;
+ unsigned long mapped_ram_size = 0;
+
+ /*
+ * Systems that have many reserved areas near top of the memory,
+ * e.g. QEMU with less than 1G RAM and EFI enabled, or Xen, will
+ * require lots of 4K mappings which may exhaust pgt_buf.
+ * Start with top-most PMD_SIZE range aligned at PMD_SIZE to ensure
+ * there is enough mapped memory that can be allocated from
+ * memblock.
+ */
+ addr = memblock_phys_alloc_range(PMD_SIZE, PMD_SIZE, map_start,
+ map_end);
+ memblock_phys_free(addr, PMD_SIZE);
+ real_end = addr + PMD_SIZE;
+
+ /* step_size need to be small so pgt_buf from BRK could cover it */
+ step_size = PMD_SIZE;
+ max_pfn_mapped = 0; /* will get exact value next */
+ min_pfn_mapped = real_end >> PAGE_SHIFT;
+ last_start = real_end;
+
+ /*
+ * We start from the top (end of memory) and go to the bottom.
+ * The memblock_find_in_range() gets us a block of RAM from the
+ * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
+ * for page table.
+ */
+ while (last_start > map_start) {
+ unsigned long start;
+
+ if (last_start > step_size) {
+ start = round_down(last_start - 1, step_size);
+ if (start < map_start)
+ start = map_start;
+ } else
+ start = map_start;
+ mapped_ram_size += init_range_memory_mapping(start,
+ last_start);
+ last_start = start;
+ min_pfn_mapped = last_start >> PAGE_SHIFT;
+ if (mapped_ram_size >= step_size)
+ step_size = get_new_step_size(step_size);
+ }
+
+ if (real_end < map_end)
+ init_range_memory_mapping(real_end, map_end);
+}
+
+/**
+ * memory_map_bottom_up - Map [map_start, map_end) bottom up
+ * @map_start: start address of the target memory range
+ * @map_end: end address of the target memory range
+ *
+ * This function will setup direct mapping for memory range
+ * [map_start, map_end) in bottom-up. Since we have limited the
+ * bottom-up allocation above the kernel, the page tables will
+ * be allocated just above the kernel and we map the memory
+ * in [map_start, map_end) in bottom-up.
+ */
+static void __init memory_map_bottom_up(unsigned long map_start,
+ unsigned long map_end)
+{
+ unsigned long next, start;
+ unsigned long mapped_ram_size = 0;
+ /* step_size need to be small so pgt_buf from BRK could cover it */
+ unsigned long step_size = PMD_SIZE;
+
+ start = map_start;
+ min_pfn_mapped = start >> PAGE_SHIFT;
+
+ /*
+ * We start from the bottom (@map_start) and go to the top (@map_end).
+ * The memblock_find_in_range() gets us a block of RAM from the
+ * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
+ * for page table.
+ */
+ while (start < map_end) {
+ if (step_size && map_end - start > step_size) {
+ next = round_up(start + 1, step_size);
+ if (next > map_end)
+ next = map_end;
+ } else {
+ next = map_end;
+ }
+
+ mapped_ram_size += init_range_memory_mapping(start, next);
+ start = next;
+
+ if (mapped_ram_size >= step_size)
+ step_size = get_new_step_size(step_size);
+ }
+}
+
+/*
+ * The real mode trampoline, which is required for bootstrapping CPUs
+ * occupies only a small area under the low 1MB. See reserve_real_mode()
+ * for details.
+ *
+ * If KASLR is disabled the first PGD entry of the direct mapping is copied
+ * to map the real mode trampoline.
+ *
+ * If KASLR is enabled, copy only the PUD which covers the low 1MB
+ * area. This limits the randomization granularity to 1GB for both 4-level
+ * and 5-level paging.
+ */
+static void __init init_trampoline(void)
+{
+#ifdef CONFIG_X86_64
+ /*
+ * The code below will alias kernel page-tables in the user-range of the
+ * address space, including the Global bit. So global TLB entries will
+ * be created when using the trampoline page-table.
+ */
+ if (!kaslr_memory_enabled())
+ trampoline_pgd_entry = init_top_pgt[pgd_index(__PAGE_OFFSET)];
+ else
+ init_trampoline_kaslr();
+#endif
+}
+
+void __init init_mem_mapping(void)
+{
+ unsigned long end;
+
+ pti_check_boottime_disable();
+ probe_page_size_mask();
+ setup_pcid();
+
+#ifdef CONFIG_X86_64
+ end = max_pfn << PAGE_SHIFT;
+#else
+ end = max_low_pfn << PAGE_SHIFT;
+#endif
+
+ /* the ISA range is always mapped regardless of memory holes */
+ init_memory_mapping(0, ISA_END_ADDRESS, PAGE_KERNEL);
+
+ /* Init the trampoline, possibly with KASLR memory offset */
+ init_trampoline();
+
+ /*
+ * If the allocation is in bottom-up direction, we setup direct mapping
+ * in bottom-up, otherwise we setup direct mapping in top-down.
+ */
+ if (memblock_bottom_up()) {
+ unsigned long kernel_end = __pa_symbol(_end);
+
+ /*
+ * we need two separate calls here. This is because we want to
+ * allocate page tables above the kernel. So we first map
+ * [kernel_end, end) to make memory above the kernel be mapped
+ * as soon as possible. And then use page tables allocated above
+ * the kernel to map [ISA_END_ADDRESS, kernel_end).
+ */
+ memory_map_bottom_up(kernel_end, end);
+ memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
+ } else {
+ memory_map_top_down(ISA_END_ADDRESS, end);
+ }
+
+#ifdef CONFIG_X86_64
+ if (max_pfn > max_low_pfn) {
+ /* can we preserve max_low_pfn ?*/
+ max_low_pfn = max_pfn;
+ }
+#else
+ early_ioremap_page_table_range_init();
+#endif
+
+ load_cr3(swapper_pg_dir);
+ __flush_tlb_all();
+
+ x86_init.hyper.init_mem_mapping();
+
+ early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
+}
+
+/*
+ * Initialize an mm_struct to be used during poking and a pointer to be used
+ * during patching.
+ */
+void __init poking_init(void)
+{
+ spinlock_t *ptl;
+ pte_t *ptep;
+
+ poking_mm = mm_alloc();
+ BUG_ON(!poking_mm);
+
+ /* Xen PV guests need the PGD to be pinned. */
+ paravirt_enter_mmap(poking_mm);
+
+ /*
+ * Randomize the poking address, but make sure that the following page
+ * will be mapped at the same PMD. We need 2 pages, so find space for 3,
+ * and adjust the address if the PMD ends after the first one.
+ */
+ poking_addr = TASK_UNMAPPED_BASE;
+ if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
+ poking_addr += (kaslr_get_random_long("Poking") & PAGE_MASK) %
+ (TASK_SIZE - TASK_UNMAPPED_BASE - 3 * PAGE_SIZE);
+
+ if (((poking_addr + PAGE_SIZE) & ~PMD_MASK) == 0)
+ poking_addr += PAGE_SIZE;
+
+ /*
+ * We need to trigger the allocation of the page-tables that will be
+ * needed for poking now. Later, poking may be performed in an atomic
+ * section, which might cause allocation to fail.
+ */
+ ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
+ BUG_ON(!ptep);
+ pte_unmap_unlock(ptep, ptl);
+}
+
+/*
+ * devmem_is_allowed() checks to see if /dev/mem access to a certain address
+ * is valid. The argument is a physical page number.
+ *
+ * On x86, access has to be given to the first megabyte of RAM because that
+ * area traditionally contains BIOS code and data regions used by X, dosemu,
+ * and similar apps. Since they map the entire memory range, the whole range
+ * must be allowed (for mapping), but any areas that would otherwise be
+ * disallowed are flagged as being "zero filled" instead of rejected.
+ * Access has to be given to non-kernel-ram areas as well, these contain the
+ * PCI mmio resources as well as potential bios/acpi data regions.
+ */
+int devmem_is_allowed(unsigned long pagenr)
+{
+ if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
+ IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
+ != REGION_DISJOINT) {
+ /*
+ * For disallowed memory regions in the low 1MB range,
+ * request that the page be shown as all zeros.
+ */
+ if (pagenr < 256)
+ return 2;
+
+ return 0;
+ }
+
+ /*
+ * This must follow RAM test, since System RAM is considered a
+ * restricted resource under CONFIG_STRICT_DEVMEM.
+ */
+ if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
+ /* Low 1MB bypasses iomem restrictions. */
+ if (pagenr < 256)
+ return 1;
+
+ return 0;
+ }
+
+ return 1;
+}
+
+void free_init_pages(const char *what, unsigned long begin, unsigned long end)
+{
+ unsigned long begin_aligned, end_aligned;
+
+ /* Make sure boundaries are page aligned */
+ begin_aligned = PAGE_ALIGN(begin);
+ end_aligned = end & PAGE_MASK;
+
+ if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
+ begin = begin_aligned;
+ end = end_aligned;
+ }
+
+ if (begin >= end)
+ return;
+
+ /*
+ * If debugging page accesses then do not free this memory but
+ * mark them not present - any buggy init-section access will
+ * create a kernel page fault:
+ */
+ if (debug_pagealloc_enabled()) {
+ pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
+ begin, end - 1);
+ /*
+ * Inform kmemleak about the hole in the memory since the
+ * corresponding pages will be unmapped.
+ */
+ kmemleak_free_part((void *)begin, end - begin);
+ set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
+ } else {
+ /*
+ * We just marked the kernel text read only above, now that
+ * we are going to free part of that, we need to make that
+ * writeable and non-executable first.
+ */
+ set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
+ set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
+
+ free_reserved_area((void *)begin, (void *)end,
+ POISON_FREE_INITMEM, what);
+ }
+}
+
+/*
+ * begin/end can be in the direct map or the "high kernel mapping"
+ * used for the kernel image only. free_init_pages() will do the
+ * right thing for either kind of address.
+ */
+void free_kernel_image_pages(const char *what, void *begin, void *end)
+{
+ unsigned long begin_ul = (unsigned long)begin;
+ unsigned long end_ul = (unsigned long)end;
+ unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
+
+ free_init_pages(what, begin_ul, end_ul);
+
+ /*
+ * PTI maps some of the kernel into userspace. For performance,
+ * this includes some kernel areas that do not contain secrets.
+ * Those areas might be adjacent to the parts of the kernel image
+ * being freed, which may contain secrets. Remove the "high kernel
+ * image mapping" for these freed areas, ensuring they are not even
+ * potentially vulnerable to Meltdown regardless of the specific
+ * optimizations PTI is currently using.
+ *
+ * The "noalias" prevents unmapping the direct map alias which is
+ * needed to access the freed pages.
+ *
+ * This is only valid for 64bit kernels. 32bit has only one mapping
+ * which can't be treated in this way for obvious reasons.
+ */
+ if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
+ set_memory_np_noalias(begin_ul, len_pages);
+}
+
+void __ref free_initmem(void)
+{
+ e820__reallocate_tables();
+
+ mem_encrypt_free_decrypted_mem();
+
+ free_kernel_image_pages("unused kernel image (initmem)",
+ &__init_begin, &__init_end);
+}
+
+#ifdef CONFIG_BLK_DEV_INITRD
+void __init free_initrd_mem(unsigned long start, unsigned long end)
+{
+ /*
+ * end could be not aligned, and We can not align that,
+ * decompressor could be confused by aligned initrd_end
+ * We already reserve the end partial page before in
+ * - i386_start_kernel()
+ * - x86_64_start_kernel()
+ * - relocate_initrd()
+ * So here We can do PAGE_ALIGN() safely to get partial page to be freed
+ */
+ free_init_pages("initrd", start, PAGE_ALIGN(end));
+}
+#endif
+
+/*
+ * Calculate the precise size of the DMA zone (first 16 MB of RAM),
+ * and pass it to the MM layer - to help it set zone watermarks more
+ * accurately.
+ *
+ * Done on 64-bit systems only for the time being, although 32-bit systems
+ * might benefit from this as well.
+ */
+void __init memblock_find_dma_reserve(void)
+{
+#ifdef CONFIG_X86_64
+ u64 nr_pages = 0, nr_free_pages = 0;
+ unsigned long start_pfn, end_pfn;
+ phys_addr_t start_addr, end_addr;
+ int i;
+ u64 u;
+
+ /*
+ * Iterate over all memory ranges (free and reserved ones alike),
+ * to calculate the total number of pages in the first 16 MB of RAM:
+ */
+ nr_pages = 0;
+ for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
+ start_pfn = min(start_pfn, MAX_DMA_PFN);
+ end_pfn = min(end_pfn, MAX_DMA_PFN);
+
+ nr_pages += end_pfn - start_pfn;
+ }
+
+ /*
+ * Iterate over free memory ranges to calculate the number of free
+ * pages in the DMA zone, while not counting potential partial
+ * pages at the beginning or the end of the range:
+ */
+ nr_free_pages = 0;
+ for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
+ start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
+ end_pfn = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
+
+ if (start_pfn < end_pfn)
+ nr_free_pages += end_pfn - start_pfn;
+ }
+
+ set_dma_reserve(nr_pages - nr_free_pages);
+#endif
+}
+
+void __init zone_sizes_init(void)
+{
+ unsigned long max_zone_pfns[MAX_NR_ZONES];
+
+ memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
+
+#ifdef CONFIG_ZONE_DMA
+ max_zone_pfns[ZONE_DMA] = min(MAX_DMA_PFN, max_low_pfn);
+#endif
+#ifdef CONFIG_ZONE_DMA32
+ max_zone_pfns[ZONE_DMA32] = min(MAX_DMA32_PFN, max_low_pfn);
+#endif
+ max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
+#ifdef CONFIG_HIGHMEM
+ max_zone_pfns[ZONE_HIGHMEM] = max_pfn;
+#endif
+
+ free_area_init(max_zone_pfns);
+}
+
+__visible DEFINE_PER_CPU_ALIGNED(struct tlb_state, cpu_tlbstate) = {
+ .loaded_mm = &init_mm,
+ .next_asid = 1,
+ .cr4 = ~0UL, /* fail hard if we screw up cr4 shadow initialization */
+};
+
+#ifdef CONFIG_ADDRESS_MASKING
+DEFINE_PER_CPU(u64, tlbstate_untag_mask);
+EXPORT_PER_CPU_SYMBOL(tlbstate_untag_mask);
+#endif
+
+void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
+{
+ /* entry 0 MUST be WB (hardwired to speed up translations) */
+ BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
+
+ __cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
+ __pte2cachemode_tbl[entry] = cache;
+}
+
+#ifdef CONFIG_SWAP
+unsigned long arch_max_swapfile_size(void)
+{
+ unsigned long pages;
+
+ pages = generic_max_swapfile_size();
+
+ if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) {
+ /* Limit the swap file size to MAX_PA/2 for L1TF workaround */
+ unsigned long long l1tf_limit = l1tf_pfn_limit();
+ /*
+ * We encode swap offsets also with 3 bits below those for pfn
+ * which makes the usable limit higher.
+ */
+#if CONFIG_PGTABLE_LEVELS > 2
+ l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
+#endif
+ pages = min_t(unsigned long long, l1tf_limit, pages);
+ }
+ return pages;
+}
+#endif
diff --git a/arch/x86/mm/init_32.c b/arch/x86/mm/init_32.c
new file mode 100644
index 0000000000..b63403d717
--- /dev/null
+++ b/arch/x86/mm/init_32.c
@@ -0,0 +1,805 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ *
+ * Copyright (C) 1995 Linus Torvalds
+ *
+ * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
+ */
+
+#include <linux/signal.h>
+#include <linux/sched.h>
+#include <linux/kernel.h>
+#include <linux/errno.h>
+#include <linux/string.h>
+#include <linux/types.h>
+#include <linux/ptrace.h>
+#include <linux/mman.h>
+#include <linux/mm.h>
+#include <linux/hugetlb.h>
+#include <linux/swap.h>
+#include <linux/smp.h>
+#include <linux/init.h>
+#include <linux/highmem.h>
+#include <linux/pagemap.h>
+#include <linux/pci.h>
+#include <linux/pfn.h>
+#include <linux/poison.h>
+#include <linux/memblock.h>
+#include <linux/proc_fs.h>
+#include <linux/memory_hotplug.h>
+#include <linux/initrd.h>
+#include <linux/cpumask.h>
+#include <linux/gfp.h>
+
+#include <asm/asm.h>
+#include <asm/bios_ebda.h>
+#include <asm/processor.h>
+#include <linux/uaccess.h>
+#include <asm/dma.h>
+#include <asm/fixmap.h>
+#include <asm/e820/api.h>
+#include <asm/apic.h>
+#include <asm/bugs.h>
+#include <asm/tlb.h>
+#include <asm/tlbflush.h>
+#include <asm/olpc_ofw.h>
+#include <asm/pgalloc.h>
+#include <asm/sections.h>
+#include <asm/setup.h>
+#include <asm/set_memory.h>
+#include <asm/page_types.h>
+#include <asm/cpu_entry_area.h>
+#include <asm/init.h>
+#include <asm/pgtable_areas.h>
+#include <asm/numa.h>
+
+#include "mm_internal.h"
+
+unsigned long highstart_pfn, highend_pfn;
+
+bool __read_mostly __vmalloc_start_set = false;
+
+/*
+ * Creates a middle page table and puts a pointer to it in the
+ * given global directory entry. This only returns the gd entry
+ * in non-PAE compilation mode, since the middle layer is folded.
+ */
+static pmd_t * __init one_md_table_init(pgd_t *pgd)
+{
+ p4d_t *p4d;
+ pud_t *pud;
+ pmd_t *pmd_table;
+
+#ifdef CONFIG_X86_PAE
+ if (!(pgd_val(*pgd) & _PAGE_PRESENT)) {
+ pmd_table = (pmd_t *)alloc_low_page();
+ set_pgd(pgd, __pgd(__pa(pmd_table) | _PAGE_PRESENT));
+ p4d = p4d_offset(pgd, 0);
+ pud = pud_offset(p4d, 0);
+ BUG_ON(pmd_table != pmd_offset(pud, 0));
+
+ return pmd_table;
+ }
+#endif
+ p4d = p4d_offset(pgd, 0);
+ pud = pud_offset(p4d, 0);
+ pmd_table = pmd_offset(pud, 0);
+
+ return pmd_table;
+}
+
+/*
+ * Create a page table and place a pointer to it in a middle page
+ * directory entry:
+ */
+static pte_t * __init one_page_table_init(pmd_t *pmd)
+{
+ if (!(pmd_val(*pmd) & _PAGE_PRESENT)) {
+ pte_t *page_table = (pte_t *)alloc_low_page();
+
+ set_pmd(pmd, __pmd(__pa(page_table) | _PAGE_TABLE));
+ BUG_ON(page_table != pte_offset_kernel(pmd, 0));
+ }
+
+ return pte_offset_kernel(pmd, 0);
+}
+
+pmd_t * __init populate_extra_pmd(unsigned long vaddr)
+{
+ int pgd_idx = pgd_index(vaddr);
+ int pmd_idx = pmd_index(vaddr);
+
+ return one_md_table_init(swapper_pg_dir + pgd_idx) + pmd_idx;
+}
+
+pte_t * __init populate_extra_pte(unsigned long vaddr)
+{
+ int pte_idx = pte_index(vaddr);
+ pmd_t *pmd;
+
+ pmd = populate_extra_pmd(vaddr);
+ return one_page_table_init(pmd) + pte_idx;
+}
+
+static unsigned long __init
+page_table_range_init_count(unsigned long start, unsigned long end)
+{
+ unsigned long count = 0;
+#ifdef CONFIG_HIGHMEM
+ int pmd_idx_kmap_begin = fix_to_virt(FIX_KMAP_END) >> PMD_SHIFT;
+ int pmd_idx_kmap_end = fix_to_virt(FIX_KMAP_BEGIN) >> PMD_SHIFT;
+ int pgd_idx, pmd_idx;
+ unsigned long vaddr;
+
+ if (pmd_idx_kmap_begin == pmd_idx_kmap_end)
+ return 0;
+
+ vaddr = start;
+ pgd_idx = pgd_index(vaddr);
+ pmd_idx = pmd_index(vaddr);
+
+ for ( ; (pgd_idx < PTRS_PER_PGD) && (vaddr != end); pgd_idx++) {
+ for (; (pmd_idx < PTRS_PER_PMD) && (vaddr != end);
+ pmd_idx++) {
+ if ((vaddr >> PMD_SHIFT) >= pmd_idx_kmap_begin &&
+ (vaddr >> PMD_SHIFT) <= pmd_idx_kmap_end)
+ count++;
+ vaddr += PMD_SIZE;
+ }
+ pmd_idx = 0;
+ }
+#endif
+ return count;
+}
+
+static pte_t *__init page_table_kmap_check(pte_t *pte, pmd_t *pmd,
+ unsigned long vaddr, pte_t *lastpte,
+ void **adr)
+{
+#ifdef CONFIG_HIGHMEM
+ /*
+ * Something (early fixmap) may already have put a pte
+ * page here, which causes the page table allocation
+ * to become nonlinear. Attempt to fix it, and if it
+ * is still nonlinear then we have to bug.
+ */
+ int pmd_idx_kmap_begin = fix_to_virt(FIX_KMAP_END) >> PMD_SHIFT;
+ int pmd_idx_kmap_end = fix_to_virt(FIX_KMAP_BEGIN) >> PMD_SHIFT;
+
+ if (pmd_idx_kmap_begin != pmd_idx_kmap_end
+ && (vaddr >> PMD_SHIFT) >= pmd_idx_kmap_begin
+ && (vaddr >> PMD_SHIFT) <= pmd_idx_kmap_end) {
+ pte_t *newpte;
+ int i;
+
+ BUG_ON(after_bootmem);
+ newpte = *adr;
+ for (i = 0; i < PTRS_PER_PTE; i++)
+ set_pte(newpte + i, pte[i]);
+ *adr = (void *)(((unsigned long)(*adr)) + PAGE_SIZE);
+
+ set_pmd(pmd, __pmd(__pa(newpte)|_PAGE_TABLE));
+ BUG_ON(newpte != pte_offset_kernel(pmd, 0));
+ __flush_tlb_all();
+
+ pte = newpte;
+ }
+ BUG_ON(vaddr < fix_to_virt(FIX_KMAP_BEGIN - 1)
+ && vaddr > fix_to_virt(FIX_KMAP_END)
+ && lastpte && lastpte + PTRS_PER_PTE != pte);
+#endif
+ return pte;
+}
+
+/*
+ * This function initializes a certain range of kernel virtual memory
+ * with new bootmem page tables, everywhere page tables are missing in
+ * the given range.
+ *
+ * NOTE: The pagetables are allocated contiguous on the physical space
+ * so we can cache the place of the first one and move around without
+ * checking the pgd every time.
+ */
+static void __init
+page_table_range_init(unsigned long start, unsigned long end, pgd_t *pgd_base)
+{
+ int pgd_idx, pmd_idx;
+ unsigned long vaddr;
+ pgd_t *pgd;
+ pmd_t *pmd;
+ pte_t *pte = NULL;
+ unsigned long count = page_table_range_init_count(start, end);
+ void *adr = NULL;
+
+ if (count)
+ adr = alloc_low_pages(count);
+
+ vaddr = start;
+ pgd_idx = pgd_index(vaddr);
+ pmd_idx = pmd_index(vaddr);
+ pgd = pgd_base + pgd_idx;
+
+ for ( ; (pgd_idx < PTRS_PER_PGD) && (vaddr != end); pgd++, pgd_idx++) {
+ pmd = one_md_table_init(pgd);
+ pmd = pmd + pmd_index(vaddr);
+ for (; (pmd_idx < PTRS_PER_PMD) && (vaddr != end);
+ pmd++, pmd_idx++) {
+ pte = page_table_kmap_check(one_page_table_init(pmd),
+ pmd, vaddr, pte, &adr);
+
+ vaddr += PMD_SIZE;
+ }
+ pmd_idx = 0;
+ }
+}
+
+static inline int is_x86_32_kernel_text(unsigned long addr)
+{
+ if (addr >= (unsigned long)_text && addr <= (unsigned long)__init_end)
+ return 1;
+ return 0;
+}
+
+/*
+ * This maps the physical memory to kernel virtual address space, a total
+ * of max_low_pfn pages, by creating page tables starting from address
+ * PAGE_OFFSET:
+ */
+unsigned long __init
+kernel_physical_mapping_init(unsigned long start,
+ unsigned long end,
+ unsigned long page_size_mask,
+ pgprot_t prot)
+{
+ int use_pse = page_size_mask == (1<<PG_LEVEL_2M);
+ unsigned long last_map_addr = end;
+ unsigned long start_pfn, end_pfn;
+ pgd_t *pgd_base = swapper_pg_dir;
+ int pgd_idx, pmd_idx, pte_ofs;
+ unsigned long pfn;
+ pgd_t *pgd;
+ pmd_t *pmd;
+ pte_t *pte;
+ unsigned pages_2m, pages_4k;
+ int mapping_iter;
+
+ start_pfn = start >> PAGE_SHIFT;
+ end_pfn = end >> PAGE_SHIFT;
+
+ /*
+ * First iteration will setup identity mapping using large/small pages
+ * based on use_pse, with other attributes same as set by
+ * the early code in head_32.S
+ *
+ * Second iteration will setup the appropriate attributes (NX, GLOBAL..)
+ * as desired for the kernel identity mapping.
+ *
+ * This two pass mechanism conforms to the TLB app note which says:
+ *
+ * "Software should not write to a paging-structure entry in a way
+ * that would change, for any linear address, both the page size
+ * and either the page frame or attributes."
+ */
+ mapping_iter = 1;
+
+ if (!boot_cpu_has(X86_FEATURE_PSE))
+ use_pse = 0;
+
+repeat:
+ pages_2m = pages_4k = 0;
+ pfn = start_pfn;
+ pgd_idx = pgd_index((pfn<<PAGE_SHIFT) + PAGE_OFFSET);
+ pgd = pgd_base + pgd_idx;
+ for (; pgd_idx < PTRS_PER_PGD; pgd++, pgd_idx++) {
+ pmd = one_md_table_init(pgd);
+
+ if (pfn >= end_pfn)
+ continue;
+#ifdef CONFIG_X86_PAE
+ pmd_idx = pmd_index((pfn<<PAGE_SHIFT) + PAGE_OFFSET);
+ pmd += pmd_idx;
+#else
+ pmd_idx = 0;
+#endif
+ for (; pmd_idx < PTRS_PER_PMD && pfn < end_pfn;
+ pmd++, pmd_idx++) {
+ unsigned int addr = pfn * PAGE_SIZE + PAGE_OFFSET;
+
+ /*
+ * Map with big pages if possible, otherwise
+ * create normal page tables:
+ */
+ if (use_pse) {
+ unsigned int addr2;
+ pgprot_t prot = PAGE_KERNEL_LARGE;
+ /*
+ * first pass will use the same initial
+ * identity mapping attribute + _PAGE_PSE.
+ */
+ pgprot_t init_prot =
+ __pgprot(PTE_IDENT_ATTR |
+ _PAGE_PSE);
+
+ pfn &= PMD_MASK >> PAGE_SHIFT;
+ addr2 = (pfn + PTRS_PER_PTE-1) * PAGE_SIZE +
+ PAGE_OFFSET + PAGE_SIZE-1;
+
+ if (is_x86_32_kernel_text(addr) ||
+ is_x86_32_kernel_text(addr2))
+ prot = PAGE_KERNEL_LARGE_EXEC;
+
+ pages_2m++;
+ if (mapping_iter == 1)
+ set_pmd(pmd, pfn_pmd(pfn, init_prot));
+ else
+ set_pmd(pmd, pfn_pmd(pfn, prot));
+
+ pfn += PTRS_PER_PTE;
+ continue;
+ }
+ pte = one_page_table_init(pmd);
+
+ pte_ofs = pte_index((pfn<<PAGE_SHIFT) + PAGE_OFFSET);
+ pte += pte_ofs;
+ for (; pte_ofs < PTRS_PER_PTE && pfn < end_pfn;
+ pte++, pfn++, pte_ofs++, addr += PAGE_SIZE) {
+ pgprot_t prot = PAGE_KERNEL;
+ /*
+ * first pass will use the same initial
+ * identity mapping attribute.
+ */
+ pgprot_t init_prot = __pgprot(PTE_IDENT_ATTR);
+
+ if (is_x86_32_kernel_text(addr))
+ prot = PAGE_KERNEL_EXEC;
+
+ pages_4k++;
+ if (mapping_iter == 1) {
+ set_pte(pte, pfn_pte(pfn, init_prot));
+ last_map_addr = (pfn << PAGE_SHIFT) + PAGE_SIZE;
+ } else
+ set_pte(pte, pfn_pte(pfn, prot));
+ }
+ }
+ }
+ if (mapping_iter == 1) {
+ /*
+ * update direct mapping page count only in the first
+ * iteration.
+ */
+ update_page_count(PG_LEVEL_2M, pages_2m);
+ update_page_count(PG_LEVEL_4K, pages_4k);
+
+ /*
+ * local global flush tlb, which will flush the previous
+ * mappings present in both small and large page TLB's.
+ */
+ __flush_tlb_all();
+
+ /*
+ * Second iteration will set the actual desired PTE attributes.
+ */
+ mapping_iter = 2;
+ goto repeat;
+ }
+ return last_map_addr;
+}
+
+#ifdef CONFIG_HIGHMEM
+static void __init permanent_kmaps_init(pgd_t *pgd_base)
+{
+ unsigned long vaddr = PKMAP_BASE;
+
+ page_table_range_init(vaddr, vaddr + PAGE_SIZE*LAST_PKMAP, pgd_base);
+
+ pkmap_page_table = virt_to_kpte(vaddr);
+}
+
+void __init add_highpages_with_active_regions(int nid,
+ unsigned long start_pfn, unsigned long end_pfn)
+{
+ phys_addr_t start, end;
+ u64 i;
+
+ for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &start, &end, NULL) {
+ unsigned long pfn = clamp_t(unsigned long, PFN_UP(start),
+ start_pfn, end_pfn);
+ unsigned long e_pfn = clamp_t(unsigned long, PFN_DOWN(end),
+ start_pfn, end_pfn);
+ for ( ; pfn < e_pfn; pfn++)
+ if (pfn_valid(pfn))
+ free_highmem_page(pfn_to_page(pfn));
+ }
+}
+#else
+static inline void permanent_kmaps_init(pgd_t *pgd_base)
+{
+}
+#endif /* CONFIG_HIGHMEM */
+
+void __init sync_initial_page_table(void)
+{
+ clone_pgd_range(initial_page_table + KERNEL_PGD_BOUNDARY,
+ swapper_pg_dir + KERNEL_PGD_BOUNDARY,
+ KERNEL_PGD_PTRS);
+
+ /*
+ * sync back low identity map too. It is used for example
+ * in the 32-bit EFI stub.
+ */
+ clone_pgd_range(initial_page_table,
+ swapper_pg_dir + KERNEL_PGD_BOUNDARY,
+ min(KERNEL_PGD_PTRS, KERNEL_PGD_BOUNDARY));
+}
+
+void __init native_pagetable_init(void)
+{
+ unsigned long pfn, va;
+ pgd_t *pgd, *base = swapper_pg_dir;
+ p4d_t *p4d;
+ pud_t *pud;
+ pmd_t *pmd;
+ pte_t *pte;
+
+ /*
+ * Remove any mappings which extend past the end of physical
+ * memory from the boot time page table.
+ * In virtual address space, we should have at least two pages
+ * from VMALLOC_END to pkmap or fixmap according to VMALLOC_END
+ * definition. And max_low_pfn is set to VMALLOC_END physical
+ * address. If initial memory mapping is doing right job, we
+ * should have pte used near max_low_pfn or one pmd is not present.
+ */
+ for (pfn = max_low_pfn; pfn < 1<<(32-PAGE_SHIFT); pfn++) {
+ va = PAGE_OFFSET + (pfn<<PAGE_SHIFT);
+ pgd = base + pgd_index(va);
+ if (!pgd_present(*pgd))
+ break;
+
+ p4d = p4d_offset(pgd, va);
+ pud = pud_offset(p4d, va);
+ pmd = pmd_offset(pud, va);
+ if (!pmd_present(*pmd))
+ break;
+
+ /* should not be large page here */
+ if (pmd_large(*pmd)) {
+ pr_warn("try to clear pte for ram above max_low_pfn: pfn: %lx pmd: %p pmd phys: %lx, but pmd is big page and is not using pte !\n",
+ pfn, pmd, __pa(pmd));
+ BUG_ON(1);
+ }
+
+ pte = pte_offset_kernel(pmd, va);
+ if (!pte_present(*pte))
+ break;
+
+ printk(KERN_DEBUG "clearing pte for ram above max_low_pfn: pfn: %lx pmd: %p pmd phys: %lx pte: %p pte phys: %lx\n",
+ pfn, pmd, __pa(pmd), pte, __pa(pte));
+ pte_clear(NULL, va, pte);
+ }
+ paging_init();
+}
+
+/*
+ * Build a proper pagetable for the kernel mappings. Up until this
+ * point, we've been running on some set of pagetables constructed by
+ * the boot process.
+ *
+ * This will be a pagetable constructed in arch/x86/kernel/head_32.S.
+ * The root of the pagetable will be swapper_pg_dir.
+ *
+ * In general, pagetable_init() assumes that the pagetable may already
+ * be partially populated, and so it avoids stomping on any existing
+ * mappings.
+ */
+void __init early_ioremap_page_table_range_init(void)
+{
+ pgd_t *pgd_base = swapper_pg_dir;
+ unsigned long vaddr, end;
+
+ /*
+ * Fixed mappings, only the page table structure has to be
+ * created - mappings will be set by set_fixmap():
+ */
+ vaddr = __fix_to_virt(__end_of_fixed_addresses - 1) & PMD_MASK;
+ end = (FIXADDR_TOP + PMD_SIZE - 1) & PMD_MASK;
+ page_table_range_init(vaddr, end, pgd_base);
+ early_ioremap_reset();
+}
+
+static void __init pagetable_init(void)
+{
+ pgd_t *pgd_base = swapper_pg_dir;
+
+ permanent_kmaps_init(pgd_base);
+}
+
+#define DEFAULT_PTE_MASK ~(_PAGE_NX | _PAGE_GLOBAL)
+/* Bits supported by the hardware: */
+pteval_t __supported_pte_mask __read_mostly = DEFAULT_PTE_MASK;
+/* Bits allowed in normal kernel mappings: */
+pteval_t __default_kernel_pte_mask __read_mostly = DEFAULT_PTE_MASK;
+EXPORT_SYMBOL_GPL(__supported_pte_mask);
+/* Used in PAGE_KERNEL_* macros which are reasonably used out-of-tree: */
+EXPORT_SYMBOL(__default_kernel_pte_mask);
+
+/* user-defined highmem size */
+static unsigned int highmem_pages = -1;
+
+/*
+ * highmem=size forces highmem to be exactly 'size' bytes.
+ * This works even on boxes that have no highmem otherwise.
+ * This also works to reduce highmem size on bigger boxes.
+ */
+static int __init parse_highmem(char *arg)
+{
+ if (!arg)
+ return -EINVAL;
+
+ highmem_pages = memparse(arg, &arg) >> PAGE_SHIFT;
+ return 0;
+}
+early_param("highmem", parse_highmem);
+
+#define MSG_HIGHMEM_TOO_BIG \
+ "highmem size (%luMB) is bigger than pages available (%luMB)!\n"
+
+#define MSG_LOWMEM_TOO_SMALL \
+ "highmem size (%luMB) results in <64MB lowmem, ignoring it!\n"
+/*
+ * All of RAM fits into lowmem - but if user wants highmem
+ * artificially via the highmem=x boot parameter then create
+ * it:
+ */
+static void __init lowmem_pfn_init(void)
+{
+ /* max_low_pfn is 0, we already have early_res support */
+ max_low_pfn = max_pfn;
+
+ if (highmem_pages == -1)
+ highmem_pages = 0;
+#ifdef CONFIG_HIGHMEM
+ if (highmem_pages >= max_pfn) {
+ printk(KERN_ERR MSG_HIGHMEM_TOO_BIG,
+ pages_to_mb(highmem_pages), pages_to_mb(max_pfn));
+ highmem_pages = 0;
+ }
+ if (highmem_pages) {
+ if (max_low_pfn - highmem_pages < 64*1024*1024/PAGE_SIZE) {
+ printk(KERN_ERR MSG_LOWMEM_TOO_SMALL,
+ pages_to_mb(highmem_pages));
+ highmem_pages = 0;
+ }
+ max_low_pfn -= highmem_pages;
+ }
+#else
+ if (highmem_pages)
+ printk(KERN_ERR "ignoring highmem size on non-highmem kernel!\n");
+#endif
+}
+
+#define MSG_HIGHMEM_TOO_SMALL \
+ "only %luMB highmem pages available, ignoring highmem size of %luMB!\n"
+
+#define MSG_HIGHMEM_TRIMMED \
+ "Warning: only 4GB will be used. Use a HIGHMEM64G enabled kernel!\n"
+/*
+ * We have more RAM than fits into lowmem - we try to put it into
+ * highmem, also taking the highmem=x boot parameter into account:
+ */
+static void __init highmem_pfn_init(void)
+{
+ max_low_pfn = MAXMEM_PFN;
+
+ if (highmem_pages == -1)
+ highmem_pages = max_pfn - MAXMEM_PFN;
+
+ if (highmem_pages + MAXMEM_PFN < max_pfn)
+ max_pfn = MAXMEM_PFN + highmem_pages;
+
+ if (highmem_pages + MAXMEM_PFN > max_pfn) {
+ printk(KERN_WARNING MSG_HIGHMEM_TOO_SMALL,
+ pages_to_mb(max_pfn - MAXMEM_PFN),
+ pages_to_mb(highmem_pages));
+ highmem_pages = 0;
+ }
+#ifndef CONFIG_HIGHMEM
+ /* Maximum memory usable is what is directly addressable */
+ printk(KERN_WARNING "Warning only %ldMB will be used.\n", MAXMEM>>20);
+ if (max_pfn > MAX_NONPAE_PFN)
+ printk(KERN_WARNING "Use a HIGHMEM64G enabled kernel.\n");
+ else
+ printk(KERN_WARNING "Use a HIGHMEM enabled kernel.\n");
+ max_pfn = MAXMEM_PFN;
+#else /* !CONFIG_HIGHMEM */
+#ifndef CONFIG_HIGHMEM64G
+ if (max_pfn > MAX_NONPAE_PFN) {
+ max_pfn = MAX_NONPAE_PFN;
+ printk(KERN_WARNING MSG_HIGHMEM_TRIMMED);
+ }
+#endif /* !CONFIG_HIGHMEM64G */
+#endif /* !CONFIG_HIGHMEM */
+}
+
+/*
+ * Determine low and high memory ranges:
+ */
+void __init find_low_pfn_range(void)
+{
+ /* it could update max_pfn */
+
+ if (max_pfn <= MAXMEM_PFN)
+ lowmem_pfn_init();
+ else
+ highmem_pfn_init();
+}
+
+#ifndef CONFIG_NUMA
+void __init initmem_init(void)
+{
+#ifdef CONFIG_HIGHMEM
+ highstart_pfn = highend_pfn = max_pfn;
+ if (max_pfn > max_low_pfn)
+ highstart_pfn = max_low_pfn;
+ printk(KERN_NOTICE "%ldMB HIGHMEM available.\n",
+ pages_to_mb(highend_pfn - highstart_pfn));
+ high_memory = (void *) __va(highstart_pfn * PAGE_SIZE - 1) + 1;
+#else
+ high_memory = (void *) __va(max_low_pfn * PAGE_SIZE - 1) + 1;
+#endif
+
+ memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
+
+#ifdef CONFIG_FLATMEM
+ max_mapnr = IS_ENABLED(CONFIG_HIGHMEM) ? highend_pfn : max_low_pfn;
+#endif
+ __vmalloc_start_set = true;
+
+ printk(KERN_NOTICE "%ldMB LOWMEM available.\n",
+ pages_to_mb(max_low_pfn));
+
+ setup_bootmem_allocator();
+}
+#endif /* !CONFIG_NUMA */
+
+void __init setup_bootmem_allocator(void)
+{
+ printk(KERN_INFO " mapped low ram: 0 - %08lx\n",
+ max_pfn_mapped<<PAGE_SHIFT);
+ printk(KERN_INFO " low ram: 0 - %08lx\n", max_low_pfn<<PAGE_SHIFT);
+}
+
+/*
+ * paging_init() sets up the page tables - note that the first 8MB are
+ * already mapped by head.S.
+ *
+ * This routines also unmaps the page at virtual kernel address 0, so
+ * that we can trap those pesky NULL-reference errors in the kernel.
+ */
+void __init paging_init(void)
+{
+ pagetable_init();
+
+ __flush_tlb_all();
+
+ /*
+ * NOTE: at this point the bootmem allocator is fully available.
+ */
+ olpc_dt_build_devicetree();
+ sparse_init();
+ zone_sizes_init();
+}
+
+/*
+ * Test if the WP bit works in supervisor mode. It isn't supported on 386's
+ * and also on some strange 486's. All 586+'s are OK. This used to involve
+ * black magic jumps to work around some nasty CPU bugs, but fortunately the
+ * switch to using exceptions got rid of all that.
+ */
+static void __init test_wp_bit(void)
+{
+ char z = 0;
+
+ printk(KERN_INFO "Checking if this processor honours the WP bit even in supervisor mode...");
+
+ __set_fixmap(FIX_WP_TEST, __pa_symbol(empty_zero_page), PAGE_KERNEL_RO);
+
+ if (copy_to_kernel_nofault((char *)fix_to_virt(FIX_WP_TEST), &z, 1)) {
+ clear_fixmap(FIX_WP_TEST);
+ printk(KERN_CONT "Ok.\n");
+ return;
+ }
+
+ printk(KERN_CONT "No.\n");
+ panic("Linux doesn't support CPUs with broken WP.");
+}
+
+void __init mem_init(void)
+{
+ pci_iommu_alloc();
+
+#ifdef CONFIG_FLATMEM
+ BUG_ON(!mem_map);
+#endif
+ /*
+ * With CONFIG_DEBUG_PAGEALLOC initialization of highmem pages has to
+ * be done before memblock_free_all(). Memblock use free low memory for
+ * temporary data (see find_range_array()) and for this purpose can use
+ * pages that was already passed to the buddy allocator, hence marked as
+ * not accessible in the page tables when compiled with
+ * CONFIG_DEBUG_PAGEALLOC. Otherwise order of initialization is not
+ * important here.
+ */
+ set_highmem_pages_init();
+
+ /* this will put all low memory onto the freelists */
+ memblock_free_all();
+
+ after_bootmem = 1;
+ x86_init.hyper.init_after_bootmem();
+
+ /*
+ * Check boundaries twice: Some fundamental inconsistencies can
+ * be detected at build time already.
+ */
+#define __FIXADDR_TOP (-PAGE_SIZE)
+#ifdef CONFIG_HIGHMEM
+ BUILD_BUG_ON(PKMAP_BASE + LAST_PKMAP*PAGE_SIZE > FIXADDR_START);
+ BUILD_BUG_ON(VMALLOC_END > PKMAP_BASE);
+#endif
+#define high_memory (-128UL << 20)
+ BUILD_BUG_ON(VMALLOC_START >= VMALLOC_END);
+#undef high_memory
+#undef __FIXADDR_TOP
+
+#ifdef CONFIG_HIGHMEM
+ BUG_ON(PKMAP_BASE + LAST_PKMAP*PAGE_SIZE > FIXADDR_START);
+ BUG_ON(VMALLOC_END > PKMAP_BASE);
+#endif
+ BUG_ON(VMALLOC_START >= VMALLOC_END);
+ BUG_ON((unsigned long)high_memory > VMALLOC_START);
+
+ test_wp_bit();
+}
+
+int kernel_set_to_readonly __read_mostly;
+
+static void mark_nxdata_nx(void)
+{
+ /*
+ * When this called, init has already been executed and released,
+ * so everything past _etext should be NX.
+ */
+ unsigned long start = PFN_ALIGN(_etext);
+ /*
+ * This comes from is_x86_32_kernel_text upper limit. Also HPAGE where used:
+ */
+ unsigned long size = (((unsigned long)__init_end + HPAGE_SIZE) & HPAGE_MASK) - start;
+
+ if (__supported_pte_mask & _PAGE_NX)
+ printk(KERN_INFO "NX-protecting the kernel data: %luk\n", size >> 10);
+ set_memory_nx(start, size >> PAGE_SHIFT);
+}
+
+void mark_rodata_ro(void)
+{
+ unsigned long start = PFN_ALIGN(_text);
+ unsigned long size = (unsigned long)__end_rodata - start;
+
+ set_pages_ro(virt_to_page(start), size >> PAGE_SHIFT);
+ pr_info("Write protecting kernel text and read-only data: %luk\n",
+ size >> 10);
+
+ kernel_set_to_readonly = 1;
+
+#ifdef CONFIG_CPA_DEBUG
+ pr_info("Testing CPA: Reverting %lx-%lx\n", start, start + size);
+ set_pages_rw(virt_to_page(start), size >> PAGE_SHIFT);
+
+ pr_info("Testing CPA: write protecting again\n");
+ set_pages_ro(virt_to_page(start), size >> PAGE_SHIFT);
+#endif
+ mark_nxdata_nx();
+ if (__supported_pte_mask & _PAGE_NX)
+ debug_checkwx();
+}
diff --git a/arch/x86/mm/init_64.c b/arch/x86/mm/init_64.c
new file mode 100644
index 0000000000..a190aae8ce
--- /dev/null
+++ b/arch/x86/mm/init_64.c
@@ -0,0 +1,1636 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * linux/arch/x86_64/mm/init.c
+ *
+ * Copyright (C) 1995 Linus Torvalds
+ * Copyright (C) 2000 Pavel Machek <pavel@ucw.cz>
+ * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
+ */
+
+#include <linux/signal.h>
+#include <linux/sched.h>
+#include <linux/kernel.h>
+#include <linux/errno.h>
+#include <linux/string.h>
+#include <linux/types.h>
+#include <linux/ptrace.h>
+#include <linux/mman.h>
+#include <linux/mm.h>
+#include <linux/swap.h>
+#include <linux/smp.h>
+#include <linux/init.h>
+#include <linux/initrd.h>
+#include <linux/pagemap.h>
+#include <linux/memblock.h>
+#include <linux/proc_fs.h>
+#include <linux/pci.h>
+#include <linux/pfn.h>
+#include <linux/poison.h>
+#include <linux/dma-mapping.h>
+#include <linux/memory.h>
+#include <linux/memory_hotplug.h>
+#include <linux/memremap.h>
+#include <linux/nmi.h>
+#include <linux/gfp.h>
+#include <linux/kcore.h>
+#include <linux/bootmem_info.h>
+
+#include <asm/processor.h>
+#include <asm/bios_ebda.h>
+#include <linux/uaccess.h>
+#include <asm/pgalloc.h>
+#include <asm/dma.h>
+#include <asm/fixmap.h>
+#include <asm/e820/api.h>
+#include <asm/apic.h>
+#include <asm/tlb.h>
+#include <asm/mmu_context.h>
+#include <asm/proto.h>
+#include <asm/smp.h>
+#include <asm/sections.h>
+#include <asm/kdebug.h>
+#include <asm/numa.h>
+#include <asm/set_memory.h>
+#include <asm/init.h>
+#include <asm/uv/uv.h>
+#include <asm/setup.h>
+#include <asm/ftrace.h>
+
+#include "mm_internal.h"
+
+#include "ident_map.c"
+
+#define DEFINE_POPULATE(fname, type1, type2, init) \
+static inline void fname##_init(struct mm_struct *mm, \
+ type1##_t *arg1, type2##_t *arg2, bool init) \
+{ \
+ if (init) \
+ fname##_safe(mm, arg1, arg2); \
+ else \
+ fname(mm, arg1, arg2); \
+}
+
+DEFINE_POPULATE(p4d_populate, p4d, pud, init)
+DEFINE_POPULATE(pgd_populate, pgd, p4d, init)
+DEFINE_POPULATE(pud_populate, pud, pmd, init)
+DEFINE_POPULATE(pmd_populate_kernel, pmd, pte, init)
+
+#define DEFINE_ENTRY(type1, type2, init) \
+static inline void set_##type1##_init(type1##_t *arg1, \
+ type2##_t arg2, bool init) \
+{ \
+ if (init) \
+ set_##type1##_safe(arg1, arg2); \
+ else \
+ set_##type1(arg1, arg2); \
+}
+
+DEFINE_ENTRY(p4d, p4d, init)
+DEFINE_ENTRY(pud, pud, init)
+DEFINE_ENTRY(pmd, pmd, init)
+DEFINE_ENTRY(pte, pte, init)
+
+static inline pgprot_t prot_sethuge(pgprot_t prot)
+{
+ WARN_ON_ONCE(pgprot_val(prot) & _PAGE_PAT);
+
+ return __pgprot(pgprot_val(prot) | _PAGE_PSE);
+}
+
+/*
+ * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
+ * physical space so we can cache the place of the first one and move
+ * around without checking the pgd every time.
+ */
+
+/* Bits supported by the hardware: */
+pteval_t __supported_pte_mask __read_mostly = ~0;
+/* Bits allowed in normal kernel mappings: */
+pteval_t __default_kernel_pte_mask __read_mostly = ~0;
+EXPORT_SYMBOL_GPL(__supported_pte_mask);
+/* Used in PAGE_KERNEL_* macros which are reasonably used out-of-tree: */
+EXPORT_SYMBOL(__default_kernel_pte_mask);
+
+int force_personality32;
+
+/*
+ * noexec32=on|off
+ * Control non executable heap for 32bit processes.
+ *
+ * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
+ * off PROT_READ implies PROT_EXEC
+ */
+static int __init nonx32_setup(char *str)
+{
+ if (!strcmp(str, "on"))
+ force_personality32 &= ~READ_IMPLIES_EXEC;
+ else if (!strcmp(str, "off"))
+ force_personality32 |= READ_IMPLIES_EXEC;
+ return 1;
+}
+__setup("noexec32=", nonx32_setup);
+
+static void sync_global_pgds_l5(unsigned long start, unsigned long end)
+{
+ unsigned long addr;
+
+ for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
+ const pgd_t *pgd_ref = pgd_offset_k(addr);
+ struct page *page;
+
+ /* Check for overflow */
+ if (addr < start)
+ break;
+
+ if (pgd_none(*pgd_ref))
+ continue;
+
+ spin_lock(&pgd_lock);
+ list_for_each_entry(page, &pgd_list, lru) {
+ pgd_t *pgd;
+ spinlock_t *pgt_lock;
+
+ pgd = (pgd_t *)page_address(page) + pgd_index(addr);
+ /* the pgt_lock only for Xen */
+ pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
+ spin_lock(pgt_lock);
+
+ if (!pgd_none(*pgd_ref) && !pgd_none(*pgd))
+ BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
+
+ if (pgd_none(*pgd))
+ set_pgd(pgd, *pgd_ref);
+
+ spin_unlock(pgt_lock);
+ }
+ spin_unlock(&pgd_lock);
+ }
+}
+
+static void sync_global_pgds_l4(unsigned long start, unsigned long end)
+{
+ unsigned long addr;
+
+ for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
+ pgd_t *pgd_ref = pgd_offset_k(addr);
+ const p4d_t *p4d_ref;
+ struct page *page;
+
+ /*
+ * With folded p4d, pgd_none() is always false, we need to
+ * handle synchronization on p4d level.
+ */
+ MAYBE_BUILD_BUG_ON(pgd_none(*pgd_ref));
+ p4d_ref = p4d_offset(pgd_ref, addr);
+
+ if (p4d_none(*p4d_ref))
+ continue;
+
+ spin_lock(&pgd_lock);
+ list_for_each_entry(page, &pgd_list, lru) {
+ pgd_t *pgd;
+ p4d_t *p4d;
+ spinlock_t *pgt_lock;
+
+ pgd = (pgd_t *)page_address(page) + pgd_index(addr);
+ p4d = p4d_offset(pgd, addr);
+ /* the pgt_lock only for Xen */
+ pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
+ spin_lock(pgt_lock);
+
+ if (!p4d_none(*p4d_ref) && !p4d_none(*p4d))
+ BUG_ON(p4d_pgtable(*p4d)
+ != p4d_pgtable(*p4d_ref));
+
+ if (p4d_none(*p4d))
+ set_p4d(p4d, *p4d_ref);
+
+ spin_unlock(pgt_lock);
+ }
+ spin_unlock(&pgd_lock);
+ }
+}
+
+/*
+ * When memory was added make sure all the processes MM have
+ * suitable PGD entries in the local PGD level page.
+ */
+static void sync_global_pgds(unsigned long start, unsigned long end)
+{
+ if (pgtable_l5_enabled())
+ sync_global_pgds_l5(start, end);
+ else
+ sync_global_pgds_l4(start, end);
+}
+
+/*
+ * NOTE: This function is marked __ref because it calls __init function
+ * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
+ */
+static __ref void *spp_getpage(void)
+{
+ void *ptr;
+
+ if (after_bootmem)
+ ptr = (void *) get_zeroed_page(GFP_ATOMIC);
+ else
+ ptr = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
+
+ if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
+ panic("set_pte_phys: cannot allocate page data %s\n",
+ after_bootmem ? "after bootmem" : "");
+ }
+
+ pr_debug("spp_getpage %p\n", ptr);
+
+ return ptr;
+}
+
+static p4d_t *fill_p4d(pgd_t *pgd, unsigned long vaddr)
+{
+ if (pgd_none(*pgd)) {
+ p4d_t *p4d = (p4d_t *)spp_getpage();
+ pgd_populate(&init_mm, pgd, p4d);
+ if (p4d != p4d_offset(pgd, 0))
+ printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
+ p4d, p4d_offset(pgd, 0));
+ }
+ return p4d_offset(pgd, vaddr);
+}
+
+static pud_t *fill_pud(p4d_t *p4d, unsigned long vaddr)
+{
+ if (p4d_none(*p4d)) {
+ pud_t *pud = (pud_t *)spp_getpage();
+ p4d_populate(&init_mm, p4d, pud);
+ if (pud != pud_offset(p4d, 0))
+ printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
+ pud, pud_offset(p4d, 0));
+ }
+ return pud_offset(p4d, vaddr);
+}
+
+static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
+{
+ if (pud_none(*pud)) {
+ pmd_t *pmd = (pmd_t *) spp_getpage();
+ pud_populate(&init_mm, pud, pmd);
+ if (pmd != pmd_offset(pud, 0))
+ printk(KERN_ERR "PAGETABLE BUG #02! %p <-> %p\n",
+ pmd, pmd_offset(pud, 0));
+ }
+ return pmd_offset(pud, vaddr);
+}
+
+static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
+{
+ if (pmd_none(*pmd)) {
+ pte_t *pte = (pte_t *) spp_getpage();
+ pmd_populate_kernel(&init_mm, pmd, pte);
+ if (pte != pte_offset_kernel(pmd, 0))
+ printk(KERN_ERR "PAGETABLE BUG #03!\n");
+ }
+ return pte_offset_kernel(pmd, vaddr);
+}
+
+static void __set_pte_vaddr(pud_t *pud, unsigned long vaddr, pte_t new_pte)
+{
+ pmd_t *pmd = fill_pmd(pud, vaddr);
+ pte_t *pte = fill_pte(pmd, vaddr);
+
+ set_pte(pte, new_pte);
+
+ /*
+ * It's enough to flush this one mapping.
+ * (PGE mappings get flushed as well)
+ */
+ flush_tlb_one_kernel(vaddr);
+}
+
+void set_pte_vaddr_p4d(p4d_t *p4d_page, unsigned long vaddr, pte_t new_pte)
+{
+ p4d_t *p4d = p4d_page + p4d_index(vaddr);
+ pud_t *pud = fill_pud(p4d, vaddr);
+
+ __set_pte_vaddr(pud, vaddr, new_pte);
+}
+
+void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
+{
+ pud_t *pud = pud_page + pud_index(vaddr);
+
+ __set_pte_vaddr(pud, vaddr, new_pte);
+}
+
+void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
+{
+ pgd_t *pgd;
+ p4d_t *p4d_page;
+
+ pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
+
+ pgd = pgd_offset_k(vaddr);
+ if (pgd_none(*pgd)) {
+ printk(KERN_ERR
+ "PGD FIXMAP MISSING, it should be setup in head.S!\n");
+ return;
+ }
+
+ p4d_page = p4d_offset(pgd, 0);
+ set_pte_vaddr_p4d(p4d_page, vaddr, pteval);
+}
+
+pmd_t * __init populate_extra_pmd(unsigned long vaddr)
+{
+ pgd_t *pgd;
+ p4d_t *p4d;
+ pud_t *pud;
+
+ pgd = pgd_offset_k(vaddr);
+ p4d = fill_p4d(pgd, vaddr);
+ pud = fill_pud(p4d, vaddr);
+ return fill_pmd(pud, vaddr);
+}
+
+pte_t * __init populate_extra_pte(unsigned long vaddr)
+{
+ pmd_t *pmd;
+
+ pmd = populate_extra_pmd(vaddr);
+ return fill_pte(pmd, vaddr);
+}
+
+/*
+ * Create large page table mappings for a range of physical addresses.
+ */
+static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
+ enum page_cache_mode cache)
+{
+ pgd_t *pgd;
+ p4d_t *p4d;
+ pud_t *pud;
+ pmd_t *pmd;
+ pgprot_t prot;
+
+ pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) |
+ protval_4k_2_large(cachemode2protval(cache));
+ BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
+ for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
+ pgd = pgd_offset_k((unsigned long)__va(phys));
+ if (pgd_none(*pgd)) {
+ p4d = (p4d_t *) spp_getpage();
+ set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE |
+ _PAGE_USER));
+ }
+ p4d = p4d_offset(pgd, (unsigned long)__va(phys));
+ if (p4d_none(*p4d)) {
+ pud = (pud_t *) spp_getpage();
+ set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE |
+ _PAGE_USER));
+ }
+ pud = pud_offset(p4d, (unsigned long)__va(phys));
+ if (pud_none(*pud)) {
+ pmd = (pmd_t *) spp_getpage();
+ set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
+ _PAGE_USER));
+ }
+ pmd = pmd_offset(pud, phys);
+ BUG_ON(!pmd_none(*pmd));
+ set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
+ }
+}
+
+void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
+{
+ __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB);
+}
+
+void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
+{
+ __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC);
+}
+
+/*
+ * The head.S code sets up the kernel high mapping:
+ *
+ * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
+ *
+ * phys_base holds the negative offset to the kernel, which is added
+ * to the compile time generated pmds. This results in invalid pmds up
+ * to the point where we hit the physaddr 0 mapping.
+ *
+ * We limit the mappings to the region from _text to _brk_end. _brk_end
+ * is rounded up to the 2MB boundary. This catches the invalid pmds as
+ * well, as they are located before _text:
+ */
+void __init cleanup_highmap(void)
+{
+ unsigned long vaddr = __START_KERNEL_map;
+ unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
+ unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
+ pmd_t *pmd = level2_kernel_pgt;
+
+ /*
+ * Native path, max_pfn_mapped is not set yet.
+ * Xen has valid max_pfn_mapped set in
+ * arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
+ */
+ if (max_pfn_mapped)
+ vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
+
+ for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
+ if (pmd_none(*pmd))
+ continue;
+ if (vaddr < (unsigned long) _text || vaddr > end)
+ set_pmd(pmd, __pmd(0));
+ }
+}
+
+/*
+ * Create PTE level page table mapping for physical addresses.
+ * It returns the last physical address mapped.
+ */
+static unsigned long __meminit
+phys_pte_init(pte_t *pte_page, unsigned long paddr, unsigned long paddr_end,
+ pgprot_t prot, bool init)
+{
+ unsigned long pages = 0, paddr_next;
+ unsigned long paddr_last = paddr_end;
+ pte_t *pte;
+ int i;
+
+ pte = pte_page + pte_index(paddr);
+ i = pte_index(paddr);
+
+ for (; i < PTRS_PER_PTE; i++, paddr = paddr_next, pte++) {
+ paddr_next = (paddr & PAGE_MASK) + PAGE_SIZE;
+ if (paddr >= paddr_end) {
+ if (!after_bootmem &&
+ !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
+ E820_TYPE_RAM) &&
+ !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
+ E820_TYPE_RESERVED_KERN))
+ set_pte_init(pte, __pte(0), init);
+ continue;
+ }
+
+ /*
+ * We will re-use the existing mapping.
+ * Xen for example has some special requirements, like mapping
+ * pagetable pages as RO. So assume someone who pre-setup
+ * these mappings are more intelligent.
+ */
+ if (!pte_none(*pte)) {
+ if (!after_bootmem)
+ pages++;
+ continue;
+ }
+
+ if (0)
+ pr_info(" pte=%p addr=%lx pte=%016lx\n", pte, paddr,
+ pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL).pte);
+ pages++;
+ set_pte_init(pte, pfn_pte(paddr >> PAGE_SHIFT, prot), init);
+ paddr_last = (paddr & PAGE_MASK) + PAGE_SIZE;
+ }
+
+ update_page_count(PG_LEVEL_4K, pages);
+
+ return paddr_last;
+}
+
+/*
+ * Create PMD level page table mapping for physical addresses. The virtual
+ * and physical address have to be aligned at this level.
+ * It returns the last physical address mapped.
+ */
+static unsigned long __meminit
+phys_pmd_init(pmd_t *pmd_page, unsigned long paddr, unsigned long paddr_end,
+ unsigned long page_size_mask, pgprot_t prot, bool init)
+{
+ unsigned long pages = 0, paddr_next;
+ unsigned long paddr_last = paddr_end;
+
+ int i = pmd_index(paddr);
+
+ for (; i < PTRS_PER_PMD; i++, paddr = paddr_next) {
+ pmd_t *pmd = pmd_page + pmd_index(paddr);
+ pte_t *pte;
+ pgprot_t new_prot = prot;
+
+ paddr_next = (paddr & PMD_MASK) + PMD_SIZE;
+ if (paddr >= paddr_end) {
+ if (!after_bootmem &&
+ !e820__mapped_any(paddr & PMD_MASK, paddr_next,
+ E820_TYPE_RAM) &&
+ !e820__mapped_any(paddr & PMD_MASK, paddr_next,
+ E820_TYPE_RESERVED_KERN))
+ set_pmd_init(pmd, __pmd(0), init);
+ continue;
+ }
+
+ if (!pmd_none(*pmd)) {
+ if (!pmd_large(*pmd)) {
+ spin_lock(&init_mm.page_table_lock);
+ pte = (pte_t *)pmd_page_vaddr(*pmd);
+ paddr_last = phys_pte_init(pte, paddr,
+ paddr_end, prot,
+ init);
+ spin_unlock(&init_mm.page_table_lock);
+ continue;
+ }
+ /*
+ * If we are ok with PG_LEVEL_2M mapping, then we will
+ * use the existing mapping,
+ *
+ * Otherwise, we will split the large page mapping but
+ * use the same existing protection bits except for
+ * large page, so that we don't violate Intel's TLB
+ * Application note (317080) which says, while changing
+ * the page sizes, new and old translations should
+ * not differ with respect to page frame and
+ * attributes.
+ */
+ if (page_size_mask & (1 << PG_LEVEL_2M)) {
+ if (!after_bootmem)
+ pages++;
+ paddr_last = paddr_next;
+ continue;
+ }
+ new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
+ }
+
+ if (page_size_mask & (1<<PG_LEVEL_2M)) {
+ pages++;
+ spin_lock(&init_mm.page_table_lock);
+ set_pmd_init(pmd,
+ pfn_pmd(paddr >> PAGE_SHIFT, prot_sethuge(prot)),
+ init);
+ spin_unlock(&init_mm.page_table_lock);
+ paddr_last = paddr_next;
+ continue;
+ }
+
+ pte = alloc_low_page();
+ paddr_last = phys_pte_init(pte, paddr, paddr_end, new_prot, init);
+
+ spin_lock(&init_mm.page_table_lock);
+ pmd_populate_kernel_init(&init_mm, pmd, pte, init);
+ spin_unlock(&init_mm.page_table_lock);
+ }
+ update_page_count(PG_LEVEL_2M, pages);
+ return paddr_last;
+}
+
+/*
+ * Create PUD level page table mapping for physical addresses. The virtual
+ * and physical address do not have to be aligned at this level. KASLR can
+ * randomize virtual addresses up to this level.
+ * It returns the last physical address mapped.
+ */
+static unsigned long __meminit
+phys_pud_init(pud_t *pud_page, unsigned long paddr, unsigned long paddr_end,
+ unsigned long page_size_mask, pgprot_t _prot, bool init)
+{
+ unsigned long pages = 0, paddr_next;
+ unsigned long paddr_last = paddr_end;
+ unsigned long vaddr = (unsigned long)__va(paddr);
+ int i = pud_index(vaddr);
+
+ for (; i < PTRS_PER_PUD; i++, paddr = paddr_next) {
+ pud_t *pud;
+ pmd_t *pmd;
+ pgprot_t prot = _prot;
+
+ vaddr = (unsigned long)__va(paddr);
+ pud = pud_page + pud_index(vaddr);
+ paddr_next = (paddr & PUD_MASK) + PUD_SIZE;
+
+ if (paddr >= paddr_end) {
+ if (!after_bootmem &&
+ !e820__mapped_any(paddr & PUD_MASK, paddr_next,
+ E820_TYPE_RAM) &&
+ !e820__mapped_any(paddr & PUD_MASK, paddr_next,
+ E820_TYPE_RESERVED_KERN))
+ set_pud_init(pud, __pud(0), init);
+ continue;
+ }
+
+ if (!pud_none(*pud)) {
+ if (!pud_large(*pud)) {
+ pmd = pmd_offset(pud, 0);
+ paddr_last = phys_pmd_init(pmd, paddr,
+ paddr_end,
+ page_size_mask,
+ prot, init);
+ continue;
+ }
+ /*
+ * If we are ok with PG_LEVEL_1G mapping, then we will
+ * use the existing mapping.
+ *
+ * Otherwise, we will split the gbpage mapping but use
+ * the same existing protection bits except for large
+ * page, so that we don't violate Intel's TLB
+ * Application note (317080) which says, while changing
+ * the page sizes, new and old translations should
+ * not differ with respect to page frame and
+ * attributes.
+ */
+ if (page_size_mask & (1 << PG_LEVEL_1G)) {
+ if (!after_bootmem)
+ pages++;
+ paddr_last = paddr_next;
+ continue;
+ }
+ prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
+ }
+
+ if (page_size_mask & (1<<PG_LEVEL_1G)) {
+ pages++;
+ spin_lock(&init_mm.page_table_lock);
+ set_pud_init(pud,
+ pfn_pud(paddr >> PAGE_SHIFT, prot_sethuge(prot)),
+ init);
+ spin_unlock(&init_mm.page_table_lock);
+ paddr_last = paddr_next;
+ continue;
+ }
+
+ pmd = alloc_low_page();
+ paddr_last = phys_pmd_init(pmd, paddr, paddr_end,
+ page_size_mask, prot, init);
+
+ spin_lock(&init_mm.page_table_lock);
+ pud_populate_init(&init_mm, pud, pmd, init);
+ spin_unlock(&init_mm.page_table_lock);
+ }
+
+ update_page_count(PG_LEVEL_1G, pages);
+
+ return paddr_last;
+}
+
+static unsigned long __meminit
+phys_p4d_init(p4d_t *p4d_page, unsigned long paddr, unsigned long paddr_end,
+ unsigned long page_size_mask, pgprot_t prot, bool init)
+{
+ unsigned long vaddr, vaddr_end, vaddr_next, paddr_next, paddr_last;
+
+ paddr_last = paddr_end;
+ vaddr = (unsigned long)__va(paddr);
+ vaddr_end = (unsigned long)__va(paddr_end);
+
+ if (!pgtable_l5_enabled())
+ return phys_pud_init((pud_t *) p4d_page, paddr, paddr_end,
+ page_size_mask, prot, init);
+
+ for (; vaddr < vaddr_end; vaddr = vaddr_next) {
+ p4d_t *p4d = p4d_page + p4d_index(vaddr);
+ pud_t *pud;
+
+ vaddr_next = (vaddr & P4D_MASK) + P4D_SIZE;
+ paddr = __pa(vaddr);
+
+ if (paddr >= paddr_end) {
+ paddr_next = __pa(vaddr_next);
+ if (!after_bootmem &&
+ !e820__mapped_any(paddr & P4D_MASK, paddr_next,
+ E820_TYPE_RAM) &&
+ !e820__mapped_any(paddr & P4D_MASK, paddr_next,
+ E820_TYPE_RESERVED_KERN))
+ set_p4d_init(p4d, __p4d(0), init);
+ continue;
+ }
+
+ if (!p4d_none(*p4d)) {
+ pud = pud_offset(p4d, 0);
+ paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end),
+ page_size_mask, prot, init);
+ continue;
+ }
+
+ pud = alloc_low_page();
+ paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end),
+ page_size_mask, prot, init);
+
+ spin_lock(&init_mm.page_table_lock);
+ p4d_populate_init(&init_mm, p4d, pud, init);
+ spin_unlock(&init_mm.page_table_lock);
+ }
+
+ return paddr_last;
+}
+
+static unsigned long __meminit
+__kernel_physical_mapping_init(unsigned long paddr_start,
+ unsigned long paddr_end,
+ unsigned long page_size_mask,
+ pgprot_t prot, bool init)
+{
+ bool pgd_changed = false;
+ unsigned long vaddr, vaddr_start, vaddr_end, vaddr_next, paddr_last;
+
+ paddr_last = paddr_end;
+ vaddr = (unsigned long)__va(paddr_start);
+ vaddr_end = (unsigned long)__va(paddr_end);
+ vaddr_start = vaddr;
+
+ for (; vaddr < vaddr_end; vaddr = vaddr_next) {
+ pgd_t *pgd = pgd_offset_k(vaddr);
+ p4d_t *p4d;
+
+ vaddr_next = (vaddr & PGDIR_MASK) + PGDIR_SIZE;
+
+ if (pgd_val(*pgd)) {
+ p4d = (p4d_t *)pgd_page_vaddr(*pgd);
+ paddr_last = phys_p4d_init(p4d, __pa(vaddr),
+ __pa(vaddr_end),
+ page_size_mask,
+ prot, init);
+ continue;
+ }
+
+ p4d = alloc_low_page();
+ paddr_last = phys_p4d_init(p4d, __pa(vaddr), __pa(vaddr_end),
+ page_size_mask, prot, init);
+
+ spin_lock(&init_mm.page_table_lock);
+ if (pgtable_l5_enabled())
+ pgd_populate_init(&init_mm, pgd, p4d, init);
+ else
+ p4d_populate_init(&init_mm, p4d_offset(pgd, vaddr),
+ (pud_t *) p4d, init);
+
+ spin_unlock(&init_mm.page_table_lock);
+ pgd_changed = true;
+ }
+
+ if (pgd_changed)
+ sync_global_pgds(vaddr_start, vaddr_end - 1);
+
+ return paddr_last;
+}
+
+
+/*
+ * Create page table mapping for the physical memory for specific physical
+ * addresses. Note that it can only be used to populate non-present entries.
+ * The virtual and physical addresses have to be aligned on PMD level
+ * down. It returns the last physical address mapped.
+ */
+unsigned long __meminit
+kernel_physical_mapping_init(unsigned long paddr_start,
+ unsigned long paddr_end,
+ unsigned long page_size_mask, pgprot_t prot)
+{
+ return __kernel_physical_mapping_init(paddr_start, paddr_end,
+ page_size_mask, prot, true);
+}
+
+/*
+ * This function is similar to kernel_physical_mapping_init() above with the
+ * exception that it uses set_{pud,pmd}() instead of the set_{pud,pte}_safe()
+ * when updating the mapping. The caller is responsible to flush the TLBs after
+ * the function returns.
+ */
+unsigned long __meminit
+kernel_physical_mapping_change(unsigned long paddr_start,
+ unsigned long paddr_end,
+ unsigned long page_size_mask)
+{
+ return __kernel_physical_mapping_init(paddr_start, paddr_end,
+ page_size_mask, PAGE_KERNEL,
+ false);
+}
+
+#ifndef CONFIG_NUMA
+void __init initmem_init(void)
+{
+ memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
+}
+#endif
+
+void __init paging_init(void)
+{
+ sparse_init();
+
+ /*
+ * clear the default setting with node 0
+ * note: don't use nodes_clear here, that is really clearing when
+ * numa support is not compiled in, and later node_set_state
+ * will not set it back.
+ */
+ node_clear_state(0, N_MEMORY);
+ node_clear_state(0, N_NORMAL_MEMORY);
+
+ zone_sizes_init();
+}
+
+#ifdef CONFIG_SPARSEMEM_VMEMMAP
+#define PAGE_UNUSED 0xFD
+
+/*
+ * The unused vmemmap range, which was not yet memset(PAGE_UNUSED), ranges
+ * from unused_pmd_start to next PMD_SIZE boundary.
+ */
+static unsigned long unused_pmd_start __meminitdata;
+
+static void __meminit vmemmap_flush_unused_pmd(void)
+{
+ if (!unused_pmd_start)
+ return;
+ /*
+ * Clears (unused_pmd_start, PMD_END]
+ */
+ memset((void *)unused_pmd_start, PAGE_UNUSED,
+ ALIGN(unused_pmd_start, PMD_SIZE) - unused_pmd_start);
+ unused_pmd_start = 0;
+}
+
+#ifdef CONFIG_MEMORY_HOTPLUG
+/* Returns true if the PMD is completely unused and thus it can be freed */
+static bool __meminit vmemmap_pmd_is_unused(unsigned long addr, unsigned long end)
+{
+ unsigned long start = ALIGN_DOWN(addr, PMD_SIZE);
+
+ /*
+ * Flush the unused range cache to ensure that memchr_inv() will work
+ * for the whole range.
+ */
+ vmemmap_flush_unused_pmd();
+ memset((void *)addr, PAGE_UNUSED, end - addr);
+
+ return !memchr_inv((void *)start, PAGE_UNUSED, PMD_SIZE);
+}
+#endif
+
+static void __meminit __vmemmap_use_sub_pmd(unsigned long start)
+{
+ /*
+ * As we expect to add in the same granularity as we remove, it's
+ * sufficient to mark only some piece used to block the memmap page from
+ * getting removed when removing some other adjacent memmap (just in
+ * case the first memmap never gets initialized e.g., because the memory
+ * block never gets onlined).
+ */
+ memset((void *)start, 0, sizeof(struct page));
+}
+
+static void __meminit vmemmap_use_sub_pmd(unsigned long start, unsigned long end)
+{
+ /*
+ * We only optimize if the new used range directly follows the
+ * previously unused range (esp., when populating consecutive sections).
+ */
+ if (unused_pmd_start == start) {
+ if (likely(IS_ALIGNED(end, PMD_SIZE)))
+ unused_pmd_start = 0;
+ else
+ unused_pmd_start = end;
+ return;
+ }
+
+ /*
+ * If the range does not contiguously follows previous one, make sure
+ * to mark the unused range of the previous one so it can be removed.
+ */
+ vmemmap_flush_unused_pmd();
+ __vmemmap_use_sub_pmd(start);
+}
+
+
+static void __meminit vmemmap_use_new_sub_pmd(unsigned long start, unsigned long end)
+{
+ const unsigned long page = ALIGN_DOWN(start, PMD_SIZE);
+
+ vmemmap_flush_unused_pmd();
+
+ /*
+ * Could be our memmap page is filled with PAGE_UNUSED already from a
+ * previous remove. Make sure to reset it.
+ */
+ __vmemmap_use_sub_pmd(start);
+
+ /*
+ * Mark with PAGE_UNUSED the unused parts of the new memmap range
+ */
+ if (!IS_ALIGNED(start, PMD_SIZE))
+ memset((void *)page, PAGE_UNUSED, start - page);
+
+ /*
+ * We want to avoid memset(PAGE_UNUSED) when populating the vmemmap of
+ * consecutive sections. Remember for the last added PMD where the
+ * unused range begins.
+ */
+ if (!IS_ALIGNED(end, PMD_SIZE))
+ unused_pmd_start = end;
+}
+#endif
+
+/*
+ * Memory hotplug specific functions
+ */
+#ifdef CONFIG_MEMORY_HOTPLUG
+/*
+ * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
+ * updating.
+ */
+static void update_end_of_memory_vars(u64 start, u64 size)
+{
+ unsigned long end_pfn = PFN_UP(start + size);
+
+ if (end_pfn > max_pfn) {
+ max_pfn = end_pfn;
+ max_low_pfn = end_pfn;
+ high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
+ }
+}
+
+int add_pages(int nid, unsigned long start_pfn, unsigned long nr_pages,
+ struct mhp_params *params)
+{
+ int ret;
+
+ ret = __add_pages(nid, start_pfn, nr_pages, params);
+ WARN_ON_ONCE(ret);
+
+ /* update max_pfn, max_low_pfn and high_memory */
+ update_end_of_memory_vars(start_pfn << PAGE_SHIFT,
+ nr_pages << PAGE_SHIFT);
+
+ return ret;
+}
+
+int arch_add_memory(int nid, u64 start, u64 size,
+ struct mhp_params *params)
+{
+ unsigned long start_pfn = start >> PAGE_SHIFT;
+ unsigned long nr_pages = size >> PAGE_SHIFT;
+
+ init_memory_mapping(start, start + size, params->pgprot);
+
+ return add_pages(nid, start_pfn, nr_pages, params);
+}
+
+static void __meminit free_pagetable(struct page *page, int order)
+{
+ unsigned long magic;
+ unsigned int nr_pages = 1 << order;
+
+ /* bootmem page has reserved flag */
+ if (PageReserved(page)) {
+ __ClearPageReserved(page);
+
+ magic = page->index;
+ if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
+ while (nr_pages--)
+ put_page_bootmem(page++);
+ } else
+ while (nr_pages--)
+ free_reserved_page(page++);
+ } else
+ free_pages((unsigned long)page_address(page), order);
+}
+
+static void __meminit free_hugepage_table(struct page *page,
+ struct vmem_altmap *altmap)
+{
+ if (altmap)
+ vmem_altmap_free(altmap, PMD_SIZE / PAGE_SIZE);
+ else
+ free_pagetable(page, get_order(PMD_SIZE));
+}
+
+static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
+{
+ pte_t *pte;
+ int i;
+
+ for (i = 0; i < PTRS_PER_PTE; i++) {
+ pte = pte_start + i;
+ if (!pte_none(*pte))
+ return;
+ }
+
+ /* free a pte talbe */
+ free_pagetable(pmd_page(*pmd), 0);
+ spin_lock(&init_mm.page_table_lock);
+ pmd_clear(pmd);
+ spin_unlock(&init_mm.page_table_lock);
+}
+
+static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
+{
+ pmd_t *pmd;
+ int i;
+
+ for (i = 0; i < PTRS_PER_PMD; i++) {
+ pmd = pmd_start + i;
+ if (!pmd_none(*pmd))
+ return;
+ }
+
+ /* free a pmd talbe */
+ free_pagetable(pud_page(*pud), 0);
+ spin_lock(&init_mm.page_table_lock);
+ pud_clear(pud);
+ spin_unlock(&init_mm.page_table_lock);
+}
+
+static void __meminit free_pud_table(pud_t *pud_start, p4d_t *p4d)
+{
+ pud_t *pud;
+ int i;
+
+ for (i = 0; i < PTRS_PER_PUD; i++) {
+ pud = pud_start + i;
+ if (!pud_none(*pud))
+ return;
+ }
+
+ /* free a pud talbe */
+ free_pagetable(p4d_page(*p4d), 0);
+ spin_lock(&init_mm.page_table_lock);
+ p4d_clear(p4d);
+ spin_unlock(&init_mm.page_table_lock);
+}
+
+static void __meminit
+remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
+ bool direct)
+{
+ unsigned long next, pages = 0;
+ pte_t *pte;
+ phys_addr_t phys_addr;
+
+ pte = pte_start + pte_index(addr);
+ for (; addr < end; addr = next, pte++) {
+ next = (addr + PAGE_SIZE) & PAGE_MASK;
+ if (next > end)
+ next = end;
+
+ if (!pte_present(*pte))
+ continue;
+
+ /*
+ * We mapped [0,1G) memory as identity mapping when
+ * initializing, in arch/x86/kernel/head_64.S. These
+ * pagetables cannot be removed.
+ */
+ phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
+ if (phys_addr < (phys_addr_t)0x40000000)
+ return;
+
+ if (!direct)
+ free_pagetable(pte_page(*pte), 0);
+
+ spin_lock(&init_mm.page_table_lock);
+ pte_clear(&init_mm, addr, pte);
+ spin_unlock(&init_mm.page_table_lock);
+
+ /* For non-direct mapping, pages means nothing. */
+ pages++;
+ }
+
+ /* Call free_pte_table() in remove_pmd_table(). */
+ flush_tlb_all();
+ if (direct)
+ update_page_count(PG_LEVEL_4K, -pages);
+}
+
+static void __meminit
+remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
+ bool direct, struct vmem_altmap *altmap)
+{
+ unsigned long next, pages = 0;
+ pte_t *pte_base;
+ pmd_t *pmd;
+
+ pmd = pmd_start + pmd_index(addr);
+ for (; addr < end; addr = next, pmd++) {
+ next = pmd_addr_end(addr, end);
+
+ if (!pmd_present(*pmd))
+ continue;
+
+ if (pmd_large(*pmd)) {
+ if (IS_ALIGNED(addr, PMD_SIZE) &&
+ IS_ALIGNED(next, PMD_SIZE)) {
+ if (!direct)
+ free_hugepage_table(pmd_page(*pmd),
+ altmap);
+
+ spin_lock(&init_mm.page_table_lock);
+ pmd_clear(pmd);
+ spin_unlock(&init_mm.page_table_lock);
+ pages++;
+ }
+#ifdef CONFIG_SPARSEMEM_VMEMMAP
+ else if (vmemmap_pmd_is_unused(addr, next)) {
+ free_hugepage_table(pmd_page(*pmd),
+ altmap);
+ spin_lock(&init_mm.page_table_lock);
+ pmd_clear(pmd);
+ spin_unlock(&init_mm.page_table_lock);
+ }
+#endif
+ continue;
+ }
+
+ pte_base = (pte_t *)pmd_page_vaddr(*pmd);
+ remove_pte_table(pte_base, addr, next, direct);
+ free_pte_table(pte_base, pmd);
+ }
+
+ /* Call free_pmd_table() in remove_pud_table(). */
+ if (direct)
+ update_page_count(PG_LEVEL_2M, -pages);
+}
+
+static void __meminit
+remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
+ struct vmem_altmap *altmap, bool direct)
+{
+ unsigned long next, pages = 0;
+ pmd_t *pmd_base;
+ pud_t *pud;
+
+ pud = pud_start + pud_index(addr);
+ for (; addr < end; addr = next, pud++) {
+ next = pud_addr_end(addr, end);
+
+ if (!pud_present(*pud))
+ continue;
+
+ if (pud_large(*pud) &&
+ IS_ALIGNED(addr, PUD_SIZE) &&
+ IS_ALIGNED(next, PUD_SIZE)) {
+ spin_lock(&init_mm.page_table_lock);
+ pud_clear(pud);
+ spin_unlock(&init_mm.page_table_lock);
+ pages++;
+ continue;
+ }
+
+ pmd_base = pmd_offset(pud, 0);
+ remove_pmd_table(pmd_base, addr, next, direct, altmap);
+ free_pmd_table(pmd_base, pud);
+ }
+
+ if (direct)
+ update_page_count(PG_LEVEL_1G, -pages);
+}
+
+static void __meminit
+remove_p4d_table(p4d_t *p4d_start, unsigned long addr, unsigned long end,
+ struct vmem_altmap *altmap, bool direct)
+{
+ unsigned long next, pages = 0;
+ pud_t *pud_base;
+ p4d_t *p4d;
+
+ p4d = p4d_start + p4d_index(addr);
+ for (; addr < end; addr = next, p4d++) {
+ next = p4d_addr_end(addr, end);
+
+ if (!p4d_present(*p4d))
+ continue;
+
+ BUILD_BUG_ON(p4d_large(*p4d));
+
+ pud_base = pud_offset(p4d, 0);
+ remove_pud_table(pud_base, addr, next, altmap, direct);
+ /*
+ * For 4-level page tables we do not want to free PUDs, but in the
+ * 5-level case we should free them. This code will have to change
+ * to adapt for boot-time switching between 4 and 5 level page tables.
+ */
+ if (pgtable_l5_enabled())
+ free_pud_table(pud_base, p4d);
+ }
+
+ if (direct)
+ update_page_count(PG_LEVEL_512G, -pages);
+}
+
+/* start and end are both virtual address. */
+static void __meminit
+remove_pagetable(unsigned long start, unsigned long end, bool direct,
+ struct vmem_altmap *altmap)
+{
+ unsigned long next;
+ unsigned long addr;
+ pgd_t *pgd;
+ p4d_t *p4d;
+
+ for (addr = start; addr < end; addr = next) {
+ next = pgd_addr_end(addr, end);
+
+ pgd = pgd_offset_k(addr);
+ if (!pgd_present(*pgd))
+ continue;
+
+ p4d = p4d_offset(pgd, 0);
+ remove_p4d_table(p4d, addr, next, altmap, direct);
+ }
+
+ flush_tlb_all();
+}
+
+void __ref vmemmap_free(unsigned long start, unsigned long end,
+ struct vmem_altmap *altmap)
+{
+ VM_BUG_ON(!PAGE_ALIGNED(start));
+ VM_BUG_ON(!PAGE_ALIGNED(end));
+
+ remove_pagetable(start, end, false, altmap);
+}
+
+static void __meminit
+kernel_physical_mapping_remove(unsigned long start, unsigned long end)
+{
+ start = (unsigned long)__va(start);
+ end = (unsigned long)__va(end);
+
+ remove_pagetable(start, end, true, NULL);
+}
+
+void __ref arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap)
+{
+ unsigned long start_pfn = start >> PAGE_SHIFT;
+ unsigned long nr_pages = size >> PAGE_SHIFT;
+
+ __remove_pages(start_pfn, nr_pages, altmap);
+ kernel_physical_mapping_remove(start, start + size);
+}
+#endif /* CONFIG_MEMORY_HOTPLUG */
+
+static struct kcore_list kcore_vsyscall;
+
+static void __init register_page_bootmem_info(void)
+{
+#if defined(CONFIG_NUMA) || defined(CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP)
+ int i;
+
+ for_each_online_node(i)
+ register_page_bootmem_info_node(NODE_DATA(i));
+#endif
+}
+
+/*
+ * Pre-allocates page-table pages for the vmalloc area in the kernel page-table.
+ * Only the level which needs to be synchronized between all page-tables is
+ * allocated because the synchronization can be expensive.
+ */
+static void __init preallocate_vmalloc_pages(void)
+{
+ unsigned long addr;
+ const char *lvl;
+
+ for (addr = VMALLOC_START; addr <= VMEMORY_END; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
+ pgd_t *pgd = pgd_offset_k(addr);
+ p4d_t *p4d;
+ pud_t *pud;
+
+ lvl = "p4d";
+ p4d = p4d_alloc(&init_mm, pgd, addr);
+ if (!p4d)
+ goto failed;
+
+ if (pgtable_l5_enabled())
+ continue;
+
+ /*
+ * The goal here is to allocate all possibly required
+ * hardware page tables pointed to by the top hardware
+ * level.
+ *
+ * On 4-level systems, the P4D layer is folded away and
+ * the above code does no preallocation. Below, go down
+ * to the pud _software_ level to ensure the second
+ * hardware level is allocated on 4-level systems too.
+ */
+ lvl = "pud";
+ pud = pud_alloc(&init_mm, p4d, addr);
+ if (!pud)
+ goto failed;
+ }
+
+ return;
+
+failed:
+
+ /*
+ * The pages have to be there now or they will be missing in
+ * process page-tables later.
+ */
+ panic("Failed to pre-allocate %s pages for vmalloc area\n", lvl);
+}
+
+void __init mem_init(void)
+{
+ pci_iommu_alloc();
+
+ /* clear_bss() already clear the empty_zero_page */
+
+ /* this will put all memory onto the freelists */
+ memblock_free_all();
+ after_bootmem = 1;
+ x86_init.hyper.init_after_bootmem();
+
+ /*
+ * Must be done after boot memory is put on freelist, because here we
+ * might set fields in deferred struct pages that have not yet been
+ * initialized, and memblock_free_all() initializes all the reserved
+ * deferred pages for us.
+ */
+ register_page_bootmem_info();
+
+ /* Register memory areas for /proc/kcore */
+ if (get_gate_vma(&init_mm))
+ kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR, PAGE_SIZE, KCORE_USER);
+
+ preallocate_vmalloc_pages();
+}
+
+#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
+int __init deferred_page_init_max_threads(const struct cpumask *node_cpumask)
+{
+ /*
+ * More CPUs always led to greater speedups on tested systems, up to
+ * all the nodes' CPUs. Use all since the system is otherwise idle
+ * now.
+ */
+ return max_t(int, cpumask_weight(node_cpumask), 1);
+}
+#endif
+
+int kernel_set_to_readonly;
+
+void mark_rodata_ro(void)
+{
+ unsigned long start = PFN_ALIGN(_text);
+ unsigned long rodata_start = PFN_ALIGN(__start_rodata);
+ unsigned long end = (unsigned long)__end_rodata_hpage_align;
+ unsigned long text_end = PFN_ALIGN(_etext);
+ unsigned long rodata_end = PFN_ALIGN(__end_rodata);
+ unsigned long all_end;
+
+ printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
+ (end - start) >> 10);
+ set_memory_ro(start, (end - start) >> PAGE_SHIFT);
+
+ kernel_set_to_readonly = 1;
+
+ /*
+ * The rodata/data/bss/brk section (but not the kernel text!)
+ * should also be not-executable.
+ *
+ * We align all_end to PMD_SIZE because the existing mapping
+ * is a full PMD. If we would align _brk_end to PAGE_SIZE we
+ * split the PMD and the reminder between _brk_end and the end
+ * of the PMD will remain mapped executable.
+ *
+ * Any PMD which was setup after the one which covers _brk_end
+ * has been zapped already via cleanup_highmem().
+ */
+ all_end = roundup((unsigned long)_brk_end, PMD_SIZE);
+ set_memory_nx(text_end, (all_end - text_end) >> PAGE_SHIFT);
+
+ set_ftrace_ops_ro();
+
+#ifdef CONFIG_CPA_DEBUG
+ printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
+ set_memory_rw(start, (end-start) >> PAGE_SHIFT);
+
+ printk(KERN_INFO "Testing CPA: again\n");
+ set_memory_ro(start, (end-start) >> PAGE_SHIFT);
+#endif
+
+ free_kernel_image_pages("unused kernel image (text/rodata gap)",
+ (void *)text_end, (void *)rodata_start);
+ free_kernel_image_pages("unused kernel image (rodata/data gap)",
+ (void *)rodata_end, (void *)_sdata);
+
+ debug_checkwx();
+}
+
+/*
+ * Block size is the minimum amount of memory which can be hotplugged or
+ * hotremoved. It must be power of two and must be equal or larger than
+ * MIN_MEMORY_BLOCK_SIZE.
+ */
+#define MAX_BLOCK_SIZE (2UL << 30)
+
+/* Amount of ram needed to start using large blocks */
+#define MEM_SIZE_FOR_LARGE_BLOCK (64UL << 30)
+
+/* Adjustable memory block size */
+static unsigned long set_memory_block_size;
+int __init set_memory_block_size_order(unsigned int order)
+{
+ unsigned long size = 1UL << order;
+
+ if (size > MEM_SIZE_FOR_LARGE_BLOCK || size < MIN_MEMORY_BLOCK_SIZE)
+ return -EINVAL;
+
+ set_memory_block_size = size;
+ return 0;
+}
+
+static unsigned long probe_memory_block_size(void)
+{
+ unsigned long boot_mem_end = max_pfn << PAGE_SHIFT;
+ unsigned long bz;
+
+ /* If memory block size has been set, then use it */
+ bz = set_memory_block_size;
+ if (bz)
+ goto done;
+
+ /* Use regular block if RAM is smaller than MEM_SIZE_FOR_LARGE_BLOCK */
+ if (boot_mem_end < MEM_SIZE_FOR_LARGE_BLOCK) {
+ bz = MIN_MEMORY_BLOCK_SIZE;
+ goto done;
+ }
+
+ /*
+ * Use max block size to minimize overhead on bare metal, where
+ * alignment for memory hotplug isn't a concern.
+ */
+ if (!boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
+ bz = MAX_BLOCK_SIZE;
+ goto done;
+ }
+
+ /* Find the largest allowed block size that aligns to memory end */
+ for (bz = MAX_BLOCK_SIZE; bz > MIN_MEMORY_BLOCK_SIZE; bz >>= 1) {
+ if (IS_ALIGNED(boot_mem_end, bz))
+ break;
+ }
+done:
+ pr_info("x86/mm: Memory block size: %ldMB\n", bz >> 20);
+
+ return bz;
+}
+
+static unsigned long memory_block_size_probed;
+unsigned long memory_block_size_bytes(void)
+{
+ if (!memory_block_size_probed)
+ memory_block_size_probed = probe_memory_block_size();
+
+ return memory_block_size_probed;
+}
+
+#ifdef CONFIG_SPARSEMEM_VMEMMAP
+/*
+ * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
+ */
+static long __meminitdata addr_start, addr_end;
+static void __meminitdata *p_start, *p_end;
+static int __meminitdata node_start;
+
+void __meminit vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
+ unsigned long addr, unsigned long next)
+{
+ pte_t entry;
+
+ entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
+ PAGE_KERNEL_LARGE);
+ set_pmd(pmd, __pmd(pte_val(entry)));
+
+ /* check to see if we have contiguous blocks */
+ if (p_end != p || node_start != node) {
+ if (p_start)
+ pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
+ addr_start, addr_end-1, p_start, p_end-1, node_start);
+ addr_start = addr;
+ node_start = node;
+ p_start = p;
+ }
+
+ addr_end = addr + PMD_SIZE;
+ p_end = p + PMD_SIZE;
+
+ if (!IS_ALIGNED(addr, PMD_SIZE) ||
+ !IS_ALIGNED(next, PMD_SIZE))
+ vmemmap_use_new_sub_pmd(addr, next);
+}
+
+int __meminit vmemmap_check_pmd(pmd_t *pmd, int node,
+ unsigned long addr, unsigned long next)
+{
+ int large = pmd_large(*pmd);
+
+ if (pmd_large(*pmd)) {
+ vmemmap_verify((pte_t *)pmd, node, addr, next);
+ vmemmap_use_sub_pmd(addr, next);
+ }
+
+ return large;
+}
+
+int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
+ struct vmem_altmap *altmap)
+{
+ int err;
+
+ VM_BUG_ON(!PAGE_ALIGNED(start));
+ VM_BUG_ON(!PAGE_ALIGNED(end));
+
+ if (end - start < PAGES_PER_SECTION * sizeof(struct page))
+ err = vmemmap_populate_basepages(start, end, node, NULL);
+ else if (boot_cpu_has(X86_FEATURE_PSE))
+ err = vmemmap_populate_hugepages(start, end, node, altmap);
+ else if (altmap) {
+ pr_err_once("%s: no cpu support for altmap allocations\n",
+ __func__);
+ err = -ENOMEM;
+ } else
+ err = vmemmap_populate_basepages(start, end, node, NULL);
+ if (!err)
+ sync_global_pgds(start, end - 1);
+ return err;
+}
+
+#ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
+void register_page_bootmem_memmap(unsigned long section_nr,
+ struct page *start_page, unsigned long nr_pages)
+{
+ unsigned long addr = (unsigned long)start_page;
+ unsigned long end = (unsigned long)(start_page + nr_pages);
+ unsigned long next;
+ pgd_t *pgd;
+ p4d_t *p4d;
+ pud_t *pud;
+ pmd_t *pmd;
+ unsigned int nr_pmd_pages;
+ struct page *page;
+
+ for (; addr < end; addr = next) {
+ pte_t *pte = NULL;
+
+ pgd = pgd_offset_k(addr);
+ if (pgd_none(*pgd)) {
+ next = (addr + PAGE_SIZE) & PAGE_MASK;
+ continue;
+ }
+ get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
+
+ p4d = p4d_offset(pgd, addr);
+ if (p4d_none(*p4d)) {
+ next = (addr + PAGE_SIZE) & PAGE_MASK;
+ continue;
+ }
+ get_page_bootmem(section_nr, p4d_page(*p4d), MIX_SECTION_INFO);
+
+ pud = pud_offset(p4d, addr);
+ if (pud_none(*pud)) {
+ next = (addr + PAGE_SIZE) & PAGE_MASK;
+ continue;
+ }
+ get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
+
+ if (!boot_cpu_has(X86_FEATURE_PSE)) {
+ next = (addr + PAGE_SIZE) & PAGE_MASK;
+ pmd = pmd_offset(pud, addr);
+ if (pmd_none(*pmd))
+ continue;
+ get_page_bootmem(section_nr, pmd_page(*pmd),
+ MIX_SECTION_INFO);
+
+ pte = pte_offset_kernel(pmd, addr);
+ if (pte_none(*pte))
+ continue;
+ get_page_bootmem(section_nr, pte_page(*pte),
+ SECTION_INFO);
+ } else {
+ next = pmd_addr_end(addr, end);
+
+ pmd = pmd_offset(pud, addr);
+ if (pmd_none(*pmd))
+ continue;
+
+ nr_pmd_pages = 1 << get_order(PMD_SIZE);
+ page = pmd_page(*pmd);
+ while (nr_pmd_pages--)
+ get_page_bootmem(section_nr, page++,
+ SECTION_INFO);
+ }
+ }
+}
+#endif
+
+void __meminit vmemmap_populate_print_last(void)
+{
+ if (p_start) {
+ pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
+ addr_start, addr_end-1, p_start, p_end-1, node_start);
+ p_start = NULL;
+ p_end = NULL;
+ node_start = 0;
+ }
+}
+#endif
diff --git a/arch/x86/mm/iomap_32.c b/arch/x86/mm/iomap_32.c
new file mode 100644
index 0000000000..9aaa756ddf
--- /dev/null
+++ b/arch/x86/mm/iomap_32.c
@@ -0,0 +1,65 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * Copyright © 2008 Ingo Molnar
+ */
+
+#include <asm/iomap.h>
+#include <asm/memtype.h>
+#include <linux/export.h>
+#include <linux/highmem.h>
+
+static int is_io_mapping_possible(resource_size_t base, unsigned long size)
+{
+#if !defined(CONFIG_X86_PAE) && defined(CONFIG_PHYS_ADDR_T_64BIT)
+ /* There is no way to map greater than 1 << 32 address without PAE */
+ if (base + size > 0x100000000ULL)
+ return 0;
+#endif
+ return 1;
+}
+
+int iomap_create_wc(resource_size_t base, unsigned long size, pgprot_t *prot)
+{
+ enum page_cache_mode pcm = _PAGE_CACHE_MODE_WC;
+ int ret;
+
+ if (!is_io_mapping_possible(base, size))
+ return -EINVAL;
+
+ ret = memtype_reserve_io(base, base + size, &pcm);
+ if (ret)
+ return ret;
+
+ *prot = __pgprot(__PAGE_KERNEL | cachemode2protval(pcm));
+ /* Filter out unsupported __PAGE_KERNEL* bits: */
+ pgprot_val(*prot) &= __default_kernel_pte_mask;
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(iomap_create_wc);
+
+void iomap_free(resource_size_t base, unsigned long size)
+{
+ memtype_free_io(base, base + size);
+}
+EXPORT_SYMBOL_GPL(iomap_free);
+
+void __iomem *__iomap_local_pfn_prot(unsigned long pfn, pgprot_t prot)
+{
+ /*
+ * For non-PAT systems, translate non-WB request to UC- just in
+ * case the caller set the PWT bit to prot directly without using
+ * pgprot_writecombine(). UC- translates to uncached if the MTRR
+ * is UC or WC. UC- gets the real intention, of the user, which is
+ * "WC if the MTRR is WC, UC if you can't do that."
+ */
+ if (!pat_enabled() && pgprot2cachemode(prot) != _PAGE_CACHE_MODE_WB)
+ prot = __pgprot(__PAGE_KERNEL |
+ cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS));
+
+ /* Filter out unsupported __PAGE_KERNEL* bits: */
+ pgprot_val(prot) &= __default_kernel_pte_mask;
+
+ return (void __force __iomem *)__kmap_local_pfn_prot(pfn, prot);
+}
+EXPORT_SYMBOL_GPL(__iomap_local_pfn_prot);
diff --git a/arch/x86/mm/ioremap.c b/arch/x86/mm/ioremap.c
new file mode 100644
index 0000000000..aa7d279321
--- /dev/null
+++ b/arch/x86/mm/ioremap.c
@@ -0,0 +1,936 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Re-map IO memory to kernel address space so that we can access it.
+ * This is needed for high PCI addresses that aren't mapped in the
+ * 640k-1MB IO memory area on PC's
+ *
+ * (C) Copyright 1995 1996 Linus Torvalds
+ */
+
+#include <linux/memblock.h>
+#include <linux/init.h>
+#include <linux/io.h>
+#include <linux/ioport.h>
+#include <linux/slab.h>
+#include <linux/vmalloc.h>
+#include <linux/mmiotrace.h>
+#include <linux/cc_platform.h>
+#include <linux/efi.h>
+#include <linux/pgtable.h>
+#include <linux/kmsan.h>
+
+#include <asm/set_memory.h>
+#include <asm/e820/api.h>
+#include <asm/efi.h>
+#include <asm/fixmap.h>
+#include <asm/tlbflush.h>
+#include <asm/pgalloc.h>
+#include <asm/memtype.h>
+#include <asm/setup.h>
+
+#include "physaddr.h"
+
+/*
+ * Descriptor controlling ioremap() behavior.
+ */
+struct ioremap_desc {
+ unsigned int flags;
+};
+
+/*
+ * Fix up the linear direct mapping of the kernel to avoid cache attribute
+ * conflicts.
+ */
+int ioremap_change_attr(unsigned long vaddr, unsigned long size,
+ enum page_cache_mode pcm)
+{
+ unsigned long nrpages = size >> PAGE_SHIFT;
+ int err;
+
+ switch (pcm) {
+ case _PAGE_CACHE_MODE_UC:
+ default:
+ err = _set_memory_uc(vaddr, nrpages);
+ break;
+ case _PAGE_CACHE_MODE_WC:
+ err = _set_memory_wc(vaddr, nrpages);
+ break;
+ case _PAGE_CACHE_MODE_WT:
+ err = _set_memory_wt(vaddr, nrpages);
+ break;
+ case _PAGE_CACHE_MODE_WB:
+ err = _set_memory_wb(vaddr, nrpages);
+ break;
+ }
+
+ return err;
+}
+
+/* Does the range (or a subset of) contain normal RAM? */
+static unsigned int __ioremap_check_ram(struct resource *res)
+{
+ unsigned long start_pfn, stop_pfn;
+ unsigned long i;
+
+ if ((res->flags & IORESOURCE_SYSTEM_RAM) != IORESOURCE_SYSTEM_RAM)
+ return 0;
+
+ start_pfn = (res->start + PAGE_SIZE - 1) >> PAGE_SHIFT;
+ stop_pfn = (res->end + 1) >> PAGE_SHIFT;
+ if (stop_pfn > start_pfn) {
+ for (i = 0; i < (stop_pfn - start_pfn); ++i)
+ if (pfn_valid(start_pfn + i) &&
+ !PageReserved(pfn_to_page(start_pfn + i)))
+ return IORES_MAP_SYSTEM_RAM;
+ }
+
+ return 0;
+}
+
+/*
+ * In a SEV guest, NONE and RESERVED should not be mapped encrypted because
+ * there the whole memory is already encrypted.
+ */
+static unsigned int __ioremap_check_encrypted(struct resource *res)
+{
+ if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
+ return 0;
+
+ switch (res->desc) {
+ case IORES_DESC_NONE:
+ case IORES_DESC_RESERVED:
+ break;
+ default:
+ return IORES_MAP_ENCRYPTED;
+ }
+
+ return 0;
+}
+
+/*
+ * The EFI runtime services data area is not covered by walk_mem_res(), but must
+ * be mapped encrypted when SEV is active.
+ */
+static void __ioremap_check_other(resource_size_t addr, struct ioremap_desc *desc)
+{
+ if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
+ return;
+
+ if (x86_platform.hyper.is_private_mmio(addr)) {
+ desc->flags |= IORES_MAP_ENCRYPTED;
+ return;
+ }
+
+ if (!IS_ENABLED(CONFIG_EFI))
+ return;
+
+ if (efi_mem_type(addr) == EFI_RUNTIME_SERVICES_DATA ||
+ (efi_mem_type(addr) == EFI_BOOT_SERVICES_DATA &&
+ efi_mem_attributes(addr) & EFI_MEMORY_RUNTIME))
+ desc->flags |= IORES_MAP_ENCRYPTED;
+}
+
+static int __ioremap_collect_map_flags(struct resource *res, void *arg)
+{
+ struct ioremap_desc *desc = arg;
+
+ if (!(desc->flags & IORES_MAP_SYSTEM_RAM))
+ desc->flags |= __ioremap_check_ram(res);
+
+ if (!(desc->flags & IORES_MAP_ENCRYPTED))
+ desc->flags |= __ioremap_check_encrypted(res);
+
+ return ((desc->flags & (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED)) ==
+ (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED));
+}
+
+/*
+ * To avoid multiple resource walks, this function walks resources marked as
+ * IORESOURCE_MEM and IORESOURCE_BUSY and looking for system RAM and/or a
+ * resource described not as IORES_DESC_NONE (e.g. IORES_DESC_ACPI_TABLES).
+ *
+ * After that, deal with misc other ranges in __ioremap_check_other() which do
+ * not fall into the above category.
+ */
+static void __ioremap_check_mem(resource_size_t addr, unsigned long size,
+ struct ioremap_desc *desc)
+{
+ u64 start, end;
+
+ start = (u64)addr;
+ end = start + size - 1;
+ memset(desc, 0, sizeof(struct ioremap_desc));
+
+ walk_mem_res(start, end, desc, __ioremap_collect_map_flags);
+
+ __ioremap_check_other(addr, desc);
+}
+
+/*
+ * Remap an arbitrary physical address space into the kernel virtual
+ * address space. It transparently creates kernel huge I/O mapping when
+ * the physical address is aligned by a huge page size (1GB or 2MB) and
+ * the requested size is at least the huge page size.
+ *
+ * NOTE: MTRRs can override PAT memory types with a 4KB granularity.
+ * Therefore, the mapping code falls back to use a smaller page toward 4KB
+ * when a mapping range is covered by non-WB type of MTRRs.
+ *
+ * NOTE! We need to allow non-page-aligned mappings too: we will obviously
+ * have to convert them into an offset in a page-aligned mapping, but the
+ * caller shouldn't need to know that small detail.
+ */
+static void __iomem *
+__ioremap_caller(resource_size_t phys_addr, unsigned long size,
+ enum page_cache_mode pcm, void *caller, bool encrypted)
+{
+ unsigned long offset, vaddr;
+ resource_size_t last_addr;
+ const resource_size_t unaligned_phys_addr = phys_addr;
+ const unsigned long unaligned_size = size;
+ struct ioremap_desc io_desc;
+ struct vm_struct *area;
+ enum page_cache_mode new_pcm;
+ pgprot_t prot;
+ int retval;
+ void __iomem *ret_addr;
+
+ /* Don't allow wraparound or zero size */
+ last_addr = phys_addr + size - 1;
+ if (!size || last_addr < phys_addr)
+ return NULL;
+
+ if (!phys_addr_valid(phys_addr)) {
+ printk(KERN_WARNING "ioremap: invalid physical address %llx\n",
+ (unsigned long long)phys_addr);
+ WARN_ON_ONCE(1);
+ return NULL;
+ }
+
+ __ioremap_check_mem(phys_addr, size, &io_desc);
+
+ /*
+ * Don't allow anybody to remap normal RAM that we're using..
+ */
+ if (io_desc.flags & IORES_MAP_SYSTEM_RAM) {
+ WARN_ONCE(1, "ioremap on RAM at %pa - %pa\n",
+ &phys_addr, &last_addr);
+ return NULL;
+ }
+
+ /*
+ * Mappings have to be page-aligned
+ */
+ offset = phys_addr & ~PAGE_MASK;
+ phys_addr &= PAGE_MASK;
+ size = PAGE_ALIGN(last_addr+1) - phys_addr;
+
+ /*
+ * Mask out any bits not part of the actual physical
+ * address, like memory encryption bits.
+ */
+ phys_addr &= PHYSICAL_PAGE_MASK;
+
+ retval = memtype_reserve(phys_addr, (u64)phys_addr + size,
+ pcm, &new_pcm);
+ if (retval) {
+ printk(KERN_ERR "ioremap memtype_reserve failed %d\n", retval);
+ return NULL;
+ }
+
+ if (pcm != new_pcm) {
+ if (!is_new_memtype_allowed(phys_addr, size, pcm, new_pcm)) {
+ printk(KERN_ERR
+ "ioremap error for 0x%llx-0x%llx, requested 0x%x, got 0x%x\n",
+ (unsigned long long)phys_addr,
+ (unsigned long long)(phys_addr + size),
+ pcm, new_pcm);
+ goto err_free_memtype;
+ }
+ pcm = new_pcm;
+ }
+
+ /*
+ * If the page being mapped is in memory and SEV is active then
+ * make sure the memory encryption attribute is enabled in the
+ * resulting mapping.
+ * In TDX guests, memory is marked private by default. If encryption
+ * is not requested (using encrypted), explicitly set decrypt
+ * attribute in all IOREMAPPED memory.
+ */
+ prot = PAGE_KERNEL_IO;
+ if ((io_desc.flags & IORES_MAP_ENCRYPTED) || encrypted)
+ prot = pgprot_encrypted(prot);
+ else
+ prot = pgprot_decrypted(prot);
+
+ switch (pcm) {
+ case _PAGE_CACHE_MODE_UC:
+ default:
+ prot = __pgprot(pgprot_val(prot) |
+ cachemode2protval(_PAGE_CACHE_MODE_UC));
+ break;
+ case _PAGE_CACHE_MODE_UC_MINUS:
+ prot = __pgprot(pgprot_val(prot) |
+ cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS));
+ break;
+ case _PAGE_CACHE_MODE_WC:
+ prot = __pgprot(pgprot_val(prot) |
+ cachemode2protval(_PAGE_CACHE_MODE_WC));
+ break;
+ case _PAGE_CACHE_MODE_WT:
+ prot = __pgprot(pgprot_val(prot) |
+ cachemode2protval(_PAGE_CACHE_MODE_WT));
+ break;
+ case _PAGE_CACHE_MODE_WB:
+ break;
+ }
+
+ /*
+ * Ok, go for it..
+ */
+ area = get_vm_area_caller(size, VM_IOREMAP, caller);
+ if (!area)
+ goto err_free_memtype;
+ area->phys_addr = phys_addr;
+ vaddr = (unsigned long) area->addr;
+
+ if (memtype_kernel_map_sync(phys_addr, size, pcm))
+ goto err_free_area;
+
+ if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot))
+ goto err_free_area;
+
+ ret_addr = (void __iomem *) (vaddr + offset);
+ mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr);
+
+ /*
+ * Check if the request spans more than any BAR in the iomem resource
+ * tree.
+ */
+ if (iomem_map_sanity_check(unaligned_phys_addr, unaligned_size))
+ pr_warn("caller %pS mapping multiple BARs\n", caller);
+
+ return ret_addr;
+err_free_area:
+ free_vm_area(area);
+err_free_memtype:
+ memtype_free(phys_addr, phys_addr + size);
+ return NULL;
+}
+
+/**
+ * ioremap - map bus memory into CPU space
+ * @phys_addr: bus address of the memory
+ * @size: size of the resource to map
+ *
+ * ioremap performs a platform specific sequence of operations to
+ * make bus memory CPU accessible via the readb/readw/readl/writeb/
+ * writew/writel functions and the other mmio helpers. The returned
+ * address is not guaranteed to be usable directly as a virtual
+ * address.
+ *
+ * This version of ioremap ensures that the memory is marked uncachable
+ * on the CPU as well as honouring existing caching rules from things like
+ * the PCI bus. Note that there are other caches and buffers on many
+ * busses. In particular driver authors should read up on PCI writes
+ *
+ * It's useful if some control registers are in such an area and
+ * write combining or read caching is not desirable:
+ *
+ * Must be freed with iounmap.
+ */
+void __iomem *ioremap(resource_size_t phys_addr, unsigned long size)
+{
+ /*
+ * Ideally, this should be:
+ * pat_enabled() ? _PAGE_CACHE_MODE_UC : _PAGE_CACHE_MODE_UC_MINUS;
+ *
+ * Till we fix all X drivers to use ioremap_wc(), we will use
+ * UC MINUS. Drivers that are certain they need or can already
+ * be converted over to strong UC can use ioremap_uc().
+ */
+ enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC_MINUS;
+
+ return __ioremap_caller(phys_addr, size, pcm,
+ __builtin_return_address(0), false);
+}
+EXPORT_SYMBOL(ioremap);
+
+/**
+ * ioremap_uc - map bus memory into CPU space as strongly uncachable
+ * @phys_addr: bus address of the memory
+ * @size: size of the resource to map
+ *
+ * ioremap_uc performs a platform specific sequence of operations to
+ * make bus memory CPU accessible via the readb/readw/readl/writeb/
+ * writew/writel functions and the other mmio helpers. The returned
+ * address is not guaranteed to be usable directly as a virtual
+ * address.
+ *
+ * This version of ioremap ensures that the memory is marked with a strong
+ * preference as completely uncachable on the CPU when possible. For non-PAT
+ * systems this ends up setting page-attribute flags PCD=1, PWT=1. For PAT
+ * systems this will set the PAT entry for the pages as strong UC. This call
+ * will honor existing caching rules from things like the PCI bus. Note that
+ * there are other caches and buffers on many busses. In particular driver
+ * authors should read up on PCI writes.
+ *
+ * It's useful if some control registers are in such an area and
+ * write combining or read caching is not desirable:
+ *
+ * Must be freed with iounmap.
+ */
+void __iomem *ioremap_uc(resource_size_t phys_addr, unsigned long size)
+{
+ enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC;
+
+ return __ioremap_caller(phys_addr, size, pcm,
+ __builtin_return_address(0), false);
+}
+EXPORT_SYMBOL_GPL(ioremap_uc);
+
+/**
+ * ioremap_wc - map memory into CPU space write combined
+ * @phys_addr: bus address of the memory
+ * @size: size of the resource to map
+ *
+ * This version of ioremap ensures that the memory is marked write combining.
+ * Write combining allows faster writes to some hardware devices.
+ *
+ * Must be freed with iounmap.
+ */
+void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size)
+{
+ return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WC,
+ __builtin_return_address(0), false);
+}
+EXPORT_SYMBOL(ioremap_wc);
+
+/**
+ * ioremap_wt - map memory into CPU space write through
+ * @phys_addr: bus address of the memory
+ * @size: size of the resource to map
+ *
+ * This version of ioremap ensures that the memory is marked write through.
+ * Write through stores data into memory while keeping the cache up-to-date.
+ *
+ * Must be freed with iounmap.
+ */
+void __iomem *ioremap_wt(resource_size_t phys_addr, unsigned long size)
+{
+ return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WT,
+ __builtin_return_address(0), false);
+}
+EXPORT_SYMBOL(ioremap_wt);
+
+void __iomem *ioremap_encrypted(resource_size_t phys_addr, unsigned long size)
+{
+ return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
+ __builtin_return_address(0), true);
+}
+EXPORT_SYMBOL(ioremap_encrypted);
+
+void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size)
+{
+ return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
+ __builtin_return_address(0), false);
+}
+EXPORT_SYMBOL(ioremap_cache);
+
+void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
+ unsigned long prot_val)
+{
+ return __ioremap_caller(phys_addr, size,
+ pgprot2cachemode(__pgprot(prot_val)),
+ __builtin_return_address(0), false);
+}
+EXPORT_SYMBOL(ioremap_prot);
+
+/**
+ * iounmap - Free a IO remapping
+ * @addr: virtual address from ioremap_*
+ *
+ * Caller must ensure there is only one unmapping for the same pointer.
+ */
+void iounmap(volatile void __iomem *addr)
+{
+ struct vm_struct *p, *o;
+
+ if ((void __force *)addr <= high_memory)
+ return;
+
+ /*
+ * The PCI/ISA range special-casing was removed from __ioremap()
+ * so this check, in theory, can be removed. However, there are
+ * cases where iounmap() is called for addresses not obtained via
+ * ioremap() (vga16fb for example). Add a warning so that these
+ * cases can be caught and fixed.
+ */
+ if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) &&
+ (void __force *)addr < phys_to_virt(ISA_END_ADDRESS)) {
+ WARN(1, "iounmap() called for ISA range not obtained using ioremap()\n");
+ return;
+ }
+
+ mmiotrace_iounmap(addr);
+
+ addr = (volatile void __iomem *)
+ (PAGE_MASK & (unsigned long __force)addr);
+
+ /* Use the vm area unlocked, assuming the caller
+ ensures there isn't another iounmap for the same address
+ in parallel. Reuse of the virtual address is prevented by
+ leaving it in the global lists until we're done with it.
+ cpa takes care of the direct mappings. */
+ p = find_vm_area((void __force *)addr);
+
+ if (!p) {
+ printk(KERN_ERR "iounmap: bad address %p\n", addr);
+ dump_stack();
+ return;
+ }
+
+ kmsan_iounmap_page_range((unsigned long)addr,
+ (unsigned long)addr + get_vm_area_size(p));
+ memtype_free(p->phys_addr, p->phys_addr + get_vm_area_size(p));
+
+ /* Finally remove it */
+ o = remove_vm_area((void __force *)addr);
+ BUG_ON(p != o || o == NULL);
+ kfree(p);
+}
+EXPORT_SYMBOL(iounmap);
+
+/*
+ * Convert a physical pointer to a virtual kernel pointer for /dev/mem
+ * access
+ */
+void *xlate_dev_mem_ptr(phys_addr_t phys)
+{
+ unsigned long start = phys & PAGE_MASK;
+ unsigned long offset = phys & ~PAGE_MASK;
+ void *vaddr;
+
+ /* memremap() maps if RAM, otherwise falls back to ioremap() */
+ vaddr = memremap(start, PAGE_SIZE, MEMREMAP_WB);
+
+ /* Only add the offset on success and return NULL if memremap() failed */
+ if (vaddr)
+ vaddr += offset;
+
+ return vaddr;
+}
+
+void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
+{
+ memunmap((void *)((unsigned long)addr & PAGE_MASK));
+}
+
+#ifdef CONFIG_AMD_MEM_ENCRYPT
+/*
+ * Examine the physical address to determine if it is an area of memory
+ * that should be mapped decrypted. If the memory is not part of the
+ * kernel usable area it was accessed and created decrypted, so these
+ * areas should be mapped decrypted. And since the encryption key can
+ * change across reboots, persistent memory should also be mapped
+ * decrypted.
+ *
+ * If SEV is active, that implies that BIOS/UEFI also ran encrypted so
+ * only persistent memory should be mapped decrypted.
+ */
+static bool memremap_should_map_decrypted(resource_size_t phys_addr,
+ unsigned long size)
+{
+ int is_pmem;
+
+ /*
+ * Check if the address is part of a persistent memory region.
+ * This check covers areas added by E820, EFI and ACPI.
+ */
+ is_pmem = region_intersects(phys_addr, size, IORESOURCE_MEM,
+ IORES_DESC_PERSISTENT_MEMORY);
+ if (is_pmem != REGION_DISJOINT)
+ return true;
+
+ /*
+ * Check if the non-volatile attribute is set for an EFI
+ * reserved area.
+ */
+ if (efi_enabled(EFI_BOOT)) {
+ switch (efi_mem_type(phys_addr)) {
+ case EFI_RESERVED_TYPE:
+ if (efi_mem_attributes(phys_addr) & EFI_MEMORY_NV)
+ return true;
+ break;
+ default:
+ break;
+ }
+ }
+
+ /* Check if the address is outside kernel usable area */
+ switch (e820__get_entry_type(phys_addr, phys_addr + size - 1)) {
+ case E820_TYPE_RESERVED:
+ case E820_TYPE_ACPI:
+ case E820_TYPE_NVS:
+ case E820_TYPE_UNUSABLE:
+ /* For SEV, these areas are encrypted */
+ if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
+ break;
+ fallthrough;
+
+ case E820_TYPE_PRAM:
+ return true;
+ default:
+ break;
+ }
+
+ return false;
+}
+
+/*
+ * Examine the physical address to determine if it is EFI data. Check
+ * it against the boot params structure and EFI tables and memory types.
+ */
+static bool memremap_is_efi_data(resource_size_t phys_addr,
+ unsigned long size)
+{
+ u64 paddr;
+
+ /* Check if the address is part of EFI boot/runtime data */
+ if (!efi_enabled(EFI_BOOT))
+ return false;
+
+ paddr = boot_params.efi_info.efi_memmap_hi;
+ paddr <<= 32;
+ paddr |= boot_params.efi_info.efi_memmap;
+ if (phys_addr == paddr)
+ return true;
+
+ paddr = boot_params.efi_info.efi_systab_hi;
+ paddr <<= 32;
+ paddr |= boot_params.efi_info.efi_systab;
+ if (phys_addr == paddr)
+ return true;
+
+ if (efi_is_table_address(phys_addr))
+ return true;
+
+ switch (efi_mem_type(phys_addr)) {
+ case EFI_BOOT_SERVICES_DATA:
+ case EFI_RUNTIME_SERVICES_DATA:
+ return true;
+ default:
+ break;
+ }
+
+ return false;
+}
+
+/*
+ * Examine the physical address to determine if it is boot data by checking
+ * it against the boot params setup_data chain.
+ */
+static bool memremap_is_setup_data(resource_size_t phys_addr,
+ unsigned long size)
+{
+ struct setup_indirect *indirect;
+ struct setup_data *data;
+ u64 paddr, paddr_next;
+
+ paddr = boot_params.hdr.setup_data;
+ while (paddr) {
+ unsigned int len;
+
+ if (phys_addr == paddr)
+ return true;
+
+ data = memremap(paddr, sizeof(*data),
+ MEMREMAP_WB | MEMREMAP_DEC);
+ if (!data) {
+ pr_warn("failed to memremap setup_data entry\n");
+ return false;
+ }
+
+ paddr_next = data->next;
+ len = data->len;
+
+ if ((phys_addr > paddr) && (phys_addr < (paddr + len))) {
+ memunmap(data);
+ return true;
+ }
+
+ if (data->type == SETUP_INDIRECT) {
+ memunmap(data);
+ data = memremap(paddr, sizeof(*data) + len,
+ MEMREMAP_WB | MEMREMAP_DEC);
+ if (!data) {
+ pr_warn("failed to memremap indirect setup_data\n");
+ return false;
+ }
+
+ indirect = (struct setup_indirect *)data->data;
+
+ if (indirect->type != SETUP_INDIRECT) {
+ paddr = indirect->addr;
+ len = indirect->len;
+ }
+ }
+
+ memunmap(data);
+
+ if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
+ return true;
+
+ paddr = paddr_next;
+ }
+
+ return false;
+}
+
+/*
+ * Examine the physical address to determine if it is boot data by checking
+ * it against the boot params setup_data chain (early boot version).
+ */
+static bool __init early_memremap_is_setup_data(resource_size_t phys_addr,
+ unsigned long size)
+{
+ struct setup_indirect *indirect;
+ struct setup_data *data;
+ u64 paddr, paddr_next;
+
+ paddr = boot_params.hdr.setup_data;
+ while (paddr) {
+ unsigned int len, size;
+
+ if (phys_addr == paddr)
+ return true;
+
+ data = early_memremap_decrypted(paddr, sizeof(*data));
+ if (!data) {
+ pr_warn("failed to early memremap setup_data entry\n");
+ return false;
+ }
+
+ size = sizeof(*data);
+
+ paddr_next = data->next;
+ len = data->len;
+
+ if ((phys_addr > paddr) && (phys_addr < (paddr + len))) {
+ early_memunmap(data, sizeof(*data));
+ return true;
+ }
+
+ if (data->type == SETUP_INDIRECT) {
+ size += len;
+ early_memunmap(data, sizeof(*data));
+ data = early_memremap_decrypted(paddr, size);
+ if (!data) {
+ pr_warn("failed to early memremap indirect setup_data\n");
+ return false;
+ }
+
+ indirect = (struct setup_indirect *)data->data;
+
+ if (indirect->type != SETUP_INDIRECT) {
+ paddr = indirect->addr;
+ len = indirect->len;
+ }
+ }
+
+ early_memunmap(data, size);
+
+ if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
+ return true;
+
+ paddr = paddr_next;
+ }
+
+ return false;
+}
+
+/*
+ * Architecture function to determine if RAM remap is allowed. By default, a
+ * RAM remap will map the data as encrypted. Determine if a RAM remap should
+ * not be done so that the data will be mapped decrypted.
+ */
+bool arch_memremap_can_ram_remap(resource_size_t phys_addr, unsigned long size,
+ unsigned long flags)
+{
+ if (!cc_platform_has(CC_ATTR_MEM_ENCRYPT))
+ return true;
+
+ if (flags & MEMREMAP_ENC)
+ return true;
+
+ if (flags & MEMREMAP_DEC)
+ return false;
+
+ if (cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) {
+ if (memremap_is_setup_data(phys_addr, size) ||
+ memremap_is_efi_data(phys_addr, size))
+ return false;
+ }
+
+ return !memremap_should_map_decrypted(phys_addr, size);
+}
+
+/*
+ * Architecture override of __weak function to adjust the protection attributes
+ * used when remapping memory. By default, early_memremap() will map the data
+ * as encrypted. Determine if an encrypted mapping should not be done and set
+ * the appropriate protection attributes.
+ */
+pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr,
+ unsigned long size,
+ pgprot_t prot)
+{
+ bool encrypted_prot;
+
+ if (!cc_platform_has(CC_ATTR_MEM_ENCRYPT))
+ return prot;
+
+ encrypted_prot = true;
+
+ if (cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) {
+ if (early_memremap_is_setup_data(phys_addr, size) ||
+ memremap_is_efi_data(phys_addr, size))
+ encrypted_prot = false;
+ }
+
+ if (encrypted_prot && memremap_should_map_decrypted(phys_addr, size))
+ encrypted_prot = false;
+
+ return encrypted_prot ? pgprot_encrypted(prot)
+ : pgprot_decrypted(prot);
+}
+
+bool phys_mem_access_encrypted(unsigned long phys_addr, unsigned long size)
+{
+ return arch_memremap_can_ram_remap(phys_addr, size, 0);
+}
+
+/* Remap memory with encryption */
+void __init *early_memremap_encrypted(resource_size_t phys_addr,
+ unsigned long size)
+{
+ return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC);
+}
+
+/*
+ * Remap memory with encryption and write-protected - cannot be called
+ * before pat_init() is called
+ */
+void __init *early_memremap_encrypted_wp(resource_size_t phys_addr,
+ unsigned long size)
+{
+ if (!x86_has_pat_wp())
+ return NULL;
+ return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC_WP);
+}
+
+/* Remap memory without encryption */
+void __init *early_memremap_decrypted(resource_size_t phys_addr,
+ unsigned long size)
+{
+ return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC);
+}
+
+/*
+ * Remap memory without encryption and write-protected - cannot be called
+ * before pat_init() is called
+ */
+void __init *early_memremap_decrypted_wp(resource_size_t phys_addr,
+ unsigned long size)
+{
+ if (!x86_has_pat_wp())
+ return NULL;
+ return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC_WP);
+}
+#endif /* CONFIG_AMD_MEM_ENCRYPT */
+
+static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss;
+
+static inline pmd_t * __init early_ioremap_pmd(unsigned long addr)
+{
+ /* Don't assume we're using swapper_pg_dir at this point */
+ pgd_t *base = __va(read_cr3_pa());
+ pgd_t *pgd = &base[pgd_index(addr)];
+ p4d_t *p4d = p4d_offset(pgd, addr);
+ pud_t *pud = pud_offset(p4d, addr);
+ pmd_t *pmd = pmd_offset(pud, addr);
+
+ return pmd;
+}
+
+static inline pte_t * __init early_ioremap_pte(unsigned long addr)
+{
+ return &bm_pte[pte_index(addr)];
+}
+
+bool __init is_early_ioremap_ptep(pte_t *ptep)
+{
+ return ptep >= &bm_pte[0] && ptep < &bm_pte[PAGE_SIZE/sizeof(pte_t)];
+}
+
+void __init early_ioremap_init(void)
+{
+ pmd_t *pmd;
+
+#ifdef CONFIG_X86_64
+ BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
+#else
+ WARN_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
+#endif
+
+ early_ioremap_setup();
+
+ pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN));
+ memset(bm_pte, 0, sizeof(bm_pte));
+ pmd_populate_kernel(&init_mm, pmd, bm_pte);
+
+ /*
+ * The boot-ioremap range spans multiple pmds, for which
+ * we are not prepared:
+ */
+#define __FIXADDR_TOP (-PAGE_SIZE)
+ BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
+ != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
+#undef __FIXADDR_TOP
+ if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) {
+ WARN_ON(1);
+ printk(KERN_WARNING "pmd %p != %p\n",
+ pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END)));
+ printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
+ fix_to_virt(FIX_BTMAP_BEGIN));
+ printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END): %08lx\n",
+ fix_to_virt(FIX_BTMAP_END));
+
+ printk(KERN_WARNING "FIX_BTMAP_END: %d\n", FIX_BTMAP_END);
+ printk(KERN_WARNING "FIX_BTMAP_BEGIN: %d\n",
+ FIX_BTMAP_BEGIN);
+ }
+}
+
+void __init __early_set_fixmap(enum fixed_addresses idx,
+ phys_addr_t phys, pgprot_t flags)
+{
+ unsigned long addr = __fix_to_virt(idx);
+ pte_t *pte;
+
+ if (idx >= __end_of_fixed_addresses) {
+ BUG();
+ return;
+ }
+ pte = early_ioremap_pte(addr);
+
+ /* Sanitize 'prot' against any unsupported bits: */
+ pgprot_val(flags) &= __supported_pte_mask;
+
+ if (pgprot_val(flags))
+ set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags));
+ else
+ pte_clear(&init_mm, addr, pte);
+ flush_tlb_one_kernel(addr);
+}
diff --git a/arch/x86/mm/kasan_init_64.c b/arch/x86/mm/kasan_init_64.c
new file mode 100644
index 0000000000..0302491d79
--- /dev/null
+++ b/arch/x86/mm/kasan_init_64.c
@@ -0,0 +1,456 @@
+// SPDX-License-Identifier: GPL-2.0
+#define DISABLE_BRANCH_PROFILING
+#define pr_fmt(fmt) "kasan: " fmt
+
+/* cpu_feature_enabled() cannot be used this early */
+#define USE_EARLY_PGTABLE_L5
+
+#include <linux/memblock.h>
+#include <linux/kasan.h>
+#include <linux/kdebug.h>
+#include <linux/mm.h>
+#include <linux/sched.h>
+#include <linux/sched/task.h>
+#include <linux/vmalloc.h>
+
+#include <asm/e820/types.h>
+#include <asm/pgalloc.h>
+#include <asm/tlbflush.h>
+#include <asm/sections.h>
+#include <asm/cpu_entry_area.h>
+
+extern struct range pfn_mapped[E820_MAX_ENTRIES];
+
+static p4d_t tmp_p4d_table[MAX_PTRS_PER_P4D] __initdata __aligned(PAGE_SIZE);
+
+static __init void *early_alloc(size_t size, int nid, bool should_panic)
+{
+ void *ptr = memblock_alloc_try_nid(size, size,
+ __pa(MAX_DMA_ADDRESS), MEMBLOCK_ALLOC_ACCESSIBLE, nid);
+
+ if (!ptr && should_panic)
+ panic("%pS: Failed to allocate page, nid=%d from=%lx\n",
+ (void *)_RET_IP_, nid, __pa(MAX_DMA_ADDRESS));
+
+ return ptr;
+}
+
+static void __init kasan_populate_pmd(pmd_t *pmd, unsigned long addr,
+ unsigned long end, int nid)
+{
+ pte_t *pte;
+
+ if (pmd_none(*pmd)) {
+ void *p;
+
+ if (boot_cpu_has(X86_FEATURE_PSE) &&
+ ((end - addr) == PMD_SIZE) &&
+ IS_ALIGNED(addr, PMD_SIZE)) {
+ p = early_alloc(PMD_SIZE, nid, false);
+ if (p && pmd_set_huge(pmd, __pa(p), PAGE_KERNEL))
+ return;
+ memblock_free(p, PMD_SIZE);
+ }
+
+ p = early_alloc(PAGE_SIZE, nid, true);
+ pmd_populate_kernel(&init_mm, pmd, p);
+ }
+
+ pte = pte_offset_kernel(pmd, addr);
+ do {
+ pte_t entry;
+ void *p;
+
+ if (!pte_none(*pte))
+ continue;
+
+ p = early_alloc(PAGE_SIZE, nid, true);
+ entry = pfn_pte(PFN_DOWN(__pa(p)), PAGE_KERNEL);
+ set_pte_at(&init_mm, addr, pte, entry);
+ } while (pte++, addr += PAGE_SIZE, addr != end);
+}
+
+static void __init kasan_populate_pud(pud_t *pud, unsigned long addr,
+ unsigned long end, int nid)
+{
+ pmd_t *pmd;
+ unsigned long next;
+
+ if (pud_none(*pud)) {
+ void *p;
+
+ if (boot_cpu_has(X86_FEATURE_GBPAGES) &&
+ ((end - addr) == PUD_SIZE) &&
+ IS_ALIGNED(addr, PUD_SIZE)) {
+ p = early_alloc(PUD_SIZE, nid, false);
+ if (p && pud_set_huge(pud, __pa(p), PAGE_KERNEL))
+ return;
+ memblock_free(p, PUD_SIZE);
+ }
+
+ p = early_alloc(PAGE_SIZE, nid, true);
+ pud_populate(&init_mm, pud, p);
+ }
+
+ pmd = pmd_offset(pud, addr);
+ do {
+ next = pmd_addr_end(addr, end);
+ if (!pmd_large(*pmd))
+ kasan_populate_pmd(pmd, addr, next, nid);
+ } while (pmd++, addr = next, addr != end);
+}
+
+static void __init kasan_populate_p4d(p4d_t *p4d, unsigned long addr,
+ unsigned long end, int nid)
+{
+ pud_t *pud;
+ unsigned long next;
+
+ if (p4d_none(*p4d)) {
+ void *p = early_alloc(PAGE_SIZE, nid, true);
+
+ p4d_populate(&init_mm, p4d, p);
+ }
+
+ pud = pud_offset(p4d, addr);
+ do {
+ next = pud_addr_end(addr, end);
+ if (!pud_large(*pud))
+ kasan_populate_pud(pud, addr, next, nid);
+ } while (pud++, addr = next, addr != end);
+}
+
+static void __init kasan_populate_pgd(pgd_t *pgd, unsigned long addr,
+ unsigned long end, int nid)
+{
+ void *p;
+ p4d_t *p4d;
+ unsigned long next;
+
+ if (pgd_none(*pgd)) {
+ p = early_alloc(PAGE_SIZE, nid, true);
+ pgd_populate(&init_mm, pgd, p);
+ }
+
+ p4d = p4d_offset(pgd, addr);
+ do {
+ next = p4d_addr_end(addr, end);
+ kasan_populate_p4d(p4d, addr, next, nid);
+ } while (p4d++, addr = next, addr != end);
+}
+
+static void __init kasan_populate_shadow(unsigned long addr, unsigned long end,
+ int nid)
+{
+ pgd_t *pgd;
+ unsigned long next;
+
+ addr = addr & PAGE_MASK;
+ end = round_up(end, PAGE_SIZE);
+ pgd = pgd_offset_k(addr);
+ do {
+ next = pgd_addr_end(addr, end);
+ kasan_populate_pgd(pgd, addr, next, nid);
+ } while (pgd++, addr = next, addr != end);
+}
+
+static void __init map_range(struct range *range)
+{
+ unsigned long start;
+ unsigned long end;
+
+ start = (unsigned long)kasan_mem_to_shadow(pfn_to_kaddr(range->start));
+ end = (unsigned long)kasan_mem_to_shadow(pfn_to_kaddr(range->end));
+
+ kasan_populate_shadow(start, end, early_pfn_to_nid(range->start));
+}
+
+static void __init clear_pgds(unsigned long start,
+ unsigned long end)
+{
+ pgd_t *pgd;
+ /* See comment in kasan_init() */
+ unsigned long pgd_end = end & PGDIR_MASK;
+
+ for (; start < pgd_end; start += PGDIR_SIZE) {
+ pgd = pgd_offset_k(start);
+ /*
+ * With folded p4d, pgd_clear() is nop, use p4d_clear()
+ * instead.
+ */
+ if (pgtable_l5_enabled())
+ pgd_clear(pgd);
+ else
+ p4d_clear(p4d_offset(pgd, start));
+ }
+
+ pgd = pgd_offset_k(start);
+ for (; start < end; start += P4D_SIZE)
+ p4d_clear(p4d_offset(pgd, start));
+}
+
+static inline p4d_t *early_p4d_offset(pgd_t *pgd, unsigned long addr)
+{
+ unsigned long p4d;
+
+ if (!pgtable_l5_enabled())
+ return (p4d_t *)pgd;
+
+ p4d = pgd_val(*pgd) & PTE_PFN_MASK;
+ p4d += __START_KERNEL_map - phys_base;
+ return (p4d_t *)p4d + p4d_index(addr);
+}
+
+static void __init kasan_early_p4d_populate(pgd_t *pgd,
+ unsigned long addr,
+ unsigned long end)
+{
+ pgd_t pgd_entry;
+ p4d_t *p4d, p4d_entry;
+ unsigned long next;
+
+ if (pgd_none(*pgd)) {
+ pgd_entry = __pgd(_KERNPG_TABLE |
+ __pa_nodebug(kasan_early_shadow_p4d));
+ set_pgd(pgd, pgd_entry);
+ }
+
+ p4d = early_p4d_offset(pgd, addr);
+ do {
+ next = p4d_addr_end(addr, end);
+
+ if (!p4d_none(*p4d))
+ continue;
+
+ p4d_entry = __p4d(_KERNPG_TABLE |
+ __pa_nodebug(kasan_early_shadow_pud));
+ set_p4d(p4d, p4d_entry);
+ } while (p4d++, addr = next, addr != end && p4d_none(*p4d));
+}
+
+static void __init kasan_map_early_shadow(pgd_t *pgd)
+{
+ /* See comment in kasan_init() */
+ unsigned long addr = KASAN_SHADOW_START & PGDIR_MASK;
+ unsigned long end = KASAN_SHADOW_END;
+ unsigned long next;
+
+ pgd += pgd_index(addr);
+ do {
+ next = pgd_addr_end(addr, end);
+ kasan_early_p4d_populate(pgd, addr, next);
+ } while (pgd++, addr = next, addr != end);
+}
+
+static void __init kasan_shallow_populate_p4ds(pgd_t *pgd,
+ unsigned long addr,
+ unsigned long end)
+{
+ p4d_t *p4d;
+ unsigned long next;
+ void *p;
+
+ p4d = p4d_offset(pgd, addr);
+ do {
+ next = p4d_addr_end(addr, end);
+
+ if (p4d_none(*p4d)) {
+ p = early_alloc(PAGE_SIZE, NUMA_NO_NODE, true);
+ p4d_populate(&init_mm, p4d, p);
+ }
+ } while (p4d++, addr = next, addr != end);
+}
+
+static void __init kasan_shallow_populate_pgds(void *start, void *end)
+{
+ unsigned long addr, next;
+ pgd_t *pgd;
+ void *p;
+
+ addr = (unsigned long)start;
+ pgd = pgd_offset_k(addr);
+ do {
+ next = pgd_addr_end(addr, (unsigned long)end);
+
+ if (pgd_none(*pgd)) {
+ p = early_alloc(PAGE_SIZE, NUMA_NO_NODE, true);
+ pgd_populate(&init_mm, pgd, p);
+ }
+
+ /*
+ * we need to populate p4ds to be synced when running in
+ * four level mode - see sync_global_pgds_l4()
+ */
+ kasan_shallow_populate_p4ds(pgd, addr, next);
+ } while (pgd++, addr = next, addr != (unsigned long)end);
+}
+
+void __init kasan_early_init(void)
+{
+ int i;
+ pteval_t pte_val = __pa_nodebug(kasan_early_shadow_page) |
+ __PAGE_KERNEL | _PAGE_ENC;
+ pmdval_t pmd_val = __pa_nodebug(kasan_early_shadow_pte) | _KERNPG_TABLE;
+ pudval_t pud_val = __pa_nodebug(kasan_early_shadow_pmd) | _KERNPG_TABLE;
+ p4dval_t p4d_val = __pa_nodebug(kasan_early_shadow_pud) | _KERNPG_TABLE;
+
+ /* Mask out unsupported __PAGE_KERNEL bits: */
+ pte_val &= __default_kernel_pte_mask;
+ pmd_val &= __default_kernel_pte_mask;
+ pud_val &= __default_kernel_pte_mask;
+ p4d_val &= __default_kernel_pte_mask;
+
+ for (i = 0; i < PTRS_PER_PTE; i++)
+ kasan_early_shadow_pte[i] = __pte(pte_val);
+
+ for (i = 0; i < PTRS_PER_PMD; i++)
+ kasan_early_shadow_pmd[i] = __pmd(pmd_val);
+
+ for (i = 0; i < PTRS_PER_PUD; i++)
+ kasan_early_shadow_pud[i] = __pud(pud_val);
+
+ for (i = 0; pgtable_l5_enabled() && i < PTRS_PER_P4D; i++)
+ kasan_early_shadow_p4d[i] = __p4d(p4d_val);
+
+ kasan_map_early_shadow(early_top_pgt);
+ kasan_map_early_shadow(init_top_pgt);
+}
+
+static unsigned long kasan_mem_to_shadow_align_down(unsigned long va)
+{
+ unsigned long shadow = (unsigned long)kasan_mem_to_shadow((void *)va);
+
+ return round_down(shadow, PAGE_SIZE);
+}
+
+static unsigned long kasan_mem_to_shadow_align_up(unsigned long va)
+{
+ unsigned long shadow = (unsigned long)kasan_mem_to_shadow((void *)va);
+
+ return round_up(shadow, PAGE_SIZE);
+}
+
+void __init kasan_populate_shadow_for_vaddr(void *va, size_t size, int nid)
+{
+ unsigned long shadow_start, shadow_end;
+
+ shadow_start = kasan_mem_to_shadow_align_down((unsigned long)va);
+ shadow_end = kasan_mem_to_shadow_align_up((unsigned long)va + size);
+ kasan_populate_shadow(shadow_start, shadow_end, nid);
+}
+
+void __init kasan_init(void)
+{
+ unsigned long shadow_cea_begin, shadow_cea_per_cpu_begin, shadow_cea_end;
+ int i;
+
+ memcpy(early_top_pgt, init_top_pgt, sizeof(early_top_pgt));
+
+ /*
+ * We use the same shadow offset for 4- and 5-level paging to
+ * facilitate boot-time switching between paging modes.
+ * As result in 5-level paging mode KASAN_SHADOW_START and
+ * KASAN_SHADOW_END are not aligned to PGD boundary.
+ *
+ * KASAN_SHADOW_START doesn't share PGD with anything else.
+ * We claim whole PGD entry to make things easier.
+ *
+ * KASAN_SHADOW_END lands in the last PGD entry and it collides with
+ * bunch of things like kernel code, modules, EFI mapping, etc.
+ * We need to take extra steps to not overwrite them.
+ */
+ if (pgtable_l5_enabled()) {
+ void *ptr;
+
+ ptr = (void *)pgd_page_vaddr(*pgd_offset_k(KASAN_SHADOW_END));
+ memcpy(tmp_p4d_table, (void *)ptr, sizeof(tmp_p4d_table));
+ set_pgd(&early_top_pgt[pgd_index(KASAN_SHADOW_END)],
+ __pgd(__pa(tmp_p4d_table) | _KERNPG_TABLE));
+ }
+
+ load_cr3(early_top_pgt);
+ __flush_tlb_all();
+
+ clear_pgds(KASAN_SHADOW_START & PGDIR_MASK, KASAN_SHADOW_END);
+
+ kasan_populate_early_shadow((void *)(KASAN_SHADOW_START & PGDIR_MASK),
+ kasan_mem_to_shadow((void *)PAGE_OFFSET));
+
+ for (i = 0; i < E820_MAX_ENTRIES; i++) {
+ if (pfn_mapped[i].end == 0)
+ break;
+
+ map_range(&pfn_mapped[i]);
+ }
+
+ shadow_cea_begin = kasan_mem_to_shadow_align_down(CPU_ENTRY_AREA_BASE);
+ shadow_cea_per_cpu_begin = kasan_mem_to_shadow_align_up(CPU_ENTRY_AREA_PER_CPU);
+ shadow_cea_end = kasan_mem_to_shadow_align_up(CPU_ENTRY_AREA_BASE +
+ CPU_ENTRY_AREA_MAP_SIZE);
+
+ kasan_populate_early_shadow(
+ kasan_mem_to_shadow((void *)PAGE_OFFSET + MAXMEM),
+ kasan_mem_to_shadow((void *)VMALLOC_START));
+
+ /*
+ * If we're in full vmalloc mode, don't back vmalloc space with early
+ * shadow pages. Instead, prepopulate pgds/p4ds so they are synced to
+ * the global table and we can populate the lower levels on demand.
+ */
+ if (IS_ENABLED(CONFIG_KASAN_VMALLOC))
+ kasan_shallow_populate_pgds(
+ kasan_mem_to_shadow((void *)VMALLOC_START),
+ kasan_mem_to_shadow((void *)VMALLOC_END));
+ else
+ kasan_populate_early_shadow(
+ kasan_mem_to_shadow((void *)VMALLOC_START),
+ kasan_mem_to_shadow((void *)VMALLOC_END));
+
+ kasan_populate_early_shadow(
+ kasan_mem_to_shadow((void *)VMALLOC_END + 1),
+ (void *)shadow_cea_begin);
+
+ /*
+ * Populate the shadow for the shared portion of the CPU entry area.
+ * Shadows for the per-CPU areas are mapped on-demand, as each CPU's
+ * area is randomly placed somewhere in the 512GiB range and mapping
+ * the entire 512GiB range is prohibitively expensive.
+ */
+ kasan_populate_shadow(shadow_cea_begin,
+ shadow_cea_per_cpu_begin, 0);
+
+ kasan_populate_early_shadow((void *)shadow_cea_end,
+ kasan_mem_to_shadow((void *)__START_KERNEL_map));
+
+ kasan_populate_shadow((unsigned long)kasan_mem_to_shadow(_stext),
+ (unsigned long)kasan_mem_to_shadow(_end),
+ early_pfn_to_nid(__pa(_stext)));
+
+ kasan_populate_early_shadow(kasan_mem_to_shadow((void *)MODULES_END),
+ (void *)KASAN_SHADOW_END);
+
+ load_cr3(init_top_pgt);
+ __flush_tlb_all();
+
+ /*
+ * kasan_early_shadow_page has been used as early shadow memory, thus
+ * it may contain some garbage. Now we can clear and write protect it,
+ * since after the TLB flush no one should write to it.
+ */
+ memset(kasan_early_shadow_page, 0, PAGE_SIZE);
+ for (i = 0; i < PTRS_PER_PTE; i++) {
+ pte_t pte;
+ pgprot_t prot;
+
+ prot = __pgprot(__PAGE_KERNEL_RO | _PAGE_ENC);
+ pgprot_val(prot) &= __default_kernel_pte_mask;
+
+ pte = __pte(__pa(kasan_early_shadow_page) | pgprot_val(prot));
+ set_pte(&kasan_early_shadow_pte[i], pte);
+ }
+ /* Flush TLBs again to be sure that write protection applied. */
+ __flush_tlb_all();
+
+ init_task.kasan_depth = 0;
+ pr_info("KernelAddressSanitizer initialized\n");
+}
diff --git a/arch/x86/mm/kaslr.c b/arch/x86/mm/kaslr.c
new file mode 100644
index 0000000000..37db264866
--- /dev/null
+++ b/arch/x86/mm/kaslr.c
@@ -0,0 +1,181 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * This file implements KASLR memory randomization for x86_64. It randomizes
+ * the virtual address space of kernel memory regions (physical memory
+ * mapping, vmalloc & vmemmap) for x86_64. This security feature mitigates
+ * exploits relying on predictable kernel addresses.
+ *
+ * Entropy is generated using the KASLR early boot functions now shared in
+ * the lib directory (originally written by Kees Cook). Randomization is
+ * done on PGD & P4D/PUD page table levels to increase possible addresses.
+ * The physical memory mapping code was adapted to support P4D/PUD level
+ * virtual addresses. This implementation on the best configuration provides
+ * 30,000 possible virtual addresses in average for each memory region.
+ * An additional low memory page is used to ensure each CPU can start with
+ * a PGD aligned virtual address (for realmode).
+ *
+ * The order of each memory region is not changed. The feature looks at
+ * the available space for the regions based on different configuration
+ * options and randomizes the base and space between each. The size of the
+ * physical memory mapping is the available physical memory.
+ */
+
+#include <linux/kernel.h>
+#include <linux/init.h>
+#include <linux/random.h>
+#include <linux/memblock.h>
+#include <linux/pgtable.h>
+
+#include <asm/setup.h>
+#include <asm/kaslr.h>
+
+#include "mm_internal.h"
+
+#define TB_SHIFT 40
+
+/*
+ * The end address could depend on more configuration options to make the
+ * highest amount of space for randomization available, but that's too hard
+ * to keep straight and caused issues already.
+ */
+static const unsigned long vaddr_end = CPU_ENTRY_AREA_BASE;
+
+/*
+ * Memory regions randomized by KASLR (except modules that use a separate logic
+ * earlier during boot). The list is ordered based on virtual addresses. This
+ * order is kept after randomization.
+ */
+static __initdata struct kaslr_memory_region {
+ unsigned long *base;
+ unsigned long size_tb;
+} kaslr_regions[] = {
+ { &page_offset_base, 0 },
+ { &vmalloc_base, 0 },
+ { &vmemmap_base, 0 },
+};
+
+/* Get size in bytes used by the memory region */
+static inline unsigned long get_padding(struct kaslr_memory_region *region)
+{
+ return (region->size_tb << TB_SHIFT);
+}
+
+/* Initialize base and padding for each memory region randomized with KASLR */
+void __init kernel_randomize_memory(void)
+{
+ size_t i;
+ unsigned long vaddr_start, vaddr;
+ unsigned long rand, memory_tb;
+ struct rnd_state rand_state;
+ unsigned long remain_entropy;
+ unsigned long vmemmap_size;
+
+ vaddr_start = pgtable_l5_enabled() ? __PAGE_OFFSET_BASE_L5 : __PAGE_OFFSET_BASE_L4;
+ vaddr = vaddr_start;
+
+ /*
+ * These BUILD_BUG_ON checks ensure the memory layout is consistent
+ * with the vaddr_start/vaddr_end variables. These checks are very
+ * limited....
+ */
+ BUILD_BUG_ON(vaddr_start >= vaddr_end);
+ BUILD_BUG_ON(vaddr_end != CPU_ENTRY_AREA_BASE);
+ BUILD_BUG_ON(vaddr_end > __START_KERNEL_map);
+
+ if (!kaslr_memory_enabled())
+ return;
+
+ kaslr_regions[0].size_tb = 1 << (MAX_PHYSMEM_BITS - TB_SHIFT);
+ kaslr_regions[1].size_tb = VMALLOC_SIZE_TB;
+
+ /*
+ * Update Physical memory mapping to available and
+ * add padding if needed (especially for memory hotplug support).
+ */
+ BUG_ON(kaslr_regions[0].base != &page_offset_base);
+ memory_tb = DIV_ROUND_UP(max_pfn << PAGE_SHIFT, 1UL << TB_SHIFT) +
+ CONFIG_RANDOMIZE_MEMORY_PHYSICAL_PADDING;
+
+ /* Adapt physical memory region size based on available memory */
+ if (memory_tb < kaslr_regions[0].size_tb)
+ kaslr_regions[0].size_tb = memory_tb;
+
+ /*
+ * Calculate the vmemmap region size in TBs, aligned to a TB
+ * boundary.
+ */
+ vmemmap_size = (kaslr_regions[0].size_tb << (TB_SHIFT - PAGE_SHIFT)) *
+ sizeof(struct page);
+ kaslr_regions[2].size_tb = DIV_ROUND_UP(vmemmap_size, 1UL << TB_SHIFT);
+
+ /* Calculate entropy available between regions */
+ remain_entropy = vaddr_end - vaddr_start;
+ for (i = 0; i < ARRAY_SIZE(kaslr_regions); i++)
+ remain_entropy -= get_padding(&kaslr_regions[i]);
+
+ prandom_seed_state(&rand_state, kaslr_get_random_long("Memory"));
+
+ for (i = 0; i < ARRAY_SIZE(kaslr_regions); i++) {
+ unsigned long entropy;
+
+ /*
+ * Select a random virtual address using the extra entropy
+ * available.
+ */
+ entropy = remain_entropy / (ARRAY_SIZE(kaslr_regions) - i);
+ prandom_bytes_state(&rand_state, &rand, sizeof(rand));
+ entropy = (rand % (entropy + 1)) & PUD_MASK;
+ vaddr += entropy;
+ *kaslr_regions[i].base = vaddr;
+
+ /*
+ * Jump the region and add a minimum padding based on
+ * randomization alignment.
+ */
+ vaddr += get_padding(&kaslr_regions[i]);
+ vaddr = round_up(vaddr + 1, PUD_SIZE);
+ remain_entropy -= entropy;
+ }
+}
+
+void __meminit init_trampoline_kaslr(void)
+{
+ pud_t *pud_page_tramp, *pud, *pud_tramp;
+ p4d_t *p4d_page_tramp, *p4d, *p4d_tramp;
+ unsigned long paddr, vaddr;
+ pgd_t *pgd;
+
+ pud_page_tramp = alloc_low_page();
+
+ /*
+ * There are two mappings for the low 1MB area, the direct mapping
+ * and the 1:1 mapping for the real mode trampoline:
+ *
+ * Direct mapping: virt_addr = phys_addr + PAGE_OFFSET
+ * 1:1 mapping: virt_addr = phys_addr
+ */
+ paddr = 0;
+ vaddr = (unsigned long)__va(paddr);
+ pgd = pgd_offset_k(vaddr);
+
+ p4d = p4d_offset(pgd, vaddr);
+ pud = pud_offset(p4d, vaddr);
+
+ pud_tramp = pud_page_tramp + pud_index(paddr);
+ *pud_tramp = *pud;
+
+ if (pgtable_l5_enabled()) {
+ p4d_page_tramp = alloc_low_page();
+
+ p4d_tramp = p4d_page_tramp + p4d_index(paddr);
+
+ set_p4d(p4d_tramp,
+ __p4d(_KERNPG_TABLE | __pa(pud_page_tramp)));
+
+ trampoline_pgd_entry =
+ __pgd(_KERNPG_TABLE | __pa(p4d_page_tramp));
+ } else {
+ trampoline_pgd_entry =
+ __pgd(_KERNPG_TABLE | __pa(pud_page_tramp));
+ }
+}
diff --git a/arch/x86/mm/kmmio.c b/arch/x86/mm/kmmio.c
new file mode 100644
index 0000000000..9f82019179
--- /dev/null
+++ b/arch/x86/mm/kmmio.c
@@ -0,0 +1,632 @@
+// SPDX-License-Identifier: GPL-2.0
+/* Support for MMIO probes.
+ * Benefit many code from kprobes
+ * (C) 2002 Louis Zhuang <louis.zhuang@intel.com>.
+ * 2007 Alexander Eichner
+ * 2008 Pekka Paalanen <pq@iki.fi>
+ */
+
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
+#include <linux/list.h>
+#include <linux/rculist.h>
+#include <linux/spinlock.h>
+#include <linux/hash.h>
+#include <linux/export.h>
+#include <linux/kernel.h>
+#include <linux/uaccess.h>
+#include <linux/ptrace.h>
+#include <linux/preempt.h>
+#include <linux/percpu.h>
+#include <linux/kdebug.h>
+#include <linux/mutex.h>
+#include <linux/io.h>
+#include <linux/slab.h>
+#include <asm/cacheflush.h>
+#include <asm/tlbflush.h>
+#include <linux/errno.h>
+#include <asm/debugreg.h>
+#include <linux/mmiotrace.h>
+
+#define KMMIO_PAGE_HASH_BITS 4
+#define KMMIO_PAGE_TABLE_SIZE (1 << KMMIO_PAGE_HASH_BITS)
+
+struct kmmio_fault_page {
+ struct list_head list;
+ struct kmmio_fault_page *release_next;
+ unsigned long addr; /* the requested address */
+ pteval_t old_presence; /* page presence prior to arming */
+ bool armed;
+
+ /*
+ * Number of times this page has been registered as a part
+ * of a probe. If zero, page is disarmed and this may be freed.
+ * Used only by writers (RCU) and post_kmmio_handler().
+ * Protected by kmmio_lock, when linked into kmmio_page_table.
+ */
+ int count;
+
+ bool scheduled_for_release;
+};
+
+struct kmmio_delayed_release {
+ struct rcu_head rcu;
+ struct kmmio_fault_page *release_list;
+};
+
+struct kmmio_context {
+ struct kmmio_fault_page *fpage;
+ struct kmmio_probe *probe;
+ unsigned long saved_flags;
+ unsigned long addr;
+ int active;
+};
+
+/*
+ * The kmmio_lock is taken in int3 context, which is treated as NMI context.
+ * This causes lockdep to complain about it bein in both NMI and normal
+ * context. Hide it from lockdep, as it should not have any other locks
+ * taken under it, and this is only enabled for debugging mmio anyway.
+ */
+static arch_spinlock_t kmmio_lock = __ARCH_SPIN_LOCK_UNLOCKED;
+
+/* Protected by kmmio_lock */
+unsigned int kmmio_count;
+
+/* Read-protected by RCU, write-protected by kmmio_lock. */
+static struct list_head kmmio_page_table[KMMIO_PAGE_TABLE_SIZE];
+static LIST_HEAD(kmmio_probes);
+
+static struct list_head *kmmio_page_list(unsigned long addr)
+{
+ unsigned int l;
+ pte_t *pte = lookup_address(addr, &l);
+
+ if (!pte)
+ return NULL;
+ addr &= page_level_mask(l);
+
+ return &kmmio_page_table[hash_long(addr, KMMIO_PAGE_HASH_BITS)];
+}
+
+/* Accessed per-cpu */
+static DEFINE_PER_CPU(struct kmmio_context, kmmio_ctx);
+
+/*
+ * this is basically a dynamic stabbing problem:
+ * Could use the existing prio tree code or
+ * Possible better implementations:
+ * The Interval Skip List: A Data Structure for Finding All Intervals That
+ * Overlap a Point (might be simple)
+ * Space Efficient Dynamic Stabbing with Fast Queries - Mikkel Thorup
+ */
+/* Get the kmmio at this addr (if any). You must be holding RCU read lock. */
+static struct kmmio_probe *get_kmmio_probe(unsigned long addr)
+{
+ struct kmmio_probe *p;
+ list_for_each_entry_rcu(p, &kmmio_probes, list) {
+ if (addr >= p->addr && addr < (p->addr + p->len))
+ return p;
+ }
+ return NULL;
+}
+
+/* You must be holding RCU read lock. */
+static struct kmmio_fault_page *get_kmmio_fault_page(unsigned long addr)
+{
+ struct list_head *head;
+ struct kmmio_fault_page *f;
+ unsigned int l;
+ pte_t *pte = lookup_address(addr, &l);
+
+ if (!pte)
+ return NULL;
+ addr &= page_level_mask(l);
+ head = kmmio_page_list(addr);
+ list_for_each_entry_rcu(f, head, list) {
+ if (f->addr == addr)
+ return f;
+ }
+ return NULL;
+}
+
+static void clear_pmd_presence(pmd_t *pmd, bool clear, pmdval_t *old)
+{
+ pmd_t new_pmd;
+ pmdval_t v = pmd_val(*pmd);
+ if (clear) {
+ *old = v;
+ new_pmd = pmd_mkinvalid(*pmd);
+ } else {
+ /* Presume this has been called with clear==true previously */
+ new_pmd = __pmd(*old);
+ }
+ set_pmd(pmd, new_pmd);
+}
+
+static void clear_pte_presence(pte_t *pte, bool clear, pteval_t *old)
+{
+ pteval_t v = pte_val(*pte);
+ if (clear) {
+ *old = v;
+ /* Nothing should care about address */
+ pte_clear(&init_mm, 0, pte);
+ } else {
+ /* Presume this has been called with clear==true previously */
+ set_pte_atomic(pte, __pte(*old));
+ }
+}
+
+static int clear_page_presence(struct kmmio_fault_page *f, bool clear)
+{
+ unsigned int level;
+ pte_t *pte = lookup_address(f->addr, &level);
+
+ if (!pte) {
+ pr_err("no pte for addr 0x%08lx\n", f->addr);
+ return -1;
+ }
+
+ switch (level) {
+ case PG_LEVEL_2M:
+ clear_pmd_presence((pmd_t *)pte, clear, &f->old_presence);
+ break;
+ case PG_LEVEL_4K:
+ clear_pte_presence(pte, clear, &f->old_presence);
+ break;
+ default:
+ pr_err("unexpected page level 0x%x.\n", level);
+ return -1;
+ }
+
+ flush_tlb_one_kernel(f->addr);
+ return 0;
+}
+
+/*
+ * Mark the given page as not present. Access to it will trigger a fault.
+ *
+ * Struct kmmio_fault_page is protected by RCU and kmmio_lock, but the
+ * protection is ignored here. RCU read lock is assumed held, so the struct
+ * will not disappear unexpectedly. Furthermore, the caller must guarantee,
+ * that double arming the same virtual address (page) cannot occur.
+ *
+ * Double disarming on the other hand is allowed, and may occur when a fault
+ * and mmiotrace shutdown happen simultaneously.
+ */
+static int arm_kmmio_fault_page(struct kmmio_fault_page *f)
+{
+ int ret;
+ WARN_ONCE(f->armed, KERN_ERR pr_fmt("kmmio page already armed.\n"));
+ if (f->armed) {
+ pr_warn("double-arm: addr 0x%08lx, ref %d, old %d\n",
+ f->addr, f->count, !!f->old_presence);
+ }
+ ret = clear_page_presence(f, true);
+ WARN_ONCE(ret < 0, KERN_ERR pr_fmt("arming at 0x%08lx failed.\n"),
+ f->addr);
+ f->armed = true;
+ return ret;
+}
+
+/** Restore the given page to saved presence state. */
+static void disarm_kmmio_fault_page(struct kmmio_fault_page *f)
+{
+ int ret = clear_page_presence(f, false);
+ WARN_ONCE(ret < 0,
+ KERN_ERR "kmmio disarming at 0x%08lx failed.\n", f->addr);
+ f->armed = false;
+}
+
+/*
+ * This is being called from do_page_fault().
+ *
+ * We may be in an interrupt or a critical section. Also prefecthing may
+ * trigger a page fault. We may be in the middle of process switch.
+ * We cannot take any locks, because we could be executing especially
+ * within a kmmio critical section.
+ *
+ * Local interrupts are disabled, so preemption cannot happen.
+ * Do not enable interrupts, do not sleep, and watch out for other CPUs.
+ */
+/*
+ * Interrupts are disabled on entry as trap3 is an interrupt gate
+ * and they remain disabled throughout this function.
+ */
+int kmmio_handler(struct pt_regs *regs, unsigned long addr)
+{
+ struct kmmio_context *ctx;
+ struct kmmio_fault_page *faultpage;
+ int ret = 0; /* default to fault not handled */
+ unsigned long page_base = addr;
+ unsigned int l;
+ pte_t *pte = lookup_address(addr, &l);
+ if (!pte)
+ return -EINVAL;
+ page_base &= page_level_mask(l);
+
+ /*
+ * Hold the RCU read lock over single stepping to avoid looking
+ * up the probe and kmmio_fault_page again. The rcu_read_lock_sched()
+ * also disables preemption and prevents process switch during
+ * the single stepping. We can only handle one active kmmio trace
+ * per cpu, so ensure that we finish it before something else
+ * gets to run.
+ */
+ rcu_read_lock_sched_notrace();
+
+ faultpage = get_kmmio_fault_page(page_base);
+ if (!faultpage) {
+ /*
+ * Either this page fault is not caused by kmmio, or
+ * another CPU just pulled the kmmio probe from under
+ * our feet. The latter case should not be possible.
+ */
+ goto no_kmmio;
+ }
+
+ ctx = this_cpu_ptr(&kmmio_ctx);
+ if (ctx->active) {
+ if (page_base == ctx->addr) {
+ /*
+ * A second fault on the same page means some other
+ * condition needs handling by do_page_fault(), the
+ * page really not being present is the most common.
+ */
+ pr_debug("secondary hit for 0x%08lx CPU %d.\n",
+ addr, smp_processor_id());
+
+ if (!faultpage->old_presence)
+ pr_info("unexpected secondary hit for address 0x%08lx on CPU %d.\n",
+ addr, smp_processor_id());
+ } else {
+ /*
+ * Prevent overwriting already in-flight context.
+ * This should not happen, let's hope disarming at
+ * least prevents a panic.
+ */
+ pr_emerg("recursive probe hit on CPU %d, for address 0x%08lx. Ignoring.\n",
+ smp_processor_id(), addr);
+ pr_emerg("previous hit was at 0x%08lx.\n", ctx->addr);
+ disarm_kmmio_fault_page(faultpage);
+ }
+ goto no_kmmio;
+ }
+ ctx->active++;
+
+ ctx->fpage = faultpage;
+ ctx->probe = get_kmmio_probe(page_base);
+ ctx->saved_flags = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
+ ctx->addr = page_base;
+
+ if (ctx->probe && ctx->probe->pre_handler)
+ ctx->probe->pre_handler(ctx->probe, regs, addr);
+
+ /*
+ * Enable single-stepping and disable interrupts for the faulting
+ * context. Local interrupts must not get enabled during stepping.
+ */
+ regs->flags |= X86_EFLAGS_TF;
+ regs->flags &= ~X86_EFLAGS_IF;
+
+ /* Now we set present bit in PTE and single step. */
+ disarm_kmmio_fault_page(ctx->fpage);
+
+ /*
+ * If another cpu accesses the same page while we are stepping,
+ * the access will not be caught. It will simply succeed and the
+ * only downside is we lose the event. If this becomes a problem,
+ * the user should drop to single cpu before tracing.
+ */
+
+ return 1; /* fault handled */
+
+no_kmmio:
+ rcu_read_unlock_sched_notrace();
+ return ret;
+}
+
+/*
+ * Interrupts are disabled on entry as trap1 is an interrupt gate
+ * and they remain disabled throughout this function.
+ * This must always get called as the pair to kmmio_handler().
+ */
+static int post_kmmio_handler(unsigned long condition, struct pt_regs *regs)
+{
+ int ret = 0;
+ struct kmmio_context *ctx = this_cpu_ptr(&kmmio_ctx);
+
+ if (!ctx->active) {
+ /*
+ * debug traps without an active context are due to either
+ * something external causing them (f.e. using a debugger while
+ * mmio tracing enabled), or erroneous behaviour
+ */
+ pr_warn("unexpected debug trap on CPU %d.\n", smp_processor_id());
+ goto out;
+ }
+
+ if (ctx->probe && ctx->probe->post_handler)
+ ctx->probe->post_handler(ctx->probe, condition, regs);
+
+ /* Prevent racing against release_kmmio_fault_page(). */
+ arch_spin_lock(&kmmio_lock);
+ if (ctx->fpage->count)
+ arm_kmmio_fault_page(ctx->fpage);
+ arch_spin_unlock(&kmmio_lock);
+
+ regs->flags &= ~X86_EFLAGS_TF;
+ regs->flags |= ctx->saved_flags;
+
+ /* These were acquired in kmmio_handler(). */
+ ctx->active--;
+ BUG_ON(ctx->active);
+ rcu_read_unlock_sched_notrace();
+
+ /*
+ * if somebody else is singlestepping across a probe point, flags
+ * will have TF set, in which case, continue the remaining processing
+ * of do_debug, as if this is not a probe hit.
+ */
+ if (!(regs->flags & X86_EFLAGS_TF))
+ ret = 1;
+out:
+ return ret;
+}
+
+/* You must be holding kmmio_lock. */
+static int add_kmmio_fault_page(unsigned long addr)
+{
+ struct kmmio_fault_page *f;
+
+ f = get_kmmio_fault_page(addr);
+ if (f) {
+ if (!f->count)
+ arm_kmmio_fault_page(f);
+ f->count++;
+ return 0;
+ }
+
+ f = kzalloc(sizeof(*f), GFP_ATOMIC);
+ if (!f)
+ return -1;
+
+ f->count = 1;
+ f->addr = addr;
+
+ if (arm_kmmio_fault_page(f)) {
+ kfree(f);
+ return -1;
+ }
+
+ list_add_rcu(&f->list, kmmio_page_list(f->addr));
+
+ return 0;
+}
+
+/* You must be holding kmmio_lock. */
+static void release_kmmio_fault_page(unsigned long addr,
+ struct kmmio_fault_page **release_list)
+{
+ struct kmmio_fault_page *f;
+
+ f = get_kmmio_fault_page(addr);
+ if (!f)
+ return;
+
+ f->count--;
+ BUG_ON(f->count < 0);
+ if (!f->count) {
+ disarm_kmmio_fault_page(f);
+ if (!f->scheduled_for_release) {
+ f->release_next = *release_list;
+ *release_list = f;
+ f->scheduled_for_release = true;
+ }
+ }
+}
+
+/*
+ * With page-unaligned ioremaps, one or two armed pages may contain
+ * addresses from outside the intended mapping. Events for these addresses
+ * are currently silently dropped. The events may result only from programming
+ * mistakes by accessing addresses before the beginning or past the end of a
+ * mapping.
+ */
+int register_kmmio_probe(struct kmmio_probe *p)
+{
+ unsigned long flags;
+ int ret = 0;
+ unsigned long size = 0;
+ unsigned long addr = p->addr & PAGE_MASK;
+ const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK);
+ unsigned int l;
+ pte_t *pte;
+
+ local_irq_save(flags);
+ arch_spin_lock(&kmmio_lock);
+ if (get_kmmio_probe(addr)) {
+ ret = -EEXIST;
+ goto out;
+ }
+
+ pte = lookup_address(addr, &l);
+ if (!pte) {
+ ret = -EINVAL;
+ goto out;
+ }
+
+ kmmio_count++;
+ list_add_rcu(&p->list, &kmmio_probes);
+ while (size < size_lim) {
+ if (add_kmmio_fault_page(addr + size))
+ pr_err("Unable to set page fault.\n");
+ size += page_level_size(l);
+ }
+out:
+ arch_spin_unlock(&kmmio_lock);
+ local_irq_restore(flags);
+
+ /*
+ * XXX: What should I do here?
+ * Here was a call to global_flush_tlb(), but it does not exist
+ * anymore. It seems it's not needed after all.
+ */
+ return ret;
+}
+EXPORT_SYMBOL(register_kmmio_probe);
+
+static void rcu_free_kmmio_fault_pages(struct rcu_head *head)
+{
+ struct kmmio_delayed_release *dr = container_of(
+ head,
+ struct kmmio_delayed_release,
+ rcu);
+ struct kmmio_fault_page *f = dr->release_list;
+ while (f) {
+ struct kmmio_fault_page *next = f->release_next;
+ BUG_ON(f->count);
+ kfree(f);
+ f = next;
+ }
+ kfree(dr);
+}
+
+static void remove_kmmio_fault_pages(struct rcu_head *head)
+{
+ struct kmmio_delayed_release *dr =
+ container_of(head, struct kmmio_delayed_release, rcu);
+ struct kmmio_fault_page *f = dr->release_list;
+ struct kmmio_fault_page **prevp = &dr->release_list;
+ unsigned long flags;
+
+ local_irq_save(flags);
+ arch_spin_lock(&kmmio_lock);
+ while (f) {
+ if (!f->count) {
+ list_del_rcu(&f->list);
+ prevp = &f->release_next;
+ } else {
+ *prevp = f->release_next;
+ f->release_next = NULL;
+ f->scheduled_for_release = false;
+ }
+ f = *prevp;
+ }
+ arch_spin_unlock(&kmmio_lock);
+ local_irq_restore(flags);
+
+ /* This is the real RCU destroy call. */
+ call_rcu(&dr->rcu, rcu_free_kmmio_fault_pages);
+}
+
+/*
+ * Remove a kmmio probe. You have to synchronize_rcu() before you can be
+ * sure that the callbacks will not be called anymore. Only after that
+ * you may actually release your struct kmmio_probe.
+ *
+ * Unregistering a kmmio fault page has three steps:
+ * 1. release_kmmio_fault_page()
+ * Disarm the page, wait a grace period to let all faults finish.
+ * 2. remove_kmmio_fault_pages()
+ * Remove the pages from kmmio_page_table.
+ * 3. rcu_free_kmmio_fault_pages()
+ * Actually free the kmmio_fault_page structs as with RCU.
+ */
+void unregister_kmmio_probe(struct kmmio_probe *p)
+{
+ unsigned long flags;
+ unsigned long size = 0;
+ unsigned long addr = p->addr & PAGE_MASK;
+ const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK);
+ struct kmmio_fault_page *release_list = NULL;
+ struct kmmio_delayed_release *drelease;
+ unsigned int l;
+ pte_t *pte;
+
+ pte = lookup_address(addr, &l);
+ if (!pte)
+ return;
+
+ local_irq_save(flags);
+ arch_spin_lock(&kmmio_lock);
+ while (size < size_lim) {
+ release_kmmio_fault_page(addr + size, &release_list);
+ size += page_level_size(l);
+ }
+ list_del_rcu(&p->list);
+ kmmio_count--;
+ arch_spin_unlock(&kmmio_lock);
+ local_irq_restore(flags);
+
+ if (!release_list)
+ return;
+
+ drelease = kmalloc(sizeof(*drelease), GFP_ATOMIC);
+ if (!drelease) {
+ pr_crit("leaking kmmio_fault_page objects.\n");
+ return;
+ }
+ drelease->release_list = release_list;
+
+ /*
+ * This is not really RCU here. We have just disarmed a set of
+ * pages so that they cannot trigger page faults anymore. However,
+ * we cannot remove the pages from kmmio_page_table,
+ * because a probe hit might be in flight on another CPU. The
+ * pages are collected into a list, and they will be removed from
+ * kmmio_page_table when it is certain that no probe hit related to
+ * these pages can be in flight. RCU grace period sounds like a
+ * good choice.
+ *
+ * If we removed the pages too early, kmmio page fault handler might
+ * not find the respective kmmio_fault_page and determine it's not
+ * a kmmio fault, when it actually is. This would lead to madness.
+ */
+ call_rcu(&drelease->rcu, remove_kmmio_fault_pages);
+}
+EXPORT_SYMBOL(unregister_kmmio_probe);
+
+static int
+kmmio_die_notifier(struct notifier_block *nb, unsigned long val, void *args)
+{
+ struct die_args *arg = args;
+ unsigned long* dr6_p = (unsigned long *)ERR_PTR(arg->err);
+
+ if (val == DIE_DEBUG && (*dr6_p & DR_STEP))
+ if (post_kmmio_handler(*dr6_p, arg->regs) == 1) {
+ /*
+ * Reset the BS bit in dr6 (pointed by args->err) to
+ * denote completion of processing
+ */
+ *dr6_p &= ~DR_STEP;
+ return NOTIFY_STOP;
+ }
+
+ return NOTIFY_DONE;
+}
+
+static struct notifier_block nb_die = {
+ .notifier_call = kmmio_die_notifier
+};
+
+int kmmio_init(void)
+{
+ int i;
+
+ for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++)
+ INIT_LIST_HEAD(&kmmio_page_table[i]);
+
+ return register_die_notifier(&nb_die);
+}
+
+void kmmio_cleanup(void)
+{
+ int i;
+
+ unregister_die_notifier(&nb_die);
+ for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++) {
+ WARN_ONCE(!list_empty(&kmmio_page_table[i]),
+ KERN_ERR "kmmio_page_table not empty at cleanup, any further tracing will leak memory.\n");
+ }
+}
diff --git a/arch/x86/mm/kmsan_shadow.c b/arch/x86/mm/kmsan_shadow.c
new file mode 100644
index 0000000000..bee2ec4a3b
--- /dev/null
+++ b/arch/x86/mm/kmsan_shadow.c
@@ -0,0 +1,20 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * x86-specific bits of KMSAN shadow implementation.
+ *
+ * Copyright (C) 2022 Google LLC
+ * Author: Alexander Potapenko <glider@google.com>
+ */
+
+#include <asm/cpu_entry_area.h>
+#include <linux/percpu-defs.h>
+
+/*
+ * Addresses within the CPU entry area (including e.g. exception stacks) do not
+ * have struct page entries corresponding to them, so they need separate
+ * handling.
+ * arch_kmsan_get_meta_or_null() (declared in the header) maps the addresses in
+ * CPU entry area to addresses in cpu_entry_area_shadow/cpu_entry_area_origin.
+ */
+DEFINE_PER_CPU(char[CPU_ENTRY_AREA_SIZE], cpu_entry_area_shadow);
+DEFINE_PER_CPU(char[CPU_ENTRY_AREA_SIZE], cpu_entry_area_origin);
diff --git a/arch/x86/mm/maccess.c b/arch/x86/mm/maccess.c
new file mode 100644
index 0000000000..6993f026ad
--- /dev/null
+++ b/arch/x86/mm/maccess.c
@@ -0,0 +1,33 @@
+// SPDX-License-Identifier: GPL-2.0-only
+
+#include <linux/uaccess.h>
+#include <linux/kernel.h>
+
+#ifdef CONFIG_X86_64
+bool copy_from_kernel_nofault_allowed(const void *unsafe_src, size_t size)
+{
+ unsigned long vaddr = (unsigned long)unsafe_src;
+
+ /*
+ * Do not allow userspace addresses. This disallows
+ * normal userspace and the userspace guard page:
+ */
+ if (vaddr < TASK_SIZE_MAX + PAGE_SIZE)
+ return false;
+
+ /*
+ * Allow everything during early boot before 'x86_virt_bits'
+ * is initialized. Needed for instruction decoding in early
+ * exception handlers.
+ */
+ if (!boot_cpu_data.x86_virt_bits)
+ return true;
+
+ return __is_canonical_address(vaddr, boot_cpu_data.x86_virt_bits);
+}
+#else
+bool copy_from_kernel_nofault_allowed(const void *unsafe_src, size_t size)
+{
+ return (unsigned long)unsafe_src >= TASK_SIZE_MAX;
+}
+#endif
diff --git a/arch/x86/mm/mem_encrypt.c b/arch/x86/mm/mem_encrypt.c
new file mode 100644
index 0000000000..9f27e14e18
--- /dev/null
+++ b/arch/x86/mm/mem_encrypt.c
@@ -0,0 +1,88 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Memory Encryption Support Common Code
+ *
+ * Copyright (C) 2016 Advanced Micro Devices, Inc.
+ *
+ * Author: Tom Lendacky <thomas.lendacky@amd.com>
+ */
+
+#include <linux/dma-direct.h>
+#include <linux/dma-mapping.h>
+#include <linux/swiotlb.h>
+#include <linux/cc_platform.h>
+#include <linux/mem_encrypt.h>
+
+/* Override for DMA direct allocation check - ARCH_HAS_FORCE_DMA_UNENCRYPTED */
+bool force_dma_unencrypted(struct device *dev)
+{
+ /*
+ * For SEV, all DMA must be to unencrypted addresses.
+ */
+ if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
+ return true;
+
+ /*
+ * For SME, all DMA must be to unencrypted addresses if the
+ * device does not support DMA to addresses that include the
+ * encryption mask.
+ */
+ if (cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) {
+ u64 dma_enc_mask = DMA_BIT_MASK(__ffs64(sme_me_mask));
+ u64 dma_dev_mask = min_not_zero(dev->coherent_dma_mask,
+ dev->bus_dma_limit);
+
+ if (dma_dev_mask <= dma_enc_mask)
+ return true;
+ }
+
+ return false;
+}
+
+static void print_mem_encrypt_feature_info(void)
+{
+ pr_info("Memory Encryption Features active:");
+
+ if (cpu_feature_enabled(X86_FEATURE_TDX_GUEST)) {
+ pr_cont(" Intel TDX\n");
+ return;
+ }
+
+ pr_cont(" AMD");
+
+ /* Secure Memory Encryption */
+ if (cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) {
+ /*
+ * SME is mutually exclusive with any of the SEV
+ * features below.
+ */
+ pr_cont(" SME\n");
+ return;
+ }
+
+ /* Secure Encrypted Virtualization */
+ if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
+ pr_cont(" SEV");
+
+ /* Encrypted Register State */
+ if (cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT))
+ pr_cont(" SEV-ES");
+
+ /* Secure Nested Paging */
+ if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
+ pr_cont(" SEV-SNP");
+
+ pr_cont("\n");
+}
+
+/* Architecture __weak replacement functions */
+void __init mem_encrypt_init(void)
+{
+ if (!cc_platform_has(CC_ATTR_MEM_ENCRYPT))
+ return;
+
+ /* Call into SWIOTLB to update the SWIOTLB DMA buffers */
+ swiotlb_update_mem_attributes();
+
+ print_mem_encrypt_feature_info();
+}
diff --git a/arch/x86/mm/mem_encrypt_amd.c b/arch/x86/mm/mem_encrypt_amd.c
new file mode 100644
index 0000000000..45ff95264a
--- /dev/null
+++ b/arch/x86/mm/mem_encrypt_amd.c
@@ -0,0 +1,559 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * AMD Memory Encryption Support
+ *
+ * Copyright (C) 2016 Advanced Micro Devices, Inc.
+ *
+ * Author: Tom Lendacky <thomas.lendacky@amd.com>
+ */
+
+#define DISABLE_BRANCH_PROFILING
+
+#include <linux/linkage.h>
+#include <linux/init.h>
+#include <linux/mm.h>
+#include <linux/dma-direct.h>
+#include <linux/swiotlb.h>
+#include <linux/mem_encrypt.h>
+#include <linux/device.h>
+#include <linux/kernel.h>
+#include <linux/bitops.h>
+#include <linux/dma-mapping.h>
+#include <linux/virtio_config.h>
+#include <linux/virtio_anchor.h>
+#include <linux/cc_platform.h>
+
+#include <asm/tlbflush.h>
+#include <asm/fixmap.h>
+#include <asm/setup.h>
+#include <asm/mem_encrypt.h>
+#include <asm/bootparam.h>
+#include <asm/set_memory.h>
+#include <asm/cacheflush.h>
+#include <asm/processor-flags.h>
+#include <asm/msr.h>
+#include <asm/cmdline.h>
+#include <asm/sev.h>
+#include <asm/ia32.h>
+
+#include "mm_internal.h"
+
+/*
+ * Since SME related variables are set early in the boot process they must
+ * reside in the .data section so as not to be zeroed out when the .bss
+ * section is later cleared.
+ */
+u64 sme_me_mask __section(".data") = 0;
+u64 sev_status __section(".data") = 0;
+u64 sev_check_data __section(".data") = 0;
+EXPORT_SYMBOL(sme_me_mask);
+
+/* Buffer used for early in-place encryption by BSP, no locking needed */
+static char sme_early_buffer[PAGE_SIZE] __initdata __aligned(PAGE_SIZE);
+
+/*
+ * SNP-specific routine which needs to additionally change the page state from
+ * private to shared before copying the data from the source to destination and
+ * restore after the copy.
+ */
+static inline void __init snp_memcpy(void *dst, void *src, size_t sz,
+ unsigned long paddr, bool decrypt)
+{
+ unsigned long npages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
+
+ if (decrypt) {
+ /*
+ * @paddr needs to be accessed decrypted, mark the page shared in
+ * the RMP table before copying it.
+ */
+ early_snp_set_memory_shared((unsigned long)__va(paddr), paddr, npages);
+
+ memcpy(dst, src, sz);
+
+ /* Restore the page state after the memcpy. */
+ early_snp_set_memory_private((unsigned long)__va(paddr), paddr, npages);
+ } else {
+ /*
+ * @paddr need to be accessed encrypted, no need for the page state
+ * change.
+ */
+ memcpy(dst, src, sz);
+ }
+}
+
+/*
+ * This routine does not change the underlying encryption setting of the
+ * page(s) that map this memory. It assumes that eventually the memory is
+ * meant to be accessed as either encrypted or decrypted but the contents
+ * are currently not in the desired state.
+ *
+ * This routine follows the steps outlined in the AMD64 Architecture
+ * Programmer's Manual Volume 2, Section 7.10.8 Encrypt-in-Place.
+ */
+static void __init __sme_early_enc_dec(resource_size_t paddr,
+ unsigned long size, bool enc)
+{
+ void *src, *dst;
+ size_t len;
+
+ if (!sme_me_mask)
+ return;
+
+ wbinvd();
+
+ /*
+ * There are limited number of early mapping slots, so map (at most)
+ * one page at time.
+ */
+ while (size) {
+ len = min_t(size_t, sizeof(sme_early_buffer), size);
+
+ /*
+ * Create mappings for the current and desired format of
+ * the memory. Use a write-protected mapping for the source.
+ */
+ src = enc ? early_memremap_decrypted_wp(paddr, len) :
+ early_memremap_encrypted_wp(paddr, len);
+
+ dst = enc ? early_memremap_encrypted(paddr, len) :
+ early_memremap_decrypted(paddr, len);
+
+ /*
+ * If a mapping can't be obtained to perform the operation,
+ * then eventual access of that area in the desired mode
+ * will cause a crash.
+ */
+ BUG_ON(!src || !dst);
+
+ /*
+ * Use a temporary buffer, of cache-line multiple size, to
+ * avoid data corruption as documented in the APM.
+ */
+ if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) {
+ snp_memcpy(sme_early_buffer, src, len, paddr, enc);
+ snp_memcpy(dst, sme_early_buffer, len, paddr, !enc);
+ } else {
+ memcpy(sme_early_buffer, src, len);
+ memcpy(dst, sme_early_buffer, len);
+ }
+
+ early_memunmap(dst, len);
+ early_memunmap(src, len);
+
+ paddr += len;
+ size -= len;
+ }
+}
+
+void __init sme_early_encrypt(resource_size_t paddr, unsigned long size)
+{
+ __sme_early_enc_dec(paddr, size, true);
+}
+
+void __init sme_early_decrypt(resource_size_t paddr, unsigned long size)
+{
+ __sme_early_enc_dec(paddr, size, false);
+}
+
+static void __init __sme_early_map_unmap_mem(void *vaddr, unsigned long size,
+ bool map)
+{
+ unsigned long paddr = (unsigned long)vaddr - __PAGE_OFFSET;
+ pmdval_t pmd_flags, pmd;
+
+ /* Use early_pmd_flags but remove the encryption mask */
+ pmd_flags = __sme_clr(early_pmd_flags);
+
+ do {
+ pmd = map ? (paddr & PMD_MASK) + pmd_flags : 0;
+ __early_make_pgtable((unsigned long)vaddr, pmd);
+
+ vaddr += PMD_SIZE;
+ paddr += PMD_SIZE;
+ size = (size <= PMD_SIZE) ? 0 : size - PMD_SIZE;
+ } while (size);
+
+ flush_tlb_local();
+}
+
+void __init sme_unmap_bootdata(char *real_mode_data)
+{
+ struct boot_params *boot_data;
+ unsigned long cmdline_paddr;
+
+ if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
+ return;
+
+ /* Get the command line address before unmapping the real_mode_data */
+ boot_data = (struct boot_params *)real_mode_data;
+ cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
+
+ __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), false);
+
+ if (!cmdline_paddr)
+ return;
+
+ __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, false);
+}
+
+void __init sme_map_bootdata(char *real_mode_data)
+{
+ struct boot_params *boot_data;
+ unsigned long cmdline_paddr;
+
+ if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
+ return;
+
+ __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), true);
+
+ /* Get the command line address after mapping the real_mode_data */
+ boot_data = (struct boot_params *)real_mode_data;
+ cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
+
+ if (!cmdline_paddr)
+ return;
+
+ __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, true);
+}
+
+void __init sev_setup_arch(void)
+{
+ phys_addr_t total_mem = memblock_phys_mem_size();
+ unsigned long size;
+
+ if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
+ return;
+
+ /*
+ * For SEV, all DMA has to occur via shared/unencrypted pages.
+ * SEV uses SWIOTLB to make this happen without changing device
+ * drivers. However, depending on the workload being run, the
+ * default 64MB of SWIOTLB may not be enough and SWIOTLB may
+ * run out of buffers for DMA, resulting in I/O errors and/or
+ * performance degradation especially with high I/O workloads.
+ *
+ * Adjust the default size of SWIOTLB for SEV guests using
+ * a percentage of guest memory for SWIOTLB buffers.
+ * Also, as the SWIOTLB bounce buffer memory is allocated
+ * from low memory, ensure that the adjusted size is within
+ * the limits of low available memory.
+ *
+ * The percentage of guest memory used here for SWIOTLB buffers
+ * is more of an approximation of the static adjustment which
+ * 64MB for <1G, and ~128M to 256M for 1G-to-4G, i.e., the 6%
+ */
+ size = total_mem * 6 / 100;
+ size = clamp_val(size, IO_TLB_DEFAULT_SIZE, SZ_1G);
+ swiotlb_adjust_size(size);
+
+ /* Set restricted memory access for virtio. */
+ virtio_set_mem_acc_cb(virtio_require_restricted_mem_acc);
+}
+
+static unsigned long pg_level_to_pfn(int level, pte_t *kpte, pgprot_t *ret_prot)
+{
+ unsigned long pfn = 0;
+ pgprot_t prot;
+
+ switch (level) {
+ case PG_LEVEL_4K:
+ pfn = pte_pfn(*kpte);
+ prot = pte_pgprot(*kpte);
+ break;
+ case PG_LEVEL_2M:
+ pfn = pmd_pfn(*(pmd_t *)kpte);
+ prot = pmd_pgprot(*(pmd_t *)kpte);
+ break;
+ case PG_LEVEL_1G:
+ pfn = pud_pfn(*(pud_t *)kpte);
+ prot = pud_pgprot(*(pud_t *)kpte);
+ break;
+ default:
+ WARN_ONCE(1, "Invalid level for kpte\n");
+ return 0;
+ }
+
+ if (ret_prot)
+ *ret_prot = prot;
+
+ return pfn;
+}
+
+static bool amd_enc_tlb_flush_required(bool enc)
+{
+ return true;
+}
+
+static bool amd_enc_cache_flush_required(void)
+{
+ return !cpu_feature_enabled(X86_FEATURE_SME_COHERENT);
+}
+
+static void enc_dec_hypercall(unsigned long vaddr, unsigned long size, bool enc)
+{
+#ifdef CONFIG_PARAVIRT
+ unsigned long vaddr_end = vaddr + size;
+
+ while (vaddr < vaddr_end) {
+ int psize, pmask, level;
+ unsigned long pfn;
+ pte_t *kpte;
+
+ kpte = lookup_address(vaddr, &level);
+ if (!kpte || pte_none(*kpte)) {
+ WARN_ONCE(1, "kpte lookup for vaddr\n");
+ return;
+ }
+
+ pfn = pg_level_to_pfn(level, kpte, NULL);
+ if (!pfn)
+ continue;
+
+ psize = page_level_size(level);
+ pmask = page_level_mask(level);
+
+ notify_page_enc_status_changed(pfn, psize >> PAGE_SHIFT, enc);
+
+ vaddr = (vaddr & pmask) + psize;
+ }
+#endif
+}
+
+static bool amd_enc_status_change_prepare(unsigned long vaddr, int npages, bool enc)
+{
+ /*
+ * To maintain the security guarantees of SEV-SNP guests, make sure
+ * to invalidate the memory before encryption attribute is cleared.
+ */
+ if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP) && !enc)
+ snp_set_memory_shared(vaddr, npages);
+
+ return true;
+}
+
+/* Return true unconditionally: return value doesn't matter for the SEV side */
+static bool amd_enc_status_change_finish(unsigned long vaddr, int npages, bool enc)
+{
+ /*
+ * After memory is mapped encrypted in the page table, validate it
+ * so that it is consistent with the page table updates.
+ */
+ if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP) && enc)
+ snp_set_memory_private(vaddr, npages);
+
+ if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
+ enc_dec_hypercall(vaddr, npages << PAGE_SHIFT, enc);
+
+ return true;
+}
+
+static void __init __set_clr_pte_enc(pte_t *kpte, int level, bool enc)
+{
+ pgprot_t old_prot, new_prot;
+ unsigned long pfn, pa, size;
+ pte_t new_pte;
+
+ pfn = pg_level_to_pfn(level, kpte, &old_prot);
+ if (!pfn)
+ return;
+
+ new_prot = old_prot;
+ if (enc)
+ pgprot_val(new_prot) |= _PAGE_ENC;
+ else
+ pgprot_val(new_prot) &= ~_PAGE_ENC;
+
+ /* If prot is same then do nothing. */
+ if (pgprot_val(old_prot) == pgprot_val(new_prot))
+ return;
+
+ pa = pfn << PAGE_SHIFT;
+ size = page_level_size(level);
+
+ /*
+ * We are going to perform in-place en-/decryption and change the
+ * physical page attribute from C=1 to C=0 or vice versa. Flush the
+ * caches to ensure that data gets accessed with the correct C-bit.
+ */
+ clflush_cache_range(__va(pa), size);
+
+ /* Encrypt/decrypt the contents in-place */
+ if (enc) {
+ sme_early_encrypt(pa, size);
+ } else {
+ sme_early_decrypt(pa, size);
+
+ /*
+ * ON SNP, the page state in the RMP table must happen
+ * before the page table updates.
+ */
+ early_snp_set_memory_shared((unsigned long)__va(pa), pa, 1);
+ }
+
+ /* Change the page encryption mask. */
+ new_pte = pfn_pte(pfn, new_prot);
+ set_pte_atomic(kpte, new_pte);
+
+ /*
+ * If page is set encrypted in the page table, then update the RMP table to
+ * add this page as private.
+ */
+ if (enc)
+ early_snp_set_memory_private((unsigned long)__va(pa), pa, 1);
+}
+
+static int __init early_set_memory_enc_dec(unsigned long vaddr,
+ unsigned long size, bool enc)
+{
+ unsigned long vaddr_end, vaddr_next, start;
+ unsigned long psize, pmask;
+ int split_page_size_mask;
+ int level, ret;
+ pte_t *kpte;
+
+ start = vaddr;
+ vaddr_next = vaddr;
+ vaddr_end = vaddr + size;
+
+ for (; vaddr < vaddr_end; vaddr = vaddr_next) {
+ kpte = lookup_address(vaddr, &level);
+ if (!kpte || pte_none(*kpte)) {
+ ret = 1;
+ goto out;
+ }
+
+ if (level == PG_LEVEL_4K) {
+ __set_clr_pte_enc(kpte, level, enc);
+ vaddr_next = (vaddr & PAGE_MASK) + PAGE_SIZE;
+ continue;
+ }
+
+ psize = page_level_size(level);
+ pmask = page_level_mask(level);
+
+ /*
+ * Check whether we can change the large page in one go.
+ * We request a split when the address is not aligned and
+ * the number of pages to set/clear encryption bit is smaller
+ * than the number of pages in the large page.
+ */
+ if (vaddr == (vaddr & pmask) &&
+ ((vaddr_end - vaddr) >= psize)) {
+ __set_clr_pte_enc(kpte, level, enc);
+ vaddr_next = (vaddr & pmask) + psize;
+ continue;
+ }
+
+ /*
+ * The virtual address is part of a larger page, create the next
+ * level page table mapping (4K or 2M). If it is part of a 2M
+ * page then we request a split of the large page into 4K
+ * chunks. A 1GB large page is split into 2M pages, resp.
+ */
+ if (level == PG_LEVEL_2M)
+ split_page_size_mask = 0;
+ else
+ split_page_size_mask = 1 << PG_LEVEL_2M;
+
+ /*
+ * kernel_physical_mapping_change() does not flush the TLBs, so
+ * a TLB flush is required after we exit from the for loop.
+ */
+ kernel_physical_mapping_change(__pa(vaddr & pmask),
+ __pa((vaddr_end & pmask) + psize),
+ split_page_size_mask);
+ }
+
+ ret = 0;
+
+ early_set_mem_enc_dec_hypercall(start, size, enc);
+out:
+ __flush_tlb_all();
+ return ret;
+}
+
+int __init early_set_memory_decrypted(unsigned long vaddr, unsigned long size)
+{
+ return early_set_memory_enc_dec(vaddr, size, false);
+}
+
+int __init early_set_memory_encrypted(unsigned long vaddr, unsigned long size)
+{
+ return early_set_memory_enc_dec(vaddr, size, true);
+}
+
+void __init early_set_mem_enc_dec_hypercall(unsigned long vaddr, unsigned long size, bool enc)
+{
+ enc_dec_hypercall(vaddr, size, enc);
+}
+
+void __init sme_early_init(void)
+{
+ if (!sme_me_mask)
+ return;
+
+ early_pmd_flags = __sme_set(early_pmd_flags);
+
+ __supported_pte_mask = __sme_set(__supported_pte_mask);
+
+ /* Update the protection map with memory encryption mask */
+ add_encrypt_protection_map();
+
+ x86_platform.guest.enc_status_change_prepare = amd_enc_status_change_prepare;
+ x86_platform.guest.enc_status_change_finish = amd_enc_status_change_finish;
+ x86_platform.guest.enc_tlb_flush_required = amd_enc_tlb_flush_required;
+ x86_platform.guest.enc_cache_flush_required = amd_enc_cache_flush_required;
+
+ /*
+ * AMD-SEV-ES intercepts the RDMSR to read the X2APIC ID in the
+ * parallel bringup low level code. That raises #VC which cannot be
+ * handled there.
+ * It does not provide a RDMSR GHCB protocol so the early startup
+ * code cannot directly communicate with the secure firmware. The
+ * alternative solution to retrieve the APIC ID via CPUID(0xb),
+ * which is covered by the GHCB protocol, is not viable either
+ * because there is no enforcement of the CPUID(0xb) provided
+ * "initial" APIC ID to be the same as the real APIC ID.
+ * Disable parallel bootup.
+ */
+ if (sev_status & MSR_AMD64_SEV_ES_ENABLED)
+ x86_cpuinit.parallel_bringup = false;
+
+ /*
+ * The VMM is capable of injecting interrupt 0x80 and triggering the
+ * compatibility syscall path.
+ *
+ * By default, the 32-bit emulation is disabled in order to ensure
+ * the safety of the VM.
+ */
+ if (sev_status & MSR_AMD64_SEV_ENABLED)
+ ia32_disable();
+}
+
+void __init mem_encrypt_free_decrypted_mem(void)
+{
+ unsigned long vaddr, vaddr_end, npages;
+ int r;
+
+ vaddr = (unsigned long)__start_bss_decrypted_unused;
+ vaddr_end = (unsigned long)__end_bss_decrypted;
+ npages = (vaddr_end - vaddr) >> PAGE_SHIFT;
+
+ /*
+ * If the unused memory range was mapped decrypted, change the encryption
+ * attribute from decrypted to encrypted before freeing it. Base the
+ * re-encryption on the same condition used for the decryption in
+ * sme_postprocess_startup(). Higher level abstractions, such as
+ * CC_ATTR_MEM_ENCRYPT, aren't necessarily equivalent in a Hyper-V VM
+ * using vTOM, where sme_me_mask is always zero.
+ */
+ if (sme_me_mask) {
+ r = set_memory_encrypted(vaddr, npages);
+ if (r) {
+ pr_warn("failed to free unused decrypted pages\n");
+ return;
+ }
+ }
+
+ free_init_pages("unused decrypted", vaddr, vaddr_end);
+}
diff --git a/arch/x86/mm/mem_encrypt_boot.S b/arch/x86/mm/mem_encrypt_boot.S
new file mode 100644
index 0000000000..e25288ee33
--- /dev/null
+++ b/arch/x86/mm/mem_encrypt_boot.S
@@ -0,0 +1,162 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+/*
+ * AMD Memory Encryption Support
+ *
+ * Copyright (C) 2016 Advanced Micro Devices, Inc.
+ *
+ * Author: Tom Lendacky <thomas.lendacky@amd.com>
+ */
+
+#include <linux/linkage.h>
+#include <linux/pgtable.h>
+#include <asm/page.h>
+#include <asm/processor-flags.h>
+#include <asm/msr-index.h>
+#include <asm/nospec-branch.h>
+
+ .text
+ .code64
+SYM_FUNC_START(sme_encrypt_execute)
+
+ /*
+ * Entry parameters:
+ * RDI - virtual address for the encrypted mapping
+ * RSI - virtual address for the decrypted mapping
+ * RDX - length to encrypt
+ * RCX - virtual address of the encryption workarea, including:
+ * - stack page (PAGE_SIZE)
+ * - encryption routine page (PAGE_SIZE)
+ * - intermediate copy buffer (PMD_SIZE)
+ * R8 - physical address of the pagetables to use for encryption
+ */
+
+ push %rbp
+ movq %rsp, %rbp /* RBP now has original stack pointer */
+
+ /* Set up a one page stack in the non-encrypted memory area */
+ movq %rcx, %rax /* Workarea stack page */
+ leaq PAGE_SIZE(%rax), %rsp /* Set new stack pointer */
+ addq $PAGE_SIZE, %rax /* Workarea encryption routine */
+
+ push %r12
+ movq %rdi, %r10 /* Encrypted area */
+ movq %rsi, %r11 /* Decrypted area */
+ movq %rdx, %r12 /* Area length */
+
+ /* Copy encryption routine into the workarea */
+ movq %rax, %rdi /* Workarea encryption routine */
+ leaq __enc_copy(%rip), %rsi /* Encryption routine */
+ movq $(.L__enc_copy_end - __enc_copy), %rcx /* Encryption routine length */
+ rep movsb
+
+ /* Setup registers for call */
+ movq %r10, %rdi /* Encrypted area */
+ movq %r11, %rsi /* Decrypted area */
+ movq %r8, %rdx /* Pagetables used for encryption */
+ movq %r12, %rcx /* Area length */
+ movq %rax, %r8 /* Workarea encryption routine */
+ addq $PAGE_SIZE, %r8 /* Workarea intermediate copy buffer */
+
+ ANNOTATE_RETPOLINE_SAFE
+ call *%rax /* Call the encryption routine */
+
+ pop %r12
+
+ movq %rbp, %rsp /* Restore original stack pointer */
+ pop %rbp
+
+ /* Offset to __x86_return_thunk would be wrong here */
+ ANNOTATE_UNRET_SAFE
+ ret
+ int3
+SYM_FUNC_END(sme_encrypt_execute)
+
+SYM_FUNC_START(__enc_copy)
+/*
+ * Routine used to encrypt memory in place.
+ * This routine must be run outside of the kernel proper since
+ * the kernel will be encrypted during the process. So this
+ * routine is defined here and then copied to an area outside
+ * of the kernel where it will remain and run decrypted
+ * during execution.
+ *
+ * On entry the registers must be:
+ * RDI - virtual address for the encrypted mapping
+ * RSI - virtual address for the decrypted mapping
+ * RDX - address of the pagetables to use for encryption
+ * RCX - length of area
+ * R8 - intermediate copy buffer
+ *
+ * RAX - points to this routine
+ *
+ * The area will be encrypted by copying from the non-encrypted
+ * memory space to an intermediate buffer and then copying from the
+ * intermediate buffer back to the encrypted memory space. The physical
+ * addresses of the two mappings are the same which results in the area
+ * being encrypted "in place".
+ */
+ /* Enable the new page tables */
+ mov %rdx, %cr3
+
+ /* Flush any global TLBs */
+ mov %cr4, %rdx
+ andq $~X86_CR4_PGE, %rdx
+ mov %rdx, %cr4
+ orq $X86_CR4_PGE, %rdx
+ mov %rdx, %cr4
+
+ push %r15
+ push %r12
+
+ movq %rcx, %r9 /* Save area length */
+ movq %rdi, %r10 /* Save encrypted area address */
+ movq %rsi, %r11 /* Save decrypted area address */
+
+ /* Set the PAT register PA5 entry to write-protect */
+ movl $MSR_IA32_CR_PAT, %ecx
+ rdmsr
+ mov %rdx, %r15 /* Save original PAT value */
+ andl $0xffff00ff, %edx /* Clear PA5 */
+ orl $0x00000500, %edx /* Set PA5 to WP */
+ wrmsr
+
+ wbinvd /* Invalidate any cache entries */
+
+ /* Copy/encrypt up to 2MB at a time */
+ movq $PMD_SIZE, %r12
+1:
+ cmpq %r12, %r9
+ jnb 2f
+ movq %r9, %r12
+
+2:
+ movq %r11, %rsi /* Source - decrypted area */
+ movq %r8, %rdi /* Dest - intermediate copy buffer */
+ movq %r12, %rcx
+ rep movsb
+
+ movq %r8, %rsi /* Source - intermediate copy buffer */
+ movq %r10, %rdi /* Dest - encrypted area */
+ movq %r12, %rcx
+ rep movsb
+
+ addq %r12, %r11
+ addq %r12, %r10
+ subq %r12, %r9 /* Kernel length decrement */
+ jnz 1b /* Kernel length not zero? */
+
+ /* Restore PAT register */
+ movl $MSR_IA32_CR_PAT, %ecx
+ rdmsr
+ mov %r15, %rdx /* Restore original PAT value */
+ wrmsr
+
+ pop %r12
+ pop %r15
+
+ /* Offset to __x86_return_thunk would be wrong here */
+ ANNOTATE_UNRET_SAFE
+ ret
+ int3
+.L__enc_copy_end:
+SYM_FUNC_END(__enc_copy)
diff --git a/arch/x86/mm/mem_encrypt_identity.c b/arch/x86/mm/mem_encrypt_identity.c
new file mode 100644
index 0000000000..d73aeb1641
--- /dev/null
+++ b/arch/x86/mm/mem_encrypt_identity.c
@@ -0,0 +1,618 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * AMD Memory Encryption Support
+ *
+ * Copyright (C) 2016 Advanced Micro Devices, Inc.
+ *
+ * Author: Tom Lendacky <thomas.lendacky@amd.com>
+ */
+
+#define DISABLE_BRANCH_PROFILING
+
+/*
+ * Since we're dealing with identity mappings, physical and virtual
+ * addresses are the same, so override these defines which are ultimately
+ * used by the headers in misc.h.
+ */
+#define __pa(x) ((unsigned long)(x))
+#define __va(x) ((void *)((unsigned long)(x)))
+
+/*
+ * Special hack: we have to be careful, because no indirections are
+ * allowed here, and paravirt_ops is a kind of one. As it will only run in
+ * baremetal anyway, we just keep it from happening. (This list needs to
+ * be extended when new paravirt and debugging variants are added.)
+ */
+#undef CONFIG_PARAVIRT
+#undef CONFIG_PARAVIRT_XXL
+#undef CONFIG_PARAVIRT_SPINLOCKS
+
+/*
+ * This code runs before CPU feature bits are set. By default, the
+ * pgtable_l5_enabled() function uses bit X86_FEATURE_LA57 to determine if
+ * 5-level paging is active, so that won't work here. USE_EARLY_PGTABLE_L5
+ * is provided to handle this situation and, instead, use a variable that
+ * has been set by the early boot code.
+ */
+#define USE_EARLY_PGTABLE_L5
+
+#include <linux/kernel.h>
+#include <linux/mm.h>
+#include <linux/mem_encrypt.h>
+#include <linux/cc_platform.h>
+
+#include <asm/setup.h>
+#include <asm/sections.h>
+#include <asm/cmdline.h>
+#include <asm/coco.h>
+#include <asm/sev.h>
+
+#include "mm_internal.h"
+
+#define PGD_FLAGS _KERNPG_TABLE_NOENC
+#define P4D_FLAGS _KERNPG_TABLE_NOENC
+#define PUD_FLAGS _KERNPG_TABLE_NOENC
+#define PMD_FLAGS _KERNPG_TABLE_NOENC
+
+#define PMD_FLAGS_LARGE (__PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL)
+
+#define PMD_FLAGS_DEC PMD_FLAGS_LARGE
+#define PMD_FLAGS_DEC_WP ((PMD_FLAGS_DEC & ~_PAGE_LARGE_CACHE_MASK) | \
+ (_PAGE_PAT_LARGE | _PAGE_PWT))
+
+#define PMD_FLAGS_ENC (PMD_FLAGS_LARGE | _PAGE_ENC)
+
+#define PTE_FLAGS (__PAGE_KERNEL_EXEC & ~_PAGE_GLOBAL)
+
+#define PTE_FLAGS_DEC PTE_FLAGS
+#define PTE_FLAGS_DEC_WP ((PTE_FLAGS_DEC & ~_PAGE_CACHE_MASK) | \
+ (_PAGE_PAT | _PAGE_PWT))
+
+#define PTE_FLAGS_ENC (PTE_FLAGS | _PAGE_ENC)
+
+struct sme_populate_pgd_data {
+ void *pgtable_area;
+ pgd_t *pgd;
+
+ pmdval_t pmd_flags;
+ pteval_t pte_flags;
+ unsigned long paddr;
+
+ unsigned long vaddr;
+ unsigned long vaddr_end;
+};
+
+/*
+ * This work area lives in the .init.scratch section, which lives outside of
+ * the kernel proper. It is sized to hold the intermediate copy buffer and
+ * more than enough pagetable pages.
+ *
+ * By using this section, the kernel can be encrypted in place and it
+ * avoids any possibility of boot parameters or initramfs images being
+ * placed such that the in-place encryption logic overwrites them. This
+ * section is 2MB aligned to allow for simple pagetable setup using only
+ * PMD entries (see vmlinux.lds.S).
+ */
+static char sme_workarea[2 * PMD_SIZE] __section(".init.scratch");
+
+static char sme_cmdline_arg[] __initdata = "mem_encrypt";
+static char sme_cmdline_on[] __initdata = "on";
+static char sme_cmdline_off[] __initdata = "off";
+
+static void __init sme_clear_pgd(struct sme_populate_pgd_data *ppd)
+{
+ unsigned long pgd_start, pgd_end, pgd_size;
+ pgd_t *pgd_p;
+
+ pgd_start = ppd->vaddr & PGDIR_MASK;
+ pgd_end = ppd->vaddr_end & PGDIR_MASK;
+
+ pgd_size = (((pgd_end - pgd_start) / PGDIR_SIZE) + 1) * sizeof(pgd_t);
+
+ pgd_p = ppd->pgd + pgd_index(ppd->vaddr);
+
+ memset(pgd_p, 0, pgd_size);
+}
+
+static pud_t __init *sme_prepare_pgd(struct sme_populate_pgd_data *ppd)
+{
+ pgd_t *pgd;
+ p4d_t *p4d;
+ pud_t *pud;
+ pmd_t *pmd;
+
+ pgd = ppd->pgd + pgd_index(ppd->vaddr);
+ if (pgd_none(*pgd)) {
+ p4d = ppd->pgtable_area;
+ memset(p4d, 0, sizeof(*p4d) * PTRS_PER_P4D);
+ ppd->pgtable_area += sizeof(*p4d) * PTRS_PER_P4D;
+ set_pgd(pgd, __pgd(PGD_FLAGS | __pa(p4d)));
+ }
+
+ p4d = p4d_offset(pgd, ppd->vaddr);
+ if (p4d_none(*p4d)) {
+ pud = ppd->pgtable_area;
+ memset(pud, 0, sizeof(*pud) * PTRS_PER_PUD);
+ ppd->pgtable_area += sizeof(*pud) * PTRS_PER_PUD;
+ set_p4d(p4d, __p4d(P4D_FLAGS | __pa(pud)));
+ }
+
+ pud = pud_offset(p4d, ppd->vaddr);
+ if (pud_none(*pud)) {
+ pmd = ppd->pgtable_area;
+ memset(pmd, 0, sizeof(*pmd) * PTRS_PER_PMD);
+ ppd->pgtable_area += sizeof(*pmd) * PTRS_PER_PMD;
+ set_pud(pud, __pud(PUD_FLAGS | __pa(pmd)));
+ }
+
+ if (pud_large(*pud))
+ return NULL;
+
+ return pud;
+}
+
+static void __init sme_populate_pgd_large(struct sme_populate_pgd_data *ppd)
+{
+ pud_t *pud;
+ pmd_t *pmd;
+
+ pud = sme_prepare_pgd(ppd);
+ if (!pud)
+ return;
+
+ pmd = pmd_offset(pud, ppd->vaddr);
+ if (pmd_large(*pmd))
+ return;
+
+ set_pmd(pmd, __pmd(ppd->paddr | ppd->pmd_flags));
+}
+
+static void __init sme_populate_pgd(struct sme_populate_pgd_data *ppd)
+{
+ pud_t *pud;
+ pmd_t *pmd;
+ pte_t *pte;
+
+ pud = sme_prepare_pgd(ppd);
+ if (!pud)
+ return;
+
+ pmd = pmd_offset(pud, ppd->vaddr);
+ if (pmd_none(*pmd)) {
+ pte = ppd->pgtable_area;
+ memset(pte, 0, sizeof(*pte) * PTRS_PER_PTE);
+ ppd->pgtable_area += sizeof(*pte) * PTRS_PER_PTE;
+ set_pmd(pmd, __pmd(PMD_FLAGS | __pa(pte)));
+ }
+
+ if (pmd_large(*pmd))
+ return;
+
+ pte = pte_offset_kernel(pmd, ppd->vaddr);
+ if (pte_none(*pte))
+ set_pte(pte, __pte(ppd->paddr | ppd->pte_flags));
+}
+
+static void __init __sme_map_range_pmd(struct sme_populate_pgd_data *ppd)
+{
+ while (ppd->vaddr < ppd->vaddr_end) {
+ sme_populate_pgd_large(ppd);
+
+ ppd->vaddr += PMD_SIZE;
+ ppd->paddr += PMD_SIZE;
+ }
+}
+
+static void __init __sme_map_range_pte(struct sme_populate_pgd_data *ppd)
+{
+ while (ppd->vaddr < ppd->vaddr_end) {
+ sme_populate_pgd(ppd);
+
+ ppd->vaddr += PAGE_SIZE;
+ ppd->paddr += PAGE_SIZE;
+ }
+}
+
+static void __init __sme_map_range(struct sme_populate_pgd_data *ppd,
+ pmdval_t pmd_flags, pteval_t pte_flags)
+{
+ unsigned long vaddr_end;
+
+ ppd->pmd_flags = pmd_flags;
+ ppd->pte_flags = pte_flags;
+
+ /* Save original end value since we modify the struct value */
+ vaddr_end = ppd->vaddr_end;
+
+ /* If start is not 2MB aligned, create PTE entries */
+ ppd->vaddr_end = ALIGN(ppd->vaddr, PMD_SIZE);
+ __sme_map_range_pte(ppd);
+
+ /* Create PMD entries */
+ ppd->vaddr_end = vaddr_end & PMD_MASK;
+ __sme_map_range_pmd(ppd);
+
+ /* If end is not 2MB aligned, create PTE entries */
+ ppd->vaddr_end = vaddr_end;
+ __sme_map_range_pte(ppd);
+}
+
+static void __init sme_map_range_encrypted(struct sme_populate_pgd_data *ppd)
+{
+ __sme_map_range(ppd, PMD_FLAGS_ENC, PTE_FLAGS_ENC);
+}
+
+static void __init sme_map_range_decrypted(struct sme_populate_pgd_data *ppd)
+{
+ __sme_map_range(ppd, PMD_FLAGS_DEC, PTE_FLAGS_DEC);
+}
+
+static void __init sme_map_range_decrypted_wp(struct sme_populate_pgd_data *ppd)
+{
+ __sme_map_range(ppd, PMD_FLAGS_DEC_WP, PTE_FLAGS_DEC_WP);
+}
+
+static unsigned long __init sme_pgtable_calc(unsigned long len)
+{
+ unsigned long entries = 0, tables = 0;
+
+ /*
+ * Perform a relatively simplistic calculation of the pagetable
+ * entries that are needed. Those mappings will be covered mostly
+ * by 2MB PMD entries so we can conservatively calculate the required
+ * number of P4D, PUD and PMD structures needed to perform the
+ * mappings. For mappings that are not 2MB aligned, PTE mappings
+ * would be needed for the start and end portion of the address range
+ * that fall outside of the 2MB alignment. This results in, at most,
+ * two extra pages to hold PTE entries for each range that is mapped.
+ * Incrementing the count for each covers the case where the addresses
+ * cross entries.
+ */
+
+ /* PGDIR_SIZE is equal to P4D_SIZE on 4-level machine. */
+ if (PTRS_PER_P4D > 1)
+ entries += (DIV_ROUND_UP(len, PGDIR_SIZE) + 1) * sizeof(p4d_t) * PTRS_PER_P4D;
+ entries += (DIV_ROUND_UP(len, P4D_SIZE) + 1) * sizeof(pud_t) * PTRS_PER_PUD;
+ entries += (DIV_ROUND_UP(len, PUD_SIZE) + 1) * sizeof(pmd_t) * PTRS_PER_PMD;
+ entries += 2 * sizeof(pte_t) * PTRS_PER_PTE;
+
+ /*
+ * Now calculate the added pagetable structures needed to populate
+ * the new pagetables.
+ */
+
+ if (PTRS_PER_P4D > 1)
+ tables += DIV_ROUND_UP(entries, PGDIR_SIZE) * sizeof(p4d_t) * PTRS_PER_P4D;
+ tables += DIV_ROUND_UP(entries, P4D_SIZE) * sizeof(pud_t) * PTRS_PER_PUD;
+ tables += DIV_ROUND_UP(entries, PUD_SIZE) * sizeof(pmd_t) * PTRS_PER_PMD;
+
+ return entries + tables;
+}
+
+void __init sme_encrypt_kernel(struct boot_params *bp)
+{
+ unsigned long workarea_start, workarea_end, workarea_len;
+ unsigned long execute_start, execute_end, execute_len;
+ unsigned long kernel_start, kernel_end, kernel_len;
+ unsigned long initrd_start, initrd_end, initrd_len;
+ struct sme_populate_pgd_data ppd;
+ unsigned long pgtable_area_len;
+ unsigned long decrypted_base;
+
+ /*
+ * This is early code, use an open coded check for SME instead of
+ * using cc_platform_has(). This eliminates worries about removing
+ * instrumentation or checking boot_cpu_data in the cc_platform_has()
+ * function.
+ */
+ if (!sme_get_me_mask() || sev_status & MSR_AMD64_SEV_ENABLED)
+ return;
+
+ /*
+ * Prepare for encrypting the kernel and initrd by building new
+ * pagetables with the necessary attributes needed to encrypt the
+ * kernel in place.
+ *
+ * One range of virtual addresses will map the memory occupied
+ * by the kernel and initrd as encrypted.
+ *
+ * Another range of virtual addresses will map the memory occupied
+ * by the kernel and initrd as decrypted and write-protected.
+ *
+ * The use of write-protect attribute will prevent any of the
+ * memory from being cached.
+ */
+
+ /* Physical addresses gives us the identity mapped virtual addresses */
+ kernel_start = __pa_symbol(_text);
+ kernel_end = ALIGN(__pa_symbol(_end), PMD_SIZE);
+ kernel_len = kernel_end - kernel_start;
+
+ initrd_start = 0;
+ initrd_end = 0;
+ initrd_len = 0;
+#ifdef CONFIG_BLK_DEV_INITRD
+ initrd_len = (unsigned long)bp->hdr.ramdisk_size |
+ ((unsigned long)bp->ext_ramdisk_size << 32);
+ if (initrd_len) {
+ initrd_start = (unsigned long)bp->hdr.ramdisk_image |
+ ((unsigned long)bp->ext_ramdisk_image << 32);
+ initrd_end = PAGE_ALIGN(initrd_start + initrd_len);
+ initrd_len = initrd_end - initrd_start;
+ }
+#endif
+
+ /*
+ * We're running identity mapped, so we must obtain the address to the
+ * SME encryption workarea using rip-relative addressing.
+ */
+ asm ("lea sme_workarea(%%rip), %0"
+ : "=r" (workarea_start)
+ : "p" (sme_workarea));
+
+ /*
+ * Calculate required number of workarea bytes needed:
+ * executable encryption area size:
+ * stack page (PAGE_SIZE)
+ * encryption routine page (PAGE_SIZE)
+ * intermediate copy buffer (PMD_SIZE)
+ * pagetable structures for the encryption of the kernel
+ * pagetable structures for workarea (in case not currently mapped)
+ */
+ execute_start = workarea_start;
+ execute_end = execute_start + (PAGE_SIZE * 2) + PMD_SIZE;
+ execute_len = execute_end - execute_start;
+
+ /*
+ * One PGD for both encrypted and decrypted mappings and a set of
+ * PUDs and PMDs for each of the encrypted and decrypted mappings.
+ */
+ pgtable_area_len = sizeof(pgd_t) * PTRS_PER_PGD;
+ pgtable_area_len += sme_pgtable_calc(execute_end - kernel_start) * 2;
+ if (initrd_len)
+ pgtable_area_len += sme_pgtable_calc(initrd_len) * 2;
+
+ /* PUDs and PMDs needed in the current pagetables for the workarea */
+ pgtable_area_len += sme_pgtable_calc(execute_len + pgtable_area_len);
+
+ /*
+ * The total workarea includes the executable encryption area and
+ * the pagetable area. The start of the workarea is already 2MB
+ * aligned, align the end of the workarea on a 2MB boundary so that
+ * we don't try to create/allocate PTE entries from the workarea
+ * before it is mapped.
+ */
+ workarea_len = execute_len + pgtable_area_len;
+ workarea_end = ALIGN(workarea_start + workarea_len, PMD_SIZE);
+
+ /*
+ * Set the address to the start of where newly created pagetable
+ * structures (PGDs, PUDs and PMDs) will be allocated. New pagetable
+ * structures are created when the workarea is added to the current
+ * pagetables and when the new encrypted and decrypted kernel
+ * mappings are populated.
+ */
+ ppd.pgtable_area = (void *)execute_end;
+
+ /*
+ * Make sure the current pagetable structure has entries for
+ * addressing the workarea.
+ */
+ ppd.pgd = (pgd_t *)native_read_cr3_pa();
+ ppd.paddr = workarea_start;
+ ppd.vaddr = workarea_start;
+ ppd.vaddr_end = workarea_end;
+ sme_map_range_decrypted(&ppd);
+
+ /* Flush the TLB - no globals so cr3 is enough */
+ native_write_cr3(__native_read_cr3());
+
+ /*
+ * A new pagetable structure is being built to allow for the kernel
+ * and initrd to be encrypted. It starts with an empty PGD that will
+ * then be populated with new PUDs and PMDs as the encrypted and
+ * decrypted kernel mappings are created.
+ */
+ ppd.pgd = ppd.pgtable_area;
+ memset(ppd.pgd, 0, sizeof(pgd_t) * PTRS_PER_PGD);
+ ppd.pgtable_area += sizeof(pgd_t) * PTRS_PER_PGD;
+
+ /*
+ * A different PGD index/entry must be used to get different
+ * pagetable entries for the decrypted mapping. Choose the next
+ * PGD index and convert it to a virtual address to be used as
+ * the base of the mapping.
+ */
+ decrypted_base = (pgd_index(workarea_end) + 1) & (PTRS_PER_PGD - 1);
+ if (initrd_len) {
+ unsigned long check_base;
+
+ check_base = (pgd_index(initrd_end) + 1) & (PTRS_PER_PGD - 1);
+ decrypted_base = max(decrypted_base, check_base);
+ }
+ decrypted_base <<= PGDIR_SHIFT;
+
+ /* Add encrypted kernel (identity) mappings */
+ ppd.paddr = kernel_start;
+ ppd.vaddr = kernel_start;
+ ppd.vaddr_end = kernel_end;
+ sme_map_range_encrypted(&ppd);
+
+ /* Add decrypted, write-protected kernel (non-identity) mappings */
+ ppd.paddr = kernel_start;
+ ppd.vaddr = kernel_start + decrypted_base;
+ ppd.vaddr_end = kernel_end + decrypted_base;
+ sme_map_range_decrypted_wp(&ppd);
+
+ if (initrd_len) {
+ /* Add encrypted initrd (identity) mappings */
+ ppd.paddr = initrd_start;
+ ppd.vaddr = initrd_start;
+ ppd.vaddr_end = initrd_end;
+ sme_map_range_encrypted(&ppd);
+ /*
+ * Add decrypted, write-protected initrd (non-identity) mappings
+ */
+ ppd.paddr = initrd_start;
+ ppd.vaddr = initrd_start + decrypted_base;
+ ppd.vaddr_end = initrd_end + decrypted_base;
+ sme_map_range_decrypted_wp(&ppd);
+ }
+
+ /* Add decrypted workarea mappings to both kernel mappings */
+ ppd.paddr = workarea_start;
+ ppd.vaddr = workarea_start;
+ ppd.vaddr_end = workarea_end;
+ sme_map_range_decrypted(&ppd);
+
+ ppd.paddr = workarea_start;
+ ppd.vaddr = workarea_start + decrypted_base;
+ ppd.vaddr_end = workarea_end + decrypted_base;
+ sme_map_range_decrypted(&ppd);
+
+ /* Perform the encryption */
+ sme_encrypt_execute(kernel_start, kernel_start + decrypted_base,
+ kernel_len, workarea_start, (unsigned long)ppd.pgd);
+
+ if (initrd_len)
+ sme_encrypt_execute(initrd_start, initrd_start + decrypted_base,
+ initrd_len, workarea_start,
+ (unsigned long)ppd.pgd);
+
+ /*
+ * At this point we are running encrypted. Remove the mappings for
+ * the decrypted areas - all that is needed for this is to remove
+ * the PGD entry/entries.
+ */
+ ppd.vaddr = kernel_start + decrypted_base;
+ ppd.vaddr_end = kernel_end + decrypted_base;
+ sme_clear_pgd(&ppd);
+
+ if (initrd_len) {
+ ppd.vaddr = initrd_start + decrypted_base;
+ ppd.vaddr_end = initrd_end + decrypted_base;
+ sme_clear_pgd(&ppd);
+ }
+
+ ppd.vaddr = workarea_start + decrypted_base;
+ ppd.vaddr_end = workarea_end + decrypted_base;
+ sme_clear_pgd(&ppd);
+
+ /* Flush the TLB - no globals so cr3 is enough */
+ native_write_cr3(__native_read_cr3());
+}
+
+void __init sme_enable(struct boot_params *bp)
+{
+ const char *cmdline_ptr, *cmdline_arg, *cmdline_on, *cmdline_off;
+ unsigned int eax, ebx, ecx, edx;
+ unsigned long feature_mask;
+ bool active_by_default;
+ unsigned long me_mask;
+ char buffer[16];
+ bool snp;
+ u64 msr;
+
+ snp = snp_init(bp);
+
+ /* Check for the SME/SEV support leaf */
+ eax = 0x80000000;
+ ecx = 0;
+ native_cpuid(&eax, &ebx, &ecx, &edx);
+ if (eax < 0x8000001f)
+ return;
+
+#define AMD_SME_BIT BIT(0)
+#define AMD_SEV_BIT BIT(1)
+
+ /*
+ * Check for the SME/SEV feature:
+ * CPUID Fn8000_001F[EAX]
+ * - Bit 0 - Secure Memory Encryption support
+ * - Bit 1 - Secure Encrypted Virtualization support
+ * CPUID Fn8000_001F[EBX]
+ * - Bits 5:0 - Pagetable bit position used to indicate encryption
+ */
+ eax = 0x8000001f;
+ ecx = 0;
+ native_cpuid(&eax, &ebx, &ecx, &edx);
+ /* Check whether SEV or SME is supported */
+ if (!(eax & (AMD_SEV_BIT | AMD_SME_BIT)))
+ return;
+
+ me_mask = 1UL << (ebx & 0x3f);
+
+ /* Check the SEV MSR whether SEV or SME is enabled */
+ sev_status = __rdmsr(MSR_AMD64_SEV);
+ feature_mask = (sev_status & MSR_AMD64_SEV_ENABLED) ? AMD_SEV_BIT : AMD_SME_BIT;
+
+ /* The SEV-SNP CC blob should never be present unless SEV-SNP is enabled. */
+ if (snp && !(sev_status & MSR_AMD64_SEV_SNP_ENABLED))
+ snp_abort();
+
+ /* Check if memory encryption is enabled */
+ if (feature_mask == AMD_SME_BIT) {
+ /*
+ * No SME if Hypervisor bit is set. This check is here to
+ * prevent a guest from trying to enable SME. For running as a
+ * KVM guest the MSR_AMD64_SYSCFG will be sufficient, but there
+ * might be other hypervisors which emulate that MSR as non-zero
+ * or even pass it through to the guest.
+ * A malicious hypervisor can still trick a guest into this
+ * path, but there is no way to protect against that.
+ */
+ eax = 1;
+ ecx = 0;
+ native_cpuid(&eax, &ebx, &ecx, &edx);
+ if (ecx & BIT(31))
+ return;
+
+ /* For SME, check the SYSCFG MSR */
+ msr = __rdmsr(MSR_AMD64_SYSCFG);
+ if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
+ return;
+ } else {
+ /* SEV state cannot be controlled by a command line option */
+ sme_me_mask = me_mask;
+ goto out;
+ }
+
+ /*
+ * Fixups have not been applied to phys_base yet and we're running
+ * identity mapped, so we must obtain the address to the SME command
+ * line argument data using rip-relative addressing.
+ */
+ asm ("lea sme_cmdline_arg(%%rip), %0"
+ : "=r" (cmdline_arg)
+ : "p" (sme_cmdline_arg));
+ asm ("lea sme_cmdline_on(%%rip), %0"
+ : "=r" (cmdline_on)
+ : "p" (sme_cmdline_on));
+ asm ("lea sme_cmdline_off(%%rip), %0"
+ : "=r" (cmdline_off)
+ : "p" (sme_cmdline_off));
+
+ if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT))
+ active_by_default = true;
+ else
+ active_by_default = false;
+
+ cmdline_ptr = (const char *)((u64)bp->hdr.cmd_line_ptr |
+ ((u64)bp->ext_cmd_line_ptr << 32));
+
+ if (cmdline_find_option(cmdline_ptr, cmdline_arg, buffer, sizeof(buffer)) < 0)
+ return;
+
+ if (!strncmp(buffer, cmdline_on, sizeof(buffer)))
+ sme_me_mask = me_mask;
+ else if (!strncmp(buffer, cmdline_off, sizeof(buffer)))
+ sme_me_mask = 0;
+ else
+ sme_me_mask = active_by_default ? me_mask : 0;
+out:
+ if (sme_me_mask) {
+ physical_mask &= ~sme_me_mask;
+ cc_vendor = CC_VENDOR_AMD;
+ cc_set_mask(sme_me_mask);
+ }
+}
diff --git a/arch/x86/mm/mm_internal.h b/arch/x86/mm/mm_internal.h
new file mode 100644
index 0000000000..3f37b5c80b
--- /dev/null
+++ b/arch/x86/mm/mm_internal.h
@@ -0,0 +1,28 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifndef __X86_MM_INTERNAL_H
+#define __X86_MM_INTERNAL_H
+
+void *alloc_low_pages(unsigned int num);
+static inline void *alloc_low_page(void)
+{
+ return alloc_low_pages(1);
+}
+
+void early_ioremap_page_table_range_init(void);
+
+unsigned long kernel_physical_mapping_init(unsigned long start,
+ unsigned long end,
+ unsigned long page_size_mask,
+ pgprot_t prot);
+unsigned long kernel_physical_mapping_change(unsigned long start,
+ unsigned long end,
+ unsigned long page_size_mask);
+void zone_sizes_init(void);
+
+extern int after_bootmem;
+
+void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache);
+
+extern unsigned long tlb_single_page_flush_ceiling;
+
+#endif /* __X86_MM_INTERNAL_H */
diff --git a/arch/x86/mm/mmap.c b/arch/x86/mm/mmap.c
new file mode 100644
index 0000000000..c90c20904a
--- /dev/null
+++ b/arch/x86/mm/mmap.c
@@ -0,0 +1,250 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * Flexible mmap layout support
+ *
+ * Based on code by Ingo Molnar and Andi Kleen, copyrighted
+ * as follows:
+ *
+ * Copyright 2003-2009 Red Hat Inc.
+ * All Rights Reserved.
+ * Copyright 2005 Andi Kleen, SUSE Labs.
+ * Copyright 2007 Jiri Kosina, SUSE Labs.
+ */
+
+#include <linux/personality.h>
+#include <linux/mm.h>
+#include <linux/random.h>
+#include <linux/limits.h>
+#include <linux/sched/signal.h>
+#include <linux/sched/mm.h>
+#include <linux/compat.h>
+#include <linux/elf-randomize.h>
+#include <asm/elf.h>
+#include <asm/io.h>
+
+#include "physaddr.h"
+
+struct va_alignment __read_mostly va_align = {
+ .flags = -1,
+};
+
+unsigned long task_size_32bit(void)
+{
+ return IA32_PAGE_OFFSET;
+}
+
+unsigned long task_size_64bit(int full_addr_space)
+{
+ return full_addr_space ? TASK_SIZE_MAX : DEFAULT_MAP_WINDOW;
+}
+
+static unsigned long stack_maxrandom_size(unsigned long task_size)
+{
+ unsigned long max = 0;
+ if (current->flags & PF_RANDOMIZE) {
+ max = (-1UL) & __STACK_RND_MASK(task_size == task_size_32bit());
+ max <<= PAGE_SHIFT;
+ }
+
+ return max;
+}
+
+#ifdef CONFIG_COMPAT
+# define mmap32_rnd_bits mmap_rnd_compat_bits
+# define mmap64_rnd_bits mmap_rnd_bits
+#else
+# define mmap32_rnd_bits mmap_rnd_bits
+# define mmap64_rnd_bits mmap_rnd_bits
+#endif
+
+#define SIZE_128M (128 * 1024 * 1024UL)
+
+static int mmap_is_legacy(void)
+{
+ if (current->personality & ADDR_COMPAT_LAYOUT)
+ return 1;
+
+ return sysctl_legacy_va_layout;
+}
+
+static unsigned long arch_rnd(unsigned int rndbits)
+{
+ if (!(current->flags & PF_RANDOMIZE))
+ return 0;
+ return (get_random_long() & ((1UL << rndbits) - 1)) << PAGE_SHIFT;
+}
+
+unsigned long arch_mmap_rnd(void)
+{
+ return arch_rnd(mmap_is_ia32() ? mmap32_rnd_bits : mmap64_rnd_bits);
+}
+
+static unsigned long mmap_base(unsigned long rnd, unsigned long task_size,
+ struct rlimit *rlim_stack)
+{
+ unsigned long gap = rlim_stack->rlim_cur;
+ unsigned long pad = stack_maxrandom_size(task_size) + stack_guard_gap;
+ unsigned long gap_min, gap_max;
+
+ /* Values close to RLIM_INFINITY can overflow. */
+ if (gap + pad > gap)
+ gap += pad;
+
+ /*
+ * Top of mmap area (just below the process stack).
+ * Leave an at least ~128 MB hole with possible stack randomization.
+ */
+ gap_min = SIZE_128M;
+ gap_max = (task_size / 6) * 5;
+
+ if (gap < gap_min)
+ gap = gap_min;
+ else if (gap > gap_max)
+ gap = gap_max;
+
+ return PAGE_ALIGN(task_size - gap - rnd);
+}
+
+static unsigned long mmap_legacy_base(unsigned long rnd,
+ unsigned long task_size)
+{
+ return __TASK_UNMAPPED_BASE(task_size) + rnd;
+}
+
+/*
+ * This function, called very early during the creation of a new
+ * process VM image, sets up which VM layout function to use:
+ */
+static void arch_pick_mmap_base(unsigned long *base, unsigned long *legacy_base,
+ unsigned long random_factor, unsigned long task_size,
+ struct rlimit *rlim_stack)
+{
+ *legacy_base = mmap_legacy_base(random_factor, task_size);
+ if (mmap_is_legacy())
+ *base = *legacy_base;
+ else
+ *base = mmap_base(random_factor, task_size, rlim_stack);
+}
+
+void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
+{
+ if (mmap_is_legacy())
+ mm->get_unmapped_area = arch_get_unmapped_area;
+ else
+ mm->get_unmapped_area = arch_get_unmapped_area_topdown;
+
+ arch_pick_mmap_base(&mm->mmap_base, &mm->mmap_legacy_base,
+ arch_rnd(mmap64_rnd_bits), task_size_64bit(0),
+ rlim_stack);
+
+#ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES
+ /*
+ * The mmap syscall mapping base decision depends solely on the
+ * syscall type (64-bit or compat). This applies for 64bit
+ * applications and 32bit applications. The 64bit syscall uses
+ * mmap_base, the compat syscall uses mmap_compat_base.
+ */
+ arch_pick_mmap_base(&mm->mmap_compat_base, &mm->mmap_compat_legacy_base,
+ arch_rnd(mmap32_rnd_bits), task_size_32bit(),
+ rlim_stack);
+#endif
+}
+
+unsigned long get_mmap_base(int is_legacy)
+{
+ struct mm_struct *mm = current->mm;
+
+#ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES
+ if (in_32bit_syscall()) {
+ return is_legacy ? mm->mmap_compat_legacy_base
+ : mm->mmap_compat_base;
+ }
+#endif
+ return is_legacy ? mm->mmap_legacy_base : mm->mmap_base;
+}
+
+const char *arch_vma_name(struct vm_area_struct *vma)
+{
+ return NULL;
+}
+
+/**
+ * mmap_address_hint_valid - Validate the address hint of mmap
+ * @addr: Address hint
+ * @len: Mapping length
+ *
+ * Check whether @addr and @addr + @len result in a valid mapping.
+ *
+ * On 32bit this only checks whether @addr + @len is <= TASK_SIZE.
+ *
+ * On 64bit with 5-level page tables another sanity check is required
+ * because mappings requested by mmap(@addr, 0) which cross the 47-bit
+ * virtual address boundary can cause the following theoretical issue:
+ *
+ * An application calls mmap(addr, 0), i.e. without MAP_FIXED, where @addr
+ * is below the border of the 47-bit address space and @addr + @len is
+ * above the border.
+ *
+ * With 4-level paging this request succeeds, but the resulting mapping
+ * address will always be within the 47-bit virtual address space, because
+ * the hint address does not result in a valid mapping and is
+ * ignored. Hence applications which are not prepared to handle virtual
+ * addresses above 47-bit work correctly.
+ *
+ * With 5-level paging this request would be granted and result in a
+ * mapping which crosses the border of the 47-bit virtual address
+ * space. If the application cannot handle addresses above 47-bit this
+ * will lead to misbehaviour and hard to diagnose failures.
+ *
+ * Therefore ignore address hints which would result in a mapping crossing
+ * the 47-bit virtual address boundary.
+ *
+ * Note, that in the same scenario with MAP_FIXED the behaviour is
+ * different. The request with @addr < 47-bit and @addr + @len > 47-bit
+ * fails on a 4-level paging machine but succeeds on a 5-level paging
+ * machine. It is reasonable to expect that an application does not rely on
+ * the failure of such a fixed mapping request, so the restriction is not
+ * applied.
+ */
+bool mmap_address_hint_valid(unsigned long addr, unsigned long len)
+{
+ if (TASK_SIZE - len < addr)
+ return false;
+
+ return (addr > DEFAULT_MAP_WINDOW) == (addr + len > DEFAULT_MAP_WINDOW);
+}
+
+/* Can we access it for direct reading/writing? Must be RAM: */
+int valid_phys_addr_range(phys_addr_t addr, size_t count)
+{
+ return addr + count - 1 <= __pa(high_memory - 1);
+}
+
+/* Can we access it through mmap? Must be a valid physical address: */
+int valid_mmap_phys_addr_range(unsigned long pfn, size_t count)
+{
+ phys_addr_t addr = (phys_addr_t)pfn << PAGE_SHIFT;
+
+ return phys_addr_valid(addr + count - 1);
+}
+
+/*
+ * Only allow root to set high MMIO mappings to PROT_NONE.
+ * This prevents an unpriv. user to set them to PROT_NONE and invert
+ * them, then pointing to valid memory for L1TF speculation.
+ *
+ * Note: for locked down kernels may want to disable the root override.
+ */
+bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
+{
+ if (!boot_cpu_has_bug(X86_BUG_L1TF))
+ return true;
+ if (!__pte_needs_invert(pgprot_val(prot)))
+ return true;
+ /* If it's real memory always allow */
+ if (pfn_valid(pfn))
+ return true;
+ if (pfn >= l1tf_pfn_limit() && !capable(CAP_SYS_ADMIN))
+ return false;
+ return true;
+}
diff --git a/arch/x86/mm/mmio-mod.c b/arch/x86/mm/mmio-mod.c
new file mode 100644
index 0000000000..c3317f0650
--- /dev/null
+++ b/arch/x86/mm/mmio-mod.c
@@ -0,0 +1,463 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ *
+ * Copyright (C) IBM Corporation, 2005
+ * Jeff Muizelaar, 2006, 2007
+ * Pekka Paalanen, 2008 <pq@iki.fi>
+ *
+ * Derived from the read-mod example from relay-examples by Tom Zanussi.
+ */
+
+#define pr_fmt(fmt) "mmiotrace: " fmt
+
+#include <linux/moduleparam.h>
+#include <linux/debugfs.h>
+#include <linux/slab.h>
+#include <linux/uaccess.h>
+#include <linux/io.h>
+#include <linux/mmiotrace.h>
+#include <linux/pgtable.h>
+#include <asm/e820/api.h> /* for ISA_START_ADDRESS */
+#include <linux/atomic.h>
+#include <linux/percpu.h>
+#include <linux/cpu.h>
+
+#include "pf_in.h"
+
+struct trap_reason {
+ unsigned long addr;
+ unsigned long ip;
+ enum reason_type type;
+ int active_traces;
+};
+
+struct remap_trace {
+ struct list_head list;
+ struct kmmio_probe probe;
+ resource_size_t phys;
+ unsigned long id;
+};
+
+/* Accessed per-cpu. */
+static DEFINE_PER_CPU(struct trap_reason, pf_reason);
+static DEFINE_PER_CPU(struct mmiotrace_rw, cpu_trace);
+
+static DEFINE_MUTEX(mmiotrace_mutex);
+static DEFINE_SPINLOCK(trace_lock);
+static atomic_t mmiotrace_enabled;
+static LIST_HEAD(trace_list); /* struct remap_trace */
+
+/*
+ * Locking in this file:
+ * - mmiotrace_mutex enforces enable/disable_mmiotrace() critical sections.
+ * - mmiotrace_enabled may be modified only when holding mmiotrace_mutex
+ * and trace_lock.
+ * - Routines depending on is_enabled() must take trace_lock.
+ * - trace_list users must hold trace_lock.
+ * - is_enabled() guarantees that mmio_trace_{rw,mapping} are allowed.
+ * - pre/post callbacks assume the effect of is_enabled() being true.
+ */
+
+/* module parameters */
+static unsigned long filter_offset;
+static bool nommiotrace;
+static bool trace_pc;
+
+module_param(filter_offset, ulong, 0);
+module_param(nommiotrace, bool, 0);
+module_param(trace_pc, bool, 0);
+
+MODULE_PARM_DESC(filter_offset, "Start address of traced mappings.");
+MODULE_PARM_DESC(nommiotrace, "Disable actual MMIO tracing.");
+MODULE_PARM_DESC(trace_pc, "Record address of faulting instructions.");
+
+static bool is_enabled(void)
+{
+ return atomic_read(&mmiotrace_enabled);
+}
+
+static void print_pte(unsigned long address)
+{
+ unsigned int level;
+ pte_t *pte = lookup_address(address, &level);
+
+ if (!pte) {
+ pr_err("Error in %s: no pte for page 0x%08lx\n",
+ __func__, address);
+ return;
+ }
+
+ if (level == PG_LEVEL_2M) {
+ pr_emerg("4MB pages are not currently supported: 0x%08lx\n",
+ address);
+ BUG();
+ }
+ pr_info("pte for 0x%lx: 0x%llx 0x%llx\n",
+ address,
+ (unsigned long long)pte_val(*pte),
+ (unsigned long long)pte_val(*pte) & _PAGE_PRESENT);
+}
+
+/*
+ * For some reason the pre/post pairs have been called in an
+ * unmatched order. Report and die.
+ */
+static void die_kmmio_nesting_error(struct pt_regs *regs, unsigned long addr)
+{
+ const struct trap_reason *my_reason = &get_cpu_var(pf_reason);
+ pr_emerg("unexpected fault for address: 0x%08lx, last fault for address: 0x%08lx\n",
+ addr, my_reason->addr);
+ print_pte(addr);
+ pr_emerg("faulting IP is at %pS\n", (void *)regs->ip);
+ pr_emerg("last faulting IP was at %pS\n", (void *)my_reason->ip);
+#ifdef __i386__
+ pr_emerg("eax: %08lx ebx: %08lx ecx: %08lx edx: %08lx\n",
+ regs->ax, regs->bx, regs->cx, regs->dx);
+ pr_emerg("esi: %08lx edi: %08lx ebp: %08lx esp: %08lx\n",
+ regs->si, regs->di, regs->bp, regs->sp);
+#else
+ pr_emerg("rax: %016lx rcx: %016lx rdx: %016lx\n",
+ regs->ax, regs->cx, regs->dx);
+ pr_emerg("rsi: %016lx rdi: %016lx rbp: %016lx rsp: %016lx\n",
+ regs->si, regs->di, regs->bp, regs->sp);
+#endif
+ put_cpu_var(pf_reason);
+ BUG();
+}
+
+static void pre(struct kmmio_probe *p, struct pt_regs *regs,
+ unsigned long addr)
+{
+ struct trap_reason *my_reason = &get_cpu_var(pf_reason);
+ struct mmiotrace_rw *my_trace = &get_cpu_var(cpu_trace);
+ const unsigned long instptr = instruction_pointer(regs);
+ const enum reason_type type = get_ins_type(instptr);
+ struct remap_trace *trace = p->private;
+
+ /* it doesn't make sense to have more than one active trace per cpu */
+ if (my_reason->active_traces)
+ die_kmmio_nesting_error(regs, addr);
+ else
+ my_reason->active_traces++;
+
+ my_reason->type = type;
+ my_reason->addr = addr;
+ my_reason->ip = instptr;
+
+ my_trace->phys = addr - trace->probe.addr + trace->phys;
+ my_trace->map_id = trace->id;
+
+ /*
+ * Only record the program counter when requested.
+ * It may taint clean-room reverse engineering.
+ */
+ if (trace_pc)
+ my_trace->pc = instptr;
+ else
+ my_trace->pc = 0;
+
+ /*
+ * XXX: the timestamp recorded will be *after* the tracing has been
+ * done, not at the time we hit the instruction. SMP implications
+ * on event ordering?
+ */
+
+ switch (type) {
+ case REG_READ:
+ my_trace->opcode = MMIO_READ;
+ my_trace->width = get_ins_mem_width(instptr);
+ break;
+ case REG_WRITE:
+ my_trace->opcode = MMIO_WRITE;
+ my_trace->width = get_ins_mem_width(instptr);
+ my_trace->value = get_ins_reg_val(instptr, regs);
+ break;
+ case IMM_WRITE:
+ my_trace->opcode = MMIO_WRITE;
+ my_trace->width = get_ins_mem_width(instptr);
+ my_trace->value = get_ins_imm_val(instptr);
+ break;
+ default:
+ {
+ unsigned char *ip = (unsigned char *)instptr;
+ my_trace->opcode = MMIO_UNKNOWN_OP;
+ my_trace->width = 0;
+ my_trace->value = (*ip) << 16 | *(ip + 1) << 8 |
+ *(ip + 2);
+ }
+ }
+ put_cpu_var(cpu_trace);
+ put_cpu_var(pf_reason);
+}
+
+static void post(struct kmmio_probe *p, unsigned long condition,
+ struct pt_regs *regs)
+{
+ struct trap_reason *my_reason = &get_cpu_var(pf_reason);
+ struct mmiotrace_rw *my_trace = &get_cpu_var(cpu_trace);
+
+ /* this should always return the active_trace count to 0 */
+ my_reason->active_traces--;
+ if (my_reason->active_traces) {
+ pr_emerg("unexpected post handler");
+ BUG();
+ }
+
+ switch (my_reason->type) {
+ case REG_READ:
+ my_trace->value = get_ins_reg_val(my_reason->ip, regs);
+ break;
+ default:
+ break;
+ }
+
+ mmio_trace_rw(my_trace);
+ put_cpu_var(cpu_trace);
+ put_cpu_var(pf_reason);
+}
+
+static void ioremap_trace_core(resource_size_t offset, unsigned long size,
+ void __iomem *addr)
+{
+ static atomic_t next_id;
+ struct remap_trace *trace = kmalloc(sizeof(*trace), GFP_KERNEL);
+ /* These are page-unaligned. */
+ struct mmiotrace_map map = {
+ .phys = offset,
+ .virt = (unsigned long)addr,
+ .len = size,
+ .opcode = MMIO_PROBE
+ };
+
+ if (!trace) {
+ pr_err("kmalloc failed in ioremap\n");
+ return;
+ }
+
+ *trace = (struct remap_trace) {
+ .probe = {
+ .addr = (unsigned long)addr,
+ .len = size,
+ .pre_handler = pre,
+ .post_handler = post,
+ .private = trace
+ },
+ .phys = offset,
+ .id = atomic_inc_return(&next_id)
+ };
+ map.map_id = trace->id;
+
+ spin_lock_irq(&trace_lock);
+ if (!is_enabled()) {
+ kfree(trace);
+ goto not_enabled;
+ }
+
+ mmio_trace_mapping(&map);
+ list_add_tail(&trace->list, &trace_list);
+ if (!nommiotrace)
+ register_kmmio_probe(&trace->probe);
+
+not_enabled:
+ spin_unlock_irq(&trace_lock);
+}
+
+void mmiotrace_ioremap(resource_size_t offset, unsigned long size,
+ void __iomem *addr)
+{
+ if (!is_enabled()) /* recheck and proper locking in *_core() */
+ return;
+
+ pr_debug("ioremap_*(0x%llx, 0x%lx) = %p\n",
+ (unsigned long long)offset, size, addr);
+ if ((filter_offset) && (offset != filter_offset))
+ return;
+ ioremap_trace_core(offset, size, addr);
+}
+
+static void iounmap_trace_core(volatile void __iomem *addr)
+{
+ struct mmiotrace_map map = {
+ .phys = 0,
+ .virt = (unsigned long)addr,
+ .len = 0,
+ .opcode = MMIO_UNPROBE
+ };
+ struct remap_trace *trace;
+ struct remap_trace *tmp;
+ struct remap_trace *found_trace = NULL;
+
+ pr_debug("Unmapping %p.\n", addr);
+
+ spin_lock_irq(&trace_lock);
+ if (!is_enabled())
+ goto not_enabled;
+
+ list_for_each_entry_safe(trace, tmp, &trace_list, list) {
+ if ((unsigned long)addr == trace->probe.addr) {
+ if (!nommiotrace)
+ unregister_kmmio_probe(&trace->probe);
+ list_del(&trace->list);
+ found_trace = trace;
+ break;
+ }
+ }
+ map.map_id = (found_trace) ? found_trace->id : -1;
+ mmio_trace_mapping(&map);
+
+not_enabled:
+ spin_unlock_irq(&trace_lock);
+ if (found_trace) {
+ synchronize_rcu(); /* unregister_kmmio_probe() requirement */
+ kfree(found_trace);
+ }
+}
+
+void mmiotrace_iounmap(volatile void __iomem *addr)
+{
+ might_sleep();
+ if (is_enabled()) /* recheck and proper locking in *_core() */
+ iounmap_trace_core(addr);
+}
+
+int mmiotrace_printk(const char *fmt, ...)
+{
+ int ret = 0;
+ va_list args;
+ unsigned long flags;
+ va_start(args, fmt);
+
+ spin_lock_irqsave(&trace_lock, flags);
+ if (is_enabled())
+ ret = mmio_trace_printk(fmt, args);
+ spin_unlock_irqrestore(&trace_lock, flags);
+
+ va_end(args);
+ return ret;
+}
+EXPORT_SYMBOL(mmiotrace_printk);
+
+static void clear_trace_list(void)
+{
+ struct remap_trace *trace;
+ struct remap_trace *tmp;
+
+ /*
+ * No locking required, because the caller ensures we are in a
+ * critical section via mutex, and is_enabled() is false,
+ * i.e. nothing can traverse or modify this list.
+ * Caller also ensures is_enabled() cannot change.
+ */
+ list_for_each_entry(trace, &trace_list, list) {
+ pr_notice("purging non-iounmapped trace @0x%08lx, size 0x%lx.\n",
+ trace->probe.addr, trace->probe.len);
+ if (!nommiotrace)
+ unregister_kmmio_probe(&trace->probe);
+ }
+ synchronize_rcu(); /* unregister_kmmio_probe() requirement */
+
+ list_for_each_entry_safe(trace, tmp, &trace_list, list) {
+ list_del(&trace->list);
+ kfree(trace);
+ }
+}
+
+#ifdef CONFIG_HOTPLUG_CPU
+static cpumask_var_t downed_cpus;
+
+static void enter_uniprocessor(void)
+{
+ int cpu;
+ int err;
+
+ if (!cpumask_available(downed_cpus) &&
+ !alloc_cpumask_var(&downed_cpus, GFP_KERNEL)) {
+ pr_notice("Failed to allocate mask\n");
+ goto out;
+ }
+
+ cpus_read_lock();
+ cpumask_copy(downed_cpus, cpu_online_mask);
+ cpumask_clear_cpu(cpumask_first(cpu_online_mask), downed_cpus);
+ if (num_online_cpus() > 1)
+ pr_notice("Disabling non-boot CPUs...\n");
+ cpus_read_unlock();
+
+ for_each_cpu(cpu, downed_cpus) {
+ err = remove_cpu(cpu);
+ if (!err)
+ pr_info("CPU%d is down.\n", cpu);
+ else
+ pr_err("Error taking CPU%d down: %d\n", cpu, err);
+ }
+out:
+ if (num_online_cpus() > 1)
+ pr_warn("multiple CPUs still online, may miss events.\n");
+}
+
+static void leave_uniprocessor(void)
+{
+ int cpu;
+ int err;
+
+ if (!cpumask_available(downed_cpus) || cpumask_empty(downed_cpus))
+ return;
+ pr_notice("Re-enabling CPUs...\n");
+ for_each_cpu(cpu, downed_cpus) {
+ err = add_cpu(cpu);
+ if (!err)
+ pr_info("enabled CPU%d.\n", cpu);
+ else
+ pr_err("cannot re-enable CPU%d: %d\n", cpu, err);
+ }
+}
+
+#else /* !CONFIG_HOTPLUG_CPU */
+static void enter_uniprocessor(void)
+{
+ if (num_online_cpus() > 1)
+ pr_warn("multiple CPUs are online, may miss events. "
+ "Suggest booting with maxcpus=1 kernel argument.\n");
+}
+
+static void leave_uniprocessor(void)
+{
+}
+#endif
+
+void enable_mmiotrace(void)
+{
+ mutex_lock(&mmiotrace_mutex);
+ if (is_enabled())
+ goto out;
+
+ if (nommiotrace)
+ pr_info("MMIO tracing disabled.\n");
+ kmmio_init();
+ enter_uniprocessor();
+ spin_lock_irq(&trace_lock);
+ atomic_inc(&mmiotrace_enabled);
+ spin_unlock_irq(&trace_lock);
+ pr_info("enabled.\n");
+out:
+ mutex_unlock(&mmiotrace_mutex);
+}
+
+void disable_mmiotrace(void)
+{
+ mutex_lock(&mmiotrace_mutex);
+ if (!is_enabled())
+ goto out;
+
+ spin_lock_irq(&trace_lock);
+ atomic_dec(&mmiotrace_enabled);
+ BUG_ON(is_enabled());
+ spin_unlock_irq(&trace_lock);
+
+ clear_trace_list(); /* guarantees: no more kmmio callbacks */
+ leave_uniprocessor();
+ kmmio_cleanup();
+ pr_info("disabled.\n");
+out:
+ mutex_unlock(&mmiotrace_mutex);
+}
diff --git a/arch/x86/mm/numa.c b/arch/x86/mm/numa.c
new file mode 100644
index 0000000000..aa39d678fe
--- /dev/null
+++ b/arch/x86/mm/numa.c
@@ -0,0 +1,1037 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/* Common code for 32 and 64-bit NUMA */
+#include <linux/acpi.h>
+#include <linux/kernel.h>
+#include <linux/mm.h>
+#include <linux/string.h>
+#include <linux/init.h>
+#include <linux/memblock.h>
+#include <linux/mmzone.h>
+#include <linux/ctype.h>
+#include <linux/nodemask.h>
+#include <linux/sched.h>
+#include <linux/topology.h>
+#include <linux/sort.h>
+
+#include <asm/e820/api.h>
+#include <asm/proto.h>
+#include <asm/dma.h>
+#include <asm/amd_nb.h>
+
+#include "numa_internal.h"
+
+int numa_off;
+nodemask_t numa_nodes_parsed __initdata;
+
+struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
+EXPORT_SYMBOL(node_data);
+
+static struct numa_meminfo numa_meminfo __initdata_or_meminfo;
+static struct numa_meminfo numa_reserved_meminfo __initdata_or_meminfo;
+
+static int numa_distance_cnt;
+static u8 *numa_distance;
+
+static __init int numa_setup(char *opt)
+{
+ if (!opt)
+ return -EINVAL;
+ if (!strncmp(opt, "off", 3))
+ numa_off = 1;
+ if (!strncmp(opt, "fake=", 5))
+ return numa_emu_cmdline(opt + 5);
+ if (!strncmp(opt, "noacpi", 6))
+ disable_srat();
+ if (!strncmp(opt, "nohmat", 6))
+ disable_hmat();
+ return 0;
+}
+early_param("numa", numa_setup);
+
+/*
+ * apicid, cpu, node mappings
+ */
+s16 __apicid_to_node[MAX_LOCAL_APIC] = {
+ [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
+};
+
+int numa_cpu_node(int cpu)
+{
+ int apicid = early_per_cpu(x86_cpu_to_apicid, cpu);
+
+ if (apicid != BAD_APICID)
+ return __apicid_to_node[apicid];
+ return NUMA_NO_NODE;
+}
+
+cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
+EXPORT_SYMBOL(node_to_cpumask_map);
+
+/*
+ * Map cpu index to node index
+ */
+DEFINE_EARLY_PER_CPU(int, x86_cpu_to_node_map, NUMA_NO_NODE);
+EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_node_map);
+
+void numa_set_node(int cpu, int node)
+{
+ int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map);
+
+ /* early setting, no percpu area yet */
+ if (cpu_to_node_map) {
+ cpu_to_node_map[cpu] = node;
+ return;
+ }
+
+#ifdef CONFIG_DEBUG_PER_CPU_MAPS
+ if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) {
+ printk(KERN_ERR "numa_set_node: invalid cpu# (%d)\n", cpu);
+ dump_stack();
+ return;
+ }
+#endif
+ per_cpu(x86_cpu_to_node_map, cpu) = node;
+
+ set_cpu_numa_node(cpu, node);
+}
+
+void numa_clear_node(int cpu)
+{
+ numa_set_node(cpu, NUMA_NO_NODE);
+}
+
+/*
+ * Allocate node_to_cpumask_map based on number of available nodes
+ * Requires node_possible_map to be valid.
+ *
+ * Note: cpumask_of_node() is not valid until after this is done.
+ * (Use CONFIG_DEBUG_PER_CPU_MAPS to check this.)
+ */
+void __init setup_node_to_cpumask_map(void)
+{
+ unsigned int node;
+
+ /* setup nr_node_ids if not done yet */
+ if (nr_node_ids == MAX_NUMNODES)
+ setup_nr_node_ids();
+
+ /* allocate the map */
+ for (node = 0; node < nr_node_ids; node++)
+ alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
+
+ /* cpumask_of_node() will now work */
+ pr_debug("Node to cpumask map for %u nodes\n", nr_node_ids);
+}
+
+static int __init numa_add_memblk_to(int nid, u64 start, u64 end,
+ struct numa_meminfo *mi)
+{
+ /* ignore zero length blks */
+ if (start == end)
+ return 0;
+
+ /* whine about and ignore invalid blks */
+ if (start > end || nid < 0 || nid >= MAX_NUMNODES) {
+ pr_warn("Warning: invalid memblk node %d [mem %#010Lx-%#010Lx]\n",
+ nid, start, end - 1);
+ return 0;
+ }
+
+ if (mi->nr_blks >= NR_NODE_MEMBLKS) {
+ pr_err("too many memblk ranges\n");
+ return -EINVAL;
+ }
+
+ mi->blk[mi->nr_blks].start = start;
+ mi->blk[mi->nr_blks].end = end;
+ mi->blk[mi->nr_blks].nid = nid;
+ mi->nr_blks++;
+ return 0;
+}
+
+/**
+ * numa_remove_memblk_from - Remove one numa_memblk from a numa_meminfo
+ * @idx: Index of memblk to remove
+ * @mi: numa_meminfo to remove memblk from
+ *
+ * Remove @idx'th numa_memblk from @mi by shifting @mi->blk[] and
+ * decrementing @mi->nr_blks.
+ */
+void __init numa_remove_memblk_from(int idx, struct numa_meminfo *mi)
+{
+ mi->nr_blks--;
+ memmove(&mi->blk[idx], &mi->blk[idx + 1],
+ (mi->nr_blks - idx) * sizeof(mi->blk[0]));
+}
+
+/**
+ * numa_move_tail_memblk - Move a numa_memblk from one numa_meminfo to another
+ * @dst: numa_meminfo to append block to
+ * @idx: Index of memblk to remove
+ * @src: numa_meminfo to remove memblk from
+ */
+static void __init numa_move_tail_memblk(struct numa_meminfo *dst, int idx,
+ struct numa_meminfo *src)
+{
+ dst->blk[dst->nr_blks++] = src->blk[idx];
+ numa_remove_memblk_from(idx, src);
+}
+
+/**
+ * numa_add_memblk - Add one numa_memblk to numa_meminfo
+ * @nid: NUMA node ID of the new memblk
+ * @start: Start address of the new memblk
+ * @end: End address of the new memblk
+ *
+ * Add a new memblk to the default numa_meminfo.
+ *
+ * RETURNS:
+ * 0 on success, -errno on failure.
+ */
+int __init numa_add_memblk(int nid, u64 start, u64 end)
+{
+ return numa_add_memblk_to(nid, start, end, &numa_meminfo);
+}
+
+/* Allocate NODE_DATA for a node on the local memory */
+static void __init alloc_node_data(int nid)
+{
+ const size_t nd_size = roundup(sizeof(pg_data_t), PAGE_SIZE);
+ u64 nd_pa;
+ void *nd;
+ int tnid;
+
+ /*
+ * Allocate node data. Try node-local memory and then any node.
+ * Never allocate in DMA zone.
+ */
+ nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
+ if (!nd_pa) {
+ pr_err("Cannot find %zu bytes in any node (initial node: %d)\n",
+ nd_size, nid);
+ return;
+ }
+ nd = __va(nd_pa);
+
+ /* report and initialize */
+ printk(KERN_INFO "NODE_DATA(%d) allocated [mem %#010Lx-%#010Lx]\n", nid,
+ nd_pa, nd_pa + nd_size - 1);
+ tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
+ if (tnid != nid)
+ printk(KERN_INFO " NODE_DATA(%d) on node %d\n", nid, tnid);
+
+ node_data[nid] = nd;
+ memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
+
+ node_set_online(nid);
+}
+
+/**
+ * numa_cleanup_meminfo - Cleanup a numa_meminfo
+ * @mi: numa_meminfo to clean up
+ *
+ * Sanitize @mi by merging and removing unnecessary memblks. Also check for
+ * conflicts and clear unused memblks.
+ *
+ * RETURNS:
+ * 0 on success, -errno on failure.
+ */
+int __init numa_cleanup_meminfo(struct numa_meminfo *mi)
+{
+ const u64 low = 0;
+ const u64 high = PFN_PHYS(max_pfn);
+ int i, j, k;
+
+ /* first, trim all entries */
+ for (i = 0; i < mi->nr_blks; i++) {
+ struct numa_memblk *bi = &mi->blk[i];
+
+ /* move / save reserved memory ranges */
+ if (!memblock_overlaps_region(&memblock.memory,
+ bi->start, bi->end - bi->start)) {
+ numa_move_tail_memblk(&numa_reserved_meminfo, i--, mi);
+ continue;
+ }
+
+ /* make sure all non-reserved blocks are inside the limits */
+ bi->start = max(bi->start, low);
+
+ /* preserve info for non-RAM areas above 'max_pfn': */
+ if (bi->end > high) {
+ numa_add_memblk_to(bi->nid, high, bi->end,
+ &numa_reserved_meminfo);
+ bi->end = high;
+ }
+
+ /* and there's no empty block */
+ if (bi->start >= bi->end)
+ numa_remove_memblk_from(i--, mi);
+ }
+
+ /* merge neighboring / overlapping entries */
+ for (i = 0; i < mi->nr_blks; i++) {
+ struct numa_memblk *bi = &mi->blk[i];
+
+ for (j = i + 1; j < mi->nr_blks; j++) {
+ struct numa_memblk *bj = &mi->blk[j];
+ u64 start, end;
+
+ /*
+ * See whether there are overlapping blocks. Whine
+ * about but allow overlaps of the same nid. They
+ * will be merged below.
+ */
+ if (bi->end > bj->start && bi->start < bj->end) {
+ if (bi->nid != bj->nid) {
+ pr_err("node %d [mem %#010Lx-%#010Lx] overlaps with node %d [mem %#010Lx-%#010Lx]\n",
+ bi->nid, bi->start, bi->end - 1,
+ bj->nid, bj->start, bj->end - 1);
+ return -EINVAL;
+ }
+ pr_warn("Warning: node %d [mem %#010Lx-%#010Lx] overlaps with itself [mem %#010Lx-%#010Lx]\n",
+ bi->nid, bi->start, bi->end - 1,
+ bj->start, bj->end - 1);
+ }
+
+ /*
+ * Join together blocks on the same node, holes
+ * between which don't overlap with memory on other
+ * nodes.
+ */
+ if (bi->nid != bj->nid)
+ continue;
+ start = min(bi->start, bj->start);
+ end = max(bi->end, bj->end);
+ for (k = 0; k < mi->nr_blks; k++) {
+ struct numa_memblk *bk = &mi->blk[k];
+
+ if (bi->nid == bk->nid)
+ continue;
+ if (start < bk->end && end > bk->start)
+ break;
+ }
+ if (k < mi->nr_blks)
+ continue;
+ printk(KERN_INFO "NUMA: Node %d [mem %#010Lx-%#010Lx] + [mem %#010Lx-%#010Lx] -> [mem %#010Lx-%#010Lx]\n",
+ bi->nid, bi->start, bi->end - 1, bj->start,
+ bj->end - 1, start, end - 1);
+ bi->start = start;
+ bi->end = end;
+ numa_remove_memblk_from(j--, mi);
+ }
+ }
+
+ /* clear unused ones */
+ for (i = mi->nr_blks; i < ARRAY_SIZE(mi->blk); i++) {
+ mi->blk[i].start = mi->blk[i].end = 0;
+ mi->blk[i].nid = NUMA_NO_NODE;
+ }
+
+ return 0;
+}
+
+/*
+ * Set nodes, which have memory in @mi, in *@nodemask.
+ */
+static void __init numa_nodemask_from_meminfo(nodemask_t *nodemask,
+ const struct numa_meminfo *mi)
+{
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(mi->blk); i++)
+ if (mi->blk[i].start != mi->blk[i].end &&
+ mi->blk[i].nid != NUMA_NO_NODE)
+ node_set(mi->blk[i].nid, *nodemask);
+}
+
+/**
+ * numa_reset_distance - Reset NUMA distance table
+ *
+ * The current table is freed. The next numa_set_distance() call will
+ * create a new one.
+ */
+void __init numa_reset_distance(void)
+{
+ size_t size = numa_distance_cnt * numa_distance_cnt * sizeof(numa_distance[0]);
+
+ /* numa_distance could be 1LU marking allocation failure, test cnt */
+ if (numa_distance_cnt)
+ memblock_free(numa_distance, size);
+ numa_distance_cnt = 0;
+ numa_distance = NULL; /* enable table creation */
+}
+
+static int __init numa_alloc_distance(void)
+{
+ nodemask_t nodes_parsed;
+ size_t size;
+ int i, j, cnt = 0;
+ u64 phys;
+
+ /* size the new table and allocate it */
+ nodes_parsed = numa_nodes_parsed;
+ numa_nodemask_from_meminfo(&nodes_parsed, &numa_meminfo);
+
+ for_each_node_mask(i, nodes_parsed)
+ cnt = i;
+ cnt++;
+ size = cnt * cnt * sizeof(numa_distance[0]);
+
+ phys = memblock_phys_alloc_range(size, PAGE_SIZE, 0,
+ PFN_PHYS(max_pfn_mapped));
+ if (!phys) {
+ pr_warn("Warning: can't allocate distance table!\n");
+ /* don't retry until explicitly reset */
+ numa_distance = (void *)1LU;
+ return -ENOMEM;
+ }
+
+ numa_distance = __va(phys);
+ numa_distance_cnt = cnt;
+
+ /* fill with the default distances */
+ for (i = 0; i < cnt; i++)
+ for (j = 0; j < cnt; j++)
+ numa_distance[i * cnt + j] = i == j ?
+ LOCAL_DISTANCE : REMOTE_DISTANCE;
+ printk(KERN_DEBUG "NUMA: Initialized distance table, cnt=%d\n", cnt);
+
+ return 0;
+}
+
+/**
+ * numa_set_distance - Set NUMA distance from one NUMA to another
+ * @from: the 'from' node to set distance
+ * @to: the 'to' node to set distance
+ * @distance: NUMA distance
+ *
+ * Set the distance from node @from to @to to @distance. If distance table
+ * doesn't exist, one which is large enough to accommodate all the currently
+ * known nodes will be created.
+ *
+ * If such table cannot be allocated, a warning is printed and further
+ * calls are ignored until the distance table is reset with
+ * numa_reset_distance().
+ *
+ * If @from or @to is higher than the highest known node or lower than zero
+ * at the time of table creation or @distance doesn't make sense, the call
+ * is ignored.
+ * This is to allow simplification of specific NUMA config implementations.
+ */
+void __init numa_set_distance(int from, int to, int distance)
+{
+ if (!numa_distance && numa_alloc_distance() < 0)
+ return;
+
+ if (from >= numa_distance_cnt || to >= numa_distance_cnt ||
+ from < 0 || to < 0) {
+ pr_warn_once("Warning: node ids are out of bound, from=%d to=%d distance=%d\n",
+ from, to, distance);
+ return;
+ }
+
+ if ((u8)distance != distance ||
+ (from == to && distance != LOCAL_DISTANCE)) {
+ pr_warn_once("Warning: invalid distance parameter, from=%d to=%d distance=%d\n",
+ from, to, distance);
+ return;
+ }
+
+ numa_distance[from * numa_distance_cnt + to] = distance;
+}
+
+int __node_distance(int from, int to)
+{
+ if (from >= numa_distance_cnt || to >= numa_distance_cnt)
+ return from == to ? LOCAL_DISTANCE : REMOTE_DISTANCE;
+ return numa_distance[from * numa_distance_cnt + to];
+}
+EXPORT_SYMBOL(__node_distance);
+
+/*
+ * Sanity check to catch more bad NUMA configurations (they are amazingly
+ * common). Make sure the nodes cover all memory.
+ */
+static bool __init numa_meminfo_cover_memory(const struct numa_meminfo *mi)
+{
+ u64 numaram, e820ram;
+ int i;
+
+ numaram = 0;
+ for (i = 0; i < mi->nr_blks; i++) {
+ u64 s = mi->blk[i].start >> PAGE_SHIFT;
+ u64 e = mi->blk[i].end >> PAGE_SHIFT;
+ numaram += e - s;
+ numaram -= __absent_pages_in_range(mi->blk[i].nid, s, e);
+ if ((s64)numaram < 0)
+ numaram = 0;
+ }
+
+ e820ram = max_pfn - absent_pages_in_range(0, max_pfn);
+
+ /* We seem to lose 3 pages somewhere. Allow 1M of slack. */
+ if ((s64)(e820ram - numaram) >= (1 << (20 - PAGE_SHIFT))) {
+ printk(KERN_ERR "NUMA: nodes only cover %LuMB of your %LuMB e820 RAM. Not used.\n",
+ (numaram << PAGE_SHIFT) >> 20,
+ (e820ram << PAGE_SHIFT) >> 20);
+ return false;
+ }
+ return true;
+}
+
+/*
+ * Mark all currently memblock-reserved physical memory (which covers the
+ * kernel's own memory ranges) as hot-unswappable.
+ */
+static void __init numa_clear_kernel_node_hotplug(void)
+{
+ nodemask_t reserved_nodemask = NODE_MASK_NONE;
+ struct memblock_region *mb_region;
+ int i;
+
+ /*
+ * We have to do some preprocessing of memblock regions, to
+ * make them suitable for reservation.
+ *
+ * At this time, all memory regions reserved by memblock are
+ * used by the kernel, but those regions are not split up
+ * along node boundaries yet, and don't necessarily have their
+ * node ID set yet either.
+ *
+ * So iterate over all memory known to the x86 architecture,
+ * and use those ranges to set the nid in memblock.reserved.
+ * This will split up the memblock regions along node
+ * boundaries and will set the node IDs as well.
+ */
+ for (i = 0; i < numa_meminfo.nr_blks; i++) {
+ struct numa_memblk *mb = numa_meminfo.blk + i;
+ int ret;
+
+ ret = memblock_set_node(mb->start, mb->end - mb->start, &memblock.reserved, mb->nid);
+ WARN_ON_ONCE(ret);
+ }
+
+ /*
+ * Now go over all reserved memblock regions, to construct a
+ * node mask of all kernel reserved memory areas.
+ *
+ * [ Note, when booting with mem=nn[kMG] or in a kdump kernel,
+ * numa_meminfo might not include all memblock.reserved
+ * memory ranges, because quirks such as trim_snb_memory()
+ * reserve specific pages for Sandy Bridge graphics. ]
+ */
+ for_each_reserved_mem_region(mb_region) {
+ int nid = memblock_get_region_node(mb_region);
+
+ if (nid != MAX_NUMNODES)
+ node_set(nid, reserved_nodemask);
+ }
+
+ /*
+ * Finally, clear the MEMBLOCK_HOTPLUG flag for all memory
+ * belonging to the reserved node mask.
+ *
+ * Note that this will include memory regions that reside
+ * on nodes that contain kernel memory - entire nodes
+ * become hot-unpluggable:
+ */
+ for (i = 0; i < numa_meminfo.nr_blks; i++) {
+ struct numa_memblk *mb = numa_meminfo.blk + i;
+
+ if (!node_isset(mb->nid, reserved_nodemask))
+ continue;
+
+ memblock_clear_hotplug(mb->start, mb->end - mb->start);
+ }
+}
+
+static int __init numa_register_memblks(struct numa_meminfo *mi)
+{
+ int i, nid;
+
+ /* Account for nodes with cpus and no memory */
+ node_possible_map = numa_nodes_parsed;
+ numa_nodemask_from_meminfo(&node_possible_map, mi);
+ if (WARN_ON(nodes_empty(node_possible_map)))
+ return -EINVAL;
+
+ for (i = 0; i < mi->nr_blks; i++) {
+ struct numa_memblk *mb = &mi->blk[i];
+ memblock_set_node(mb->start, mb->end - mb->start,
+ &memblock.memory, mb->nid);
+ }
+
+ /*
+ * At very early time, the kernel have to use some memory such as
+ * loading the kernel image. We cannot prevent this anyway. So any
+ * node the kernel resides in should be un-hotpluggable.
+ *
+ * And when we come here, alloc node data won't fail.
+ */
+ numa_clear_kernel_node_hotplug();
+
+ /*
+ * If sections array is gonna be used for pfn -> nid mapping, check
+ * whether its granularity is fine enough.
+ */
+ if (IS_ENABLED(NODE_NOT_IN_PAGE_FLAGS)) {
+ unsigned long pfn_align = node_map_pfn_alignment();
+
+ if (pfn_align && pfn_align < PAGES_PER_SECTION) {
+ pr_warn("Node alignment %LuMB < min %LuMB, rejecting NUMA config\n",
+ PFN_PHYS(pfn_align) >> 20,
+ PFN_PHYS(PAGES_PER_SECTION) >> 20);
+ return -EINVAL;
+ }
+ }
+ if (!numa_meminfo_cover_memory(mi))
+ return -EINVAL;
+
+ /* Finally register nodes. */
+ for_each_node_mask(nid, node_possible_map) {
+ u64 start = PFN_PHYS(max_pfn);
+ u64 end = 0;
+
+ for (i = 0; i < mi->nr_blks; i++) {
+ if (nid != mi->blk[i].nid)
+ continue;
+ start = min(mi->blk[i].start, start);
+ end = max(mi->blk[i].end, end);
+ }
+
+ if (start >= end)
+ continue;
+
+ alloc_node_data(nid);
+ }
+
+ /* Dump memblock with node info and return. */
+ memblock_dump_all();
+ return 0;
+}
+
+/*
+ * There are unfortunately some poorly designed mainboards around that
+ * only connect memory to a single CPU. This breaks the 1:1 cpu->node
+ * mapping. To avoid this fill in the mapping for all possible CPUs,
+ * as the number of CPUs is not known yet. We round robin the existing
+ * nodes.
+ */
+static void __init numa_init_array(void)
+{
+ int rr, i;
+
+ rr = first_node(node_online_map);
+ for (i = 0; i < nr_cpu_ids; i++) {
+ if (early_cpu_to_node(i) != NUMA_NO_NODE)
+ continue;
+ numa_set_node(i, rr);
+ rr = next_node_in(rr, node_online_map);
+ }
+}
+
+static int __init numa_init(int (*init_func)(void))
+{
+ int i;
+ int ret;
+
+ for (i = 0; i < MAX_LOCAL_APIC; i++)
+ set_apicid_to_node(i, NUMA_NO_NODE);
+
+ nodes_clear(numa_nodes_parsed);
+ nodes_clear(node_possible_map);
+ nodes_clear(node_online_map);
+ memset(&numa_meminfo, 0, sizeof(numa_meminfo));
+ WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.memory,
+ MAX_NUMNODES));
+ WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.reserved,
+ MAX_NUMNODES));
+ /* In case that parsing SRAT failed. */
+ WARN_ON(memblock_clear_hotplug(0, ULLONG_MAX));
+ numa_reset_distance();
+
+ ret = init_func();
+ if (ret < 0)
+ return ret;
+
+ /*
+ * We reset memblock back to the top-down direction
+ * here because if we configured ACPI_NUMA, we have
+ * parsed SRAT in init_func(). It is ok to have the
+ * reset here even if we did't configure ACPI_NUMA
+ * or acpi numa init fails and fallbacks to dummy
+ * numa init.
+ */
+ memblock_set_bottom_up(false);
+
+ ret = numa_cleanup_meminfo(&numa_meminfo);
+ if (ret < 0)
+ return ret;
+
+ numa_emulation(&numa_meminfo, numa_distance_cnt);
+
+ ret = numa_register_memblks(&numa_meminfo);
+ if (ret < 0)
+ return ret;
+
+ for (i = 0; i < nr_cpu_ids; i++) {
+ int nid = early_cpu_to_node(i);
+
+ if (nid == NUMA_NO_NODE)
+ continue;
+ if (!node_online(nid))
+ numa_clear_node(i);
+ }
+ numa_init_array();
+
+ return 0;
+}
+
+/**
+ * dummy_numa_init - Fallback dummy NUMA init
+ *
+ * Used if there's no underlying NUMA architecture, NUMA initialization
+ * fails, or NUMA is disabled on the command line.
+ *
+ * Must online at least one node and add memory blocks that cover all
+ * allowed memory. This function must not fail.
+ */
+static int __init dummy_numa_init(void)
+{
+ printk(KERN_INFO "%s\n",
+ numa_off ? "NUMA turned off" : "No NUMA configuration found");
+ printk(KERN_INFO "Faking a node at [mem %#018Lx-%#018Lx]\n",
+ 0LLU, PFN_PHYS(max_pfn) - 1);
+
+ node_set(0, numa_nodes_parsed);
+ numa_add_memblk(0, 0, PFN_PHYS(max_pfn));
+
+ return 0;
+}
+
+/**
+ * x86_numa_init - Initialize NUMA
+ *
+ * Try each configured NUMA initialization method until one succeeds. The
+ * last fallback is dummy single node config encompassing whole memory and
+ * never fails.
+ */
+void __init x86_numa_init(void)
+{
+ if (!numa_off) {
+#ifdef CONFIG_ACPI_NUMA
+ if (!numa_init(x86_acpi_numa_init))
+ return;
+#endif
+#ifdef CONFIG_AMD_NUMA
+ if (!numa_init(amd_numa_init))
+ return;
+#endif
+ }
+
+ numa_init(dummy_numa_init);
+}
+
+
+/*
+ * A node may exist which has one or more Generic Initiators but no CPUs and no
+ * memory.
+ *
+ * This function must be called after init_cpu_to_node(), to ensure that any
+ * memoryless CPU nodes have already been brought online, and before the
+ * node_data[nid] is needed for zone list setup in build_all_zonelists().
+ *
+ * When this function is called, any nodes containing either memory and/or CPUs
+ * will already be online and there is no need to do anything extra, even if
+ * they also contain one or more Generic Initiators.
+ */
+void __init init_gi_nodes(void)
+{
+ int nid;
+
+ /*
+ * Exclude this node from
+ * bringup_nonboot_cpus
+ * cpu_up
+ * __try_online_node
+ * register_one_node
+ * because node_subsys is not initialized yet.
+ * TODO remove dependency on node_online
+ */
+ for_each_node_state(nid, N_GENERIC_INITIATOR)
+ if (!node_online(nid))
+ node_set_online(nid);
+}
+
+/*
+ * Setup early cpu_to_node.
+ *
+ * Populate cpu_to_node[] only if x86_cpu_to_apicid[],
+ * and apicid_to_node[] tables have valid entries for a CPU.
+ * This means we skip cpu_to_node[] initialisation for NUMA
+ * emulation and faking node case (when running a kernel compiled
+ * for NUMA on a non NUMA box), which is OK as cpu_to_node[]
+ * is already initialized in a round robin manner at numa_init_array,
+ * prior to this call, and this initialization is good enough
+ * for the fake NUMA cases.
+ *
+ * Called before the per_cpu areas are setup.
+ */
+void __init init_cpu_to_node(void)
+{
+ int cpu;
+ u16 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid);
+
+ BUG_ON(cpu_to_apicid == NULL);
+
+ for_each_possible_cpu(cpu) {
+ int node = numa_cpu_node(cpu);
+
+ if (node == NUMA_NO_NODE)
+ continue;
+
+ /*
+ * Exclude this node from
+ * bringup_nonboot_cpus
+ * cpu_up
+ * __try_online_node
+ * register_one_node
+ * because node_subsys is not initialized yet.
+ * TODO remove dependency on node_online
+ */
+ if (!node_online(node))
+ node_set_online(node);
+
+ numa_set_node(cpu, node);
+ }
+}
+
+#ifndef CONFIG_DEBUG_PER_CPU_MAPS
+
+# ifndef CONFIG_NUMA_EMU
+void numa_add_cpu(int cpu)
+{
+ cpumask_set_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
+}
+
+void numa_remove_cpu(int cpu)
+{
+ cpumask_clear_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
+}
+# endif /* !CONFIG_NUMA_EMU */
+
+#else /* !CONFIG_DEBUG_PER_CPU_MAPS */
+
+int __cpu_to_node(int cpu)
+{
+ if (early_per_cpu_ptr(x86_cpu_to_node_map)) {
+ printk(KERN_WARNING
+ "cpu_to_node(%d): usage too early!\n", cpu);
+ dump_stack();
+ return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
+ }
+ return per_cpu(x86_cpu_to_node_map, cpu);
+}
+EXPORT_SYMBOL(__cpu_to_node);
+
+/*
+ * Same function as cpu_to_node() but used if called before the
+ * per_cpu areas are setup.
+ */
+int early_cpu_to_node(int cpu)
+{
+ if (early_per_cpu_ptr(x86_cpu_to_node_map))
+ return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
+
+ if (!cpu_possible(cpu)) {
+ printk(KERN_WARNING
+ "early_cpu_to_node(%d): no per_cpu area!\n", cpu);
+ dump_stack();
+ return NUMA_NO_NODE;
+ }
+ return per_cpu(x86_cpu_to_node_map, cpu);
+}
+
+void debug_cpumask_set_cpu(int cpu, int node, bool enable)
+{
+ struct cpumask *mask;
+
+ if (node == NUMA_NO_NODE) {
+ /* early_cpu_to_node() already emits a warning and trace */
+ return;
+ }
+ mask = node_to_cpumask_map[node];
+ if (!cpumask_available(mask)) {
+ pr_err("node_to_cpumask_map[%i] NULL\n", node);
+ dump_stack();
+ return;
+ }
+
+ if (enable)
+ cpumask_set_cpu(cpu, mask);
+ else
+ cpumask_clear_cpu(cpu, mask);
+
+ printk(KERN_DEBUG "%s cpu %d node %d: mask now %*pbl\n",
+ enable ? "numa_add_cpu" : "numa_remove_cpu",
+ cpu, node, cpumask_pr_args(mask));
+ return;
+}
+
+# ifndef CONFIG_NUMA_EMU
+static void numa_set_cpumask(int cpu, bool enable)
+{
+ debug_cpumask_set_cpu(cpu, early_cpu_to_node(cpu), enable);
+}
+
+void numa_add_cpu(int cpu)
+{
+ numa_set_cpumask(cpu, true);
+}
+
+void numa_remove_cpu(int cpu)
+{
+ numa_set_cpumask(cpu, false);
+}
+# endif /* !CONFIG_NUMA_EMU */
+
+/*
+ * Returns a pointer to the bitmask of CPUs on Node 'node'.
+ */
+const struct cpumask *cpumask_of_node(int node)
+{
+ if ((unsigned)node >= nr_node_ids) {
+ printk(KERN_WARNING
+ "cpumask_of_node(%d): (unsigned)node >= nr_node_ids(%u)\n",
+ node, nr_node_ids);
+ dump_stack();
+ return cpu_none_mask;
+ }
+ if (!cpumask_available(node_to_cpumask_map[node])) {
+ printk(KERN_WARNING
+ "cpumask_of_node(%d): no node_to_cpumask_map!\n",
+ node);
+ dump_stack();
+ return cpu_online_mask;
+ }
+ return node_to_cpumask_map[node];
+}
+EXPORT_SYMBOL(cpumask_of_node);
+
+#endif /* !CONFIG_DEBUG_PER_CPU_MAPS */
+
+#ifdef CONFIG_NUMA_KEEP_MEMINFO
+static int meminfo_to_nid(struct numa_meminfo *mi, u64 start)
+{
+ int i;
+
+ for (i = 0; i < mi->nr_blks; i++)
+ if (mi->blk[i].start <= start && mi->blk[i].end > start)
+ return mi->blk[i].nid;
+ return NUMA_NO_NODE;
+}
+
+int phys_to_target_node(phys_addr_t start)
+{
+ int nid = meminfo_to_nid(&numa_meminfo, start);
+
+ /*
+ * Prefer online nodes, but if reserved memory might be
+ * hot-added continue the search with reserved ranges.
+ */
+ if (nid != NUMA_NO_NODE)
+ return nid;
+
+ return meminfo_to_nid(&numa_reserved_meminfo, start);
+}
+EXPORT_SYMBOL_GPL(phys_to_target_node);
+
+int memory_add_physaddr_to_nid(u64 start)
+{
+ int nid = meminfo_to_nid(&numa_meminfo, start);
+
+ if (nid == NUMA_NO_NODE)
+ nid = numa_meminfo.blk[0].nid;
+ return nid;
+}
+EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
+
+static int __init cmp_memblk(const void *a, const void *b)
+{
+ const struct numa_memblk *ma = *(const struct numa_memblk **)a;
+ const struct numa_memblk *mb = *(const struct numa_memblk **)b;
+
+ return ma->start - mb->start;
+}
+
+static struct numa_memblk *numa_memblk_list[NR_NODE_MEMBLKS] __initdata;
+
+/**
+ * numa_fill_memblks - Fill gaps in numa_meminfo memblks
+ * @start: address to begin fill
+ * @end: address to end fill
+ *
+ * Find and extend numa_meminfo memblks to cover the @start-@end
+ * physical address range, such that the first memblk includes
+ * @start, the last memblk includes @end, and any gaps in between
+ * are filled.
+ *
+ * RETURNS:
+ * 0 : Success
+ * NUMA_NO_MEMBLK : No memblk exists in @start-@end range
+ */
+
+int __init numa_fill_memblks(u64 start, u64 end)
+{
+ struct numa_memblk **blk = &numa_memblk_list[0];
+ struct numa_meminfo *mi = &numa_meminfo;
+ int count = 0;
+ u64 prev_end;
+
+ /*
+ * Create a list of pointers to numa_meminfo memblks that
+ * overlap start, end. Exclude (start == bi->end) since
+ * end addresses in both a CFMWS range and a memblk range
+ * are exclusive.
+ *
+ * This list of pointers is used to make in-place changes
+ * that fill out the numa_meminfo memblks.
+ */
+ for (int i = 0; i < mi->nr_blks; i++) {
+ struct numa_memblk *bi = &mi->blk[i];
+
+ if (start < bi->end && end >= bi->start) {
+ blk[count] = &mi->blk[i];
+ count++;
+ }
+ }
+ if (!count)
+ return NUMA_NO_MEMBLK;
+
+ /* Sort the list of pointers in memblk->start order */
+ sort(&blk[0], count, sizeof(blk[0]), cmp_memblk, NULL);
+
+ /* Make sure the first/last memblks include start/end */
+ blk[0]->start = min(blk[0]->start, start);
+ blk[count - 1]->end = max(blk[count - 1]->end, end);
+
+ /*
+ * Fill any gaps by tracking the previous memblks
+ * end address and backfilling to it if needed.
+ */
+ prev_end = blk[0]->end;
+ for (int i = 1; i < count; i++) {
+ struct numa_memblk *curr = blk[i];
+
+ if (prev_end >= curr->start) {
+ if (prev_end < curr->end)
+ prev_end = curr->end;
+ } else {
+ curr->start = prev_end;
+ prev_end = curr->end;
+ }
+ }
+ return 0;
+}
+
+#endif
diff --git a/arch/x86/mm/numa_32.c b/arch/x86/mm/numa_32.c
new file mode 100644
index 0000000000..104544359d
--- /dev/null
+++ b/arch/x86/mm/numa_32.c
@@ -0,0 +1,59 @@
+/*
+ * Written by: Patricia Gaughen <gone@us.ibm.com>, IBM Corporation
+ * August 2002: added remote node KVA remap - Martin J. Bligh
+ *
+ * Copyright (C) 2002, IBM Corp.
+ *
+ * All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
+ * NON INFRINGEMENT. See the GNU General Public License for more
+ * details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+ */
+
+#include <linux/memblock.h>
+#include <linux/init.h>
+
+#include "numa_internal.h"
+
+extern unsigned long highend_pfn, highstart_pfn;
+
+void __init initmem_init(void)
+{
+ x86_numa_init();
+
+#ifdef CONFIG_HIGHMEM
+ highstart_pfn = highend_pfn = max_pfn;
+ if (max_pfn > max_low_pfn)
+ highstart_pfn = max_low_pfn;
+ printk(KERN_NOTICE "%ldMB HIGHMEM available.\n",
+ pages_to_mb(highend_pfn - highstart_pfn));
+ high_memory = (void *) __va(highstart_pfn * PAGE_SIZE - 1) + 1;
+#else
+ high_memory = (void *) __va(max_low_pfn * PAGE_SIZE - 1) + 1;
+#endif
+ printk(KERN_NOTICE "%ldMB LOWMEM available.\n",
+ pages_to_mb(max_low_pfn));
+ printk(KERN_DEBUG "max_low_pfn = %lx, highstart_pfn = %lx\n",
+ max_low_pfn, highstart_pfn);
+
+ printk(KERN_DEBUG "Low memory ends at vaddr %08lx\n",
+ (ulong) pfn_to_kaddr(max_low_pfn));
+
+ printk(KERN_DEBUG "High memory starts at vaddr %08lx\n",
+ (ulong) pfn_to_kaddr(highstart_pfn));
+
+ __vmalloc_start_set = true;
+ setup_bootmem_allocator();
+}
diff --git a/arch/x86/mm/numa_64.c b/arch/x86/mm/numa_64.c
new file mode 100644
index 0000000000..59d80160fa
--- /dev/null
+++ b/arch/x86/mm/numa_64.c
@@ -0,0 +1,13 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Generic VM initialization for x86-64 NUMA setups.
+ * Copyright 2002,2003 Andi Kleen, SuSE Labs.
+ */
+#include <linux/memblock.h>
+
+#include "numa_internal.h"
+
+void __init initmem_init(void)
+{
+ x86_numa_init();
+}
diff --git a/arch/x86/mm/numa_emulation.c b/arch/x86/mm/numa_emulation.c
new file mode 100644
index 0000000000..9a9305367f
--- /dev/null
+++ b/arch/x86/mm/numa_emulation.c
@@ -0,0 +1,585 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * NUMA emulation
+ */
+#include <linux/kernel.h>
+#include <linux/errno.h>
+#include <linux/topology.h>
+#include <linux/memblock.h>
+#include <asm/dma.h>
+
+#include "numa_internal.h"
+
+static int emu_nid_to_phys[MAX_NUMNODES];
+static char *emu_cmdline __initdata;
+
+int __init numa_emu_cmdline(char *str)
+{
+ emu_cmdline = str;
+ return 0;
+}
+
+static int __init emu_find_memblk_by_nid(int nid, const struct numa_meminfo *mi)
+{
+ int i;
+
+ for (i = 0; i < mi->nr_blks; i++)
+ if (mi->blk[i].nid == nid)
+ return i;
+ return -ENOENT;
+}
+
+static u64 __init mem_hole_size(u64 start, u64 end)
+{
+ unsigned long start_pfn = PFN_UP(start);
+ unsigned long end_pfn = PFN_DOWN(end);
+
+ if (start_pfn < end_pfn)
+ return PFN_PHYS(absent_pages_in_range(start_pfn, end_pfn));
+ return 0;
+}
+
+/*
+ * Sets up nid to range from @start to @end. The return value is -errno if
+ * something went wrong, 0 otherwise.
+ */
+static int __init emu_setup_memblk(struct numa_meminfo *ei,
+ struct numa_meminfo *pi,
+ int nid, int phys_blk, u64 size)
+{
+ struct numa_memblk *eb = &ei->blk[ei->nr_blks];
+ struct numa_memblk *pb = &pi->blk[phys_blk];
+
+ if (ei->nr_blks >= NR_NODE_MEMBLKS) {
+ pr_err("NUMA: Too many emulated memblks, failing emulation\n");
+ return -EINVAL;
+ }
+
+ ei->nr_blks++;
+ eb->start = pb->start;
+ eb->end = pb->start + size;
+ eb->nid = nid;
+
+ if (emu_nid_to_phys[nid] == NUMA_NO_NODE)
+ emu_nid_to_phys[nid] = pb->nid;
+
+ pb->start += size;
+ if (pb->start >= pb->end) {
+ WARN_ON_ONCE(pb->start > pb->end);
+ numa_remove_memblk_from(phys_blk, pi);
+ }
+
+ printk(KERN_INFO "Faking node %d at [mem %#018Lx-%#018Lx] (%LuMB)\n",
+ nid, eb->start, eb->end - 1, (eb->end - eb->start) >> 20);
+ return 0;
+}
+
+/*
+ * Sets up nr_nodes fake nodes interleaved over physical nodes ranging from addr
+ * to max_addr.
+ *
+ * Returns zero on success or negative on error.
+ */
+static int __init split_nodes_interleave(struct numa_meminfo *ei,
+ struct numa_meminfo *pi,
+ u64 addr, u64 max_addr, int nr_nodes)
+{
+ nodemask_t physnode_mask = numa_nodes_parsed;
+ u64 size;
+ int big;
+ int nid = 0;
+ int i, ret;
+
+ if (nr_nodes <= 0)
+ return -1;
+ if (nr_nodes > MAX_NUMNODES) {
+ pr_info("numa=fake=%d too large, reducing to %d\n",
+ nr_nodes, MAX_NUMNODES);
+ nr_nodes = MAX_NUMNODES;
+ }
+
+ /*
+ * Calculate target node size. x86_32 freaks on __udivdi3() so do
+ * the division in ulong number of pages and convert back.
+ */
+ size = max_addr - addr - mem_hole_size(addr, max_addr);
+ size = PFN_PHYS((unsigned long)(size >> PAGE_SHIFT) / nr_nodes);
+
+ /*
+ * Calculate the number of big nodes that can be allocated as a result
+ * of consolidating the remainder.
+ */
+ big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * nr_nodes) /
+ FAKE_NODE_MIN_SIZE;
+
+ size &= FAKE_NODE_MIN_HASH_MASK;
+ if (!size) {
+ pr_err("Not enough memory for each node. "
+ "NUMA emulation disabled.\n");
+ return -1;
+ }
+
+ /*
+ * Continue to fill physical nodes with fake nodes until there is no
+ * memory left on any of them.
+ */
+ while (!nodes_empty(physnode_mask)) {
+ for_each_node_mask(i, physnode_mask) {
+ u64 dma32_end = PFN_PHYS(MAX_DMA32_PFN);
+ u64 start, limit, end;
+ int phys_blk;
+
+ phys_blk = emu_find_memblk_by_nid(i, pi);
+ if (phys_blk < 0) {
+ node_clear(i, physnode_mask);
+ continue;
+ }
+ start = pi->blk[phys_blk].start;
+ limit = pi->blk[phys_blk].end;
+ end = start + size;
+
+ if (nid < big)
+ end += FAKE_NODE_MIN_SIZE;
+
+ /*
+ * Continue to add memory to this fake node if its
+ * non-reserved memory is less than the per-node size.
+ */
+ while (end - start - mem_hole_size(start, end) < size) {
+ end += FAKE_NODE_MIN_SIZE;
+ if (end > limit) {
+ end = limit;
+ break;
+ }
+ }
+
+ /*
+ * If there won't be at least FAKE_NODE_MIN_SIZE of
+ * non-reserved memory in ZONE_DMA32 for the next node,
+ * this one must extend to the boundary.
+ */
+ if (end < dma32_end && dma32_end - end -
+ mem_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE)
+ end = dma32_end;
+
+ /*
+ * If there won't be enough non-reserved memory for the
+ * next node, this one must extend to the end of the
+ * physical node.
+ */
+ if (limit - end - mem_hole_size(end, limit) < size)
+ end = limit;
+
+ ret = emu_setup_memblk(ei, pi, nid++ % nr_nodes,
+ phys_blk,
+ min(end, limit) - start);
+ if (ret < 0)
+ return ret;
+ }
+ }
+ return 0;
+}
+
+/*
+ * Returns the end address of a node so that there is at least `size' amount of
+ * non-reserved memory or `max_addr' is reached.
+ */
+static u64 __init find_end_of_node(u64 start, u64 max_addr, u64 size)
+{
+ u64 end = start + size;
+
+ while (end - start - mem_hole_size(start, end) < size) {
+ end += FAKE_NODE_MIN_SIZE;
+ if (end > max_addr) {
+ end = max_addr;
+ break;
+ }
+ }
+ return end;
+}
+
+static u64 uniform_size(u64 max_addr, u64 base, u64 hole, int nr_nodes)
+{
+ unsigned long max_pfn = PHYS_PFN(max_addr);
+ unsigned long base_pfn = PHYS_PFN(base);
+ unsigned long hole_pfns = PHYS_PFN(hole);
+
+ return PFN_PHYS((max_pfn - base_pfn - hole_pfns) / nr_nodes);
+}
+
+/*
+ * Sets up fake nodes of `size' interleaved over physical nodes ranging from
+ * `addr' to `max_addr'.
+ *
+ * Returns zero on success or negative on error.
+ */
+static int __init split_nodes_size_interleave_uniform(struct numa_meminfo *ei,
+ struct numa_meminfo *pi,
+ u64 addr, u64 max_addr, u64 size,
+ int nr_nodes, struct numa_memblk *pblk,
+ int nid)
+{
+ nodemask_t physnode_mask = numa_nodes_parsed;
+ int i, ret, uniform = 0;
+ u64 min_size;
+
+ if ((!size && !nr_nodes) || (nr_nodes && !pblk))
+ return -1;
+
+ /*
+ * In the 'uniform' case split the passed in physical node by
+ * nr_nodes, in the non-uniform case, ignore the passed in
+ * physical block and try to create nodes of at least size
+ * @size.
+ *
+ * In the uniform case, split the nodes strictly by physical
+ * capacity, i.e. ignore holes. In the non-uniform case account
+ * for holes and treat @size as a minimum floor.
+ */
+ if (!nr_nodes)
+ nr_nodes = MAX_NUMNODES;
+ else {
+ nodes_clear(physnode_mask);
+ node_set(pblk->nid, physnode_mask);
+ uniform = 1;
+ }
+
+ if (uniform) {
+ min_size = uniform_size(max_addr, addr, 0, nr_nodes);
+ size = min_size;
+ } else {
+ /*
+ * The limit on emulated nodes is MAX_NUMNODES, so the
+ * size per node is increased accordingly if the
+ * requested size is too small. This creates a uniform
+ * distribution of node sizes across the entire machine
+ * (but not necessarily over physical nodes).
+ */
+ min_size = uniform_size(max_addr, addr,
+ mem_hole_size(addr, max_addr), nr_nodes);
+ }
+ min_size = ALIGN(max(min_size, FAKE_NODE_MIN_SIZE), FAKE_NODE_MIN_SIZE);
+ if (size < min_size) {
+ pr_err("Fake node size %LuMB too small, increasing to %LuMB\n",
+ size >> 20, min_size >> 20);
+ size = min_size;
+ }
+ size = ALIGN_DOWN(size, FAKE_NODE_MIN_SIZE);
+
+ /*
+ * Fill physical nodes with fake nodes of size until there is no memory
+ * left on any of them.
+ */
+ while (!nodes_empty(physnode_mask)) {
+ for_each_node_mask(i, physnode_mask) {
+ u64 dma32_end = PFN_PHYS(MAX_DMA32_PFN);
+ u64 start, limit, end;
+ int phys_blk;
+
+ phys_blk = emu_find_memblk_by_nid(i, pi);
+ if (phys_blk < 0) {
+ node_clear(i, physnode_mask);
+ continue;
+ }
+
+ start = pi->blk[phys_blk].start;
+ limit = pi->blk[phys_blk].end;
+
+ if (uniform)
+ end = start + size;
+ else
+ end = find_end_of_node(start, limit, size);
+ /*
+ * If there won't be at least FAKE_NODE_MIN_SIZE of
+ * non-reserved memory in ZONE_DMA32 for the next node,
+ * this one must extend to the boundary.
+ */
+ if (end < dma32_end && dma32_end - end -
+ mem_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE)
+ end = dma32_end;
+
+ /*
+ * If there won't be enough non-reserved memory for the
+ * next node, this one must extend to the end of the
+ * physical node.
+ */
+ if ((limit - end - mem_hole_size(end, limit) < size)
+ && !uniform)
+ end = limit;
+
+ ret = emu_setup_memblk(ei, pi, nid++ % MAX_NUMNODES,
+ phys_blk,
+ min(end, limit) - start);
+ if (ret < 0)
+ return ret;
+ }
+ }
+ return nid;
+}
+
+static int __init split_nodes_size_interleave(struct numa_meminfo *ei,
+ struct numa_meminfo *pi,
+ u64 addr, u64 max_addr, u64 size)
+{
+ return split_nodes_size_interleave_uniform(ei, pi, addr, max_addr, size,
+ 0, NULL, 0);
+}
+
+static int __init setup_emu2phys_nid(int *dfl_phys_nid)
+{
+ int i, max_emu_nid = 0;
+
+ *dfl_phys_nid = NUMA_NO_NODE;
+ for (i = 0; i < ARRAY_SIZE(emu_nid_to_phys); i++) {
+ if (emu_nid_to_phys[i] != NUMA_NO_NODE) {
+ max_emu_nid = i;
+ if (*dfl_phys_nid == NUMA_NO_NODE)
+ *dfl_phys_nid = emu_nid_to_phys[i];
+ }
+ }
+
+ return max_emu_nid;
+}
+
+/**
+ * numa_emulation - Emulate NUMA nodes
+ * @numa_meminfo: NUMA configuration to massage
+ * @numa_dist_cnt: The size of the physical NUMA distance table
+ *
+ * Emulate NUMA nodes according to the numa=fake kernel parameter.
+ * @numa_meminfo contains the physical memory configuration and is modified
+ * to reflect the emulated configuration on success. @numa_dist_cnt is
+ * used to determine the size of the physical distance table.
+ *
+ * On success, the following modifications are made.
+ *
+ * - @numa_meminfo is updated to reflect the emulated nodes.
+ *
+ * - __apicid_to_node[] is updated such that APIC IDs are mapped to the
+ * emulated nodes.
+ *
+ * - NUMA distance table is rebuilt to represent distances between emulated
+ * nodes. The distances are determined considering how emulated nodes
+ * are mapped to physical nodes and match the actual distances.
+ *
+ * - emu_nid_to_phys[] reflects how emulated nodes are mapped to physical
+ * nodes. This is used by numa_add_cpu() and numa_remove_cpu().
+ *
+ * If emulation is not enabled or fails, emu_nid_to_phys[] is filled with
+ * identity mapping and no other modification is made.
+ */
+void __init numa_emulation(struct numa_meminfo *numa_meminfo, int numa_dist_cnt)
+{
+ static struct numa_meminfo ei __initdata;
+ static struct numa_meminfo pi __initdata;
+ const u64 max_addr = PFN_PHYS(max_pfn);
+ u8 *phys_dist = NULL;
+ size_t phys_size = numa_dist_cnt * numa_dist_cnt * sizeof(phys_dist[0]);
+ int max_emu_nid, dfl_phys_nid;
+ int i, j, ret;
+
+ if (!emu_cmdline)
+ goto no_emu;
+
+ memset(&ei, 0, sizeof(ei));
+ pi = *numa_meminfo;
+
+ for (i = 0; i < MAX_NUMNODES; i++)
+ emu_nid_to_phys[i] = NUMA_NO_NODE;
+
+ /*
+ * If the numa=fake command-line contains a 'M' or 'G', it represents
+ * the fixed node size. Otherwise, if it is just a single number N,
+ * split the system RAM into N fake nodes.
+ */
+ if (strchr(emu_cmdline, 'U')) {
+ nodemask_t physnode_mask = numa_nodes_parsed;
+ unsigned long n;
+ int nid = 0;
+
+ n = simple_strtoul(emu_cmdline, &emu_cmdline, 0);
+ ret = -1;
+ for_each_node_mask(i, physnode_mask) {
+ /*
+ * The reason we pass in blk[0] is due to
+ * numa_remove_memblk_from() called by
+ * emu_setup_memblk() will delete entry 0
+ * and then move everything else up in the pi.blk
+ * array. Therefore we should always be looking
+ * at blk[0].
+ */
+ ret = split_nodes_size_interleave_uniform(&ei, &pi,
+ pi.blk[0].start, pi.blk[0].end, 0,
+ n, &pi.blk[0], nid);
+ if (ret < 0)
+ break;
+ if (ret < n) {
+ pr_info("%s: phys: %d only got %d of %ld nodes, failing\n",
+ __func__, i, ret, n);
+ ret = -1;
+ break;
+ }
+ nid = ret;
+ }
+ } else if (strchr(emu_cmdline, 'M') || strchr(emu_cmdline, 'G')) {
+ u64 size;
+
+ size = memparse(emu_cmdline, &emu_cmdline);
+ ret = split_nodes_size_interleave(&ei, &pi, 0, max_addr, size);
+ } else {
+ unsigned long n;
+
+ n = simple_strtoul(emu_cmdline, &emu_cmdline, 0);
+ ret = split_nodes_interleave(&ei, &pi, 0, max_addr, n);
+ }
+ if (*emu_cmdline == ':')
+ emu_cmdline++;
+
+ if (ret < 0)
+ goto no_emu;
+
+ if (numa_cleanup_meminfo(&ei) < 0) {
+ pr_warn("NUMA: Warning: constructed meminfo invalid, disabling emulation\n");
+ goto no_emu;
+ }
+
+ /* copy the physical distance table */
+ if (numa_dist_cnt) {
+ u64 phys;
+
+ phys = memblock_phys_alloc_range(phys_size, PAGE_SIZE, 0,
+ PFN_PHYS(max_pfn_mapped));
+ if (!phys) {
+ pr_warn("NUMA: Warning: can't allocate copy of distance table, disabling emulation\n");
+ goto no_emu;
+ }
+ phys_dist = __va(phys);
+
+ for (i = 0; i < numa_dist_cnt; i++)
+ for (j = 0; j < numa_dist_cnt; j++)
+ phys_dist[i * numa_dist_cnt + j] =
+ node_distance(i, j);
+ }
+
+ /*
+ * Determine the max emulated nid and the default phys nid to use
+ * for unmapped nodes.
+ */
+ max_emu_nid = setup_emu2phys_nid(&dfl_phys_nid);
+
+ /* commit */
+ *numa_meminfo = ei;
+
+ /* Make sure numa_nodes_parsed only contains emulated nodes */
+ nodes_clear(numa_nodes_parsed);
+ for (i = 0; i < ARRAY_SIZE(ei.blk); i++)
+ if (ei.blk[i].start != ei.blk[i].end &&
+ ei.blk[i].nid != NUMA_NO_NODE)
+ node_set(ei.blk[i].nid, numa_nodes_parsed);
+
+ /*
+ * Transform __apicid_to_node table to use emulated nids by
+ * reverse-mapping phys_nid. The maps should always exist but fall
+ * back to zero just in case.
+ */
+ for (i = 0; i < ARRAY_SIZE(__apicid_to_node); i++) {
+ if (__apicid_to_node[i] == NUMA_NO_NODE)
+ continue;
+ for (j = 0; j < ARRAY_SIZE(emu_nid_to_phys); j++)
+ if (__apicid_to_node[i] == emu_nid_to_phys[j])
+ break;
+ __apicid_to_node[i] = j < ARRAY_SIZE(emu_nid_to_phys) ? j : 0;
+ }
+
+ /* make sure all emulated nodes are mapped to a physical node */
+ for (i = 0; i < ARRAY_SIZE(emu_nid_to_phys); i++)
+ if (emu_nid_to_phys[i] == NUMA_NO_NODE)
+ emu_nid_to_phys[i] = dfl_phys_nid;
+
+ /* transform distance table */
+ numa_reset_distance();
+ for (i = 0; i < max_emu_nid + 1; i++) {
+ for (j = 0; j < max_emu_nid + 1; j++) {
+ int physi = emu_nid_to_phys[i];
+ int physj = emu_nid_to_phys[j];
+ int dist;
+
+ if (get_option(&emu_cmdline, &dist) == 2)
+ ;
+ else if (physi >= numa_dist_cnt || physj >= numa_dist_cnt)
+ dist = physi == physj ?
+ LOCAL_DISTANCE : REMOTE_DISTANCE;
+ else
+ dist = phys_dist[physi * numa_dist_cnt + physj];
+
+ numa_set_distance(i, j, dist);
+ }
+ }
+
+ /* free the copied physical distance table */
+ memblock_free(phys_dist, phys_size);
+ return;
+
+no_emu:
+ /* No emulation. Build identity emu_nid_to_phys[] for numa_add_cpu() */
+ for (i = 0; i < ARRAY_SIZE(emu_nid_to_phys); i++)
+ emu_nid_to_phys[i] = i;
+}
+
+#ifndef CONFIG_DEBUG_PER_CPU_MAPS
+void numa_add_cpu(int cpu)
+{
+ int physnid, nid;
+
+ nid = early_cpu_to_node(cpu);
+ BUG_ON(nid == NUMA_NO_NODE || !node_online(nid));
+
+ physnid = emu_nid_to_phys[nid];
+
+ /*
+ * Map the cpu to each emulated node that is allocated on the physical
+ * node of the cpu's apic id.
+ */
+ for_each_online_node(nid)
+ if (emu_nid_to_phys[nid] == physnid)
+ cpumask_set_cpu(cpu, node_to_cpumask_map[nid]);
+}
+
+void numa_remove_cpu(int cpu)
+{
+ int i;
+
+ for_each_online_node(i)
+ cpumask_clear_cpu(cpu, node_to_cpumask_map[i]);
+}
+#else /* !CONFIG_DEBUG_PER_CPU_MAPS */
+static void numa_set_cpumask(int cpu, bool enable)
+{
+ int nid, physnid;
+
+ nid = early_cpu_to_node(cpu);
+ if (nid == NUMA_NO_NODE) {
+ /* early_cpu_to_node() already emits a warning and trace */
+ return;
+ }
+
+ physnid = emu_nid_to_phys[nid];
+
+ for_each_online_node(nid) {
+ if (emu_nid_to_phys[nid] != physnid)
+ continue;
+
+ debug_cpumask_set_cpu(cpu, nid, enable);
+ }
+}
+
+void numa_add_cpu(int cpu)
+{
+ numa_set_cpumask(cpu, true);
+}
+
+void numa_remove_cpu(int cpu)
+{
+ numa_set_cpumask(cpu, false);
+}
+#endif /* !CONFIG_DEBUG_PER_CPU_MAPS */
diff --git a/arch/x86/mm/numa_internal.h b/arch/x86/mm/numa_internal.h
new file mode 100644
index 0000000000..86860f2796
--- /dev/null
+++ b/arch/x86/mm/numa_internal.h
@@ -0,0 +1,34 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifndef __X86_MM_NUMA_INTERNAL_H
+#define __X86_MM_NUMA_INTERNAL_H
+
+#include <linux/types.h>
+#include <asm/numa.h>
+
+struct numa_memblk {
+ u64 start;
+ u64 end;
+ int nid;
+};
+
+struct numa_meminfo {
+ int nr_blks;
+ struct numa_memblk blk[NR_NODE_MEMBLKS];
+};
+
+void __init numa_remove_memblk_from(int idx, struct numa_meminfo *mi);
+int __init numa_cleanup_meminfo(struct numa_meminfo *mi);
+void __init numa_reset_distance(void);
+
+void __init x86_numa_init(void);
+
+#ifdef CONFIG_NUMA_EMU
+void __init numa_emulation(struct numa_meminfo *numa_meminfo,
+ int numa_dist_cnt);
+#else
+static inline void numa_emulation(struct numa_meminfo *numa_meminfo,
+ int numa_dist_cnt)
+{ }
+#endif
+
+#endif /* __X86_MM_NUMA_INTERNAL_H */
diff --git a/arch/x86/mm/pat/Makefile b/arch/x86/mm/pat/Makefile
new file mode 100644
index 0000000000..ea464c9951
--- /dev/null
+++ b/arch/x86/mm/pat/Makefile
@@ -0,0 +1,5 @@
+# SPDX-License-Identifier: GPL-2.0
+
+obj-y := set_memory.o memtype.o
+
+obj-$(CONFIG_X86_PAT) += memtype_interval.o
diff --git a/arch/x86/mm/pat/cpa-test.c b/arch/x86/mm/pat/cpa-test.c
new file mode 100644
index 0000000000..3d2f7f0a6e
--- /dev/null
+++ b/arch/x86/mm/pat/cpa-test.c
@@ -0,0 +1,277 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * self test for change_page_attr.
+ *
+ * Clears the a test pte bit on random pages in the direct mapping,
+ * then reverts and compares page tables forwards and afterwards.
+ */
+#include <linux/memblock.h>
+#include <linux/kthread.h>
+#include <linux/random.h>
+#include <linux/kernel.h>
+#include <linux/init.h>
+#include <linux/mm.h>
+#include <linux/vmalloc.h>
+
+#include <asm/cacheflush.h>
+#include <asm/kdebug.h>
+
+/*
+ * Only print the results of the first pass:
+ */
+static __read_mostly int print = 1;
+
+enum {
+ NTEST = 3 * 100,
+ NPAGES = 100,
+#ifdef CONFIG_X86_64
+ LPS = (1 << PMD_SHIFT),
+#elif defined(CONFIG_X86_PAE)
+ LPS = (1 << PMD_SHIFT),
+#else
+ LPS = (1 << 22),
+#endif
+ GPS = (1<<30)
+};
+
+#define PAGE_CPA_TEST __pgprot(_PAGE_CPA_TEST)
+
+static int pte_testbit(pte_t pte)
+{
+ return pte_flags(pte) & _PAGE_SOFTW1;
+}
+
+struct split_state {
+ long lpg, gpg, spg, exec;
+ long min_exec, max_exec;
+};
+
+static int print_split(struct split_state *s)
+{
+ long i, expected, missed = 0;
+ int err = 0;
+
+ s->lpg = s->gpg = s->spg = s->exec = 0;
+ s->min_exec = ~0UL;
+ s->max_exec = 0;
+ for (i = 0; i < max_pfn_mapped; ) {
+ unsigned long addr = (unsigned long)__va(i << PAGE_SHIFT);
+ unsigned int level;
+ pte_t *pte;
+
+ pte = lookup_address(addr, &level);
+ if (!pte) {
+ missed++;
+ i++;
+ continue;
+ }
+
+ if (level == PG_LEVEL_1G && sizeof(long) == 8) {
+ s->gpg++;
+ i += GPS/PAGE_SIZE;
+ } else if (level == PG_LEVEL_2M) {
+ if ((pte_val(*pte) & _PAGE_PRESENT) && !(pte_val(*pte) & _PAGE_PSE)) {
+ printk(KERN_ERR
+ "%lx level %d but not PSE %Lx\n",
+ addr, level, (u64)pte_val(*pte));
+ err = 1;
+ }
+ s->lpg++;
+ i += LPS/PAGE_SIZE;
+ } else {
+ s->spg++;
+ i++;
+ }
+ if (!(pte_val(*pte) & _PAGE_NX)) {
+ s->exec++;
+ if (addr < s->min_exec)
+ s->min_exec = addr;
+ if (addr > s->max_exec)
+ s->max_exec = addr;
+ }
+ }
+ if (print) {
+ printk(KERN_INFO
+ " 4k %lu large %lu gb %lu x %lu[%lx-%lx] miss %lu\n",
+ s->spg, s->lpg, s->gpg, s->exec,
+ s->min_exec != ~0UL ? s->min_exec : 0,
+ s->max_exec, missed);
+ }
+
+ expected = (s->gpg*GPS + s->lpg*LPS)/PAGE_SIZE + s->spg + missed;
+ if (expected != i) {
+ printk(KERN_ERR "CPA max_pfn_mapped %lu but expected %lu\n",
+ max_pfn_mapped, expected);
+ return 1;
+ }
+ return err;
+}
+
+static unsigned long addr[NTEST];
+static unsigned int len[NTEST];
+
+static struct page *pages[NPAGES];
+static unsigned long addrs[NPAGES];
+
+/* Change the global bit on random pages in the direct mapping */
+static int pageattr_test(void)
+{
+ struct split_state sa, sb, sc;
+ unsigned long *bm;
+ pte_t *pte, pte0;
+ int failed = 0;
+ unsigned int level;
+ int i, k;
+ int err;
+
+ if (print)
+ printk(KERN_INFO "CPA self-test:\n");
+
+ bm = vzalloc((max_pfn_mapped + 7) / 8);
+ if (!bm) {
+ printk(KERN_ERR "CPA Cannot vmalloc bitmap\n");
+ return -ENOMEM;
+ }
+
+ failed += print_split(&sa);
+
+ for (i = 0; i < NTEST; i++) {
+ unsigned long pfn = get_random_u32_below(max_pfn_mapped);
+
+ addr[i] = (unsigned long)__va(pfn << PAGE_SHIFT);
+ len[i] = get_random_u32_below(NPAGES);
+ len[i] = min_t(unsigned long, len[i], max_pfn_mapped - pfn - 1);
+
+ if (len[i] == 0)
+ len[i] = 1;
+
+ pte = NULL;
+ pte0 = pfn_pte(0, __pgprot(0)); /* shut gcc up */
+
+ for (k = 0; k < len[i]; k++) {
+ pte = lookup_address(addr[i] + k*PAGE_SIZE, &level);
+ if (!pte || pgprot_val(pte_pgprot(*pte)) == 0 ||
+ !(pte_val(*pte) & _PAGE_PRESENT)) {
+ addr[i] = 0;
+ break;
+ }
+ if (k == 0) {
+ pte0 = *pte;
+ } else {
+ if (pgprot_val(pte_pgprot(*pte)) !=
+ pgprot_val(pte_pgprot(pte0))) {
+ len[i] = k;
+ break;
+ }
+ }
+ if (test_bit(pfn + k, bm)) {
+ len[i] = k;
+ break;
+ }
+ __set_bit(pfn + k, bm);
+ addrs[k] = addr[i] + k*PAGE_SIZE;
+ pages[k] = pfn_to_page(pfn + k);
+ }
+ if (!addr[i] || !pte || !k) {
+ addr[i] = 0;
+ continue;
+ }
+
+ switch (i % 3) {
+ case 0:
+ err = change_page_attr_set(&addr[i], len[i], PAGE_CPA_TEST, 0);
+ break;
+
+ case 1:
+ err = change_page_attr_set(addrs, len[1], PAGE_CPA_TEST, 1);
+ break;
+
+ case 2:
+ err = cpa_set_pages_array(pages, len[i], PAGE_CPA_TEST);
+ break;
+ }
+
+
+ if (err < 0) {
+ printk(KERN_ERR "CPA %d failed %d\n", i, err);
+ failed++;
+ }
+
+ pte = lookup_address(addr[i], &level);
+ if (!pte || !pte_testbit(*pte) || pte_huge(*pte)) {
+ printk(KERN_ERR "CPA %lx: bad pte %Lx\n", addr[i],
+ pte ? (u64)pte_val(*pte) : 0ULL);
+ failed++;
+ }
+ if (level != PG_LEVEL_4K) {
+ printk(KERN_ERR "CPA %lx: unexpected level %d\n",
+ addr[i], level);
+ failed++;
+ }
+
+ }
+ vfree(bm);
+
+ failed += print_split(&sb);
+
+ for (i = 0; i < NTEST; i++) {
+ if (!addr[i])
+ continue;
+ pte = lookup_address(addr[i], &level);
+ if (!pte) {
+ printk(KERN_ERR "CPA lookup of %lx failed\n", addr[i]);
+ failed++;
+ continue;
+ }
+ err = change_page_attr_clear(&addr[i], len[i], PAGE_CPA_TEST, 0);
+ if (err < 0) {
+ printk(KERN_ERR "CPA reverting failed: %d\n", err);
+ failed++;
+ }
+ pte = lookup_address(addr[i], &level);
+ if (!pte || pte_testbit(*pte)) {
+ printk(KERN_ERR "CPA %lx: bad pte after revert %Lx\n",
+ addr[i], pte ? (u64)pte_val(*pte) : 0ULL);
+ failed++;
+ }
+
+ }
+
+ failed += print_split(&sc);
+
+ if (failed) {
+ WARN(1, KERN_ERR "NOT PASSED. Please report.\n");
+ return -EINVAL;
+ } else {
+ if (print)
+ printk(KERN_INFO "ok.\n");
+ }
+
+ return 0;
+}
+
+static int do_pageattr_test(void *__unused)
+{
+ while (!kthread_should_stop()) {
+ schedule_timeout_interruptible(HZ*30);
+ if (pageattr_test() < 0)
+ break;
+ if (print)
+ print--;
+ }
+ return 0;
+}
+
+static int start_pageattr_test(void)
+{
+ struct task_struct *p;
+
+ p = kthread_create(do_pageattr_test, NULL, "pageattr-test");
+ if (!IS_ERR(p))
+ wake_up_process(p);
+ else
+ WARN_ON(1);
+
+ return 0;
+}
+device_initcall(start_pageattr_test);
diff --git a/arch/x86/mm/pat/memtype.c b/arch/x86/mm/pat/memtype.c
new file mode 100644
index 0000000000..de10800cd4
--- /dev/null
+++ b/arch/x86/mm/pat/memtype.c
@@ -0,0 +1,1194 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Page Attribute Table (PAT) support: handle memory caching attributes in page tables.
+ *
+ * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
+ * Suresh B Siddha <suresh.b.siddha@intel.com>
+ *
+ * Loosely based on earlier PAT patchset from Eric Biederman and Andi Kleen.
+ *
+ * Basic principles:
+ *
+ * PAT is a CPU feature supported by all modern x86 CPUs, to allow the firmware and
+ * the kernel to set one of a handful of 'caching type' attributes for physical
+ * memory ranges: uncached, write-combining, write-through, write-protected,
+ * and the most commonly used and default attribute: write-back caching.
+ *
+ * PAT support supercedes and augments MTRR support in a compatible fashion: MTRR is
+ * a hardware interface to enumerate a limited number of physical memory ranges
+ * and set their caching attributes explicitly, programmed into the CPU via MSRs.
+ * Even modern CPUs have MTRRs enabled - but these are typically not touched
+ * by the kernel or by user-space (such as the X server), we rely on PAT for any
+ * additional cache attribute logic.
+ *
+ * PAT doesn't work via explicit memory ranges, but uses page table entries to add
+ * cache attribute information to the mapped memory range: there's 3 bits used,
+ * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT), with the 8 possible values mapped by the
+ * CPU to actual cache attributes via an MSR loaded into the CPU (MSR_IA32_CR_PAT).
+ *
+ * ( There's a metric ton of finer details, such as compatibility with CPU quirks
+ * that only support 4 types of PAT entries, and interaction with MTRRs, see
+ * below for details. )
+ */
+
+#include <linux/seq_file.h>
+#include <linux/memblock.h>
+#include <linux/debugfs.h>
+#include <linux/ioport.h>
+#include <linux/kernel.h>
+#include <linux/pfn_t.h>
+#include <linux/slab.h>
+#include <linux/mm.h>
+#include <linux/fs.h>
+#include <linux/rbtree.h>
+
+#include <asm/cacheflush.h>
+#include <asm/cacheinfo.h>
+#include <asm/processor.h>
+#include <asm/tlbflush.h>
+#include <asm/x86_init.h>
+#include <asm/fcntl.h>
+#include <asm/e820/api.h>
+#include <asm/mtrr.h>
+#include <asm/page.h>
+#include <asm/msr.h>
+#include <asm/memtype.h>
+#include <asm/io.h>
+
+#include "memtype.h"
+#include "../mm_internal.h"
+
+#undef pr_fmt
+#define pr_fmt(fmt) "" fmt
+
+static bool __read_mostly pat_disabled = !IS_ENABLED(CONFIG_X86_PAT);
+static u64 __ro_after_init pat_msr_val;
+
+/*
+ * PAT support is enabled by default, but can be disabled for
+ * various user-requested or hardware-forced reasons:
+ */
+static void __init pat_disable(const char *msg_reason)
+{
+ if (pat_disabled)
+ return;
+
+ pat_disabled = true;
+ pr_info("x86/PAT: %s\n", msg_reason);
+
+ memory_caching_control &= ~CACHE_PAT;
+}
+
+static int __init nopat(char *str)
+{
+ pat_disable("PAT support disabled via boot option.");
+ return 0;
+}
+early_param("nopat", nopat);
+
+bool pat_enabled(void)
+{
+ return !pat_disabled;
+}
+EXPORT_SYMBOL_GPL(pat_enabled);
+
+int pat_debug_enable;
+
+static int __init pat_debug_setup(char *str)
+{
+ pat_debug_enable = 1;
+ return 1;
+}
+__setup("debugpat", pat_debug_setup);
+
+#ifdef CONFIG_X86_PAT
+/*
+ * X86 PAT uses page flags arch_1 and uncached together to keep track of
+ * memory type of pages that have backing page struct.
+ *
+ * X86 PAT supports 4 different memory types:
+ * - _PAGE_CACHE_MODE_WB
+ * - _PAGE_CACHE_MODE_WC
+ * - _PAGE_CACHE_MODE_UC_MINUS
+ * - _PAGE_CACHE_MODE_WT
+ *
+ * _PAGE_CACHE_MODE_WB is the default type.
+ */
+
+#define _PGMT_WB 0
+#define _PGMT_WC (1UL << PG_arch_1)
+#define _PGMT_UC_MINUS (1UL << PG_uncached)
+#define _PGMT_WT (1UL << PG_uncached | 1UL << PG_arch_1)
+#define _PGMT_MASK (1UL << PG_uncached | 1UL << PG_arch_1)
+#define _PGMT_CLEAR_MASK (~_PGMT_MASK)
+
+static inline enum page_cache_mode get_page_memtype(struct page *pg)
+{
+ unsigned long pg_flags = pg->flags & _PGMT_MASK;
+
+ if (pg_flags == _PGMT_WB)
+ return _PAGE_CACHE_MODE_WB;
+ else if (pg_flags == _PGMT_WC)
+ return _PAGE_CACHE_MODE_WC;
+ else if (pg_flags == _PGMT_UC_MINUS)
+ return _PAGE_CACHE_MODE_UC_MINUS;
+ else
+ return _PAGE_CACHE_MODE_WT;
+}
+
+static inline void set_page_memtype(struct page *pg,
+ enum page_cache_mode memtype)
+{
+ unsigned long memtype_flags;
+ unsigned long old_flags;
+ unsigned long new_flags;
+
+ switch (memtype) {
+ case _PAGE_CACHE_MODE_WC:
+ memtype_flags = _PGMT_WC;
+ break;
+ case _PAGE_CACHE_MODE_UC_MINUS:
+ memtype_flags = _PGMT_UC_MINUS;
+ break;
+ case _PAGE_CACHE_MODE_WT:
+ memtype_flags = _PGMT_WT;
+ break;
+ case _PAGE_CACHE_MODE_WB:
+ default:
+ memtype_flags = _PGMT_WB;
+ break;
+ }
+
+ old_flags = READ_ONCE(pg->flags);
+ do {
+ new_flags = (old_flags & _PGMT_CLEAR_MASK) | memtype_flags;
+ } while (!try_cmpxchg(&pg->flags, &old_flags, new_flags));
+}
+#else
+static inline enum page_cache_mode get_page_memtype(struct page *pg)
+{
+ return -1;
+}
+static inline void set_page_memtype(struct page *pg,
+ enum page_cache_mode memtype)
+{
+}
+#endif
+
+enum {
+ PAT_UC = 0, /* uncached */
+ PAT_WC = 1, /* Write combining */
+ PAT_WT = 4, /* Write Through */
+ PAT_WP = 5, /* Write Protected */
+ PAT_WB = 6, /* Write Back (default) */
+ PAT_UC_MINUS = 7, /* UC, but can be overridden by MTRR */
+};
+
+#define CM(c) (_PAGE_CACHE_MODE_ ## c)
+
+static enum page_cache_mode __init pat_get_cache_mode(unsigned int pat_val,
+ char *msg)
+{
+ enum page_cache_mode cache;
+ char *cache_mode;
+
+ switch (pat_val) {
+ case PAT_UC: cache = CM(UC); cache_mode = "UC "; break;
+ case PAT_WC: cache = CM(WC); cache_mode = "WC "; break;
+ case PAT_WT: cache = CM(WT); cache_mode = "WT "; break;
+ case PAT_WP: cache = CM(WP); cache_mode = "WP "; break;
+ case PAT_WB: cache = CM(WB); cache_mode = "WB "; break;
+ case PAT_UC_MINUS: cache = CM(UC_MINUS); cache_mode = "UC- "; break;
+ default: cache = CM(WB); cache_mode = "WB "; break;
+ }
+
+ memcpy(msg, cache_mode, 4);
+
+ return cache;
+}
+
+#undef CM
+
+/*
+ * Update the cache mode to pgprot translation tables according to PAT
+ * configuration.
+ * Using lower indices is preferred, so we start with highest index.
+ */
+static void __init init_cache_modes(u64 pat)
+{
+ enum page_cache_mode cache;
+ char pat_msg[33];
+ int i;
+
+ pat_msg[32] = 0;
+ for (i = 7; i >= 0; i--) {
+ cache = pat_get_cache_mode((pat >> (i * 8)) & 7,
+ pat_msg + 4 * i);
+ update_cache_mode_entry(i, cache);
+ }
+ pr_info("x86/PAT: Configuration [0-7]: %s\n", pat_msg);
+}
+
+void pat_cpu_init(void)
+{
+ if (!boot_cpu_has(X86_FEATURE_PAT)) {
+ /*
+ * If this happens we are on a secondary CPU, but switched to
+ * PAT on the boot CPU. We have no way to undo PAT.
+ */
+ panic("x86/PAT: PAT enabled, but not supported by secondary CPU\n");
+ }
+
+ wrmsrl(MSR_IA32_CR_PAT, pat_msr_val);
+}
+
+/**
+ * pat_bp_init - Initialize the PAT MSR value and PAT table
+ *
+ * This function initializes PAT MSR value and PAT table with an OS-defined
+ * value to enable additional cache attributes, WC, WT and WP.
+ *
+ * This function prepares the calls of pat_cpu_init() via cache_cpu_init()
+ * on all CPUs.
+ */
+void __init pat_bp_init(void)
+{
+ struct cpuinfo_x86 *c = &boot_cpu_data;
+#define PAT(p0, p1, p2, p3, p4, p5, p6, p7) \
+ (((u64)PAT_ ## p0) | ((u64)PAT_ ## p1 << 8) | \
+ ((u64)PAT_ ## p2 << 16) | ((u64)PAT_ ## p3 << 24) | \
+ ((u64)PAT_ ## p4 << 32) | ((u64)PAT_ ## p5 << 40) | \
+ ((u64)PAT_ ## p6 << 48) | ((u64)PAT_ ## p7 << 56))
+
+
+ if (!IS_ENABLED(CONFIG_X86_PAT))
+ pr_info_once("x86/PAT: PAT support disabled because CONFIG_X86_PAT is disabled in the kernel.\n");
+
+ if (!cpu_feature_enabled(X86_FEATURE_PAT))
+ pat_disable("PAT not supported by the CPU.");
+ else
+ rdmsrl(MSR_IA32_CR_PAT, pat_msr_val);
+
+ if (!pat_msr_val) {
+ pat_disable("PAT support disabled by the firmware.");
+
+ /*
+ * No PAT. Emulate the PAT table that corresponds to the two
+ * cache bits, PWT (Write Through) and PCD (Cache Disable).
+ * This setup is also the same as the BIOS default setup.
+ *
+ * PTE encoding:
+ *
+ * PCD
+ * |PWT PAT
+ * || slot
+ * 00 0 WB : _PAGE_CACHE_MODE_WB
+ * 01 1 WT : _PAGE_CACHE_MODE_WT
+ * 10 2 UC-: _PAGE_CACHE_MODE_UC_MINUS
+ * 11 3 UC : _PAGE_CACHE_MODE_UC
+ *
+ * NOTE: When WC or WP is used, it is redirected to UC- per
+ * the default setup in __cachemode2pte_tbl[].
+ */
+ pat_msr_val = PAT(WB, WT, UC_MINUS, UC, WB, WT, UC_MINUS, UC);
+ }
+
+ /*
+ * Xen PV doesn't allow to set PAT MSR, but all cache modes are
+ * supported.
+ * When running as TDX guest setting the PAT MSR won't work either
+ * due to the requirement to set CR0.CD when doing so. Rely on
+ * firmware to have set the PAT MSR correctly.
+ */
+ if (pat_disabled ||
+ cpu_feature_enabled(X86_FEATURE_XENPV) ||
+ cpu_feature_enabled(X86_FEATURE_TDX_GUEST)) {
+ init_cache_modes(pat_msr_val);
+ return;
+ }
+
+ if ((c->x86_vendor == X86_VENDOR_INTEL) &&
+ (((c->x86 == 0x6) && (c->x86_model <= 0xd)) ||
+ ((c->x86 == 0xf) && (c->x86_model <= 0x6)))) {
+ /*
+ * PAT support with the lower four entries. Intel Pentium 2,
+ * 3, M, and 4 are affected by PAT errata, which makes the
+ * upper four entries unusable. To be on the safe side, we don't
+ * use those.
+ *
+ * PTE encoding:
+ * PAT
+ * |PCD
+ * ||PWT PAT
+ * ||| slot
+ * 000 0 WB : _PAGE_CACHE_MODE_WB
+ * 001 1 WC : _PAGE_CACHE_MODE_WC
+ * 010 2 UC-: _PAGE_CACHE_MODE_UC_MINUS
+ * 011 3 UC : _PAGE_CACHE_MODE_UC
+ * PAT bit unused
+ *
+ * NOTE: When WT or WP is used, it is redirected to UC- per
+ * the default setup in __cachemode2pte_tbl[].
+ */
+ pat_msr_val = PAT(WB, WC, UC_MINUS, UC, WB, WC, UC_MINUS, UC);
+ } else {
+ /*
+ * Full PAT support. We put WT in slot 7 to improve
+ * robustness in the presence of errata that might cause
+ * the high PAT bit to be ignored. This way, a buggy slot 7
+ * access will hit slot 3, and slot 3 is UC, so at worst
+ * we lose performance without causing a correctness issue.
+ * Pentium 4 erratum N46 is an example for such an erratum,
+ * although we try not to use PAT at all on affected CPUs.
+ *
+ * PTE encoding:
+ * PAT
+ * |PCD
+ * ||PWT PAT
+ * ||| slot
+ * 000 0 WB : _PAGE_CACHE_MODE_WB
+ * 001 1 WC : _PAGE_CACHE_MODE_WC
+ * 010 2 UC-: _PAGE_CACHE_MODE_UC_MINUS
+ * 011 3 UC : _PAGE_CACHE_MODE_UC
+ * 100 4 WB : Reserved
+ * 101 5 WP : _PAGE_CACHE_MODE_WP
+ * 110 6 UC-: Reserved
+ * 111 7 WT : _PAGE_CACHE_MODE_WT
+ *
+ * The reserved slots are unused, but mapped to their
+ * corresponding types in the presence of PAT errata.
+ */
+ pat_msr_val = PAT(WB, WC, UC_MINUS, UC, WB, WP, UC_MINUS, WT);
+ }
+
+ memory_caching_control |= CACHE_PAT;
+
+ init_cache_modes(pat_msr_val);
+#undef PAT
+}
+
+static DEFINE_SPINLOCK(memtype_lock); /* protects memtype accesses */
+
+/*
+ * Does intersection of PAT memory type and MTRR memory type and returns
+ * the resulting memory type as PAT understands it.
+ * (Type in pat and mtrr will not have same value)
+ * The intersection is based on "Effective Memory Type" tables in IA-32
+ * SDM vol 3a
+ */
+static unsigned long pat_x_mtrr_type(u64 start, u64 end,
+ enum page_cache_mode req_type)
+{
+ /*
+ * Look for MTRR hint to get the effective type in case where PAT
+ * request is for WB.
+ */
+ if (req_type == _PAGE_CACHE_MODE_WB) {
+ u8 mtrr_type, uniform;
+
+ mtrr_type = mtrr_type_lookup(start, end, &uniform);
+ if (mtrr_type != MTRR_TYPE_WRBACK)
+ return _PAGE_CACHE_MODE_UC_MINUS;
+
+ return _PAGE_CACHE_MODE_WB;
+ }
+
+ return req_type;
+}
+
+struct pagerange_state {
+ unsigned long cur_pfn;
+ int ram;
+ int not_ram;
+};
+
+static int
+pagerange_is_ram_callback(unsigned long initial_pfn, unsigned long total_nr_pages, void *arg)
+{
+ struct pagerange_state *state = arg;
+
+ state->not_ram |= initial_pfn > state->cur_pfn;
+ state->ram |= total_nr_pages > 0;
+ state->cur_pfn = initial_pfn + total_nr_pages;
+
+ return state->ram && state->not_ram;
+}
+
+static int pat_pagerange_is_ram(resource_size_t start, resource_size_t end)
+{
+ int ret = 0;
+ unsigned long start_pfn = start >> PAGE_SHIFT;
+ unsigned long end_pfn = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
+ struct pagerange_state state = {start_pfn, 0, 0};
+
+ /*
+ * For legacy reasons, physical address range in the legacy ISA
+ * region is tracked as non-RAM. This will allow users of
+ * /dev/mem to map portions of legacy ISA region, even when
+ * some of those portions are listed(or not even listed) with
+ * different e820 types(RAM/reserved/..)
+ */
+ if (start_pfn < ISA_END_ADDRESS >> PAGE_SHIFT)
+ start_pfn = ISA_END_ADDRESS >> PAGE_SHIFT;
+
+ if (start_pfn < end_pfn) {
+ ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn,
+ &state, pagerange_is_ram_callback);
+ }
+
+ return (ret > 0) ? -1 : (state.ram ? 1 : 0);
+}
+
+/*
+ * For RAM pages, we use page flags to mark the pages with appropriate type.
+ * The page flags are limited to four types, WB (default), WC, WT and UC-.
+ * WP request fails with -EINVAL, and UC gets redirected to UC-. Setting
+ * a new memory type is only allowed for a page mapped with the default WB
+ * type.
+ *
+ * Here we do two passes:
+ * - Find the memtype of all the pages in the range, look for any conflicts.
+ * - In case of no conflicts, set the new memtype for pages in the range.
+ */
+static int reserve_ram_pages_type(u64 start, u64 end,
+ enum page_cache_mode req_type,
+ enum page_cache_mode *new_type)
+{
+ struct page *page;
+ u64 pfn;
+
+ if (req_type == _PAGE_CACHE_MODE_WP) {
+ if (new_type)
+ *new_type = _PAGE_CACHE_MODE_UC_MINUS;
+ return -EINVAL;
+ }
+
+ if (req_type == _PAGE_CACHE_MODE_UC) {
+ /* We do not support strong UC */
+ WARN_ON_ONCE(1);
+ req_type = _PAGE_CACHE_MODE_UC_MINUS;
+ }
+
+ for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
+ enum page_cache_mode type;
+
+ page = pfn_to_page(pfn);
+ type = get_page_memtype(page);
+ if (type != _PAGE_CACHE_MODE_WB) {
+ pr_info("x86/PAT: reserve_ram_pages_type failed [mem %#010Lx-%#010Lx], track 0x%x, req 0x%x\n",
+ start, end - 1, type, req_type);
+ if (new_type)
+ *new_type = type;
+
+ return -EBUSY;
+ }
+ }
+
+ if (new_type)
+ *new_type = req_type;
+
+ for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
+ page = pfn_to_page(pfn);
+ set_page_memtype(page, req_type);
+ }
+ return 0;
+}
+
+static int free_ram_pages_type(u64 start, u64 end)
+{
+ struct page *page;
+ u64 pfn;
+
+ for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
+ page = pfn_to_page(pfn);
+ set_page_memtype(page, _PAGE_CACHE_MODE_WB);
+ }
+ return 0;
+}
+
+static u64 sanitize_phys(u64 address)
+{
+ /*
+ * When changing the memtype for pages containing poison allow
+ * for a "decoy" virtual address (bit 63 clear) passed to
+ * set_memory_X(). __pa() on a "decoy" address results in a
+ * physical address with bit 63 set.
+ *
+ * Decoy addresses are not present for 32-bit builds, see
+ * set_mce_nospec().
+ */
+ if (IS_ENABLED(CONFIG_X86_64))
+ return address & __PHYSICAL_MASK;
+ return address;
+}
+
+/*
+ * req_type typically has one of the:
+ * - _PAGE_CACHE_MODE_WB
+ * - _PAGE_CACHE_MODE_WC
+ * - _PAGE_CACHE_MODE_UC_MINUS
+ * - _PAGE_CACHE_MODE_UC
+ * - _PAGE_CACHE_MODE_WT
+ *
+ * If new_type is NULL, function will return an error if it cannot reserve the
+ * region with req_type. If new_type is non-NULL, function will return
+ * available type in new_type in case of no error. In case of any error
+ * it will return a negative return value.
+ */
+int memtype_reserve(u64 start, u64 end, enum page_cache_mode req_type,
+ enum page_cache_mode *new_type)
+{
+ struct memtype *entry_new;
+ enum page_cache_mode actual_type;
+ int is_range_ram;
+ int err = 0;
+
+ start = sanitize_phys(start);
+
+ /*
+ * The end address passed into this function is exclusive, but
+ * sanitize_phys() expects an inclusive address.
+ */
+ end = sanitize_phys(end - 1) + 1;
+ if (start >= end) {
+ WARN(1, "%s failed: [mem %#010Lx-%#010Lx], req %s\n", __func__,
+ start, end - 1, cattr_name(req_type));
+ return -EINVAL;
+ }
+
+ if (!pat_enabled()) {
+ /* This is identical to page table setting without PAT */
+ if (new_type)
+ *new_type = req_type;
+ return 0;
+ }
+
+ /* Low ISA region is always mapped WB in page table. No need to track */
+ if (x86_platform.is_untracked_pat_range(start, end)) {
+ if (new_type)
+ *new_type = _PAGE_CACHE_MODE_WB;
+ return 0;
+ }
+
+ /*
+ * Call mtrr_lookup to get the type hint. This is an
+ * optimization for /dev/mem mmap'ers into WB memory (BIOS
+ * tools and ACPI tools). Use WB request for WB memory and use
+ * UC_MINUS otherwise.
+ */
+ actual_type = pat_x_mtrr_type(start, end, req_type);
+
+ if (new_type)
+ *new_type = actual_type;
+
+ is_range_ram = pat_pagerange_is_ram(start, end);
+ if (is_range_ram == 1) {
+
+ err = reserve_ram_pages_type(start, end, req_type, new_type);
+
+ return err;
+ } else if (is_range_ram < 0) {
+ return -EINVAL;
+ }
+
+ entry_new = kzalloc(sizeof(struct memtype), GFP_KERNEL);
+ if (!entry_new)
+ return -ENOMEM;
+
+ entry_new->start = start;
+ entry_new->end = end;
+ entry_new->type = actual_type;
+
+ spin_lock(&memtype_lock);
+
+ err = memtype_check_insert(entry_new, new_type);
+ if (err) {
+ pr_info("x86/PAT: memtype_reserve failed [mem %#010Lx-%#010Lx], track %s, req %s\n",
+ start, end - 1,
+ cattr_name(entry_new->type), cattr_name(req_type));
+ kfree(entry_new);
+ spin_unlock(&memtype_lock);
+
+ return err;
+ }
+
+ spin_unlock(&memtype_lock);
+
+ dprintk("memtype_reserve added [mem %#010Lx-%#010Lx], track %s, req %s, ret %s\n",
+ start, end - 1, cattr_name(entry_new->type), cattr_name(req_type),
+ new_type ? cattr_name(*new_type) : "-");
+
+ return err;
+}
+
+int memtype_free(u64 start, u64 end)
+{
+ int is_range_ram;
+ struct memtype *entry_old;
+
+ if (!pat_enabled())
+ return 0;
+
+ start = sanitize_phys(start);
+ end = sanitize_phys(end);
+
+ /* Low ISA region is always mapped WB. No need to track */
+ if (x86_platform.is_untracked_pat_range(start, end))
+ return 0;
+
+ is_range_ram = pat_pagerange_is_ram(start, end);
+ if (is_range_ram == 1)
+ return free_ram_pages_type(start, end);
+ if (is_range_ram < 0)
+ return -EINVAL;
+
+ spin_lock(&memtype_lock);
+ entry_old = memtype_erase(start, end);
+ spin_unlock(&memtype_lock);
+
+ if (IS_ERR(entry_old)) {
+ pr_info("x86/PAT: %s:%d freeing invalid memtype [mem %#010Lx-%#010Lx]\n",
+ current->comm, current->pid, start, end - 1);
+ return -EINVAL;
+ }
+
+ kfree(entry_old);
+
+ dprintk("memtype_free request [mem %#010Lx-%#010Lx]\n", start, end - 1);
+
+ return 0;
+}
+
+
+/**
+ * lookup_memtype - Looks up the memory type for a physical address
+ * @paddr: physical address of which memory type needs to be looked up
+ *
+ * Only to be called when PAT is enabled
+ *
+ * Returns _PAGE_CACHE_MODE_WB, _PAGE_CACHE_MODE_WC, _PAGE_CACHE_MODE_UC_MINUS
+ * or _PAGE_CACHE_MODE_WT.
+ */
+static enum page_cache_mode lookup_memtype(u64 paddr)
+{
+ enum page_cache_mode rettype = _PAGE_CACHE_MODE_WB;
+ struct memtype *entry;
+
+ if (x86_platform.is_untracked_pat_range(paddr, paddr + PAGE_SIZE))
+ return rettype;
+
+ if (pat_pagerange_is_ram(paddr, paddr + PAGE_SIZE)) {
+ struct page *page;
+
+ page = pfn_to_page(paddr >> PAGE_SHIFT);
+ return get_page_memtype(page);
+ }
+
+ spin_lock(&memtype_lock);
+
+ entry = memtype_lookup(paddr);
+ if (entry != NULL)
+ rettype = entry->type;
+ else
+ rettype = _PAGE_CACHE_MODE_UC_MINUS;
+
+ spin_unlock(&memtype_lock);
+
+ return rettype;
+}
+
+/**
+ * pat_pfn_immune_to_uc_mtrr - Check whether the PAT memory type
+ * of @pfn cannot be overridden by UC MTRR memory type.
+ *
+ * Only to be called when PAT is enabled.
+ *
+ * Returns true, if the PAT memory type of @pfn is UC, UC-, or WC.
+ * Returns false in other cases.
+ */
+bool pat_pfn_immune_to_uc_mtrr(unsigned long pfn)
+{
+ enum page_cache_mode cm = lookup_memtype(PFN_PHYS(pfn));
+
+ return cm == _PAGE_CACHE_MODE_UC ||
+ cm == _PAGE_CACHE_MODE_UC_MINUS ||
+ cm == _PAGE_CACHE_MODE_WC;
+}
+EXPORT_SYMBOL_GPL(pat_pfn_immune_to_uc_mtrr);
+
+/**
+ * memtype_reserve_io - Request a memory type mapping for a region of memory
+ * @start: start (physical address) of the region
+ * @end: end (physical address) of the region
+ * @type: A pointer to memtype, with requested type. On success, requested
+ * or any other compatible type that was available for the region is returned
+ *
+ * On success, returns 0
+ * On failure, returns non-zero
+ */
+int memtype_reserve_io(resource_size_t start, resource_size_t end,
+ enum page_cache_mode *type)
+{
+ resource_size_t size = end - start;
+ enum page_cache_mode req_type = *type;
+ enum page_cache_mode new_type;
+ int ret;
+
+ WARN_ON_ONCE(iomem_map_sanity_check(start, size));
+
+ ret = memtype_reserve(start, end, req_type, &new_type);
+ if (ret)
+ goto out_err;
+
+ if (!is_new_memtype_allowed(start, size, req_type, new_type))
+ goto out_free;
+
+ if (memtype_kernel_map_sync(start, size, new_type) < 0)
+ goto out_free;
+
+ *type = new_type;
+ return 0;
+
+out_free:
+ memtype_free(start, end);
+ ret = -EBUSY;
+out_err:
+ return ret;
+}
+
+/**
+ * memtype_free_io - Release a memory type mapping for a region of memory
+ * @start: start (physical address) of the region
+ * @end: end (physical address) of the region
+ */
+void memtype_free_io(resource_size_t start, resource_size_t end)
+{
+ memtype_free(start, end);
+}
+
+#ifdef CONFIG_X86_PAT
+int arch_io_reserve_memtype_wc(resource_size_t start, resource_size_t size)
+{
+ enum page_cache_mode type = _PAGE_CACHE_MODE_WC;
+
+ return memtype_reserve_io(start, start + size, &type);
+}
+EXPORT_SYMBOL(arch_io_reserve_memtype_wc);
+
+void arch_io_free_memtype_wc(resource_size_t start, resource_size_t size)
+{
+ memtype_free_io(start, start + size);
+}
+EXPORT_SYMBOL(arch_io_free_memtype_wc);
+#endif
+
+pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
+ unsigned long size, pgprot_t vma_prot)
+{
+ if (!phys_mem_access_encrypted(pfn << PAGE_SHIFT, size))
+ vma_prot = pgprot_decrypted(vma_prot);
+
+ return vma_prot;
+}
+
+#ifdef CONFIG_STRICT_DEVMEM
+/* This check is done in drivers/char/mem.c in case of STRICT_DEVMEM */
+static inline int range_is_allowed(unsigned long pfn, unsigned long size)
+{
+ return 1;
+}
+#else
+/* This check is needed to avoid cache aliasing when PAT is enabled */
+static inline int range_is_allowed(unsigned long pfn, unsigned long size)
+{
+ u64 from = ((u64)pfn) << PAGE_SHIFT;
+ u64 to = from + size;
+ u64 cursor = from;
+
+ if (!pat_enabled())
+ return 1;
+
+ while (cursor < to) {
+ if (!devmem_is_allowed(pfn))
+ return 0;
+ cursor += PAGE_SIZE;
+ pfn++;
+ }
+ return 1;
+}
+#endif /* CONFIG_STRICT_DEVMEM */
+
+int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
+ unsigned long size, pgprot_t *vma_prot)
+{
+ enum page_cache_mode pcm = _PAGE_CACHE_MODE_WB;
+
+ if (!range_is_allowed(pfn, size))
+ return 0;
+
+ if (file->f_flags & O_DSYNC)
+ pcm = _PAGE_CACHE_MODE_UC_MINUS;
+
+ *vma_prot = __pgprot((pgprot_val(*vma_prot) & ~_PAGE_CACHE_MASK) |
+ cachemode2protval(pcm));
+ return 1;
+}
+
+/*
+ * Change the memory type for the physical address range in kernel identity
+ * mapping space if that range is a part of identity map.
+ */
+int memtype_kernel_map_sync(u64 base, unsigned long size,
+ enum page_cache_mode pcm)
+{
+ unsigned long id_sz;
+
+ if (base > __pa(high_memory-1))
+ return 0;
+
+ /*
+ * Some areas in the middle of the kernel identity range
+ * are not mapped, for example the PCI space.
+ */
+ if (!page_is_ram(base >> PAGE_SHIFT))
+ return 0;
+
+ id_sz = (__pa(high_memory-1) <= base + size) ?
+ __pa(high_memory) - base : size;
+
+ if (ioremap_change_attr((unsigned long)__va(base), id_sz, pcm) < 0) {
+ pr_info("x86/PAT: %s:%d ioremap_change_attr failed %s for [mem %#010Lx-%#010Lx]\n",
+ current->comm, current->pid,
+ cattr_name(pcm),
+ base, (unsigned long long)(base + size-1));
+ return -EINVAL;
+ }
+ return 0;
+}
+
+/*
+ * Internal interface to reserve a range of physical memory with prot.
+ * Reserved non RAM regions only and after successful memtype_reserve,
+ * this func also keeps identity mapping (if any) in sync with this new prot.
+ */
+static int reserve_pfn_range(u64 paddr, unsigned long size, pgprot_t *vma_prot,
+ int strict_prot)
+{
+ int is_ram = 0;
+ int ret;
+ enum page_cache_mode want_pcm = pgprot2cachemode(*vma_prot);
+ enum page_cache_mode pcm = want_pcm;
+
+ is_ram = pat_pagerange_is_ram(paddr, paddr + size);
+
+ /*
+ * reserve_pfn_range() for RAM pages. We do not refcount to keep
+ * track of number of mappings of RAM pages. We can assert that
+ * the type requested matches the type of first page in the range.
+ */
+ if (is_ram) {
+ if (!pat_enabled())
+ return 0;
+
+ pcm = lookup_memtype(paddr);
+ if (want_pcm != pcm) {
+ pr_warn("x86/PAT: %s:%d map pfn RAM range req %s for [mem %#010Lx-%#010Lx], got %s\n",
+ current->comm, current->pid,
+ cattr_name(want_pcm),
+ (unsigned long long)paddr,
+ (unsigned long long)(paddr + size - 1),
+ cattr_name(pcm));
+ *vma_prot = __pgprot((pgprot_val(*vma_prot) &
+ (~_PAGE_CACHE_MASK)) |
+ cachemode2protval(pcm));
+ }
+ return 0;
+ }
+
+ ret = memtype_reserve(paddr, paddr + size, want_pcm, &pcm);
+ if (ret)
+ return ret;
+
+ if (pcm != want_pcm) {
+ if (strict_prot ||
+ !is_new_memtype_allowed(paddr, size, want_pcm, pcm)) {
+ memtype_free(paddr, paddr + size);
+ pr_err("x86/PAT: %s:%d map pfn expected mapping type %s for [mem %#010Lx-%#010Lx], got %s\n",
+ current->comm, current->pid,
+ cattr_name(want_pcm),
+ (unsigned long long)paddr,
+ (unsigned long long)(paddr + size - 1),
+ cattr_name(pcm));
+ return -EINVAL;
+ }
+ /*
+ * We allow returning different type than the one requested in
+ * non strict case.
+ */
+ *vma_prot = __pgprot((pgprot_val(*vma_prot) &
+ (~_PAGE_CACHE_MASK)) |
+ cachemode2protval(pcm));
+ }
+
+ if (memtype_kernel_map_sync(paddr, size, pcm) < 0) {
+ memtype_free(paddr, paddr + size);
+ return -EINVAL;
+ }
+ return 0;
+}
+
+/*
+ * Internal interface to free a range of physical memory.
+ * Frees non RAM regions only.
+ */
+static void free_pfn_range(u64 paddr, unsigned long size)
+{
+ int is_ram;
+
+ is_ram = pat_pagerange_is_ram(paddr, paddr + size);
+ if (is_ram == 0)
+ memtype_free(paddr, paddr + size);
+}
+
+/*
+ * track_pfn_copy is called when vma that is covering the pfnmap gets
+ * copied through copy_page_range().
+ *
+ * If the vma has a linear pfn mapping for the entire range, we get the prot
+ * from pte and reserve the entire vma range with single reserve_pfn_range call.
+ */
+int track_pfn_copy(struct vm_area_struct *vma)
+{
+ resource_size_t paddr;
+ unsigned long prot;
+ unsigned long vma_size = vma->vm_end - vma->vm_start;
+ pgprot_t pgprot;
+
+ if (vma->vm_flags & VM_PAT) {
+ /*
+ * reserve the whole chunk covered by vma. We need the
+ * starting address and protection from pte.
+ */
+ if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
+ WARN_ON_ONCE(1);
+ return -EINVAL;
+ }
+ pgprot = __pgprot(prot);
+ return reserve_pfn_range(paddr, vma_size, &pgprot, 1);
+ }
+
+ return 0;
+}
+
+/*
+ * prot is passed in as a parameter for the new mapping. If the vma has
+ * a linear pfn mapping for the entire range, or no vma is provided,
+ * reserve the entire pfn + size range with single reserve_pfn_range
+ * call.
+ */
+int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
+ unsigned long pfn, unsigned long addr, unsigned long size)
+{
+ resource_size_t paddr = (resource_size_t)pfn << PAGE_SHIFT;
+ enum page_cache_mode pcm;
+
+ /* reserve the whole chunk starting from paddr */
+ if (!vma || (addr == vma->vm_start
+ && size == (vma->vm_end - vma->vm_start))) {
+ int ret;
+
+ ret = reserve_pfn_range(paddr, size, prot, 0);
+ if (ret == 0 && vma)
+ vm_flags_set(vma, VM_PAT);
+ return ret;
+ }
+
+ if (!pat_enabled())
+ return 0;
+
+ /*
+ * For anything smaller than the vma size we set prot based on the
+ * lookup.
+ */
+ pcm = lookup_memtype(paddr);
+
+ /* Check memtype for the remaining pages */
+ while (size > PAGE_SIZE) {
+ size -= PAGE_SIZE;
+ paddr += PAGE_SIZE;
+ if (pcm != lookup_memtype(paddr))
+ return -EINVAL;
+ }
+
+ *prot = __pgprot((pgprot_val(*prot) & (~_PAGE_CACHE_MASK)) |
+ cachemode2protval(pcm));
+
+ return 0;
+}
+
+void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, pfn_t pfn)
+{
+ enum page_cache_mode pcm;
+
+ if (!pat_enabled())
+ return;
+
+ /* Set prot based on lookup */
+ pcm = lookup_memtype(pfn_t_to_phys(pfn));
+ *prot = __pgprot((pgprot_val(*prot) & (~_PAGE_CACHE_MASK)) |
+ cachemode2protval(pcm));
+}
+
+/*
+ * untrack_pfn is called while unmapping a pfnmap for a region.
+ * untrack can be called for a specific region indicated by pfn and size or
+ * can be for the entire vma (in which case pfn, size are zero).
+ */
+void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
+ unsigned long size, bool mm_wr_locked)
+{
+ resource_size_t paddr;
+ unsigned long prot;
+
+ if (vma && !(vma->vm_flags & VM_PAT))
+ return;
+
+ /* free the chunk starting from pfn or the whole chunk */
+ paddr = (resource_size_t)pfn << PAGE_SHIFT;
+ if (!paddr && !size) {
+ if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
+ WARN_ON_ONCE(1);
+ return;
+ }
+
+ size = vma->vm_end - vma->vm_start;
+ }
+ free_pfn_range(paddr, size);
+ if (vma) {
+ if (mm_wr_locked)
+ vm_flags_clear(vma, VM_PAT);
+ else
+ __vm_flags_mod(vma, 0, VM_PAT);
+ }
+}
+
+/*
+ * untrack_pfn_clear is called if the following situation fits:
+ *
+ * 1) while mremapping a pfnmap for a new region, with the old vma after
+ * its pfnmap page table has been removed. The new vma has a new pfnmap
+ * to the same pfn & cache type with VM_PAT set.
+ * 2) while duplicating vm area, the new vma fails to copy the pgtable from
+ * old vma.
+ */
+void untrack_pfn_clear(struct vm_area_struct *vma)
+{
+ vm_flags_clear(vma, VM_PAT);
+}
+
+pgprot_t pgprot_writecombine(pgprot_t prot)
+{
+ return __pgprot(pgprot_val(prot) |
+ cachemode2protval(_PAGE_CACHE_MODE_WC));
+}
+EXPORT_SYMBOL_GPL(pgprot_writecombine);
+
+pgprot_t pgprot_writethrough(pgprot_t prot)
+{
+ return __pgprot(pgprot_val(prot) |
+ cachemode2protval(_PAGE_CACHE_MODE_WT));
+}
+EXPORT_SYMBOL_GPL(pgprot_writethrough);
+
+#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_X86_PAT)
+
+/*
+ * We are allocating a temporary printout-entry to be passed
+ * between seq_start()/next() and seq_show():
+ */
+static struct memtype *memtype_get_idx(loff_t pos)
+{
+ struct memtype *entry_print;
+ int ret;
+
+ entry_print = kzalloc(sizeof(struct memtype), GFP_KERNEL);
+ if (!entry_print)
+ return NULL;
+
+ spin_lock(&memtype_lock);
+ ret = memtype_copy_nth_element(entry_print, pos);
+ spin_unlock(&memtype_lock);
+
+ /* Free it on error: */
+ if (ret) {
+ kfree(entry_print);
+ return NULL;
+ }
+
+ return entry_print;
+}
+
+static void *memtype_seq_start(struct seq_file *seq, loff_t *pos)
+{
+ if (*pos == 0) {
+ ++*pos;
+ seq_puts(seq, "PAT memtype list:\n");
+ }
+
+ return memtype_get_idx(*pos);
+}
+
+static void *memtype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
+{
+ kfree(v);
+ ++*pos;
+ return memtype_get_idx(*pos);
+}
+
+static void memtype_seq_stop(struct seq_file *seq, void *v)
+{
+ kfree(v);
+}
+
+static int memtype_seq_show(struct seq_file *seq, void *v)
+{
+ struct memtype *entry_print = (struct memtype *)v;
+
+ seq_printf(seq, "PAT: [mem 0x%016Lx-0x%016Lx] %s\n",
+ entry_print->start,
+ entry_print->end,
+ cattr_name(entry_print->type));
+
+ return 0;
+}
+
+static const struct seq_operations memtype_seq_ops = {
+ .start = memtype_seq_start,
+ .next = memtype_seq_next,
+ .stop = memtype_seq_stop,
+ .show = memtype_seq_show,
+};
+
+static int memtype_seq_open(struct inode *inode, struct file *file)
+{
+ return seq_open(file, &memtype_seq_ops);
+}
+
+static const struct file_operations memtype_fops = {
+ .open = memtype_seq_open,
+ .read = seq_read,
+ .llseek = seq_lseek,
+ .release = seq_release,
+};
+
+static int __init pat_memtype_list_init(void)
+{
+ if (pat_enabled()) {
+ debugfs_create_file("pat_memtype_list", S_IRUSR,
+ arch_debugfs_dir, NULL, &memtype_fops);
+ }
+ return 0;
+}
+late_initcall(pat_memtype_list_init);
+
+#endif /* CONFIG_DEBUG_FS && CONFIG_X86_PAT */
diff --git a/arch/x86/mm/pat/memtype.h b/arch/x86/mm/pat/memtype.h
new file mode 100644
index 0000000000..cacecdbceb
--- /dev/null
+++ b/arch/x86/mm/pat/memtype.h
@@ -0,0 +1,49 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifndef __MEMTYPE_H_
+#define __MEMTYPE_H_
+
+extern int pat_debug_enable;
+
+#define dprintk(fmt, arg...) \
+ do { if (pat_debug_enable) pr_info("x86/PAT: " fmt, ##arg); } while (0)
+
+struct memtype {
+ u64 start;
+ u64 end;
+ u64 subtree_max_end;
+ enum page_cache_mode type;
+ struct rb_node rb;
+};
+
+static inline char *cattr_name(enum page_cache_mode pcm)
+{
+ switch (pcm) {
+ case _PAGE_CACHE_MODE_UC: return "uncached";
+ case _PAGE_CACHE_MODE_UC_MINUS: return "uncached-minus";
+ case _PAGE_CACHE_MODE_WB: return "write-back";
+ case _PAGE_CACHE_MODE_WC: return "write-combining";
+ case _PAGE_CACHE_MODE_WT: return "write-through";
+ case _PAGE_CACHE_MODE_WP: return "write-protected";
+ default: return "broken";
+ }
+}
+
+#ifdef CONFIG_X86_PAT
+extern int memtype_check_insert(struct memtype *entry_new,
+ enum page_cache_mode *new_type);
+extern struct memtype *memtype_erase(u64 start, u64 end);
+extern struct memtype *memtype_lookup(u64 addr);
+extern int memtype_copy_nth_element(struct memtype *entry_out, loff_t pos);
+#else
+static inline int memtype_check_insert(struct memtype *entry_new,
+ enum page_cache_mode *new_type)
+{ return 0; }
+static inline struct memtype *memtype_erase(u64 start, u64 end)
+{ return NULL; }
+static inline struct memtype *memtype_lookup(u64 addr)
+{ return NULL; }
+static inline int memtype_copy_nth_element(struct memtype *out, loff_t pos)
+{ return 0; }
+#endif
+
+#endif /* __MEMTYPE_H_ */
diff --git a/arch/x86/mm/pat/memtype_interval.c b/arch/x86/mm/pat/memtype_interval.c
new file mode 100644
index 0000000000..645613d599
--- /dev/null
+++ b/arch/x86/mm/pat/memtype_interval.c
@@ -0,0 +1,194 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Handle caching attributes in page tables (PAT)
+ *
+ * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
+ * Suresh B Siddha <suresh.b.siddha@intel.com>
+ *
+ * Interval tree used to store the PAT memory type reservations.
+ */
+
+#include <linux/seq_file.h>
+#include <linux/debugfs.h>
+#include <linux/kernel.h>
+#include <linux/interval_tree_generic.h>
+#include <linux/sched.h>
+#include <linux/gfp.h>
+#include <linux/pgtable.h>
+
+#include <asm/memtype.h>
+
+#include "memtype.h"
+
+/*
+ * The memtype tree keeps track of memory type for specific
+ * physical memory areas. Without proper tracking, conflicting memory
+ * types in different mappings can cause CPU cache corruption.
+ *
+ * The tree is an interval tree (augmented rbtree) which tree is ordered
+ * by the starting address. The tree can contain multiple entries for
+ * different regions which overlap. All the aliases have the same
+ * cache attributes of course, as enforced by the PAT logic.
+ *
+ * memtype_lock protects the rbtree.
+ */
+
+static inline u64 interval_start(struct memtype *entry)
+{
+ return entry->start;
+}
+
+static inline u64 interval_end(struct memtype *entry)
+{
+ return entry->end - 1;
+}
+
+INTERVAL_TREE_DEFINE(struct memtype, rb, u64, subtree_max_end,
+ interval_start, interval_end,
+ static, interval)
+
+static struct rb_root_cached memtype_rbroot = RB_ROOT_CACHED;
+
+enum {
+ MEMTYPE_EXACT_MATCH = 0,
+ MEMTYPE_END_MATCH = 1
+};
+
+static struct memtype *memtype_match(u64 start, u64 end, int match_type)
+{
+ struct memtype *entry_match;
+
+ entry_match = interval_iter_first(&memtype_rbroot, start, end-1);
+
+ while (entry_match != NULL && entry_match->start < end) {
+ if ((match_type == MEMTYPE_EXACT_MATCH) &&
+ (entry_match->start == start) && (entry_match->end == end))
+ return entry_match;
+
+ if ((match_type == MEMTYPE_END_MATCH) &&
+ (entry_match->start < start) && (entry_match->end == end))
+ return entry_match;
+
+ entry_match = interval_iter_next(entry_match, start, end-1);
+ }
+
+ return NULL; /* Returns NULL if there is no match */
+}
+
+static int memtype_check_conflict(u64 start, u64 end,
+ enum page_cache_mode reqtype,
+ enum page_cache_mode *newtype)
+{
+ struct memtype *entry_match;
+ enum page_cache_mode found_type = reqtype;
+
+ entry_match = interval_iter_first(&memtype_rbroot, start, end-1);
+ if (entry_match == NULL)
+ goto success;
+
+ if (entry_match->type != found_type && newtype == NULL)
+ goto failure;
+
+ dprintk("Overlap at 0x%Lx-0x%Lx\n", entry_match->start, entry_match->end);
+ found_type = entry_match->type;
+
+ entry_match = interval_iter_next(entry_match, start, end-1);
+ while (entry_match) {
+ if (entry_match->type != found_type)
+ goto failure;
+
+ entry_match = interval_iter_next(entry_match, start, end-1);
+ }
+success:
+ if (newtype)
+ *newtype = found_type;
+
+ return 0;
+
+failure:
+ pr_info("x86/PAT: %s:%d conflicting memory types %Lx-%Lx %s<->%s\n",
+ current->comm, current->pid, start, end,
+ cattr_name(found_type), cattr_name(entry_match->type));
+
+ return -EBUSY;
+}
+
+int memtype_check_insert(struct memtype *entry_new, enum page_cache_mode *ret_type)
+{
+ int err = 0;
+
+ err = memtype_check_conflict(entry_new->start, entry_new->end, entry_new->type, ret_type);
+ if (err)
+ return err;
+
+ if (ret_type)
+ entry_new->type = *ret_type;
+
+ interval_insert(entry_new, &memtype_rbroot);
+ return 0;
+}
+
+struct memtype *memtype_erase(u64 start, u64 end)
+{
+ struct memtype *entry_old;
+
+ /*
+ * Since the memtype_rbroot tree allows overlapping ranges,
+ * memtype_erase() checks with EXACT_MATCH first, i.e. free
+ * a whole node for the munmap case. If no such entry is found,
+ * it then checks with END_MATCH, i.e. shrink the size of a node
+ * from the end for the mremap case.
+ */
+ entry_old = memtype_match(start, end, MEMTYPE_EXACT_MATCH);
+ if (!entry_old) {
+ entry_old = memtype_match(start, end, MEMTYPE_END_MATCH);
+ if (!entry_old)
+ return ERR_PTR(-EINVAL);
+ }
+
+ if (entry_old->start == start) {
+ /* munmap: erase this node */
+ interval_remove(entry_old, &memtype_rbroot);
+ } else {
+ /* mremap: update the end value of this node */
+ interval_remove(entry_old, &memtype_rbroot);
+ entry_old->end = start;
+ interval_insert(entry_old, &memtype_rbroot);
+
+ return NULL;
+ }
+
+ return entry_old;
+}
+
+struct memtype *memtype_lookup(u64 addr)
+{
+ return interval_iter_first(&memtype_rbroot, addr, addr + PAGE_SIZE-1);
+}
+
+/*
+ * Debugging helper, copy the Nth entry of the tree into a
+ * a copy for printout. This allows us to print out the tree
+ * via debugfs, without holding the memtype_lock too long:
+ */
+#ifdef CONFIG_DEBUG_FS
+int memtype_copy_nth_element(struct memtype *entry_out, loff_t pos)
+{
+ struct memtype *entry_match;
+ int i = 1;
+
+ entry_match = interval_iter_first(&memtype_rbroot, 0, ULONG_MAX);
+
+ while (entry_match && pos != i) {
+ entry_match = interval_iter_next(entry_match, 0, ULONG_MAX);
+ i++;
+ }
+
+ if (entry_match) { /* pos == i */
+ *entry_out = *entry_match;
+ return 0;
+ } else {
+ return 1;
+ }
+}
+#endif
diff --git a/arch/x86/mm/pat/set_memory.c b/arch/x86/mm/pat/set_memory.c
new file mode 100644
index 0000000000..bda9f12983
--- /dev/null
+++ b/arch/x86/mm/pat/set_memory.c
@@ -0,0 +1,2477 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright 2002 Andi Kleen, SuSE Labs.
+ * Thanks to Ben LaHaise for precious feedback.
+ */
+#include <linux/highmem.h>
+#include <linux/memblock.h>
+#include <linux/sched.h>
+#include <linux/mm.h>
+#include <linux/interrupt.h>
+#include <linux/seq_file.h>
+#include <linux/proc_fs.h>
+#include <linux/debugfs.h>
+#include <linux/pfn.h>
+#include <linux/percpu.h>
+#include <linux/gfp.h>
+#include <linux/pci.h>
+#include <linux/vmalloc.h>
+#include <linux/libnvdimm.h>
+#include <linux/vmstat.h>
+#include <linux/kernel.h>
+#include <linux/cc_platform.h>
+#include <linux/set_memory.h>
+#include <linux/memregion.h>
+
+#include <asm/e820/api.h>
+#include <asm/processor.h>
+#include <asm/tlbflush.h>
+#include <asm/sections.h>
+#include <asm/setup.h>
+#include <linux/uaccess.h>
+#include <asm/pgalloc.h>
+#include <asm/proto.h>
+#include <asm/memtype.h>
+#include <asm/hyperv-tlfs.h>
+#include <asm/mshyperv.h>
+
+#include "../mm_internal.h"
+
+/*
+ * The current flushing context - we pass it instead of 5 arguments:
+ */
+struct cpa_data {
+ unsigned long *vaddr;
+ pgd_t *pgd;
+ pgprot_t mask_set;
+ pgprot_t mask_clr;
+ unsigned long numpages;
+ unsigned long curpage;
+ unsigned long pfn;
+ unsigned int flags;
+ unsigned int force_split : 1,
+ force_static_prot : 1,
+ force_flush_all : 1;
+ struct page **pages;
+};
+
+enum cpa_warn {
+ CPA_CONFLICT,
+ CPA_PROTECT,
+ CPA_DETECT,
+};
+
+static const int cpa_warn_level = CPA_PROTECT;
+
+/*
+ * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
+ * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
+ * entries change the page attribute in parallel to some other cpu
+ * splitting a large page entry along with changing the attribute.
+ */
+static DEFINE_SPINLOCK(cpa_lock);
+
+#define CPA_FLUSHTLB 1
+#define CPA_ARRAY 2
+#define CPA_PAGES_ARRAY 4
+#define CPA_NO_CHECK_ALIAS 8 /* Do not search for aliases */
+
+static inline pgprot_t cachemode2pgprot(enum page_cache_mode pcm)
+{
+ return __pgprot(cachemode2protval(pcm));
+}
+
+#ifdef CONFIG_PROC_FS
+static unsigned long direct_pages_count[PG_LEVEL_NUM];
+
+void update_page_count(int level, unsigned long pages)
+{
+ /* Protect against CPA */
+ spin_lock(&pgd_lock);
+ direct_pages_count[level] += pages;
+ spin_unlock(&pgd_lock);
+}
+
+static void split_page_count(int level)
+{
+ if (direct_pages_count[level] == 0)
+ return;
+
+ direct_pages_count[level]--;
+ if (system_state == SYSTEM_RUNNING) {
+ if (level == PG_LEVEL_2M)
+ count_vm_event(DIRECT_MAP_LEVEL2_SPLIT);
+ else if (level == PG_LEVEL_1G)
+ count_vm_event(DIRECT_MAP_LEVEL3_SPLIT);
+ }
+ direct_pages_count[level - 1] += PTRS_PER_PTE;
+}
+
+void arch_report_meminfo(struct seq_file *m)
+{
+ seq_printf(m, "DirectMap4k: %8lu kB\n",
+ direct_pages_count[PG_LEVEL_4K] << 2);
+#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
+ seq_printf(m, "DirectMap2M: %8lu kB\n",
+ direct_pages_count[PG_LEVEL_2M] << 11);
+#else
+ seq_printf(m, "DirectMap4M: %8lu kB\n",
+ direct_pages_count[PG_LEVEL_2M] << 12);
+#endif
+ if (direct_gbpages)
+ seq_printf(m, "DirectMap1G: %8lu kB\n",
+ direct_pages_count[PG_LEVEL_1G] << 20);
+}
+#else
+static inline void split_page_count(int level) { }
+#endif
+
+#ifdef CONFIG_X86_CPA_STATISTICS
+
+static unsigned long cpa_1g_checked;
+static unsigned long cpa_1g_sameprot;
+static unsigned long cpa_1g_preserved;
+static unsigned long cpa_2m_checked;
+static unsigned long cpa_2m_sameprot;
+static unsigned long cpa_2m_preserved;
+static unsigned long cpa_4k_install;
+
+static inline void cpa_inc_1g_checked(void)
+{
+ cpa_1g_checked++;
+}
+
+static inline void cpa_inc_2m_checked(void)
+{
+ cpa_2m_checked++;
+}
+
+static inline void cpa_inc_4k_install(void)
+{
+ data_race(cpa_4k_install++);
+}
+
+static inline void cpa_inc_lp_sameprot(int level)
+{
+ if (level == PG_LEVEL_1G)
+ cpa_1g_sameprot++;
+ else
+ cpa_2m_sameprot++;
+}
+
+static inline void cpa_inc_lp_preserved(int level)
+{
+ if (level == PG_LEVEL_1G)
+ cpa_1g_preserved++;
+ else
+ cpa_2m_preserved++;
+}
+
+static int cpastats_show(struct seq_file *m, void *p)
+{
+ seq_printf(m, "1G pages checked: %16lu\n", cpa_1g_checked);
+ seq_printf(m, "1G pages sameprot: %16lu\n", cpa_1g_sameprot);
+ seq_printf(m, "1G pages preserved: %16lu\n", cpa_1g_preserved);
+ seq_printf(m, "2M pages checked: %16lu\n", cpa_2m_checked);
+ seq_printf(m, "2M pages sameprot: %16lu\n", cpa_2m_sameprot);
+ seq_printf(m, "2M pages preserved: %16lu\n", cpa_2m_preserved);
+ seq_printf(m, "4K pages set-checked: %16lu\n", cpa_4k_install);
+ return 0;
+}
+
+static int cpastats_open(struct inode *inode, struct file *file)
+{
+ return single_open(file, cpastats_show, NULL);
+}
+
+static const struct file_operations cpastats_fops = {
+ .open = cpastats_open,
+ .read = seq_read,
+ .llseek = seq_lseek,
+ .release = single_release,
+};
+
+static int __init cpa_stats_init(void)
+{
+ debugfs_create_file("cpa_stats", S_IRUSR, arch_debugfs_dir, NULL,
+ &cpastats_fops);
+ return 0;
+}
+late_initcall(cpa_stats_init);
+#else
+static inline void cpa_inc_1g_checked(void) { }
+static inline void cpa_inc_2m_checked(void) { }
+static inline void cpa_inc_4k_install(void) { }
+static inline void cpa_inc_lp_sameprot(int level) { }
+static inline void cpa_inc_lp_preserved(int level) { }
+#endif
+
+
+static inline int
+within(unsigned long addr, unsigned long start, unsigned long end)
+{
+ return addr >= start && addr < end;
+}
+
+static inline int
+within_inclusive(unsigned long addr, unsigned long start, unsigned long end)
+{
+ return addr >= start && addr <= end;
+}
+
+#ifdef CONFIG_X86_64
+
+/*
+ * The kernel image is mapped into two places in the virtual address space
+ * (addresses without KASLR, of course):
+ *
+ * 1. The kernel direct map (0xffff880000000000)
+ * 2. The "high kernel map" (0xffffffff81000000)
+ *
+ * We actually execute out of #2. If we get the address of a kernel symbol, it
+ * points to #2, but almost all physical-to-virtual translations point to #1.
+ *
+ * This is so that we can have both a directmap of all physical memory *and*
+ * take full advantage of the limited (s32) immediate addressing range (2G)
+ * of x86_64.
+ *
+ * See Documentation/arch/x86/x86_64/mm.rst for more detail.
+ */
+
+static inline unsigned long highmap_start_pfn(void)
+{
+ return __pa_symbol(_text) >> PAGE_SHIFT;
+}
+
+static inline unsigned long highmap_end_pfn(void)
+{
+ /* Do not reference physical address outside the kernel. */
+ return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT;
+}
+
+static bool __cpa_pfn_in_highmap(unsigned long pfn)
+{
+ /*
+ * Kernel text has an alias mapping at a high address, known
+ * here as "highmap".
+ */
+ return within_inclusive(pfn, highmap_start_pfn(), highmap_end_pfn());
+}
+
+#else
+
+static bool __cpa_pfn_in_highmap(unsigned long pfn)
+{
+ /* There is no highmap on 32-bit */
+ return false;
+}
+
+#endif
+
+/*
+ * See set_mce_nospec().
+ *
+ * Machine check recovery code needs to change cache mode of poisoned pages to
+ * UC to avoid speculative access logging another error. But passing the
+ * address of the 1:1 mapping to set_memory_uc() is a fine way to encourage a
+ * speculative access. So we cheat and flip the top bit of the address. This
+ * works fine for the code that updates the page tables. But at the end of the
+ * process we need to flush the TLB and cache and the non-canonical address
+ * causes a #GP fault when used by the INVLPG and CLFLUSH instructions.
+ *
+ * But in the common case we already have a canonical address. This code
+ * will fix the top bit if needed and is a no-op otherwise.
+ */
+static inline unsigned long fix_addr(unsigned long addr)
+{
+#ifdef CONFIG_X86_64
+ return (long)(addr << 1) >> 1;
+#else
+ return addr;
+#endif
+}
+
+static unsigned long __cpa_addr(struct cpa_data *cpa, unsigned long idx)
+{
+ if (cpa->flags & CPA_PAGES_ARRAY) {
+ struct page *page = cpa->pages[idx];
+
+ if (unlikely(PageHighMem(page)))
+ return 0;
+
+ return (unsigned long)page_address(page);
+ }
+
+ if (cpa->flags & CPA_ARRAY)
+ return cpa->vaddr[idx];
+
+ return *cpa->vaddr + idx * PAGE_SIZE;
+}
+
+/*
+ * Flushing functions
+ */
+
+static void clflush_cache_range_opt(void *vaddr, unsigned int size)
+{
+ const unsigned long clflush_size = boot_cpu_data.x86_clflush_size;
+ void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1));
+ void *vend = vaddr + size;
+
+ if (p >= vend)
+ return;
+
+ for (; p < vend; p += clflush_size)
+ clflushopt(p);
+}
+
+/**
+ * clflush_cache_range - flush a cache range with clflush
+ * @vaddr: virtual start address
+ * @size: number of bytes to flush
+ *
+ * CLFLUSHOPT is an unordered instruction which needs fencing with MFENCE or
+ * SFENCE to avoid ordering issues.
+ */
+void clflush_cache_range(void *vaddr, unsigned int size)
+{
+ mb();
+ clflush_cache_range_opt(vaddr, size);
+ mb();
+}
+EXPORT_SYMBOL_GPL(clflush_cache_range);
+
+#ifdef CONFIG_ARCH_HAS_PMEM_API
+void arch_invalidate_pmem(void *addr, size_t size)
+{
+ clflush_cache_range(addr, size);
+}
+EXPORT_SYMBOL_GPL(arch_invalidate_pmem);
+#endif
+
+#ifdef CONFIG_ARCH_HAS_CPU_CACHE_INVALIDATE_MEMREGION
+bool cpu_cache_has_invalidate_memregion(void)
+{
+ return !cpu_feature_enabled(X86_FEATURE_HYPERVISOR);
+}
+EXPORT_SYMBOL_NS_GPL(cpu_cache_has_invalidate_memregion, DEVMEM);
+
+int cpu_cache_invalidate_memregion(int res_desc)
+{
+ if (WARN_ON_ONCE(!cpu_cache_has_invalidate_memregion()))
+ return -ENXIO;
+ wbinvd_on_all_cpus();
+ return 0;
+}
+EXPORT_SYMBOL_NS_GPL(cpu_cache_invalidate_memregion, DEVMEM);
+#endif
+
+static void __cpa_flush_all(void *arg)
+{
+ unsigned long cache = (unsigned long)arg;
+
+ /*
+ * Flush all to work around Errata in early athlons regarding
+ * large page flushing.
+ */
+ __flush_tlb_all();
+
+ if (cache && boot_cpu_data.x86 >= 4)
+ wbinvd();
+}
+
+static void cpa_flush_all(unsigned long cache)
+{
+ BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
+
+ on_each_cpu(__cpa_flush_all, (void *) cache, 1);
+}
+
+static void __cpa_flush_tlb(void *data)
+{
+ struct cpa_data *cpa = data;
+ unsigned int i;
+
+ for (i = 0; i < cpa->numpages; i++)
+ flush_tlb_one_kernel(fix_addr(__cpa_addr(cpa, i)));
+}
+
+static void cpa_flush(struct cpa_data *data, int cache)
+{
+ struct cpa_data *cpa = data;
+ unsigned int i;
+
+ BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
+
+ if (cache && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
+ cpa_flush_all(cache);
+ return;
+ }
+
+ if (cpa->force_flush_all || cpa->numpages > tlb_single_page_flush_ceiling)
+ flush_tlb_all();
+ else
+ on_each_cpu(__cpa_flush_tlb, cpa, 1);
+
+ if (!cache)
+ return;
+
+ mb();
+ for (i = 0; i < cpa->numpages; i++) {
+ unsigned long addr = __cpa_addr(cpa, i);
+ unsigned int level;
+
+ pte_t *pte = lookup_address(addr, &level);
+
+ /*
+ * Only flush present addresses:
+ */
+ if (pte && (pte_val(*pte) & _PAGE_PRESENT))
+ clflush_cache_range_opt((void *)fix_addr(addr), PAGE_SIZE);
+ }
+ mb();
+}
+
+static bool overlaps(unsigned long r1_start, unsigned long r1_end,
+ unsigned long r2_start, unsigned long r2_end)
+{
+ return (r1_start <= r2_end && r1_end >= r2_start) ||
+ (r2_start <= r1_end && r2_end >= r1_start);
+}
+
+#ifdef CONFIG_PCI_BIOS
+/*
+ * The BIOS area between 640k and 1Mb needs to be executable for PCI BIOS
+ * based config access (CONFIG_PCI_GOBIOS) support.
+ */
+#define BIOS_PFN PFN_DOWN(BIOS_BEGIN)
+#define BIOS_PFN_END PFN_DOWN(BIOS_END - 1)
+
+static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
+{
+ if (pcibios_enabled && overlaps(spfn, epfn, BIOS_PFN, BIOS_PFN_END))
+ return _PAGE_NX;
+ return 0;
+}
+#else
+static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
+{
+ return 0;
+}
+#endif
+
+/*
+ * The .rodata section needs to be read-only. Using the pfn catches all
+ * aliases. This also includes __ro_after_init, so do not enforce until
+ * kernel_set_to_readonly is true.
+ */
+static pgprotval_t protect_rodata(unsigned long spfn, unsigned long epfn)
+{
+ unsigned long epfn_ro, spfn_ro = PFN_DOWN(__pa_symbol(__start_rodata));
+
+ /*
+ * Note: __end_rodata is at page aligned and not inclusive, so
+ * subtract 1 to get the last enforced PFN in the rodata area.
+ */
+ epfn_ro = PFN_DOWN(__pa_symbol(__end_rodata)) - 1;
+
+ if (kernel_set_to_readonly && overlaps(spfn, epfn, spfn_ro, epfn_ro))
+ return _PAGE_RW;
+ return 0;
+}
+
+/*
+ * Protect kernel text against becoming non executable by forbidding
+ * _PAGE_NX. This protects only the high kernel mapping (_text -> _etext)
+ * out of which the kernel actually executes. Do not protect the low
+ * mapping.
+ *
+ * This does not cover __inittext since that is gone after boot.
+ */
+static pgprotval_t protect_kernel_text(unsigned long start, unsigned long end)
+{
+ unsigned long t_end = (unsigned long)_etext - 1;
+ unsigned long t_start = (unsigned long)_text;
+
+ if (overlaps(start, end, t_start, t_end))
+ return _PAGE_NX;
+ return 0;
+}
+
+#if defined(CONFIG_X86_64)
+/*
+ * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
+ * kernel text mappings for the large page aligned text, rodata sections
+ * will be always read-only. For the kernel identity mappings covering the
+ * holes caused by this alignment can be anything that user asks.
+ *
+ * This will preserve the large page mappings for kernel text/data at no
+ * extra cost.
+ */
+static pgprotval_t protect_kernel_text_ro(unsigned long start,
+ unsigned long end)
+{
+ unsigned long t_end = (unsigned long)__end_rodata_hpage_align - 1;
+ unsigned long t_start = (unsigned long)_text;
+ unsigned int level;
+
+ if (!kernel_set_to_readonly || !overlaps(start, end, t_start, t_end))
+ return 0;
+ /*
+ * Don't enforce the !RW mapping for the kernel text mapping, if
+ * the current mapping is already using small page mapping. No
+ * need to work hard to preserve large page mappings in this case.
+ *
+ * This also fixes the Linux Xen paravirt guest boot failure caused
+ * by unexpected read-only mappings for kernel identity
+ * mappings. In this paravirt guest case, the kernel text mapping
+ * and the kernel identity mapping share the same page-table pages,
+ * so the protections for kernel text and identity mappings have to
+ * be the same.
+ */
+ if (lookup_address(start, &level) && (level != PG_LEVEL_4K))
+ return _PAGE_RW;
+ return 0;
+}
+#else
+static pgprotval_t protect_kernel_text_ro(unsigned long start,
+ unsigned long end)
+{
+ return 0;
+}
+#endif
+
+static inline bool conflicts(pgprot_t prot, pgprotval_t val)
+{
+ return (pgprot_val(prot) & ~val) != pgprot_val(prot);
+}
+
+static inline void check_conflict(int warnlvl, pgprot_t prot, pgprotval_t val,
+ unsigned long start, unsigned long end,
+ unsigned long pfn, const char *txt)
+{
+ static const char *lvltxt[] = {
+ [CPA_CONFLICT] = "conflict",
+ [CPA_PROTECT] = "protect",
+ [CPA_DETECT] = "detect",
+ };
+
+ if (warnlvl > cpa_warn_level || !conflicts(prot, val))
+ return;
+
+ pr_warn("CPA %8s %10s: 0x%016lx - 0x%016lx PFN %lx req %016llx prevent %016llx\n",
+ lvltxt[warnlvl], txt, start, end, pfn, (unsigned long long)pgprot_val(prot),
+ (unsigned long long)val);
+}
+
+/*
+ * Certain areas of memory on x86 require very specific protection flags,
+ * for example the BIOS area or kernel text. Callers don't always get this
+ * right (again, ioremap() on BIOS memory is not uncommon) so this function
+ * checks and fixes these known static required protection bits.
+ */
+static inline pgprot_t static_protections(pgprot_t prot, unsigned long start,
+ unsigned long pfn, unsigned long npg,
+ unsigned long lpsize, int warnlvl)
+{
+ pgprotval_t forbidden, res;
+ unsigned long end;
+
+ /*
+ * There is no point in checking RW/NX conflicts when the requested
+ * mapping is setting the page !PRESENT.
+ */
+ if (!(pgprot_val(prot) & _PAGE_PRESENT))
+ return prot;
+
+ /* Operate on the virtual address */
+ end = start + npg * PAGE_SIZE - 1;
+
+ res = protect_kernel_text(start, end);
+ check_conflict(warnlvl, prot, res, start, end, pfn, "Text NX");
+ forbidden = res;
+
+ /*
+ * Special case to preserve a large page. If the change spawns the
+ * full large page mapping then there is no point to split it
+ * up. Happens with ftrace and is going to be removed once ftrace
+ * switched to text_poke().
+ */
+ if (lpsize != (npg * PAGE_SIZE) || (start & (lpsize - 1))) {
+ res = protect_kernel_text_ro(start, end);
+ check_conflict(warnlvl, prot, res, start, end, pfn, "Text RO");
+ forbidden |= res;
+ }
+
+ /* Check the PFN directly */
+ res = protect_pci_bios(pfn, pfn + npg - 1);
+ check_conflict(warnlvl, prot, res, start, end, pfn, "PCIBIOS NX");
+ forbidden |= res;
+
+ res = protect_rodata(pfn, pfn + npg - 1);
+ check_conflict(warnlvl, prot, res, start, end, pfn, "Rodata RO");
+ forbidden |= res;
+
+ return __pgprot(pgprot_val(prot) & ~forbidden);
+}
+
+/*
+ * Validate strict W^X semantics.
+ */
+static inline pgprot_t verify_rwx(pgprot_t old, pgprot_t new, unsigned long start,
+ unsigned long pfn, unsigned long npg)
+{
+ unsigned long end;
+
+ /*
+ * 32-bit has some unfixable W+X issues, like EFI code
+ * and writeable data being in the same page. Disable
+ * detection and enforcement there.
+ */
+ if (IS_ENABLED(CONFIG_X86_32))
+ return new;
+
+ /* Only verify when NX is supported: */
+ if (!(__supported_pte_mask & _PAGE_NX))
+ return new;
+
+ if (!((pgprot_val(old) ^ pgprot_val(new)) & (_PAGE_RW | _PAGE_NX)))
+ return new;
+
+ if ((pgprot_val(new) & (_PAGE_RW | _PAGE_NX)) != _PAGE_RW)
+ return new;
+
+ end = start + npg * PAGE_SIZE - 1;
+ WARN_ONCE(1, "CPA detected W^X violation: %016llx -> %016llx range: 0x%016lx - 0x%016lx PFN %lx\n",
+ (unsigned long long)pgprot_val(old),
+ (unsigned long long)pgprot_val(new),
+ start, end, pfn);
+
+ /*
+ * For now, allow all permission change attempts by returning the
+ * attempted permissions. This can 'return old' to actively
+ * refuse the permission change at a later time.
+ */
+ return new;
+}
+
+/*
+ * Lookup the page table entry for a virtual address in a specific pgd.
+ * Return a pointer to the entry and the level of the mapping.
+ */
+pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
+ unsigned int *level)
+{
+ p4d_t *p4d;
+ pud_t *pud;
+ pmd_t *pmd;
+
+ *level = PG_LEVEL_NONE;
+
+ if (pgd_none(*pgd))
+ return NULL;
+
+ p4d = p4d_offset(pgd, address);
+ if (p4d_none(*p4d))
+ return NULL;
+
+ *level = PG_LEVEL_512G;
+ if (p4d_large(*p4d) || !p4d_present(*p4d))
+ return (pte_t *)p4d;
+
+ pud = pud_offset(p4d, address);
+ if (pud_none(*pud))
+ return NULL;
+
+ *level = PG_LEVEL_1G;
+ if (pud_large(*pud) || !pud_present(*pud))
+ return (pte_t *)pud;
+
+ pmd = pmd_offset(pud, address);
+ if (pmd_none(*pmd))
+ return NULL;
+
+ *level = PG_LEVEL_2M;
+ if (pmd_large(*pmd) || !pmd_present(*pmd))
+ return (pte_t *)pmd;
+
+ *level = PG_LEVEL_4K;
+
+ return pte_offset_kernel(pmd, address);
+}
+
+/*
+ * Lookup the page table entry for a virtual address. Return a pointer
+ * to the entry and the level of the mapping.
+ *
+ * Note: We return pud and pmd either when the entry is marked large
+ * or when the present bit is not set. Otherwise we would return a
+ * pointer to a nonexisting mapping.
+ */
+pte_t *lookup_address(unsigned long address, unsigned int *level)
+{
+ return lookup_address_in_pgd(pgd_offset_k(address), address, level);
+}
+EXPORT_SYMBOL_GPL(lookup_address);
+
+static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
+ unsigned int *level)
+{
+ if (cpa->pgd)
+ return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
+ address, level);
+
+ return lookup_address(address, level);
+}
+
+/*
+ * Lookup the PMD entry for a virtual address. Return a pointer to the entry
+ * or NULL if not present.
+ */
+pmd_t *lookup_pmd_address(unsigned long address)
+{
+ pgd_t *pgd;
+ p4d_t *p4d;
+ pud_t *pud;
+
+ pgd = pgd_offset_k(address);
+ if (pgd_none(*pgd))
+ return NULL;
+
+ p4d = p4d_offset(pgd, address);
+ if (p4d_none(*p4d) || p4d_large(*p4d) || !p4d_present(*p4d))
+ return NULL;
+
+ pud = pud_offset(p4d, address);
+ if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud))
+ return NULL;
+
+ return pmd_offset(pud, address);
+}
+
+/*
+ * This is necessary because __pa() does not work on some
+ * kinds of memory, like vmalloc() or the alloc_remap()
+ * areas on 32-bit NUMA systems. The percpu areas can
+ * end up in this kind of memory, for instance.
+ *
+ * This could be optimized, but it is only intended to be
+ * used at initialization time, and keeping it
+ * unoptimized should increase the testing coverage for
+ * the more obscure platforms.
+ */
+phys_addr_t slow_virt_to_phys(void *__virt_addr)
+{
+ unsigned long virt_addr = (unsigned long)__virt_addr;
+ phys_addr_t phys_addr;
+ unsigned long offset;
+ enum pg_level level;
+ pte_t *pte;
+
+ pte = lookup_address(virt_addr, &level);
+ BUG_ON(!pte);
+
+ /*
+ * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
+ * before being left-shifted PAGE_SHIFT bits -- this trick is to
+ * make 32-PAE kernel work correctly.
+ */
+ switch (level) {
+ case PG_LEVEL_1G:
+ phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
+ offset = virt_addr & ~PUD_MASK;
+ break;
+ case PG_LEVEL_2M:
+ phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
+ offset = virt_addr & ~PMD_MASK;
+ break;
+ default:
+ phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
+ offset = virt_addr & ~PAGE_MASK;
+ }
+
+ return (phys_addr_t)(phys_addr | offset);
+}
+EXPORT_SYMBOL_GPL(slow_virt_to_phys);
+
+/*
+ * Set the new pmd in all the pgds we know about:
+ */
+static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
+{
+ /* change init_mm */
+ set_pte_atomic(kpte, pte);
+#ifdef CONFIG_X86_32
+ if (!SHARED_KERNEL_PMD) {
+ struct page *page;
+
+ list_for_each_entry(page, &pgd_list, lru) {
+ pgd_t *pgd;
+ p4d_t *p4d;
+ pud_t *pud;
+ pmd_t *pmd;
+
+ pgd = (pgd_t *)page_address(page) + pgd_index(address);
+ p4d = p4d_offset(pgd, address);
+ pud = pud_offset(p4d, address);
+ pmd = pmd_offset(pud, address);
+ set_pte_atomic((pte_t *)pmd, pte);
+ }
+ }
+#endif
+}
+
+static pgprot_t pgprot_clear_protnone_bits(pgprot_t prot)
+{
+ /*
+ * _PAGE_GLOBAL means "global page" for present PTEs.
+ * But, it is also used to indicate _PAGE_PROTNONE
+ * for non-present PTEs.
+ *
+ * This ensures that a _PAGE_GLOBAL PTE going from
+ * present to non-present is not confused as
+ * _PAGE_PROTNONE.
+ */
+ if (!(pgprot_val(prot) & _PAGE_PRESENT))
+ pgprot_val(prot) &= ~_PAGE_GLOBAL;
+
+ return prot;
+}
+
+static int __should_split_large_page(pte_t *kpte, unsigned long address,
+ struct cpa_data *cpa)
+{
+ unsigned long numpages, pmask, psize, lpaddr, pfn, old_pfn;
+ pgprot_t old_prot, new_prot, req_prot, chk_prot;
+ pte_t new_pte, *tmp;
+ enum pg_level level;
+
+ /*
+ * Check for races, another CPU might have split this page
+ * up already:
+ */
+ tmp = _lookup_address_cpa(cpa, address, &level);
+ if (tmp != kpte)
+ return 1;
+
+ switch (level) {
+ case PG_LEVEL_2M:
+ old_prot = pmd_pgprot(*(pmd_t *)kpte);
+ old_pfn = pmd_pfn(*(pmd_t *)kpte);
+ cpa_inc_2m_checked();
+ break;
+ case PG_LEVEL_1G:
+ old_prot = pud_pgprot(*(pud_t *)kpte);
+ old_pfn = pud_pfn(*(pud_t *)kpte);
+ cpa_inc_1g_checked();
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ psize = page_level_size(level);
+ pmask = page_level_mask(level);
+
+ /*
+ * Calculate the number of pages, which fit into this large
+ * page starting at address:
+ */
+ lpaddr = (address + psize) & pmask;
+ numpages = (lpaddr - address) >> PAGE_SHIFT;
+ if (numpages < cpa->numpages)
+ cpa->numpages = numpages;
+
+ /*
+ * We are safe now. Check whether the new pgprot is the same:
+ * Convert protection attributes to 4k-format, as cpa->mask* are set
+ * up accordingly.
+ */
+
+ /* Clear PSE (aka _PAGE_PAT) and move PAT bit to correct position */
+ req_prot = pgprot_large_2_4k(old_prot);
+
+ pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
+ pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
+
+ /*
+ * req_prot is in format of 4k pages. It must be converted to large
+ * page format: the caching mode includes the PAT bit located at
+ * different bit positions in the two formats.
+ */
+ req_prot = pgprot_4k_2_large(req_prot);
+ req_prot = pgprot_clear_protnone_bits(req_prot);
+ if (pgprot_val(req_prot) & _PAGE_PRESENT)
+ pgprot_val(req_prot) |= _PAGE_PSE;
+
+ /*
+ * old_pfn points to the large page base pfn. So we need to add the
+ * offset of the virtual address:
+ */
+ pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
+ cpa->pfn = pfn;
+
+ /*
+ * Calculate the large page base address and the number of 4K pages
+ * in the large page
+ */
+ lpaddr = address & pmask;
+ numpages = psize >> PAGE_SHIFT;
+
+ /*
+ * Sanity check that the existing mapping is correct versus the static
+ * protections. static_protections() guards against !PRESENT, so no
+ * extra conditional required here.
+ */
+ chk_prot = static_protections(old_prot, lpaddr, old_pfn, numpages,
+ psize, CPA_CONFLICT);
+
+ if (WARN_ON_ONCE(pgprot_val(chk_prot) != pgprot_val(old_prot))) {
+ /*
+ * Split the large page and tell the split code to
+ * enforce static protections.
+ */
+ cpa->force_static_prot = 1;
+ return 1;
+ }
+
+ /*
+ * Optimization: If the requested pgprot is the same as the current
+ * pgprot, then the large page can be preserved and no updates are
+ * required independent of alignment and length of the requested
+ * range. The above already established that the current pgprot is
+ * correct, which in consequence makes the requested pgprot correct
+ * as well if it is the same. The static protection scan below will
+ * not come to a different conclusion.
+ */
+ if (pgprot_val(req_prot) == pgprot_val(old_prot)) {
+ cpa_inc_lp_sameprot(level);
+ return 0;
+ }
+
+ /*
+ * If the requested range does not cover the full page, split it up
+ */
+ if (address != lpaddr || cpa->numpages != numpages)
+ return 1;
+
+ /*
+ * Check whether the requested pgprot is conflicting with a static
+ * protection requirement in the large page.
+ */
+ new_prot = static_protections(req_prot, lpaddr, old_pfn, numpages,
+ psize, CPA_DETECT);
+
+ new_prot = verify_rwx(old_prot, new_prot, lpaddr, old_pfn, numpages);
+
+ /*
+ * If there is a conflict, split the large page.
+ *
+ * There used to be a 4k wise evaluation trying really hard to
+ * preserve the large pages, but experimentation has shown, that this
+ * does not help at all. There might be corner cases which would
+ * preserve one large page occasionally, but it's really not worth the
+ * extra code and cycles for the common case.
+ */
+ if (pgprot_val(req_prot) != pgprot_val(new_prot))
+ return 1;
+
+ /* All checks passed. Update the large page mapping. */
+ new_pte = pfn_pte(old_pfn, new_prot);
+ __set_pmd_pte(kpte, address, new_pte);
+ cpa->flags |= CPA_FLUSHTLB;
+ cpa_inc_lp_preserved(level);
+ return 0;
+}
+
+static int should_split_large_page(pte_t *kpte, unsigned long address,
+ struct cpa_data *cpa)
+{
+ int do_split;
+
+ if (cpa->force_split)
+ return 1;
+
+ spin_lock(&pgd_lock);
+ do_split = __should_split_large_page(kpte, address, cpa);
+ spin_unlock(&pgd_lock);
+
+ return do_split;
+}
+
+static void split_set_pte(struct cpa_data *cpa, pte_t *pte, unsigned long pfn,
+ pgprot_t ref_prot, unsigned long address,
+ unsigned long size)
+{
+ unsigned int npg = PFN_DOWN(size);
+ pgprot_t prot;
+
+ /*
+ * If should_split_large_page() discovered an inconsistent mapping,
+ * remove the invalid protection in the split mapping.
+ */
+ if (!cpa->force_static_prot)
+ goto set;
+
+ /* Hand in lpsize = 0 to enforce the protection mechanism */
+ prot = static_protections(ref_prot, address, pfn, npg, 0, CPA_PROTECT);
+
+ if (pgprot_val(prot) == pgprot_val(ref_prot))
+ goto set;
+
+ /*
+ * If this is splitting a PMD, fix it up. PUD splits cannot be
+ * fixed trivially as that would require to rescan the newly
+ * installed PMD mappings after returning from split_large_page()
+ * so an eventual further split can allocate the necessary PTE
+ * pages. Warn for now and revisit it in case this actually
+ * happens.
+ */
+ if (size == PAGE_SIZE)
+ ref_prot = prot;
+ else
+ pr_warn_once("CPA: Cannot fixup static protections for PUD split\n");
+set:
+ set_pte(pte, pfn_pte(pfn, ref_prot));
+}
+
+static int
+__split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
+ struct page *base)
+{
+ unsigned long lpaddr, lpinc, ref_pfn, pfn, pfninc = 1;
+ pte_t *pbase = (pte_t *)page_address(base);
+ unsigned int i, level;
+ pgprot_t ref_prot;
+ pte_t *tmp;
+
+ spin_lock(&pgd_lock);
+ /*
+ * Check for races, another CPU might have split this page
+ * up for us already:
+ */
+ tmp = _lookup_address_cpa(cpa, address, &level);
+ if (tmp != kpte) {
+ spin_unlock(&pgd_lock);
+ return 1;
+ }
+
+ paravirt_alloc_pte(&init_mm, page_to_pfn(base));
+
+ switch (level) {
+ case PG_LEVEL_2M:
+ ref_prot = pmd_pgprot(*(pmd_t *)kpte);
+ /*
+ * Clear PSE (aka _PAGE_PAT) and move
+ * PAT bit to correct position.
+ */
+ ref_prot = pgprot_large_2_4k(ref_prot);
+ ref_pfn = pmd_pfn(*(pmd_t *)kpte);
+ lpaddr = address & PMD_MASK;
+ lpinc = PAGE_SIZE;
+ break;
+
+ case PG_LEVEL_1G:
+ ref_prot = pud_pgprot(*(pud_t *)kpte);
+ ref_pfn = pud_pfn(*(pud_t *)kpte);
+ pfninc = PMD_SIZE >> PAGE_SHIFT;
+ lpaddr = address & PUD_MASK;
+ lpinc = PMD_SIZE;
+ /*
+ * Clear the PSE flags if the PRESENT flag is not set
+ * otherwise pmd_present/pmd_huge will return true
+ * even on a non present pmd.
+ */
+ if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
+ pgprot_val(ref_prot) &= ~_PAGE_PSE;
+ break;
+
+ default:
+ spin_unlock(&pgd_lock);
+ return 1;
+ }
+
+ ref_prot = pgprot_clear_protnone_bits(ref_prot);
+
+ /*
+ * Get the target pfn from the original entry:
+ */
+ pfn = ref_pfn;
+ for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc, lpaddr += lpinc)
+ split_set_pte(cpa, pbase + i, pfn, ref_prot, lpaddr, lpinc);
+
+ if (virt_addr_valid(address)) {
+ unsigned long pfn = PFN_DOWN(__pa(address));
+
+ if (pfn_range_is_mapped(pfn, pfn + 1))
+ split_page_count(level);
+ }
+
+ /*
+ * Install the new, split up pagetable.
+ *
+ * We use the standard kernel pagetable protections for the new
+ * pagetable protections, the actual ptes set above control the
+ * primary protection behavior:
+ */
+ __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
+
+ /*
+ * Do a global flush tlb after splitting the large page
+ * and before we do the actual change page attribute in the PTE.
+ *
+ * Without this, we violate the TLB application note, that says:
+ * "The TLBs may contain both ordinary and large-page
+ * translations for a 4-KByte range of linear addresses. This
+ * may occur if software modifies the paging structures so that
+ * the page size used for the address range changes. If the two
+ * translations differ with respect to page frame or attributes
+ * (e.g., permissions), processor behavior is undefined and may
+ * be implementation-specific."
+ *
+ * We do this global tlb flush inside the cpa_lock, so that we
+ * don't allow any other cpu, with stale tlb entries change the
+ * page attribute in parallel, that also falls into the
+ * just split large page entry.
+ */
+ flush_tlb_all();
+ spin_unlock(&pgd_lock);
+
+ return 0;
+}
+
+static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
+ unsigned long address)
+{
+ struct page *base;
+
+ if (!debug_pagealloc_enabled())
+ spin_unlock(&cpa_lock);
+ base = alloc_pages(GFP_KERNEL, 0);
+ if (!debug_pagealloc_enabled())
+ spin_lock(&cpa_lock);
+ if (!base)
+ return -ENOMEM;
+
+ if (__split_large_page(cpa, kpte, address, base))
+ __free_page(base);
+
+ return 0;
+}
+
+static bool try_to_free_pte_page(pte_t *pte)
+{
+ int i;
+
+ for (i = 0; i < PTRS_PER_PTE; i++)
+ if (!pte_none(pte[i]))
+ return false;
+
+ free_page((unsigned long)pte);
+ return true;
+}
+
+static bool try_to_free_pmd_page(pmd_t *pmd)
+{
+ int i;
+
+ for (i = 0; i < PTRS_PER_PMD; i++)
+ if (!pmd_none(pmd[i]))
+ return false;
+
+ free_page((unsigned long)pmd);
+ return true;
+}
+
+static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
+{
+ pte_t *pte = pte_offset_kernel(pmd, start);
+
+ while (start < end) {
+ set_pte(pte, __pte(0));
+
+ start += PAGE_SIZE;
+ pte++;
+ }
+
+ if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
+ pmd_clear(pmd);
+ return true;
+ }
+ return false;
+}
+
+static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
+ unsigned long start, unsigned long end)
+{
+ if (unmap_pte_range(pmd, start, end))
+ if (try_to_free_pmd_page(pud_pgtable(*pud)))
+ pud_clear(pud);
+}
+
+static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
+{
+ pmd_t *pmd = pmd_offset(pud, start);
+
+ /*
+ * Not on a 2MB page boundary?
+ */
+ if (start & (PMD_SIZE - 1)) {
+ unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
+ unsigned long pre_end = min_t(unsigned long, end, next_page);
+
+ __unmap_pmd_range(pud, pmd, start, pre_end);
+
+ start = pre_end;
+ pmd++;
+ }
+
+ /*
+ * Try to unmap in 2M chunks.
+ */
+ while (end - start >= PMD_SIZE) {
+ if (pmd_large(*pmd))
+ pmd_clear(pmd);
+ else
+ __unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
+
+ start += PMD_SIZE;
+ pmd++;
+ }
+
+ /*
+ * 4K leftovers?
+ */
+ if (start < end)
+ return __unmap_pmd_range(pud, pmd, start, end);
+
+ /*
+ * Try again to free the PMD page if haven't succeeded above.
+ */
+ if (!pud_none(*pud))
+ if (try_to_free_pmd_page(pud_pgtable(*pud)))
+ pud_clear(pud);
+}
+
+static void unmap_pud_range(p4d_t *p4d, unsigned long start, unsigned long end)
+{
+ pud_t *pud = pud_offset(p4d, start);
+
+ /*
+ * Not on a GB page boundary?
+ */
+ if (start & (PUD_SIZE - 1)) {
+ unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
+ unsigned long pre_end = min_t(unsigned long, end, next_page);
+
+ unmap_pmd_range(pud, start, pre_end);
+
+ start = pre_end;
+ pud++;
+ }
+
+ /*
+ * Try to unmap in 1G chunks?
+ */
+ while (end - start >= PUD_SIZE) {
+
+ if (pud_large(*pud))
+ pud_clear(pud);
+ else
+ unmap_pmd_range(pud, start, start + PUD_SIZE);
+
+ start += PUD_SIZE;
+ pud++;
+ }
+
+ /*
+ * 2M leftovers?
+ */
+ if (start < end)
+ unmap_pmd_range(pud, start, end);
+
+ /*
+ * No need to try to free the PUD page because we'll free it in
+ * populate_pgd's error path
+ */
+}
+
+static int alloc_pte_page(pmd_t *pmd)
+{
+ pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
+ if (!pte)
+ return -1;
+
+ set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
+ return 0;
+}
+
+static int alloc_pmd_page(pud_t *pud)
+{
+ pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
+ if (!pmd)
+ return -1;
+
+ set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
+ return 0;
+}
+
+static void populate_pte(struct cpa_data *cpa,
+ unsigned long start, unsigned long end,
+ unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
+{
+ pte_t *pte;
+
+ pte = pte_offset_kernel(pmd, start);
+
+ pgprot = pgprot_clear_protnone_bits(pgprot);
+
+ while (num_pages-- && start < end) {
+ set_pte(pte, pfn_pte(cpa->pfn, pgprot));
+
+ start += PAGE_SIZE;
+ cpa->pfn++;
+ pte++;
+ }
+}
+
+static long populate_pmd(struct cpa_data *cpa,
+ unsigned long start, unsigned long end,
+ unsigned num_pages, pud_t *pud, pgprot_t pgprot)
+{
+ long cur_pages = 0;
+ pmd_t *pmd;
+ pgprot_t pmd_pgprot;
+
+ /*
+ * Not on a 2M boundary?
+ */
+ if (start & (PMD_SIZE - 1)) {
+ unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
+ unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
+
+ pre_end = min_t(unsigned long, pre_end, next_page);
+ cur_pages = (pre_end - start) >> PAGE_SHIFT;
+ cur_pages = min_t(unsigned int, num_pages, cur_pages);
+
+ /*
+ * Need a PTE page?
+ */
+ pmd = pmd_offset(pud, start);
+ if (pmd_none(*pmd))
+ if (alloc_pte_page(pmd))
+ return -1;
+
+ populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
+
+ start = pre_end;
+ }
+
+ /*
+ * We mapped them all?
+ */
+ if (num_pages == cur_pages)
+ return cur_pages;
+
+ pmd_pgprot = pgprot_4k_2_large(pgprot);
+
+ while (end - start >= PMD_SIZE) {
+
+ /*
+ * We cannot use a 1G page so allocate a PMD page if needed.
+ */
+ if (pud_none(*pud))
+ if (alloc_pmd_page(pud))
+ return -1;
+
+ pmd = pmd_offset(pud, start);
+
+ set_pmd(pmd, pmd_mkhuge(pfn_pmd(cpa->pfn,
+ canon_pgprot(pmd_pgprot))));
+
+ start += PMD_SIZE;
+ cpa->pfn += PMD_SIZE >> PAGE_SHIFT;
+ cur_pages += PMD_SIZE >> PAGE_SHIFT;
+ }
+
+ /*
+ * Map trailing 4K pages.
+ */
+ if (start < end) {
+ pmd = pmd_offset(pud, start);
+ if (pmd_none(*pmd))
+ if (alloc_pte_page(pmd))
+ return -1;
+
+ populate_pte(cpa, start, end, num_pages - cur_pages,
+ pmd, pgprot);
+ }
+ return num_pages;
+}
+
+static int populate_pud(struct cpa_data *cpa, unsigned long start, p4d_t *p4d,
+ pgprot_t pgprot)
+{
+ pud_t *pud;
+ unsigned long end;
+ long cur_pages = 0;
+ pgprot_t pud_pgprot;
+
+ end = start + (cpa->numpages << PAGE_SHIFT);
+
+ /*
+ * Not on a Gb page boundary? => map everything up to it with
+ * smaller pages.
+ */
+ if (start & (PUD_SIZE - 1)) {
+ unsigned long pre_end;
+ unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
+
+ pre_end = min_t(unsigned long, end, next_page);
+ cur_pages = (pre_end - start) >> PAGE_SHIFT;
+ cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
+
+ pud = pud_offset(p4d, start);
+
+ /*
+ * Need a PMD page?
+ */
+ if (pud_none(*pud))
+ if (alloc_pmd_page(pud))
+ return -1;
+
+ cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
+ pud, pgprot);
+ if (cur_pages < 0)
+ return cur_pages;
+
+ start = pre_end;
+ }
+
+ /* We mapped them all? */
+ if (cpa->numpages == cur_pages)
+ return cur_pages;
+
+ pud = pud_offset(p4d, start);
+ pud_pgprot = pgprot_4k_2_large(pgprot);
+
+ /*
+ * Map everything starting from the Gb boundary, possibly with 1G pages
+ */
+ while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) {
+ set_pud(pud, pud_mkhuge(pfn_pud(cpa->pfn,
+ canon_pgprot(pud_pgprot))));
+
+ start += PUD_SIZE;
+ cpa->pfn += PUD_SIZE >> PAGE_SHIFT;
+ cur_pages += PUD_SIZE >> PAGE_SHIFT;
+ pud++;
+ }
+
+ /* Map trailing leftover */
+ if (start < end) {
+ long tmp;
+
+ pud = pud_offset(p4d, start);
+ if (pud_none(*pud))
+ if (alloc_pmd_page(pud))
+ return -1;
+
+ tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
+ pud, pgprot);
+ if (tmp < 0)
+ return cur_pages;
+
+ cur_pages += tmp;
+ }
+ return cur_pages;
+}
+
+/*
+ * Restrictions for kernel page table do not necessarily apply when mapping in
+ * an alternate PGD.
+ */
+static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
+{
+ pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
+ pud_t *pud = NULL; /* shut up gcc */
+ p4d_t *p4d;
+ pgd_t *pgd_entry;
+ long ret;
+
+ pgd_entry = cpa->pgd + pgd_index(addr);
+
+ if (pgd_none(*pgd_entry)) {
+ p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
+ if (!p4d)
+ return -1;
+
+ set_pgd(pgd_entry, __pgd(__pa(p4d) | _KERNPG_TABLE));
+ }
+
+ /*
+ * Allocate a PUD page and hand it down for mapping.
+ */
+ p4d = p4d_offset(pgd_entry, addr);
+ if (p4d_none(*p4d)) {
+ pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
+ if (!pud)
+ return -1;
+
+ set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
+ }
+
+ pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
+ pgprot_val(pgprot) |= pgprot_val(cpa->mask_set);
+
+ ret = populate_pud(cpa, addr, p4d, pgprot);
+ if (ret < 0) {
+ /*
+ * Leave the PUD page in place in case some other CPU or thread
+ * already found it, but remove any useless entries we just
+ * added to it.
+ */
+ unmap_pud_range(p4d, addr,
+ addr + (cpa->numpages << PAGE_SHIFT));
+ return ret;
+ }
+
+ cpa->numpages = ret;
+ return 0;
+}
+
+static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
+ int primary)
+{
+ if (cpa->pgd) {
+ /*
+ * Right now, we only execute this code path when mapping
+ * the EFI virtual memory map regions, no other users
+ * provide a ->pgd value. This may change in the future.
+ */
+ return populate_pgd(cpa, vaddr);
+ }
+
+ /*
+ * Ignore all non primary paths.
+ */
+ if (!primary) {
+ cpa->numpages = 1;
+ return 0;
+ }
+
+ /*
+ * Ignore the NULL PTE for kernel identity mapping, as it is expected
+ * to have holes.
+ * Also set numpages to '1' indicating that we processed cpa req for
+ * one virtual address page and its pfn. TBD: numpages can be set based
+ * on the initial value and the level returned by lookup_address().
+ */
+ if (within(vaddr, PAGE_OFFSET,
+ PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
+ cpa->numpages = 1;
+ cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
+ return 0;
+
+ } else if (__cpa_pfn_in_highmap(cpa->pfn)) {
+ /* Faults in the highmap are OK, so do not warn: */
+ return -EFAULT;
+ } else {
+ WARN(1, KERN_WARNING "CPA: called for zero pte. "
+ "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
+ *cpa->vaddr);
+
+ return -EFAULT;
+ }
+}
+
+static int __change_page_attr(struct cpa_data *cpa, int primary)
+{
+ unsigned long address;
+ int do_split, err;
+ unsigned int level;
+ pte_t *kpte, old_pte;
+
+ address = __cpa_addr(cpa, cpa->curpage);
+repeat:
+ kpte = _lookup_address_cpa(cpa, address, &level);
+ if (!kpte)
+ return __cpa_process_fault(cpa, address, primary);
+
+ old_pte = *kpte;
+ if (pte_none(old_pte))
+ return __cpa_process_fault(cpa, address, primary);
+
+ if (level == PG_LEVEL_4K) {
+ pte_t new_pte;
+ pgprot_t old_prot = pte_pgprot(old_pte);
+ pgprot_t new_prot = pte_pgprot(old_pte);
+ unsigned long pfn = pte_pfn(old_pte);
+
+ pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
+ pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
+
+ cpa_inc_4k_install();
+ /* Hand in lpsize = 0 to enforce the protection mechanism */
+ new_prot = static_protections(new_prot, address, pfn, 1, 0,
+ CPA_PROTECT);
+
+ new_prot = verify_rwx(old_prot, new_prot, address, pfn, 1);
+
+ new_prot = pgprot_clear_protnone_bits(new_prot);
+
+ /*
+ * We need to keep the pfn from the existing PTE,
+ * after all we're only going to change it's attributes
+ * not the memory it points to
+ */
+ new_pte = pfn_pte(pfn, new_prot);
+ cpa->pfn = pfn;
+ /*
+ * Do we really change anything ?
+ */
+ if (pte_val(old_pte) != pte_val(new_pte)) {
+ set_pte_atomic(kpte, new_pte);
+ cpa->flags |= CPA_FLUSHTLB;
+ }
+ cpa->numpages = 1;
+ return 0;
+ }
+
+ /*
+ * Check, whether we can keep the large page intact
+ * and just change the pte:
+ */
+ do_split = should_split_large_page(kpte, address, cpa);
+ /*
+ * When the range fits into the existing large page,
+ * return. cp->numpages and cpa->tlbflush have been updated in
+ * try_large_page:
+ */
+ if (do_split <= 0)
+ return do_split;
+
+ /*
+ * We have to split the large page:
+ */
+ err = split_large_page(cpa, kpte, address);
+ if (!err)
+ goto repeat;
+
+ return err;
+}
+
+static int __change_page_attr_set_clr(struct cpa_data *cpa, int primary);
+
+/*
+ * Check the directmap and "high kernel map" 'aliases'.
+ */
+static int cpa_process_alias(struct cpa_data *cpa)
+{
+ struct cpa_data alias_cpa;
+ unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
+ unsigned long vaddr;
+ int ret;
+
+ if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
+ return 0;
+
+ /*
+ * No need to redo, when the primary call touched the direct
+ * mapping already:
+ */
+ vaddr = __cpa_addr(cpa, cpa->curpage);
+ if (!(within(vaddr, PAGE_OFFSET,
+ PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
+
+ alias_cpa = *cpa;
+ alias_cpa.vaddr = &laddr;
+ alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
+ alias_cpa.curpage = 0;
+
+ /* Directmap always has NX set, do not modify. */
+ if (__supported_pte_mask & _PAGE_NX) {
+ alias_cpa.mask_clr.pgprot &= ~_PAGE_NX;
+ alias_cpa.mask_set.pgprot &= ~_PAGE_NX;
+ }
+
+ cpa->force_flush_all = 1;
+
+ ret = __change_page_attr_set_clr(&alias_cpa, 0);
+ if (ret)
+ return ret;
+ }
+
+#ifdef CONFIG_X86_64
+ /*
+ * If the primary call didn't touch the high mapping already
+ * and the physical address is inside the kernel map, we need
+ * to touch the high mapped kernel as well:
+ */
+ if (!within(vaddr, (unsigned long)_text, _brk_end) &&
+ __cpa_pfn_in_highmap(cpa->pfn)) {
+ unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
+ __START_KERNEL_map - phys_base;
+ alias_cpa = *cpa;
+ alias_cpa.vaddr = &temp_cpa_vaddr;
+ alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
+ alias_cpa.curpage = 0;
+
+ /*
+ * [_text, _brk_end) also covers data, do not modify NX except
+ * in cases where the highmap is the primary target.
+ */
+ if (__supported_pte_mask & _PAGE_NX) {
+ alias_cpa.mask_clr.pgprot &= ~_PAGE_NX;
+ alias_cpa.mask_set.pgprot &= ~_PAGE_NX;
+ }
+
+ cpa->force_flush_all = 1;
+ /*
+ * The high mapping range is imprecise, so ignore the
+ * return value.
+ */
+ __change_page_attr_set_clr(&alias_cpa, 0);
+ }
+#endif
+
+ return 0;
+}
+
+static int __change_page_attr_set_clr(struct cpa_data *cpa, int primary)
+{
+ unsigned long numpages = cpa->numpages;
+ unsigned long rempages = numpages;
+ int ret = 0;
+
+ /*
+ * No changes, easy!
+ */
+ if (!(pgprot_val(cpa->mask_set) | pgprot_val(cpa->mask_clr)) &&
+ !cpa->force_split)
+ return ret;
+
+ while (rempages) {
+ /*
+ * Store the remaining nr of pages for the large page
+ * preservation check.
+ */
+ cpa->numpages = rempages;
+ /* for array changes, we can't use large page */
+ if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
+ cpa->numpages = 1;
+
+ if (!debug_pagealloc_enabled())
+ spin_lock(&cpa_lock);
+ ret = __change_page_attr(cpa, primary);
+ if (!debug_pagealloc_enabled())
+ spin_unlock(&cpa_lock);
+ if (ret)
+ goto out;
+
+ if (primary && !(cpa->flags & CPA_NO_CHECK_ALIAS)) {
+ ret = cpa_process_alias(cpa);
+ if (ret)
+ goto out;
+ }
+
+ /*
+ * Adjust the number of pages with the result of the
+ * CPA operation. Either a large page has been
+ * preserved or a single page update happened.
+ */
+ BUG_ON(cpa->numpages > rempages || !cpa->numpages);
+ rempages -= cpa->numpages;
+ cpa->curpage += cpa->numpages;
+ }
+
+out:
+ /* Restore the original numpages */
+ cpa->numpages = numpages;
+ return ret;
+}
+
+static int change_page_attr_set_clr(unsigned long *addr, int numpages,
+ pgprot_t mask_set, pgprot_t mask_clr,
+ int force_split, int in_flag,
+ struct page **pages)
+{
+ struct cpa_data cpa;
+ int ret, cache;
+
+ memset(&cpa, 0, sizeof(cpa));
+
+ /*
+ * Check, if we are requested to set a not supported
+ * feature. Clearing non-supported features is OK.
+ */
+ mask_set = canon_pgprot(mask_set);
+
+ if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
+ return 0;
+
+ /* Ensure we are PAGE_SIZE aligned */
+ if (in_flag & CPA_ARRAY) {
+ int i;
+ for (i = 0; i < numpages; i++) {
+ if (addr[i] & ~PAGE_MASK) {
+ addr[i] &= PAGE_MASK;
+ WARN_ON_ONCE(1);
+ }
+ }
+ } else if (!(in_flag & CPA_PAGES_ARRAY)) {
+ /*
+ * in_flag of CPA_PAGES_ARRAY implies it is aligned.
+ * No need to check in that case
+ */
+ if (*addr & ~PAGE_MASK) {
+ *addr &= PAGE_MASK;
+ /*
+ * People should not be passing in unaligned addresses:
+ */
+ WARN_ON_ONCE(1);
+ }
+ }
+
+ /* Must avoid aliasing mappings in the highmem code */
+ kmap_flush_unused();
+
+ vm_unmap_aliases();
+
+ cpa.vaddr = addr;
+ cpa.pages = pages;
+ cpa.numpages = numpages;
+ cpa.mask_set = mask_set;
+ cpa.mask_clr = mask_clr;
+ cpa.flags = in_flag;
+ cpa.curpage = 0;
+ cpa.force_split = force_split;
+
+ ret = __change_page_attr_set_clr(&cpa, 1);
+
+ /*
+ * Check whether we really changed something:
+ */
+ if (!(cpa.flags & CPA_FLUSHTLB))
+ goto out;
+
+ /*
+ * No need to flush, when we did not set any of the caching
+ * attributes:
+ */
+ cache = !!pgprot2cachemode(mask_set);
+
+ /*
+ * On error; flush everything to be sure.
+ */
+ if (ret) {
+ cpa_flush_all(cache);
+ goto out;
+ }
+
+ cpa_flush(&cpa, cache);
+out:
+ return ret;
+}
+
+static inline int change_page_attr_set(unsigned long *addr, int numpages,
+ pgprot_t mask, int array)
+{
+ return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
+ (array ? CPA_ARRAY : 0), NULL);
+}
+
+static inline int change_page_attr_clear(unsigned long *addr, int numpages,
+ pgprot_t mask, int array)
+{
+ return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
+ (array ? CPA_ARRAY : 0), NULL);
+}
+
+static inline int cpa_set_pages_array(struct page **pages, int numpages,
+ pgprot_t mask)
+{
+ return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
+ CPA_PAGES_ARRAY, pages);
+}
+
+static inline int cpa_clear_pages_array(struct page **pages, int numpages,
+ pgprot_t mask)
+{
+ return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
+ CPA_PAGES_ARRAY, pages);
+}
+
+/*
+ * __set_memory_prot is an internal helper for callers that have been passed
+ * a pgprot_t value from upper layers and a reservation has already been taken.
+ * If you want to set the pgprot to a specific page protocol, use the
+ * set_memory_xx() functions.
+ */
+int __set_memory_prot(unsigned long addr, int numpages, pgprot_t prot)
+{
+ return change_page_attr_set_clr(&addr, numpages, prot,
+ __pgprot(~pgprot_val(prot)), 0, 0,
+ NULL);
+}
+
+int _set_memory_uc(unsigned long addr, int numpages)
+{
+ /*
+ * for now UC MINUS. see comments in ioremap()
+ * If you really need strong UC use ioremap_uc(), but note
+ * that you cannot override IO areas with set_memory_*() as
+ * these helpers cannot work with IO memory.
+ */
+ return change_page_attr_set(&addr, numpages,
+ cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
+ 0);
+}
+
+int set_memory_uc(unsigned long addr, int numpages)
+{
+ int ret;
+
+ /*
+ * for now UC MINUS. see comments in ioremap()
+ */
+ ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
+ _PAGE_CACHE_MODE_UC_MINUS, NULL);
+ if (ret)
+ goto out_err;
+
+ ret = _set_memory_uc(addr, numpages);
+ if (ret)
+ goto out_free;
+
+ return 0;
+
+out_free:
+ memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
+out_err:
+ return ret;
+}
+EXPORT_SYMBOL(set_memory_uc);
+
+int _set_memory_wc(unsigned long addr, int numpages)
+{
+ int ret;
+
+ ret = change_page_attr_set(&addr, numpages,
+ cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
+ 0);
+ if (!ret) {
+ ret = change_page_attr_set_clr(&addr, numpages,
+ cachemode2pgprot(_PAGE_CACHE_MODE_WC),
+ __pgprot(_PAGE_CACHE_MASK),
+ 0, 0, NULL);
+ }
+ return ret;
+}
+
+int set_memory_wc(unsigned long addr, int numpages)
+{
+ int ret;
+
+ ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
+ _PAGE_CACHE_MODE_WC, NULL);
+ if (ret)
+ return ret;
+
+ ret = _set_memory_wc(addr, numpages);
+ if (ret)
+ memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
+
+ return ret;
+}
+EXPORT_SYMBOL(set_memory_wc);
+
+int _set_memory_wt(unsigned long addr, int numpages)
+{
+ return change_page_attr_set(&addr, numpages,
+ cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
+}
+
+int _set_memory_wb(unsigned long addr, int numpages)
+{
+ /* WB cache mode is hard wired to all cache attribute bits being 0 */
+ return change_page_attr_clear(&addr, numpages,
+ __pgprot(_PAGE_CACHE_MASK), 0);
+}
+
+int set_memory_wb(unsigned long addr, int numpages)
+{
+ int ret;
+
+ ret = _set_memory_wb(addr, numpages);
+ if (ret)
+ return ret;
+
+ memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
+ return 0;
+}
+EXPORT_SYMBOL(set_memory_wb);
+
+/* Prevent speculative access to a page by marking it not-present */
+#ifdef CONFIG_X86_64
+int set_mce_nospec(unsigned long pfn)
+{
+ unsigned long decoy_addr;
+ int rc;
+
+ /* SGX pages are not in the 1:1 map */
+ if (arch_is_platform_page(pfn << PAGE_SHIFT))
+ return 0;
+ /*
+ * We would like to just call:
+ * set_memory_XX((unsigned long)pfn_to_kaddr(pfn), 1);
+ * but doing that would radically increase the odds of a
+ * speculative access to the poison page because we'd have
+ * the virtual address of the kernel 1:1 mapping sitting
+ * around in registers.
+ * Instead we get tricky. We create a non-canonical address
+ * that looks just like the one we want, but has bit 63 flipped.
+ * This relies on set_memory_XX() properly sanitizing any __pa()
+ * results with __PHYSICAL_MASK or PTE_PFN_MASK.
+ */
+ decoy_addr = (pfn << PAGE_SHIFT) + (PAGE_OFFSET ^ BIT(63));
+
+ rc = set_memory_np(decoy_addr, 1);
+ if (rc)
+ pr_warn("Could not invalidate pfn=0x%lx from 1:1 map\n", pfn);
+ return rc;
+}
+
+static int set_memory_p(unsigned long *addr, int numpages)
+{
+ return change_page_attr_set(addr, numpages, __pgprot(_PAGE_PRESENT), 0);
+}
+
+/* Restore full speculative operation to the pfn. */
+int clear_mce_nospec(unsigned long pfn)
+{
+ unsigned long addr = (unsigned long) pfn_to_kaddr(pfn);
+
+ return set_memory_p(&addr, 1);
+}
+EXPORT_SYMBOL_GPL(clear_mce_nospec);
+#endif /* CONFIG_X86_64 */
+
+int set_memory_x(unsigned long addr, int numpages)
+{
+ if (!(__supported_pte_mask & _PAGE_NX))
+ return 0;
+
+ return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
+}
+
+int set_memory_nx(unsigned long addr, int numpages)
+{
+ if (!(__supported_pte_mask & _PAGE_NX))
+ return 0;
+
+ return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
+}
+
+int set_memory_ro(unsigned long addr, int numpages)
+{
+ return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW | _PAGE_DIRTY), 0);
+}
+
+int set_memory_rox(unsigned long addr, int numpages)
+{
+ pgprot_t clr = __pgprot(_PAGE_RW | _PAGE_DIRTY);
+
+ if (__supported_pte_mask & _PAGE_NX)
+ clr.pgprot |= _PAGE_NX;
+
+ return change_page_attr_clear(&addr, numpages, clr, 0);
+}
+
+int set_memory_rw(unsigned long addr, int numpages)
+{
+ return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
+}
+
+int set_memory_np(unsigned long addr, int numpages)
+{
+ return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
+}
+
+int set_memory_np_noalias(unsigned long addr, int numpages)
+{
+ return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
+ __pgprot(_PAGE_PRESENT), 0,
+ CPA_NO_CHECK_ALIAS, NULL);
+}
+
+int set_memory_4k(unsigned long addr, int numpages)
+{
+ return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
+ __pgprot(0), 1, 0, NULL);
+}
+
+int set_memory_nonglobal(unsigned long addr, int numpages)
+{
+ return change_page_attr_clear(&addr, numpages,
+ __pgprot(_PAGE_GLOBAL), 0);
+}
+
+int set_memory_global(unsigned long addr, int numpages)
+{
+ return change_page_attr_set(&addr, numpages,
+ __pgprot(_PAGE_GLOBAL), 0);
+}
+
+/*
+ * __set_memory_enc_pgtable() is used for the hypervisors that get
+ * informed about "encryption" status via page tables.
+ */
+static int __set_memory_enc_pgtable(unsigned long addr, int numpages, bool enc)
+{
+ pgprot_t empty = __pgprot(0);
+ struct cpa_data cpa;
+ int ret;
+
+ /* Should not be working on unaligned addresses */
+ if (WARN_ONCE(addr & ~PAGE_MASK, "misaligned address: %#lx\n", addr))
+ addr &= PAGE_MASK;
+
+ memset(&cpa, 0, sizeof(cpa));
+ cpa.vaddr = &addr;
+ cpa.numpages = numpages;
+ cpa.mask_set = enc ? pgprot_encrypted(empty) : pgprot_decrypted(empty);
+ cpa.mask_clr = enc ? pgprot_decrypted(empty) : pgprot_encrypted(empty);
+ cpa.pgd = init_mm.pgd;
+
+ /* Must avoid aliasing mappings in the highmem code */
+ kmap_flush_unused();
+ vm_unmap_aliases();
+
+ /* Flush the caches as needed before changing the encryption attribute. */
+ if (x86_platform.guest.enc_tlb_flush_required(enc))
+ cpa_flush(&cpa, x86_platform.guest.enc_cache_flush_required());
+
+ /* Notify hypervisor that we are about to set/clr encryption attribute. */
+ if (!x86_platform.guest.enc_status_change_prepare(addr, numpages, enc))
+ return -EIO;
+
+ ret = __change_page_attr_set_clr(&cpa, 1);
+
+ /*
+ * After changing the encryption attribute, we need to flush TLBs again
+ * in case any speculative TLB caching occurred (but no need to flush
+ * caches again). We could just use cpa_flush_all(), but in case TLB
+ * flushing gets optimized in the cpa_flush() path use the same logic
+ * as above.
+ */
+ cpa_flush(&cpa, 0);
+
+ /* Notify hypervisor that we have successfully set/clr encryption attribute. */
+ if (!ret) {
+ if (!x86_platform.guest.enc_status_change_finish(addr, numpages, enc))
+ ret = -EIO;
+ }
+
+ return ret;
+}
+
+static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc)
+{
+ if (cc_platform_has(CC_ATTR_MEM_ENCRYPT))
+ return __set_memory_enc_pgtable(addr, numpages, enc);
+
+ return 0;
+}
+
+int set_memory_encrypted(unsigned long addr, int numpages)
+{
+ return __set_memory_enc_dec(addr, numpages, true);
+}
+EXPORT_SYMBOL_GPL(set_memory_encrypted);
+
+int set_memory_decrypted(unsigned long addr, int numpages)
+{
+ return __set_memory_enc_dec(addr, numpages, false);
+}
+EXPORT_SYMBOL_GPL(set_memory_decrypted);
+
+int set_pages_uc(struct page *page, int numpages)
+{
+ unsigned long addr = (unsigned long)page_address(page);
+
+ return set_memory_uc(addr, numpages);
+}
+EXPORT_SYMBOL(set_pages_uc);
+
+static int _set_pages_array(struct page **pages, int numpages,
+ enum page_cache_mode new_type)
+{
+ unsigned long start;
+ unsigned long end;
+ enum page_cache_mode set_type;
+ int i;
+ int free_idx;
+ int ret;
+
+ for (i = 0; i < numpages; i++) {
+ if (PageHighMem(pages[i]))
+ continue;
+ start = page_to_pfn(pages[i]) << PAGE_SHIFT;
+ end = start + PAGE_SIZE;
+ if (memtype_reserve(start, end, new_type, NULL))
+ goto err_out;
+ }
+
+ /* If WC, set to UC- first and then WC */
+ set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
+ _PAGE_CACHE_MODE_UC_MINUS : new_type;
+
+ ret = cpa_set_pages_array(pages, numpages,
+ cachemode2pgprot(set_type));
+ if (!ret && new_type == _PAGE_CACHE_MODE_WC)
+ ret = change_page_attr_set_clr(NULL, numpages,
+ cachemode2pgprot(
+ _PAGE_CACHE_MODE_WC),
+ __pgprot(_PAGE_CACHE_MASK),
+ 0, CPA_PAGES_ARRAY, pages);
+ if (ret)
+ goto err_out;
+ return 0; /* Success */
+err_out:
+ free_idx = i;
+ for (i = 0; i < free_idx; i++) {
+ if (PageHighMem(pages[i]))
+ continue;
+ start = page_to_pfn(pages[i]) << PAGE_SHIFT;
+ end = start + PAGE_SIZE;
+ memtype_free(start, end);
+ }
+ return -EINVAL;
+}
+
+int set_pages_array_uc(struct page **pages, int numpages)
+{
+ return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_UC_MINUS);
+}
+EXPORT_SYMBOL(set_pages_array_uc);
+
+int set_pages_array_wc(struct page **pages, int numpages)
+{
+ return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WC);
+}
+EXPORT_SYMBOL(set_pages_array_wc);
+
+int set_pages_wb(struct page *page, int numpages)
+{
+ unsigned long addr = (unsigned long)page_address(page);
+
+ return set_memory_wb(addr, numpages);
+}
+EXPORT_SYMBOL(set_pages_wb);
+
+int set_pages_array_wb(struct page **pages, int numpages)
+{
+ int retval;
+ unsigned long start;
+ unsigned long end;
+ int i;
+
+ /* WB cache mode is hard wired to all cache attribute bits being 0 */
+ retval = cpa_clear_pages_array(pages, numpages,
+ __pgprot(_PAGE_CACHE_MASK));
+ if (retval)
+ return retval;
+
+ for (i = 0; i < numpages; i++) {
+ if (PageHighMem(pages[i]))
+ continue;
+ start = page_to_pfn(pages[i]) << PAGE_SHIFT;
+ end = start + PAGE_SIZE;
+ memtype_free(start, end);
+ }
+
+ return 0;
+}
+EXPORT_SYMBOL(set_pages_array_wb);
+
+int set_pages_ro(struct page *page, int numpages)
+{
+ unsigned long addr = (unsigned long)page_address(page);
+
+ return set_memory_ro(addr, numpages);
+}
+
+int set_pages_rw(struct page *page, int numpages)
+{
+ unsigned long addr = (unsigned long)page_address(page);
+
+ return set_memory_rw(addr, numpages);
+}
+
+static int __set_pages_p(struct page *page, int numpages)
+{
+ unsigned long tempaddr = (unsigned long) page_address(page);
+ struct cpa_data cpa = { .vaddr = &tempaddr,
+ .pgd = NULL,
+ .numpages = numpages,
+ .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
+ .mask_clr = __pgprot(0),
+ .flags = CPA_NO_CHECK_ALIAS };
+
+ /*
+ * No alias checking needed for setting present flag. otherwise,
+ * we may need to break large pages for 64-bit kernel text
+ * mappings (this adds to complexity if we want to do this from
+ * atomic context especially). Let's keep it simple!
+ */
+ return __change_page_attr_set_clr(&cpa, 1);
+}
+
+static int __set_pages_np(struct page *page, int numpages)
+{
+ unsigned long tempaddr = (unsigned long) page_address(page);
+ struct cpa_data cpa = { .vaddr = &tempaddr,
+ .pgd = NULL,
+ .numpages = numpages,
+ .mask_set = __pgprot(0),
+ .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
+ .flags = CPA_NO_CHECK_ALIAS };
+
+ /*
+ * No alias checking needed for setting not present flag. otherwise,
+ * we may need to break large pages for 64-bit kernel text
+ * mappings (this adds to complexity if we want to do this from
+ * atomic context especially). Let's keep it simple!
+ */
+ return __change_page_attr_set_clr(&cpa, 1);
+}
+
+int set_direct_map_invalid_noflush(struct page *page)
+{
+ return __set_pages_np(page, 1);
+}
+
+int set_direct_map_default_noflush(struct page *page)
+{
+ return __set_pages_p(page, 1);
+}
+
+#ifdef CONFIG_DEBUG_PAGEALLOC
+void __kernel_map_pages(struct page *page, int numpages, int enable)
+{
+ if (PageHighMem(page))
+ return;
+ if (!enable) {
+ debug_check_no_locks_freed(page_address(page),
+ numpages * PAGE_SIZE);
+ }
+
+ /*
+ * The return value is ignored as the calls cannot fail.
+ * Large pages for identity mappings are not used at boot time
+ * and hence no memory allocations during large page split.
+ */
+ if (enable)
+ __set_pages_p(page, numpages);
+ else
+ __set_pages_np(page, numpages);
+
+ /*
+ * We should perform an IPI and flush all tlbs,
+ * but that can deadlock->flush only current cpu.
+ * Preemption needs to be disabled around __flush_tlb_all() due to
+ * CR3 reload in __native_flush_tlb().
+ */
+ preempt_disable();
+ __flush_tlb_all();
+ preempt_enable();
+
+ arch_flush_lazy_mmu_mode();
+}
+#endif /* CONFIG_DEBUG_PAGEALLOC */
+
+bool kernel_page_present(struct page *page)
+{
+ unsigned int level;
+ pte_t *pte;
+
+ if (PageHighMem(page))
+ return false;
+
+ pte = lookup_address((unsigned long)page_address(page), &level);
+ return (pte_val(*pte) & _PAGE_PRESENT);
+}
+
+int __init kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
+ unsigned numpages, unsigned long page_flags)
+{
+ int retval = -EINVAL;
+
+ struct cpa_data cpa = {
+ .vaddr = &address,
+ .pfn = pfn,
+ .pgd = pgd,
+ .numpages = numpages,
+ .mask_set = __pgprot(0),
+ .mask_clr = __pgprot(~page_flags & (_PAGE_NX|_PAGE_RW)),
+ .flags = CPA_NO_CHECK_ALIAS,
+ };
+
+ WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
+
+ if (!(__supported_pte_mask & _PAGE_NX))
+ goto out;
+
+ if (!(page_flags & _PAGE_ENC))
+ cpa.mask_clr = pgprot_encrypted(cpa.mask_clr);
+
+ cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
+
+ retval = __change_page_attr_set_clr(&cpa, 1);
+ __flush_tlb_all();
+
+out:
+ return retval;
+}
+
+/*
+ * __flush_tlb_all() flushes mappings only on current CPU and hence this
+ * function shouldn't be used in an SMP environment. Presently, it's used only
+ * during boot (way before smp_init()) by EFI subsystem and hence is ok.
+ */
+int __init kernel_unmap_pages_in_pgd(pgd_t *pgd, unsigned long address,
+ unsigned long numpages)
+{
+ int retval;
+
+ /*
+ * The typical sequence for unmapping is to find a pte through
+ * lookup_address_in_pgd() (ideally, it should never return NULL because
+ * the address is already mapped) and change it's protections. As pfn is
+ * the *target* of a mapping, it's not useful while unmapping.
+ */
+ struct cpa_data cpa = {
+ .vaddr = &address,
+ .pfn = 0,
+ .pgd = pgd,
+ .numpages = numpages,
+ .mask_set = __pgprot(0),
+ .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
+ .flags = CPA_NO_CHECK_ALIAS,
+ };
+
+ WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
+
+ retval = __change_page_attr_set_clr(&cpa, 1);
+ __flush_tlb_all();
+
+ return retval;
+}
+
+/*
+ * The testcases use internal knowledge of the implementation that shouldn't
+ * be exposed to the rest of the kernel. Include these directly here.
+ */
+#ifdef CONFIG_CPA_DEBUG
+#include "cpa-test.c"
+#endif
diff --git a/arch/x86/mm/pf_in.c b/arch/x86/mm/pf_in.c
new file mode 100644
index 0000000000..3f83e31b3a
--- /dev/null
+++ b/arch/x86/mm/pf_in.c
@@ -0,0 +1,516 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * Fault Injection Test harness (FI)
+ * Copyright (C) Intel Crop.
+ */
+
+/* Id: pf_in.c,v 1.1.1.1 2002/11/12 05:56:32 brlock Exp
+ * Copyright by Intel Crop., 2002
+ * Louis Zhuang (louis.zhuang@intel.com)
+ *
+ * Bjorn Steinbrink (B.Steinbrink@gmx.de), 2007
+ */
+
+#include <linux/ptrace.h> /* struct pt_regs */
+#include "pf_in.h"
+
+#ifdef __i386__
+/* IA32 Manual 3, 2-1 */
+static unsigned char prefix_codes[] = {
+ 0xF0, 0xF2, 0xF3, 0x2E, 0x36, 0x3E, 0x26, 0x64,
+ 0x65, 0x66, 0x67
+};
+/* IA32 Manual 3, 3-432*/
+static unsigned int reg_rop[] = {
+ 0x8A, 0x8B, 0xB60F, 0xB70F, 0xBE0F, 0xBF0F
+};
+static unsigned int reg_wop[] = { 0x88, 0x89, 0xAA, 0xAB };
+static unsigned int imm_wop[] = { 0xC6, 0xC7 };
+/* IA32 Manual 3, 3-432*/
+static unsigned int rw8[] = { 0x88, 0x8A, 0xC6, 0xAA };
+static unsigned int rw32[] = {
+ 0x89, 0x8B, 0xC7, 0xB60F, 0xB70F, 0xBE0F, 0xBF0F, 0xAB
+};
+static unsigned int mw8[] = { 0x88, 0x8A, 0xC6, 0xB60F, 0xBE0F, 0xAA };
+static unsigned int mw16[] = { 0xB70F, 0xBF0F };
+static unsigned int mw32[] = { 0x89, 0x8B, 0xC7, 0xAB };
+static unsigned int mw64[] = {};
+#else /* not __i386__ */
+static unsigned char prefix_codes[] = {
+ 0x66, 0x67, 0x2E, 0x3E, 0x26, 0x64, 0x65, 0x36,
+ 0xF0, 0xF3, 0xF2,
+ /* REX Prefixes */
+ 0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
+ 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f
+};
+/* AMD64 Manual 3, Appendix A*/
+static unsigned int reg_rop[] = {
+ 0x8A, 0x8B, 0xB60F, 0xB70F, 0xBE0F, 0xBF0F
+};
+static unsigned int reg_wop[] = { 0x88, 0x89, 0xAA, 0xAB };
+static unsigned int imm_wop[] = { 0xC6, 0xC7 };
+static unsigned int rw8[] = { 0xC6, 0x88, 0x8A, 0xAA };
+static unsigned int rw32[] = {
+ 0xC7, 0x89, 0x8B, 0xB60F, 0xB70F, 0xBE0F, 0xBF0F, 0xAB
+};
+/* 8 bit only */
+static unsigned int mw8[] = { 0xC6, 0x88, 0x8A, 0xB60F, 0xBE0F, 0xAA };
+/* 16 bit only */
+static unsigned int mw16[] = { 0xB70F, 0xBF0F };
+/* 16 or 32 bit */
+static unsigned int mw32[] = { 0xC7 };
+/* 16, 32 or 64 bit */
+static unsigned int mw64[] = { 0x89, 0x8B, 0xAB };
+#endif /* not __i386__ */
+
+struct prefix_bits {
+ unsigned shorted:1;
+ unsigned enlarged:1;
+ unsigned rexr:1;
+ unsigned rex:1;
+};
+
+static int skip_prefix(unsigned char *addr, struct prefix_bits *prf)
+{
+ int i;
+ unsigned char *p = addr;
+ prf->shorted = 0;
+ prf->enlarged = 0;
+ prf->rexr = 0;
+ prf->rex = 0;
+
+restart:
+ for (i = 0; i < ARRAY_SIZE(prefix_codes); i++) {
+ if (*p == prefix_codes[i]) {
+ if (*p == 0x66)
+ prf->shorted = 1;
+#ifdef __amd64__
+ if ((*p & 0xf8) == 0x48)
+ prf->enlarged = 1;
+ if ((*p & 0xf4) == 0x44)
+ prf->rexr = 1;
+ if ((*p & 0xf0) == 0x40)
+ prf->rex = 1;
+#endif
+ p++;
+ goto restart;
+ }
+ }
+
+ return (p - addr);
+}
+
+static int get_opcode(unsigned char *addr, unsigned int *opcode)
+{
+ int len;
+
+ if (*addr == 0x0F) {
+ /* 0x0F is extension instruction */
+ *opcode = *(unsigned short *)addr;
+ len = 2;
+ } else {
+ *opcode = *addr;
+ len = 1;
+ }
+
+ return len;
+}
+
+#define CHECK_OP_TYPE(opcode, array, type) \
+ for (i = 0; i < ARRAY_SIZE(array); i++) { \
+ if (array[i] == opcode) { \
+ rv = type; \
+ goto exit; \
+ } \
+ }
+
+enum reason_type get_ins_type(unsigned long ins_addr)
+{
+ unsigned int opcode;
+ unsigned char *p;
+ struct prefix_bits prf;
+ int i;
+ enum reason_type rv = OTHERS;
+
+ p = (unsigned char *)ins_addr;
+ p += skip_prefix(p, &prf);
+ p += get_opcode(p, &opcode);
+
+ CHECK_OP_TYPE(opcode, reg_rop, REG_READ);
+ CHECK_OP_TYPE(opcode, reg_wop, REG_WRITE);
+ CHECK_OP_TYPE(opcode, imm_wop, IMM_WRITE);
+
+exit:
+ return rv;
+}
+#undef CHECK_OP_TYPE
+
+static unsigned int get_ins_reg_width(unsigned long ins_addr)
+{
+ unsigned int opcode;
+ unsigned char *p;
+ struct prefix_bits prf;
+ int i;
+
+ p = (unsigned char *)ins_addr;
+ p += skip_prefix(p, &prf);
+ p += get_opcode(p, &opcode);
+
+ for (i = 0; i < ARRAY_SIZE(rw8); i++)
+ if (rw8[i] == opcode)
+ return 1;
+
+ for (i = 0; i < ARRAY_SIZE(rw32); i++)
+ if (rw32[i] == opcode)
+ return prf.shorted ? 2 : (prf.enlarged ? 8 : 4);
+
+ printk(KERN_ERR "mmiotrace: Unknown opcode 0x%02x\n", opcode);
+ return 0;
+}
+
+unsigned int get_ins_mem_width(unsigned long ins_addr)
+{
+ unsigned int opcode;
+ unsigned char *p;
+ struct prefix_bits prf;
+ int i;
+
+ p = (unsigned char *)ins_addr;
+ p += skip_prefix(p, &prf);
+ p += get_opcode(p, &opcode);
+
+ for (i = 0; i < ARRAY_SIZE(mw8); i++)
+ if (mw8[i] == opcode)
+ return 1;
+
+ for (i = 0; i < ARRAY_SIZE(mw16); i++)
+ if (mw16[i] == opcode)
+ return 2;
+
+ for (i = 0; i < ARRAY_SIZE(mw32); i++)
+ if (mw32[i] == opcode)
+ return prf.shorted ? 2 : 4;
+
+ for (i = 0; i < ARRAY_SIZE(mw64); i++)
+ if (mw64[i] == opcode)
+ return prf.shorted ? 2 : (prf.enlarged ? 8 : 4);
+
+ printk(KERN_ERR "mmiotrace: Unknown opcode 0x%02x\n", opcode);
+ return 0;
+}
+
+/*
+ * Define register ident in mod/rm byte.
+ * Note: these are NOT the same as in ptrace-abi.h.
+ */
+enum {
+ arg_AL = 0,
+ arg_CL = 1,
+ arg_DL = 2,
+ arg_BL = 3,
+ arg_AH = 4,
+ arg_CH = 5,
+ arg_DH = 6,
+ arg_BH = 7,
+
+ arg_AX = 0,
+ arg_CX = 1,
+ arg_DX = 2,
+ arg_BX = 3,
+ arg_SP = 4,
+ arg_BP = 5,
+ arg_SI = 6,
+ arg_DI = 7,
+#ifdef __amd64__
+ arg_R8 = 8,
+ arg_R9 = 9,
+ arg_R10 = 10,
+ arg_R11 = 11,
+ arg_R12 = 12,
+ arg_R13 = 13,
+ arg_R14 = 14,
+ arg_R15 = 15
+#endif
+};
+
+static unsigned char *get_reg_w8(int no, int rex, struct pt_regs *regs)
+{
+ unsigned char *rv = NULL;
+
+ switch (no) {
+ case arg_AL:
+ rv = (unsigned char *)&regs->ax;
+ break;
+ case arg_BL:
+ rv = (unsigned char *)&regs->bx;
+ break;
+ case arg_CL:
+ rv = (unsigned char *)&regs->cx;
+ break;
+ case arg_DL:
+ rv = (unsigned char *)&regs->dx;
+ break;
+#ifdef __amd64__
+ case arg_R8:
+ rv = (unsigned char *)&regs->r8;
+ break;
+ case arg_R9:
+ rv = (unsigned char *)&regs->r9;
+ break;
+ case arg_R10:
+ rv = (unsigned char *)&regs->r10;
+ break;
+ case arg_R11:
+ rv = (unsigned char *)&regs->r11;
+ break;
+ case arg_R12:
+ rv = (unsigned char *)&regs->r12;
+ break;
+ case arg_R13:
+ rv = (unsigned char *)&regs->r13;
+ break;
+ case arg_R14:
+ rv = (unsigned char *)&regs->r14;
+ break;
+ case arg_R15:
+ rv = (unsigned char *)&regs->r15;
+ break;
+#endif
+ default:
+ break;
+ }
+
+ if (rv)
+ return rv;
+
+ if (rex) {
+ /*
+ * If REX prefix exists, access low bytes of SI etc.
+ * instead of AH etc.
+ */
+ switch (no) {
+ case arg_SI:
+ rv = (unsigned char *)&regs->si;
+ break;
+ case arg_DI:
+ rv = (unsigned char *)&regs->di;
+ break;
+ case arg_BP:
+ rv = (unsigned char *)&regs->bp;
+ break;
+ case arg_SP:
+ rv = (unsigned char *)&regs->sp;
+ break;
+ default:
+ break;
+ }
+ } else {
+ switch (no) {
+ case arg_AH:
+ rv = 1 + (unsigned char *)&regs->ax;
+ break;
+ case arg_BH:
+ rv = 1 + (unsigned char *)&regs->bx;
+ break;
+ case arg_CH:
+ rv = 1 + (unsigned char *)&regs->cx;
+ break;
+ case arg_DH:
+ rv = 1 + (unsigned char *)&regs->dx;
+ break;
+ default:
+ break;
+ }
+ }
+
+ if (!rv)
+ printk(KERN_ERR "mmiotrace: Error reg no# %d\n", no);
+
+ return rv;
+}
+
+static unsigned long *get_reg_w32(int no, struct pt_regs *regs)
+{
+ unsigned long *rv = NULL;
+
+ switch (no) {
+ case arg_AX:
+ rv = &regs->ax;
+ break;
+ case arg_BX:
+ rv = &regs->bx;
+ break;
+ case arg_CX:
+ rv = &regs->cx;
+ break;
+ case arg_DX:
+ rv = &regs->dx;
+ break;
+ case arg_SP:
+ rv = &regs->sp;
+ break;
+ case arg_BP:
+ rv = &regs->bp;
+ break;
+ case arg_SI:
+ rv = &regs->si;
+ break;
+ case arg_DI:
+ rv = &regs->di;
+ break;
+#ifdef __amd64__
+ case arg_R8:
+ rv = &regs->r8;
+ break;
+ case arg_R9:
+ rv = &regs->r9;
+ break;
+ case arg_R10:
+ rv = &regs->r10;
+ break;
+ case arg_R11:
+ rv = &regs->r11;
+ break;
+ case arg_R12:
+ rv = &regs->r12;
+ break;
+ case arg_R13:
+ rv = &regs->r13;
+ break;
+ case arg_R14:
+ rv = &regs->r14;
+ break;
+ case arg_R15:
+ rv = &regs->r15;
+ break;
+#endif
+ default:
+ printk(KERN_ERR "mmiotrace: Error reg no# %d\n", no);
+ }
+
+ return rv;
+}
+
+unsigned long get_ins_reg_val(unsigned long ins_addr, struct pt_regs *regs)
+{
+ unsigned int opcode;
+ int reg;
+ unsigned char *p;
+ struct prefix_bits prf;
+ int i;
+
+ p = (unsigned char *)ins_addr;
+ p += skip_prefix(p, &prf);
+ p += get_opcode(p, &opcode);
+ for (i = 0; i < ARRAY_SIZE(reg_rop); i++)
+ if (reg_rop[i] == opcode)
+ goto do_work;
+
+ for (i = 0; i < ARRAY_SIZE(reg_wop); i++)
+ if (reg_wop[i] == opcode)
+ goto do_work;
+
+ printk(KERN_ERR "mmiotrace: Not a register instruction, opcode "
+ "0x%02x\n", opcode);
+ goto err;
+
+do_work:
+ /* for STOS, source register is fixed */
+ if (opcode == 0xAA || opcode == 0xAB) {
+ reg = arg_AX;
+ } else {
+ unsigned char mod_rm = *p;
+ reg = ((mod_rm >> 3) & 0x7) | (prf.rexr << 3);
+ }
+ switch (get_ins_reg_width(ins_addr)) {
+ case 1:
+ return *get_reg_w8(reg, prf.rex, regs);
+
+ case 2:
+ return *(unsigned short *)get_reg_w32(reg, regs);
+
+ case 4:
+ return *(unsigned int *)get_reg_w32(reg, regs);
+
+#ifdef __amd64__
+ case 8:
+ return *(unsigned long *)get_reg_w32(reg, regs);
+#endif
+
+ default:
+ printk(KERN_ERR "mmiotrace: Error width# %d\n", reg);
+ }
+
+err:
+ return 0;
+}
+
+unsigned long get_ins_imm_val(unsigned long ins_addr)
+{
+ unsigned int opcode;
+ unsigned char mod_rm;
+ unsigned char mod;
+ unsigned char *p;
+ struct prefix_bits prf;
+ int i;
+
+ p = (unsigned char *)ins_addr;
+ p += skip_prefix(p, &prf);
+ p += get_opcode(p, &opcode);
+ for (i = 0; i < ARRAY_SIZE(imm_wop); i++)
+ if (imm_wop[i] == opcode)
+ goto do_work;
+
+ printk(KERN_ERR "mmiotrace: Not an immediate instruction, opcode "
+ "0x%02x\n", opcode);
+ goto err;
+
+do_work:
+ mod_rm = *p;
+ mod = mod_rm >> 6;
+ p++;
+ switch (mod) {
+ case 0:
+ /* if r/m is 5 we have a 32 disp (IA32 Manual 3, Table 2-2) */
+ /* AMD64: XXX Check for address size prefix? */
+ if ((mod_rm & 0x7) == 0x5)
+ p += 4;
+ break;
+
+ case 1:
+ p += 1;
+ break;
+
+ case 2:
+ p += 4;
+ break;
+
+ case 3:
+ default:
+ printk(KERN_ERR "mmiotrace: not a memory access instruction "
+ "at 0x%lx, rm_mod=0x%02x\n",
+ ins_addr, mod_rm);
+ }
+
+ switch (get_ins_reg_width(ins_addr)) {
+ case 1:
+ return *(unsigned char *)p;
+
+ case 2:
+ return *(unsigned short *)p;
+
+ case 4:
+ return *(unsigned int *)p;
+
+#ifdef __amd64__
+ case 8:
+ return *(unsigned long *)p;
+#endif
+
+ default:
+ printk(KERN_ERR "mmiotrace: Error: width.\n");
+ }
+
+err:
+ return 0;
+}
diff --git a/arch/x86/mm/pf_in.h b/arch/x86/mm/pf_in.h
new file mode 100644
index 0000000000..e2a13dce0e
--- /dev/null
+++ b/arch/x86/mm/pf_in.h
@@ -0,0 +1,24 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+/*
+ * Fault Injection Test harness (FI)
+ * Copyright (C) Intel Crop.
+ */
+
+#ifndef __PF_H_
+#define __PF_H_
+
+enum reason_type {
+ NOT_ME, /* page fault is not in regions */
+ NOTHING, /* access others point in regions */
+ REG_READ, /* read from addr to reg */
+ REG_WRITE, /* write from reg to addr */
+ IMM_WRITE, /* write from imm to addr */
+ OTHERS /* Other instructions can not intercept */
+};
+
+enum reason_type get_ins_type(unsigned long ins_addr);
+unsigned int get_ins_mem_width(unsigned long ins_addr);
+unsigned long get_ins_reg_val(unsigned long ins_addr, struct pt_regs *regs);
+unsigned long get_ins_imm_val(unsigned long ins_addr);
+
+#endif /* __PF_H_ */
diff --git a/arch/x86/mm/pgprot.c b/arch/x86/mm/pgprot.c
new file mode 100644
index 0000000000..c84bd9540b
--- /dev/null
+++ b/arch/x86/mm/pgprot.c
@@ -0,0 +1,63 @@
+// SPDX-License-Identifier: GPL-2.0
+
+#include <linux/export.h>
+#include <linux/mm.h>
+#include <asm/pgtable.h>
+#include <asm/mem_encrypt.h>
+
+static pgprot_t protection_map[16] __ro_after_init = {
+ [VM_NONE] = PAGE_NONE,
+ [VM_READ] = PAGE_READONLY,
+ [VM_WRITE] = PAGE_COPY,
+ [VM_WRITE | VM_READ] = PAGE_COPY,
+ [VM_EXEC] = PAGE_READONLY_EXEC,
+ [VM_EXEC | VM_READ] = PAGE_READONLY_EXEC,
+ [VM_EXEC | VM_WRITE] = PAGE_COPY_EXEC,
+ [VM_EXEC | VM_WRITE | VM_READ] = PAGE_COPY_EXEC,
+ [VM_SHARED] = PAGE_NONE,
+ [VM_SHARED | VM_READ] = PAGE_READONLY,
+ [VM_SHARED | VM_WRITE] = PAGE_SHARED,
+ [VM_SHARED | VM_WRITE | VM_READ] = PAGE_SHARED,
+ [VM_SHARED | VM_EXEC] = PAGE_READONLY_EXEC,
+ [VM_SHARED | VM_EXEC | VM_READ] = PAGE_READONLY_EXEC,
+ [VM_SHARED | VM_EXEC | VM_WRITE] = PAGE_SHARED_EXEC,
+ [VM_SHARED | VM_EXEC | VM_WRITE | VM_READ] = PAGE_SHARED_EXEC
+};
+
+void add_encrypt_protection_map(void)
+{
+ unsigned int i;
+
+ for (i = 0; i < ARRAY_SIZE(protection_map); i++)
+ protection_map[i] = pgprot_encrypted(protection_map[i]);
+}
+
+pgprot_t vm_get_page_prot(unsigned long vm_flags)
+{
+ unsigned long val = pgprot_val(protection_map[vm_flags &
+ (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]);
+
+#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
+ /*
+ * Take the 4 protection key bits out of the vma->vm_flags value and
+ * turn them in to the bits that we can put in to a pte.
+ *
+ * Only override these if Protection Keys are available (which is only
+ * on 64-bit).
+ */
+ if (vm_flags & VM_PKEY_BIT0)
+ val |= _PAGE_PKEY_BIT0;
+ if (vm_flags & VM_PKEY_BIT1)
+ val |= _PAGE_PKEY_BIT1;
+ if (vm_flags & VM_PKEY_BIT2)
+ val |= _PAGE_PKEY_BIT2;
+ if (vm_flags & VM_PKEY_BIT3)
+ val |= _PAGE_PKEY_BIT3;
+#endif
+
+ val = __sme_set(val);
+ if (val & _PAGE_PRESENT)
+ val &= __supported_pte_mask;
+ return __pgprot(val);
+}
+EXPORT_SYMBOL(vm_get_page_prot);
diff --git a/arch/x86/mm/pgtable.c b/arch/x86/mm/pgtable.c
new file mode 100644
index 0000000000..9deadf517f
--- /dev/null
+++ b/arch/x86/mm/pgtable.c
@@ -0,0 +1,923 @@
+// SPDX-License-Identifier: GPL-2.0
+#include <linux/mm.h>
+#include <linux/gfp.h>
+#include <linux/hugetlb.h>
+#include <asm/pgalloc.h>
+#include <asm/tlb.h>
+#include <asm/fixmap.h>
+#include <asm/mtrr.h>
+
+#ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
+phys_addr_t physical_mask __ro_after_init = (1ULL << __PHYSICAL_MASK_SHIFT) - 1;
+EXPORT_SYMBOL(physical_mask);
+#endif
+
+#ifdef CONFIG_HIGHPTE
+#define PGTABLE_HIGHMEM __GFP_HIGHMEM
+#else
+#define PGTABLE_HIGHMEM 0
+#endif
+
+#ifndef CONFIG_PARAVIRT
+static inline
+void paravirt_tlb_remove_table(struct mmu_gather *tlb, void *table)
+{
+ tlb_remove_page(tlb, table);
+}
+#endif
+
+gfp_t __userpte_alloc_gfp = GFP_PGTABLE_USER | PGTABLE_HIGHMEM;
+
+pgtable_t pte_alloc_one(struct mm_struct *mm)
+{
+ return __pte_alloc_one(mm, __userpte_alloc_gfp);
+}
+
+static int __init setup_userpte(char *arg)
+{
+ if (!arg)
+ return -EINVAL;
+
+ /*
+ * "userpte=nohigh" disables allocation of user pagetables in
+ * high memory.
+ */
+ if (strcmp(arg, "nohigh") == 0)
+ __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
+ else
+ return -EINVAL;
+ return 0;
+}
+early_param("userpte", setup_userpte);
+
+void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
+{
+ pagetable_pte_dtor(page_ptdesc(pte));
+ paravirt_release_pte(page_to_pfn(pte));
+ paravirt_tlb_remove_table(tlb, pte);
+}
+
+#if CONFIG_PGTABLE_LEVELS > 2
+void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
+{
+ struct ptdesc *ptdesc = virt_to_ptdesc(pmd);
+ paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
+ /*
+ * NOTE! For PAE, any changes to the top page-directory-pointer-table
+ * entries need a full cr3 reload to flush.
+ */
+#ifdef CONFIG_X86_PAE
+ tlb->need_flush_all = 1;
+#endif
+ pagetable_pmd_dtor(ptdesc);
+ paravirt_tlb_remove_table(tlb, ptdesc_page(ptdesc));
+}
+
+#if CONFIG_PGTABLE_LEVELS > 3
+void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
+{
+ paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
+ paravirt_tlb_remove_table(tlb, virt_to_page(pud));
+}
+
+#if CONFIG_PGTABLE_LEVELS > 4
+void ___p4d_free_tlb(struct mmu_gather *tlb, p4d_t *p4d)
+{
+ paravirt_release_p4d(__pa(p4d) >> PAGE_SHIFT);
+ paravirt_tlb_remove_table(tlb, virt_to_page(p4d));
+}
+#endif /* CONFIG_PGTABLE_LEVELS > 4 */
+#endif /* CONFIG_PGTABLE_LEVELS > 3 */
+#endif /* CONFIG_PGTABLE_LEVELS > 2 */
+
+static inline void pgd_list_add(pgd_t *pgd)
+{
+ struct ptdesc *ptdesc = virt_to_ptdesc(pgd);
+
+ list_add(&ptdesc->pt_list, &pgd_list);
+}
+
+static inline void pgd_list_del(pgd_t *pgd)
+{
+ struct ptdesc *ptdesc = virt_to_ptdesc(pgd);
+
+ list_del(&ptdesc->pt_list);
+}
+
+#define UNSHARED_PTRS_PER_PGD \
+ (SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
+#define MAX_UNSHARED_PTRS_PER_PGD \
+ max_t(size_t, KERNEL_PGD_BOUNDARY, PTRS_PER_PGD)
+
+
+static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
+{
+ virt_to_ptdesc(pgd)->pt_mm = mm;
+}
+
+struct mm_struct *pgd_page_get_mm(struct page *page)
+{
+ return page_ptdesc(page)->pt_mm;
+}
+
+static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
+{
+ /* If the pgd points to a shared pagetable level (either the
+ ptes in non-PAE, or shared PMD in PAE), then just copy the
+ references from swapper_pg_dir. */
+ if (CONFIG_PGTABLE_LEVELS == 2 ||
+ (CONFIG_PGTABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
+ CONFIG_PGTABLE_LEVELS >= 4) {
+ clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
+ swapper_pg_dir + KERNEL_PGD_BOUNDARY,
+ KERNEL_PGD_PTRS);
+ }
+
+ /* list required to sync kernel mapping updates */
+ if (!SHARED_KERNEL_PMD) {
+ pgd_set_mm(pgd, mm);
+ pgd_list_add(pgd);
+ }
+}
+
+static void pgd_dtor(pgd_t *pgd)
+{
+ if (SHARED_KERNEL_PMD)
+ return;
+
+ spin_lock(&pgd_lock);
+ pgd_list_del(pgd);
+ spin_unlock(&pgd_lock);
+}
+
+/*
+ * List of all pgd's needed for non-PAE so it can invalidate entries
+ * in both cached and uncached pgd's; not needed for PAE since the
+ * kernel pmd is shared. If PAE were not to share the pmd a similar
+ * tactic would be needed. This is essentially codepath-based locking
+ * against pageattr.c; it is the unique case in which a valid change
+ * of kernel pagetables can't be lazily synchronized by vmalloc faults.
+ * vmalloc faults work because attached pagetables are never freed.
+ * -- nyc
+ */
+
+#ifdef CONFIG_X86_PAE
+/*
+ * In PAE mode, we need to do a cr3 reload (=tlb flush) when
+ * updating the top-level pagetable entries to guarantee the
+ * processor notices the update. Since this is expensive, and
+ * all 4 top-level entries are used almost immediately in a
+ * new process's life, we just pre-populate them here.
+ *
+ * Also, if we're in a paravirt environment where the kernel pmd is
+ * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
+ * and initialize the kernel pmds here.
+ */
+#define PREALLOCATED_PMDS UNSHARED_PTRS_PER_PGD
+#define MAX_PREALLOCATED_PMDS MAX_UNSHARED_PTRS_PER_PGD
+
+/*
+ * We allocate separate PMDs for the kernel part of the user page-table
+ * when PTI is enabled. We need them to map the per-process LDT into the
+ * user-space page-table.
+ */
+#define PREALLOCATED_USER_PMDS (boot_cpu_has(X86_FEATURE_PTI) ? \
+ KERNEL_PGD_PTRS : 0)
+#define MAX_PREALLOCATED_USER_PMDS KERNEL_PGD_PTRS
+
+void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
+{
+ paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
+
+ /* Note: almost everything apart from _PAGE_PRESENT is
+ reserved at the pmd (PDPT) level. */
+ set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
+
+ /*
+ * According to Intel App note "TLBs, Paging-Structure Caches,
+ * and Their Invalidation", April 2007, document 317080-001,
+ * section 8.1: in PAE mode we explicitly have to flush the
+ * TLB via cr3 if the top-level pgd is changed...
+ */
+ flush_tlb_mm(mm);
+}
+#else /* !CONFIG_X86_PAE */
+
+/* No need to prepopulate any pagetable entries in non-PAE modes. */
+#define PREALLOCATED_PMDS 0
+#define MAX_PREALLOCATED_PMDS 0
+#define PREALLOCATED_USER_PMDS 0
+#define MAX_PREALLOCATED_USER_PMDS 0
+#endif /* CONFIG_X86_PAE */
+
+static void free_pmds(struct mm_struct *mm, pmd_t *pmds[], int count)
+{
+ int i;
+ struct ptdesc *ptdesc;
+
+ for (i = 0; i < count; i++)
+ if (pmds[i]) {
+ ptdesc = virt_to_ptdesc(pmds[i]);
+
+ pagetable_pmd_dtor(ptdesc);
+ pagetable_free(ptdesc);
+ mm_dec_nr_pmds(mm);
+ }
+}
+
+static int preallocate_pmds(struct mm_struct *mm, pmd_t *pmds[], int count)
+{
+ int i;
+ bool failed = false;
+ gfp_t gfp = GFP_PGTABLE_USER;
+
+ if (mm == &init_mm)
+ gfp &= ~__GFP_ACCOUNT;
+ gfp &= ~__GFP_HIGHMEM;
+
+ for (i = 0; i < count; i++) {
+ pmd_t *pmd = NULL;
+ struct ptdesc *ptdesc = pagetable_alloc(gfp, 0);
+
+ if (!ptdesc)
+ failed = true;
+ if (ptdesc && !pagetable_pmd_ctor(ptdesc)) {
+ pagetable_free(ptdesc);
+ ptdesc = NULL;
+ failed = true;
+ }
+ if (ptdesc) {
+ mm_inc_nr_pmds(mm);
+ pmd = ptdesc_address(ptdesc);
+ }
+
+ pmds[i] = pmd;
+ }
+
+ if (failed) {
+ free_pmds(mm, pmds, count);
+ return -ENOMEM;
+ }
+
+ return 0;
+}
+
+/*
+ * Mop up any pmd pages which may still be attached to the pgd.
+ * Normally they will be freed by munmap/exit_mmap, but any pmd we
+ * preallocate which never got a corresponding vma will need to be
+ * freed manually.
+ */
+static void mop_up_one_pmd(struct mm_struct *mm, pgd_t *pgdp)
+{
+ pgd_t pgd = *pgdp;
+
+ if (pgd_val(pgd) != 0) {
+ pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
+
+ pgd_clear(pgdp);
+
+ paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
+ pmd_free(mm, pmd);
+ mm_dec_nr_pmds(mm);
+ }
+}
+
+static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
+{
+ int i;
+
+ for (i = 0; i < PREALLOCATED_PMDS; i++)
+ mop_up_one_pmd(mm, &pgdp[i]);
+
+#ifdef CONFIG_PAGE_TABLE_ISOLATION
+
+ if (!boot_cpu_has(X86_FEATURE_PTI))
+ return;
+
+ pgdp = kernel_to_user_pgdp(pgdp);
+
+ for (i = 0; i < PREALLOCATED_USER_PMDS; i++)
+ mop_up_one_pmd(mm, &pgdp[i + KERNEL_PGD_BOUNDARY]);
+#endif
+}
+
+static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
+{
+ p4d_t *p4d;
+ pud_t *pud;
+ int i;
+
+ p4d = p4d_offset(pgd, 0);
+ pud = pud_offset(p4d, 0);
+
+ for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) {
+ pmd_t *pmd = pmds[i];
+
+ if (i >= KERNEL_PGD_BOUNDARY)
+ memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
+ sizeof(pmd_t) * PTRS_PER_PMD);
+
+ pud_populate(mm, pud, pmd);
+ }
+}
+
+#ifdef CONFIG_PAGE_TABLE_ISOLATION
+static void pgd_prepopulate_user_pmd(struct mm_struct *mm,
+ pgd_t *k_pgd, pmd_t *pmds[])
+{
+ pgd_t *s_pgd = kernel_to_user_pgdp(swapper_pg_dir);
+ pgd_t *u_pgd = kernel_to_user_pgdp(k_pgd);
+ p4d_t *u_p4d;
+ pud_t *u_pud;
+ int i;
+
+ u_p4d = p4d_offset(u_pgd, 0);
+ u_pud = pud_offset(u_p4d, 0);
+
+ s_pgd += KERNEL_PGD_BOUNDARY;
+ u_pud += KERNEL_PGD_BOUNDARY;
+
+ for (i = 0; i < PREALLOCATED_USER_PMDS; i++, u_pud++, s_pgd++) {
+ pmd_t *pmd = pmds[i];
+
+ memcpy(pmd, (pmd_t *)pgd_page_vaddr(*s_pgd),
+ sizeof(pmd_t) * PTRS_PER_PMD);
+
+ pud_populate(mm, u_pud, pmd);
+ }
+
+}
+#else
+static void pgd_prepopulate_user_pmd(struct mm_struct *mm,
+ pgd_t *k_pgd, pmd_t *pmds[])
+{
+}
+#endif
+/*
+ * Xen paravirt assumes pgd table should be in one page. 64 bit kernel also
+ * assumes that pgd should be in one page.
+ *
+ * But kernel with PAE paging that is not running as a Xen domain
+ * only needs to allocate 32 bytes for pgd instead of one page.
+ */
+#ifdef CONFIG_X86_PAE
+
+#include <linux/slab.h>
+
+#define PGD_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
+#define PGD_ALIGN 32
+
+static struct kmem_cache *pgd_cache;
+
+void __init pgtable_cache_init(void)
+{
+ /*
+ * When PAE kernel is running as a Xen domain, it does not use
+ * shared kernel pmd. And this requires a whole page for pgd.
+ */
+ if (!SHARED_KERNEL_PMD)
+ return;
+
+ /*
+ * when PAE kernel is not running as a Xen domain, it uses
+ * shared kernel pmd. Shared kernel pmd does not require a whole
+ * page for pgd. We are able to just allocate a 32-byte for pgd.
+ * During boot time, we create a 32-byte slab for pgd table allocation.
+ */
+ pgd_cache = kmem_cache_create("pgd_cache", PGD_SIZE, PGD_ALIGN,
+ SLAB_PANIC, NULL);
+}
+
+static inline pgd_t *_pgd_alloc(void)
+{
+ /*
+ * If no SHARED_KERNEL_PMD, PAE kernel is running as a Xen domain.
+ * We allocate one page for pgd.
+ */
+ if (!SHARED_KERNEL_PMD)
+ return (pgd_t *)__get_free_pages(GFP_PGTABLE_USER,
+ PGD_ALLOCATION_ORDER);
+
+ /*
+ * Now PAE kernel is not running as a Xen domain. We can allocate
+ * a 32-byte slab for pgd to save memory space.
+ */
+ return kmem_cache_alloc(pgd_cache, GFP_PGTABLE_USER);
+}
+
+static inline void _pgd_free(pgd_t *pgd)
+{
+ if (!SHARED_KERNEL_PMD)
+ free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER);
+ else
+ kmem_cache_free(pgd_cache, pgd);
+}
+#else
+
+static inline pgd_t *_pgd_alloc(void)
+{
+ return (pgd_t *)__get_free_pages(GFP_PGTABLE_USER,
+ PGD_ALLOCATION_ORDER);
+}
+
+static inline void _pgd_free(pgd_t *pgd)
+{
+ free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER);
+}
+#endif /* CONFIG_X86_PAE */
+
+pgd_t *pgd_alloc(struct mm_struct *mm)
+{
+ pgd_t *pgd;
+ pmd_t *u_pmds[MAX_PREALLOCATED_USER_PMDS];
+ pmd_t *pmds[MAX_PREALLOCATED_PMDS];
+
+ pgd = _pgd_alloc();
+
+ if (pgd == NULL)
+ goto out;
+
+ mm->pgd = pgd;
+
+ if (sizeof(pmds) != 0 &&
+ preallocate_pmds(mm, pmds, PREALLOCATED_PMDS) != 0)
+ goto out_free_pgd;
+
+ if (sizeof(u_pmds) != 0 &&
+ preallocate_pmds(mm, u_pmds, PREALLOCATED_USER_PMDS) != 0)
+ goto out_free_pmds;
+
+ if (paravirt_pgd_alloc(mm) != 0)
+ goto out_free_user_pmds;
+
+ /*
+ * Make sure that pre-populating the pmds is atomic with
+ * respect to anything walking the pgd_list, so that they
+ * never see a partially populated pgd.
+ */
+ spin_lock(&pgd_lock);
+
+ pgd_ctor(mm, pgd);
+ if (sizeof(pmds) != 0)
+ pgd_prepopulate_pmd(mm, pgd, pmds);
+
+ if (sizeof(u_pmds) != 0)
+ pgd_prepopulate_user_pmd(mm, pgd, u_pmds);
+
+ spin_unlock(&pgd_lock);
+
+ return pgd;
+
+out_free_user_pmds:
+ if (sizeof(u_pmds) != 0)
+ free_pmds(mm, u_pmds, PREALLOCATED_USER_PMDS);
+out_free_pmds:
+ if (sizeof(pmds) != 0)
+ free_pmds(mm, pmds, PREALLOCATED_PMDS);
+out_free_pgd:
+ _pgd_free(pgd);
+out:
+ return NULL;
+}
+
+void pgd_free(struct mm_struct *mm, pgd_t *pgd)
+{
+ pgd_mop_up_pmds(mm, pgd);
+ pgd_dtor(pgd);
+ paravirt_pgd_free(mm, pgd);
+ _pgd_free(pgd);
+}
+
+/*
+ * Used to set accessed or dirty bits in the page table entries
+ * on other architectures. On x86, the accessed and dirty bits
+ * are tracked by hardware. However, do_wp_page calls this function
+ * to also make the pte writeable at the same time the dirty bit is
+ * set. In that case we do actually need to write the PTE.
+ */
+int ptep_set_access_flags(struct vm_area_struct *vma,
+ unsigned long address, pte_t *ptep,
+ pte_t entry, int dirty)
+{
+ int changed = !pte_same(*ptep, entry);
+
+ if (changed && dirty)
+ set_pte(ptep, entry);
+
+ return changed;
+}
+
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+int pmdp_set_access_flags(struct vm_area_struct *vma,
+ unsigned long address, pmd_t *pmdp,
+ pmd_t entry, int dirty)
+{
+ int changed = !pmd_same(*pmdp, entry);
+
+ VM_BUG_ON(address & ~HPAGE_PMD_MASK);
+
+ if (changed && dirty) {
+ set_pmd(pmdp, entry);
+ /*
+ * We had a write-protection fault here and changed the pmd
+ * to to more permissive. No need to flush the TLB for that,
+ * #PF is architecturally guaranteed to do that and in the
+ * worst-case we'll generate a spurious fault.
+ */
+ }
+
+ return changed;
+}
+
+int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
+ pud_t *pudp, pud_t entry, int dirty)
+{
+ int changed = !pud_same(*pudp, entry);
+
+ VM_BUG_ON(address & ~HPAGE_PUD_MASK);
+
+ if (changed && dirty) {
+ set_pud(pudp, entry);
+ /*
+ * We had a write-protection fault here and changed the pud
+ * to to more permissive. No need to flush the TLB for that,
+ * #PF is architecturally guaranteed to do that and in the
+ * worst-case we'll generate a spurious fault.
+ */
+ }
+
+ return changed;
+}
+#endif
+
+int ptep_test_and_clear_young(struct vm_area_struct *vma,
+ unsigned long addr, pte_t *ptep)
+{
+ int ret = 0;
+
+ if (pte_young(*ptep))
+ ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
+ (unsigned long *) &ptep->pte);
+
+ return ret;
+}
+
+#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
+int pmdp_test_and_clear_young(struct vm_area_struct *vma,
+ unsigned long addr, pmd_t *pmdp)
+{
+ int ret = 0;
+
+ if (pmd_young(*pmdp))
+ ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
+ (unsigned long *)pmdp);
+
+ return ret;
+}
+#endif
+
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+int pudp_test_and_clear_young(struct vm_area_struct *vma,
+ unsigned long addr, pud_t *pudp)
+{
+ int ret = 0;
+
+ if (pud_young(*pudp))
+ ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
+ (unsigned long *)pudp);
+
+ return ret;
+}
+#endif
+
+int ptep_clear_flush_young(struct vm_area_struct *vma,
+ unsigned long address, pte_t *ptep)
+{
+ /*
+ * On x86 CPUs, clearing the accessed bit without a TLB flush
+ * doesn't cause data corruption. [ It could cause incorrect
+ * page aging and the (mistaken) reclaim of hot pages, but the
+ * chance of that should be relatively low. ]
+ *
+ * So as a performance optimization don't flush the TLB when
+ * clearing the accessed bit, it will eventually be flushed by
+ * a context switch or a VM operation anyway. [ In the rare
+ * event of it not getting flushed for a long time the delay
+ * shouldn't really matter because there's no real memory
+ * pressure for swapout to react to. ]
+ */
+ return ptep_test_and_clear_young(vma, address, ptep);
+}
+
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+int pmdp_clear_flush_young(struct vm_area_struct *vma,
+ unsigned long address, pmd_t *pmdp)
+{
+ int young;
+
+ VM_BUG_ON(address & ~HPAGE_PMD_MASK);
+
+ young = pmdp_test_and_clear_young(vma, address, pmdp);
+ if (young)
+ flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
+
+ return young;
+}
+
+pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma, unsigned long address,
+ pmd_t *pmdp)
+{
+ /*
+ * No flush is necessary. Once an invalid PTE is established, the PTE's
+ * access and dirty bits cannot be updated.
+ */
+ return pmdp_establish(vma, address, pmdp, pmd_mkinvalid(*pmdp));
+}
+#endif
+
+/**
+ * reserve_top_address - reserves a hole in the top of kernel address space
+ * @reserve - size of hole to reserve
+ *
+ * Can be used to relocate the fixmap area and poke a hole in the top
+ * of kernel address space to make room for a hypervisor.
+ */
+void __init reserve_top_address(unsigned long reserve)
+{
+#ifdef CONFIG_X86_32
+ BUG_ON(fixmaps_set > 0);
+ __FIXADDR_TOP = round_down(-reserve, 1 << PMD_SHIFT) - PAGE_SIZE;
+ printk(KERN_INFO "Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n",
+ -reserve, __FIXADDR_TOP + PAGE_SIZE);
+#endif
+}
+
+int fixmaps_set;
+
+void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
+{
+ unsigned long address = __fix_to_virt(idx);
+
+#ifdef CONFIG_X86_64
+ /*
+ * Ensure that the static initial page tables are covering the
+ * fixmap completely.
+ */
+ BUILD_BUG_ON(__end_of_permanent_fixed_addresses >
+ (FIXMAP_PMD_NUM * PTRS_PER_PTE));
+#endif
+
+ if (idx >= __end_of_fixed_addresses) {
+ BUG();
+ return;
+ }
+ set_pte_vaddr(address, pte);
+ fixmaps_set++;
+}
+
+void native_set_fixmap(unsigned /* enum fixed_addresses */ idx,
+ phys_addr_t phys, pgprot_t flags)
+{
+ /* Sanitize 'prot' against any unsupported bits: */
+ pgprot_val(flags) &= __default_kernel_pte_mask;
+
+ __native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
+}
+
+#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
+#ifdef CONFIG_X86_5LEVEL
+/**
+ * p4d_set_huge - setup kernel P4D mapping
+ *
+ * No 512GB pages yet -- always return 0
+ */
+int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
+{
+ return 0;
+}
+
+/**
+ * p4d_clear_huge - clear kernel P4D mapping when it is set
+ *
+ * No 512GB pages yet -- always return 0
+ */
+void p4d_clear_huge(p4d_t *p4d)
+{
+}
+#endif
+
+/**
+ * pud_set_huge - setup kernel PUD mapping
+ *
+ * MTRRs can override PAT memory types with 4KiB granularity. Therefore, this
+ * function sets up a huge page only if the complete range has the same MTRR
+ * caching mode.
+ *
+ * Callers should try to decrease page size (1GB -> 2MB -> 4K) if the bigger
+ * page mapping attempt fails.
+ *
+ * Returns 1 on success and 0 on failure.
+ */
+int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
+{
+ u8 uniform;
+
+ mtrr_type_lookup(addr, addr + PUD_SIZE, &uniform);
+ if (!uniform)
+ return 0;
+
+ /* Bail out if we are we on a populated non-leaf entry: */
+ if (pud_present(*pud) && !pud_huge(*pud))
+ return 0;
+
+ set_pte((pte_t *)pud, pfn_pte(
+ (u64)addr >> PAGE_SHIFT,
+ __pgprot(protval_4k_2_large(pgprot_val(prot)) | _PAGE_PSE)));
+
+ return 1;
+}
+
+/**
+ * pmd_set_huge - setup kernel PMD mapping
+ *
+ * See text over pud_set_huge() above.
+ *
+ * Returns 1 on success and 0 on failure.
+ */
+int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
+{
+ u8 uniform;
+
+ mtrr_type_lookup(addr, addr + PMD_SIZE, &uniform);
+ if (!uniform) {
+ pr_warn_once("%s: Cannot satisfy [mem %#010llx-%#010llx] with a huge-page mapping due to MTRR override.\n",
+ __func__, addr, addr + PMD_SIZE);
+ return 0;
+ }
+
+ /* Bail out if we are we on a populated non-leaf entry: */
+ if (pmd_present(*pmd) && !pmd_huge(*pmd))
+ return 0;
+
+ set_pte((pte_t *)pmd, pfn_pte(
+ (u64)addr >> PAGE_SHIFT,
+ __pgprot(protval_4k_2_large(pgprot_val(prot)) | _PAGE_PSE)));
+
+ return 1;
+}
+
+/**
+ * pud_clear_huge - clear kernel PUD mapping when it is set
+ *
+ * Returns 1 on success and 0 on failure (no PUD map is found).
+ */
+int pud_clear_huge(pud_t *pud)
+{
+ if (pud_large(*pud)) {
+ pud_clear(pud);
+ return 1;
+ }
+
+ return 0;
+}
+
+/**
+ * pmd_clear_huge - clear kernel PMD mapping when it is set
+ *
+ * Returns 1 on success and 0 on failure (no PMD map is found).
+ */
+int pmd_clear_huge(pmd_t *pmd)
+{
+ if (pmd_large(*pmd)) {
+ pmd_clear(pmd);
+ return 1;
+ }
+
+ return 0;
+}
+
+#ifdef CONFIG_X86_64
+/**
+ * pud_free_pmd_page - Clear pud entry and free pmd page.
+ * @pud: Pointer to a PUD.
+ * @addr: Virtual address associated with pud.
+ *
+ * Context: The pud range has been unmapped and TLB purged.
+ * Return: 1 if clearing the entry succeeded. 0 otherwise.
+ *
+ * NOTE: Callers must allow a single page allocation.
+ */
+int pud_free_pmd_page(pud_t *pud, unsigned long addr)
+{
+ pmd_t *pmd, *pmd_sv;
+ pte_t *pte;
+ int i;
+
+ pmd = pud_pgtable(*pud);
+ pmd_sv = (pmd_t *)__get_free_page(GFP_KERNEL);
+ if (!pmd_sv)
+ return 0;
+
+ for (i = 0; i < PTRS_PER_PMD; i++) {
+ pmd_sv[i] = pmd[i];
+ if (!pmd_none(pmd[i]))
+ pmd_clear(&pmd[i]);
+ }
+
+ pud_clear(pud);
+
+ /* INVLPG to clear all paging-structure caches */
+ flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1);
+
+ for (i = 0; i < PTRS_PER_PMD; i++) {
+ if (!pmd_none(pmd_sv[i])) {
+ pte = (pte_t *)pmd_page_vaddr(pmd_sv[i]);
+ free_page((unsigned long)pte);
+ }
+ }
+
+ free_page((unsigned long)pmd_sv);
+
+ pagetable_pmd_dtor(virt_to_ptdesc(pmd));
+ free_page((unsigned long)pmd);
+
+ return 1;
+}
+
+/**
+ * pmd_free_pte_page - Clear pmd entry and free pte page.
+ * @pmd: Pointer to a PMD.
+ * @addr: Virtual address associated with pmd.
+ *
+ * Context: The pmd range has been unmapped and TLB purged.
+ * Return: 1 if clearing the entry succeeded. 0 otherwise.
+ */
+int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
+{
+ pte_t *pte;
+
+ pte = (pte_t *)pmd_page_vaddr(*pmd);
+ pmd_clear(pmd);
+
+ /* INVLPG to clear all paging-structure caches */
+ flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1);
+
+ free_page((unsigned long)pte);
+
+ return 1;
+}
+
+#else /* !CONFIG_X86_64 */
+
+/*
+ * Disable free page handling on x86-PAE. This assures that ioremap()
+ * does not update sync'd pmd entries. See vmalloc_sync_one().
+ */
+int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
+{
+ return pmd_none(*pmd);
+}
+
+#endif /* CONFIG_X86_64 */
+#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
+
+pte_t pte_mkwrite(pte_t pte, struct vm_area_struct *vma)
+{
+ if (vma->vm_flags & VM_SHADOW_STACK)
+ return pte_mkwrite_shstk(pte);
+
+ pte = pte_mkwrite_novma(pte);
+
+ return pte_clear_saveddirty(pte);
+}
+
+pmd_t pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
+{
+ if (vma->vm_flags & VM_SHADOW_STACK)
+ return pmd_mkwrite_shstk(pmd);
+
+ pmd = pmd_mkwrite_novma(pmd);
+
+ return pmd_clear_saveddirty(pmd);
+}
+
+void arch_check_zapped_pte(struct vm_area_struct *vma, pte_t pte)
+{
+ /*
+ * Hardware before shadow stack can (rarely) set Dirty=1
+ * on a Write=0 PTE. So the below condition
+ * only indicates a software bug when shadow stack is
+ * supported by the HW. This checking is covered in
+ * pte_shstk().
+ */
+ VM_WARN_ON_ONCE(!(vma->vm_flags & VM_SHADOW_STACK) &&
+ pte_shstk(pte));
+}
+
+void arch_check_zapped_pmd(struct vm_area_struct *vma, pmd_t pmd)
+{
+ /* See note in arch_check_zapped_pte() */
+ VM_WARN_ON_ONCE(!(vma->vm_flags & VM_SHADOW_STACK) &&
+ pmd_shstk(pmd));
+}
diff --git a/arch/x86/mm/pgtable_32.c b/arch/x86/mm/pgtable_32.c
new file mode 100644
index 0000000000..c234634e26
--- /dev/null
+++ b/arch/x86/mm/pgtable_32.c
@@ -0,0 +1,104 @@
+// SPDX-License-Identifier: GPL-2.0
+#include <linux/sched.h>
+#include <linux/kernel.h>
+#include <linux/errno.h>
+#include <linux/mm.h>
+#include <linux/nmi.h>
+#include <linux/swap.h>
+#include <linux/smp.h>
+#include <linux/highmem.h>
+#include <linux/pagemap.h>
+#include <linux/spinlock.h>
+
+#include <asm/cpu_entry_area.h>
+#include <asm/fixmap.h>
+#include <asm/e820/api.h>
+#include <asm/tlb.h>
+#include <asm/tlbflush.h>
+#include <asm/io.h>
+#include <linux/vmalloc.h>
+
+unsigned int __VMALLOC_RESERVE = 128 << 20;
+
+/*
+ * Associate a virtual page frame with a given physical page frame
+ * and protection flags for that frame.
+ */
+void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
+{
+ pgd_t *pgd;
+ p4d_t *p4d;
+ pud_t *pud;
+ pmd_t *pmd;
+ pte_t *pte;
+
+ pgd = swapper_pg_dir + pgd_index(vaddr);
+ if (pgd_none(*pgd)) {
+ BUG();
+ return;
+ }
+ p4d = p4d_offset(pgd, vaddr);
+ if (p4d_none(*p4d)) {
+ BUG();
+ return;
+ }
+ pud = pud_offset(p4d, vaddr);
+ if (pud_none(*pud)) {
+ BUG();
+ return;
+ }
+ pmd = pmd_offset(pud, vaddr);
+ if (pmd_none(*pmd)) {
+ BUG();
+ return;
+ }
+ pte = pte_offset_kernel(pmd, vaddr);
+ if (!pte_none(pteval))
+ set_pte_at(&init_mm, vaddr, pte, pteval);
+ else
+ pte_clear(&init_mm, vaddr, pte);
+
+ /*
+ * It's enough to flush this one mapping.
+ * (PGE mappings get flushed as well)
+ */
+ flush_tlb_one_kernel(vaddr);
+}
+
+unsigned long __FIXADDR_TOP = 0xfffff000;
+EXPORT_SYMBOL(__FIXADDR_TOP);
+
+/*
+ * vmalloc=size forces the vmalloc area to be exactly 'size'
+ * bytes. This can be used to increase (or decrease) the
+ * vmalloc area - the default is 128m.
+ */
+static int __init parse_vmalloc(char *arg)
+{
+ if (!arg)
+ return -EINVAL;
+
+ /* Add VMALLOC_OFFSET to the parsed value due to vm area guard hole*/
+ __VMALLOC_RESERVE = memparse(arg, &arg) + VMALLOC_OFFSET;
+ return 0;
+}
+early_param("vmalloc", parse_vmalloc);
+
+/*
+ * reservetop=size reserves a hole at the top of the kernel address space which
+ * a hypervisor can load into later. Needed for dynamically loaded hypervisors,
+ * so relocating the fixmap can be done before paging initialization.
+ */
+static int __init parse_reservetop(char *arg)
+{
+ unsigned long address;
+
+ if (!arg)
+ return -EINVAL;
+
+ address = memparse(arg, &arg);
+ reserve_top_address(address);
+ early_ioremap_init();
+ return 0;
+}
+early_param("reservetop", parse_reservetop);
diff --git a/arch/x86/mm/physaddr.c b/arch/x86/mm/physaddr.c
new file mode 100644
index 0000000000..fc3f3d3e2e
--- /dev/null
+++ b/arch/x86/mm/physaddr.c
@@ -0,0 +1,100 @@
+// SPDX-License-Identifier: GPL-2.0
+#include <linux/memblock.h>
+#include <linux/mmdebug.h>
+#include <linux/export.h>
+#include <linux/mm.h>
+
+#include <asm/page.h>
+#include <linux/vmalloc.h>
+
+#include "physaddr.h"
+
+#ifdef CONFIG_X86_64
+
+#ifdef CONFIG_DEBUG_VIRTUAL
+unsigned long __phys_addr(unsigned long x)
+{
+ unsigned long y = x - __START_KERNEL_map;
+
+ /* use the carry flag to determine if x was < __START_KERNEL_map */
+ if (unlikely(x > y)) {
+ x = y + phys_base;
+
+ VIRTUAL_BUG_ON(y >= KERNEL_IMAGE_SIZE);
+ } else {
+ x = y + (__START_KERNEL_map - PAGE_OFFSET);
+
+ /* carry flag will be set if starting x was >= PAGE_OFFSET */
+ VIRTUAL_BUG_ON((x > y) || !phys_addr_valid(x));
+ }
+
+ return x;
+}
+EXPORT_SYMBOL(__phys_addr);
+
+unsigned long __phys_addr_symbol(unsigned long x)
+{
+ unsigned long y = x - __START_KERNEL_map;
+
+ /* only check upper bounds since lower bounds will trigger carry */
+ VIRTUAL_BUG_ON(y >= KERNEL_IMAGE_SIZE);
+
+ return y + phys_base;
+}
+EXPORT_SYMBOL(__phys_addr_symbol);
+#endif
+
+bool __virt_addr_valid(unsigned long x)
+{
+ unsigned long y = x - __START_KERNEL_map;
+
+ /* use the carry flag to determine if x was < __START_KERNEL_map */
+ if (unlikely(x > y)) {
+ x = y + phys_base;
+
+ if (y >= KERNEL_IMAGE_SIZE)
+ return false;
+ } else {
+ x = y + (__START_KERNEL_map - PAGE_OFFSET);
+
+ /* carry flag will be set if starting x was >= PAGE_OFFSET */
+ if ((x > y) || !phys_addr_valid(x))
+ return false;
+ }
+
+ return pfn_valid(x >> PAGE_SHIFT);
+}
+EXPORT_SYMBOL(__virt_addr_valid);
+
+#else
+
+#ifdef CONFIG_DEBUG_VIRTUAL
+unsigned long __phys_addr(unsigned long x)
+{
+ unsigned long phys_addr = x - PAGE_OFFSET;
+ /* VMALLOC_* aren't constants */
+ VIRTUAL_BUG_ON(x < PAGE_OFFSET);
+ VIRTUAL_BUG_ON(__vmalloc_start_set && is_vmalloc_addr((void *) x));
+ /* max_low_pfn is set early, but not _that_ early */
+ if (max_low_pfn) {
+ VIRTUAL_BUG_ON((phys_addr >> PAGE_SHIFT) > max_low_pfn);
+ BUG_ON(slow_virt_to_phys((void *)x) != phys_addr);
+ }
+ return phys_addr;
+}
+EXPORT_SYMBOL(__phys_addr);
+#endif
+
+bool __virt_addr_valid(unsigned long x)
+{
+ if (x < PAGE_OFFSET)
+ return false;
+ if (__vmalloc_start_set && is_vmalloc_addr((void *) x))
+ return false;
+ if (x >= FIXADDR_START)
+ return false;
+ return pfn_valid((x - PAGE_OFFSET) >> PAGE_SHIFT);
+}
+EXPORT_SYMBOL(__virt_addr_valid);
+
+#endif /* CONFIG_X86_64 */
diff --git a/arch/x86/mm/physaddr.h b/arch/x86/mm/physaddr.h
new file mode 100644
index 0000000000..9f6419cafc
--- /dev/null
+++ b/arch/x86/mm/physaddr.h
@@ -0,0 +1,11 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#include <asm/processor.h>
+
+static inline int phys_addr_valid(resource_size_t addr)
+{
+#ifdef CONFIG_PHYS_ADDR_T_64BIT
+ return !(addr >> boot_cpu_data.x86_phys_bits);
+#else
+ return 1;
+#endif
+}
diff --git a/arch/x86/mm/pkeys.c b/arch/x86/mm/pkeys.c
new file mode 100644
index 0000000000..7418c367e3
--- /dev/null
+++ b/arch/x86/mm/pkeys.c
@@ -0,0 +1,197 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Intel Memory Protection Keys management
+ * Copyright (c) 2015, Intel Corporation.
+ */
+#include <linux/debugfs.h> /* debugfs_create_u32() */
+#include <linux/mm_types.h> /* mm_struct, vma, etc... */
+#include <linux/pkeys.h> /* PKEY_* */
+#include <uapi/asm-generic/mman-common.h>
+
+#include <asm/cpufeature.h> /* boot_cpu_has, ... */
+#include <asm/mmu_context.h> /* vma_pkey() */
+
+int __execute_only_pkey(struct mm_struct *mm)
+{
+ bool need_to_set_mm_pkey = false;
+ int execute_only_pkey = mm->context.execute_only_pkey;
+ int ret;
+
+ /* Do we need to assign a pkey for mm's execute-only maps? */
+ if (execute_only_pkey == -1) {
+ /* Go allocate one to use, which might fail */
+ execute_only_pkey = mm_pkey_alloc(mm);
+ if (execute_only_pkey < 0)
+ return -1;
+ need_to_set_mm_pkey = true;
+ }
+
+ /*
+ * We do not want to go through the relatively costly
+ * dance to set PKRU if we do not need to. Check it
+ * first and assume that if the execute-only pkey is
+ * write-disabled that we do not have to set it
+ * ourselves.
+ */
+ if (!need_to_set_mm_pkey &&
+ !__pkru_allows_read(read_pkru(), execute_only_pkey)) {
+ return execute_only_pkey;
+ }
+
+ /*
+ * Set up PKRU so that it denies access for everything
+ * other than execution.
+ */
+ ret = arch_set_user_pkey_access(current, execute_only_pkey,
+ PKEY_DISABLE_ACCESS);
+ /*
+ * If the PKRU-set operation failed somehow, just return
+ * 0 and effectively disable execute-only support.
+ */
+ if (ret) {
+ mm_set_pkey_free(mm, execute_only_pkey);
+ return -1;
+ }
+
+ /* We got one, store it and use it from here on out */
+ if (need_to_set_mm_pkey)
+ mm->context.execute_only_pkey = execute_only_pkey;
+ return execute_only_pkey;
+}
+
+static inline bool vma_is_pkey_exec_only(struct vm_area_struct *vma)
+{
+ /* Do this check first since the vm_flags should be hot */
+ if ((vma->vm_flags & VM_ACCESS_FLAGS) != VM_EXEC)
+ return false;
+ if (vma_pkey(vma) != vma->vm_mm->context.execute_only_pkey)
+ return false;
+
+ return true;
+}
+
+/*
+ * This is only called for *plain* mprotect calls.
+ */
+int __arch_override_mprotect_pkey(struct vm_area_struct *vma, int prot, int pkey)
+{
+ /*
+ * Is this an mprotect_pkey() call? If so, never
+ * override the value that came from the user.
+ */
+ if (pkey != -1)
+ return pkey;
+
+ /*
+ * The mapping is execute-only. Go try to get the
+ * execute-only protection key. If we fail to do that,
+ * fall through as if we do not have execute-only
+ * support in this mm.
+ */
+ if (prot == PROT_EXEC) {
+ pkey = execute_only_pkey(vma->vm_mm);
+ if (pkey > 0)
+ return pkey;
+ } else if (vma_is_pkey_exec_only(vma)) {
+ /*
+ * Protections are *not* PROT_EXEC, but the mapping
+ * is using the exec-only pkey. This mapping was
+ * PROT_EXEC and will no longer be. Move back to
+ * the default pkey.
+ */
+ return ARCH_DEFAULT_PKEY;
+ }
+
+ /*
+ * This is a vanilla, non-pkey mprotect (or we failed to
+ * setup execute-only), inherit the pkey from the VMA we
+ * are working on.
+ */
+ return vma_pkey(vma);
+}
+
+#define PKRU_AD_MASK(pkey) (PKRU_AD_BIT << ((pkey) * PKRU_BITS_PER_PKEY))
+
+/*
+ * Make the default PKRU value (at execve() time) as restrictive
+ * as possible. This ensures that any threads clone()'d early
+ * in the process's lifetime will not accidentally get access
+ * to data which is pkey-protected later on.
+ */
+u32 init_pkru_value = PKRU_AD_MASK( 1) | PKRU_AD_MASK( 2) |
+ PKRU_AD_MASK( 3) | PKRU_AD_MASK( 4) |
+ PKRU_AD_MASK( 5) | PKRU_AD_MASK( 6) |
+ PKRU_AD_MASK( 7) | PKRU_AD_MASK( 8) |
+ PKRU_AD_MASK( 9) | PKRU_AD_MASK(10) |
+ PKRU_AD_MASK(11) | PKRU_AD_MASK(12) |
+ PKRU_AD_MASK(13) | PKRU_AD_MASK(14) |
+ PKRU_AD_MASK(15);
+
+static ssize_t init_pkru_read_file(struct file *file, char __user *user_buf,
+ size_t count, loff_t *ppos)
+{
+ char buf[32];
+ unsigned int len;
+
+ len = sprintf(buf, "0x%x\n", init_pkru_value);
+ return simple_read_from_buffer(user_buf, count, ppos, buf, len);
+}
+
+static ssize_t init_pkru_write_file(struct file *file,
+ const char __user *user_buf, size_t count, loff_t *ppos)
+{
+ char buf[32];
+ ssize_t len;
+ u32 new_init_pkru;
+
+ len = min(count, sizeof(buf) - 1);
+ if (copy_from_user(buf, user_buf, len))
+ return -EFAULT;
+
+ /* Make the buffer a valid string that we can not overrun */
+ buf[len] = '\0';
+ if (kstrtouint(buf, 0, &new_init_pkru))
+ return -EINVAL;
+
+ /*
+ * Don't allow insane settings that will blow the system
+ * up immediately if someone attempts to disable access
+ * or writes to pkey 0.
+ */
+ if (new_init_pkru & (PKRU_AD_BIT|PKRU_WD_BIT))
+ return -EINVAL;
+
+ WRITE_ONCE(init_pkru_value, new_init_pkru);
+ return count;
+}
+
+static const struct file_operations fops_init_pkru = {
+ .read = init_pkru_read_file,
+ .write = init_pkru_write_file,
+ .llseek = default_llseek,
+};
+
+static int __init create_init_pkru_value(void)
+{
+ /* Do not expose the file if pkeys are not supported. */
+ if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
+ return 0;
+
+ debugfs_create_file("init_pkru", S_IRUSR | S_IWUSR,
+ arch_debugfs_dir, NULL, &fops_init_pkru);
+ return 0;
+}
+late_initcall(create_init_pkru_value);
+
+static __init int setup_init_pkru(char *opt)
+{
+ u32 new_init_pkru;
+
+ if (kstrtouint(opt, 0, &new_init_pkru))
+ return 1;
+
+ WRITE_ONCE(init_pkru_value, new_init_pkru);
+
+ return 1;
+}
+__setup("init_pkru=", setup_init_pkru);
diff --git a/arch/x86/mm/pti.c b/arch/x86/mm/pti.c
new file mode 100644
index 0000000000..78414c6d1b
--- /dev/null
+++ b/arch/x86/mm/pti.c
@@ -0,0 +1,666 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright(c) 2017 Intel Corporation. All rights reserved.
+ *
+ * This code is based in part on work published here:
+ *
+ * https://github.com/IAIK/KAISER
+ *
+ * The original work was written by and and signed off by for the Linux
+ * kernel by:
+ *
+ * Signed-off-by: Richard Fellner <richard.fellner@student.tugraz.at>
+ * Signed-off-by: Moritz Lipp <moritz.lipp@iaik.tugraz.at>
+ * Signed-off-by: Daniel Gruss <daniel.gruss@iaik.tugraz.at>
+ * Signed-off-by: Michael Schwarz <michael.schwarz@iaik.tugraz.at>
+ *
+ * Major changes to the original code by: Dave Hansen <dave.hansen@intel.com>
+ * Mostly rewritten by Thomas Gleixner <tglx@linutronix.de> and
+ * Andy Lutomirsky <luto@amacapital.net>
+ */
+#include <linux/kernel.h>
+#include <linux/errno.h>
+#include <linux/string.h>
+#include <linux/types.h>
+#include <linux/bug.h>
+#include <linux/init.h>
+#include <linux/spinlock.h>
+#include <linux/mm.h>
+#include <linux/uaccess.h>
+#include <linux/cpu.h>
+
+#include <asm/cpufeature.h>
+#include <asm/hypervisor.h>
+#include <asm/vsyscall.h>
+#include <asm/cmdline.h>
+#include <asm/pti.h>
+#include <asm/tlbflush.h>
+#include <asm/desc.h>
+#include <asm/sections.h>
+#include <asm/set_memory.h>
+
+#undef pr_fmt
+#define pr_fmt(fmt) "Kernel/User page tables isolation: " fmt
+
+/* Backporting helper */
+#ifndef __GFP_NOTRACK
+#define __GFP_NOTRACK 0
+#endif
+
+/*
+ * Define the page-table levels we clone for user-space on 32
+ * and 64 bit.
+ */
+#ifdef CONFIG_X86_64
+#define PTI_LEVEL_KERNEL_IMAGE PTI_CLONE_PMD
+#else
+#define PTI_LEVEL_KERNEL_IMAGE PTI_CLONE_PTE
+#endif
+
+static void __init pti_print_if_insecure(const char *reason)
+{
+ if (boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
+ pr_info("%s\n", reason);
+}
+
+static void __init pti_print_if_secure(const char *reason)
+{
+ if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
+ pr_info("%s\n", reason);
+}
+
+static enum pti_mode {
+ PTI_AUTO = 0,
+ PTI_FORCE_OFF,
+ PTI_FORCE_ON
+} pti_mode;
+
+void __init pti_check_boottime_disable(void)
+{
+ char arg[5];
+ int ret;
+
+ /* Assume mode is auto unless overridden. */
+ pti_mode = PTI_AUTO;
+
+ if (hypervisor_is_type(X86_HYPER_XEN_PV)) {
+ pti_mode = PTI_FORCE_OFF;
+ pti_print_if_insecure("disabled on XEN PV.");
+ return;
+ }
+
+ ret = cmdline_find_option(boot_command_line, "pti", arg, sizeof(arg));
+ if (ret > 0) {
+ if (ret == 3 && !strncmp(arg, "off", 3)) {
+ pti_mode = PTI_FORCE_OFF;
+ pti_print_if_insecure("disabled on command line.");
+ return;
+ }
+ if (ret == 2 && !strncmp(arg, "on", 2)) {
+ pti_mode = PTI_FORCE_ON;
+ pti_print_if_secure("force enabled on command line.");
+ goto enable;
+ }
+ if (ret == 4 && !strncmp(arg, "auto", 4)) {
+ pti_mode = PTI_AUTO;
+ goto autosel;
+ }
+ }
+
+ if (cmdline_find_option_bool(boot_command_line, "nopti") ||
+ cpu_mitigations_off()) {
+ pti_mode = PTI_FORCE_OFF;
+ pti_print_if_insecure("disabled on command line.");
+ return;
+ }
+
+autosel:
+ if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
+ return;
+enable:
+ setup_force_cpu_cap(X86_FEATURE_PTI);
+}
+
+pgd_t __pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd)
+{
+ /*
+ * Changes to the high (kernel) portion of the kernelmode page
+ * tables are not automatically propagated to the usermode tables.
+ *
+ * Users should keep in mind that, unlike the kernelmode tables,
+ * there is no vmalloc_fault equivalent for the usermode tables.
+ * Top-level entries added to init_mm's usermode pgd after boot
+ * will not be automatically propagated to other mms.
+ */
+ if (!pgdp_maps_userspace(pgdp))
+ return pgd;
+
+ /*
+ * The user page tables get the full PGD, accessible from
+ * userspace:
+ */
+ kernel_to_user_pgdp(pgdp)->pgd = pgd.pgd;
+
+ /*
+ * If this is normal user memory, make it NX in the kernel
+ * pagetables so that, if we somehow screw up and return to
+ * usermode with the kernel CR3 loaded, we'll get a page fault
+ * instead of allowing user code to execute with the wrong CR3.
+ *
+ * As exceptions, we don't set NX if:
+ * - _PAGE_USER is not set. This could be an executable
+ * EFI runtime mapping or something similar, and the kernel
+ * may execute from it
+ * - we don't have NX support
+ * - we're clearing the PGD (i.e. the new pgd is not present).
+ */
+ if ((pgd.pgd & (_PAGE_USER|_PAGE_PRESENT)) == (_PAGE_USER|_PAGE_PRESENT) &&
+ (__supported_pte_mask & _PAGE_NX))
+ pgd.pgd |= _PAGE_NX;
+
+ /* return the copy of the PGD we want the kernel to use: */
+ return pgd;
+}
+
+/*
+ * Walk the user copy of the page tables (optionally) trying to allocate
+ * page table pages on the way down.
+ *
+ * Returns a pointer to a P4D on success, or NULL on failure.
+ */
+static p4d_t *pti_user_pagetable_walk_p4d(unsigned long address)
+{
+ pgd_t *pgd = kernel_to_user_pgdp(pgd_offset_k(address));
+ gfp_t gfp = (GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO);
+
+ if (address < PAGE_OFFSET) {
+ WARN_ONCE(1, "attempt to walk user address\n");
+ return NULL;
+ }
+
+ if (pgd_none(*pgd)) {
+ unsigned long new_p4d_page = __get_free_page(gfp);
+ if (WARN_ON_ONCE(!new_p4d_page))
+ return NULL;
+
+ set_pgd(pgd, __pgd(_KERNPG_TABLE | __pa(new_p4d_page)));
+ }
+ BUILD_BUG_ON(pgd_large(*pgd) != 0);
+
+ return p4d_offset(pgd, address);
+}
+
+/*
+ * Walk the user copy of the page tables (optionally) trying to allocate
+ * page table pages on the way down.
+ *
+ * Returns a pointer to a PMD on success, or NULL on failure.
+ */
+static pmd_t *pti_user_pagetable_walk_pmd(unsigned long address)
+{
+ gfp_t gfp = (GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO);
+ p4d_t *p4d;
+ pud_t *pud;
+
+ p4d = pti_user_pagetable_walk_p4d(address);
+ if (!p4d)
+ return NULL;
+
+ BUILD_BUG_ON(p4d_large(*p4d) != 0);
+ if (p4d_none(*p4d)) {
+ unsigned long new_pud_page = __get_free_page(gfp);
+ if (WARN_ON_ONCE(!new_pud_page))
+ return NULL;
+
+ set_p4d(p4d, __p4d(_KERNPG_TABLE | __pa(new_pud_page)));
+ }
+
+ pud = pud_offset(p4d, address);
+ /* The user page tables do not use large mappings: */
+ if (pud_large(*pud)) {
+ WARN_ON(1);
+ return NULL;
+ }
+ if (pud_none(*pud)) {
+ unsigned long new_pmd_page = __get_free_page(gfp);
+ if (WARN_ON_ONCE(!new_pmd_page))
+ return NULL;
+
+ set_pud(pud, __pud(_KERNPG_TABLE | __pa(new_pmd_page)));
+ }
+
+ return pmd_offset(pud, address);
+}
+
+/*
+ * Walk the shadow copy of the page tables (optionally) trying to allocate
+ * page table pages on the way down. Does not support large pages.
+ *
+ * Note: this is only used when mapping *new* kernel data into the
+ * user/shadow page tables. It is never used for userspace data.
+ *
+ * Returns a pointer to a PTE on success, or NULL on failure.
+ */
+static pte_t *pti_user_pagetable_walk_pte(unsigned long address)
+{
+ gfp_t gfp = (GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO);
+ pmd_t *pmd;
+ pte_t *pte;
+
+ pmd = pti_user_pagetable_walk_pmd(address);
+ if (!pmd)
+ return NULL;
+
+ /* We can't do anything sensible if we hit a large mapping. */
+ if (pmd_large(*pmd)) {
+ WARN_ON(1);
+ return NULL;
+ }
+
+ if (pmd_none(*pmd)) {
+ unsigned long new_pte_page = __get_free_page(gfp);
+ if (!new_pte_page)
+ return NULL;
+
+ set_pmd(pmd, __pmd(_KERNPG_TABLE | __pa(new_pte_page)));
+ }
+
+ pte = pte_offset_kernel(pmd, address);
+ if (pte_flags(*pte) & _PAGE_USER) {
+ WARN_ONCE(1, "attempt to walk to user pte\n");
+ return NULL;
+ }
+ return pte;
+}
+
+#ifdef CONFIG_X86_VSYSCALL_EMULATION
+static void __init pti_setup_vsyscall(void)
+{
+ pte_t *pte, *target_pte;
+ unsigned int level;
+
+ pte = lookup_address(VSYSCALL_ADDR, &level);
+ if (!pte || WARN_ON(level != PG_LEVEL_4K) || pte_none(*pte))
+ return;
+
+ target_pte = pti_user_pagetable_walk_pte(VSYSCALL_ADDR);
+ if (WARN_ON(!target_pte))
+ return;
+
+ *target_pte = *pte;
+ set_vsyscall_pgtable_user_bits(kernel_to_user_pgdp(swapper_pg_dir));
+}
+#else
+static void __init pti_setup_vsyscall(void) { }
+#endif
+
+enum pti_clone_level {
+ PTI_CLONE_PMD,
+ PTI_CLONE_PTE,
+};
+
+static void
+pti_clone_pgtable(unsigned long start, unsigned long end,
+ enum pti_clone_level level)
+{
+ unsigned long addr;
+
+ /*
+ * Clone the populated PMDs which cover start to end. These PMD areas
+ * can have holes.
+ */
+ for (addr = start; addr < end;) {
+ pte_t *pte, *target_pte;
+ pmd_t *pmd, *target_pmd;
+ pgd_t *pgd;
+ p4d_t *p4d;
+ pud_t *pud;
+
+ /* Overflow check */
+ if (addr < start)
+ break;
+
+ pgd = pgd_offset_k(addr);
+ if (WARN_ON(pgd_none(*pgd)))
+ return;
+ p4d = p4d_offset(pgd, addr);
+ if (WARN_ON(p4d_none(*p4d)))
+ return;
+
+ pud = pud_offset(p4d, addr);
+ if (pud_none(*pud)) {
+ WARN_ON_ONCE(addr & ~PUD_MASK);
+ addr = round_up(addr + 1, PUD_SIZE);
+ continue;
+ }
+
+ pmd = pmd_offset(pud, addr);
+ if (pmd_none(*pmd)) {
+ WARN_ON_ONCE(addr & ~PMD_MASK);
+ addr = round_up(addr + 1, PMD_SIZE);
+ continue;
+ }
+
+ if (pmd_large(*pmd) || level == PTI_CLONE_PMD) {
+ target_pmd = pti_user_pagetable_walk_pmd(addr);
+ if (WARN_ON(!target_pmd))
+ return;
+
+ /*
+ * Only clone present PMDs. This ensures only setting
+ * _PAGE_GLOBAL on present PMDs. This should only be
+ * called on well-known addresses anyway, so a non-
+ * present PMD would be a surprise.
+ */
+ if (WARN_ON(!(pmd_flags(*pmd) & _PAGE_PRESENT)))
+ return;
+
+ /*
+ * Setting 'target_pmd' below creates a mapping in both
+ * the user and kernel page tables. It is effectively
+ * global, so set it as global in both copies. Note:
+ * the X86_FEATURE_PGE check is not _required_ because
+ * the CPU ignores _PAGE_GLOBAL when PGE is not
+ * supported. The check keeps consistency with
+ * code that only set this bit when supported.
+ */
+ if (boot_cpu_has(X86_FEATURE_PGE))
+ *pmd = pmd_set_flags(*pmd, _PAGE_GLOBAL);
+
+ /*
+ * Copy the PMD. That is, the kernelmode and usermode
+ * tables will share the last-level page tables of this
+ * address range
+ */
+ *target_pmd = *pmd;
+
+ addr += PMD_SIZE;
+
+ } else if (level == PTI_CLONE_PTE) {
+
+ /* Walk the page-table down to the pte level */
+ pte = pte_offset_kernel(pmd, addr);
+ if (pte_none(*pte)) {
+ addr += PAGE_SIZE;
+ continue;
+ }
+
+ /* Only clone present PTEs */
+ if (WARN_ON(!(pte_flags(*pte) & _PAGE_PRESENT)))
+ return;
+
+ /* Allocate PTE in the user page-table */
+ target_pte = pti_user_pagetable_walk_pte(addr);
+ if (WARN_ON(!target_pte))
+ return;
+
+ /* Set GLOBAL bit in both PTEs */
+ if (boot_cpu_has(X86_FEATURE_PGE))
+ *pte = pte_set_flags(*pte, _PAGE_GLOBAL);
+
+ /* Clone the PTE */
+ *target_pte = *pte;
+
+ addr += PAGE_SIZE;
+
+ } else {
+ BUG();
+ }
+ }
+}
+
+#ifdef CONFIG_X86_64
+/*
+ * Clone a single p4d (i.e. a top-level entry on 4-level systems and a
+ * next-level entry on 5-level systems.
+ */
+static void __init pti_clone_p4d(unsigned long addr)
+{
+ p4d_t *kernel_p4d, *user_p4d;
+ pgd_t *kernel_pgd;
+
+ user_p4d = pti_user_pagetable_walk_p4d(addr);
+ if (!user_p4d)
+ return;
+
+ kernel_pgd = pgd_offset_k(addr);
+ kernel_p4d = p4d_offset(kernel_pgd, addr);
+ *user_p4d = *kernel_p4d;
+}
+
+/*
+ * Clone the CPU_ENTRY_AREA and associated data into the user space visible
+ * page table.
+ */
+static void __init pti_clone_user_shared(void)
+{
+ unsigned int cpu;
+
+ pti_clone_p4d(CPU_ENTRY_AREA_BASE);
+
+ for_each_possible_cpu(cpu) {
+ /*
+ * The SYSCALL64 entry code needs one word of scratch space
+ * in which to spill a register. It lives in the sp2 slot
+ * of the CPU's TSS.
+ *
+ * This is done for all possible CPUs during boot to ensure
+ * that it's propagated to all mms.
+ */
+
+ unsigned long va = (unsigned long)&per_cpu(cpu_tss_rw, cpu);
+ phys_addr_t pa = per_cpu_ptr_to_phys((void *)va);
+ pte_t *target_pte;
+
+ target_pte = pti_user_pagetable_walk_pte(va);
+ if (WARN_ON(!target_pte))
+ return;
+
+ *target_pte = pfn_pte(pa >> PAGE_SHIFT, PAGE_KERNEL);
+ }
+}
+
+#else /* CONFIG_X86_64 */
+
+/*
+ * On 32 bit PAE systems with 1GB of Kernel address space there is only
+ * one pgd/p4d for the whole kernel. Cloning that would map the whole
+ * address space into the user page-tables, making PTI useless. So clone
+ * the page-table on the PMD level to prevent that.
+ */
+static void __init pti_clone_user_shared(void)
+{
+ unsigned long start, end;
+
+ start = CPU_ENTRY_AREA_BASE;
+ end = start + (PAGE_SIZE * CPU_ENTRY_AREA_PAGES);
+
+ pti_clone_pgtable(start, end, PTI_CLONE_PMD);
+}
+#endif /* CONFIG_X86_64 */
+
+/*
+ * Clone the ESPFIX P4D into the user space visible page table
+ */
+static void __init pti_setup_espfix64(void)
+{
+#ifdef CONFIG_X86_ESPFIX64
+ pti_clone_p4d(ESPFIX_BASE_ADDR);
+#endif
+}
+
+/*
+ * Clone the populated PMDs of the entry text and force it RO.
+ */
+static void pti_clone_entry_text(void)
+{
+ pti_clone_pgtable((unsigned long) __entry_text_start,
+ (unsigned long) __entry_text_end,
+ PTI_CLONE_PMD);
+}
+
+/*
+ * Global pages and PCIDs are both ways to make kernel TLB entries
+ * live longer, reduce TLB misses and improve kernel performance.
+ * But, leaving all kernel text Global makes it potentially accessible
+ * to Meltdown-style attacks which make it trivial to find gadgets or
+ * defeat KASLR.
+ *
+ * Only use global pages when it is really worth it.
+ */
+static inline bool pti_kernel_image_global_ok(void)
+{
+ /*
+ * Systems with PCIDs get little benefit from global
+ * kernel text and are not worth the downsides.
+ */
+ if (cpu_feature_enabled(X86_FEATURE_PCID))
+ return false;
+
+ /*
+ * Only do global kernel image for pti=auto. Do the most
+ * secure thing (not global) if pti=on specified.
+ */
+ if (pti_mode != PTI_AUTO)
+ return false;
+
+ /*
+ * K8 may not tolerate the cleared _PAGE_RW on the userspace
+ * global kernel image pages. Do the safe thing (disable
+ * global kernel image). This is unlikely to ever be
+ * noticed because PTI is disabled by default on AMD CPUs.
+ */
+ if (boot_cpu_has(X86_FEATURE_K8))
+ return false;
+
+ /*
+ * RANDSTRUCT derives its hardening benefits from the
+ * attacker's lack of knowledge about the layout of kernel
+ * data structures. Keep the kernel image non-global in
+ * cases where RANDSTRUCT is in use to help keep the layout a
+ * secret.
+ */
+ if (IS_ENABLED(CONFIG_RANDSTRUCT))
+ return false;
+
+ return true;
+}
+
+/*
+ * For some configurations, map all of kernel text into the user page
+ * tables. This reduces TLB misses, especially on non-PCID systems.
+ */
+static void pti_clone_kernel_text(void)
+{
+ /*
+ * rodata is part of the kernel image and is normally
+ * readable on the filesystem or on the web. But, do not
+ * clone the areas past rodata, they might contain secrets.
+ */
+ unsigned long start = PFN_ALIGN(_text);
+ unsigned long end_clone = (unsigned long)__end_rodata_aligned;
+ unsigned long end_global = PFN_ALIGN((unsigned long)_etext);
+
+ if (!pti_kernel_image_global_ok())
+ return;
+
+ pr_debug("mapping partial kernel image into user address space\n");
+
+ /*
+ * Note that this will undo _some_ of the work that
+ * pti_set_kernel_image_nonglobal() did to clear the
+ * global bit.
+ */
+ pti_clone_pgtable(start, end_clone, PTI_LEVEL_KERNEL_IMAGE);
+
+ /*
+ * pti_clone_pgtable() will set the global bit in any PMDs
+ * that it clones, but we also need to get any PTEs in
+ * the last level for areas that are not huge-page-aligned.
+ */
+
+ /* Set the global bit for normal non-__init kernel text: */
+ set_memory_global(start, (end_global - start) >> PAGE_SHIFT);
+}
+
+static void pti_set_kernel_image_nonglobal(void)
+{
+ /*
+ * The identity map is created with PMDs, regardless of the
+ * actual length of the kernel. We need to clear
+ * _PAGE_GLOBAL up to a PMD boundary, not just to the end
+ * of the image.
+ */
+ unsigned long start = PFN_ALIGN(_text);
+ unsigned long end = ALIGN((unsigned long)_end, PMD_SIZE);
+
+ /*
+ * This clears _PAGE_GLOBAL from the entire kernel image.
+ * pti_clone_kernel_text() map put _PAGE_GLOBAL back for
+ * areas that are mapped to userspace.
+ */
+ set_memory_nonglobal(start, (end - start) >> PAGE_SHIFT);
+}
+
+/*
+ * Initialize kernel page table isolation
+ */
+void __init pti_init(void)
+{
+ if (!boot_cpu_has(X86_FEATURE_PTI))
+ return;
+
+ pr_info("enabled\n");
+
+#ifdef CONFIG_X86_32
+ /*
+ * We check for X86_FEATURE_PCID here. But the init-code will
+ * clear the feature flag on 32 bit because the feature is not
+ * supported on 32 bit anyway. To print the warning we need to
+ * check with cpuid directly again.
+ */
+ if (cpuid_ecx(0x1) & BIT(17)) {
+ /* Use printk to work around pr_fmt() */
+ printk(KERN_WARNING "\n");
+ printk(KERN_WARNING "************************************************************\n");
+ printk(KERN_WARNING "** WARNING! WARNING! WARNING! WARNING! WARNING! WARNING! **\n");
+ printk(KERN_WARNING "** **\n");
+ printk(KERN_WARNING "** You are using 32-bit PTI on a 64-bit PCID-capable CPU. **\n");
+ printk(KERN_WARNING "** Your performance will increase dramatically if you **\n");
+ printk(KERN_WARNING "** switch to a 64-bit kernel! **\n");
+ printk(KERN_WARNING "** **\n");
+ printk(KERN_WARNING "** WARNING! WARNING! WARNING! WARNING! WARNING! WARNING! **\n");
+ printk(KERN_WARNING "************************************************************\n");
+ }
+#endif
+
+ pti_clone_user_shared();
+
+ /* Undo all global bits from the init pagetables in head_64.S: */
+ pti_set_kernel_image_nonglobal();
+ /* Replace some of the global bits just for shared entry text: */
+ pti_clone_entry_text();
+ pti_setup_espfix64();
+ pti_setup_vsyscall();
+}
+
+/*
+ * Finalize the kernel mappings in the userspace page-table. Some of the
+ * mappings for the kernel image might have changed since pti_init()
+ * cloned them. This is because parts of the kernel image have been
+ * mapped RO and/or NX. These changes need to be cloned again to the
+ * userspace page-table.
+ */
+void pti_finalize(void)
+{
+ if (!boot_cpu_has(X86_FEATURE_PTI))
+ return;
+ /*
+ * We need to clone everything (again) that maps parts of the
+ * kernel image.
+ */
+ pti_clone_entry_text();
+ pti_clone_kernel_text();
+
+ debug_checkwx_user();
+}
diff --git a/arch/x86/mm/srat.c b/arch/x86/mm/srat.c
new file mode 100644
index 0000000000..9c52a95937
--- /dev/null
+++ b/arch/x86/mm/srat.c
@@ -0,0 +1,113 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * ACPI 3.0 based NUMA setup
+ * Copyright 2004 Andi Kleen, SuSE Labs.
+ *
+ * Reads the ACPI SRAT table to figure out what memory belongs to which CPUs.
+ *
+ * Called from acpi_numa_init while reading the SRAT and SLIT tables.
+ * Assumes all memory regions belonging to a single proximity domain
+ * are in one chunk. Holes between them will be included in the node.
+ */
+
+#include <linux/kernel.h>
+#include <linux/acpi.h>
+#include <linux/mmzone.h>
+#include <linux/bitmap.h>
+#include <linux/init.h>
+#include <linux/topology.h>
+#include <linux/mm.h>
+#include <asm/proto.h>
+#include <asm/numa.h>
+#include <asm/e820/api.h>
+#include <asm/apic.h>
+#include <asm/uv/uv.h>
+
+/* Callback for Proximity Domain -> x2APIC mapping */
+void __init
+acpi_numa_x2apic_affinity_init(struct acpi_srat_x2apic_cpu_affinity *pa)
+{
+ int pxm, node;
+ int apic_id;
+
+ if (srat_disabled())
+ return;
+ if (pa->header.length < sizeof(struct acpi_srat_x2apic_cpu_affinity)) {
+ bad_srat();
+ return;
+ }
+ if ((pa->flags & ACPI_SRAT_CPU_ENABLED) == 0)
+ return;
+ pxm = pa->proximity_domain;
+ apic_id = pa->apic_id;
+ if (!apic_id_valid(apic_id)) {
+ pr_info("SRAT: PXM %u -> X2APIC 0x%04x ignored\n", pxm, apic_id);
+ return;
+ }
+ node = acpi_map_pxm_to_node(pxm);
+ if (node < 0) {
+ printk(KERN_ERR "SRAT: Too many proximity domains %x\n", pxm);
+ bad_srat();
+ return;
+ }
+
+ if (apic_id >= MAX_LOCAL_APIC) {
+ printk(KERN_INFO "SRAT: PXM %u -> APIC 0x%04x -> Node %u skipped apicid that is too big\n", pxm, apic_id, node);
+ return;
+ }
+ set_apicid_to_node(apic_id, node);
+ node_set(node, numa_nodes_parsed);
+ printk(KERN_INFO "SRAT: PXM %u -> APIC 0x%04x -> Node %u\n",
+ pxm, apic_id, node);
+}
+
+/* Callback for Proximity Domain -> LAPIC mapping */
+void __init
+acpi_numa_processor_affinity_init(struct acpi_srat_cpu_affinity *pa)
+{
+ int pxm, node;
+ int apic_id;
+
+ if (srat_disabled())
+ return;
+ if (pa->header.length != sizeof(struct acpi_srat_cpu_affinity)) {
+ bad_srat();
+ return;
+ }
+ if ((pa->flags & ACPI_SRAT_CPU_ENABLED) == 0)
+ return;
+ pxm = pa->proximity_domain_lo;
+ if (acpi_srat_revision >= 2)
+ pxm |= *((unsigned int*)pa->proximity_domain_hi) << 8;
+ node = acpi_map_pxm_to_node(pxm);
+ if (node < 0) {
+ printk(KERN_ERR "SRAT: Too many proximity domains %x\n", pxm);
+ bad_srat();
+ return;
+ }
+
+ if (get_uv_system_type() >= UV_X2APIC)
+ apic_id = (pa->apic_id << 8) | pa->local_sapic_eid;
+ else
+ apic_id = pa->apic_id;
+
+ if (apic_id >= MAX_LOCAL_APIC) {
+ printk(KERN_INFO "SRAT: PXM %u -> APIC 0x%02x -> Node %u skipped apicid that is too big\n", pxm, apic_id, node);
+ return;
+ }
+
+ set_apicid_to_node(apic_id, node);
+ node_set(node, numa_nodes_parsed);
+ printk(KERN_INFO "SRAT: PXM %u -> APIC 0x%02x -> Node %u\n",
+ pxm, apic_id, node);
+}
+
+int __init x86_acpi_numa_init(void)
+{
+ int ret;
+
+ ret = acpi_numa_init();
+ if (ret < 0)
+ return ret;
+ return srat_disabled() ? -EINVAL : 0;
+}
diff --git a/arch/x86/mm/testmmiotrace.c b/arch/x86/mm/testmmiotrace.c
new file mode 100644
index 0000000000..bda73cb7a0
--- /dev/null
+++ b/arch/x86/mm/testmmiotrace.c
@@ -0,0 +1,146 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Written by Pekka Paalanen, 2008-2009 <pq@iki.fi>
+ */
+
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
+#include <linux/module.h>
+#include <linux/io.h>
+#include <linux/mmiotrace.h>
+#include <linux/security.h>
+
+static unsigned long mmio_address;
+module_param_hw(mmio_address, ulong, iomem, 0);
+MODULE_PARM_DESC(mmio_address, " Start address of the mapping of 16 kB "
+ "(or 8 MB if read_far is non-zero).");
+
+static unsigned long read_far = 0x400100;
+module_param(read_far, ulong, 0);
+MODULE_PARM_DESC(read_far, " Offset of a 32-bit read within 8 MB "
+ "(default: 0x400100).");
+
+static unsigned v16(unsigned i)
+{
+ return i * 12 + 7;
+}
+
+static unsigned v32(unsigned i)
+{
+ return i * 212371 + 13;
+}
+
+static void do_write_test(void __iomem *p)
+{
+ unsigned int i;
+ pr_info("write test.\n");
+ mmiotrace_printk("Write test.\n");
+
+ for (i = 0; i < 256; i++)
+ iowrite8(i, p + i);
+
+ for (i = 1024; i < (5 * 1024); i += 2)
+ iowrite16(v16(i), p + i);
+
+ for (i = (5 * 1024); i < (16 * 1024); i += 4)
+ iowrite32(v32(i), p + i);
+}
+
+static void do_read_test(void __iomem *p)
+{
+ unsigned int i;
+ unsigned errs[3] = { 0 };
+ pr_info("read test.\n");
+ mmiotrace_printk("Read test.\n");
+
+ for (i = 0; i < 256; i++)
+ if (ioread8(p + i) != i)
+ ++errs[0];
+
+ for (i = 1024; i < (5 * 1024); i += 2)
+ if (ioread16(p + i) != v16(i))
+ ++errs[1];
+
+ for (i = (5 * 1024); i < (16 * 1024); i += 4)
+ if (ioread32(p + i) != v32(i))
+ ++errs[2];
+
+ mmiotrace_printk("Read errors: 8-bit %d, 16-bit %d, 32-bit %d.\n",
+ errs[0], errs[1], errs[2]);
+}
+
+static void do_read_far_test(void __iomem *p)
+{
+ pr_info("read far test.\n");
+ mmiotrace_printk("Read far test.\n");
+
+ ioread32(p + read_far);
+}
+
+static void do_test(unsigned long size)
+{
+ void __iomem *p = ioremap(mmio_address, size);
+ if (!p) {
+ pr_err("could not ioremap, aborting.\n");
+ return;
+ }
+ mmiotrace_printk("ioremap returned %p.\n", p);
+ do_write_test(p);
+ do_read_test(p);
+ if (read_far && read_far < size - 4)
+ do_read_far_test(p);
+ iounmap(p);
+}
+
+/*
+ * Tests how mmiotrace behaves in face of multiple ioremap / iounmaps in
+ * a short time. We had a bug in deferred freeing procedure which tried
+ * to free this region multiple times (ioremap can reuse the same address
+ * for many mappings).
+ */
+static void do_test_bulk_ioremapping(void)
+{
+ void __iomem *p;
+ int i;
+
+ for (i = 0; i < 10; ++i) {
+ p = ioremap(mmio_address, PAGE_SIZE);
+ if (p)
+ iounmap(p);
+ }
+
+ /* Force freeing. If it will crash we will know why. */
+ synchronize_rcu();
+}
+
+static int __init init(void)
+{
+ unsigned long size = (read_far) ? (8 << 20) : (16 << 10);
+ int ret = security_locked_down(LOCKDOWN_MMIOTRACE);
+
+ if (ret)
+ return ret;
+
+ if (mmio_address == 0) {
+ pr_err("you have to use the module argument mmio_address.\n");
+ pr_err("DO NOT LOAD THIS MODULE UNLESS YOU REALLY KNOW WHAT YOU ARE DOING!\n");
+ return -ENXIO;
+ }
+
+ pr_warn("WARNING: mapping %lu kB @ 0x%08lx in PCI address space, "
+ "and writing 16 kB of rubbish in there.\n",
+ size >> 10, mmio_address);
+ do_test(size);
+ do_test_bulk_ioremapping();
+ pr_info("All done.\n");
+ return 0;
+}
+
+static void __exit cleanup(void)
+{
+ pr_debug("unloaded.\n");
+}
+
+module_init(init);
+module_exit(cleanup);
+MODULE_LICENSE("GPL");
diff --git a/arch/x86/mm/tlb.c b/arch/x86/mm/tlb.c
new file mode 100644
index 0000000000..453ea95b66
--- /dev/null
+++ b/arch/x86/mm/tlb.c
@@ -0,0 +1,1353 @@
+// SPDX-License-Identifier: GPL-2.0-only
+#include <linux/init.h>
+
+#include <linux/mm.h>
+#include <linux/spinlock.h>
+#include <linux/smp.h>
+#include <linux/interrupt.h>
+#include <linux/export.h>
+#include <linux/cpu.h>
+#include <linux/debugfs.h>
+#include <linux/sched/smt.h>
+#include <linux/task_work.h>
+#include <linux/mmu_notifier.h>
+
+#include <asm/tlbflush.h>
+#include <asm/mmu_context.h>
+#include <asm/nospec-branch.h>
+#include <asm/cache.h>
+#include <asm/cacheflush.h>
+#include <asm/apic.h>
+#include <asm/perf_event.h>
+
+#include "mm_internal.h"
+
+#ifdef CONFIG_PARAVIRT
+# define STATIC_NOPV
+#else
+# define STATIC_NOPV static
+# define __flush_tlb_local native_flush_tlb_local
+# define __flush_tlb_global native_flush_tlb_global
+# define __flush_tlb_one_user(addr) native_flush_tlb_one_user(addr)
+# define __flush_tlb_multi(msk, info) native_flush_tlb_multi(msk, info)
+#endif
+
+/*
+ * TLB flushing, formerly SMP-only
+ * c/o Linus Torvalds.
+ *
+ * These mean you can really definitely utterly forget about
+ * writing to user space from interrupts. (Its not allowed anyway).
+ *
+ * Optimizations Manfred Spraul <manfred@colorfullife.com>
+ *
+ * More scalable flush, from Andi Kleen
+ *
+ * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
+ */
+
+/*
+ * Bits to mangle the TIF_SPEC_* state into the mm pointer which is
+ * stored in cpu_tlb_state.last_user_mm_spec.
+ */
+#define LAST_USER_MM_IBPB 0x1UL
+#define LAST_USER_MM_L1D_FLUSH 0x2UL
+#define LAST_USER_MM_SPEC_MASK (LAST_USER_MM_IBPB | LAST_USER_MM_L1D_FLUSH)
+
+/* Bits to set when tlbstate and flush is (re)initialized */
+#define LAST_USER_MM_INIT LAST_USER_MM_IBPB
+
+/*
+ * The x86 feature is called PCID (Process Context IDentifier). It is similar
+ * to what is traditionally called ASID on the RISC processors.
+ *
+ * We don't use the traditional ASID implementation, where each process/mm gets
+ * its own ASID and flush/restart when we run out of ASID space.
+ *
+ * Instead we have a small per-cpu array of ASIDs and cache the last few mm's
+ * that came by on this CPU, allowing cheaper switch_mm between processes on
+ * this CPU.
+ *
+ * We end up with different spaces for different things. To avoid confusion we
+ * use different names for each of them:
+ *
+ * ASID - [0, TLB_NR_DYN_ASIDS-1]
+ * the canonical identifier for an mm
+ *
+ * kPCID - [1, TLB_NR_DYN_ASIDS]
+ * the value we write into the PCID part of CR3; corresponds to the
+ * ASID+1, because PCID 0 is special.
+ *
+ * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS]
+ * for KPTI each mm has two address spaces and thus needs two
+ * PCID values, but we can still do with a single ASID denomination
+ * for each mm. Corresponds to kPCID + 2048.
+ *
+ */
+
+/* There are 12 bits of space for ASIDS in CR3 */
+#define CR3_HW_ASID_BITS 12
+
+/*
+ * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for
+ * user/kernel switches
+ */
+#ifdef CONFIG_PAGE_TABLE_ISOLATION
+# define PTI_CONSUMED_PCID_BITS 1
+#else
+# define PTI_CONSUMED_PCID_BITS 0
+#endif
+
+#define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS)
+
+/*
+ * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid. -1 below to account
+ * for them being zero-based. Another -1 is because PCID 0 is reserved for
+ * use by non-PCID-aware users.
+ */
+#define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2)
+
+/*
+ * Given @asid, compute kPCID
+ */
+static inline u16 kern_pcid(u16 asid)
+{
+ VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
+
+#ifdef CONFIG_PAGE_TABLE_ISOLATION
+ /*
+ * Make sure that the dynamic ASID space does not conflict with the
+ * bit we are using to switch between user and kernel ASIDs.
+ */
+ BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT));
+
+ /*
+ * The ASID being passed in here should have respected the
+ * MAX_ASID_AVAILABLE and thus never have the switch bit set.
+ */
+ VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT));
+#endif
+ /*
+ * The dynamically-assigned ASIDs that get passed in are small
+ * (<TLB_NR_DYN_ASIDS). They never have the high switch bit set,
+ * so do not bother to clear it.
+ *
+ * If PCID is on, ASID-aware code paths put the ASID+1 into the
+ * PCID bits. This serves two purposes. It prevents a nasty
+ * situation in which PCID-unaware code saves CR3, loads some other
+ * value (with PCID == 0), and then restores CR3, thus corrupting
+ * the TLB for ASID 0 if the saved ASID was nonzero. It also means
+ * that any bugs involving loading a PCID-enabled CR3 with
+ * CR4.PCIDE off will trigger deterministically.
+ */
+ return asid + 1;
+}
+
+/*
+ * Given @asid, compute uPCID
+ */
+static inline u16 user_pcid(u16 asid)
+{
+ u16 ret = kern_pcid(asid);
+#ifdef CONFIG_PAGE_TABLE_ISOLATION
+ ret |= 1 << X86_CR3_PTI_PCID_USER_BIT;
+#endif
+ return ret;
+}
+
+static inline unsigned long build_cr3(pgd_t *pgd, u16 asid, unsigned long lam)
+{
+ unsigned long cr3 = __sme_pa(pgd) | lam;
+
+ if (static_cpu_has(X86_FEATURE_PCID)) {
+ VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
+ cr3 |= kern_pcid(asid);
+ } else {
+ VM_WARN_ON_ONCE(asid != 0);
+ }
+
+ return cr3;
+}
+
+static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid,
+ unsigned long lam)
+{
+ /*
+ * Use boot_cpu_has() instead of this_cpu_has() as this function
+ * might be called during early boot. This should work even after
+ * boot because all CPU's the have same capabilities:
+ */
+ VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID));
+ return build_cr3(pgd, asid, lam) | CR3_NOFLUSH;
+}
+
+/*
+ * We get here when we do something requiring a TLB invalidation
+ * but could not go invalidate all of the contexts. We do the
+ * necessary invalidation by clearing out the 'ctx_id' which
+ * forces a TLB flush when the context is loaded.
+ */
+static void clear_asid_other(void)
+{
+ u16 asid;
+
+ /*
+ * This is only expected to be set if we have disabled
+ * kernel _PAGE_GLOBAL pages.
+ */
+ if (!static_cpu_has(X86_FEATURE_PTI)) {
+ WARN_ON_ONCE(1);
+ return;
+ }
+
+ for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
+ /* Do not need to flush the current asid */
+ if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
+ continue;
+ /*
+ * Make sure the next time we go to switch to
+ * this asid, we do a flush:
+ */
+ this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
+ }
+ this_cpu_write(cpu_tlbstate.invalidate_other, false);
+}
+
+atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
+
+
+static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
+ u16 *new_asid, bool *need_flush)
+{
+ u16 asid;
+
+ if (!static_cpu_has(X86_FEATURE_PCID)) {
+ *new_asid = 0;
+ *need_flush = true;
+ return;
+ }
+
+ if (this_cpu_read(cpu_tlbstate.invalidate_other))
+ clear_asid_other();
+
+ for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
+ if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
+ next->context.ctx_id)
+ continue;
+
+ *new_asid = asid;
+ *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
+ next_tlb_gen);
+ return;
+ }
+
+ /*
+ * We don't currently own an ASID slot on this CPU.
+ * Allocate a slot.
+ */
+ *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
+ if (*new_asid >= TLB_NR_DYN_ASIDS) {
+ *new_asid = 0;
+ this_cpu_write(cpu_tlbstate.next_asid, 1);
+ }
+ *need_flush = true;
+}
+
+/*
+ * Given an ASID, flush the corresponding user ASID. We can delay this
+ * until the next time we switch to it.
+ *
+ * See SWITCH_TO_USER_CR3.
+ */
+static inline void invalidate_user_asid(u16 asid)
+{
+ /* There is no user ASID if address space separation is off */
+ if (!IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION))
+ return;
+
+ /*
+ * We only have a single ASID if PCID is off and the CR3
+ * write will have flushed it.
+ */
+ if (!cpu_feature_enabled(X86_FEATURE_PCID))
+ return;
+
+ if (!static_cpu_has(X86_FEATURE_PTI))
+ return;
+
+ __set_bit(kern_pcid(asid),
+ (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask));
+}
+
+static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, unsigned long lam,
+ bool need_flush)
+{
+ unsigned long new_mm_cr3;
+
+ if (need_flush) {
+ invalidate_user_asid(new_asid);
+ new_mm_cr3 = build_cr3(pgdir, new_asid, lam);
+ } else {
+ new_mm_cr3 = build_cr3_noflush(pgdir, new_asid, lam);
+ }
+
+ /*
+ * Caution: many callers of this function expect
+ * that load_cr3() is serializing and orders TLB
+ * fills with respect to the mm_cpumask writes.
+ */
+ write_cr3(new_mm_cr3);
+}
+
+void leave_mm(int cpu)
+{
+ struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
+
+ /*
+ * It's plausible that we're in lazy TLB mode while our mm is init_mm.
+ * If so, our callers still expect us to flush the TLB, but there
+ * aren't any user TLB entries in init_mm to worry about.
+ *
+ * This needs to happen before any other sanity checks due to
+ * intel_idle's shenanigans.
+ */
+ if (loaded_mm == &init_mm)
+ return;
+
+ /* Warn if we're not lazy. */
+ WARN_ON(!this_cpu_read(cpu_tlbstate_shared.is_lazy));
+
+ switch_mm(NULL, &init_mm, NULL);
+}
+EXPORT_SYMBOL_GPL(leave_mm);
+
+void switch_mm(struct mm_struct *prev, struct mm_struct *next,
+ struct task_struct *tsk)
+{
+ unsigned long flags;
+
+ local_irq_save(flags);
+ switch_mm_irqs_off(prev, next, tsk);
+ local_irq_restore(flags);
+}
+
+/*
+ * Invoked from return to user/guest by a task that opted-in to L1D
+ * flushing but ended up running on an SMT enabled core due to wrong
+ * affinity settings or CPU hotplug. This is part of the paranoid L1D flush
+ * contract which this task requested.
+ */
+static void l1d_flush_force_sigbus(struct callback_head *ch)
+{
+ force_sig(SIGBUS);
+}
+
+static void l1d_flush_evaluate(unsigned long prev_mm, unsigned long next_mm,
+ struct task_struct *next)
+{
+ /* Flush L1D if the outgoing task requests it */
+ if (prev_mm & LAST_USER_MM_L1D_FLUSH)
+ wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
+
+ /* Check whether the incoming task opted in for L1D flush */
+ if (likely(!(next_mm & LAST_USER_MM_L1D_FLUSH)))
+ return;
+
+ /*
+ * Validate that it is not running on an SMT sibling as this would
+ * make the excercise pointless because the siblings share L1D. If
+ * it runs on a SMT sibling, notify it with SIGBUS on return to
+ * user/guest
+ */
+ if (this_cpu_read(cpu_info.smt_active)) {
+ clear_ti_thread_flag(&next->thread_info, TIF_SPEC_L1D_FLUSH);
+ next->l1d_flush_kill.func = l1d_flush_force_sigbus;
+ task_work_add(next, &next->l1d_flush_kill, TWA_RESUME);
+ }
+}
+
+static unsigned long mm_mangle_tif_spec_bits(struct task_struct *next)
+{
+ unsigned long next_tif = read_task_thread_flags(next);
+ unsigned long spec_bits = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_SPEC_MASK;
+
+ /*
+ * Ensure that the bit shift above works as expected and the two flags
+ * end up in bit 0 and 1.
+ */
+ BUILD_BUG_ON(TIF_SPEC_L1D_FLUSH != TIF_SPEC_IB + 1);
+
+ return (unsigned long)next->mm | spec_bits;
+}
+
+static void cond_mitigation(struct task_struct *next)
+{
+ unsigned long prev_mm, next_mm;
+
+ if (!next || !next->mm)
+ return;
+
+ next_mm = mm_mangle_tif_spec_bits(next);
+ prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_spec);
+
+ /*
+ * Avoid user/user BTB poisoning by flushing the branch predictor
+ * when switching between processes. This stops one process from
+ * doing Spectre-v2 attacks on another.
+ *
+ * Both, the conditional and the always IBPB mode use the mm
+ * pointer to avoid the IBPB when switching between tasks of the
+ * same process. Using the mm pointer instead of mm->context.ctx_id
+ * opens a hypothetical hole vs. mm_struct reuse, which is more or
+ * less impossible to control by an attacker. Aside of that it
+ * would only affect the first schedule so the theoretically
+ * exposed data is not really interesting.
+ */
+ if (static_branch_likely(&switch_mm_cond_ibpb)) {
+ /*
+ * This is a bit more complex than the always mode because
+ * it has to handle two cases:
+ *
+ * 1) Switch from a user space task (potential attacker)
+ * which has TIF_SPEC_IB set to a user space task
+ * (potential victim) which has TIF_SPEC_IB not set.
+ *
+ * 2) Switch from a user space task (potential attacker)
+ * which has TIF_SPEC_IB not set to a user space task
+ * (potential victim) which has TIF_SPEC_IB set.
+ *
+ * This could be done by unconditionally issuing IBPB when
+ * a task which has TIF_SPEC_IB set is either scheduled in
+ * or out. Though that results in two flushes when:
+ *
+ * - the same user space task is scheduled out and later
+ * scheduled in again and only a kernel thread ran in
+ * between.
+ *
+ * - a user space task belonging to the same process is
+ * scheduled in after a kernel thread ran in between
+ *
+ * - a user space task belonging to the same process is
+ * scheduled in immediately.
+ *
+ * Optimize this with reasonably small overhead for the
+ * above cases. Mangle the TIF_SPEC_IB bit into the mm
+ * pointer of the incoming task which is stored in
+ * cpu_tlbstate.last_user_mm_spec for comparison.
+ *
+ * Issue IBPB only if the mm's are different and one or
+ * both have the IBPB bit set.
+ */
+ if (next_mm != prev_mm &&
+ (next_mm | prev_mm) & LAST_USER_MM_IBPB)
+ indirect_branch_prediction_barrier();
+ }
+
+ if (static_branch_unlikely(&switch_mm_always_ibpb)) {
+ /*
+ * Only flush when switching to a user space task with a
+ * different context than the user space task which ran
+ * last on this CPU.
+ */
+ if ((prev_mm & ~LAST_USER_MM_SPEC_MASK) !=
+ (unsigned long)next->mm)
+ indirect_branch_prediction_barrier();
+ }
+
+ if (static_branch_unlikely(&switch_mm_cond_l1d_flush)) {
+ /*
+ * Flush L1D when the outgoing task requested it and/or
+ * check whether the incoming task requested L1D flushing
+ * and ended up on an SMT sibling.
+ */
+ if (unlikely((prev_mm | next_mm) & LAST_USER_MM_L1D_FLUSH))
+ l1d_flush_evaluate(prev_mm, next_mm, next);
+ }
+
+ this_cpu_write(cpu_tlbstate.last_user_mm_spec, next_mm);
+}
+
+#ifdef CONFIG_PERF_EVENTS
+static inline void cr4_update_pce_mm(struct mm_struct *mm)
+{
+ if (static_branch_unlikely(&rdpmc_always_available_key) ||
+ (!static_branch_unlikely(&rdpmc_never_available_key) &&
+ atomic_read(&mm->context.perf_rdpmc_allowed))) {
+ /*
+ * Clear the existing dirty counters to
+ * prevent the leak for an RDPMC task.
+ */
+ perf_clear_dirty_counters();
+ cr4_set_bits_irqsoff(X86_CR4_PCE);
+ } else
+ cr4_clear_bits_irqsoff(X86_CR4_PCE);
+}
+
+void cr4_update_pce(void *ignored)
+{
+ cr4_update_pce_mm(this_cpu_read(cpu_tlbstate.loaded_mm));
+}
+
+#else
+static inline void cr4_update_pce_mm(struct mm_struct *mm) { }
+#endif
+
+void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
+ struct task_struct *tsk)
+{
+ struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
+ u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
+ unsigned long new_lam = mm_lam_cr3_mask(next);
+ bool was_lazy = this_cpu_read(cpu_tlbstate_shared.is_lazy);
+ unsigned cpu = smp_processor_id();
+ u64 next_tlb_gen;
+ bool need_flush;
+ u16 new_asid;
+
+ /*
+ * NB: The scheduler will call us with prev == next when switching
+ * from lazy TLB mode to normal mode if active_mm isn't changing.
+ * When this happens, we don't assume that CR3 (and hence
+ * cpu_tlbstate.loaded_mm) matches next.
+ *
+ * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
+ */
+
+ /* We don't want flush_tlb_func() to run concurrently with us. */
+ if (IS_ENABLED(CONFIG_PROVE_LOCKING))
+ WARN_ON_ONCE(!irqs_disabled());
+
+ /*
+ * Verify that CR3 is what we think it is. This will catch
+ * hypothetical buggy code that directly switches to swapper_pg_dir
+ * without going through leave_mm() / switch_mm_irqs_off() or that
+ * does something like write_cr3(read_cr3_pa()).
+ *
+ * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
+ * isn't free.
+ */
+#ifdef CONFIG_DEBUG_VM
+ if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid,
+ tlbstate_lam_cr3_mask()))) {
+ /*
+ * If we were to BUG here, we'd be very likely to kill
+ * the system so hard that we don't see the call trace.
+ * Try to recover instead by ignoring the error and doing
+ * a global flush to minimize the chance of corruption.
+ *
+ * (This is far from being a fully correct recovery.
+ * Architecturally, the CPU could prefetch something
+ * back into an incorrect ASID slot and leave it there
+ * to cause trouble down the road. It's better than
+ * nothing, though.)
+ */
+ __flush_tlb_all();
+ }
+#endif
+ if (was_lazy)
+ this_cpu_write(cpu_tlbstate_shared.is_lazy, false);
+
+ /*
+ * The membarrier system call requires a full memory barrier and
+ * core serialization before returning to user-space, after
+ * storing to rq->curr, when changing mm. This is because
+ * membarrier() sends IPIs to all CPUs that are in the target mm
+ * to make them issue memory barriers. However, if another CPU
+ * switches to/from the target mm concurrently with
+ * membarrier(), it can cause that CPU not to receive an IPI
+ * when it really should issue a memory barrier. Writing to CR3
+ * provides that full memory barrier and core serializing
+ * instruction.
+ */
+ if (real_prev == next) {
+ /* Not actually switching mm's */
+ VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
+ next->context.ctx_id);
+
+ /*
+ * If this races with another thread that enables lam, 'new_lam'
+ * might not match tlbstate_lam_cr3_mask().
+ */
+
+ /*
+ * Even in lazy TLB mode, the CPU should stay set in the
+ * mm_cpumask. The TLB shootdown code can figure out from
+ * cpu_tlbstate_shared.is_lazy whether or not to send an IPI.
+ */
+ if (WARN_ON_ONCE(real_prev != &init_mm &&
+ !cpumask_test_cpu(cpu, mm_cpumask(next))))
+ cpumask_set_cpu(cpu, mm_cpumask(next));
+
+ /*
+ * If the CPU is not in lazy TLB mode, we are just switching
+ * from one thread in a process to another thread in the same
+ * process. No TLB flush required.
+ */
+ if (!was_lazy)
+ return;
+
+ /*
+ * Read the tlb_gen to check whether a flush is needed.
+ * If the TLB is up to date, just use it.
+ * The barrier synchronizes with the tlb_gen increment in
+ * the TLB shootdown code.
+ */
+ smp_mb();
+ next_tlb_gen = atomic64_read(&next->context.tlb_gen);
+ if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) ==
+ next_tlb_gen)
+ return;
+
+ /*
+ * TLB contents went out of date while we were in lazy
+ * mode. Fall through to the TLB switching code below.
+ */
+ new_asid = prev_asid;
+ need_flush = true;
+ } else {
+ /*
+ * Apply process to process speculation vulnerability
+ * mitigations if applicable.
+ */
+ cond_mitigation(tsk);
+
+ /*
+ * Stop remote flushes for the previous mm.
+ * Skip kernel threads; we never send init_mm TLB flushing IPIs,
+ * but the bitmap manipulation can cause cache line contention.
+ */
+ if (real_prev != &init_mm) {
+ VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu,
+ mm_cpumask(real_prev)));
+ cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
+ }
+
+ /*
+ * Start remote flushes and then read tlb_gen.
+ */
+ if (next != &init_mm)
+ cpumask_set_cpu(cpu, mm_cpumask(next));
+ next_tlb_gen = atomic64_read(&next->context.tlb_gen);
+
+ choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
+
+ /* Let nmi_uaccess_okay() know that we're changing CR3. */
+ this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
+ barrier();
+ }
+
+ set_tlbstate_lam_mode(next);
+ if (need_flush) {
+ this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
+ this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
+ load_new_mm_cr3(next->pgd, new_asid, new_lam, true);
+
+ trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
+ } else {
+ /* The new ASID is already up to date. */
+ load_new_mm_cr3(next->pgd, new_asid, new_lam, false);
+
+ trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0);
+ }
+
+ /* Make sure we write CR3 before loaded_mm. */
+ barrier();
+
+ this_cpu_write(cpu_tlbstate.loaded_mm, next);
+ this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
+
+ if (next != real_prev) {
+ cr4_update_pce_mm(next);
+ switch_ldt(real_prev, next);
+ }
+}
+
+/*
+ * Please ignore the name of this function. It should be called
+ * switch_to_kernel_thread().
+ *
+ * enter_lazy_tlb() is a hint from the scheduler that we are entering a
+ * kernel thread or other context without an mm. Acceptable implementations
+ * include doing nothing whatsoever, switching to init_mm, or various clever
+ * lazy tricks to try to minimize TLB flushes.
+ *
+ * The scheduler reserves the right to call enter_lazy_tlb() several times
+ * in a row. It will notify us that we're going back to a real mm by
+ * calling switch_mm_irqs_off().
+ */
+void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
+{
+ if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
+ return;
+
+ this_cpu_write(cpu_tlbstate_shared.is_lazy, true);
+}
+
+/*
+ * Call this when reinitializing a CPU. It fixes the following potential
+ * problems:
+ *
+ * - The ASID changed from what cpu_tlbstate thinks it is (most likely
+ * because the CPU was taken down and came back up with CR3's PCID
+ * bits clear. CPU hotplug can do this.
+ *
+ * - The TLB contains junk in slots corresponding to inactive ASIDs.
+ *
+ * - The CPU went so far out to lunch that it may have missed a TLB
+ * flush.
+ */
+void initialize_tlbstate_and_flush(void)
+{
+ int i;
+ struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
+ u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
+ unsigned long cr3 = __read_cr3();
+
+ /* Assert that CR3 already references the right mm. */
+ WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
+
+ /* LAM expected to be disabled */
+ WARN_ON(cr3 & (X86_CR3_LAM_U48 | X86_CR3_LAM_U57));
+ WARN_ON(mm_lam_cr3_mask(mm));
+
+ /*
+ * Assert that CR4.PCIDE is set if needed. (CR4.PCIDE initialization
+ * doesn't work like other CR4 bits because it can only be set from
+ * long mode.)
+ */
+ WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
+ !(cr4_read_shadow() & X86_CR4_PCIDE));
+
+ /* Disable LAM, force ASID 0 and force a TLB flush. */
+ write_cr3(build_cr3(mm->pgd, 0, 0));
+
+ /* Reinitialize tlbstate. */
+ this_cpu_write(cpu_tlbstate.last_user_mm_spec, LAST_USER_MM_INIT);
+ this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
+ this_cpu_write(cpu_tlbstate.next_asid, 1);
+ this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
+ this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
+ set_tlbstate_lam_mode(mm);
+
+ for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
+ this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
+}
+
+/*
+ * flush_tlb_func()'s memory ordering requirement is that any
+ * TLB fills that happen after we flush the TLB are ordered after we
+ * read active_mm's tlb_gen. We don't need any explicit barriers
+ * because all x86 flush operations are serializing and the
+ * atomic64_read operation won't be reordered by the compiler.
+ */
+static void flush_tlb_func(void *info)
+{
+ /*
+ * We have three different tlb_gen values in here. They are:
+ *
+ * - mm_tlb_gen: the latest generation.
+ * - local_tlb_gen: the generation that this CPU has already caught
+ * up to.
+ * - f->new_tlb_gen: the generation that the requester of the flush
+ * wants us to catch up to.
+ */
+ const struct flush_tlb_info *f = info;
+ struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
+ u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
+ u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
+ bool local = smp_processor_id() == f->initiating_cpu;
+ unsigned long nr_invalidate = 0;
+ u64 mm_tlb_gen;
+
+ /* This code cannot presently handle being reentered. */
+ VM_WARN_ON(!irqs_disabled());
+
+ if (!local) {
+ inc_irq_stat(irq_tlb_count);
+ count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
+
+ /* Can only happen on remote CPUs */
+ if (f->mm && f->mm != loaded_mm)
+ return;
+ }
+
+ if (unlikely(loaded_mm == &init_mm))
+ return;
+
+ VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
+ loaded_mm->context.ctx_id);
+
+ if (this_cpu_read(cpu_tlbstate_shared.is_lazy)) {
+ /*
+ * We're in lazy mode. We need to at least flush our
+ * paging-structure cache to avoid speculatively reading
+ * garbage into our TLB. Since switching to init_mm is barely
+ * slower than a minimal flush, just switch to init_mm.
+ *
+ * This should be rare, with native_flush_tlb_multi() skipping
+ * IPIs to lazy TLB mode CPUs.
+ */
+ switch_mm_irqs_off(NULL, &init_mm, NULL);
+ return;
+ }
+
+ if (unlikely(f->new_tlb_gen != TLB_GENERATION_INVALID &&
+ f->new_tlb_gen <= local_tlb_gen)) {
+ /*
+ * The TLB is already up to date in respect to f->new_tlb_gen.
+ * While the core might be still behind mm_tlb_gen, checking
+ * mm_tlb_gen unnecessarily would have negative caching effects
+ * so avoid it.
+ */
+ return;
+ }
+
+ /*
+ * Defer mm_tlb_gen reading as long as possible to avoid cache
+ * contention.
+ */
+ mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
+
+ if (unlikely(local_tlb_gen == mm_tlb_gen)) {
+ /*
+ * There's nothing to do: we're already up to date. This can
+ * happen if two concurrent flushes happen -- the first flush to
+ * be handled can catch us all the way up, leaving no work for
+ * the second flush.
+ */
+ goto done;
+ }
+
+ WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
+ WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
+
+ /*
+ * If we get to this point, we know that our TLB is out of date.
+ * This does not strictly imply that we need to flush (it's
+ * possible that f->new_tlb_gen <= local_tlb_gen), but we're
+ * going to need to flush in the very near future, so we might
+ * as well get it over with.
+ *
+ * The only question is whether to do a full or partial flush.
+ *
+ * We do a partial flush if requested and two extra conditions
+ * are met:
+ *
+ * 1. f->new_tlb_gen == local_tlb_gen + 1. We have an invariant that
+ * we've always done all needed flushes to catch up to
+ * local_tlb_gen. If, for example, local_tlb_gen == 2 and
+ * f->new_tlb_gen == 3, then we know that the flush needed to bring
+ * us up to date for tlb_gen 3 is the partial flush we're
+ * processing.
+ *
+ * As an example of why this check is needed, suppose that there
+ * are two concurrent flushes. The first is a full flush that
+ * changes context.tlb_gen from 1 to 2. The second is a partial
+ * flush that changes context.tlb_gen from 2 to 3. If they get
+ * processed on this CPU in reverse order, we'll see
+ * local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
+ * If we were to use __flush_tlb_one_user() and set local_tlb_gen to
+ * 3, we'd be break the invariant: we'd update local_tlb_gen above
+ * 1 without the full flush that's needed for tlb_gen 2.
+ *
+ * 2. f->new_tlb_gen == mm_tlb_gen. This is purely an optimization.
+ * Partial TLB flushes are not all that much cheaper than full TLB
+ * flushes, so it seems unlikely that it would be a performance win
+ * to do a partial flush if that won't bring our TLB fully up to
+ * date. By doing a full flush instead, we can increase
+ * local_tlb_gen all the way to mm_tlb_gen and we can probably
+ * avoid another flush in the very near future.
+ */
+ if (f->end != TLB_FLUSH_ALL &&
+ f->new_tlb_gen == local_tlb_gen + 1 &&
+ f->new_tlb_gen == mm_tlb_gen) {
+ /* Partial flush */
+ unsigned long addr = f->start;
+
+ /* Partial flush cannot have invalid generations */
+ VM_WARN_ON(f->new_tlb_gen == TLB_GENERATION_INVALID);
+
+ /* Partial flush must have valid mm */
+ VM_WARN_ON(f->mm == NULL);
+
+ nr_invalidate = (f->end - f->start) >> f->stride_shift;
+
+ while (addr < f->end) {
+ flush_tlb_one_user(addr);
+ addr += 1UL << f->stride_shift;
+ }
+ if (local)
+ count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate);
+ } else {
+ /* Full flush. */
+ nr_invalidate = TLB_FLUSH_ALL;
+
+ flush_tlb_local();
+ if (local)
+ count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
+ }
+
+ /* Both paths above update our state to mm_tlb_gen. */
+ this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
+
+ /* Tracing is done in a unified manner to reduce the code size */
+done:
+ trace_tlb_flush(!local ? TLB_REMOTE_SHOOTDOWN :
+ (f->mm == NULL) ? TLB_LOCAL_SHOOTDOWN :
+ TLB_LOCAL_MM_SHOOTDOWN,
+ nr_invalidate);
+}
+
+static bool tlb_is_not_lazy(int cpu, void *data)
+{
+ return !per_cpu(cpu_tlbstate_shared.is_lazy, cpu);
+}
+
+DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state_shared, cpu_tlbstate_shared);
+EXPORT_PER_CPU_SYMBOL(cpu_tlbstate_shared);
+
+STATIC_NOPV void native_flush_tlb_multi(const struct cpumask *cpumask,
+ const struct flush_tlb_info *info)
+{
+ /*
+ * Do accounting and tracing. Note that there are (and have always been)
+ * cases in which a remote TLB flush will be traced, but eventually
+ * would not happen.
+ */
+ count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
+ if (info->end == TLB_FLUSH_ALL)
+ trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
+ else
+ trace_tlb_flush(TLB_REMOTE_SEND_IPI,
+ (info->end - info->start) >> PAGE_SHIFT);
+
+ /*
+ * If no page tables were freed, we can skip sending IPIs to
+ * CPUs in lazy TLB mode. They will flush the CPU themselves
+ * at the next context switch.
+ *
+ * However, if page tables are getting freed, we need to send the
+ * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping
+ * up on the new contents of what used to be page tables, while
+ * doing a speculative memory access.
+ */
+ if (info->freed_tables)
+ on_each_cpu_mask(cpumask, flush_tlb_func, (void *)info, true);
+ else
+ on_each_cpu_cond_mask(tlb_is_not_lazy, flush_tlb_func,
+ (void *)info, 1, cpumask);
+}
+
+void flush_tlb_multi(const struct cpumask *cpumask,
+ const struct flush_tlb_info *info)
+{
+ __flush_tlb_multi(cpumask, info);
+}
+
+/*
+ * See Documentation/arch/x86/tlb.rst for details. We choose 33
+ * because it is large enough to cover the vast majority (at
+ * least 95%) of allocations, and is small enough that we are
+ * confident it will not cause too much overhead. Each single
+ * flush is about 100 ns, so this caps the maximum overhead at
+ * _about_ 3,000 ns.
+ *
+ * This is in units of pages.
+ */
+unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
+
+static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info);
+
+#ifdef CONFIG_DEBUG_VM
+static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx);
+#endif
+
+static struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm,
+ unsigned long start, unsigned long end,
+ unsigned int stride_shift, bool freed_tables,
+ u64 new_tlb_gen)
+{
+ struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info);
+
+#ifdef CONFIG_DEBUG_VM
+ /*
+ * Ensure that the following code is non-reentrant and flush_tlb_info
+ * is not overwritten. This means no TLB flushing is initiated by
+ * interrupt handlers and machine-check exception handlers.
+ */
+ BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1);
+#endif
+
+ info->start = start;
+ info->end = end;
+ info->mm = mm;
+ info->stride_shift = stride_shift;
+ info->freed_tables = freed_tables;
+ info->new_tlb_gen = new_tlb_gen;
+ info->initiating_cpu = smp_processor_id();
+
+ return info;
+}
+
+static void put_flush_tlb_info(void)
+{
+#ifdef CONFIG_DEBUG_VM
+ /* Complete reentrancy prevention checks */
+ barrier();
+ this_cpu_dec(flush_tlb_info_idx);
+#endif
+}
+
+void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
+ unsigned long end, unsigned int stride_shift,
+ bool freed_tables)
+{
+ struct flush_tlb_info *info;
+ u64 new_tlb_gen;
+ int cpu;
+
+ cpu = get_cpu();
+
+ /* Should we flush just the requested range? */
+ if ((end == TLB_FLUSH_ALL) ||
+ ((end - start) >> stride_shift) > tlb_single_page_flush_ceiling) {
+ start = 0;
+ end = TLB_FLUSH_ALL;
+ }
+
+ /* This is also a barrier that synchronizes with switch_mm(). */
+ new_tlb_gen = inc_mm_tlb_gen(mm);
+
+ info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables,
+ new_tlb_gen);
+
+ /*
+ * flush_tlb_multi() is not optimized for the common case in which only
+ * a local TLB flush is needed. Optimize this use-case by calling
+ * flush_tlb_func_local() directly in this case.
+ */
+ if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids) {
+ flush_tlb_multi(mm_cpumask(mm), info);
+ } else if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
+ lockdep_assert_irqs_enabled();
+ local_irq_disable();
+ flush_tlb_func(info);
+ local_irq_enable();
+ }
+
+ put_flush_tlb_info();
+ put_cpu();
+ mmu_notifier_arch_invalidate_secondary_tlbs(mm, start, end);
+}
+
+
+static void do_flush_tlb_all(void *info)
+{
+ count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
+ __flush_tlb_all();
+}
+
+void flush_tlb_all(void)
+{
+ count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
+ on_each_cpu(do_flush_tlb_all, NULL, 1);
+}
+
+static void do_kernel_range_flush(void *info)
+{
+ struct flush_tlb_info *f = info;
+ unsigned long addr;
+
+ /* flush range by one by one 'invlpg' */
+ for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
+ flush_tlb_one_kernel(addr);
+}
+
+void flush_tlb_kernel_range(unsigned long start, unsigned long end)
+{
+ /* Balance as user space task's flush, a bit conservative */
+ if (end == TLB_FLUSH_ALL ||
+ (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
+ on_each_cpu(do_flush_tlb_all, NULL, 1);
+ } else {
+ struct flush_tlb_info *info;
+
+ preempt_disable();
+ info = get_flush_tlb_info(NULL, start, end, 0, false,
+ TLB_GENERATION_INVALID);
+
+ on_each_cpu(do_kernel_range_flush, info, 1);
+
+ put_flush_tlb_info();
+ preempt_enable();
+ }
+}
+
+/*
+ * This can be used from process context to figure out what the value of
+ * CR3 is without needing to do a (slow) __read_cr3().
+ *
+ * It's intended to be used for code like KVM that sneakily changes CR3
+ * and needs to restore it. It needs to be used very carefully.
+ */
+unsigned long __get_current_cr3_fast(void)
+{
+ unsigned long cr3 =
+ build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd,
+ this_cpu_read(cpu_tlbstate.loaded_mm_asid),
+ tlbstate_lam_cr3_mask());
+
+ /* For now, be very restrictive about when this can be called. */
+ VM_WARN_ON(in_nmi() || preemptible());
+
+ VM_BUG_ON(cr3 != __read_cr3());
+ return cr3;
+}
+EXPORT_SYMBOL_GPL(__get_current_cr3_fast);
+
+/*
+ * Flush one page in the kernel mapping
+ */
+void flush_tlb_one_kernel(unsigned long addr)
+{
+ count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
+
+ /*
+ * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its
+ * paravirt equivalent. Even with PCID, this is sufficient: we only
+ * use PCID if we also use global PTEs for the kernel mapping, and
+ * INVLPG flushes global translations across all address spaces.
+ *
+ * If PTI is on, then the kernel is mapped with non-global PTEs, and
+ * __flush_tlb_one_user() will flush the given address for the current
+ * kernel address space and for its usermode counterpart, but it does
+ * not flush it for other address spaces.
+ */
+ flush_tlb_one_user(addr);
+
+ if (!static_cpu_has(X86_FEATURE_PTI))
+ return;
+
+ /*
+ * See above. We need to propagate the flush to all other address
+ * spaces. In principle, we only need to propagate it to kernelmode
+ * address spaces, but the extra bookkeeping we would need is not
+ * worth it.
+ */
+ this_cpu_write(cpu_tlbstate.invalidate_other, true);
+}
+
+/*
+ * Flush one page in the user mapping
+ */
+STATIC_NOPV void native_flush_tlb_one_user(unsigned long addr)
+{
+ u32 loaded_mm_asid;
+ bool cpu_pcide;
+
+ /* Flush 'addr' from the kernel PCID: */
+ asm volatile("invlpg (%0)" ::"r" (addr) : "memory");
+
+ /* If PTI is off there is no user PCID and nothing to flush. */
+ if (!static_cpu_has(X86_FEATURE_PTI))
+ return;
+
+ loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
+ cpu_pcide = this_cpu_read(cpu_tlbstate.cr4) & X86_CR4_PCIDE;
+
+ /*
+ * invpcid_flush_one(pcid>0) will #GP if CR4.PCIDE==0. Check
+ * 'cpu_pcide' to ensure that *this* CPU will not trigger those
+ * #GP's even if called before CR4.PCIDE has been initialized.
+ */
+ if (boot_cpu_has(X86_FEATURE_INVPCID) && cpu_pcide)
+ invpcid_flush_one(user_pcid(loaded_mm_asid), addr);
+ else
+ invalidate_user_asid(loaded_mm_asid);
+}
+
+void flush_tlb_one_user(unsigned long addr)
+{
+ __flush_tlb_one_user(addr);
+}
+
+/*
+ * Flush everything
+ */
+STATIC_NOPV void native_flush_tlb_global(void)
+{
+ unsigned long flags;
+
+ if (static_cpu_has(X86_FEATURE_INVPCID)) {
+ /*
+ * Using INVPCID is considerably faster than a pair of writes
+ * to CR4 sandwiched inside an IRQ flag save/restore.
+ *
+ * Note, this works with CR4.PCIDE=0 or 1.
+ */
+ invpcid_flush_all();
+ return;
+ }
+
+ /*
+ * Read-modify-write to CR4 - protect it from preemption and
+ * from interrupts. (Use the raw variant because this code can
+ * be called from deep inside debugging code.)
+ */
+ raw_local_irq_save(flags);
+
+ __native_tlb_flush_global(this_cpu_read(cpu_tlbstate.cr4));
+
+ raw_local_irq_restore(flags);
+}
+
+/*
+ * Flush the entire current user mapping
+ */
+STATIC_NOPV void native_flush_tlb_local(void)
+{
+ /*
+ * Preemption or interrupts must be disabled to protect the access
+ * to the per CPU variable and to prevent being preempted between
+ * read_cr3() and write_cr3().
+ */
+ WARN_ON_ONCE(preemptible());
+
+ invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid));
+
+ /* If current->mm == NULL then the read_cr3() "borrows" an mm */
+ native_write_cr3(__native_read_cr3());
+}
+
+void flush_tlb_local(void)
+{
+ __flush_tlb_local();
+}
+
+/*
+ * Flush everything
+ */
+void __flush_tlb_all(void)
+{
+ /*
+ * This is to catch users with enabled preemption and the PGE feature
+ * and don't trigger the warning in __native_flush_tlb().
+ */
+ VM_WARN_ON_ONCE(preemptible());
+
+ if (cpu_feature_enabled(X86_FEATURE_PGE)) {
+ __flush_tlb_global();
+ } else {
+ /*
+ * !PGE -> !PCID (setup_pcid()), thus every flush is total.
+ */
+ flush_tlb_local();
+ }
+}
+EXPORT_SYMBOL_GPL(__flush_tlb_all);
+
+void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
+{
+ struct flush_tlb_info *info;
+
+ int cpu = get_cpu();
+
+ info = get_flush_tlb_info(NULL, 0, TLB_FLUSH_ALL, 0, false,
+ TLB_GENERATION_INVALID);
+ /*
+ * flush_tlb_multi() is not optimized for the common case in which only
+ * a local TLB flush is needed. Optimize this use-case by calling
+ * flush_tlb_func_local() directly in this case.
+ */
+ if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids) {
+ flush_tlb_multi(&batch->cpumask, info);
+ } else if (cpumask_test_cpu(cpu, &batch->cpumask)) {
+ lockdep_assert_irqs_enabled();
+ local_irq_disable();
+ flush_tlb_func(info);
+ local_irq_enable();
+ }
+
+ cpumask_clear(&batch->cpumask);
+
+ put_flush_tlb_info();
+ put_cpu();
+}
+
+/*
+ * Blindly accessing user memory from NMI context can be dangerous
+ * if we're in the middle of switching the current user task or
+ * switching the loaded mm. It can also be dangerous if we
+ * interrupted some kernel code that was temporarily using a
+ * different mm.
+ */
+bool nmi_uaccess_okay(void)
+{
+ struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
+ struct mm_struct *current_mm = current->mm;
+
+ VM_WARN_ON_ONCE(!loaded_mm);
+
+ /*
+ * The condition we want to check is
+ * current_mm->pgd == __va(read_cr3_pa()). This may be slow, though,
+ * if we're running in a VM with shadow paging, and nmi_uaccess_okay()
+ * is supposed to be reasonably fast.
+ *
+ * Instead, we check the almost equivalent but somewhat conservative
+ * condition below, and we rely on the fact that switch_mm_irqs_off()
+ * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3.
+ */
+ if (loaded_mm != current_mm)
+ return false;
+
+ VM_WARN_ON_ONCE(current_mm->pgd != __va(read_cr3_pa()));
+
+ return true;
+}
+
+static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
+ size_t count, loff_t *ppos)
+{
+ char buf[32];
+ unsigned int len;
+
+ len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
+ return simple_read_from_buffer(user_buf, count, ppos, buf, len);
+}
+
+static ssize_t tlbflush_write_file(struct file *file,
+ const char __user *user_buf, size_t count, loff_t *ppos)
+{
+ char buf[32];
+ ssize_t len;
+ int ceiling;
+
+ len = min(count, sizeof(buf) - 1);
+ if (copy_from_user(buf, user_buf, len))
+ return -EFAULT;
+
+ buf[len] = '\0';
+ if (kstrtoint(buf, 0, &ceiling))
+ return -EINVAL;
+
+ if (ceiling < 0)
+ return -EINVAL;
+
+ tlb_single_page_flush_ceiling = ceiling;
+ return count;
+}
+
+static const struct file_operations fops_tlbflush = {
+ .read = tlbflush_read_file,
+ .write = tlbflush_write_file,
+ .llseek = default_llseek,
+};
+
+static int __init create_tlb_single_page_flush_ceiling(void)
+{
+ debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
+ arch_debugfs_dir, NULL, &fops_tlbflush);
+ return 0;
+}
+late_initcall(create_tlb_single_page_flush_ceiling);