summaryrefslogtreecommitdiffstats
path: root/drivers/accel/habanalabs/common/habanalabs.h
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-11 08:27:49 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-11 08:27:49 +0000
commitace9429bb58fd418f0c81d4c2835699bddf6bde6 (patch)
treeb2d64bc10158fdd5497876388cd68142ca374ed3 /drivers/accel/habanalabs/common/habanalabs.h
parentInitial commit. (diff)
downloadlinux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.tar.xz
linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.zip
Adding upstream version 6.6.15.upstream/6.6.15
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'drivers/accel/habanalabs/common/habanalabs.h')
-rw-r--r--drivers/accel/habanalabs/common/habanalabs.h4118
1 files changed, 4118 insertions, 0 deletions
diff --git a/drivers/accel/habanalabs/common/habanalabs.h b/drivers/accel/habanalabs/common/habanalabs.h
new file mode 100644
index 0000000000..2f027d5a82
--- /dev/null
+++ b/drivers/accel/habanalabs/common/habanalabs.h
@@ -0,0 +1,4118 @@
+/* SPDX-License-Identifier: GPL-2.0
+ *
+ * Copyright 2016-2022 HabanaLabs, Ltd.
+ * All Rights Reserved.
+ *
+ */
+
+#ifndef HABANALABSP_H_
+#define HABANALABSP_H_
+
+#include "../include/common/cpucp_if.h"
+#include "../include/common/qman_if.h"
+#include "../include/hw_ip/mmu/mmu_general.h"
+#include <uapi/drm/habanalabs_accel.h>
+
+#include <linux/cdev.h>
+#include <linux/iopoll.h>
+#include <linux/irqreturn.h>
+#include <linux/dma-direction.h>
+#include <linux/scatterlist.h>
+#include <linux/hashtable.h>
+#include <linux/debugfs.h>
+#include <linux/rwsem.h>
+#include <linux/eventfd.h>
+#include <linux/bitfield.h>
+#include <linux/genalloc.h>
+#include <linux/sched/signal.h>
+#include <linux/io-64-nonatomic-lo-hi.h>
+#include <linux/coresight.h>
+#include <linux/dma-buf.h>
+
+#include "security.h"
+
+#define HL_NAME "habanalabs"
+
+struct hl_device;
+struct hl_fpriv;
+
+#define PCI_VENDOR_ID_HABANALABS 0x1da3
+
+/* Use upper bits of mmap offset to store habana driver specific information.
+ * bits[63:59] - Encode mmap type
+ * bits[45:0] - mmap offset value
+ *
+ * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these
+ * defines are w.r.t to PAGE_SIZE
+ */
+#define HL_MMAP_TYPE_SHIFT (59 - PAGE_SHIFT)
+#define HL_MMAP_TYPE_MASK (0x1full << HL_MMAP_TYPE_SHIFT)
+#define HL_MMAP_TYPE_TS_BUFF (0x10ull << HL_MMAP_TYPE_SHIFT)
+#define HL_MMAP_TYPE_BLOCK (0x4ull << HL_MMAP_TYPE_SHIFT)
+#define HL_MMAP_TYPE_CB (0x2ull << HL_MMAP_TYPE_SHIFT)
+
+#define HL_MMAP_OFFSET_VALUE_MASK (0x1FFFFFFFFFFFull >> PAGE_SHIFT)
+#define HL_MMAP_OFFSET_VALUE_GET(off) (off & HL_MMAP_OFFSET_VALUE_MASK)
+
+#define HL_PENDING_RESET_PER_SEC 10
+#define HL_PENDING_RESET_MAX_TRIALS 60 /* 10 minutes */
+#define HL_PENDING_RESET_LONG_SEC 60
+/*
+ * In device fini, wait 10 minutes for user processes to be terminated after we kill them.
+ * This is needed to prevent situation of clearing resources while user processes are still alive.
+ */
+#define HL_WAIT_PROCESS_KILL_ON_DEVICE_FINI 600
+
+#define HL_HARD_RESET_MAX_TIMEOUT 120
+#define HL_PLDM_HARD_RESET_MAX_TIMEOUT (HL_HARD_RESET_MAX_TIMEOUT * 3)
+
+#define HL_DEVICE_TIMEOUT_USEC 1000000 /* 1 s */
+
+#define HL_HEARTBEAT_PER_USEC 5000000 /* 5 s */
+
+#define HL_PLL_LOW_JOB_FREQ_USEC 5000000 /* 5 s */
+
+#define HL_CPUCP_INFO_TIMEOUT_USEC 10000000 /* 10s */
+#define HL_CPUCP_EEPROM_TIMEOUT_USEC 10000000 /* 10s */
+#define HL_CPUCP_MON_DUMP_TIMEOUT_USEC 10000000 /* 10s */
+#define HL_CPUCP_SEC_ATTEST_INFO_TINEOUT_USEC 10000000 /* 10s */
+
+#define HL_FW_STATUS_POLL_INTERVAL_USEC 10000 /* 10ms */
+#define HL_FW_COMMS_STATUS_PLDM_POLL_INTERVAL_USEC 1000000 /* 1s */
+
+#define HL_PCI_ELBI_TIMEOUT_MSEC 10 /* 10ms */
+
+#define HL_SIM_MAX_TIMEOUT_US 100000000 /* 100s */
+
+#define HL_INVALID_QUEUE UINT_MAX
+
+#define HL_COMMON_USER_CQ_INTERRUPT_ID 0xFFF
+#define HL_COMMON_DEC_INTERRUPT_ID 0xFFE
+
+#define HL_STATE_DUMP_HIST_LEN 5
+
+/* Default value for device reset trigger , an invalid value */
+#define HL_RESET_TRIGGER_DEFAULT 0xFF
+
+#define OBJ_NAMES_HASH_TABLE_BITS 7 /* 1 << 7 buckets */
+#define SYNC_TO_ENGINE_HASH_TABLE_BITS 7 /* 1 << 7 buckets */
+
+/* Memory */
+#define MEM_HASH_TABLE_BITS 7 /* 1 << 7 buckets */
+
+/* MMU */
+#define MMU_HASH_TABLE_BITS 7 /* 1 << 7 buckets */
+
+/**
+ * enum hl_mmu_page_table_location - mmu page table location
+ * @MMU_DR_PGT: page-table is located on device DRAM.
+ * @MMU_HR_PGT: page-table is located on host memory.
+ * @MMU_NUM_PGT_LOCATIONS: number of page-table locations currently supported.
+ */
+enum hl_mmu_page_table_location {
+ MMU_DR_PGT = 0, /* device-dram-resident MMU PGT */
+ MMU_HR_PGT, /* host resident MMU PGT */
+ MMU_NUM_PGT_LOCATIONS /* num of PGT locations */
+};
+
+/*
+ * HL_RSVD_SOBS 'sync stream' reserved sync objects per QMAN stream
+ * HL_RSVD_MONS 'sync stream' reserved monitors per QMAN stream
+ */
+#define HL_RSVD_SOBS 2
+#define HL_RSVD_MONS 1
+
+/*
+ * HL_COLLECTIVE_RSVD_MSTR_MONS 'collective' reserved monitors per QMAN stream
+ */
+#define HL_COLLECTIVE_RSVD_MSTR_MONS 2
+
+#define HL_MAX_SOB_VAL (1 << 15)
+
+#define IS_POWER_OF_2(n) (n != 0 && ((n & (n - 1)) == 0))
+#define IS_MAX_PENDING_CS_VALID(n) (IS_POWER_OF_2(n) && (n > 1))
+
+#define HL_PCI_NUM_BARS 6
+
+/* Completion queue entry relates to completed job */
+#define HL_COMPLETION_MODE_JOB 0
+/* Completion queue entry relates to completed command submission */
+#define HL_COMPLETION_MODE_CS 1
+
+#define HL_MAX_DCORES 8
+
+/* DMA alloc/free wrappers */
+#define hl_asic_dma_alloc_coherent(hdev, size, dma_handle, flags) \
+ hl_asic_dma_alloc_coherent_caller(hdev, size, dma_handle, flags, __func__)
+
+#define hl_asic_dma_pool_zalloc(hdev, size, mem_flags, dma_handle) \
+ hl_asic_dma_pool_zalloc_caller(hdev, size, mem_flags, dma_handle, __func__)
+
+#define hl_asic_dma_free_coherent(hdev, size, cpu_addr, dma_handle) \
+ hl_asic_dma_free_coherent_caller(hdev, size, cpu_addr, dma_handle, __func__)
+
+#define hl_asic_dma_pool_free(hdev, vaddr, dma_addr) \
+ hl_asic_dma_pool_free_caller(hdev, vaddr, dma_addr, __func__)
+
+/*
+ * Reset Flags
+ *
+ * - HL_DRV_RESET_HARD
+ * If set do hard reset to all engines. If not set reset just
+ * compute/DMA engines.
+ *
+ * - HL_DRV_RESET_FROM_RESET_THR
+ * Set if the caller is the hard-reset thread
+ *
+ * - HL_DRV_RESET_HEARTBEAT
+ * Set if reset is due to heartbeat
+ *
+ * - HL_DRV_RESET_TDR
+ * Set if reset is due to TDR
+ *
+ * - HL_DRV_RESET_DEV_RELEASE
+ * Set if reset is due to device release
+ *
+ * - HL_DRV_RESET_BYPASS_REQ_TO_FW
+ * F/W will perform the reset. No need to ask it to reset the device. This is relevant
+ * only when running with secured f/w
+ *
+ * - HL_DRV_RESET_FW_FATAL_ERR
+ * Set if reset is due to a fatal error from FW
+ *
+ * - HL_DRV_RESET_DELAY
+ * Set if a delay should be added before the reset
+ *
+ * - HL_DRV_RESET_FROM_WD_THR
+ * Set if the caller is the device release watchdog thread
+ */
+
+#define HL_DRV_RESET_HARD (1 << 0)
+#define HL_DRV_RESET_FROM_RESET_THR (1 << 1)
+#define HL_DRV_RESET_HEARTBEAT (1 << 2)
+#define HL_DRV_RESET_TDR (1 << 3)
+#define HL_DRV_RESET_DEV_RELEASE (1 << 4)
+#define HL_DRV_RESET_BYPASS_REQ_TO_FW (1 << 5)
+#define HL_DRV_RESET_FW_FATAL_ERR (1 << 6)
+#define HL_DRV_RESET_DELAY (1 << 7)
+#define HL_DRV_RESET_FROM_WD_THR (1 << 8)
+
+/*
+ * Security
+ */
+
+#define HL_PB_SHARED 1
+#define HL_PB_NA 0
+#define HL_PB_SINGLE_INSTANCE 1
+#define HL_BLOCK_SIZE 0x1000
+#define HL_BLOCK_GLBL_ERR_MASK 0xF40
+#define HL_BLOCK_GLBL_ERR_ADDR 0xF44
+#define HL_BLOCK_GLBL_ERR_CAUSE 0xF48
+#define HL_BLOCK_GLBL_SEC_OFFS 0xF80
+#define HL_BLOCK_GLBL_SEC_SIZE (HL_BLOCK_SIZE - HL_BLOCK_GLBL_SEC_OFFS)
+#define HL_BLOCK_GLBL_SEC_LEN (HL_BLOCK_GLBL_SEC_SIZE / sizeof(u32))
+#define UNSET_GLBL_SEC_BIT(array, b) ((array)[((b) / 32)] |= (1 << ((b) % 32)))
+
+enum hl_protection_levels {
+ SECURED_LVL,
+ PRIVILEGED_LVL,
+ NON_SECURED_LVL
+};
+
+/**
+ * struct iterate_module_ctx - HW module iterator
+ * @fn: function to apply to each HW module instance
+ * @data: optional internal data to the function iterator
+ * @rc: return code for optional use of iterator/iterator-caller
+ */
+struct iterate_module_ctx {
+ /*
+ * callback for the HW module iterator
+ * @hdev: pointer to the habanalabs device structure
+ * @block: block (ASIC specific definition can be dcore/hdcore)
+ * @inst: HW module instance within the block
+ * @offset: current HW module instance offset from the 1-st HW module instance
+ * in the 1-st block
+ * @ctx: the iterator context.
+ */
+ void (*fn)(struct hl_device *hdev, int block, int inst, u32 offset,
+ struct iterate_module_ctx *ctx);
+ void *data;
+ int rc;
+};
+
+struct hl_block_glbl_sec {
+ u32 sec_array[HL_BLOCK_GLBL_SEC_LEN];
+};
+
+#define HL_MAX_SOBS_PER_MONITOR 8
+
+/**
+ * struct hl_gen_wait_properties - properties for generating a wait CB
+ * @data: command buffer
+ * @q_idx: queue id is used to extract fence register address
+ * @size: offset in command buffer
+ * @sob_base: SOB base to use in this wait CB
+ * @sob_val: SOB value to wait for
+ * @mon_id: monitor to use in this wait CB
+ * @sob_mask: each bit represents a SOB offset from sob_base to be used
+ */
+struct hl_gen_wait_properties {
+ void *data;
+ u32 q_idx;
+ u32 size;
+ u16 sob_base;
+ u16 sob_val;
+ u16 mon_id;
+ u8 sob_mask;
+};
+
+/**
+ * struct pgt_info - MMU hop page info.
+ * @node: hash linked-list node for the pgts on host (shadow pgts for device resident MMU and
+ * actual pgts for host resident MMU).
+ * @phys_addr: physical address of the pgt.
+ * @virt_addr: host virtual address of the pgt (see above device/host resident).
+ * @shadow_addr: shadow hop in the host for device resident MMU.
+ * @ctx: pointer to the owner ctx.
+ * @num_of_ptes: indicates how many ptes are used in the pgt. used only for dynamically
+ * allocated HOPs (all HOPs but HOP0)
+ *
+ * The MMU page tables hierarchy can be placed either on the device's DRAM (in which case shadow
+ * pgts will be stored on host memory) or on host memory (in which case no shadow is required).
+ *
+ * When a new level (hop) is needed during mapping this structure will be used to describe
+ * the newly allocated hop as well as to track number of PTEs in it.
+ * During unmapping, if no valid PTEs remained in the page of a newly allocated hop, it is
+ * freed with its pgt_info structure.
+ */
+struct pgt_info {
+ struct hlist_node node;
+ u64 phys_addr;
+ u64 virt_addr;
+ u64 shadow_addr;
+ struct hl_ctx *ctx;
+ int num_of_ptes;
+};
+
+/**
+ * enum hl_pci_match_mode - pci match mode per region
+ * @PCI_ADDRESS_MATCH_MODE: address match mode
+ * @PCI_BAR_MATCH_MODE: bar match mode
+ */
+enum hl_pci_match_mode {
+ PCI_ADDRESS_MATCH_MODE,
+ PCI_BAR_MATCH_MODE
+};
+
+/**
+ * enum hl_fw_component - F/W components to read version through registers.
+ * @FW_COMP_BOOT_FIT: boot fit.
+ * @FW_COMP_PREBOOT: preboot.
+ * @FW_COMP_LINUX: linux.
+ */
+enum hl_fw_component {
+ FW_COMP_BOOT_FIT,
+ FW_COMP_PREBOOT,
+ FW_COMP_LINUX,
+};
+
+/**
+ * enum hl_fw_types - F/W types present in the system
+ * @FW_TYPE_NONE: no FW component indication
+ * @FW_TYPE_LINUX: Linux image for device CPU
+ * @FW_TYPE_BOOT_CPU: Boot image for device CPU
+ * @FW_TYPE_PREBOOT_CPU: Indicates pre-loaded CPUs are present in the system
+ * (preboot, ppboot etc...)
+ * @FW_TYPE_ALL_TYPES: Mask for all types
+ */
+enum hl_fw_types {
+ FW_TYPE_NONE = 0x0,
+ FW_TYPE_LINUX = 0x1,
+ FW_TYPE_BOOT_CPU = 0x2,
+ FW_TYPE_PREBOOT_CPU = 0x4,
+ FW_TYPE_ALL_TYPES =
+ (FW_TYPE_LINUX | FW_TYPE_BOOT_CPU | FW_TYPE_PREBOOT_CPU)
+};
+
+/**
+ * enum hl_queue_type - Supported QUEUE types.
+ * @QUEUE_TYPE_NA: queue is not available.
+ * @QUEUE_TYPE_EXT: external queue which is a DMA channel that may access the
+ * host.
+ * @QUEUE_TYPE_INT: internal queue that performs DMA inside the device's
+ * memories and/or operates the compute engines.
+ * @QUEUE_TYPE_CPU: S/W queue for communication with the device's CPU.
+ * @QUEUE_TYPE_HW: queue of DMA and compute engines jobs, for which completion
+ * notifications are sent by H/W.
+ */
+enum hl_queue_type {
+ QUEUE_TYPE_NA,
+ QUEUE_TYPE_EXT,
+ QUEUE_TYPE_INT,
+ QUEUE_TYPE_CPU,
+ QUEUE_TYPE_HW
+};
+
+enum hl_cs_type {
+ CS_TYPE_DEFAULT,
+ CS_TYPE_SIGNAL,
+ CS_TYPE_WAIT,
+ CS_TYPE_COLLECTIVE_WAIT,
+ CS_RESERVE_SIGNALS,
+ CS_UNRESERVE_SIGNALS,
+ CS_TYPE_ENGINE_CORE,
+ CS_TYPE_ENGINES,
+ CS_TYPE_FLUSH_PCI_HBW_WRITES,
+};
+
+/*
+ * struct hl_inbound_pci_region - inbound region descriptor
+ * @mode: pci match mode for this region
+ * @addr: region target address
+ * @size: region size in bytes
+ * @offset_in_bar: offset within bar (address match mode)
+ * @bar: bar id
+ */
+struct hl_inbound_pci_region {
+ enum hl_pci_match_mode mode;
+ u64 addr;
+ u64 size;
+ u64 offset_in_bar;
+ u8 bar;
+};
+
+/*
+ * struct hl_outbound_pci_region - outbound region descriptor
+ * @addr: region target address
+ * @size: region size in bytes
+ */
+struct hl_outbound_pci_region {
+ u64 addr;
+ u64 size;
+};
+
+/*
+ * enum queue_cb_alloc_flags - Indicates queue support for CBs that
+ * allocated by Kernel or by User
+ * @CB_ALLOC_KERNEL: support only CBs that allocated by Kernel
+ * @CB_ALLOC_USER: support only CBs that allocated by User
+ */
+enum queue_cb_alloc_flags {
+ CB_ALLOC_KERNEL = 0x1,
+ CB_ALLOC_USER = 0x2
+};
+
+/*
+ * struct hl_hw_sob - H/W SOB info.
+ * @hdev: habanalabs device structure.
+ * @kref: refcount of this SOB. The SOB will reset once the refcount is zero.
+ * @sob_id: id of this SOB.
+ * @sob_addr: the sob offset from the base address.
+ * @q_idx: the H/W queue that uses this SOB.
+ * @need_reset: reset indication set when switching to the other sob.
+ */
+struct hl_hw_sob {
+ struct hl_device *hdev;
+ struct kref kref;
+ u32 sob_id;
+ u32 sob_addr;
+ u32 q_idx;
+ bool need_reset;
+};
+
+enum hl_collective_mode {
+ HL_COLLECTIVE_NOT_SUPPORTED = 0x0,
+ HL_COLLECTIVE_MASTER = 0x1,
+ HL_COLLECTIVE_SLAVE = 0x2
+};
+
+/**
+ * struct hw_queue_properties - queue information.
+ * @type: queue type.
+ * @cb_alloc_flags: bitmap which indicates if the hw queue supports CB
+ * that allocated by the Kernel driver and therefore,
+ * a CB handle can be provided for jobs on this queue.
+ * Otherwise, a CB address must be provided.
+ * @collective_mode: collective mode of current queue
+ * @driver_only: true if only the driver is allowed to send a job to this queue,
+ * false otherwise.
+ * @binned: True if the queue is binned out and should not be used
+ * @supports_sync_stream: True if queue supports sync stream
+ */
+struct hw_queue_properties {
+ enum hl_queue_type type;
+ enum queue_cb_alloc_flags cb_alloc_flags;
+ enum hl_collective_mode collective_mode;
+ u8 driver_only;
+ u8 binned;
+ u8 supports_sync_stream;
+};
+
+/**
+ * enum vm_type - virtual memory mapping request information.
+ * @VM_TYPE_USERPTR: mapping of user memory to device virtual address.
+ * @VM_TYPE_PHYS_PACK: mapping of DRAM memory to device virtual address.
+ */
+enum vm_type {
+ VM_TYPE_USERPTR = 0x1,
+ VM_TYPE_PHYS_PACK = 0x2
+};
+
+/**
+ * enum mmu_op_flags - mmu operation relevant information.
+ * @MMU_OP_USERPTR: operation on user memory (host resident).
+ * @MMU_OP_PHYS_PACK: operation on DRAM (device resident).
+ * @MMU_OP_CLEAR_MEMCACHE: operation has to clear memcache.
+ * @MMU_OP_SKIP_LOW_CACHE_INV: operation is allowed to skip parts of cache invalidation.
+ */
+enum mmu_op_flags {
+ MMU_OP_USERPTR = 0x1,
+ MMU_OP_PHYS_PACK = 0x2,
+ MMU_OP_CLEAR_MEMCACHE = 0x4,
+ MMU_OP_SKIP_LOW_CACHE_INV = 0x8,
+};
+
+
+/**
+ * enum hl_device_hw_state - H/W device state. use this to understand whether
+ * to do reset before hw_init or not
+ * @HL_DEVICE_HW_STATE_CLEAN: H/W state is clean. i.e. after hard reset
+ * @HL_DEVICE_HW_STATE_DIRTY: H/W state is dirty. i.e. we started to execute
+ * hw_init
+ */
+enum hl_device_hw_state {
+ HL_DEVICE_HW_STATE_CLEAN = 0,
+ HL_DEVICE_HW_STATE_DIRTY
+};
+
+#define HL_MMU_VA_ALIGNMENT_NOT_NEEDED 0
+
+/**
+ * struct hl_mmu_properties - ASIC specific MMU address translation properties.
+ * @start_addr: virtual start address of the memory region.
+ * @end_addr: virtual end address of the memory region.
+ * @hop_shifts: array holds HOPs shifts.
+ * @hop_masks: array holds HOPs masks.
+ * @last_mask: mask to get the bit indicating this is the last hop.
+ * @pgt_size: size for page tables.
+ * @supported_pages_mask: bitmask for supported page size (relevant only for MMUs
+ * supporting multiple page size).
+ * @page_size: default page size used to allocate memory.
+ * @num_hops: The amount of hops supported by the translation table.
+ * @hop_table_size: HOP table size.
+ * @hop0_tables_total_size: total size for all HOP0 tables.
+ * @host_resident: Should the MMU page table reside in host memory or in the
+ * device DRAM.
+ */
+struct hl_mmu_properties {
+ u64 start_addr;
+ u64 end_addr;
+ u64 hop_shifts[MMU_HOP_MAX];
+ u64 hop_masks[MMU_HOP_MAX];
+ u64 last_mask;
+ u64 pgt_size;
+ u64 supported_pages_mask;
+ u32 page_size;
+ u32 num_hops;
+ u32 hop_table_size;
+ u32 hop0_tables_total_size;
+ u8 host_resident;
+};
+
+/**
+ * struct hl_hints_range - hint addresses reserved va range.
+ * @start_addr: start address of the va range.
+ * @end_addr: end address of the va range.
+ */
+struct hl_hints_range {
+ u64 start_addr;
+ u64 end_addr;
+};
+
+/**
+ * struct asic_fixed_properties - ASIC specific immutable properties.
+ * @hw_queues_props: H/W queues properties.
+ * @special_blocks: points to an array containing special blocks info.
+ * @skip_special_blocks_cfg: special blocks skip configs.
+ * @cpucp_info: received various information from CPU-CP regarding the H/W, e.g.
+ * available sensors.
+ * @uboot_ver: F/W U-boot version.
+ * @preboot_ver: F/W Preboot version.
+ * @dmmu: DRAM MMU address translation properties.
+ * @pmmu: PCI (host) MMU address translation properties.
+ * @pmmu_huge: PCI (host) MMU address translation properties for memory
+ * allocated with huge pages.
+ * @hints_dram_reserved_va_range: dram hint addresses reserved range.
+ * @hints_host_reserved_va_range: host hint addresses reserved range.
+ * @hints_host_hpage_reserved_va_range: host huge page hint addresses reserved
+ * range.
+ * @sram_base_address: SRAM physical start address.
+ * @sram_end_address: SRAM physical end address.
+ * @sram_user_base_address - SRAM physical start address for user access.
+ * @dram_base_address: DRAM physical start address.
+ * @dram_end_address: DRAM physical end address.
+ * @dram_user_base_address: DRAM physical start address for user access.
+ * @dram_size: DRAM total size.
+ * @dram_pci_bar_size: size of PCI bar towards DRAM.
+ * @max_power_default: max power of the device after reset.
+ * @dc_power_default: power consumed by the device in mode idle.
+ * @dram_size_for_default_page_mapping: DRAM size needed to map to avoid page
+ * fault.
+ * @pcie_dbi_base_address: Base address of the PCIE_DBI block.
+ * @pcie_aux_dbi_reg_addr: Address of the PCIE_AUX DBI register.
+ * @mmu_pgt_addr: base physical address in DRAM of MMU page tables.
+ * @mmu_dram_default_page_addr: DRAM default page physical address.
+ * @tpc_enabled_mask: which TPCs are enabled.
+ * @tpc_binning_mask: which TPCs are binned. 0 means usable and 1 means binned.
+ * @dram_enabled_mask: which DRAMs are enabled.
+ * @dram_binning_mask: which DRAMs are binned. 0 means usable, 1 means binned.
+ * @dram_hints_align_mask: dram va hint addresses alignment mask which is used
+ * for hints validity check.
+ * @cfg_base_address: config space base address.
+ * @mmu_cache_mng_addr: address of the MMU cache.
+ * @mmu_cache_mng_size: size of the MMU cache.
+ * @device_dma_offset_for_host_access: the offset to add to host DMA addresses
+ * to enable the device to access them.
+ * @host_base_address: host physical start address for host DMA from device
+ * @host_end_address: host physical end address for host DMA from device
+ * @max_freq_value: current max clk frequency.
+ * @engine_core_interrupt_reg_addr: interrupt register address for engine core to use
+ * in order to raise events toward FW.
+ * @clk_pll_index: clock PLL index that specify which PLL determines the clock
+ * we display to the user
+ * @mmu_pgt_size: MMU page tables total size.
+ * @mmu_pte_size: PTE size in MMU page tables.
+ * @mmu_hop_table_size: MMU hop table size.
+ * @mmu_hop0_tables_total_size: total size of MMU hop0 tables.
+ * @dram_page_size: page size for MMU DRAM allocation.
+ * @cfg_size: configuration space size on SRAM.
+ * @sram_size: total size of SRAM.
+ * @max_asid: maximum number of open contexts (ASIDs).
+ * @num_of_events: number of possible internal H/W IRQs.
+ * @psoc_pci_pll_nr: PCI PLL NR value.
+ * @psoc_pci_pll_nf: PCI PLL NF value.
+ * @psoc_pci_pll_od: PCI PLL OD value.
+ * @psoc_pci_pll_div_factor: PCI PLL DIV FACTOR 1 value.
+ * @psoc_timestamp_frequency: frequency of the psoc timestamp clock.
+ * @high_pll: high PLL frequency used by the device.
+ * @cb_pool_cb_cnt: number of CBs in the CB pool.
+ * @cb_pool_cb_size: size of each CB in the CB pool.
+ * @decoder_enabled_mask: which decoders are enabled.
+ * @decoder_binning_mask: which decoders are binned, 0 means usable and 1 means binned.
+ * @rotator_enabled_mask: which rotators are enabled.
+ * @edma_enabled_mask: which EDMAs are enabled.
+ * @edma_binning_mask: which EDMAs are binned, 0 means usable and 1 means
+ * binned (at most one binned DMA).
+ * @max_pending_cs: maximum of concurrent pending command submissions
+ * @max_queues: maximum amount of queues in the system
+ * @fw_preboot_cpu_boot_dev_sts0: bitmap representation of preboot cpu
+ * capabilities reported by FW, bit description
+ * can be found in CPU_BOOT_DEV_STS0
+ * @fw_preboot_cpu_boot_dev_sts1: bitmap representation of preboot cpu
+ * capabilities reported by FW, bit description
+ * can be found in CPU_BOOT_DEV_STS1
+ * @fw_bootfit_cpu_boot_dev_sts0: bitmap representation of boot cpu security
+ * status reported by FW, bit description can be
+ * found in CPU_BOOT_DEV_STS0
+ * @fw_bootfit_cpu_boot_dev_sts1: bitmap representation of boot cpu security
+ * status reported by FW, bit description can be
+ * found in CPU_BOOT_DEV_STS1
+ * @fw_app_cpu_boot_dev_sts0: bitmap representation of application security
+ * status reported by FW, bit description can be
+ * found in CPU_BOOT_DEV_STS0
+ * @fw_app_cpu_boot_dev_sts1: bitmap representation of application security
+ * status reported by FW, bit description can be
+ * found in CPU_BOOT_DEV_STS1
+ * @max_dec: maximum number of decoders
+ * @hmmu_hif_enabled_mask: mask of HMMUs/HIFs that are not isolated (enabled)
+ * 1- enabled, 0- isolated.
+ * @faulty_dram_cluster_map: mask of faulty DRAM cluster.
+ * 1- faulty cluster, 0- good cluster.
+ * @xbar_edge_enabled_mask: mask of XBAR_EDGEs that are not isolated (enabled)
+ * 1- enabled, 0- isolated.
+ * @device_mem_alloc_default_page_size: may be different than dram_page_size only for ASICs for
+ * which the property supports_user_set_page_size is true
+ * (i.e. the DRAM supports multiple page sizes), otherwise
+ * it will shall be equal to dram_page_size.
+ * @num_engine_cores: number of engine cpu cores.
+ * @max_num_of_engines: maximum number of all engines in the ASIC.
+ * @num_of_special_blocks: special_blocks array size.
+ * @glbl_err_cause_num: global err cause number.
+ * @hbw_flush_reg: register to read to generate HBW flush. value of 0 means HBW flush is
+ * not supported.
+ * @collective_first_sob: first sync object available for collective use
+ * @collective_first_mon: first monitor available for collective use
+ * @sync_stream_first_sob: first sync object available for sync stream use
+ * @sync_stream_first_mon: first monitor available for sync stream use
+ * @first_available_user_sob: first sob available for the user
+ * @first_available_user_mon: first monitor available for the user
+ * @first_available_user_interrupt: first available interrupt reserved for the user
+ * @first_available_cq: first available CQ for the user.
+ * @user_interrupt_count: number of user interrupts.
+ * @user_dec_intr_count: number of decoder interrupts exposed to user.
+ * @tpc_interrupt_id: interrupt id for TPC to use in order to raise events towards the host.
+ * @eq_interrupt_id: interrupt id for EQ, uses to synchronize EQ interrupts in hard-reset.
+ * @cache_line_size: device cache line size.
+ * @server_type: Server type that the ASIC is currently installed in.
+ * The value is according to enum hl_server_type in uapi file.
+ * @completion_queues_count: number of completion queues.
+ * @completion_mode: 0 - job based completion, 1 - cs based completion
+ * @mme_master_slave_mode: 0 - Each MME works independently, 1 - MME works
+ * in Master/Slave mode
+ * @fw_security_enabled: true if security measures are enabled in firmware,
+ * false otherwise
+ * @fw_cpu_boot_dev_sts0_valid: status bits are valid and can be fetched from
+ * BOOT_DEV_STS0
+ * @fw_cpu_boot_dev_sts1_valid: status bits are valid and can be fetched from
+ * BOOT_DEV_STS1
+ * @dram_supports_virtual_memory: is there an MMU towards the DRAM
+ * @hard_reset_done_by_fw: true if firmware is handling hard reset flow
+ * @num_functional_hbms: number of functional HBMs in each DCORE.
+ * @hints_range_reservation: device support hint addresses range reservation.
+ * @iatu_done_by_fw: true if iATU configuration is being done by FW.
+ * @dynamic_fw_load: is dynamic FW load is supported.
+ * @gic_interrupts_enable: true if FW is not blocking GIC controller,
+ * false otherwise.
+ * @use_get_power_for_reset_history: To support backward compatibility for Goya
+ * and Gaudi
+ * @supports_compute_reset: is a reset which is not a hard-reset supported by this asic.
+ * @allow_inference_soft_reset: true if the ASIC supports soft reset that is
+ * initiated by user or TDR. This is only true
+ * in inference ASICs, as there is no real-world
+ * use-case of doing soft-reset in training (due
+ * to the fact that training runs on multiple
+ * devices)
+ * @configurable_stop_on_err: is stop-on-error option configurable via debugfs.
+ * @set_max_power_on_device_init: true if need to set max power in F/W on device init.
+ * @supports_user_set_page_size: true if user can set the allocation page size.
+ * @dma_mask: the dma mask to be set for this device
+ * @supports_advanced_cpucp_rc: true if new cpucp opcodes are supported.
+ * @supports_engine_modes: true if changing engines/engine_cores modes is supported.
+ */
+struct asic_fixed_properties {
+ struct hw_queue_properties *hw_queues_props;
+ struct hl_special_block_info *special_blocks;
+ struct hl_skip_blocks_cfg skip_special_blocks_cfg;
+ struct cpucp_info cpucp_info;
+ char uboot_ver[VERSION_MAX_LEN];
+ char preboot_ver[VERSION_MAX_LEN];
+ struct hl_mmu_properties dmmu;
+ struct hl_mmu_properties pmmu;
+ struct hl_mmu_properties pmmu_huge;
+ struct hl_hints_range hints_dram_reserved_va_range;
+ struct hl_hints_range hints_host_reserved_va_range;
+ struct hl_hints_range hints_host_hpage_reserved_va_range;
+ u64 sram_base_address;
+ u64 sram_end_address;
+ u64 sram_user_base_address;
+ u64 dram_base_address;
+ u64 dram_end_address;
+ u64 dram_user_base_address;
+ u64 dram_size;
+ u64 dram_pci_bar_size;
+ u64 max_power_default;
+ u64 dc_power_default;
+ u64 dram_size_for_default_page_mapping;
+ u64 pcie_dbi_base_address;
+ u64 pcie_aux_dbi_reg_addr;
+ u64 mmu_pgt_addr;
+ u64 mmu_dram_default_page_addr;
+ u64 tpc_enabled_mask;
+ u64 tpc_binning_mask;
+ u64 dram_enabled_mask;
+ u64 dram_binning_mask;
+ u64 dram_hints_align_mask;
+ u64 cfg_base_address;
+ u64 mmu_cache_mng_addr;
+ u64 mmu_cache_mng_size;
+ u64 device_dma_offset_for_host_access;
+ u64 host_base_address;
+ u64 host_end_address;
+ u64 max_freq_value;
+ u64 engine_core_interrupt_reg_addr;
+ u32 clk_pll_index;
+ u32 mmu_pgt_size;
+ u32 mmu_pte_size;
+ u32 mmu_hop_table_size;
+ u32 mmu_hop0_tables_total_size;
+ u32 dram_page_size;
+ u32 cfg_size;
+ u32 sram_size;
+ u32 max_asid;
+ u32 num_of_events;
+ u32 psoc_pci_pll_nr;
+ u32 psoc_pci_pll_nf;
+ u32 psoc_pci_pll_od;
+ u32 psoc_pci_pll_div_factor;
+ u32 psoc_timestamp_frequency;
+ u32 high_pll;
+ u32 cb_pool_cb_cnt;
+ u32 cb_pool_cb_size;
+ u32 decoder_enabled_mask;
+ u32 decoder_binning_mask;
+ u32 rotator_enabled_mask;
+ u32 edma_enabled_mask;
+ u32 edma_binning_mask;
+ u32 max_pending_cs;
+ u32 max_queues;
+ u32 fw_preboot_cpu_boot_dev_sts0;
+ u32 fw_preboot_cpu_boot_dev_sts1;
+ u32 fw_bootfit_cpu_boot_dev_sts0;
+ u32 fw_bootfit_cpu_boot_dev_sts1;
+ u32 fw_app_cpu_boot_dev_sts0;
+ u32 fw_app_cpu_boot_dev_sts1;
+ u32 max_dec;
+ u32 hmmu_hif_enabled_mask;
+ u32 faulty_dram_cluster_map;
+ u32 xbar_edge_enabled_mask;
+ u32 device_mem_alloc_default_page_size;
+ u32 num_engine_cores;
+ u32 max_num_of_engines;
+ u32 num_of_special_blocks;
+ u32 glbl_err_cause_num;
+ u32 hbw_flush_reg;
+ u16 collective_first_sob;
+ u16 collective_first_mon;
+ u16 sync_stream_first_sob;
+ u16 sync_stream_first_mon;
+ u16 first_available_user_sob[HL_MAX_DCORES];
+ u16 first_available_user_mon[HL_MAX_DCORES];
+ u16 first_available_user_interrupt;
+ u16 first_available_cq[HL_MAX_DCORES];
+ u16 user_interrupt_count;
+ u16 user_dec_intr_count;
+ u16 tpc_interrupt_id;
+ u16 eq_interrupt_id;
+ u16 cache_line_size;
+ u16 server_type;
+ u8 completion_queues_count;
+ u8 completion_mode;
+ u8 mme_master_slave_mode;
+ u8 fw_security_enabled;
+ u8 fw_cpu_boot_dev_sts0_valid;
+ u8 fw_cpu_boot_dev_sts1_valid;
+ u8 dram_supports_virtual_memory;
+ u8 hard_reset_done_by_fw;
+ u8 num_functional_hbms;
+ u8 hints_range_reservation;
+ u8 iatu_done_by_fw;
+ u8 dynamic_fw_load;
+ u8 gic_interrupts_enable;
+ u8 use_get_power_for_reset_history;
+ u8 supports_compute_reset;
+ u8 allow_inference_soft_reset;
+ u8 configurable_stop_on_err;
+ u8 set_max_power_on_device_init;
+ u8 supports_user_set_page_size;
+ u8 dma_mask;
+ u8 supports_advanced_cpucp_rc;
+ u8 supports_engine_modes;
+};
+
+/**
+ * struct hl_fence - software synchronization primitive
+ * @completion: fence is implemented using completion
+ * @refcount: refcount for this fence
+ * @cs_sequence: sequence of the corresponding command submission
+ * @stream_master_qid_map: streams masters QID bitmap to represent all streams
+ * masters QIDs that multi cs is waiting on
+ * @error: mark this fence with error
+ * @timestamp: timestamp upon completion
+ * @mcs_handling_done: indicates that corresponding command submission has
+ * finished msc handling, this does not mean it was part
+ * of the mcs
+ */
+struct hl_fence {
+ struct completion completion;
+ struct kref refcount;
+ u64 cs_sequence;
+ u32 stream_master_qid_map;
+ int error;
+ ktime_t timestamp;
+ u8 mcs_handling_done;
+};
+
+/**
+ * struct hl_cs_compl - command submission completion object.
+ * @base_fence: hl fence object.
+ * @lock: spinlock to protect fence.
+ * @hdev: habanalabs device structure.
+ * @hw_sob: the H/W SOB used in this signal/wait CS.
+ * @encaps_sig_hdl: encaps signals handler.
+ * @cs_seq: command submission sequence number.
+ * @type: type of the CS - signal/wait.
+ * @sob_val: the SOB value that is used in this signal/wait CS.
+ * @sob_group: the SOB group that is used in this collective wait CS.
+ * @encaps_signals: indication whether it's a completion object of cs with
+ * encaps signals or not.
+ */
+struct hl_cs_compl {
+ struct hl_fence base_fence;
+ spinlock_t lock;
+ struct hl_device *hdev;
+ struct hl_hw_sob *hw_sob;
+ struct hl_cs_encaps_sig_handle *encaps_sig_hdl;
+ u64 cs_seq;
+ enum hl_cs_type type;
+ u16 sob_val;
+ u16 sob_group;
+ bool encaps_signals;
+};
+
+/*
+ * Command Buffers
+ */
+
+/**
+ * struct hl_ts_buff - describes a timestamp buffer.
+ * @kernel_buff_address: Holds the internal buffer's kernel virtual address.
+ * @user_buff_address: Holds the user buffer's kernel virtual address.
+ * @kernel_buff_size: Holds the internal kernel buffer size.
+ */
+struct hl_ts_buff {
+ void *kernel_buff_address;
+ void *user_buff_address;
+ u32 kernel_buff_size;
+};
+
+struct hl_mmap_mem_buf;
+
+/**
+ * struct hl_mem_mgr - describes unified memory manager for mappable memory chunks.
+ * @dev: back pointer to the owning device
+ * @lock: protects handles
+ * @handles: an idr holding all active handles to the memory buffers in the system.
+ */
+struct hl_mem_mgr {
+ struct device *dev;
+ spinlock_t lock;
+ struct idr handles;
+};
+
+/**
+ * struct hl_mmap_mem_buf_behavior - describes unified memory manager buffer behavior
+ * @topic: string identifier used for logging
+ * @mem_id: memory type identifier, embedded in the handle and used to identify
+ * the memory type by handle.
+ * @alloc: callback executed on buffer allocation, shall allocate the memory,
+ * set it under buffer private, and set mappable size.
+ * @mmap: callback executed on mmap, must map the buffer to vma
+ * @release: callback executed on release, must free the resources used by the buffer
+ */
+struct hl_mmap_mem_buf_behavior {
+ const char *topic;
+ u64 mem_id;
+
+ int (*alloc)(struct hl_mmap_mem_buf *buf, gfp_t gfp, void *args);
+ int (*mmap)(struct hl_mmap_mem_buf *buf, struct vm_area_struct *vma, void *args);
+ void (*release)(struct hl_mmap_mem_buf *buf);
+};
+
+/**
+ * struct hl_mmap_mem_buf - describes a single unified memory buffer
+ * @behavior: buffer behavior
+ * @mmg: back pointer to the unified memory manager
+ * @refcount: reference counter for buffer users
+ * @private: pointer to buffer behavior private data
+ * @mmap: atomic boolean indicating whether or not the buffer is mapped right now
+ * @real_mapped_size: the actual size of buffer mapped, after part of it may be released,
+ * may change at runtime.
+ * @mappable_size: the original mappable size of the buffer, does not change after
+ * the allocation.
+ * @handle: the buffer id in mmg handles store
+ */
+struct hl_mmap_mem_buf {
+ struct hl_mmap_mem_buf_behavior *behavior;
+ struct hl_mem_mgr *mmg;
+ struct kref refcount;
+ void *private;
+ atomic_t mmap;
+ u64 real_mapped_size;
+ u64 mappable_size;
+ u64 handle;
+};
+
+/**
+ * struct hl_cb - describes a Command Buffer.
+ * @hdev: pointer to device this CB belongs to.
+ * @ctx: pointer to the CB owner's context.
+ * @buf: back pointer to the parent mappable memory buffer
+ * @debugfs_list: node in debugfs list of command buffers.
+ * @pool_list: node in pool list of command buffers.
+ * @kernel_address: Holds the CB's kernel virtual address.
+ * @virtual_addr: Holds the CB's virtual address.
+ * @bus_address: Holds the CB's DMA address.
+ * @size: holds the CB's size.
+ * @roundup_size: holds the cb size after roundup to page size.
+ * @cs_cnt: holds number of CS that this CB participates in.
+ * @is_handle_destroyed: atomic boolean indicating whether or not the CB handle was destroyed.
+ * @is_pool: true if CB was acquired from the pool, false otherwise.
+ * @is_internal: internally allocated
+ * @is_mmu_mapped: true if the CB is mapped to the device's MMU.
+ */
+struct hl_cb {
+ struct hl_device *hdev;
+ struct hl_ctx *ctx;
+ struct hl_mmap_mem_buf *buf;
+ struct list_head debugfs_list;
+ struct list_head pool_list;
+ void *kernel_address;
+ u64 virtual_addr;
+ dma_addr_t bus_address;
+ u32 size;
+ u32 roundup_size;
+ atomic_t cs_cnt;
+ atomic_t is_handle_destroyed;
+ u8 is_pool;
+ u8 is_internal;
+ u8 is_mmu_mapped;
+};
+
+
+/*
+ * QUEUES
+ */
+
+struct hl_cs_job;
+
+/* Queue length of external and HW queues */
+#define HL_QUEUE_LENGTH 4096
+#define HL_QUEUE_SIZE_IN_BYTES (HL_QUEUE_LENGTH * HL_BD_SIZE)
+
+#if (HL_MAX_JOBS_PER_CS > HL_QUEUE_LENGTH)
+#error "HL_QUEUE_LENGTH must be greater than HL_MAX_JOBS_PER_CS"
+#endif
+
+/* HL_CQ_LENGTH is in units of struct hl_cq_entry */
+#define HL_CQ_LENGTH HL_QUEUE_LENGTH
+#define HL_CQ_SIZE_IN_BYTES (HL_CQ_LENGTH * HL_CQ_ENTRY_SIZE)
+
+/* Must be power of 2 */
+#define HL_EQ_LENGTH 64
+#define HL_EQ_SIZE_IN_BYTES (HL_EQ_LENGTH * HL_EQ_ENTRY_SIZE)
+
+/* Host <-> CPU-CP shared memory size */
+#define HL_CPU_ACCESSIBLE_MEM_SIZE SZ_2M
+
+/**
+ * struct hl_sync_stream_properties -
+ * describes a H/W queue sync stream properties
+ * @hw_sob: array of the used H/W SOBs by this H/W queue.
+ * @next_sob_val: the next value to use for the currently used SOB.
+ * @base_sob_id: the base SOB id of the SOBs used by this queue.
+ * @base_mon_id: the base MON id of the MONs used by this queue.
+ * @collective_mstr_mon_id: the MON ids of the MONs used by this master queue
+ * in order to sync with all slave queues.
+ * @collective_slave_mon_id: the MON id used by this slave queue in order to
+ * sync with its master queue.
+ * @collective_sob_id: current SOB id used by this collective slave queue
+ * to signal its collective master queue upon completion.
+ * @curr_sob_offset: the id offset to the currently used SOB from the
+ * HL_RSVD_SOBS that are being used by this queue.
+ */
+struct hl_sync_stream_properties {
+ struct hl_hw_sob hw_sob[HL_RSVD_SOBS];
+ u16 next_sob_val;
+ u16 base_sob_id;
+ u16 base_mon_id;
+ u16 collective_mstr_mon_id[HL_COLLECTIVE_RSVD_MSTR_MONS];
+ u16 collective_slave_mon_id;
+ u16 collective_sob_id;
+ u8 curr_sob_offset;
+};
+
+/**
+ * struct hl_encaps_signals_mgr - describes sync stream encapsulated signals
+ * handlers manager
+ * @lock: protects handles.
+ * @handles: an idr to hold all encapsulated signals handles.
+ */
+struct hl_encaps_signals_mgr {
+ spinlock_t lock;
+ struct idr handles;
+};
+
+/**
+ * struct hl_hw_queue - describes a H/W transport queue.
+ * @shadow_queue: pointer to a shadow queue that holds pointers to jobs.
+ * @sync_stream_prop: sync stream queue properties
+ * @queue_type: type of queue.
+ * @collective_mode: collective mode of current queue
+ * @kernel_address: holds the queue's kernel virtual address.
+ * @bus_address: holds the queue's DMA address.
+ * @pi: holds the queue's pi value.
+ * @ci: holds the queue's ci value, AS CALCULATED BY THE DRIVER (not real ci).
+ * @hw_queue_id: the id of the H/W queue.
+ * @cq_id: the id for the corresponding CQ for this H/W queue.
+ * @msi_vec: the IRQ number of the H/W queue.
+ * @int_queue_len: length of internal queue (number of entries).
+ * @valid: is the queue valid (we have array of 32 queues, not all of them
+ * exist).
+ * @supports_sync_stream: True if queue supports sync stream
+ */
+struct hl_hw_queue {
+ struct hl_cs_job **shadow_queue;
+ struct hl_sync_stream_properties sync_stream_prop;
+ enum hl_queue_type queue_type;
+ enum hl_collective_mode collective_mode;
+ void *kernel_address;
+ dma_addr_t bus_address;
+ u32 pi;
+ atomic_t ci;
+ u32 hw_queue_id;
+ u32 cq_id;
+ u32 msi_vec;
+ u16 int_queue_len;
+ u8 valid;
+ u8 supports_sync_stream;
+};
+
+/**
+ * struct hl_cq - describes a completion queue
+ * @hdev: pointer to the device structure
+ * @kernel_address: holds the queue's kernel virtual address
+ * @bus_address: holds the queue's DMA address
+ * @cq_idx: completion queue index in array
+ * @hw_queue_id: the id of the matching H/W queue
+ * @ci: ci inside the queue
+ * @pi: pi inside the queue
+ * @free_slots_cnt: counter of free slots in queue
+ */
+struct hl_cq {
+ struct hl_device *hdev;
+ void *kernel_address;
+ dma_addr_t bus_address;
+ u32 cq_idx;
+ u32 hw_queue_id;
+ u32 ci;
+ u32 pi;
+ atomic_t free_slots_cnt;
+};
+
+enum hl_user_interrupt_type {
+ HL_USR_INTERRUPT_CQ = 0,
+ HL_USR_INTERRUPT_DECODER,
+ HL_USR_INTERRUPT_TPC,
+ HL_USR_INTERRUPT_UNEXPECTED
+};
+
+/**
+ * struct hl_user_interrupt - holds user interrupt information
+ * @hdev: pointer to the device structure
+ * @type: user interrupt type
+ * @wait_list_head: head to the list of user threads pending on this interrupt
+ * @wait_list_lock: protects wait_list_head
+ * @timestamp: last timestamp taken upon interrupt
+ * @interrupt_id: msix interrupt id
+ */
+struct hl_user_interrupt {
+ struct hl_device *hdev;
+ enum hl_user_interrupt_type type;
+ struct list_head wait_list_head;
+ spinlock_t wait_list_lock;
+ ktime_t timestamp;
+ u32 interrupt_id;
+};
+
+/**
+ * struct timestamp_reg_free_node - holds the timestamp registration free objects node
+ * @free_objects_node: node in the list free_obj_jobs
+ * @cq_cb: pointer to cq command buffer to be freed
+ * @buf: pointer to timestamp buffer to be freed
+ */
+struct timestamp_reg_free_node {
+ struct list_head free_objects_node;
+ struct hl_cb *cq_cb;
+ struct hl_mmap_mem_buf *buf;
+};
+
+/* struct timestamp_reg_work_obj - holds the timestamp registration free objects job
+ * the job will be to pass over the free_obj_jobs list and put refcount to objects
+ * in each node of the list
+ * @free_obj: workqueue object to free timestamp registration node objects
+ * @hdev: pointer to the device structure
+ * @free_obj_head: list of free jobs nodes (node type timestamp_reg_free_node)
+ */
+struct timestamp_reg_work_obj {
+ struct work_struct free_obj;
+ struct hl_device *hdev;
+ struct list_head *free_obj_head;
+};
+
+/* struct timestamp_reg_info - holds the timestamp registration related data.
+ * @buf: pointer to the timestamp buffer which include both user/kernel buffers.
+ * relevant only when doing timestamps records registration.
+ * @cq_cb: pointer to CQ counter CB.
+ * @timestamp_kernel_addr: timestamp handle address, where to set timestamp
+ * relevant only when doing timestamps records
+ * registration.
+ * @in_use: indicates if the node already in use. relevant only when doing
+ * timestamps records registration, since in this case the driver
+ * will have it's own buffer which serve as a records pool instead of
+ * allocating records dynamically.
+ */
+struct timestamp_reg_info {
+ struct hl_mmap_mem_buf *buf;
+ struct hl_cb *cq_cb;
+ u64 *timestamp_kernel_addr;
+ u8 in_use;
+};
+
+/**
+ * struct hl_user_pending_interrupt - holds a context to a user thread
+ * pending on an interrupt
+ * @ts_reg_info: holds the timestamps registration nodes info
+ * @wait_list_node: node in the list of user threads pending on an interrupt
+ * @fence: hl fence object for interrupt completion
+ * @cq_target_value: CQ target value
+ * @cq_kernel_addr: CQ kernel address, to be used in the cq interrupt
+ * handler for target value comparison
+ */
+struct hl_user_pending_interrupt {
+ struct timestamp_reg_info ts_reg_info;
+ struct list_head wait_list_node;
+ struct hl_fence fence;
+ u64 cq_target_value;
+ u64 *cq_kernel_addr;
+};
+
+/**
+ * struct hl_eq - describes the event queue (single one per device)
+ * @hdev: pointer to the device structure
+ * @kernel_address: holds the queue's kernel virtual address
+ * @bus_address: holds the queue's DMA address
+ * @ci: ci inside the queue
+ * @prev_eqe_index: the index of the previous event queue entry. The index of
+ * the current entry's index must be +1 of the previous one.
+ * @check_eqe_index: do we need to check the index of the current entry vs. the
+ * previous one. This is for backward compatibility with older
+ * firmwares
+ */
+struct hl_eq {
+ struct hl_device *hdev;
+ void *kernel_address;
+ dma_addr_t bus_address;
+ u32 ci;
+ u32 prev_eqe_index;
+ bool check_eqe_index;
+};
+
+/**
+ * struct hl_dec - describes a decoder sw instance.
+ * @hdev: pointer to the device structure.
+ * @abnrm_intr_work: workqueue work item to run when decoder generates an error interrupt.
+ * @core_id: ID of the decoder.
+ * @base_addr: base address of the decoder.
+ */
+struct hl_dec {
+ struct hl_device *hdev;
+ struct work_struct abnrm_intr_work;
+ u32 core_id;
+ u32 base_addr;
+};
+
+/**
+ * enum hl_asic_type - supported ASIC types.
+ * @ASIC_INVALID: Invalid ASIC type.
+ * @ASIC_GOYA: Goya device (HL-1000).
+ * @ASIC_GAUDI: Gaudi device (HL-2000).
+ * @ASIC_GAUDI_SEC: Gaudi secured device (HL-2000).
+ * @ASIC_GAUDI2: Gaudi2 device.
+ * @ASIC_GAUDI2B: Gaudi2B device.
+ */
+enum hl_asic_type {
+ ASIC_INVALID,
+ ASIC_GOYA,
+ ASIC_GAUDI,
+ ASIC_GAUDI_SEC,
+ ASIC_GAUDI2,
+ ASIC_GAUDI2B,
+};
+
+struct hl_cs_parser;
+
+/**
+ * enum hl_pm_mng_profile - power management profile.
+ * @PM_AUTO: internal clock is set by the Linux driver.
+ * @PM_MANUAL: internal clock is set by the user.
+ * @PM_LAST: last power management type.
+ */
+enum hl_pm_mng_profile {
+ PM_AUTO = 1,
+ PM_MANUAL,
+ PM_LAST
+};
+
+/**
+ * enum hl_pll_frequency - PLL frequency.
+ * @PLL_HIGH: high frequency.
+ * @PLL_LOW: low frequency.
+ * @PLL_LAST: last frequency values that were configured by the user.
+ */
+enum hl_pll_frequency {
+ PLL_HIGH = 1,
+ PLL_LOW,
+ PLL_LAST
+};
+
+#define PLL_REF_CLK 50
+
+enum div_select_defs {
+ DIV_SEL_REF_CLK = 0,
+ DIV_SEL_PLL_CLK = 1,
+ DIV_SEL_DIVIDED_REF = 2,
+ DIV_SEL_DIVIDED_PLL = 3,
+};
+
+enum debugfs_access_type {
+ DEBUGFS_READ8,
+ DEBUGFS_WRITE8,
+ DEBUGFS_READ32,
+ DEBUGFS_WRITE32,
+ DEBUGFS_READ64,
+ DEBUGFS_WRITE64,
+};
+
+enum pci_region {
+ PCI_REGION_CFG,
+ PCI_REGION_SRAM,
+ PCI_REGION_DRAM,
+ PCI_REGION_SP_SRAM,
+ PCI_REGION_NUMBER,
+};
+
+/**
+ * struct pci_mem_region - describe memory region in a PCI bar
+ * @region_base: region base address
+ * @region_size: region size
+ * @bar_size: size of the BAR
+ * @offset_in_bar: region offset into the bar
+ * @bar_id: bar ID of the region
+ * @used: if used 1, otherwise 0
+ */
+struct pci_mem_region {
+ u64 region_base;
+ u64 region_size;
+ u64 bar_size;
+ u64 offset_in_bar;
+ u8 bar_id;
+ u8 used;
+};
+
+/**
+ * struct static_fw_load_mgr - static FW load manager
+ * @preboot_version_max_off: max offset to preboot version
+ * @boot_fit_version_max_off: max offset to boot fit version
+ * @kmd_msg_to_cpu_reg: register address for KDM->CPU messages
+ * @cpu_cmd_status_to_host_reg: register address for CPU command status response
+ * @cpu_boot_status_reg: boot status register
+ * @cpu_boot_dev_status0_reg: boot device status register 0
+ * @cpu_boot_dev_status1_reg: boot device status register 1
+ * @boot_err0_reg: boot error register 0
+ * @boot_err1_reg: boot error register 1
+ * @preboot_version_offset_reg: SRAM offset to preboot version register
+ * @boot_fit_version_offset_reg: SRAM offset to boot fit version register
+ * @sram_offset_mask: mask for getting offset into the SRAM
+ * @cpu_reset_wait_msec: used when setting WFE via kmd_msg_to_cpu_reg
+ */
+struct static_fw_load_mgr {
+ u64 preboot_version_max_off;
+ u64 boot_fit_version_max_off;
+ u32 kmd_msg_to_cpu_reg;
+ u32 cpu_cmd_status_to_host_reg;
+ u32 cpu_boot_status_reg;
+ u32 cpu_boot_dev_status0_reg;
+ u32 cpu_boot_dev_status1_reg;
+ u32 boot_err0_reg;
+ u32 boot_err1_reg;
+ u32 preboot_version_offset_reg;
+ u32 boot_fit_version_offset_reg;
+ u32 sram_offset_mask;
+ u32 cpu_reset_wait_msec;
+};
+
+/**
+ * struct fw_response - FW response to LKD command
+ * @ram_offset: descriptor offset into the RAM
+ * @ram_type: RAM type containing the descriptor (SRAM/DRAM)
+ * @status: command status
+ */
+struct fw_response {
+ u32 ram_offset;
+ u8 ram_type;
+ u8 status;
+};
+
+/**
+ * struct dynamic_fw_load_mgr - dynamic FW load manager
+ * @response: FW to LKD response
+ * @comm_desc: the communication descriptor with FW
+ * @image_region: region to copy the FW image to
+ * @fw_image_size: size of FW image to load
+ * @wait_for_bl_timeout: timeout for waiting for boot loader to respond
+ * @fw_desc_valid: true if FW descriptor has been validated and hence the data can be used
+ */
+struct dynamic_fw_load_mgr {
+ struct fw_response response;
+ struct lkd_fw_comms_desc comm_desc;
+ struct pci_mem_region *image_region;
+ size_t fw_image_size;
+ u32 wait_for_bl_timeout;
+ bool fw_desc_valid;
+};
+
+/**
+ * struct pre_fw_load_props - needed properties for pre-FW load
+ * @cpu_boot_status_reg: cpu_boot_status register address
+ * @sts_boot_dev_sts0_reg: sts_boot_dev_sts0 register address
+ * @sts_boot_dev_sts1_reg: sts_boot_dev_sts1 register address
+ * @boot_err0_reg: boot_err0 register address
+ * @boot_err1_reg: boot_err1 register address
+ * @wait_for_preboot_timeout: timeout to poll for preboot ready
+ */
+struct pre_fw_load_props {
+ u32 cpu_boot_status_reg;
+ u32 sts_boot_dev_sts0_reg;
+ u32 sts_boot_dev_sts1_reg;
+ u32 boot_err0_reg;
+ u32 boot_err1_reg;
+ u32 wait_for_preboot_timeout;
+};
+
+/**
+ * struct fw_image_props - properties of FW image
+ * @image_name: name of the image
+ * @src_off: offset in src FW to copy from
+ * @copy_size: amount of bytes to copy (0 to copy the whole binary)
+ */
+struct fw_image_props {
+ char *image_name;
+ u32 src_off;
+ u32 copy_size;
+};
+
+/**
+ * struct fw_load_mgr - manager FW loading process
+ * @dynamic_loader: specific structure for dynamic load
+ * @static_loader: specific structure for static load
+ * @pre_fw_load_props: parameter for pre FW load
+ * @boot_fit_img: boot fit image properties
+ * @linux_img: linux image properties
+ * @cpu_timeout: CPU response timeout in usec
+ * @boot_fit_timeout: Boot fit load timeout in usec
+ * @skip_bmc: should BMC be skipped
+ * @sram_bar_id: SRAM bar ID
+ * @dram_bar_id: DRAM bar ID
+ * @fw_comp_loaded: bitmask of loaded FW components. set bit meaning loaded
+ * component. values are set according to enum hl_fw_types.
+ */
+struct fw_load_mgr {
+ union {
+ struct dynamic_fw_load_mgr dynamic_loader;
+ struct static_fw_load_mgr static_loader;
+ };
+ struct pre_fw_load_props pre_fw_load;
+ struct fw_image_props boot_fit_img;
+ struct fw_image_props linux_img;
+ u32 cpu_timeout;
+ u32 boot_fit_timeout;
+ u8 skip_bmc;
+ u8 sram_bar_id;
+ u8 dram_bar_id;
+ u8 fw_comp_loaded;
+};
+
+struct hl_cs;
+
+/**
+ * struct engines_data - asic engines data
+ * @buf: buffer for engines data in ascii
+ * @actual_size: actual size of data that was written by the driver to the allocated buffer
+ * @allocated_buf_size: total size of allocated buffer
+ */
+struct engines_data {
+ char *buf;
+ int actual_size;
+ u32 allocated_buf_size;
+};
+
+/**
+ * struct hl_asic_funcs - ASIC specific functions that are can be called from
+ * common code.
+ * @early_init: sets up early driver state (pre sw_init), doesn't configure H/W.
+ * @early_fini: tears down what was done in early_init.
+ * @late_init: sets up late driver/hw state (post hw_init) - Optional.
+ * @late_fini: tears down what was done in late_init (pre hw_fini) - Optional.
+ * @sw_init: sets up driver state, does not configure H/W.
+ * @sw_fini: tears down driver state, does not configure H/W.
+ * @hw_init: sets up the H/W state.
+ * @hw_fini: tears down the H/W state.
+ * @halt_engines: halt engines, needed for reset sequence. This also disables
+ * interrupts from the device. Should be called before
+ * hw_fini and before CS rollback.
+ * @suspend: handles IP specific H/W or SW changes for suspend.
+ * @resume: handles IP specific H/W or SW changes for resume.
+ * @mmap: maps a memory.
+ * @ring_doorbell: increment PI on a given QMAN.
+ * @pqe_write: Write the PQ entry to the PQ. This is ASIC-specific
+ * function because the PQs are located in different memory areas
+ * per ASIC (SRAM, DRAM, Host memory) and therefore, the method of
+ * writing the PQE must match the destination memory area
+ * properties.
+ * @asic_dma_alloc_coherent: Allocate coherent DMA memory by calling
+ * dma_alloc_coherent(). This is ASIC function because
+ * its implementation is not trivial when the driver
+ * is loaded in simulation mode (not upstreamed).
+ * @asic_dma_free_coherent: Free coherent DMA memory by calling
+ * dma_free_coherent(). This is ASIC function because
+ * its implementation is not trivial when the driver
+ * is loaded in simulation mode (not upstreamed).
+ * @scrub_device_mem: Scrub the entire SRAM and DRAM.
+ * @scrub_device_dram: Scrub the dram memory of the device.
+ * @get_int_queue_base: get the internal queue base address.
+ * @test_queues: run simple test on all queues for sanity check.
+ * @asic_dma_pool_zalloc: small DMA allocation of coherent memory from DMA pool.
+ * size of allocation is HL_DMA_POOL_BLK_SIZE.
+ * @asic_dma_pool_free: free small DMA allocation from pool.
+ * @cpu_accessible_dma_pool_alloc: allocate CPU PQ packet from DMA pool.
+ * @cpu_accessible_dma_pool_free: free CPU PQ packet from DMA pool.
+ * @asic_dma_unmap_single: unmap a single DMA buffer
+ * @asic_dma_map_single: map a single buffer to a DMA
+ * @hl_dma_unmap_sgtable: DMA unmap scatter-gather table.
+ * @cs_parser: parse Command Submission.
+ * @asic_dma_map_sgtable: DMA map scatter-gather table.
+ * @add_end_of_cb_packets: Add packets to the end of CB, if device requires it.
+ * @update_eq_ci: update event queue CI.
+ * @context_switch: called upon ASID context switch.
+ * @restore_phase_topology: clear all SOBs amd MONs.
+ * @debugfs_read_dma: debug interface for reading up to 2MB from the device's
+ * internal memory via DMA engine.
+ * @add_device_attr: add ASIC specific device attributes.
+ * @handle_eqe: handle event queue entry (IRQ) from CPU-CP.
+ * @get_events_stat: retrieve event queue entries histogram.
+ * @read_pte: read MMU page table entry from DRAM.
+ * @write_pte: write MMU page table entry to DRAM.
+ * @mmu_invalidate_cache: flush MMU STLB host/DRAM cache, either with soft
+ * (L1 only) or hard (L0 & L1) flush.
+ * @mmu_invalidate_cache_range: flush specific MMU STLB cache lines with ASID-VA-size mask.
+ * @mmu_prefetch_cache_range: pre-fetch specific MMU STLB cache lines with ASID-VA-size mask.
+ * @send_heartbeat: send is-alive packet to CPU-CP and verify response.
+ * @debug_coresight: perform certain actions on Coresight for debugging.
+ * @is_device_idle: return true if device is idle, false otherwise.
+ * @compute_reset_late_init: perform certain actions needed after a compute reset
+ * @hw_queues_lock: acquire H/W queues lock.
+ * @hw_queues_unlock: release H/W queues lock.
+ * @get_pci_id: retrieve PCI ID.
+ * @get_eeprom_data: retrieve EEPROM data from F/W.
+ * @get_monitor_dump: retrieve monitor registers dump from F/W.
+ * @send_cpu_message: send message to F/W. If the message is timedout, the
+ * driver will eventually reset the device. The timeout can
+ * be determined by the calling function or it can be 0 and
+ * then the timeout is the default timeout for the specific
+ * ASIC
+ * @get_hw_state: retrieve the H/W state
+ * @pci_bars_map: Map PCI BARs.
+ * @init_iatu: Initialize the iATU unit inside the PCI controller.
+ * @rreg: Read a register. Needed for simulator support.
+ * @wreg: Write a register. Needed for simulator support.
+ * @halt_coresight: stop the ETF and ETR traces.
+ * @ctx_init: context dependent initialization.
+ * @ctx_fini: context dependent cleanup.
+ * @pre_schedule_cs: Perform pre-CS-scheduling operations.
+ * @get_queue_id_for_cq: Get the H/W queue id related to the given CQ index.
+ * @load_firmware_to_device: load the firmware to the device's memory
+ * @load_boot_fit_to_device: load boot fit to device's memory
+ * @get_signal_cb_size: Get signal CB size.
+ * @get_wait_cb_size: Get wait CB size.
+ * @gen_signal_cb: Generate a signal CB.
+ * @gen_wait_cb: Generate a wait CB.
+ * @reset_sob: Reset a SOB.
+ * @reset_sob_group: Reset SOB group
+ * @get_device_time: Get the device time.
+ * @pb_print_security_errors: print security errors according block and cause
+ * @collective_wait_init_cs: Generate collective master/slave packets
+ * and place them in the relevant cs jobs
+ * @collective_wait_create_jobs: allocate collective wait cs jobs
+ * @get_dec_base_addr: get the base address of a given decoder.
+ * @scramble_addr: Routine to scramble the address prior of mapping it
+ * in the MMU.
+ * @descramble_addr: Routine to de-scramble the address prior of
+ * showing it to users.
+ * @ack_protection_bits_errors: ack and dump all security violations
+ * @get_hw_block_id: retrieve a HW block id to be used by the user to mmap it.
+ * also returns the size of the block if caller supplies
+ * a valid pointer for it
+ * @hw_block_mmap: mmap a HW block with a given id.
+ * @enable_events_from_fw: send interrupt to firmware to notify them the
+ * driver is ready to receive asynchronous events. This
+ * function should be called during the first init and
+ * after every hard-reset of the device
+ * @ack_mmu_errors: check and ack mmu errors, page fault, access violation.
+ * @get_msi_info: Retrieve asic-specific MSI ID of the f/w async event
+ * @map_pll_idx_to_fw_idx: convert driver specific per asic PLL index to
+ * generic f/w compatible PLL Indexes
+ * @init_firmware_preload_params: initialize pre FW-load parameters.
+ * @init_firmware_loader: initialize data for FW loader.
+ * @init_cpu_scrambler_dram: Enable CPU specific DRAM scrambling
+ * @state_dump_init: initialize constants required for state dump
+ * @get_sob_addr: get SOB base address offset.
+ * @set_pci_memory_regions: setting properties of PCI memory regions
+ * @get_stream_master_qid_arr: get pointer to stream masters QID array
+ * @check_if_razwi_happened: check if there was a razwi due to RR violation.
+ * @access_dev_mem: access device memory
+ * @set_dram_bar_base: set the base of the DRAM BAR
+ * @set_engine_cores: set a config command to engine cores
+ * @set_engines: set a config command to user engines
+ * @send_device_activity: indication to FW about device availability
+ * @set_dram_properties: set DRAM related properties.
+ * @set_binning_masks: set binning/enable masks for all relevant components.
+ */
+struct hl_asic_funcs {
+ int (*early_init)(struct hl_device *hdev);
+ int (*early_fini)(struct hl_device *hdev);
+ int (*late_init)(struct hl_device *hdev);
+ void (*late_fini)(struct hl_device *hdev);
+ int (*sw_init)(struct hl_device *hdev);
+ int (*sw_fini)(struct hl_device *hdev);
+ int (*hw_init)(struct hl_device *hdev);
+ int (*hw_fini)(struct hl_device *hdev, bool hard_reset, bool fw_reset);
+ void (*halt_engines)(struct hl_device *hdev, bool hard_reset, bool fw_reset);
+ int (*suspend)(struct hl_device *hdev);
+ int (*resume)(struct hl_device *hdev);
+ int (*mmap)(struct hl_device *hdev, struct vm_area_struct *vma,
+ void *cpu_addr, dma_addr_t dma_addr, size_t size);
+ void (*ring_doorbell)(struct hl_device *hdev, u32 hw_queue_id, u32 pi);
+ void (*pqe_write)(struct hl_device *hdev, __le64 *pqe,
+ struct hl_bd *bd);
+ void* (*asic_dma_alloc_coherent)(struct hl_device *hdev, size_t size,
+ dma_addr_t *dma_handle, gfp_t flag);
+ void (*asic_dma_free_coherent)(struct hl_device *hdev, size_t size,
+ void *cpu_addr, dma_addr_t dma_handle);
+ int (*scrub_device_mem)(struct hl_device *hdev);
+ int (*scrub_device_dram)(struct hl_device *hdev, u64 val);
+ void* (*get_int_queue_base)(struct hl_device *hdev, u32 queue_id,
+ dma_addr_t *dma_handle, u16 *queue_len);
+ int (*test_queues)(struct hl_device *hdev);
+ void* (*asic_dma_pool_zalloc)(struct hl_device *hdev, size_t size,
+ gfp_t mem_flags, dma_addr_t *dma_handle);
+ void (*asic_dma_pool_free)(struct hl_device *hdev, void *vaddr,
+ dma_addr_t dma_addr);
+ void* (*cpu_accessible_dma_pool_alloc)(struct hl_device *hdev,
+ size_t size, dma_addr_t *dma_handle);
+ void (*cpu_accessible_dma_pool_free)(struct hl_device *hdev,
+ size_t size, void *vaddr);
+ void (*asic_dma_unmap_single)(struct hl_device *hdev,
+ dma_addr_t dma_addr, int len,
+ enum dma_data_direction dir);
+ dma_addr_t (*asic_dma_map_single)(struct hl_device *hdev,
+ void *addr, int len,
+ enum dma_data_direction dir);
+ void (*hl_dma_unmap_sgtable)(struct hl_device *hdev,
+ struct sg_table *sgt,
+ enum dma_data_direction dir);
+ int (*cs_parser)(struct hl_device *hdev, struct hl_cs_parser *parser);
+ int (*asic_dma_map_sgtable)(struct hl_device *hdev, struct sg_table *sgt,
+ enum dma_data_direction dir);
+ void (*add_end_of_cb_packets)(struct hl_device *hdev,
+ void *kernel_address, u32 len,
+ u32 original_len,
+ u64 cq_addr, u32 cq_val, u32 msix_num,
+ bool eb);
+ void (*update_eq_ci)(struct hl_device *hdev, u32 val);
+ int (*context_switch)(struct hl_device *hdev, u32 asid);
+ void (*restore_phase_topology)(struct hl_device *hdev);
+ int (*debugfs_read_dma)(struct hl_device *hdev, u64 addr, u32 size,
+ void *blob_addr);
+ void (*add_device_attr)(struct hl_device *hdev, struct attribute_group *dev_clk_attr_grp,
+ struct attribute_group *dev_vrm_attr_grp);
+ void (*handle_eqe)(struct hl_device *hdev,
+ struct hl_eq_entry *eq_entry);
+ void* (*get_events_stat)(struct hl_device *hdev, bool aggregate,
+ u32 *size);
+ u64 (*read_pte)(struct hl_device *hdev, u64 addr);
+ void (*write_pte)(struct hl_device *hdev, u64 addr, u64 val);
+ int (*mmu_invalidate_cache)(struct hl_device *hdev, bool is_hard,
+ u32 flags);
+ int (*mmu_invalidate_cache_range)(struct hl_device *hdev, bool is_hard,
+ u32 flags, u32 asid, u64 va, u64 size);
+ int (*mmu_prefetch_cache_range)(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size);
+ int (*send_heartbeat)(struct hl_device *hdev);
+ int (*debug_coresight)(struct hl_device *hdev, struct hl_ctx *ctx, void *data);
+ bool (*is_device_idle)(struct hl_device *hdev, u64 *mask_arr, u8 mask_len,
+ struct engines_data *e);
+ int (*compute_reset_late_init)(struct hl_device *hdev);
+ void (*hw_queues_lock)(struct hl_device *hdev);
+ void (*hw_queues_unlock)(struct hl_device *hdev);
+ u32 (*get_pci_id)(struct hl_device *hdev);
+ int (*get_eeprom_data)(struct hl_device *hdev, void *data, size_t max_size);
+ int (*get_monitor_dump)(struct hl_device *hdev, void *data);
+ int (*send_cpu_message)(struct hl_device *hdev, u32 *msg,
+ u16 len, u32 timeout, u64 *result);
+ int (*pci_bars_map)(struct hl_device *hdev);
+ int (*init_iatu)(struct hl_device *hdev);
+ u32 (*rreg)(struct hl_device *hdev, u32 reg);
+ void (*wreg)(struct hl_device *hdev, u32 reg, u32 val);
+ void (*halt_coresight)(struct hl_device *hdev, struct hl_ctx *ctx);
+ int (*ctx_init)(struct hl_ctx *ctx);
+ void (*ctx_fini)(struct hl_ctx *ctx);
+ int (*pre_schedule_cs)(struct hl_cs *cs);
+ u32 (*get_queue_id_for_cq)(struct hl_device *hdev, u32 cq_idx);
+ int (*load_firmware_to_device)(struct hl_device *hdev);
+ int (*load_boot_fit_to_device)(struct hl_device *hdev);
+ u32 (*get_signal_cb_size)(struct hl_device *hdev);
+ u32 (*get_wait_cb_size)(struct hl_device *hdev);
+ u32 (*gen_signal_cb)(struct hl_device *hdev, void *data, u16 sob_id,
+ u32 size, bool eb);
+ u32 (*gen_wait_cb)(struct hl_device *hdev,
+ struct hl_gen_wait_properties *prop);
+ void (*reset_sob)(struct hl_device *hdev, void *data);
+ void (*reset_sob_group)(struct hl_device *hdev, u16 sob_group);
+ u64 (*get_device_time)(struct hl_device *hdev);
+ void (*pb_print_security_errors)(struct hl_device *hdev,
+ u32 block_addr, u32 cause, u32 offended_addr);
+ int (*collective_wait_init_cs)(struct hl_cs *cs);
+ int (*collective_wait_create_jobs)(struct hl_device *hdev,
+ struct hl_ctx *ctx, struct hl_cs *cs,
+ u32 wait_queue_id, u32 collective_engine_id,
+ u32 encaps_signal_offset);
+ u32 (*get_dec_base_addr)(struct hl_device *hdev, u32 core_id);
+ u64 (*scramble_addr)(struct hl_device *hdev, u64 addr);
+ u64 (*descramble_addr)(struct hl_device *hdev, u64 addr);
+ void (*ack_protection_bits_errors)(struct hl_device *hdev);
+ int (*get_hw_block_id)(struct hl_device *hdev, u64 block_addr,
+ u32 *block_size, u32 *block_id);
+ int (*hw_block_mmap)(struct hl_device *hdev, struct vm_area_struct *vma,
+ u32 block_id, u32 block_size);
+ void (*enable_events_from_fw)(struct hl_device *hdev);
+ int (*ack_mmu_errors)(struct hl_device *hdev, u64 mmu_cap_mask);
+ void (*get_msi_info)(__le32 *table);
+ int (*map_pll_idx_to_fw_idx)(u32 pll_idx);
+ void (*init_firmware_preload_params)(struct hl_device *hdev);
+ void (*init_firmware_loader)(struct hl_device *hdev);
+ void (*init_cpu_scrambler_dram)(struct hl_device *hdev);
+ void (*state_dump_init)(struct hl_device *hdev);
+ u32 (*get_sob_addr)(struct hl_device *hdev, u32 sob_id);
+ void (*set_pci_memory_regions)(struct hl_device *hdev);
+ u32* (*get_stream_master_qid_arr)(void);
+ void (*check_if_razwi_happened)(struct hl_device *hdev);
+ int (*mmu_get_real_page_size)(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop,
+ u32 page_size, u32 *real_page_size, bool is_dram_addr);
+ int (*access_dev_mem)(struct hl_device *hdev, enum pci_region region_type,
+ u64 addr, u64 *val, enum debugfs_access_type acc_type);
+ u64 (*set_dram_bar_base)(struct hl_device *hdev, u64 addr);
+ int (*set_engine_cores)(struct hl_device *hdev, u32 *core_ids,
+ u32 num_cores, u32 core_command);
+ int (*set_engines)(struct hl_device *hdev, u32 *engine_ids,
+ u32 num_engines, u32 engine_command);
+ int (*send_device_activity)(struct hl_device *hdev, bool open);
+ int (*set_dram_properties)(struct hl_device *hdev);
+ int (*set_binning_masks)(struct hl_device *hdev);
+};
+
+
+/*
+ * CONTEXTS
+ */
+
+#define HL_KERNEL_ASID_ID 0
+
+/**
+ * enum hl_va_range_type - virtual address range type.
+ * @HL_VA_RANGE_TYPE_HOST: range type of host pages
+ * @HL_VA_RANGE_TYPE_HOST_HUGE: range type of host huge pages
+ * @HL_VA_RANGE_TYPE_DRAM: range type of dram pages
+ */
+enum hl_va_range_type {
+ HL_VA_RANGE_TYPE_HOST,
+ HL_VA_RANGE_TYPE_HOST_HUGE,
+ HL_VA_RANGE_TYPE_DRAM,
+ HL_VA_RANGE_TYPE_MAX
+};
+
+/**
+ * struct hl_va_range - virtual addresses range.
+ * @lock: protects the virtual addresses list.
+ * @list: list of virtual addresses blocks available for mappings.
+ * @start_addr: range start address.
+ * @end_addr: range end address.
+ * @page_size: page size of this va range.
+ */
+struct hl_va_range {
+ struct mutex lock;
+ struct list_head list;
+ u64 start_addr;
+ u64 end_addr;
+ u32 page_size;
+};
+
+/**
+ * struct hl_cs_counters_atomic - command submission counters
+ * @out_of_mem_drop_cnt: dropped due to memory allocation issue
+ * @parsing_drop_cnt: dropped due to error in packet parsing
+ * @queue_full_drop_cnt: dropped due to queue full
+ * @device_in_reset_drop_cnt: dropped due to device in reset
+ * @max_cs_in_flight_drop_cnt: dropped due to maximum CS in-flight
+ * @validation_drop_cnt: dropped due to error in validation
+ */
+struct hl_cs_counters_atomic {
+ atomic64_t out_of_mem_drop_cnt;
+ atomic64_t parsing_drop_cnt;
+ atomic64_t queue_full_drop_cnt;
+ atomic64_t device_in_reset_drop_cnt;
+ atomic64_t max_cs_in_flight_drop_cnt;
+ atomic64_t validation_drop_cnt;
+};
+
+/**
+ * struct hl_dmabuf_priv - a dma-buf private object.
+ * @dmabuf: pointer to dma-buf object.
+ * @ctx: pointer to the dma-buf owner's context.
+ * @phys_pg_pack: pointer to physical page pack if the dma-buf was exported
+ * where virtual memory is supported.
+ * @memhash_hnode: pointer to the memhash node. this object holds the export count.
+ * @device_address: physical address of the device's memory. Relevant only
+ * if phys_pg_pack is NULL (dma-buf was exported from address).
+ * The total size can be taken from the dmabuf object.
+ */
+struct hl_dmabuf_priv {
+ struct dma_buf *dmabuf;
+ struct hl_ctx *ctx;
+ struct hl_vm_phys_pg_pack *phys_pg_pack;
+ struct hl_vm_hash_node *memhash_hnode;
+ uint64_t device_address;
+};
+
+#define HL_CS_OUTCOME_HISTORY_LEN 256
+
+/**
+ * struct hl_cs_outcome - represents a single completed CS outcome
+ * @list_link: link to either container's used list or free list
+ * @map_link: list to the container hash map
+ * @ts: completion ts
+ * @seq: the original cs sequence
+ * @error: error code cs completed with, if any
+ */
+struct hl_cs_outcome {
+ struct list_head list_link;
+ struct hlist_node map_link;
+ ktime_t ts;
+ u64 seq;
+ int error;
+};
+
+/**
+ * struct hl_cs_outcome_store - represents a limited store of completed CS outcomes
+ * @outcome_map: index of completed CS searchable by sequence number
+ * @used_list: list of outcome objects currently in use
+ * @free_list: list of outcome objects currently not in use
+ * @nodes_pool: a static pool of pre-allocated outcome objects
+ * @db_lock: any operation on the store must take this lock
+ */
+struct hl_cs_outcome_store {
+ DECLARE_HASHTABLE(outcome_map, 8);
+ struct list_head used_list;
+ struct list_head free_list;
+ struct hl_cs_outcome nodes_pool[HL_CS_OUTCOME_HISTORY_LEN];
+ spinlock_t db_lock;
+};
+
+/**
+ * struct hl_ctx - user/kernel context.
+ * @mem_hash: holds mapping from virtual address to virtual memory area
+ * descriptor (hl_vm_phys_pg_list or hl_userptr).
+ * @mmu_shadow_hash: holds a mapping from shadow address to pgt_info structure.
+ * @hr_mmu_phys_hash: if host-resident MMU is used, holds a mapping from
+ * MMU-hop-page physical address to its host-resident
+ * pgt_info structure.
+ * @hpriv: pointer to the private (Kernel Driver) data of the process (fd).
+ * @hdev: pointer to the device structure.
+ * @refcount: reference counter for the context. Context is released only when
+ * this hits 0. It is incremented on CS and CS_WAIT.
+ * @cs_pending: array of hl fence objects representing pending CS.
+ * @outcome_store: storage data structure used to remember outcomes of completed
+ * command submissions for a long time after CS id wraparound.
+ * @va_range: holds available virtual addresses for host and dram mappings.
+ * @mem_hash_lock: protects the mem_hash.
+ * @hw_block_list_lock: protects the HW block memory list.
+ * @debugfs_list: node in debugfs list of contexts.
+ * @hw_block_mem_list: list of HW block virtual mapped addresses.
+ * @cs_counters: context command submission counters.
+ * @cb_va_pool: device VA pool for command buffers which are mapped to the
+ * device's MMU.
+ * @sig_mgr: encaps signals handle manager.
+ * @cb_va_pool_base: the base address for the device VA pool
+ * @cs_sequence: sequence number for CS. Value is assigned to a CS and passed
+ * to user so user could inquire about CS. It is used as
+ * index to cs_pending array.
+ * @dram_default_hops: array that holds all hops addresses needed for default
+ * DRAM mapping.
+ * @cs_lock: spinlock to protect cs_sequence.
+ * @dram_phys_mem: amount of used physical DRAM memory by this context.
+ * @thread_ctx_switch_token: token to prevent multiple threads of the same
+ * context from running the context switch phase.
+ * Only a single thread should run it.
+ * @thread_ctx_switch_wait_token: token to prevent the threads that didn't run
+ * the context switch phase from moving to their
+ * execution phase before the context switch phase
+ * has finished.
+ * @asid: context's unique address space ID in the device's MMU.
+ * @handle: context's opaque handle for user
+ */
+struct hl_ctx {
+ DECLARE_HASHTABLE(mem_hash, MEM_HASH_TABLE_BITS);
+ DECLARE_HASHTABLE(mmu_shadow_hash, MMU_HASH_TABLE_BITS);
+ DECLARE_HASHTABLE(hr_mmu_phys_hash, MMU_HASH_TABLE_BITS);
+ struct hl_fpriv *hpriv;
+ struct hl_device *hdev;
+ struct kref refcount;
+ struct hl_fence **cs_pending;
+ struct hl_cs_outcome_store outcome_store;
+ struct hl_va_range *va_range[HL_VA_RANGE_TYPE_MAX];
+ struct mutex mem_hash_lock;
+ struct mutex hw_block_list_lock;
+ struct list_head debugfs_list;
+ struct list_head hw_block_mem_list;
+ struct hl_cs_counters_atomic cs_counters;
+ struct gen_pool *cb_va_pool;
+ struct hl_encaps_signals_mgr sig_mgr;
+ u64 cb_va_pool_base;
+ u64 cs_sequence;
+ u64 *dram_default_hops;
+ spinlock_t cs_lock;
+ atomic64_t dram_phys_mem;
+ atomic_t thread_ctx_switch_token;
+ u32 thread_ctx_switch_wait_token;
+ u32 asid;
+ u32 handle;
+};
+
+/**
+ * struct hl_ctx_mgr - for handling multiple contexts.
+ * @lock: protects ctx_handles.
+ * @handles: idr to hold all ctx handles.
+ */
+struct hl_ctx_mgr {
+ struct mutex lock;
+ struct idr handles;
+};
+
+
+/*
+ * COMMAND SUBMISSIONS
+ */
+
+/**
+ * struct hl_userptr - memory mapping chunk information
+ * @vm_type: type of the VM.
+ * @job_node: linked-list node for hanging the object on the Job's list.
+ * @pages: pointer to struct page array
+ * @npages: size of @pages array
+ * @sgt: pointer to the scatter-gather table that holds the pages.
+ * @dir: for DMA unmapping, the direction must be supplied, so save it.
+ * @debugfs_list: node in debugfs list of command submissions.
+ * @pid: the pid of the user process owning the memory
+ * @addr: user-space virtual address of the start of the memory area.
+ * @size: size of the memory area to pin & map.
+ * @dma_mapped: true if the SG was mapped to DMA addresses, false otherwise.
+ */
+struct hl_userptr {
+ enum vm_type vm_type; /* must be first */
+ struct list_head job_node;
+ struct page **pages;
+ unsigned int npages;
+ struct sg_table *sgt;
+ enum dma_data_direction dir;
+ struct list_head debugfs_list;
+ pid_t pid;
+ u64 addr;
+ u64 size;
+ u8 dma_mapped;
+};
+
+/**
+ * struct hl_cs - command submission.
+ * @jobs_in_queue_cnt: per each queue, maintain counter of submitted jobs.
+ * @ctx: the context this CS belongs to.
+ * @job_list: list of the CS's jobs in the various queues.
+ * @job_lock: spinlock for the CS's jobs list. Needed for free_job.
+ * @refcount: reference counter for usage of the CS.
+ * @fence: pointer to the fence object of this CS.
+ * @signal_fence: pointer to the fence object of the signal CS (used by wait
+ * CS only).
+ * @finish_work: workqueue object to run when CS is completed by H/W.
+ * @work_tdr: delayed work node for TDR.
+ * @mirror_node : node in device mirror list of command submissions.
+ * @staged_cs_node: node in the staged cs list.
+ * @debugfs_list: node in debugfs list of command submissions.
+ * @encaps_sig_hdl: holds the encaps signals handle.
+ * @sequence: the sequence number of this CS.
+ * @staged_sequence: the sequence of the staged submission this CS is part of,
+ * relevant only if staged_cs is set.
+ * @timeout_jiffies: cs timeout in jiffies.
+ * @submission_time_jiffies: submission time of the cs
+ * @type: CS_TYPE_*.
+ * @jobs_cnt: counter of submitted jobs on all queues.
+ * @encaps_sig_hdl_id: encaps signals handle id, set for the first staged cs.
+ * @completion_timestamp: timestamp of the last completed cs job.
+ * @sob_addr_offset: sob offset from the configuration base address.
+ * @initial_sob_count: count of completed signals in SOB before current submission of signal or
+ * cs with encaps signals.
+ * @submitted: true if CS was submitted to H/W.
+ * @completed: true if CS was completed by device.
+ * @timedout : true if CS was timedout.
+ * @tdr_active: true if TDR was activated for this CS (to prevent
+ * double TDR activation).
+ * @aborted: true if CS was aborted due to some device error.
+ * @timestamp: true if a timestamp must be captured upon completion.
+ * @staged_last: true if this is the last staged CS and needs completion.
+ * @staged_first: true if this is the first staged CS and we need to receive
+ * timeout for this CS.
+ * @staged_cs: true if this CS is part of a staged submission.
+ * @skip_reset_on_timeout: true if we shall not reset the device in case
+ * timeout occurs (debug scenario).
+ * @encaps_signals: true if this CS has encaps reserved signals.
+ */
+struct hl_cs {
+ u16 *jobs_in_queue_cnt;
+ struct hl_ctx *ctx;
+ struct list_head job_list;
+ spinlock_t job_lock;
+ struct kref refcount;
+ struct hl_fence *fence;
+ struct hl_fence *signal_fence;
+ struct work_struct finish_work;
+ struct delayed_work work_tdr;
+ struct list_head mirror_node;
+ struct list_head staged_cs_node;
+ struct list_head debugfs_list;
+ struct hl_cs_encaps_sig_handle *encaps_sig_hdl;
+ ktime_t completion_timestamp;
+ u64 sequence;
+ u64 staged_sequence;
+ u64 timeout_jiffies;
+ u64 submission_time_jiffies;
+ enum hl_cs_type type;
+ u32 jobs_cnt;
+ u32 encaps_sig_hdl_id;
+ u32 sob_addr_offset;
+ u16 initial_sob_count;
+ u8 submitted;
+ u8 completed;
+ u8 timedout;
+ u8 tdr_active;
+ u8 aborted;
+ u8 timestamp;
+ u8 staged_last;
+ u8 staged_first;
+ u8 staged_cs;
+ u8 skip_reset_on_timeout;
+ u8 encaps_signals;
+};
+
+/**
+ * struct hl_cs_job - command submission job.
+ * @cs_node: the node to hang on the CS jobs list.
+ * @cs: the CS this job belongs to.
+ * @user_cb: the CB we got from the user.
+ * @patched_cb: in case of patching, this is internal CB which is submitted on
+ * the queue instead of the CB we got from the IOCTL.
+ * @finish_work: workqueue object to run when job is completed.
+ * @userptr_list: linked-list of userptr mappings that belong to this job and
+ * wait for completion.
+ * @debugfs_list: node in debugfs list of command submission jobs.
+ * @refcount: reference counter for usage of the CS job.
+ * @queue_type: the type of the H/W queue this job is submitted to.
+ * @timestamp: timestamp upon job completion
+ * @id: the id of this job inside a CS.
+ * @hw_queue_id: the id of the H/W queue this job is submitted to.
+ * @user_cb_size: the actual size of the CB we got from the user.
+ * @job_cb_size: the actual size of the CB that we put on the queue.
+ * @encaps_sig_wait_offset: encapsulated signals offset, which allow user
+ * to wait on part of the reserved signals.
+ * @is_kernel_allocated_cb: true if the CB handle we got from the user holds a
+ * handle to a kernel-allocated CB object, false
+ * otherwise (SRAM/DRAM/host address).
+ * @contains_dma_pkt: whether the JOB contains at least one DMA packet. This
+ * info is needed later, when adding the 2xMSG_PROT at the
+ * end of the JOB, to know which barriers to put in the
+ * MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't
+ * have streams so the engine can't be busy by another
+ * stream.
+ */
+struct hl_cs_job {
+ struct list_head cs_node;
+ struct hl_cs *cs;
+ struct hl_cb *user_cb;
+ struct hl_cb *patched_cb;
+ struct work_struct finish_work;
+ struct list_head userptr_list;
+ struct list_head debugfs_list;
+ struct kref refcount;
+ enum hl_queue_type queue_type;
+ ktime_t timestamp;
+ u32 id;
+ u32 hw_queue_id;
+ u32 user_cb_size;
+ u32 job_cb_size;
+ u32 encaps_sig_wait_offset;
+ u8 is_kernel_allocated_cb;
+ u8 contains_dma_pkt;
+};
+
+/**
+ * struct hl_cs_parser - command submission parser properties.
+ * @user_cb: the CB we got from the user.
+ * @patched_cb: in case of patching, this is internal CB which is submitted on
+ * the queue instead of the CB we got from the IOCTL.
+ * @job_userptr_list: linked-list of userptr mappings that belong to the related
+ * job and wait for completion.
+ * @cs_sequence: the sequence number of the related CS.
+ * @queue_type: the type of the H/W queue this job is submitted to.
+ * @ctx_id: the ID of the context the related CS belongs to.
+ * @hw_queue_id: the id of the H/W queue this job is submitted to.
+ * @user_cb_size: the actual size of the CB we got from the user.
+ * @patched_cb_size: the size of the CB after parsing.
+ * @job_id: the id of the related job inside the related CS.
+ * @is_kernel_allocated_cb: true if the CB handle we got from the user holds a
+ * handle to a kernel-allocated CB object, false
+ * otherwise (SRAM/DRAM/host address).
+ * @contains_dma_pkt: whether the JOB contains at least one DMA packet. This
+ * info is needed later, when adding the 2xMSG_PROT at the
+ * end of the JOB, to know which barriers to put in the
+ * MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't
+ * have streams so the engine can't be busy by another
+ * stream.
+ * @completion: true if we need completion for this CS.
+ */
+struct hl_cs_parser {
+ struct hl_cb *user_cb;
+ struct hl_cb *patched_cb;
+ struct list_head *job_userptr_list;
+ u64 cs_sequence;
+ enum hl_queue_type queue_type;
+ u32 ctx_id;
+ u32 hw_queue_id;
+ u32 user_cb_size;
+ u32 patched_cb_size;
+ u8 job_id;
+ u8 is_kernel_allocated_cb;
+ u8 contains_dma_pkt;
+ u8 completion;
+};
+
+/*
+ * MEMORY STRUCTURE
+ */
+
+/**
+ * struct hl_vm_hash_node - hash element from virtual address to virtual
+ * memory area descriptor (hl_vm_phys_pg_list or
+ * hl_userptr).
+ * @node: node to hang on the hash table in context object.
+ * @vaddr: key virtual address.
+ * @handle: memory handle for device memory allocation.
+ * @ptr: value pointer (hl_vm_phys_pg_list or hl_userptr).
+ * @export_cnt: number of exports from within the VA block.
+ */
+struct hl_vm_hash_node {
+ struct hlist_node node;
+ u64 vaddr;
+ u64 handle;
+ void *ptr;
+ int export_cnt;
+};
+
+/**
+ * struct hl_vm_hw_block_list_node - list element from user virtual address to
+ * HW block id.
+ * @node: node to hang on the list in context object.
+ * @ctx: the context this node belongs to.
+ * @vaddr: virtual address of the HW block.
+ * @block_size: size of the block.
+ * @mapped_size: size of the block which is mapped. May change if partial un-mappings are done.
+ * @id: HW block id (handle).
+ */
+struct hl_vm_hw_block_list_node {
+ struct list_head node;
+ struct hl_ctx *ctx;
+ unsigned long vaddr;
+ u32 block_size;
+ u32 mapped_size;
+ u32 id;
+};
+
+/**
+ * struct hl_vm_phys_pg_pack - physical page pack.
+ * @vm_type: describes the type of the virtual area descriptor.
+ * @pages: the physical page array.
+ * @npages: num physical pages in the pack.
+ * @total_size: total size of all the pages in this list.
+ * @exported_size: buffer exported size.
+ * @node: used to attach to deletion list that is used when all the allocations are cleared
+ * at the teardown of the context.
+ * @mapping_cnt: number of shared mappings.
+ * @asid: the context related to this list.
+ * @page_size: size of each page in the pack.
+ * @flags: HL_MEM_* flags related to this list.
+ * @handle: the provided handle related to this list.
+ * @offset: offset from the first page.
+ * @contiguous: is contiguous physical memory.
+ * @created_from_userptr: is product of host virtual address.
+ */
+struct hl_vm_phys_pg_pack {
+ enum vm_type vm_type; /* must be first */
+ u64 *pages;
+ u64 npages;
+ u64 total_size;
+ u64 exported_size;
+ struct list_head node;
+ atomic_t mapping_cnt;
+ u32 asid;
+ u32 page_size;
+ u32 flags;
+ u32 handle;
+ u32 offset;
+ u8 contiguous;
+ u8 created_from_userptr;
+};
+
+/**
+ * struct hl_vm_va_block - virtual range block information.
+ * @node: node to hang on the virtual range list in context object.
+ * @start: virtual range start address.
+ * @end: virtual range end address.
+ * @size: virtual range size.
+ */
+struct hl_vm_va_block {
+ struct list_head node;
+ u64 start;
+ u64 end;
+ u64 size;
+};
+
+/**
+ * struct hl_vm - virtual memory manager for MMU.
+ * @dram_pg_pool: pool for DRAM physical pages of 2MB.
+ * @dram_pg_pool_refcount: reference counter for the pool usage.
+ * @idr_lock: protects the phys_pg_list_handles.
+ * @phys_pg_pack_handles: idr to hold all device allocations handles.
+ * @init_done: whether initialization was done. We need this because VM
+ * initialization might be skipped during device initialization.
+ */
+struct hl_vm {
+ struct gen_pool *dram_pg_pool;
+ struct kref dram_pg_pool_refcount;
+ spinlock_t idr_lock;
+ struct idr phys_pg_pack_handles;
+ u8 init_done;
+};
+
+
+/*
+ * DEBUG, PROFILING STRUCTURE
+ */
+
+/**
+ * struct hl_debug_params - Coresight debug parameters.
+ * @input: pointer to component specific input parameters.
+ * @output: pointer to component specific output parameters.
+ * @output_size: size of output buffer.
+ * @reg_idx: relevant register ID.
+ * @op: component operation to execute.
+ * @enable: true if to enable component debugging, false otherwise.
+ */
+struct hl_debug_params {
+ void *input;
+ void *output;
+ u32 output_size;
+ u32 reg_idx;
+ u32 op;
+ bool enable;
+};
+
+/**
+ * struct hl_notifier_event - holds the notifier data structure
+ * @eventfd: the event file descriptor to raise the notifications
+ * @lock: mutex lock to protect the notifier data flows
+ * @events_mask: indicates the bitmap events
+ */
+struct hl_notifier_event {
+ struct eventfd_ctx *eventfd;
+ struct mutex lock;
+ u64 events_mask;
+};
+
+/*
+ * FILE PRIVATE STRUCTURE
+ */
+
+/**
+ * struct hl_fpriv - process information stored in FD private data.
+ * @hdev: habanalabs device structure.
+ * @filp: pointer to the given file structure.
+ * @taskpid: current process ID.
+ * @ctx: current executing context. TODO: remove for multiple ctx per process
+ * @ctx_mgr: context manager to handle multiple context for this FD.
+ * @mem_mgr: manager descriptor for memory exportable via mmap
+ * @notifier_event: notifier eventfd towards user process
+ * @debugfs_list: list of relevant ASIC debugfs.
+ * @dev_node: node in the device list of file private data
+ * @refcount: number of related contexts.
+ * @restore_phase_mutex: lock for context switch and restore phase.
+ * @ctx_lock: protects the pointer to current executing context pointer. TODO: remove for multiple
+ * ctx per process.
+ */
+struct hl_fpriv {
+ struct hl_device *hdev;
+ struct file *filp;
+ struct pid *taskpid;
+ struct hl_ctx *ctx;
+ struct hl_ctx_mgr ctx_mgr;
+ struct hl_mem_mgr mem_mgr;
+ struct hl_notifier_event notifier_event;
+ struct list_head debugfs_list;
+ struct list_head dev_node;
+ struct kref refcount;
+ struct mutex restore_phase_mutex;
+ struct mutex ctx_lock;
+};
+
+
+/*
+ * DebugFS
+ */
+
+/**
+ * struct hl_info_list - debugfs file ops.
+ * @name: file name.
+ * @show: function to output information.
+ * @write: function to write to the file.
+ */
+struct hl_info_list {
+ const char *name;
+ int (*show)(struct seq_file *s, void *data);
+ ssize_t (*write)(struct file *file, const char __user *buf,
+ size_t count, loff_t *f_pos);
+};
+
+/**
+ * struct hl_debugfs_entry - debugfs dentry wrapper.
+ * @info_ent: dentry related ops.
+ * @dev_entry: ASIC specific debugfs manager.
+ */
+struct hl_debugfs_entry {
+ const struct hl_info_list *info_ent;
+ struct hl_dbg_device_entry *dev_entry;
+};
+
+/**
+ * struct hl_dbg_device_entry - ASIC specific debugfs manager.
+ * @root: root dentry.
+ * @hdev: habanalabs device structure.
+ * @entry_arr: array of available hl_debugfs_entry.
+ * @file_list: list of available debugfs files.
+ * @file_mutex: protects file_list.
+ * @cb_list: list of available CBs.
+ * @cb_spinlock: protects cb_list.
+ * @cs_list: list of available CSs.
+ * @cs_spinlock: protects cs_list.
+ * @cs_job_list: list of available CB jobs.
+ * @cs_job_spinlock: protects cs_job_list.
+ * @userptr_list: list of available userptrs (virtual memory chunk descriptor).
+ * @userptr_spinlock: protects userptr_list.
+ * @ctx_mem_hash_list: list of available contexts with MMU mappings.
+ * @ctx_mem_hash_mutex: protects list of available contexts with MMU mappings.
+ * @data_dma_blob_desc: data DMA descriptor of blob.
+ * @mon_dump_blob_desc: monitor dump descriptor of blob.
+ * @state_dump: data of the system states in case of a bad cs.
+ * @state_dump_sem: protects state_dump.
+ * @addr: next address to read/write from/to in read/write32.
+ * @mmu_addr: next virtual address to translate to physical address in mmu_show.
+ * @mmu_cap_mask: mmu hw capability mask, to be used in mmu_ack_error.
+ * @userptr_lookup: the target user ptr to look up for on demand.
+ * @mmu_asid: ASID to use while translating in mmu_show.
+ * @state_dump_head: index of the latest state dump
+ * @i2c_bus: generic u8 debugfs file for bus value to use in i2c_data_read.
+ * @i2c_addr: generic u8 debugfs file for address value to use in i2c_data_read.
+ * @i2c_reg: generic u8 debugfs file for register value to use in i2c_data_read.
+ * @i2c_len: generic u8 debugfs file for length value to use in i2c_data_read.
+ */
+struct hl_dbg_device_entry {
+ struct dentry *root;
+ struct hl_device *hdev;
+ struct hl_debugfs_entry *entry_arr;
+ struct list_head file_list;
+ struct mutex file_mutex;
+ struct list_head cb_list;
+ spinlock_t cb_spinlock;
+ struct list_head cs_list;
+ spinlock_t cs_spinlock;
+ struct list_head cs_job_list;
+ spinlock_t cs_job_spinlock;
+ struct list_head userptr_list;
+ spinlock_t userptr_spinlock;
+ struct list_head ctx_mem_hash_list;
+ struct mutex ctx_mem_hash_mutex;
+ struct debugfs_blob_wrapper data_dma_blob_desc;
+ struct debugfs_blob_wrapper mon_dump_blob_desc;
+ char *state_dump[HL_STATE_DUMP_HIST_LEN];
+ struct rw_semaphore state_dump_sem;
+ u64 addr;
+ u64 mmu_addr;
+ u64 mmu_cap_mask;
+ u64 userptr_lookup;
+ u32 mmu_asid;
+ u32 state_dump_head;
+ u8 i2c_bus;
+ u8 i2c_addr;
+ u8 i2c_reg;
+ u8 i2c_len;
+};
+
+/**
+ * struct hl_hw_obj_name_entry - single hw object name, member of
+ * hl_state_dump_specs
+ * @node: link to the containing hash table
+ * @name: hw object name
+ * @id: object identifier
+ */
+struct hl_hw_obj_name_entry {
+ struct hlist_node node;
+ const char *name;
+ u32 id;
+};
+
+enum hl_state_dump_specs_props {
+ SP_SYNC_OBJ_BASE_ADDR,
+ SP_NEXT_SYNC_OBJ_ADDR,
+ SP_SYNC_OBJ_AMOUNT,
+ SP_MON_OBJ_WR_ADDR_LOW,
+ SP_MON_OBJ_WR_ADDR_HIGH,
+ SP_MON_OBJ_WR_DATA,
+ SP_MON_OBJ_ARM_DATA,
+ SP_MON_OBJ_STATUS,
+ SP_MONITORS_AMOUNT,
+ SP_TPC0_CMDQ,
+ SP_TPC0_CFG_SO,
+ SP_NEXT_TPC,
+ SP_MME_CMDQ,
+ SP_MME_CFG_SO,
+ SP_NEXT_MME,
+ SP_DMA_CMDQ,
+ SP_DMA_CFG_SO,
+ SP_DMA_QUEUES_OFFSET,
+ SP_NUM_OF_MME_ENGINES,
+ SP_SUB_MME_ENG_NUM,
+ SP_NUM_OF_DMA_ENGINES,
+ SP_NUM_OF_TPC_ENGINES,
+ SP_ENGINE_NUM_OF_QUEUES,
+ SP_ENGINE_NUM_OF_STREAMS,
+ SP_ENGINE_NUM_OF_FENCES,
+ SP_FENCE0_CNT_OFFSET,
+ SP_FENCE0_RDATA_OFFSET,
+ SP_CP_STS_OFFSET,
+ SP_NUM_CORES,
+
+ SP_MAX
+};
+
+enum hl_sync_engine_type {
+ ENGINE_TPC,
+ ENGINE_DMA,
+ ENGINE_MME,
+};
+
+/**
+ * struct hl_mon_state_dump - represents a state dump of a single monitor
+ * @id: monitor id
+ * @wr_addr_low: address monitor will write to, low bits
+ * @wr_addr_high: address monitor will write to, high bits
+ * @wr_data: data monitor will write
+ * @arm_data: register value containing monitor configuration
+ * @status: monitor status
+ */
+struct hl_mon_state_dump {
+ u32 id;
+ u32 wr_addr_low;
+ u32 wr_addr_high;
+ u32 wr_data;
+ u32 arm_data;
+ u32 status;
+};
+
+/**
+ * struct hl_sync_to_engine_map_entry - sync object id to engine mapping entry
+ * @engine_type: type of the engine
+ * @engine_id: id of the engine
+ * @sync_id: id of the sync object
+ */
+struct hl_sync_to_engine_map_entry {
+ struct hlist_node node;
+ enum hl_sync_engine_type engine_type;
+ u32 engine_id;
+ u32 sync_id;
+};
+
+/**
+ * struct hl_sync_to_engine_map - maps sync object id to associated engine id
+ * @tb: hash table containing the mapping, each element is of type
+ * struct hl_sync_to_engine_map_entry
+ */
+struct hl_sync_to_engine_map {
+ DECLARE_HASHTABLE(tb, SYNC_TO_ENGINE_HASH_TABLE_BITS);
+};
+
+/**
+ * struct hl_state_dump_specs_funcs - virtual functions used by the state dump
+ * @gen_sync_to_engine_map: generate a hash map from sync obj id to its engine
+ * @print_single_monitor: format monitor data as string
+ * @monitor_valid: return true if given monitor dump is valid
+ * @print_fences_single_engine: format fences data as string
+ */
+struct hl_state_dump_specs_funcs {
+ int (*gen_sync_to_engine_map)(struct hl_device *hdev,
+ struct hl_sync_to_engine_map *map);
+ int (*print_single_monitor)(char **buf, size_t *size, size_t *offset,
+ struct hl_device *hdev,
+ struct hl_mon_state_dump *mon);
+ int (*monitor_valid)(struct hl_mon_state_dump *mon);
+ int (*print_fences_single_engine)(struct hl_device *hdev,
+ u64 base_offset,
+ u64 status_base_offset,
+ enum hl_sync_engine_type engine_type,
+ u32 engine_id, char **buf,
+ size_t *size, size_t *offset);
+};
+
+/**
+ * struct hl_state_dump_specs - defines ASIC known hw objects names
+ * @so_id_to_str_tb: sync objects names index table
+ * @monitor_id_to_str_tb: monitors names index table
+ * @funcs: virtual functions used for state dump
+ * @sync_namager_names: readable names for sync manager if available (ex: N_E)
+ * @props: pointer to a per asic const props array required for state dump
+ */
+struct hl_state_dump_specs {
+ DECLARE_HASHTABLE(so_id_to_str_tb, OBJ_NAMES_HASH_TABLE_BITS);
+ DECLARE_HASHTABLE(monitor_id_to_str_tb, OBJ_NAMES_HASH_TABLE_BITS);
+ struct hl_state_dump_specs_funcs funcs;
+ const char * const *sync_namager_names;
+ s64 *props;
+};
+
+
+/*
+ * DEVICES
+ */
+
+#define HL_STR_MAX 32
+
+#define HL_DEV_STS_MAX (HL_DEVICE_STATUS_LAST + 1)
+
+/* Theoretical limit only. A single host can only contain up to 4 or 8 PCIe
+ * x16 cards. In extreme cases, there are hosts that can accommodate 16 cards.
+ */
+#define HL_MAX_MINORS 256
+
+/*
+ * Registers read & write functions.
+ */
+
+u32 hl_rreg(struct hl_device *hdev, u32 reg);
+void hl_wreg(struct hl_device *hdev, u32 reg, u32 val);
+
+#define RREG32(reg) hdev->asic_funcs->rreg(hdev, (reg))
+#define WREG32(reg, v) hdev->asic_funcs->wreg(hdev, (reg), (v))
+#define DREG32(reg) pr_info("REGISTER: " #reg " : 0x%08X\n", \
+ hdev->asic_funcs->rreg(hdev, (reg)))
+
+#define WREG32_P(reg, val, mask) \
+ do { \
+ u32 tmp_ = RREG32(reg); \
+ tmp_ &= (mask); \
+ tmp_ |= ((val) & ~(mask)); \
+ WREG32(reg, tmp_); \
+ } while (0)
+#define WREG32_AND(reg, and) WREG32_P(reg, 0, and)
+#define WREG32_OR(reg, or) WREG32_P(reg, or, ~(or))
+
+#define RMWREG32_SHIFTED(reg, val, mask) WREG32_P(reg, val, ~(mask))
+
+#define RMWREG32(reg, val, mask) RMWREG32_SHIFTED(reg, (val) << __ffs(mask), mask)
+
+#define RREG32_MASK(reg, mask) ((RREG32(reg) & mask) >> __ffs(mask))
+
+#define REG_FIELD_SHIFT(reg, field) reg##_##field##_SHIFT
+#define REG_FIELD_MASK(reg, field) reg##_##field##_MASK
+#define WREG32_FIELD(reg, offset, field, val) \
+ WREG32(mm##reg + offset, (RREG32(mm##reg + offset) & \
+ ~REG_FIELD_MASK(reg, field)) | \
+ (val) << REG_FIELD_SHIFT(reg, field))
+
+/* Timeout should be longer when working with simulator but cap the
+ * increased timeout to some maximum
+ */
+#define hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, elbi) \
+({ \
+ ktime_t __timeout; \
+ u32 __elbi_read; \
+ int __rc = 0; \
+ __timeout = ktime_add_us(ktime_get(), timeout_us); \
+ might_sleep_if(sleep_us); \
+ for (;;) { \
+ if (elbi) { \
+ __rc = hl_pci_elbi_read(hdev, addr, &__elbi_read); \
+ if (__rc) \
+ break; \
+ (val) = __elbi_read; \
+ } else {\
+ (val) = RREG32(lower_32_bits(addr)); \
+ } \
+ if (cond) \
+ break; \
+ if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
+ if (elbi) { \
+ __rc = hl_pci_elbi_read(hdev, addr, &__elbi_read); \
+ if (__rc) \
+ break; \
+ (val) = __elbi_read; \
+ } else {\
+ (val) = RREG32(lower_32_bits(addr)); \
+ } \
+ break; \
+ } \
+ if (sleep_us) \
+ usleep_range((sleep_us >> 2) + 1, sleep_us); \
+ } \
+ __rc ? __rc : ((cond) ? 0 : -ETIMEDOUT); \
+})
+
+#define hl_poll_timeout(hdev, addr, val, cond, sleep_us, timeout_us) \
+ hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, false)
+
+#define hl_poll_timeout_elbi(hdev, addr, val, cond, sleep_us, timeout_us) \
+ hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, true)
+
+/*
+ * poll array of register addresses.
+ * condition is satisfied if all registers values match the expected value.
+ * once some register in the array satisfies the condition it will not be polled again,
+ * this is done both for efficiency and due to some registers are "clear on read".
+ * TODO: use read from PCI bar in other places in the code (SW-91406)
+ */
+#define hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \
+ timeout_us, elbi) \
+({ \
+ ktime_t __timeout; \
+ u64 __elem_bitmask; \
+ u32 __read_val; \
+ u8 __arr_idx; \
+ int __rc = 0; \
+ \
+ __timeout = ktime_add_us(ktime_get(), timeout_us); \
+ might_sleep_if(sleep_us); \
+ if (arr_size >= 64) \
+ __rc = -EINVAL; \
+ else \
+ __elem_bitmask = BIT_ULL(arr_size) - 1; \
+ for (;;) { \
+ if (__rc) \
+ break; \
+ for (__arr_idx = 0; __arr_idx < (arr_size); __arr_idx++) { \
+ if (!(__elem_bitmask & BIT_ULL(__arr_idx))) \
+ continue; \
+ if (elbi) { \
+ __rc = hl_pci_elbi_read(hdev, (addr_arr)[__arr_idx], &__read_val); \
+ if (__rc) \
+ break; \
+ } else { \
+ __read_val = RREG32(lower_32_bits(addr_arr[__arr_idx])); \
+ } \
+ if (__read_val == (expected_val)) \
+ __elem_bitmask &= ~BIT_ULL(__arr_idx); \
+ } \
+ if (__rc || (__elem_bitmask == 0)) \
+ break; \
+ if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) \
+ break; \
+ if (sleep_us) \
+ usleep_range((sleep_us >> 2) + 1, sleep_us); \
+ } \
+ __rc ? __rc : ((__elem_bitmask == 0) ? 0 : -ETIMEDOUT); \
+})
+
+#define hl_poll_reg_array_timeout(hdev, addr_arr, arr_size, expected_val, sleep_us, \
+ timeout_us) \
+ hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \
+ timeout_us, false)
+
+#define hl_poll_reg_array_timeout_elbi(hdev, addr_arr, arr_size, expected_val, sleep_us, \
+ timeout_us) \
+ hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \
+ timeout_us, true)
+
+/*
+ * address in this macro points always to a memory location in the
+ * host's (server's) memory. That location is updated asynchronously
+ * either by the direct access of the device or by another core.
+ *
+ * To work both in LE and BE architectures, we need to distinguish between the
+ * two states (device or another core updates the memory location). Therefore,
+ * if mem_written_by_device is true, the host memory being polled will be
+ * updated directly by the device. If false, the host memory being polled will
+ * be updated by host CPU. Required so host knows whether or not the memory
+ * might need to be byte-swapped before returning value to caller.
+ */
+#define hl_poll_timeout_memory(hdev, addr, val, cond, sleep_us, timeout_us, \
+ mem_written_by_device) \
+({ \
+ ktime_t __timeout; \
+ \
+ __timeout = ktime_add_us(ktime_get(), timeout_us); \
+ might_sleep_if(sleep_us); \
+ for (;;) { \
+ /* Verify we read updates done by other cores or by device */ \
+ mb(); \
+ (val) = *((u32 *)(addr)); \
+ if (mem_written_by_device) \
+ (val) = le32_to_cpu(*(__le32 *) &(val)); \
+ if (cond) \
+ break; \
+ if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
+ (val) = *((u32 *)(addr)); \
+ if (mem_written_by_device) \
+ (val) = le32_to_cpu(*(__le32 *) &(val)); \
+ break; \
+ } \
+ if (sleep_us) \
+ usleep_range((sleep_us >> 2) + 1, sleep_us); \
+ } \
+ (cond) ? 0 : -ETIMEDOUT; \
+})
+
+#define HL_USR_MAPPED_BLK_INIT(blk, base, sz) \
+({ \
+ struct user_mapped_block *p = blk; \
+\
+ p->address = base; \
+ p->size = sz; \
+})
+
+#define HL_USR_INTR_STRUCT_INIT(usr_intr, hdev, intr_id, intr_type) \
+({ \
+ usr_intr.hdev = hdev; \
+ usr_intr.interrupt_id = intr_id; \
+ usr_intr.type = intr_type; \
+ INIT_LIST_HEAD(&usr_intr.wait_list_head); \
+ spin_lock_init(&usr_intr.wait_list_lock); \
+})
+
+struct hwmon_chip_info;
+
+/**
+ * struct hl_device_reset_work - reset work wrapper.
+ * @reset_work: reset work to be done.
+ * @hdev: habanalabs device structure.
+ * @flags: reset flags.
+ */
+struct hl_device_reset_work {
+ struct delayed_work reset_work;
+ struct hl_device *hdev;
+ u32 flags;
+};
+
+/**
+ * struct hl_mmu_hr_pgt_priv - used for holding per-device mmu host-resident
+ * page-table internal information.
+ * @mmu_pgt_pool: pool of page tables used by a host-resident MMU for
+ * allocating hops.
+ * @mmu_asid_hop0: per-ASID array of host-resident hop0 tables.
+ */
+struct hl_mmu_hr_priv {
+ struct gen_pool *mmu_pgt_pool;
+ struct pgt_info *mmu_asid_hop0;
+};
+
+/**
+ * struct hl_mmu_dr_pgt_priv - used for holding per-device mmu device-resident
+ * page-table internal information.
+ * @mmu_pgt_pool: pool of page tables used by MMU for allocating hops.
+ * @mmu_shadow_hop0: shadow array of hop0 tables.
+ */
+struct hl_mmu_dr_priv {
+ struct gen_pool *mmu_pgt_pool;
+ void *mmu_shadow_hop0;
+};
+
+/**
+ * struct hl_mmu_priv - used for holding per-device mmu internal information.
+ * @dr: information on the device-resident MMU, when exists.
+ * @hr: information on the host-resident MMU, when exists.
+ */
+struct hl_mmu_priv {
+ struct hl_mmu_dr_priv dr;
+ struct hl_mmu_hr_priv hr;
+};
+
+/**
+ * struct hl_mmu_per_hop_info - A structure describing one TLB HOP and its entry
+ * that was created in order to translate a virtual address to a
+ * physical one.
+ * @hop_addr: The address of the hop.
+ * @hop_pte_addr: The address of the hop entry.
+ * @hop_pte_val: The value in the hop entry.
+ */
+struct hl_mmu_per_hop_info {
+ u64 hop_addr;
+ u64 hop_pte_addr;
+ u64 hop_pte_val;
+};
+
+/**
+ * struct hl_mmu_hop_info - A structure describing the TLB hops and their
+ * hop-entries that were created in order to translate a virtual address to a
+ * physical one.
+ * @scrambled_vaddr: The value of the virtual address after scrambling. This
+ * address replaces the original virtual-address when mapped
+ * in the MMU tables.
+ * @unscrambled_paddr: The un-scrambled physical address.
+ * @hop_info: Array holding the per-hop information used for the translation.
+ * @used_hops: The number of hops used for the translation.
+ * @range_type: virtual address range type.
+ */
+struct hl_mmu_hop_info {
+ u64 scrambled_vaddr;
+ u64 unscrambled_paddr;
+ struct hl_mmu_per_hop_info hop_info[MMU_ARCH_6_HOPS];
+ u32 used_hops;
+ enum hl_va_range_type range_type;
+};
+
+/**
+ * struct hl_hr_mmu_funcs - Device related host resident MMU functions.
+ * @get_hop0_pgt_info: get page table info structure for HOP0.
+ * @get_pgt_info: get page table info structure for HOP other than HOP0.
+ * @add_pgt_info: add page table info structure to hash.
+ * @get_tlb_mapping_params: get mapping parameters needed for getting TLB info for specific mapping.
+ */
+struct hl_hr_mmu_funcs {
+ struct pgt_info *(*get_hop0_pgt_info)(struct hl_ctx *ctx);
+ struct pgt_info *(*get_pgt_info)(struct hl_ctx *ctx, u64 phys_hop_addr);
+ void (*add_pgt_info)(struct hl_ctx *ctx, struct pgt_info *pgt_info, dma_addr_t phys_addr);
+ int (*get_tlb_mapping_params)(struct hl_device *hdev, struct hl_mmu_properties **mmu_prop,
+ struct hl_mmu_hop_info *hops,
+ u64 virt_addr, bool *is_huge);
+};
+
+/**
+ * struct hl_mmu_funcs - Device related MMU functions.
+ * @init: initialize the MMU module.
+ * @fini: release the MMU module.
+ * @ctx_init: Initialize a context for using the MMU module.
+ * @ctx_fini: disable a ctx from using the mmu module.
+ * @map: maps a virtual address to physical address for a context.
+ * @unmap: unmap a virtual address of a context.
+ * @flush: flush all writes from all cores to reach device MMU.
+ * @swap_out: marks all mapping of the given context as swapped out.
+ * @swap_in: marks all mapping of the given context as swapped in.
+ * @get_tlb_info: returns the list of hops and hop-entries used that were
+ * created in order to translate the giver virtual address to a
+ * physical one.
+ * @hr_funcs: functions specific to host resident MMU.
+ */
+struct hl_mmu_funcs {
+ int (*init)(struct hl_device *hdev);
+ void (*fini)(struct hl_device *hdev);
+ int (*ctx_init)(struct hl_ctx *ctx);
+ void (*ctx_fini)(struct hl_ctx *ctx);
+ int (*map)(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size,
+ bool is_dram_addr);
+ int (*unmap)(struct hl_ctx *ctx, u64 virt_addr, bool is_dram_addr);
+ void (*flush)(struct hl_ctx *ctx);
+ void (*swap_out)(struct hl_ctx *ctx);
+ void (*swap_in)(struct hl_ctx *ctx);
+ int (*get_tlb_info)(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops);
+ struct hl_hr_mmu_funcs hr_funcs;
+};
+
+/**
+ * struct hl_prefetch_work - prefetch work structure handler
+ * @prefetch_work: actual work struct.
+ * @ctx: compute context.
+ * @va: virtual address to pre-fetch.
+ * @size: pre-fetch size.
+ * @flags: operation flags.
+ * @asid: ASID for maintenance operation.
+ */
+struct hl_prefetch_work {
+ struct work_struct prefetch_work;
+ struct hl_ctx *ctx;
+ u64 va;
+ u64 size;
+ u32 flags;
+ u32 asid;
+};
+
+/*
+ * number of user contexts allowed to call wait_for_multi_cs ioctl in
+ * parallel
+ */
+#define MULTI_CS_MAX_USER_CTX 2
+
+/**
+ * struct multi_cs_completion - multi CS wait completion.
+ * @completion: completion of any of the CS in the list
+ * @lock: spinlock for the completion structure
+ * @timestamp: timestamp for the multi-CS completion
+ * @stream_master_qid_map: bitmap of all stream masters on which the multi-CS
+ * is waiting
+ * @used: 1 if in use, otherwise 0
+ */
+struct multi_cs_completion {
+ struct completion completion;
+ spinlock_t lock;
+ s64 timestamp;
+ u32 stream_master_qid_map;
+ u8 used;
+};
+
+/**
+ * struct multi_cs_data - internal data for multi CS call
+ * @ctx: pointer to the context structure
+ * @fence_arr: array of fences of all CSs
+ * @seq_arr: array of CS sequence numbers
+ * @timeout_jiffies: timeout in jiffies for waiting for CS to complete
+ * @timestamp: timestamp of first completed CS
+ * @wait_status: wait for CS status
+ * @completion_bitmap: bitmap of completed CSs (1- completed, otherwise 0)
+ * @arr_len: fence_arr and seq_arr array length
+ * @gone_cs: indication of gone CS (1- there was gone CS, otherwise 0)
+ * @update_ts: update timestamp. 1- update the timestamp, otherwise 0.
+ */
+struct multi_cs_data {
+ struct hl_ctx *ctx;
+ struct hl_fence **fence_arr;
+ u64 *seq_arr;
+ s64 timeout_jiffies;
+ s64 timestamp;
+ long wait_status;
+ u32 completion_bitmap;
+ u8 arr_len;
+ u8 gone_cs;
+ u8 update_ts;
+};
+
+/**
+ * struct hl_clk_throttle_timestamp - current/last clock throttling timestamp
+ * @start: timestamp taken when 'start' event is received in driver
+ * @end: timestamp taken when 'end' event is received in driver
+ */
+struct hl_clk_throttle_timestamp {
+ ktime_t start;
+ ktime_t end;
+};
+
+/**
+ * struct hl_clk_throttle - keeps current/last clock throttling timestamps
+ * @timestamp: timestamp taken by driver and firmware, index 0 refers to POWER
+ * index 1 refers to THERMAL
+ * @lock: protects this structure as it can be accessed from both event queue
+ * context and info_ioctl context
+ * @current_reason: bitmask represents the current clk throttling reasons
+ * @aggregated_reason: bitmask represents aggregated clk throttling reasons since driver load
+ */
+struct hl_clk_throttle {
+ struct hl_clk_throttle_timestamp timestamp[HL_CLK_THROTTLE_TYPE_MAX];
+ struct mutex lock;
+ u32 current_reason;
+ u32 aggregated_reason;
+};
+
+/**
+ * struct user_mapped_block - describes a hw block allowed to be mmapped by user
+ * @address: physical HW block address
+ * @size: allowed size for mmap
+ */
+struct user_mapped_block {
+ u32 address;
+ u32 size;
+};
+
+/**
+ * struct cs_timeout_info - info of last CS timeout occurred.
+ * @timestamp: CS timeout timestamp.
+ * @write_enable: if set writing to CS parameters in the structure is enabled. otherwise - disabled,
+ * so the first (root cause) CS timeout will not be overwritten.
+ * @seq: CS timeout sequence number.
+ */
+struct cs_timeout_info {
+ ktime_t timestamp;
+ atomic_t write_enable;
+ u64 seq;
+};
+
+#define MAX_QMAN_STREAMS_INFO 4
+#define OPCODE_INFO_MAX_ADDR_SIZE 8
+/**
+ * struct undefined_opcode_info - info about last undefined opcode error
+ * @timestamp: timestamp of the undefined opcode error
+ * @cb_addr_streams: CB addresses (per stream) that are currently exists in the PQ
+ * entries. In case all streams array entries are
+ * filled with values, it means the execution was in Lower-CP.
+ * @cq_addr: the address of the current handled command buffer
+ * @cq_size: the size of the current handled command buffer
+ * @cb_addr_streams_len: num of streams - actual len of cb_addr_streams array.
+ * should be equal to 1 in case of undefined opcode
+ * in Upper-CP (specific stream) and equal to 4 in case
+ * of undefined opcode in Lower-CP.
+ * @engine_id: engine-id that the error occurred on
+ * @stream_id: the stream id the error occurred on. In case the stream equals to
+ * MAX_QMAN_STREAMS_INFO it means the error occurred on a Lower-CP.
+ * @write_enable: if set, writing to undefined opcode parameters in the structure
+ * is enable so the first (root cause) undefined opcode will not be
+ * overwritten.
+ */
+struct undefined_opcode_info {
+ ktime_t timestamp;
+ u64 cb_addr_streams[MAX_QMAN_STREAMS_INFO][OPCODE_INFO_MAX_ADDR_SIZE];
+ u64 cq_addr;
+ u32 cq_size;
+ u32 cb_addr_streams_len;
+ u32 engine_id;
+ u32 stream_id;
+ bool write_enable;
+};
+
+/**
+ * struct page_fault_info - page fault information.
+ * @page_fault: holds information collected during a page fault.
+ * @user_mappings: buffer containing user mappings.
+ * @num_of_user_mappings: number of user mappings.
+ * @page_fault_detected: if set as 1, then a page-fault was discovered for the
+ * first time after the driver has finished booting-up.
+ * Since we're looking for the page-fault's root cause,
+ * we don't care of the others that might follow it-
+ * so once changed to 1, it will remain that way.
+ * @page_fault_info_available: indicates that a page fault info is now available.
+ */
+struct page_fault_info {
+ struct hl_page_fault_info page_fault;
+ struct hl_user_mapping *user_mappings;
+ u64 num_of_user_mappings;
+ atomic_t page_fault_detected;
+ bool page_fault_info_available;
+};
+
+/**
+ * struct razwi_info - RAZWI information.
+ * @razwi: holds information collected during a RAZWI
+ * @razwi_detected: if set as 1, then a RAZWI was discovered for the
+ * first time after the driver has finished booting-up.
+ * Since we're looking for the RAZWI's root cause,
+ * we don't care of the others that might follow it-
+ * so once changed to 1, it will remain that way.
+ * @razwi_info_available: indicates that a RAZWI info is now available.
+ */
+struct razwi_info {
+ struct hl_info_razwi_event razwi;
+ atomic_t razwi_detected;
+ bool razwi_info_available;
+};
+
+/**
+ * struct hw_err_info - HW error information.
+ * @event: holds information on the event.
+ * @event_detected: if set as 1, then a HW event was discovered for the
+ * first time after the driver has finished booting-up.
+ * currently we assume that only fatal events (that require hard-reset) are
+ * reported so we don't care of the others that might follow it.
+ * so once changed to 1, it will remain that way.
+ * TODO: support multiple events.
+ * @event_info_available: indicates that a HW event info is now available.
+ */
+struct hw_err_info {
+ struct hl_info_hw_err_event event;
+ atomic_t event_detected;
+ bool event_info_available;
+};
+
+/**
+ * struct fw_err_info - FW error information.
+ * @event: holds information on the event.
+ * @event_detected: if set as 1, then a FW event was discovered for the
+ * first time after the driver has finished booting-up.
+ * currently we assume that only fatal events (that require hard-reset) are
+ * reported so we don't care of the others that might follow it.
+ * so once changed to 1, it will remain that way.
+ * TODO: support multiple events.
+ * @event_info_available: indicates that a HW event info is now available.
+ */
+struct fw_err_info {
+ struct hl_info_fw_err_event event;
+ atomic_t event_detected;
+ bool event_info_available;
+};
+
+/**
+ * struct hl_error_info - holds information collected during an error.
+ * @cs_timeout: CS timeout error information.
+ * @razwi_info: RAZWI information.
+ * @undef_opcode: undefined opcode information.
+ * @page_fault_info: page fault information.
+ * @hw_err: (fatal) hardware error information.
+ * @fw_err: firmware error information.
+ */
+struct hl_error_info {
+ struct cs_timeout_info cs_timeout;
+ struct razwi_info razwi_info;
+ struct undefined_opcode_info undef_opcode;
+ struct page_fault_info page_fault_info;
+ struct hw_err_info hw_err;
+ struct fw_err_info fw_err;
+};
+
+/**
+ * struct hl_reset_info - holds current device reset information.
+ * @lock: lock to protect critical reset flows.
+ * @compute_reset_cnt: number of compute resets since the driver was loaded.
+ * @hard_reset_cnt: number of hard resets since the driver was loaded.
+ * @hard_reset_schedule_flags: hard reset is scheduled to after current compute reset,
+ * here we hold the hard reset flags.
+ * @in_reset: is device in reset flow.
+ * @in_compute_reset: Device is currently in reset but not in hard-reset.
+ * @needs_reset: true if reset_on_lockup is false and device should be reset
+ * due to lockup.
+ * @hard_reset_pending: is there a hard reset work pending.
+ * @curr_reset_cause: saves an enumerated reset cause when a hard reset is
+ * triggered, and cleared after it is shared with preboot.
+ * @prev_reset_trigger: saves the previous trigger which caused a reset, overridden
+ * with a new value on next reset
+ * @reset_trigger_repeated: set if device reset is triggered more than once with
+ * same cause.
+ * @skip_reset_on_timeout: Skip device reset if CS has timed out, wait for it to
+ * complete instead.
+ * @watchdog_active: true if a device release watchdog work is scheduled.
+ */
+struct hl_reset_info {
+ spinlock_t lock;
+ u32 compute_reset_cnt;
+ u32 hard_reset_cnt;
+ u32 hard_reset_schedule_flags;
+ u8 in_reset;
+ u8 in_compute_reset;
+ u8 needs_reset;
+ u8 hard_reset_pending;
+ u8 curr_reset_cause;
+ u8 prev_reset_trigger;
+ u8 reset_trigger_repeated;
+ u8 skip_reset_on_timeout;
+ u8 watchdog_active;
+};
+
+/**
+ * struct hl_device - habanalabs device structure.
+ * @pdev: pointer to PCI device, can be NULL in case of simulator device.
+ * @pcie_bar_phys: array of available PCIe bars physical addresses.
+ * (required only for PCI address match mode)
+ * @pcie_bar: array of available PCIe bars virtual addresses.
+ * @rmmio: configuration area address on SRAM.
+ * @hclass: pointer to the habanalabs class.
+ * @cdev: related char device.
+ * @cdev_ctrl: char device for control operations only (INFO IOCTL)
+ * @dev: related kernel basic device structure.
+ * @dev_ctrl: related kernel device structure for the control device
+ * @work_heartbeat: delayed work for CPU-CP is-alive check.
+ * @device_reset_work: delayed work which performs hard reset
+ * @device_release_watchdog_work: watchdog work that performs hard reset if user doesn't release
+ * device upon certain error cases.
+ * @asic_name: ASIC specific name.
+ * @asic_type: ASIC specific type.
+ * @completion_queue: array of hl_cq.
+ * @user_interrupt: array of hl_user_interrupt. upon the corresponding user
+ * interrupt, driver will monitor the list of fences
+ * registered to this interrupt.
+ * @tpc_interrupt: single TPC interrupt for all TPCs.
+ * @unexpected_error_interrupt: single interrupt for unexpected user error indication.
+ * @common_user_cq_interrupt: common user CQ interrupt for all user CQ interrupts.
+ * upon any user CQ interrupt, driver will monitor the
+ * list of fences registered to this common structure.
+ * @common_decoder_interrupt: common decoder interrupt for all user decoder interrupts.
+ * @shadow_cs_queue: pointer to a shadow queue that holds pointers to
+ * outstanding command submissions.
+ * @cq_wq: work queues of completion queues for executing work in process
+ * context.
+ * @eq_wq: work queue of event queue for executing work in process context.
+ * @cs_cmplt_wq: work queue of CS completions for executing work in process
+ * context.
+ * @ts_free_obj_wq: work queue for timestamp registration objects release.
+ * @prefetch_wq: work queue for MMU pre-fetch operations.
+ * @reset_wq: work queue for device reset procedure.
+ * @kernel_ctx: Kernel driver context structure.
+ * @kernel_queues: array of hl_hw_queue.
+ * @cs_mirror_list: CS mirror list for TDR.
+ * @cs_mirror_lock: protects cs_mirror_list.
+ * @kernel_mem_mgr: memory manager for memory buffers with lifespan of driver.
+ * @event_queue: event queue for IRQ from CPU-CP.
+ * @dma_pool: DMA pool for small allocations.
+ * @cpu_accessible_dma_mem: Host <-> CPU-CP shared memory CPU address.
+ * @cpu_accessible_dma_address: Host <-> CPU-CP shared memory DMA address.
+ * @cpu_accessible_dma_pool: Host <-> CPU-CP shared memory pool.
+ * @asid_bitmap: holds used/available ASIDs.
+ * @asid_mutex: protects asid_bitmap.
+ * @send_cpu_message_lock: enforces only one message in Host <-> CPU-CP queue.
+ * @debug_lock: protects critical section of setting debug mode for device
+ * @mmu_lock: protects the MMU page tables and invalidation h/w. Although the
+ * page tables are per context, the invalidation h/w is per MMU.
+ * Therefore, we can't allow multiple contexts (we only have two,
+ * user and kernel) to access the invalidation h/w at the same time.
+ * In addition, any change to the PGT, modifying the MMU hash or
+ * walking the PGT requires talking this lock.
+ * @asic_prop: ASIC specific immutable properties.
+ * @asic_funcs: ASIC specific functions.
+ * @asic_specific: ASIC specific information to use only from ASIC files.
+ * @vm: virtual memory manager for MMU.
+ * @hwmon_dev: H/W monitor device.
+ * @hl_chip_info: ASIC's sensors information.
+ * @device_status_description: device status description.
+ * @hl_debugfs: device's debugfs manager.
+ * @cb_pool: list of pre allocated CBs.
+ * @cb_pool_lock: protects the CB pool.
+ * @internal_cb_pool_virt_addr: internal command buffer pool virtual address.
+ * @internal_cb_pool_dma_addr: internal command buffer pool dma address.
+ * @internal_cb_pool: internal command buffer memory pool.
+ * @internal_cb_va_base: internal cb pool mmu virtual address base
+ * @fpriv_list: list of file private data structures. Each structure is created
+ * when a user opens the device
+ * @fpriv_ctrl_list: list of file private data structures. Each structure is created
+ * when a user opens the control device
+ * @fpriv_list_lock: protects the fpriv_list
+ * @fpriv_ctrl_list_lock: protects the fpriv_ctrl_list
+ * @aggregated_cs_counters: aggregated cs counters among all contexts
+ * @mmu_priv: device-specific MMU data.
+ * @mmu_func: device-related MMU functions.
+ * @dec: list of decoder sw instance
+ * @fw_loader: FW loader manager.
+ * @pci_mem_region: array of memory regions in the PCI
+ * @state_dump_specs: constants and dictionaries needed to dump system state.
+ * @multi_cs_completion: array of multi-CS completion.
+ * @clk_throttling: holds information about current/previous clock throttling events
+ * @captured_err_info: holds information about errors.
+ * @reset_info: holds current device reset information.
+ * @stream_master_qid_arr: pointer to array with QIDs of master streams.
+ * @fw_inner_major_ver: the major of current loaded preboot inner version.
+ * @fw_inner_minor_ver: the minor of current loaded preboot inner version.
+ * @fw_sw_major_ver: the major of current loaded preboot SW version.
+ * @fw_sw_minor_ver: the minor of current loaded preboot SW version.
+ * @fw_sw_sub_minor_ver: the sub-minor of current loaded preboot SW version.
+ * @dram_used_mem: current DRAM memory consumption.
+ * @memory_scrub_val: the value to which the dram will be scrubbed to using cb scrub_device_dram
+ * @timeout_jiffies: device CS timeout value.
+ * @max_power: the max power of the device, as configured by the sysadmin. This
+ * value is saved so in case of hard-reset, the driver will restore
+ * this value and update the F/W after the re-initialization
+ * @boot_error_status_mask: contains a mask of the device boot error status.
+ * Each bit represents a different error, according to
+ * the defines in hl_boot_if.h. If the bit is cleared,
+ * the error will be ignored by the driver during
+ * device initialization. Mainly used to debug and
+ * workaround firmware bugs
+ * @dram_pci_bar_start: start bus address of PCIe bar towards DRAM.
+ * @last_successful_open_ktime: timestamp (ktime) of the last successful device open.
+ * @last_successful_open_jif: timestamp (jiffies) of the last successful
+ * device open.
+ * @last_open_session_duration_jif: duration (jiffies) of the last device open
+ * session.
+ * @open_counter: number of successful device open operations.
+ * @fw_poll_interval_usec: FW status poll interval in usec.
+ * used for CPU boot status
+ * @fw_comms_poll_interval_usec: FW comms/protocol poll interval in usec.
+ * used for COMMs protocols cmds(COMMS_STS_*)
+ * @dram_binning: contains mask of drams that is received from the f/w which indicates which
+ * drams are binned-out
+ * @tpc_binning: contains mask of tpc engines that is received from the f/w which indicates which
+ * tpc engines are binned-out
+ * @dmabuf_export_cnt: number of dma-buf exporting.
+ * @card_type: Various ASICs have several card types. This indicates the card
+ * type of the current device.
+ * @major: habanalabs kernel driver major.
+ * @high_pll: high PLL profile frequency.
+ * @decoder_binning: contains mask of decoder engines that is received from the f/w which
+ * indicates which decoder engines are binned-out
+ * @edma_binning: contains mask of edma engines that is received from the f/w which
+ * indicates which edma engines are binned-out
+ * @device_release_watchdog_timeout_sec: device release watchdog timeout value in seconds.
+ * @rotator_binning: contains mask of rotators engines that is received from the f/w
+ * which indicates which rotator engines are binned-out(Gaudi3 and above).
+ * @id: device minor.
+ * @id_control: minor of the control device.
+ * @cdev_idx: char device index. Used for setting its name.
+ * @cpu_pci_msb_addr: 50-bit extension bits for the device CPU's 40-bit
+ * addresses.
+ * @is_in_dram_scrub: true if dram scrub operation is on going.
+ * @disabled: is device disabled.
+ * @late_init_done: is late init stage was done during initialization.
+ * @hwmon_initialized: is H/W monitor sensors was initialized.
+ * @reset_on_lockup: true if a reset should be done in case of stuck CS, false
+ * otherwise.
+ * @dram_default_page_mapping: is DRAM default page mapping enabled.
+ * @memory_scrub: true to perform device memory scrub in various locations,
+ * such as context-switch, context close, page free, etc.
+ * @pmmu_huge_range: is a different virtual addresses range used for PMMU with
+ * huge pages.
+ * @init_done: is the initialization of the device done.
+ * @device_cpu_disabled: is the device CPU disabled (due to timeouts)
+ * @in_debug: whether the device is in a state where the profiling/tracing infrastructure
+ * can be used. This indication is needed because in some ASICs we need to do
+ * specific operations to enable that infrastructure.
+ * @cdev_sysfs_debugfs_created: were char devices and sysfs/debugfs files created.
+ * @stop_on_err: true if engines should stop on error.
+ * @supports_sync_stream: is sync stream supported.
+ * @sync_stream_queue_idx: helper index for sync stream queues initialization.
+ * @collective_mon_idx: helper index for collective initialization
+ * @supports_coresight: is CoreSight supported.
+ * @supports_cb_mapping: is mapping a CB to the device's MMU supported.
+ * @process_kill_trial_cnt: number of trials reset thread tried killing
+ * user processes
+ * @device_fini_pending: true if device_fini was called and might be
+ * waiting for the reset thread to finish
+ * @supports_staged_submission: true if staged submissions are supported
+ * @device_cpu_is_halted: Flag to indicate whether the device CPU was already
+ * halted. We can't halt it again because the COMMS
+ * protocol will throw an error. Relevant only for
+ * cases where Linux was not loaded to device CPU
+ * @supports_wait_for_multi_cs: true if wait for multi CS is supported
+ * @is_compute_ctx_active: Whether there is an active compute context executing.
+ * @compute_ctx_in_release: true if the current compute context is being released.
+ * @supports_mmu_prefetch: true if prefetch is supported, otherwise false.
+ * @reset_upon_device_release: reset the device when the user closes the file descriptor of the
+ * device.
+ * @supports_ctx_switch: true if a ctx switch is required upon first submission.
+ * @support_preboot_binning: true if we support read binning info from preboot.
+ * @nic_ports_mask: Controls which NIC ports are enabled. Used only for testing.
+ * @fw_components: Controls which f/w components to load to the device. There are multiple f/w
+ * stages and sometimes we want to stop at a certain stage. Used only for testing.
+ * @mmu_disable: Disable the device MMU(s). Used only for testing.
+ * @cpu_queues_enable: Whether to enable queues communication vs. the f/w. Used only for testing.
+ * @pldm: Whether we are running in Palladium environment. Used only for testing.
+ * @hard_reset_on_fw_events: Whether to do device hard-reset when a fatal event is received from
+ * the f/w. Used only for testing.
+ * @bmc_enable: Whether we are running in a box with BMC. Used only for testing.
+ * @reset_on_preboot_fail: Whether to reset the device if preboot f/w fails to load.
+ * Used only for testing.
+ * @heartbeat: Controls if we want to enable the heartbeat mechanism vs. the f/w, which verifies
+ * that the f/w is always alive. Used only for testing.
+ */
+struct hl_device {
+ struct pci_dev *pdev;
+ u64 pcie_bar_phys[HL_PCI_NUM_BARS];
+ void __iomem *pcie_bar[HL_PCI_NUM_BARS];
+ void __iomem *rmmio;
+ struct class *hclass;
+ struct cdev cdev;
+ struct cdev cdev_ctrl;
+ struct device *dev;
+ struct device *dev_ctrl;
+ struct delayed_work work_heartbeat;
+ struct hl_device_reset_work device_reset_work;
+ struct hl_device_reset_work device_release_watchdog_work;
+ char asic_name[HL_STR_MAX];
+ char status[HL_DEV_STS_MAX][HL_STR_MAX];
+ enum hl_asic_type asic_type;
+ struct hl_cq *completion_queue;
+ struct hl_user_interrupt *user_interrupt;
+ struct hl_user_interrupt tpc_interrupt;
+ struct hl_user_interrupt unexpected_error_interrupt;
+ struct hl_user_interrupt common_user_cq_interrupt;
+ struct hl_user_interrupt common_decoder_interrupt;
+ struct hl_cs **shadow_cs_queue;
+ struct workqueue_struct **cq_wq;
+ struct workqueue_struct *eq_wq;
+ struct workqueue_struct *cs_cmplt_wq;
+ struct workqueue_struct *ts_free_obj_wq;
+ struct workqueue_struct *prefetch_wq;
+ struct workqueue_struct *reset_wq;
+ struct hl_ctx *kernel_ctx;
+ struct hl_hw_queue *kernel_queues;
+ struct list_head cs_mirror_list;
+ spinlock_t cs_mirror_lock;
+ struct hl_mem_mgr kernel_mem_mgr;
+ struct hl_eq event_queue;
+ struct dma_pool *dma_pool;
+ void *cpu_accessible_dma_mem;
+ dma_addr_t cpu_accessible_dma_address;
+ struct gen_pool *cpu_accessible_dma_pool;
+ unsigned long *asid_bitmap;
+ struct mutex asid_mutex;
+ struct mutex send_cpu_message_lock;
+ struct mutex debug_lock;
+ struct mutex mmu_lock;
+ struct asic_fixed_properties asic_prop;
+ const struct hl_asic_funcs *asic_funcs;
+ void *asic_specific;
+ struct hl_vm vm;
+ struct device *hwmon_dev;
+ struct hwmon_chip_info *hl_chip_info;
+
+ struct hl_dbg_device_entry hl_debugfs;
+
+ struct list_head cb_pool;
+ spinlock_t cb_pool_lock;
+
+ void *internal_cb_pool_virt_addr;
+ dma_addr_t internal_cb_pool_dma_addr;
+ struct gen_pool *internal_cb_pool;
+ u64 internal_cb_va_base;
+
+ struct list_head fpriv_list;
+ struct list_head fpriv_ctrl_list;
+ struct mutex fpriv_list_lock;
+ struct mutex fpriv_ctrl_list_lock;
+
+ struct hl_cs_counters_atomic aggregated_cs_counters;
+
+ struct hl_mmu_priv mmu_priv;
+ struct hl_mmu_funcs mmu_func[MMU_NUM_PGT_LOCATIONS];
+
+ struct hl_dec *dec;
+
+ struct fw_load_mgr fw_loader;
+
+ struct pci_mem_region pci_mem_region[PCI_REGION_NUMBER];
+
+ struct hl_state_dump_specs state_dump_specs;
+
+ struct multi_cs_completion multi_cs_completion[
+ MULTI_CS_MAX_USER_CTX];
+ struct hl_clk_throttle clk_throttling;
+ struct hl_error_info captured_err_info;
+
+ struct hl_reset_info reset_info;
+
+ u32 *stream_master_qid_arr;
+ u32 fw_inner_major_ver;
+ u32 fw_inner_minor_ver;
+ u32 fw_sw_major_ver;
+ u32 fw_sw_minor_ver;
+ u32 fw_sw_sub_minor_ver;
+ atomic64_t dram_used_mem;
+ u64 memory_scrub_val;
+ u64 timeout_jiffies;
+ u64 max_power;
+ u64 boot_error_status_mask;
+ u64 dram_pci_bar_start;
+ u64 last_successful_open_jif;
+ u64 last_open_session_duration_jif;
+ u64 open_counter;
+ u64 fw_poll_interval_usec;
+ ktime_t last_successful_open_ktime;
+ u64 fw_comms_poll_interval_usec;
+ u64 dram_binning;
+ u64 tpc_binning;
+ atomic_t dmabuf_export_cnt;
+ enum cpucp_card_types card_type;
+ u32 major;
+ u32 high_pll;
+ u32 decoder_binning;
+ u32 edma_binning;
+ u32 device_release_watchdog_timeout_sec;
+ u32 rotator_binning;
+ u16 id;
+ u16 id_control;
+ u16 cdev_idx;
+ u16 cpu_pci_msb_addr;
+ u8 is_in_dram_scrub;
+ u8 disabled;
+ u8 late_init_done;
+ u8 hwmon_initialized;
+ u8 reset_on_lockup;
+ u8 dram_default_page_mapping;
+ u8 memory_scrub;
+ u8 pmmu_huge_range;
+ u8 init_done;
+ u8 device_cpu_disabled;
+ u8 in_debug;
+ u8 cdev_sysfs_debugfs_created;
+ u8 stop_on_err;
+ u8 supports_sync_stream;
+ u8 sync_stream_queue_idx;
+ u8 collective_mon_idx;
+ u8 supports_coresight;
+ u8 supports_cb_mapping;
+ u8 process_kill_trial_cnt;
+ u8 device_fini_pending;
+ u8 supports_staged_submission;
+ u8 device_cpu_is_halted;
+ u8 supports_wait_for_multi_cs;
+ u8 stream_master_qid_arr_size;
+ u8 is_compute_ctx_active;
+ u8 compute_ctx_in_release;
+ u8 supports_mmu_prefetch;
+ u8 reset_upon_device_release;
+ u8 supports_ctx_switch;
+ u8 support_preboot_binning;
+
+ /* Parameters for bring-up to be upstreamed */
+ u64 nic_ports_mask;
+ u64 fw_components;
+ u8 mmu_disable;
+ u8 cpu_queues_enable;
+ u8 pldm;
+ u8 hard_reset_on_fw_events;
+ u8 bmc_enable;
+ u8 reset_on_preboot_fail;
+ u8 heartbeat;
+};
+
+
+/**
+ * struct hl_cs_encaps_sig_handle - encapsulated signals handle structure
+ * @refcount: refcount used to protect removing this id when several
+ * wait cs are used to wait of the reserved encaps signals.
+ * @hdev: pointer to habanalabs device structure.
+ * @hw_sob: pointer to H/W SOB used in the reservation.
+ * @ctx: pointer to the user's context data structure
+ * @cs_seq: staged cs sequence which contains encapsulated signals
+ * @id: idr handler id to be used to fetch the handler info
+ * @q_idx: stream queue index
+ * @pre_sob_val: current SOB value before reservation
+ * @count: signals number
+ */
+struct hl_cs_encaps_sig_handle {
+ struct kref refcount;
+ struct hl_device *hdev;
+ struct hl_hw_sob *hw_sob;
+ struct hl_ctx *ctx;
+ u64 cs_seq;
+ u32 id;
+ u32 q_idx;
+ u32 pre_sob_val;
+ u32 count;
+};
+
+/**
+ * struct hl_info_fw_err_info - firmware error information structure
+ * @err_type: The type of error detected (or reported).
+ * @event_mask: Pointer to the event mask to be modified with the detected error flag
+ * (can be NULL)
+ * @event_id: The id of the event that reported the error
+ * (applicable when err_type is HL_INFO_FW_REPORTED_ERR).
+ */
+struct hl_info_fw_err_info {
+ enum hl_info_fw_err_type err_type;
+ u64 *event_mask;
+ u16 event_id;
+};
+
+/*
+ * IOCTLs
+ */
+
+/**
+ * typedef hl_ioctl_t - typedef for ioctl function in the driver
+ * @hpriv: pointer to the FD's private data, which contains state of
+ * user process
+ * @data: pointer to the input/output arguments structure of the IOCTL
+ *
+ * Return: 0 for success, negative value for error
+ */
+typedef int hl_ioctl_t(struct hl_fpriv *hpriv, void *data);
+
+/**
+ * struct hl_ioctl_desc - describes an IOCTL entry of the driver.
+ * @cmd: the IOCTL code as created by the kernel macros.
+ * @func: pointer to the driver's function that should be called for this IOCTL.
+ */
+struct hl_ioctl_desc {
+ unsigned int cmd;
+ hl_ioctl_t *func;
+};
+
+static inline bool hl_is_fw_sw_ver_below(struct hl_device *hdev, u32 fw_sw_major, u32 fw_sw_minor)
+{
+ if (hdev->fw_sw_major_ver < fw_sw_major)
+ return true;
+ if (hdev->fw_sw_major_ver > fw_sw_major)
+ return false;
+ if (hdev->fw_sw_minor_ver < fw_sw_minor)
+ return true;
+ return false;
+}
+
+/*
+ * Kernel module functions that can be accessed by entire module
+ */
+
+/**
+ * hl_get_sg_info() - get number of pages and the DMA address from SG list.
+ * @sg: the SG list.
+ * @dma_addr: pointer to DMA address to return.
+ *
+ * Calculate the number of consecutive pages described by the SG list. Take the
+ * offset of the address in the first page, add to it the length and round it up
+ * to the number of needed pages.
+ */
+static inline u32 hl_get_sg_info(struct scatterlist *sg, dma_addr_t *dma_addr)
+{
+ *dma_addr = sg_dma_address(sg);
+
+ return ((((*dma_addr) & (PAGE_SIZE - 1)) + sg_dma_len(sg)) +
+ (PAGE_SIZE - 1)) >> PAGE_SHIFT;
+}
+
+/**
+ * hl_mem_area_inside_range() - Checks whether address+size are inside a range.
+ * @address: The start address of the area we want to validate.
+ * @size: The size in bytes of the area we want to validate.
+ * @range_start_address: The start address of the valid range.
+ * @range_end_address: The end address of the valid range.
+ *
+ * Return: true if the area is inside the valid range, false otherwise.
+ */
+static inline bool hl_mem_area_inside_range(u64 address, u64 size,
+ u64 range_start_address, u64 range_end_address)
+{
+ u64 end_address = address + size;
+
+ if ((address >= range_start_address) &&
+ (end_address <= range_end_address) &&
+ (end_address > address))
+ return true;
+
+ return false;
+}
+
+/**
+ * hl_mem_area_crosses_range() - Checks whether address+size crossing a range.
+ * @address: The start address of the area we want to validate.
+ * @size: The size in bytes of the area we want to validate.
+ * @range_start_address: The start address of the valid range.
+ * @range_end_address: The end address of the valid range.
+ *
+ * Return: true if the area overlaps part or all of the valid range,
+ * false otherwise.
+ */
+static inline bool hl_mem_area_crosses_range(u64 address, u32 size,
+ u64 range_start_address, u64 range_end_address)
+{
+ u64 end_address = address + size - 1;
+
+ return ((address <= range_end_address) && (range_start_address <= end_address));
+}
+
+uint64_t hl_set_dram_bar_default(struct hl_device *hdev, u64 addr);
+void *hl_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle);
+void hl_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size, void *vaddr);
+void *hl_asic_dma_alloc_coherent_caller(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle,
+ gfp_t flag, const char *caller);
+void hl_asic_dma_free_coherent_caller(struct hl_device *hdev, size_t size, void *cpu_addr,
+ dma_addr_t dma_handle, const char *caller);
+void *hl_asic_dma_pool_zalloc_caller(struct hl_device *hdev, size_t size, gfp_t mem_flags,
+ dma_addr_t *dma_handle, const char *caller);
+void hl_asic_dma_pool_free_caller(struct hl_device *hdev, void *vaddr, dma_addr_t dma_addr,
+ const char *caller);
+int hl_dma_map_sgtable(struct hl_device *hdev, struct sg_table *sgt, enum dma_data_direction dir);
+void hl_dma_unmap_sgtable(struct hl_device *hdev, struct sg_table *sgt,
+ enum dma_data_direction dir);
+int hl_access_sram_dram_region(struct hl_device *hdev, u64 addr, u64 *val,
+ enum debugfs_access_type acc_type, enum pci_region region_type, bool set_dram_bar);
+int hl_access_cfg_region(struct hl_device *hdev, u64 addr, u64 *val,
+ enum debugfs_access_type acc_type);
+int hl_access_dev_mem(struct hl_device *hdev, enum pci_region region_type,
+ u64 addr, u64 *val, enum debugfs_access_type acc_type);
+int hl_device_open(struct inode *inode, struct file *filp);
+int hl_device_open_ctrl(struct inode *inode, struct file *filp);
+bool hl_device_operational(struct hl_device *hdev,
+ enum hl_device_status *status);
+bool hl_ctrl_device_operational(struct hl_device *hdev,
+ enum hl_device_status *status);
+enum hl_device_status hl_device_status(struct hl_device *hdev);
+int hl_device_set_debug_mode(struct hl_device *hdev, struct hl_ctx *ctx, bool enable);
+int hl_hw_queues_create(struct hl_device *hdev);
+void hl_hw_queues_destroy(struct hl_device *hdev);
+int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id,
+ u32 cb_size, u64 cb_ptr);
+void hl_hw_queue_submit_bd(struct hl_device *hdev, struct hl_hw_queue *q,
+ u32 ctl, u32 len, u64 ptr);
+int hl_hw_queue_schedule_cs(struct hl_cs *cs);
+u32 hl_hw_queue_add_ptr(u32 ptr, u16 val);
+void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id);
+void hl_hw_queue_update_ci(struct hl_cs *cs);
+void hl_hw_queue_reset(struct hl_device *hdev, bool hard_reset);
+
+#define hl_queue_inc_ptr(p) hl_hw_queue_add_ptr(p, 1)
+#define hl_pi_2_offset(pi) ((pi) & (HL_QUEUE_LENGTH - 1))
+
+int hl_cq_init(struct hl_device *hdev, struct hl_cq *q, u32 hw_queue_id);
+void hl_cq_fini(struct hl_device *hdev, struct hl_cq *q);
+int hl_eq_init(struct hl_device *hdev, struct hl_eq *q);
+void hl_eq_fini(struct hl_device *hdev, struct hl_eq *q);
+void hl_cq_reset(struct hl_device *hdev, struct hl_cq *q);
+void hl_eq_reset(struct hl_device *hdev, struct hl_eq *q);
+irqreturn_t hl_irq_handler_cq(int irq, void *arg);
+irqreturn_t hl_irq_handler_eq(int irq, void *arg);
+irqreturn_t hl_irq_handler_dec_abnrm(int irq, void *arg);
+irqreturn_t hl_irq_handler_user_interrupt(int irq, void *arg);
+irqreturn_t hl_irq_user_interrupt_thread_handler(int irq, void *arg);
+u32 hl_cq_inc_ptr(u32 ptr);
+
+int hl_asid_init(struct hl_device *hdev);
+void hl_asid_fini(struct hl_device *hdev);
+unsigned long hl_asid_alloc(struct hl_device *hdev);
+void hl_asid_free(struct hl_device *hdev, unsigned long asid);
+
+int hl_ctx_create(struct hl_device *hdev, struct hl_fpriv *hpriv);
+void hl_ctx_free(struct hl_device *hdev, struct hl_ctx *ctx);
+int hl_ctx_init(struct hl_device *hdev, struct hl_ctx *ctx, bool is_kernel_ctx);
+void hl_ctx_do_release(struct kref *ref);
+void hl_ctx_get(struct hl_ctx *ctx);
+int hl_ctx_put(struct hl_ctx *ctx);
+struct hl_ctx *hl_get_compute_ctx(struct hl_device *hdev);
+struct hl_fence *hl_ctx_get_fence(struct hl_ctx *ctx, u64 seq);
+int hl_ctx_get_fences(struct hl_ctx *ctx, u64 *seq_arr,
+ struct hl_fence **fence, u32 arr_len);
+void hl_ctx_mgr_init(struct hl_ctx_mgr *mgr);
+void hl_ctx_mgr_fini(struct hl_device *hdev, struct hl_ctx_mgr *mgr);
+
+int hl_device_init(struct hl_device *hdev);
+void hl_device_fini(struct hl_device *hdev);
+int hl_device_suspend(struct hl_device *hdev);
+int hl_device_resume(struct hl_device *hdev);
+int hl_device_reset(struct hl_device *hdev, u32 flags);
+int hl_device_cond_reset(struct hl_device *hdev, u32 flags, u64 event_mask);
+void hl_hpriv_get(struct hl_fpriv *hpriv);
+int hl_hpriv_put(struct hl_fpriv *hpriv);
+int hl_device_utilization(struct hl_device *hdev, u32 *utilization);
+
+int hl_build_hwmon_channel_info(struct hl_device *hdev,
+ struct cpucp_sensor *sensors_arr);
+
+void hl_notifier_event_send_all(struct hl_device *hdev, u64 event_mask);
+
+int hl_sysfs_init(struct hl_device *hdev);
+void hl_sysfs_fini(struct hl_device *hdev);
+
+int hl_hwmon_init(struct hl_device *hdev);
+void hl_hwmon_fini(struct hl_device *hdev);
+void hl_hwmon_release_resources(struct hl_device *hdev);
+
+int hl_cb_create(struct hl_device *hdev, struct hl_mem_mgr *mmg,
+ struct hl_ctx *ctx, u32 cb_size, bool internal_cb,
+ bool map_cb, u64 *handle);
+int hl_cb_destroy(struct hl_mem_mgr *mmg, u64 cb_handle);
+int hl_hw_block_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma);
+struct hl_cb *hl_cb_get(struct hl_mem_mgr *mmg, u64 handle);
+void hl_cb_put(struct hl_cb *cb);
+struct hl_cb *hl_cb_kernel_create(struct hl_device *hdev, u32 cb_size,
+ bool internal_cb);
+int hl_cb_pool_init(struct hl_device *hdev);
+int hl_cb_pool_fini(struct hl_device *hdev);
+int hl_cb_va_pool_init(struct hl_ctx *ctx);
+void hl_cb_va_pool_fini(struct hl_ctx *ctx);
+
+void hl_cs_rollback_all(struct hl_device *hdev, bool skip_wq_flush);
+struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev,
+ enum hl_queue_type queue_type, bool is_kernel_allocated_cb);
+void hl_sob_reset_error(struct kref *ref);
+int hl_gen_sob_mask(u16 sob_base, u8 sob_mask, u8 *mask);
+void hl_fence_put(struct hl_fence *fence);
+void hl_fences_put(struct hl_fence **fence, int len);
+void hl_fence_get(struct hl_fence *fence);
+void cs_get(struct hl_cs *cs);
+bool cs_needs_completion(struct hl_cs *cs);
+bool cs_needs_timeout(struct hl_cs *cs);
+bool is_staged_cs_last_exists(struct hl_device *hdev, struct hl_cs *cs);
+struct hl_cs *hl_staged_cs_find_first(struct hl_device *hdev, u64 cs_seq);
+void hl_multi_cs_completion_init(struct hl_device *hdev);
+u32 hl_get_active_cs_num(struct hl_device *hdev);
+
+void goya_set_asic_funcs(struct hl_device *hdev);
+void gaudi_set_asic_funcs(struct hl_device *hdev);
+void gaudi2_set_asic_funcs(struct hl_device *hdev);
+
+int hl_vm_ctx_init(struct hl_ctx *ctx);
+void hl_vm_ctx_fini(struct hl_ctx *ctx);
+
+int hl_vm_init(struct hl_device *hdev);
+void hl_vm_fini(struct hl_device *hdev);
+
+void hl_hw_block_mem_init(struct hl_ctx *ctx);
+void hl_hw_block_mem_fini(struct hl_ctx *ctx);
+
+u64 hl_reserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
+ enum hl_va_range_type type, u64 size, u32 alignment);
+int hl_unreserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
+ u64 start_addr, u64 size);
+int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size,
+ struct hl_userptr *userptr);
+void hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr);
+void hl_userptr_delete_list(struct hl_device *hdev,
+ struct list_head *userptr_list);
+bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr, u32 size,
+ struct list_head *userptr_list,
+ struct hl_userptr **userptr);
+
+int hl_mmu_init(struct hl_device *hdev);
+void hl_mmu_fini(struct hl_device *hdev);
+int hl_mmu_ctx_init(struct hl_ctx *ctx);
+void hl_mmu_ctx_fini(struct hl_ctx *ctx);
+int hl_mmu_map_page(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr,
+ u32 page_size, bool flush_pte);
+int hl_mmu_get_real_page_size(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop,
+ u32 page_size, u32 *real_page_size, bool is_dram_addr);
+int hl_mmu_unmap_page(struct hl_ctx *ctx, u64 virt_addr, u32 page_size,
+ bool flush_pte);
+int hl_mmu_map_contiguous(struct hl_ctx *ctx, u64 virt_addr,
+ u64 phys_addr, u32 size);
+int hl_mmu_unmap_contiguous(struct hl_ctx *ctx, u64 virt_addr, u32 size);
+int hl_mmu_invalidate_cache(struct hl_device *hdev, bool is_hard, u32 flags);
+int hl_mmu_invalidate_cache_range(struct hl_device *hdev, bool is_hard,
+ u32 flags, u32 asid, u64 va, u64 size);
+int hl_mmu_prefetch_cache_range(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size);
+u64 hl_mmu_get_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte);
+u64 hl_mmu_get_hop_pte_phys_addr(struct hl_ctx *ctx, struct hl_mmu_properties *mmu_prop,
+ u8 hop_idx, u64 hop_addr, u64 virt_addr);
+void hl_mmu_hr_flush(struct hl_ctx *ctx);
+int hl_mmu_hr_init(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size,
+ u64 pgt_size);
+void hl_mmu_hr_fini(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size);
+void hl_mmu_hr_free_hop_remove_pgt(struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv,
+ u32 hop_table_size);
+u64 hl_mmu_hr_pte_phys_to_virt(struct hl_ctx *ctx, struct pgt_info *pgt, u64 phys_pte_addr,
+ u32 hop_table_size);
+void hl_mmu_hr_write_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr,
+ u64 val, u32 hop_table_size);
+void hl_mmu_hr_clear_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr,
+ u32 hop_table_size);
+int hl_mmu_hr_put_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv,
+ u32 hop_table_size);
+void hl_mmu_hr_get_pte(struct hl_ctx *ctx, struct hl_hr_mmu_funcs *hr_func, u64 phys_hop_addr);
+struct pgt_info *hl_mmu_hr_get_next_hop_pgt_info(struct hl_ctx *ctx,
+ struct hl_hr_mmu_funcs *hr_func,
+ u64 curr_pte);
+struct pgt_info *hl_mmu_hr_alloc_hop(struct hl_ctx *ctx, struct hl_mmu_hr_priv *hr_priv,
+ struct hl_hr_mmu_funcs *hr_func,
+ struct hl_mmu_properties *mmu_prop);
+struct pgt_info *hl_mmu_hr_get_alloc_next_hop(struct hl_ctx *ctx,
+ struct hl_mmu_hr_priv *hr_priv,
+ struct hl_hr_mmu_funcs *hr_func,
+ struct hl_mmu_properties *mmu_prop,
+ u64 curr_pte, bool *is_new_hop);
+int hl_mmu_hr_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops,
+ struct hl_hr_mmu_funcs *hr_func);
+int hl_mmu_if_set_funcs(struct hl_device *hdev);
+void hl_mmu_v1_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu);
+void hl_mmu_v2_hr_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu);
+int hl_mmu_va_to_pa(struct hl_ctx *ctx, u64 virt_addr, u64 *phys_addr);
+int hl_mmu_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr,
+ struct hl_mmu_hop_info *hops);
+u64 hl_mmu_scramble_addr(struct hl_device *hdev, u64 addr);
+u64 hl_mmu_descramble_addr(struct hl_device *hdev, u64 addr);
+bool hl_is_dram_va(struct hl_device *hdev, u64 virt_addr);
+
+int hl_fw_load_fw_to_device(struct hl_device *hdev, const char *fw_name,
+ void __iomem *dst, u32 src_offset, u32 size);
+int hl_fw_send_pci_access_msg(struct hl_device *hdev, u32 opcode, u64 value);
+int hl_fw_send_cpu_message(struct hl_device *hdev, u32 hw_queue_id, u32 *msg,
+ u16 len, u32 timeout, u64 *result);
+int hl_fw_unmask_irq(struct hl_device *hdev, u16 event_type);
+int hl_fw_unmask_irq_arr(struct hl_device *hdev, const u32 *irq_arr,
+ size_t irq_arr_size);
+int hl_fw_test_cpu_queue(struct hl_device *hdev);
+void *hl_fw_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size,
+ dma_addr_t *dma_handle);
+void hl_fw_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size,
+ void *vaddr);
+int hl_fw_send_heartbeat(struct hl_device *hdev);
+int hl_fw_cpucp_info_get(struct hl_device *hdev,
+ u32 sts_boot_dev_sts0_reg,
+ u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg,
+ u32 boot_err1_reg);
+int hl_fw_cpucp_handshake(struct hl_device *hdev,
+ u32 sts_boot_dev_sts0_reg,
+ u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg,
+ u32 boot_err1_reg);
+int hl_fw_get_eeprom_data(struct hl_device *hdev, void *data, size_t max_size);
+int hl_fw_get_monitor_dump(struct hl_device *hdev, void *data);
+int hl_fw_cpucp_pci_counters_get(struct hl_device *hdev,
+ struct hl_info_pci_counters *counters);
+int hl_fw_cpucp_total_energy_get(struct hl_device *hdev,
+ u64 *total_energy);
+int get_used_pll_index(struct hl_device *hdev, u32 input_pll_index,
+ enum pll_index *pll_index);
+int hl_fw_cpucp_pll_info_get(struct hl_device *hdev, u32 pll_index,
+ u16 *pll_freq_arr);
+int hl_fw_cpucp_power_get(struct hl_device *hdev, u64 *power);
+void hl_fw_ask_hard_reset_without_linux(struct hl_device *hdev);
+void hl_fw_ask_halt_machine_without_linux(struct hl_device *hdev);
+int hl_fw_init_cpu(struct hl_device *hdev);
+int hl_fw_wait_preboot_ready(struct hl_device *hdev);
+int hl_fw_read_preboot_status(struct hl_device *hdev);
+int hl_fw_dynamic_send_protocol_cmd(struct hl_device *hdev,
+ struct fw_load_mgr *fw_loader,
+ enum comms_cmd cmd, unsigned int size,
+ bool wait_ok, u32 timeout);
+int hl_fw_dram_replaced_row_get(struct hl_device *hdev,
+ struct cpucp_hbm_row_info *info);
+int hl_fw_dram_pending_row_get(struct hl_device *hdev, u32 *pend_rows_num);
+int hl_fw_cpucp_engine_core_asid_set(struct hl_device *hdev, u32 asid);
+int hl_fw_send_device_activity(struct hl_device *hdev, bool open);
+int hl_fw_send_soft_reset(struct hl_device *hdev);
+int hl_pci_bars_map(struct hl_device *hdev, const char * const name[3],
+ bool is_wc[3]);
+int hl_pci_elbi_read(struct hl_device *hdev, u64 addr, u32 *data);
+int hl_pci_iatu_write(struct hl_device *hdev, u32 addr, u32 data);
+int hl_pci_set_inbound_region(struct hl_device *hdev, u8 region,
+ struct hl_inbound_pci_region *pci_region);
+int hl_pci_set_outbound_region(struct hl_device *hdev,
+ struct hl_outbound_pci_region *pci_region);
+enum pci_region hl_get_pci_memory_region(struct hl_device *hdev, u64 addr);
+int hl_pci_init(struct hl_device *hdev);
+void hl_pci_fini(struct hl_device *hdev);
+
+long hl_fw_get_frequency(struct hl_device *hdev, u32 pll_index, bool curr);
+void hl_fw_set_frequency(struct hl_device *hdev, u32 pll_index, u64 freq);
+int hl_get_temperature(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
+int hl_set_temperature(struct hl_device *hdev, int sensor_index, u32 attr, long value);
+int hl_get_voltage(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
+int hl_get_current(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
+int hl_get_fan_speed(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
+int hl_get_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
+void hl_set_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr, long value);
+long hl_fw_get_max_power(struct hl_device *hdev);
+void hl_fw_set_max_power(struct hl_device *hdev);
+int hl_fw_get_sec_attest_info(struct hl_device *hdev, struct cpucp_sec_attest_info *sec_attest_info,
+ u32 nonce);
+int hl_set_voltage(struct hl_device *hdev, int sensor_index, u32 attr, long value);
+int hl_set_current(struct hl_device *hdev, int sensor_index, u32 attr, long value);
+int hl_set_power(struct hl_device *hdev, int sensor_index, u32 attr, long value);
+int hl_get_power(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
+int hl_fw_get_clk_rate(struct hl_device *hdev, u32 *cur_clk, u32 *max_clk);
+void hl_fw_set_pll_profile(struct hl_device *hdev);
+void hl_sysfs_add_dev_clk_attr(struct hl_device *hdev, struct attribute_group *dev_clk_attr_grp);
+void hl_sysfs_add_dev_vrm_attr(struct hl_device *hdev, struct attribute_group *dev_vrm_attr_grp);
+int hl_fw_send_generic_request(struct hl_device *hdev, enum hl_passthrough_type sub_opcode,
+ dma_addr_t buff, u32 *size);
+
+void hw_sob_get(struct hl_hw_sob *hw_sob);
+void hw_sob_put(struct hl_hw_sob *hw_sob);
+void hl_encaps_release_handle_and_put_ctx(struct kref *ref);
+void hl_encaps_release_handle_and_put_sob_ctx(struct kref *ref);
+void hl_hw_queue_encaps_sig_set_sob_info(struct hl_device *hdev,
+ struct hl_cs *cs, struct hl_cs_job *job,
+ struct hl_cs_compl *cs_cmpl);
+
+int hl_dec_init(struct hl_device *hdev);
+void hl_dec_fini(struct hl_device *hdev);
+void hl_dec_ctx_fini(struct hl_ctx *ctx);
+
+void hl_release_pending_user_interrupts(struct hl_device *hdev);
+void hl_abort_waiting_for_cs_completions(struct hl_device *hdev);
+int hl_cs_signal_sob_wraparound_handler(struct hl_device *hdev, u32 q_idx,
+ struct hl_hw_sob **hw_sob, u32 count, bool encaps_sig);
+
+int hl_state_dump(struct hl_device *hdev);
+const char *hl_state_dump_get_sync_name(struct hl_device *hdev, u32 sync_id);
+const char *hl_state_dump_get_monitor_name(struct hl_device *hdev,
+ struct hl_mon_state_dump *mon);
+void hl_state_dump_free_sync_to_engine_map(struct hl_sync_to_engine_map *map);
+__printf(4, 5) int hl_snprintf_resize(char **buf, size_t *size, size_t *offset,
+ const char *format, ...);
+char *hl_format_as_binary(char *buf, size_t buf_len, u32 n);
+const char *hl_sync_engine_to_string(enum hl_sync_engine_type engine_type);
+
+void hl_mem_mgr_init(struct device *dev, struct hl_mem_mgr *mmg);
+void hl_mem_mgr_fini(struct hl_mem_mgr *mmg);
+void hl_mem_mgr_idr_destroy(struct hl_mem_mgr *mmg);
+int hl_mem_mgr_mmap(struct hl_mem_mgr *mmg, struct vm_area_struct *vma,
+ void *args);
+struct hl_mmap_mem_buf *hl_mmap_mem_buf_get(struct hl_mem_mgr *mmg,
+ u64 handle);
+int hl_mmap_mem_buf_put_handle(struct hl_mem_mgr *mmg, u64 handle);
+int hl_mmap_mem_buf_put(struct hl_mmap_mem_buf *buf);
+struct hl_mmap_mem_buf *
+hl_mmap_mem_buf_alloc(struct hl_mem_mgr *mmg,
+ struct hl_mmap_mem_buf_behavior *behavior, gfp_t gfp,
+ void *args);
+__printf(2, 3) void hl_engine_data_sprintf(struct engines_data *e, const char *fmt, ...);
+void hl_capture_razwi(struct hl_device *hdev, u64 addr, u16 *engine_id, u16 num_of_engines,
+ u8 flags);
+void hl_handle_razwi(struct hl_device *hdev, u64 addr, u16 *engine_id, u16 num_of_engines,
+ u8 flags, u64 *event_mask);
+void hl_capture_page_fault(struct hl_device *hdev, u64 addr, u16 eng_id, bool is_pmmu);
+void hl_handle_page_fault(struct hl_device *hdev, u64 addr, u16 eng_id, bool is_pmmu,
+ u64 *event_mask);
+void hl_handle_critical_hw_err(struct hl_device *hdev, u16 event_id, u64 *event_mask);
+void hl_handle_fw_err(struct hl_device *hdev, struct hl_info_fw_err_info *info);
+void hl_enable_err_info_capture(struct hl_error_info *captured_err_info);
+
+#ifdef CONFIG_DEBUG_FS
+
+void hl_debugfs_init(void);
+void hl_debugfs_fini(void);
+int hl_debugfs_device_init(struct hl_device *hdev);
+void hl_debugfs_device_fini(struct hl_device *hdev);
+void hl_debugfs_add_device(struct hl_device *hdev);
+void hl_debugfs_remove_device(struct hl_device *hdev);
+void hl_debugfs_add_file(struct hl_fpriv *hpriv);
+void hl_debugfs_remove_file(struct hl_fpriv *hpriv);
+void hl_debugfs_add_cb(struct hl_cb *cb);
+void hl_debugfs_remove_cb(struct hl_cb *cb);
+void hl_debugfs_add_cs(struct hl_cs *cs);
+void hl_debugfs_remove_cs(struct hl_cs *cs);
+void hl_debugfs_add_job(struct hl_device *hdev, struct hl_cs_job *job);
+void hl_debugfs_remove_job(struct hl_device *hdev, struct hl_cs_job *job);
+void hl_debugfs_add_userptr(struct hl_device *hdev, struct hl_userptr *userptr);
+void hl_debugfs_remove_userptr(struct hl_device *hdev,
+ struct hl_userptr *userptr);
+void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx);
+void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx);
+void hl_debugfs_set_state_dump(struct hl_device *hdev, char *data,
+ unsigned long length);
+
+#else
+
+static inline void __init hl_debugfs_init(void)
+{
+}
+
+static inline void hl_debugfs_fini(void)
+{
+}
+
+static inline int hl_debugfs_device_init(struct hl_device *hdev)
+{
+ return 0;
+}
+
+static inline void hl_debugfs_device_fini(struct hl_device *hdev)
+{
+}
+
+static inline void hl_debugfs_add_device(struct hl_device *hdev)
+{
+}
+
+static inline void hl_debugfs_remove_device(struct hl_device *hdev)
+{
+}
+
+static inline void hl_debugfs_add_file(struct hl_fpriv *hpriv)
+{
+}
+
+static inline void hl_debugfs_remove_file(struct hl_fpriv *hpriv)
+{
+}
+
+static inline void hl_debugfs_add_cb(struct hl_cb *cb)
+{
+}
+
+static inline void hl_debugfs_remove_cb(struct hl_cb *cb)
+{
+}
+
+static inline void hl_debugfs_add_cs(struct hl_cs *cs)
+{
+}
+
+static inline void hl_debugfs_remove_cs(struct hl_cs *cs)
+{
+}
+
+static inline void hl_debugfs_add_job(struct hl_device *hdev,
+ struct hl_cs_job *job)
+{
+}
+
+static inline void hl_debugfs_remove_job(struct hl_device *hdev,
+ struct hl_cs_job *job)
+{
+}
+
+static inline void hl_debugfs_add_userptr(struct hl_device *hdev,
+ struct hl_userptr *userptr)
+{
+}
+
+static inline void hl_debugfs_remove_userptr(struct hl_device *hdev,
+ struct hl_userptr *userptr)
+{
+}
+
+static inline void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev,
+ struct hl_ctx *ctx)
+{
+}
+
+static inline void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev,
+ struct hl_ctx *ctx)
+{
+}
+
+static inline void hl_debugfs_set_state_dump(struct hl_device *hdev,
+ char *data, unsigned long length)
+{
+}
+
+#endif
+
+/* Security */
+int hl_unsecure_register(struct hl_device *hdev, u32 mm_reg_addr, int offset,
+ const u32 pb_blocks[], struct hl_block_glbl_sec sgs_array[],
+ int array_size);
+int hl_unsecure_registers(struct hl_device *hdev, const u32 mm_reg_array[],
+ int mm_array_size, int offset, const u32 pb_blocks[],
+ struct hl_block_glbl_sec sgs_array[], int blocks_array_size);
+void hl_config_glbl_sec(struct hl_device *hdev, const u32 pb_blocks[],
+ struct hl_block_glbl_sec sgs_array[], u32 block_offset,
+ int array_size);
+void hl_secure_block(struct hl_device *hdev,
+ struct hl_block_glbl_sec sgs_array[], int array_size);
+int hl_init_pb_with_mask(struct hl_device *hdev, u32 num_dcores,
+ u32 dcore_offset, u32 num_instances, u32 instance_offset,
+ const u32 pb_blocks[], u32 blocks_array_size,
+ const u32 *regs_array, u32 regs_array_size, u64 mask);
+int hl_init_pb(struct hl_device *hdev, u32 num_dcores, u32 dcore_offset,
+ u32 num_instances, u32 instance_offset,
+ const u32 pb_blocks[], u32 blocks_array_size,
+ const u32 *regs_array, u32 regs_array_size);
+int hl_init_pb_ranges_with_mask(struct hl_device *hdev, u32 num_dcores,
+ u32 dcore_offset, u32 num_instances, u32 instance_offset,
+ const u32 pb_blocks[], u32 blocks_array_size,
+ const struct range *regs_range_array, u32 regs_range_array_size,
+ u64 mask);
+int hl_init_pb_ranges(struct hl_device *hdev, u32 num_dcores,
+ u32 dcore_offset, u32 num_instances, u32 instance_offset,
+ const u32 pb_blocks[], u32 blocks_array_size,
+ const struct range *regs_range_array,
+ u32 regs_range_array_size);
+int hl_init_pb_single_dcore(struct hl_device *hdev, u32 dcore_offset,
+ u32 num_instances, u32 instance_offset,
+ const u32 pb_blocks[], u32 blocks_array_size,
+ const u32 *regs_array, u32 regs_array_size);
+int hl_init_pb_ranges_single_dcore(struct hl_device *hdev, u32 dcore_offset,
+ u32 num_instances, u32 instance_offset,
+ const u32 pb_blocks[], u32 blocks_array_size,
+ const struct range *regs_range_array,
+ u32 regs_range_array_size);
+void hl_ack_pb(struct hl_device *hdev, u32 num_dcores, u32 dcore_offset,
+ u32 num_instances, u32 instance_offset,
+ const u32 pb_blocks[], u32 blocks_array_size);
+void hl_ack_pb_with_mask(struct hl_device *hdev, u32 num_dcores,
+ u32 dcore_offset, u32 num_instances, u32 instance_offset,
+ const u32 pb_blocks[], u32 blocks_array_size, u64 mask);
+void hl_ack_pb_single_dcore(struct hl_device *hdev, u32 dcore_offset,
+ u32 num_instances, u32 instance_offset,
+ const u32 pb_blocks[], u32 blocks_array_size);
+
+/* IOCTLs */
+long hl_ioctl(struct file *filep, unsigned int cmd, unsigned long arg);
+long hl_ioctl_control(struct file *filep, unsigned int cmd, unsigned long arg);
+int hl_cb_ioctl(struct hl_fpriv *hpriv, void *data);
+int hl_cs_ioctl(struct hl_fpriv *hpriv, void *data);
+int hl_wait_ioctl(struct hl_fpriv *hpriv, void *data);
+int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data);
+
+#endif /* HABANALABSP_H_ */