diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-11 08:27:49 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-11 08:27:49 +0000 |
commit | ace9429bb58fd418f0c81d4c2835699bddf6bde6 (patch) | |
tree | b2d64bc10158fdd5497876388cd68142ca374ed3 /drivers/ata/libata-sff.c | |
parent | Initial commit. (diff) | |
download | linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.tar.xz linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.zip |
Adding upstream version 6.6.15.upstream/6.6.15
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'drivers/ata/libata-sff.c')
-rw-r--r-- | drivers/ata/libata-sff.c | 3207 |
1 files changed, 3207 insertions, 0 deletions
diff --git a/drivers/ata/libata-sff.c b/drivers/ata/libata-sff.c new file mode 100644 index 0000000000..8fcc622fcb --- /dev/null +++ b/drivers/ata/libata-sff.c @@ -0,0 +1,3207 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * libata-sff.c - helper library for PCI IDE BMDMA + * + * Copyright 2003-2006 Red Hat, Inc. All rights reserved. + * Copyright 2003-2006 Jeff Garzik + * + * libata documentation is available via 'make {ps|pdf}docs', + * as Documentation/driver-api/libata.rst + * + * Hardware documentation available from http://www.t13.org/ and + * http://www.sata-io.org/ + */ + +#include <linux/kernel.h> +#include <linux/gfp.h> +#include <linux/pci.h> +#include <linux/module.h> +#include <linux/libata.h> +#include <linux/highmem.h> +#include <trace/events/libata.h> +#include "libata.h" + +static struct workqueue_struct *ata_sff_wq; + +const struct ata_port_operations ata_sff_port_ops = { + .inherits = &ata_base_port_ops, + + .qc_prep = ata_noop_qc_prep, + .qc_issue = ata_sff_qc_issue, + .qc_fill_rtf = ata_sff_qc_fill_rtf, + + .freeze = ata_sff_freeze, + .thaw = ata_sff_thaw, + .prereset = ata_sff_prereset, + .softreset = ata_sff_softreset, + .hardreset = sata_sff_hardreset, + .postreset = ata_sff_postreset, + .error_handler = ata_sff_error_handler, + + .sff_dev_select = ata_sff_dev_select, + .sff_check_status = ata_sff_check_status, + .sff_tf_load = ata_sff_tf_load, + .sff_tf_read = ata_sff_tf_read, + .sff_exec_command = ata_sff_exec_command, + .sff_data_xfer = ata_sff_data_xfer, + .sff_drain_fifo = ata_sff_drain_fifo, + + .lost_interrupt = ata_sff_lost_interrupt, +}; +EXPORT_SYMBOL_GPL(ata_sff_port_ops); + +/** + * ata_sff_check_status - Read device status reg & clear interrupt + * @ap: port where the device is + * + * Reads ATA taskfile status register for currently-selected device + * and return its value. This also clears pending interrupts + * from this device + * + * LOCKING: + * Inherited from caller. + */ +u8 ata_sff_check_status(struct ata_port *ap) +{ + return ioread8(ap->ioaddr.status_addr); +} +EXPORT_SYMBOL_GPL(ata_sff_check_status); + +/** + * ata_sff_altstatus - Read device alternate status reg + * @ap: port where the device is + * @status: pointer to a status value + * + * Reads ATA alternate status register for currently-selected device + * and return its value. + * + * RETURN: + * true if the register exists, false if not. + * + * LOCKING: + * Inherited from caller. + */ +static bool ata_sff_altstatus(struct ata_port *ap, u8 *status) +{ + u8 tmp; + + if (ap->ops->sff_check_altstatus) { + tmp = ap->ops->sff_check_altstatus(ap); + goto read; + } + if (ap->ioaddr.altstatus_addr) { + tmp = ioread8(ap->ioaddr.altstatus_addr); + goto read; + } + return false; + +read: + if (status) + *status = tmp; + return true; +} + +/** + * ata_sff_irq_status - Check if the device is busy + * @ap: port where the device is + * + * Determine if the port is currently busy. Uses altstatus + * if available in order to avoid clearing shared IRQ status + * when finding an IRQ source. Non ctl capable devices don't + * share interrupt lines fortunately for us. + * + * LOCKING: + * Inherited from caller. + */ +static u8 ata_sff_irq_status(struct ata_port *ap) +{ + u8 status; + + /* Not us: We are busy */ + if (ata_sff_altstatus(ap, &status) && (status & ATA_BUSY)) + return status; + /* Clear INTRQ latch */ + status = ap->ops->sff_check_status(ap); + return status; +} + +/** + * ata_sff_sync - Flush writes + * @ap: Port to wait for. + * + * CAUTION: + * If we have an mmio device with no ctl and no altstatus + * method this will fail. No such devices are known to exist. + * + * LOCKING: + * Inherited from caller. + */ + +static void ata_sff_sync(struct ata_port *ap) +{ + ata_sff_altstatus(ap, NULL); +} + +/** + * ata_sff_pause - Flush writes and wait 400nS + * @ap: Port to pause for. + * + * CAUTION: + * If we have an mmio device with no ctl and no altstatus + * method this will fail. No such devices are known to exist. + * + * LOCKING: + * Inherited from caller. + */ + +void ata_sff_pause(struct ata_port *ap) +{ + ata_sff_sync(ap); + ndelay(400); +} +EXPORT_SYMBOL_GPL(ata_sff_pause); + +/** + * ata_sff_dma_pause - Pause before commencing DMA + * @ap: Port to pause for. + * + * Perform I/O fencing and ensure sufficient cycle delays occur + * for the HDMA1:0 transition + */ + +void ata_sff_dma_pause(struct ata_port *ap) +{ + /* + * An altstatus read will cause the needed delay without + * messing up the IRQ status + */ + if (ata_sff_altstatus(ap, NULL)) + return; + /* There are no DMA controllers without ctl. BUG here to ensure + we never violate the HDMA1:0 transition timing and risk + corruption. */ + BUG(); +} +EXPORT_SYMBOL_GPL(ata_sff_dma_pause); + +static int ata_sff_check_ready(struct ata_link *link) +{ + u8 status = link->ap->ops->sff_check_status(link->ap); + + return ata_check_ready(status); +} + +/** + * ata_sff_wait_ready - sleep until BSY clears, or timeout + * @link: SFF link to wait ready status for + * @deadline: deadline jiffies for the operation + * + * Sleep until ATA Status register bit BSY clears, or timeout + * occurs. + * + * LOCKING: + * Kernel thread context (may sleep). + * + * RETURNS: + * 0 on success, -errno otherwise. + */ +int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline) +{ + return ata_wait_ready(link, deadline, ata_sff_check_ready); +} +EXPORT_SYMBOL_GPL(ata_sff_wait_ready); + +/** + * ata_sff_set_devctl - Write device control reg + * @ap: port where the device is + * @ctl: value to write + * + * Writes ATA device control register. + * + * RETURN: + * true if the register exists, false if not. + * + * LOCKING: + * Inherited from caller. + */ +static bool ata_sff_set_devctl(struct ata_port *ap, u8 ctl) +{ + if (ap->ops->sff_set_devctl) { + ap->ops->sff_set_devctl(ap, ctl); + return true; + } + if (ap->ioaddr.ctl_addr) { + iowrite8(ctl, ap->ioaddr.ctl_addr); + return true; + } + + return false; +} + +/** + * ata_sff_dev_select - Select device 0/1 on ATA bus + * @ap: ATA channel to manipulate + * @device: ATA device (numbered from zero) to select + * + * Use the method defined in the ATA specification to + * make either device 0, or device 1, active on the + * ATA channel. Works with both PIO and MMIO. + * + * May be used as the dev_select() entry in ata_port_operations. + * + * LOCKING: + * caller. + */ +void ata_sff_dev_select(struct ata_port *ap, unsigned int device) +{ + u8 tmp; + + if (device == 0) + tmp = ATA_DEVICE_OBS; + else + tmp = ATA_DEVICE_OBS | ATA_DEV1; + + iowrite8(tmp, ap->ioaddr.device_addr); + ata_sff_pause(ap); /* needed; also flushes, for mmio */ +} +EXPORT_SYMBOL_GPL(ata_sff_dev_select); + +/** + * ata_dev_select - Select device 0/1 on ATA bus + * @ap: ATA channel to manipulate + * @device: ATA device (numbered from zero) to select + * @wait: non-zero to wait for Status register BSY bit to clear + * @can_sleep: non-zero if context allows sleeping + * + * Use the method defined in the ATA specification to + * make either device 0, or device 1, active on the + * ATA channel. + * + * This is a high-level version of ata_sff_dev_select(), which + * additionally provides the services of inserting the proper + * pauses and status polling, where needed. + * + * LOCKING: + * caller. + */ +static void ata_dev_select(struct ata_port *ap, unsigned int device, + unsigned int wait, unsigned int can_sleep) +{ + if (wait) + ata_wait_idle(ap); + + ap->ops->sff_dev_select(ap, device); + + if (wait) { + if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI) + ata_msleep(ap, 150); + ata_wait_idle(ap); + } +} + +/** + * ata_sff_irq_on - Enable interrupts on a port. + * @ap: Port on which interrupts are enabled. + * + * Enable interrupts on a legacy IDE device using MMIO or PIO, + * wait for idle, clear any pending interrupts. + * + * Note: may NOT be used as the sff_irq_on() entry in + * ata_port_operations. + * + * LOCKING: + * Inherited from caller. + */ +void ata_sff_irq_on(struct ata_port *ap) +{ + if (ap->ops->sff_irq_on) { + ap->ops->sff_irq_on(ap); + return; + } + + ap->ctl &= ~ATA_NIEN; + ap->last_ctl = ap->ctl; + + ata_sff_set_devctl(ap, ap->ctl); + ata_wait_idle(ap); + + if (ap->ops->sff_irq_clear) + ap->ops->sff_irq_clear(ap); +} +EXPORT_SYMBOL_GPL(ata_sff_irq_on); + +/** + * ata_sff_tf_load - send taskfile registers to host controller + * @ap: Port to which output is sent + * @tf: ATA taskfile register set + * + * Outputs ATA taskfile to standard ATA host controller. + * + * LOCKING: + * Inherited from caller. + */ +void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf) +{ + struct ata_ioports *ioaddr = &ap->ioaddr; + unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR; + + if (tf->ctl != ap->last_ctl) { + if (ioaddr->ctl_addr) + iowrite8(tf->ctl, ioaddr->ctl_addr); + ap->last_ctl = tf->ctl; + ata_wait_idle(ap); + } + + if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) { + WARN_ON_ONCE(!ioaddr->ctl_addr); + iowrite8(tf->hob_feature, ioaddr->feature_addr); + iowrite8(tf->hob_nsect, ioaddr->nsect_addr); + iowrite8(tf->hob_lbal, ioaddr->lbal_addr); + iowrite8(tf->hob_lbam, ioaddr->lbam_addr); + iowrite8(tf->hob_lbah, ioaddr->lbah_addr); + } + + if (is_addr) { + iowrite8(tf->feature, ioaddr->feature_addr); + iowrite8(tf->nsect, ioaddr->nsect_addr); + iowrite8(tf->lbal, ioaddr->lbal_addr); + iowrite8(tf->lbam, ioaddr->lbam_addr); + iowrite8(tf->lbah, ioaddr->lbah_addr); + } + + if (tf->flags & ATA_TFLAG_DEVICE) + iowrite8(tf->device, ioaddr->device_addr); + + ata_wait_idle(ap); +} +EXPORT_SYMBOL_GPL(ata_sff_tf_load); + +/** + * ata_sff_tf_read - input device's ATA taskfile shadow registers + * @ap: Port from which input is read + * @tf: ATA taskfile register set for storing input + * + * Reads ATA taskfile registers for currently-selected device + * into @tf. Assumes the device has a fully SFF compliant task file + * layout and behaviour. If you device does not (eg has a different + * status method) then you will need to provide a replacement tf_read + * + * LOCKING: + * Inherited from caller. + */ +void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf) +{ + struct ata_ioports *ioaddr = &ap->ioaddr; + + tf->status = ata_sff_check_status(ap); + tf->error = ioread8(ioaddr->error_addr); + tf->nsect = ioread8(ioaddr->nsect_addr); + tf->lbal = ioread8(ioaddr->lbal_addr); + tf->lbam = ioread8(ioaddr->lbam_addr); + tf->lbah = ioread8(ioaddr->lbah_addr); + tf->device = ioread8(ioaddr->device_addr); + + if (tf->flags & ATA_TFLAG_LBA48) { + if (likely(ioaddr->ctl_addr)) { + iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr); + tf->hob_feature = ioread8(ioaddr->error_addr); + tf->hob_nsect = ioread8(ioaddr->nsect_addr); + tf->hob_lbal = ioread8(ioaddr->lbal_addr); + tf->hob_lbam = ioread8(ioaddr->lbam_addr); + tf->hob_lbah = ioread8(ioaddr->lbah_addr); + iowrite8(tf->ctl, ioaddr->ctl_addr); + ap->last_ctl = tf->ctl; + } else + WARN_ON_ONCE(1); + } +} +EXPORT_SYMBOL_GPL(ata_sff_tf_read); + +/** + * ata_sff_exec_command - issue ATA command to host controller + * @ap: port to which command is being issued + * @tf: ATA taskfile register set + * + * Issues ATA command, with proper synchronization with interrupt + * handler / other threads. + * + * LOCKING: + * spin_lock_irqsave(host lock) + */ +void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf) +{ + iowrite8(tf->command, ap->ioaddr.command_addr); + ata_sff_pause(ap); +} +EXPORT_SYMBOL_GPL(ata_sff_exec_command); + +/** + * ata_tf_to_host - issue ATA taskfile to host controller + * @ap: port to which command is being issued + * @tf: ATA taskfile register set + * @tag: tag of the associated command + * + * Issues ATA taskfile register set to ATA host controller, + * with proper synchronization with interrupt handler and + * other threads. + * + * LOCKING: + * spin_lock_irqsave(host lock) + */ +static inline void ata_tf_to_host(struct ata_port *ap, + const struct ata_taskfile *tf, + unsigned int tag) +{ + trace_ata_tf_load(ap, tf); + ap->ops->sff_tf_load(ap, tf); + trace_ata_exec_command(ap, tf, tag); + ap->ops->sff_exec_command(ap, tf); +} + +/** + * ata_sff_data_xfer - Transfer data by PIO + * @qc: queued command + * @buf: data buffer + * @buflen: buffer length + * @rw: read/write + * + * Transfer data from/to the device data register by PIO. + * + * LOCKING: + * Inherited from caller. + * + * RETURNS: + * Bytes consumed. + */ +unsigned int ata_sff_data_xfer(struct ata_queued_cmd *qc, unsigned char *buf, + unsigned int buflen, int rw) +{ + struct ata_port *ap = qc->dev->link->ap; + void __iomem *data_addr = ap->ioaddr.data_addr; + unsigned int words = buflen >> 1; + + /* Transfer multiple of 2 bytes */ + if (rw == READ) + ioread16_rep(data_addr, buf, words); + else + iowrite16_rep(data_addr, buf, words); + + /* Transfer trailing byte, if any. */ + if (unlikely(buflen & 0x01)) { + unsigned char pad[2] = { }; + + /* Point buf to the tail of buffer */ + buf += buflen - 1; + + /* + * Use io*16_rep() accessors here as well to avoid pointlessly + * swapping bytes to and from on the big endian machines... + */ + if (rw == READ) { + ioread16_rep(data_addr, pad, 1); + *buf = pad[0]; + } else { + pad[0] = *buf; + iowrite16_rep(data_addr, pad, 1); + } + words++; + } + + return words << 1; +} +EXPORT_SYMBOL_GPL(ata_sff_data_xfer); + +/** + * ata_sff_data_xfer32 - Transfer data by PIO + * @qc: queued command + * @buf: data buffer + * @buflen: buffer length + * @rw: read/write + * + * Transfer data from/to the device data register by PIO using 32bit + * I/O operations. + * + * LOCKING: + * Inherited from caller. + * + * RETURNS: + * Bytes consumed. + */ + +unsigned int ata_sff_data_xfer32(struct ata_queued_cmd *qc, unsigned char *buf, + unsigned int buflen, int rw) +{ + struct ata_device *dev = qc->dev; + struct ata_port *ap = dev->link->ap; + void __iomem *data_addr = ap->ioaddr.data_addr; + unsigned int words = buflen >> 2; + int slop = buflen & 3; + + if (!(ap->pflags & ATA_PFLAG_PIO32)) + return ata_sff_data_xfer(qc, buf, buflen, rw); + + /* Transfer multiple of 4 bytes */ + if (rw == READ) + ioread32_rep(data_addr, buf, words); + else + iowrite32_rep(data_addr, buf, words); + + /* Transfer trailing bytes, if any */ + if (unlikely(slop)) { + unsigned char pad[4] = { }; + + /* Point buf to the tail of buffer */ + buf += buflen - slop; + + /* + * Use io*_rep() accessors here as well to avoid pointlessly + * swapping bytes to and from on the big endian machines... + */ + if (rw == READ) { + if (slop < 3) + ioread16_rep(data_addr, pad, 1); + else + ioread32_rep(data_addr, pad, 1); + memcpy(buf, pad, slop); + } else { + memcpy(pad, buf, slop); + if (slop < 3) + iowrite16_rep(data_addr, pad, 1); + else + iowrite32_rep(data_addr, pad, 1); + } + } + return (buflen + 1) & ~1; +} +EXPORT_SYMBOL_GPL(ata_sff_data_xfer32); + +static void ata_pio_xfer(struct ata_queued_cmd *qc, struct page *page, + unsigned int offset, size_t xfer_size) +{ + bool do_write = (qc->tf.flags & ATA_TFLAG_WRITE); + unsigned char *buf; + + buf = kmap_atomic(page); + qc->ap->ops->sff_data_xfer(qc, buf + offset, xfer_size, do_write); + kunmap_atomic(buf); + + if (!do_write && !PageSlab(page)) + flush_dcache_page(page); +} + +/** + * ata_pio_sector - Transfer a sector of data. + * @qc: Command on going + * + * Transfer qc->sect_size bytes of data from/to the ATA device. + * + * LOCKING: + * Inherited from caller. + */ +static void ata_pio_sector(struct ata_queued_cmd *qc) +{ + struct ata_port *ap = qc->ap; + struct page *page; + unsigned int offset; + + if (!qc->cursg) { + qc->curbytes = qc->nbytes; + return; + } + if (qc->curbytes == qc->nbytes - qc->sect_size) + ap->hsm_task_state = HSM_ST_LAST; + + page = sg_page(qc->cursg); + offset = qc->cursg->offset + qc->cursg_ofs; + + /* get the current page and offset */ + page = nth_page(page, (offset >> PAGE_SHIFT)); + offset %= PAGE_SIZE; + + trace_ata_sff_pio_transfer_data(qc, offset, qc->sect_size); + + /* + * Split the transfer when it splits a page boundary. Note that the + * split still has to be dword aligned like all ATA data transfers. + */ + WARN_ON_ONCE(offset % 4); + if (offset + qc->sect_size > PAGE_SIZE) { + unsigned int split_len = PAGE_SIZE - offset; + + ata_pio_xfer(qc, page, offset, split_len); + ata_pio_xfer(qc, nth_page(page, 1), 0, + qc->sect_size - split_len); + } else { + ata_pio_xfer(qc, page, offset, qc->sect_size); + } + + qc->curbytes += qc->sect_size; + qc->cursg_ofs += qc->sect_size; + + if (qc->cursg_ofs == qc->cursg->length) { + qc->cursg = sg_next(qc->cursg); + if (!qc->cursg) + ap->hsm_task_state = HSM_ST_LAST; + qc->cursg_ofs = 0; + } +} + +/** + * ata_pio_sectors - Transfer one or many sectors. + * @qc: Command on going + * + * Transfer one or many sectors of data from/to the + * ATA device for the DRQ request. + * + * LOCKING: + * Inherited from caller. + */ +static void ata_pio_sectors(struct ata_queued_cmd *qc) +{ + if (is_multi_taskfile(&qc->tf)) { + /* READ/WRITE MULTIPLE */ + unsigned int nsect; + + WARN_ON_ONCE(qc->dev->multi_count == 0); + + nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size, + qc->dev->multi_count); + while (nsect--) + ata_pio_sector(qc); + } else + ata_pio_sector(qc); + + ata_sff_sync(qc->ap); /* flush */ +} + +/** + * atapi_send_cdb - Write CDB bytes to hardware + * @ap: Port to which ATAPI device is attached. + * @qc: Taskfile currently active + * + * When device has indicated its readiness to accept + * a CDB, this function is called. Send the CDB. + * + * LOCKING: + * caller. + */ +static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc) +{ + /* send SCSI cdb */ + trace_atapi_send_cdb(qc, 0, qc->dev->cdb_len); + WARN_ON_ONCE(qc->dev->cdb_len < 12); + + ap->ops->sff_data_xfer(qc, qc->cdb, qc->dev->cdb_len, 1); + ata_sff_sync(ap); + /* FIXME: If the CDB is for DMA do we need to do the transition delay + or is bmdma_start guaranteed to do it ? */ + switch (qc->tf.protocol) { + case ATAPI_PROT_PIO: + ap->hsm_task_state = HSM_ST; + break; + case ATAPI_PROT_NODATA: + ap->hsm_task_state = HSM_ST_LAST; + break; +#ifdef CONFIG_ATA_BMDMA + case ATAPI_PROT_DMA: + ap->hsm_task_state = HSM_ST_LAST; + /* initiate bmdma */ + trace_ata_bmdma_start(ap, &qc->tf, qc->tag); + ap->ops->bmdma_start(qc); + break; +#endif /* CONFIG_ATA_BMDMA */ + default: + BUG(); + } +} + +/** + * __atapi_pio_bytes - Transfer data from/to the ATAPI device. + * @qc: Command on going + * @bytes: number of bytes + * + * Transfer data from/to the ATAPI device. + * + * LOCKING: + * Inherited from caller. + * + */ +static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes) +{ + int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ; + struct ata_port *ap = qc->ap; + struct ata_device *dev = qc->dev; + struct ata_eh_info *ehi = &dev->link->eh_info; + struct scatterlist *sg; + struct page *page; + unsigned char *buf; + unsigned int offset, count, consumed; + +next_sg: + sg = qc->cursg; + if (unlikely(!sg)) { + ata_ehi_push_desc(ehi, "unexpected or too much trailing data " + "buf=%u cur=%u bytes=%u", + qc->nbytes, qc->curbytes, bytes); + return -1; + } + + page = sg_page(sg); + offset = sg->offset + qc->cursg_ofs; + + /* get the current page and offset */ + page = nth_page(page, (offset >> PAGE_SHIFT)); + offset %= PAGE_SIZE; + + /* don't overrun current sg */ + count = min(sg->length - qc->cursg_ofs, bytes); + + /* don't cross page boundaries */ + count = min(count, (unsigned int)PAGE_SIZE - offset); + + trace_atapi_pio_transfer_data(qc, offset, count); + + /* do the actual data transfer */ + buf = kmap_atomic(page); + consumed = ap->ops->sff_data_xfer(qc, buf + offset, count, rw); + kunmap_atomic(buf); + + bytes -= min(bytes, consumed); + qc->curbytes += count; + qc->cursg_ofs += count; + + if (qc->cursg_ofs == sg->length) { + qc->cursg = sg_next(qc->cursg); + qc->cursg_ofs = 0; + } + + /* + * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed); + * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN + * check correctly as it doesn't know if it is the last request being + * made. Somebody should implement a proper sanity check. + */ + if (bytes) + goto next_sg; + return 0; +} + +/** + * atapi_pio_bytes - Transfer data from/to the ATAPI device. + * @qc: Command on going + * + * Transfer Transfer data from/to the ATAPI device. + * + * LOCKING: + * Inherited from caller. + */ +static void atapi_pio_bytes(struct ata_queued_cmd *qc) +{ + struct ata_port *ap = qc->ap; + struct ata_device *dev = qc->dev; + struct ata_eh_info *ehi = &dev->link->eh_info; + unsigned int ireason, bc_lo, bc_hi, bytes; + int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0; + + /* Abuse qc->result_tf for temp storage of intermediate TF + * here to save some kernel stack usage. + * For normal completion, qc->result_tf is not relevant. For + * error, qc->result_tf is later overwritten by ata_qc_complete(). + * So, the correctness of qc->result_tf is not affected. + */ + ap->ops->sff_tf_read(ap, &qc->result_tf); + ireason = qc->result_tf.nsect; + bc_lo = qc->result_tf.lbam; + bc_hi = qc->result_tf.lbah; + bytes = (bc_hi << 8) | bc_lo; + + /* shall be cleared to zero, indicating xfer of data */ + if (unlikely(ireason & ATAPI_COD)) + goto atapi_check; + + /* make sure transfer direction matches expected */ + i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0; + if (unlikely(do_write != i_write)) + goto atapi_check; + + if (unlikely(!bytes)) + goto atapi_check; + + if (unlikely(__atapi_pio_bytes(qc, bytes))) + goto err_out; + ata_sff_sync(ap); /* flush */ + + return; + + atapi_check: + ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)", + ireason, bytes); + err_out: + qc->err_mask |= AC_ERR_HSM; + ap->hsm_task_state = HSM_ST_ERR; +} + +/** + * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue. + * @ap: the target ata_port + * @qc: qc on going + * + * RETURNS: + * 1 if ok in workqueue, 0 otherwise. + */ +static inline int ata_hsm_ok_in_wq(struct ata_port *ap, + struct ata_queued_cmd *qc) +{ + if (qc->tf.flags & ATA_TFLAG_POLLING) + return 1; + + if (ap->hsm_task_state == HSM_ST_FIRST) { + if (qc->tf.protocol == ATA_PROT_PIO && + (qc->tf.flags & ATA_TFLAG_WRITE)) + return 1; + + if (ata_is_atapi(qc->tf.protocol) && + !(qc->dev->flags & ATA_DFLAG_CDB_INTR)) + return 1; + } + + return 0; +} + +/** + * ata_hsm_qc_complete - finish a qc running on standard HSM + * @qc: Command to complete + * @in_wq: 1 if called from workqueue, 0 otherwise + * + * Finish @qc which is running on standard HSM. + * + * LOCKING: + * If @in_wq is zero, spin_lock_irqsave(host lock). + * Otherwise, none on entry and grabs host lock. + */ +static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq) +{ + struct ata_port *ap = qc->ap; + + if (in_wq) { + /* EH might have kicked in while host lock is released. */ + qc = ata_qc_from_tag(ap, qc->tag); + if (qc) { + if (likely(!(qc->err_mask & AC_ERR_HSM))) { + ata_sff_irq_on(ap); + ata_qc_complete(qc); + } else + ata_port_freeze(ap); + } + } else { + if (likely(!(qc->err_mask & AC_ERR_HSM))) + ata_qc_complete(qc); + else + ata_port_freeze(ap); + } +} + +/** + * ata_sff_hsm_move - move the HSM to the next state. + * @ap: the target ata_port + * @qc: qc on going + * @status: current device status + * @in_wq: 1 if called from workqueue, 0 otherwise + * + * RETURNS: + * 1 when poll next status needed, 0 otherwise. + */ +int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc, + u8 status, int in_wq) +{ + struct ata_link *link = qc->dev->link; + struct ata_eh_info *ehi = &link->eh_info; + int poll_next; + + lockdep_assert_held(ap->lock); + + WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0); + + /* Make sure ata_sff_qc_issue() does not throw things + * like DMA polling into the workqueue. Notice that + * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING). + */ + WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc)); + +fsm_start: + trace_ata_sff_hsm_state(qc, status); + + switch (ap->hsm_task_state) { + case HSM_ST_FIRST: + /* Send first data block or PACKET CDB */ + + /* If polling, we will stay in the work queue after + * sending the data. Otherwise, interrupt handler + * takes over after sending the data. + */ + poll_next = (qc->tf.flags & ATA_TFLAG_POLLING); + + /* check device status */ + if (unlikely((status & ATA_DRQ) == 0)) { + /* handle BSY=0, DRQ=0 as error */ + if (likely(status & (ATA_ERR | ATA_DF))) + /* device stops HSM for abort/error */ + qc->err_mask |= AC_ERR_DEV; + else { + /* HSM violation. Let EH handle this */ + ata_ehi_push_desc(ehi, + "ST_FIRST: !(DRQ|ERR|DF)"); + qc->err_mask |= AC_ERR_HSM; + } + + ap->hsm_task_state = HSM_ST_ERR; + goto fsm_start; + } + + /* Device should not ask for data transfer (DRQ=1) + * when it finds something wrong. + * We ignore DRQ here and stop the HSM by + * changing hsm_task_state to HSM_ST_ERR and + * let the EH abort the command or reset the device. + */ + if (unlikely(status & (ATA_ERR | ATA_DF))) { + /* Some ATAPI tape drives forget to clear the ERR bit + * when doing the next command (mostly request sense). + * We ignore ERR here to workaround and proceed sending + * the CDB. + */ + if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) { + ata_ehi_push_desc(ehi, "ST_FIRST: " + "DRQ=1 with device error, " + "dev_stat 0x%X", status); + qc->err_mask |= AC_ERR_HSM; + ap->hsm_task_state = HSM_ST_ERR; + goto fsm_start; + } + } + + if (qc->tf.protocol == ATA_PROT_PIO) { + /* PIO data out protocol. + * send first data block. + */ + + /* ata_pio_sectors() might change the state + * to HSM_ST_LAST. so, the state is changed here + * before ata_pio_sectors(). + */ + ap->hsm_task_state = HSM_ST; + ata_pio_sectors(qc); + } else + /* send CDB */ + atapi_send_cdb(ap, qc); + + /* if polling, ata_sff_pio_task() handles the rest. + * otherwise, interrupt handler takes over from here. + */ + break; + + case HSM_ST: + /* complete command or read/write the data register */ + if (qc->tf.protocol == ATAPI_PROT_PIO) { + /* ATAPI PIO protocol */ + if ((status & ATA_DRQ) == 0) { + /* No more data to transfer or device error. + * Device error will be tagged in HSM_ST_LAST. + */ + ap->hsm_task_state = HSM_ST_LAST; + goto fsm_start; + } + + /* Device should not ask for data transfer (DRQ=1) + * when it finds something wrong. + * We ignore DRQ here and stop the HSM by + * changing hsm_task_state to HSM_ST_ERR and + * let the EH abort the command or reset the device. + */ + if (unlikely(status & (ATA_ERR | ATA_DF))) { + ata_ehi_push_desc(ehi, "ST-ATAPI: " + "DRQ=1 with device error, " + "dev_stat 0x%X", status); + qc->err_mask |= AC_ERR_HSM; + ap->hsm_task_state = HSM_ST_ERR; + goto fsm_start; + } + + atapi_pio_bytes(qc); + + if (unlikely(ap->hsm_task_state == HSM_ST_ERR)) + /* bad ireason reported by device */ + goto fsm_start; + + } else { + /* ATA PIO protocol */ + if (unlikely((status & ATA_DRQ) == 0)) { + /* handle BSY=0, DRQ=0 as error */ + if (likely(status & (ATA_ERR | ATA_DF))) { + /* device stops HSM for abort/error */ + qc->err_mask |= AC_ERR_DEV; + + /* If diagnostic failed and this is + * IDENTIFY, it's likely a phantom + * device. Mark hint. + */ + if (qc->dev->horkage & + ATA_HORKAGE_DIAGNOSTIC) + qc->err_mask |= + AC_ERR_NODEV_HINT; + } else { + /* HSM violation. Let EH handle this. + * Phantom devices also trigger this + * condition. Mark hint. + */ + ata_ehi_push_desc(ehi, "ST-ATA: " + "DRQ=0 without device error, " + "dev_stat 0x%X", status); + qc->err_mask |= AC_ERR_HSM | + AC_ERR_NODEV_HINT; + } + + ap->hsm_task_state = HSM_ST_ERR; + goto fsm_start; + } + + /* For PIO reads, some devices may ask for + * data transfer (DRQ=1) alone with ERR=1. + * We respect DRQ here and transfer one + * block of junk data before changing the + * hsm_task_state to HSM_ST_ERR. + * + * For PIO writes, ERR=1 DRQ=1 doesn't make + * sense since the data block has been + * transferred to the device. + */ + if (unlikely(status & (ATA_ERR | ATA_DF))) { + /* data might be corrputed */ + qc->err_mask |= AC_ERR_DEV; + + if (!(qc->tf.flags & ATA_TFLAG_WRITE)) { + ata_pio_sectors(qc); + status = ata_wait_idle(ap); + } + + if (status & (ATA_BUSY | ATA_DRQ)) { + ata_ehi_push_desc(ehi, "ST-ATA: " + "BUSY|DRQ persists on ERR|DF, " + "dev_stat 0x%X", status); + qc->err_mask |= AC_ERR_HSM; + } + + /* There are oddball controllers with + * status register stuck at 0x7f and + * lbal/m/h at zero which makes it + * pass all other presence detection + * mechanisms we have. Set NODEV_HINT + * for it. Kernel bz#7241. + */ + if (status == 0x7f) + qc->err_mask |= AC_ERR_NODEV_HINT; + + /* ata_pio_sectors() might change the + * state to HSM_ST_LAST. so, the state + * is changed after ata_pio_sectors(). + */ + ap->hsm_task_state = HSM_ST_ERR; + goto fsm_start; + } + + ata_pio_sectors(qc); + + if (ap->hsm_task_state == HSM_ST_LAST && + (!(qc->tf.flags & ATA_TFLAG_WRITE))) { + /* all data read */ + status = ata_wait_idle(ap); + goto fsm_start; + } + } + + poll_next = 1; + break; + + case HSM_ST_LAST: + if (unlikely(!ata_ok(status))) { + qc->err_mask |= __ac_err_mask(status); + ap->hsm_task_state = HSM_ST_ERR; + goto fsm_start; + } + + /* no more data to transfer */ + trace_ata_sff_hsm_command_complete(qc, status); + + WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM)); + + ap->hsm_task_state = HSM_ST_IDLE; + + /* complete taskfile transaction */ + ata_hsm_qc_complete(qc, in_wq); + + poll_next = 0; + break; + + case HSM_ST_ERR: + ap->hsm_task_state = HSM_ST_IDLE; + + /* complete taskfile transaction */ + ata_hsm_qc_complete(qc, in_wq); + + poll_next = 0; + break; + default: + poll_next = 0; + WARN(true, "ata%d: SFF host state machine in invalid state %d", + ap->print_id, ap->hsm_task_state); + } + + return poll_next; +} +EXPORT_SYMBOL_GPL(ata_sff_hsm_move); + +void ata_sff_queue_work(struct work_struct *work) +{ + queue_work(ata_sff_wq, work); +} +EXPORT_SYMBOL_GPL(ata_sff_queue_work); + +void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay) +{ + queue_delayed_work(ata_sff_wq, dwork, delay); +} +EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work); + +void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay) +{ + struct ata_port *ap = link->ap; + + WARN_ON((ap->sff_pio_task_link != NULL) && + (ap->sff_pio_task_link != link)); + ap->sff_pio_task_link = link; + + /* may fail if ata_sff_flush_pio_task() in progress */ + ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay)); +} +EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task); + +void ata_sff_flush_pio_task(struct ata_port *ap) +{ + trace_ata_sff_flush_pio_task(ap); + + cancel_delayed_work_sync(&ap->sff_pio_task); + + /* + * We wanna reset the HSM state to IDLE. If we do so without + * grabbing the port lock, critical sections protected by it which + * expect the HSM state to stay stable may get surprised. For + * example, we may set IDLE in between the time + * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls + * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG(). + */ + spin_lock_irq(ap->lock); + ap->hsm_task_state = HSM_ST_IDLE; + spin_unlock_irq(ap->lock); + + ap->sff_pio_task_link = NULL; +} + +static void ata_sff_pio_task(struct work_struct *work) +{ + struct ata_port *ap = + container_of(work, struct ata_port, sff_pio_task.work); + struct ata_link *link = ap->sff_pio_task_link; + struct ata_queued_cmd *qc; + u8 status; + int poll_next; + + spin_lock_irq(ap->lock); + + BUG_ON(ap->sff_pio_task_link == NULL); + /* qc can be NULL if timeout occurred */ + qc = ata_qc_from_tag(ap, link->active_tag); + if (!qc) { + ap->sff_pio_task_link = NULL; + goto out_unlock; + } + +fsm_start: + WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE); + + /* + * This is purely heuristic. This is a fast path. + * Sometimes when we enter, BSY will be cleared in + * a chk-status or two. If not, the drive is probably seeking + * or something. Snooze for a couple msecs, then + * chk-status again. If still busy, queue delayed work. + */ + status = ata_sff_busy_wait(ap, ATA_BUSY, 5); + if (status & ATA_BUSY) { + spin_unlock_irq(ap->lock); + ata_msleep(ap, 2); + spin_lock_irq(ap->lock); + + status = ata_sff_busy_wait(ap, ATA_BUSY, 10); + if (status & ATA_BUSY) { + ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE); + goto out_unlock; + } + } + + /* + * hsm_move() may trigger another command to be processed. + * clean the link beforehand. + */ + ap->sff_pio_task_link = NULL; + /* move the HSM */ + poll_next = ata_sff_hsm_move(ap, qc, status, 1); + + /* another command or interrupt handler + * may be running at this point. + */ + if (poll_next) + goto fsm_start; +out_unlock: + spin_unlock_irq(ap->lock); +} + +/** + * ata_sff_qc_issue - issue taskfile to a SFF controller + * @qc: command to issue to device + * + * This function issues a PIO or NODATA command to a SFF + * controller. + * + * LOCKING: + * spin_lock_irqsave(host lock) + * + * RETURNS: + * Zero on success, AC_ERR_* mask on failure + */ +unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc) +{ + struct ata_port *ap = qc->ap; + struct ata_link *link = qc->dev->link; + + /* Use polling pio if the LLD doesn't handle + * interrupt driven pio and atapi CDB interrupt. + */ + if (ap->flags & ATA_FLAG_PIO_POLLING) + qc->tf.flags |= ATA_TFLAG_POLLING; + + /* select the device */ + ata_dev_select(ap, qc->dev->devno, 1, 0); + + /* start the command */ + switch (qc->tf.protocol) { + case ATA_PROT_NODATA: + if (qc->tf.flags & ATA_TFLAG_POLLING) + ata_qc_set_polling(qc); + + ata_tf_to_host(ap, &qc->tf, qc->tag); + ap->hsm_task_state = HSM_ST_LAST; + + if (qc->tf.flags & ATA_TFLAG_POLLING) + ata_sff_queue_pio_task(link, 0); + + break; + + case ATA_PROT_PIO: + if (qc->tf.flags & ATA_TFLAG_POLLING) + ata_qc_set_polling(qc); + + ata_tf_to_host(ap, &qc->tf, qc->tag); + + if (qc->tf.flags & ATA_TFLAG_WRITE) { + /* PIO data out protocol */ + ap->hsm_task_state = HSM_ST_FIRST; + ata_sff_queue_pio_task(link, 0); + + /* always send first data block using the + * ata_sff_pio_task() codepath. + */ + } else { + /* PIO data in protocol */ + ap->hsm_task_state = HSM_ST; + + if (qc->tf.flags & ATA_TFLAG_POLLING) + ata_sff_queue_pio_task(link, 0); + + /* if polling, ata_sff_pio_task() handles the + * rest. otherwise, interrupt handler takes + * over from here. + */ + } + + break; + + case ATAPI_PROT_PIO: + case ATAPI_PROT_NODATA: + if (qc->tf.flags & ATA_TFLAG_POLLING) + ata_qc_set_polling(qc); + + ata_tf_to_host(ap, &qc->tf, qc->tag); + + ap->hsm_task_state = HSM_ST_FIRST; + + /* send cdb by polling if no cdb interrupt */ + if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) || + (qc->tf.flags & ATA_TFLAG_POLLING)) + ata_sff_queue_pio_task(link, 0); + break; + + default: + return AC_ERR_SYSTEM; + } + + return 0; +} +EXPORT_SYMBOL_GPL(ata_sff_qc_issue); + +/** + * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read + * @qc: qc to fill result TF for + * + * @qc is finished and result TF needs to be filled. Fill it + * using ->sff_tf_read. + * + * LOCKING: + * spin_lock_irqsave(host lock) + */ +void ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc) +{ + qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf); +} +EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf); + +static unsigned int ata_sff_idle_irq(struct ata_port *ap) +{ + ap->stats.idle_irq++; + +#ifdef ATA_IRQ_TRAP + if ((ap->stats.idle_irq % 1000) == 0) { + ap->ops->sff_check_status(ap); + if (ap->ops->sff_irq_clear) + ap->ops->sff_irq_clear(ap); + ata_port_warn(ap, "irq trap\n"); + return 1; + } +#endif + return 0; /* irq not handled */ +} + +static unsigned int __ata_sff_port_intr(struct ata_port *ap, + struct ata_queued_cmd *qc, + bool hsmv_on_idle) +{ + u8 status; + + trace_ata_sff_port_intr(qc, hsmv_on_idle); + + /* Check whether we are expecting interrupt in this state */ + switch (ap->hsm_task_state) { + case HSM_ST_FIRST: + /* Some pre-ATAPI-4 devices assert INTRQ + * at this state when ready to receive CDB. + */ + + /* Check the ATA_DFLAG_CDB_INTR flag is enough here. + * The flag was turned on only for atapi devices. No + * need to check ata_is_atapi(qc->tf.protocol) again. + */ + if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) + return ata_sff_idle_irq(ap); + break; + case HSM_ST_IDLE: + return ata_sff_idle_irq(ap); + default: + break; + } + + /* check main status, clearing INTRQ if needed */ + status = ata_sff_irq_status(ap); + if (status & ATA_BUSY) { + if (hsmv_on_idle) { + /* BMDMA engine is already stopped, we're screwed */ + qc->err_mask |= AC_ERR_HSM; + ap->hsm_task_state = HSM_ST_ERR; + } else + return ata_sff_idle_irq(ap); + } + + /* clear irq events */ + if (ap->ops->sff_irq_clear) + ap->ops->sff_irq_clear(ap); + + ata_sff_hsm_move(ap, qc, status, 0); + + return 1; /* irq handled */ +} + +/** + * ata_sff_port_intr - Handle SFF port interrupt + * @ap: Port on which interrupt arrived (possibly...) + * @qc: Taskfile currently active in engine + * + * Handle port interrupt for given queued command. + * + * LOCKING: + * spin_lock_irqsave(host lock) + * + * RETURNS: + * One if interrupt was handled, zero if not (shared irq). + */ +unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc) +{ + return __ata_sff_port_intr(ap, qc, false); +} +EXPORT_SYMBOL_GPL(ata_sff_port_intr); + +static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance, + unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *)) +{ + struct ata_host *host = dev_instance; + bool retried = false; + unsigned int i; + unsigned int handled, idle, polling; + unsigned long flags; + + /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */ + spin_lock_irqsave(&host->lock, flags); + +retry: + handled = idle = polling = 0; + for (i = 0; i < host->n_ports; i++) { + struct ata_port *ap = host->ports[i]; + struct ata_queued_cmd *qc; + + qc = ata_qc_from_tag(ap, ap->link.active_tag); + if (qc) { + if (!(qc->tf.flags & ATA_TFLAG_POLLING)) + handled |= port_intr(ap, qc); + else + polling |= 1 << i; + } else + idle |= 1 << i; + } + + /* + * If no port was expecting IRQ but the controller is actually + * asserting IRQ line, nobody cared will ensue. Check IRQ + * pending status if available and clear spurious IRQ. + */ + if (!handled && !retried) { + bool retry = false; + + for (i = 0; i < host->n_ports; i++) { + struct ata_port *ap = host->ports[i]; + + if (polling & (1 << i)) + continue; + + if (!ap->ops->sff_irq_check || + !ap->ops->sff_irq_check(ap)) + continue; + + if (idle & (1 << i)) { + ap->ops->sff_check_status(ap); + if (ap->ops->sff_irq_clear) + ap->ops->sff_irq_clear(ap); + } else { + /* clear INTRQ and check if BUSY cleared */ + if (!(ap->ops->sff_check_status(ap) & ATA_BUSY)) + retry |= true; + /* + * With command in flight, we can't do + * sff_irq_clear() w/o racing with completion. + */ + } + } + + if (retry) { + retried = true; + goto retry; + } + } + + spin_unlock_irqrestore(&host->lock, flags); + + return IRQ_RETVAL(handled); +} + +/** + * ata_sff_interrupt - Default SFF ATA host interrupt handler + * @irq: irq line (unused) + * @dev_instance: pointer to our ata_host information structure + * + * Default interrupt handler for PCI IDE devices. Calls + * ata_sff_port_intr() for each port that is not disabled. + * + * LOCKING: + * Obtains host lock during operation. + * + * RETURNS: + * IRQ_NONE or IRQ_HANDLED. + */ +irqreturn_t ata_sff_interrupt(int irq, void *dev_instance) +{ + return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr); +} +EXPORT_SYMBOL_GPL(ata_sff_interrupt); + +/** + * ata_sff_lost_interrupt - Check for an apparent lost interrupt + * @ap: port that appears to have timed out + * + * Called from the libata error handlers when the core code suspects + * an interrupt has been lost. If it has complete anything we can and + * then return. Interface must support altstatus for this faster + * recovery to occur. + * + * Locking: + * Caller holds host lock + */ + +void ata_sff_lost_interrupt(struct ata_port *ap) +{ + u8 status = 0; + struct ata_queued_cmd *qc; + + /* Only one outstanding command per SFF channel */ + qc = ata_qc_from_tag(ap, ap->link.active_tag); + /* We cannot lose an interrupt on a non-existent or polled command */ + if (!qc || qc->tf.flags & ATA_TFLAG_POLLING) + return; + /* See if the controller thinks it is still busy - if so the command + isn't a lost IRQ but is still in progress */ + if (WARN_ON_ONCE(!ata_sff_altstatus(ap, &status))) + return; + if (status & ATA_BUSY) + return; + + /* There was a command running, we are no longer busy and we have + no interrupt. */ + ata_port_warn(ap, "lost interrupt (Status 0x%x)\n", status); + /* Run the host interrupt logic as if the interrupt had not been + lost */ + ata_sff_port_intr(ap, qc); +} +EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt); + +/** + * ata_sff_freeze - Freeze SFF controller port + * @ap: port to freeze + * + * Freeze SFF controller port. + * + * LOCKING: + * Inherited from caller. + */ +void ata_sff_freeze(struct ata_port *ap) +{ + ap->ctl |= ATA_NIEN; + ap->last_ctl = ap->ctl; + + ata_sff_set_devctl(ap, ap->ctl); + + /* Under certain circumstances, some controllers raise IRQ on + * ATA_NIEN manipulation. Also, many controllers fail to mask + * previously pending IRQ on ATA_NIEN assertion. Clear it. + */ + ap->ops->sff_check_status(ap); + + if (ap->ops->sff_irq_clear) + ap->ops->sff_irq_clear(ap); +} +EXPORT_SYMBOL_GPL(ata_sff_freeze); + +/** + * ata_sff_thaw - Thaw SFF controller port + * @ap: port to thaw + * + * Thaw SFF controller port. + * + * LOCKING: + * Inherited from caller. + */ +void ata_sff_thaw(struct ata_port *ap) +{ + /* clear & re-enable interrupts */ + ap->ops->sff_check_status(ap); + if (ap->ops->sff_irq_clear) + ap->ops->sff_irq_clear(ap); + ata_sff_irq_on(ap); +} +EXPORT_SYMBOL_GPL(ata_sff_thaw); + +/** + * ata_sff_prereset - prepare SFF link for reset + * @link: SFF link to be reset + * @deadline: deadline jiffies for the operation + * + * SFF link @link is about to be reset. Initialize it. It first + * calls ata_std_prereset() and wait for !BSY if the port is + * being softreset. + * + * LOCKING: + * Kernel thread context (may sleep) + * + * RETURNS: + * Always 0. + */ +int ata_sff_prereset(struct ata_link *link, unsigned long deadline) +{ + struct ata_eh_context *ehc = &link->eh_context; + int rc; + + /* The standard prereset is best-effort and always returns 0 */ + ata_std_prereset(link, deadline); + + /* if we're about to do hardreset, nothing more to do */ + if (ehc->i.action & ATA_EH_HARDRESET) + return 0; + + /* wait for !BSY if we don't know that no device is attached */ + if (!ata_link_offline(link)) { + rc = ata_sff_wait_ready(link, deadline); + if (rc && rc != -ENODEV) { + ata_link_warn(link, + "device not ready (errno=%d), forcing hardreset\n", + rc); + ehc->i.action |= ATA_EH_HARDRESET; + } + } + + return 0; +} +EXPORT_SYMBOL_GPL(ata_sff_prereset); + +/** + * ata_devchk - PATA device presence detection + * @ap: ATA channel to examine + * @device: Device to examine (starting at zero) + * + * This technique was originally described in + * Hale Landis's ATADRVR (www.ata-atapi.com), and + * later found its way into the ATA/ATAPI spec. + * + * Write a pattern to the ATA shadow registers, + * and if a device is present, it will respond by + * correctly storing and echoing back the + * ATA shadow register contents. + * + * RETURN: + * true if device is present, false if not. + * + * LOCKING: + * caller. + */ +static bool ata_devchk(struct ata_port *ap, unsigned int device) +{ + struct ata_ioports *ioaddr = &ap->ioaddr; + u8 nsect, lbal; + + ap->ops->sff_dev_select(ap, device); + + iowrite8(0x55, ioaddr->nsect_addr); + iowrite8(0xaa, ioaddr->lbal_addr); + + iowrite8(0xaa, ioaddr->nsect_addr); + iowrite8(0x55, ioaddr->lbal_addr); + + iowrite8(0x55, ioaddr->nsect_addr); + iowrite8(0xaa, ioaddr->lbal_addr); + + nsect = ioread8(ioaddr->nsect_addr); + lbal = ioread8(ioaddr->lbal_addr); + + if ((nsect == 0x55) && (lbal == 0xaa)) + return true; /* we found a device */ + + return false; /* nothing found */ +} + +/** + * ata_sff_dev_classify - Parse returned ATA device signature + * @dev: ATA device to classify (starting at zero) + * @present: device seems present + * @r_err: Value of error register on completion + * + * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs, + * an ATA/ATAPI-defined set of values is placed in the ATA + * shadow registers, indicating the results of device detection + * and diagnostics. + * + * Select the ATA device, and read the values from the ATA shadow + * registers. Then parse according to the Error register value, + * and the spec-defined values examined by ata_dev_classify(). + * + * LOCKING: + * caller. + * + * RETURNS: + * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE. + */ +unsigned int ata_sff_dev_classify(struct ata_device *dev, int present, + u8 *r_err) +{ + struct ata_port *ap = dev->link->ap; + struct ata_taskfile tf; + unsigned int class; + u8 err; + + ap->ops->sff_dev_select(ap, dev->devno); + + memset(&tf, 0, sizeof(tf)); + + ap->ops->sff_tf_read(ap, &tf); + err = tf.error; + if (r_err) + *r_err = err; + + /* see if device passed diags: continue and warn later */ + if (err == 0) + /* diagnostic fail : do nothing _YET_ */ + dev->horkage |= ATA_HORKAGE_DIAGNOSTIC; + else if (err == 1) + /* do nothing */ ; + else if ((dev->devno == 0) && (err == 0x81)) + /* do nothing */ ; + else + return ATA_DEV_NONE; + + /* determine if device is ATA or ATAPI */ + class = ata_port_classify(ap, &tf); + switch (class) { + case ATA_DEV_UNKNOWN: + /* + * If the device failed diagnostic, it's likely to + * have reported incorrect device signature too. + * Assume ATA device if the device seems present but + * device signature is invalid with diagnostic + * failure. + */ + if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC)) + class = ATA_DEV_ATA; + else + class = ATA_DEV_NONE; + break; + case ATA_DEV_ATA: + if (ap->ops->sff_check_status(ap) == 0) + class = ATA_DEV_NONE; + break; + } + return class; +} +EXPORT_SYMBOL_GPL(ata_sff_dev_classify); + +/** + * ata_sff_wait_after_reset - wait for devices to become ready after reset + * @link: SFF link which is just reset + * @devmask: mask of present devices + * @deadline: deadline jiffies for the operation + * + * Wait devices attached to SFF @link to become ready after + * reset. It contains preceding 150ms wait to avoid accessing TF + * status register too early. + * + * LOCKING: + * Kernel thread context (may sleep). + * + * RETURNS: + * 0 on success, -ENODEV if some or all of devices in @devmask + * don't seem to exist. -errno on other errors. + */ +int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask, + unsigned long deadline) +{ + struct ata_port *ap = link->ap; + struct ata_ioports *ioaddr = &ap->ioaddr; + unsigned int dev0 = devmask & (1 << 0); + unsigned int dev1 = devmask & (1 << 1); + int rc, ret = 0; + + ata_msleep(ap, ATA_WAIT_AFTER_RESET); + + /* always check readiness of the master device */ + rc = ata_sff_wait_ready(link, deadline); + /* -ENODEV means the odd clown forgot the D7 pulldown resistor + * and TF status is 0xff, bail out on it too. + */ + if (rc) + return rc; + + /* if device 1 was found in ata_devchk, wait for register + * access briefly, then wait for BSY to clear. + */ + if (dev1) { + int i; + + ap->ops->sff_dev_select(ap, 1); + + /* Wait for register access. Some ATAPI devices fail + * to set nsect/lbal after reset, so don't waste too + * much time on it. We're gonna wait for !BSY anyway. + */ + for (i = 0; i < 2; i++) { + u8 nsect, lbal; + + nsect = ioread8(ioaddr->nsect_addr); + lbal = ioread8(ioaddr->lbal_addr); + if ((nsect == 1) && (lbal == 1)) + break; + ata_msleep(ap, 50); /* give drive a breather */ + } + + rc = ata_sff_wait_ready(link, deadline); + if (rc) { + if (rc != -ENODEV) + return rc; + ret = rc; + } + } + + /* is all this really necessary? */ + ap->ops->sff_dev_select(ap, 0); + if (dev1) + ap->ops->sff_dev_select(ap, 1); + if (dev0) + ap->ops->sff_dev_select(ap, 0); + + return ret; +} +EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset); + +static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask, + unsigned long deadline) +{ + struct ata_ioports *ioaddr = &ap->ioaddr; + + if (ap->ioaddr.ctl_addr) { + /* software reset. causes dev0 to be selected */ + iowrite8(ap->ctl, ioaddr->ctl_addr); + udelay(20); /* FIXME: flush */ + iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr); + udelay(20); /* FIXME: flush */ + iowrite8(ap->ctl, ioaddr->ctl_addr); + ap->last_ctl = ap->ctl; + } + + /* wait the port to become ready */ + return ata_sff_wait_after_reset(&ap->link, devmask, deadline); +} + +/** + * ata_sff_softreset - reset host port via ATA SRST + * @link: ATA link to reset + * @classes: resulting classes of attached devices + * @deadline: deadline jiffies for the operation + * + * Reset host port using ATA SRST. + * + * LOCKING: + * Kernel thread context (may sleep) + * + * RETURNS: + * 0 on success, -errno otherwise. + */ +int ata_sff_softreset(struct ata_link *link, unsigned int *classes, + unsigned long deadline) +{ + struct ata_port *ap = link->ap; + unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; + unsigned int devmask = 0; + int rc; + u8 err; + + /* determine if device 0/1 are present */ + if (ata_devchk(ap, 0)) + devmask |= (1 << 0); + if (slave_possible && ata_devchk(ap, 1)) + devmask |= (1 << 1); + + /* select device 0 again */ + ap->ops->sff_dev_select(ap, 0); + + /* issue bus reset */ + rc = ata_bus_softreset(ap, devmask, deadline); + /* if link is occupied, -ENODEV too is an error */ + if (rc && (rc != -ENODEV || sata_scr_valid(link))) { + ata_link_err(link, "SRST failed (errno=%d)\n", rc); + return rc; + } + + /* determine by signature whether we have ATA or ATAPI devices */ + classes[0] = ata_sff_dev_classify(&link->device[0], + devmask & (1 << 0), &err); + if (slave_possible && err != 0x81) + classes[1] = ata_sff_dev_classify(&link->device[1], + devmask & (1 << 1), &err); + + return 0; +} +EXPORT_SYMBOL_GPL(ata_sff_softreset); + +/** + * sata_sff_hardreset - reset host port via SATA phy reset + * @link: link to reset + * @class: resulting class of attached device + * @deadline: deadline jiffies for the operation + * + * SATA phy-reset host port using DET bits of SControl register, + * wait for !BSY and classify the attached device. + * + * LOCKING: + * Kernel thread context (may sleep) + * + * RETURNS: + * 0 on success, -errno otherwise. + */ +int sata_sff_hardreset(struct ata_link *link, unsigned int *class, + unsigned long deadline) +{ + struct ata_eh_context *ehc = &link->eh_context; + const unsigned int *timing = sata_ehc_deb_timing(ehc); + bool online; + int rc; + + rc = sata_link_hardreset(link, timing, deadline, &online, + ata_sff_check_ready); + if (online) + *class = ata_sff_dev_classify(link->device, 1, NULL); + + return rc; +} +EXPORT_SYMBOL_GPL(sata_sff_hardreset); + +/** + * ata_sff_postreset - SFF postreset callback + * @link: the target SFF ata_link + * @classes: classes of attached devices + * + * This function is invoked after a successful reset. It first + * calls ata_std_postreset() and performs SFF specific postreset + * processing. + * + * LOCKING: + * Kernel thread context (may sleep) + */ +void ata_sff_postreset(struct ata_link *link, unsigned int *classes) +{ + struct ata_port *ap = link->ap; + + ata_std_postreset(link, classes); + + /* is double-select really necessary? */ + if (classes[0] != ATA_DEV_NONE) + ap->ops->sff_dev_select(ap, 1); + if (classes[1] != ATA_DEV_NONE) + ap->ops->sff_dev_select(ap, 0); + + /* bail out if no device is present */ + if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) + return; + + /* set up device control */ + if (ata_sff_set_devctl(ap, ap->ctl)) + ap->last_ctl = ap->ctl; +} +EXPORT_SYMBOL_GPL(ata_sff_postreset); + +/** + * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers + * @qc: command + * + * Drain the FIFO and device of any stuck data following a command + * failing to complete. In some cases this is necessary before a + * reset will recover the device. + * + */ + +void ata_sff_drain_fifo(struct ata_queued_cmd *qc) +{ + int count; + struct ata_port *ap; + + /* We only need to flush incoming data when a command was running */ + if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE) + return; + + ap = qc->ap; + /* Drain up to 64K of data before we give up this recovery method */ + for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ) + && count < 65536; count += 2) + ioread16(ap->ioaddr.data_addr); + + if (count) + ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count); + +} +EXPORT_SYMBOL_GPL(ata_sff_drain_fifo); + +/** + * ata_sff_error_handler - Stock error handler for SFF controller + * @ap: port to handle error for + * + * Stock error handler for SFF controller. It can handle both + * PATA and SATA controllers. Many controllers should be able to + * use this EH as-is or with some added handling before and + * after. + * + * LOCKING: + * Kernel thread context (may sleep) + */ +void ata_sff_error_handler(struct ata_port *ap) +{ + ata_reset_fn_t softreset = ap->ops->softreset; + ata_reset_fn_t hardreset = ap->ops->hardreset; + struct ata_queued_cmd *qc; + unsigned long flags; + + qc = __ata_qc_from_tag(ap, ap->link.active_tag); + if (qc && !(qc->flags & ATA_QCFLAG_EH)) + qc = NULL; + + spin_lock_irqsave(ap->lock, flags); + + /* + * We *MUST* do FIFO draining before we issue a reset as + * several devices helpfully clear their internal state and + * will lock solid if we touch the data port post reset. Pass + * qc in case anyone wants to do different PIO/DMA recovery or + * has per command fixups + */ + if (ap->ops->sff_drain_fifo) + ap->ops->sff_drain_fifo(qc); + + spin_unlock_irqrestore(ap->lock, flags); + + /* ignore built-in hardresets if SCR access is not available */ + if ((hardreset == sata_std_hardreset || + hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link)) + hardreset = NULL; + + ata_do_eh(ap, ap->ops->prereset, softreset, hardreset, + ap->ops->postreset); +} +EXPORT_SYMBOL_GPL(ata_sff_error_handler); + +/** + * ata_sff_std_ports - initialize ioaddr with standard port offsets. + * @ioaddr: IO address structure to be initialized + * + * Utility function which initializes data_addr, error_addr, + * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr, + * device_addr, status_addr, and command_addr to standard offsets + * relative to cmd_addr. + * + * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr. + */ +void ata_sff_std_ports(struct ata_ioports *ioaddr) +{ + ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA; + ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR; + ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE; + ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT; + ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL; + ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM; + ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH; + ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE; + ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS; + ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD; +} +EXPORT_SYMBOL_GPL(ata_sff_std_ports); + +#ifdef CONFIG_PCI + +static bool ata_resources_present(struct pci_dev *pdev, int port) +{ + int i; + + /* Check the PCI resources for this channel are enabled */ + port *= 2; + for (i = 0; i < 2; i++) { + if (pci_resource_start(pdev, port + i) == 0 || + pci_resource_len(pdev, port + i) == 0) + return false; + } + return true; +} + +/** + * ata_pci_sff_init_host - acquire native PCI ATA resources and init host + * @host: target ATA host + * + * Acquire native PCI ATA resources for @host and initialize the + * first two ports of @host accordingly. Ports marked dummy are + * skipped and allocation failure makes the port dummy. + * + * Note that native PCI resources are valid even for legacy hosts + * as we fix up pdev resources array early in boot, so this + * function can be used for both native and legacy SFF hosts. + * + * LOCKING: + * Inherited from calling layer (may sleep). + * + * RETURNS: + * 0 if at least one port is initialized, -ENODEV if no port is + * available. + */ +int ata_pci_sff_init_host(struct ata_host *host) +{ + struct device *gdev = host->dev; + struct pci_dev *pdev = to_pci_dev(gdev); + unsigned int mask = 0; + int i, rc; + + /* request, iomap BARs and init port addresses accordingly */ + for (i = 0; i < 2; i++) { + struct ata_port *ap = host->ports[i]; + int base = i * 2; + void __iomem * const *iomap; + + if (ata_port_is_dummy(ap)) + continue; + + /* Discard disabled ports. Some controllers show + * their unused channels this way. Disabled ports are + * made dummy. + */ + if (!ata_resources_present(pdev, i)) { + ap->ops = &ata_dummy_port_ops; + continue; + } + + rc = pcim_iomap_regions(pdev, 0x3 << base, + dev_driver_string(gdev)); + if (rc) { + dev_warn(gdev, + "failed to request/iomap BARs for port %d (errno=%d)\n", + i, rc); + if (rc == -EBUSY) + pcim_pin_device(pdev); + ap->ops = &ata_dummy_port_ops; + continue; + } + host->iomap = iomap = pcim_iomap_table(pdev); + + ap->ioaddr.cmd_addr = iomap[base]; + ap->ioaddr.altstatus_addr = + ap->ioaddr.ctl_addr = (void __iomem *) + ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS); + ata_sff_std_ports(&ap->ioaddr); + + ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx", + (unsigned long long)pci_resource_start(pdev, base), + (unsigned long long)pci_resource_start(pdev, base + 1)); + + mask |= 1 << i; + } + + if (!mask) { + dev_err(gdev, "no available native port\n"); + return -ENODEV; + } + + return 0; +} +EXPORT_SYMBOL_GPL(ata_pci_sff_init_host); + +/** + * ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host + * @pdev: target PCI device + * @ppi: array of port_info, must be enough for two ports + * @r_host: out argument for the initialized ATA host + * + * Helper to allocate PIO-only SFF ATA host for @pdev, acquire + * all PCI resources and initialize it accordingly in one go. + * + * LOCKING: + * Inherited from calling layer (may sleep). + * + * RETURNS: + * 0 on success, -errno otherwise. + */ +int ata_pci_sff_prepare_host(struct pci_dev *pdev, + const struct ata_port_info * const *ppi, + struct ata_host **r_host) +{ + struct ata_host *host; + int rc; + + if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) + return -ENOMEM; + + host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2); + if (!host) { + dev_err(&pdev->dev, "failed to allocate ATA host\n"); + rc = -ENOMEM; + goto err_out; + } + + rc = ata_pci_sff_init_host(host); + if (rc) + goto err_out; + + devres_remove_group(&pdev->dev, NULL); + *r_host = host; + return 0; + +err_out: + devres_release_group(&pdev->dev, NULL); + return rc; +} +EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host); + +/** + * ata_pci_sff_activate_host - start SFF host, request IRQ and register it + * @host: target SFF ATA host + * @irq_handler: irq_handler used when requesting IRQ(s) + * @sht: scsi_host_template to use when registering the host + * + * This is the counterpart of ata_host_activate() for SFF ATA + * hosts. This separate helper is necessary because SFF hosts + * use two separate interrupts in legacy mode. + * + * LOCKING: + * Inherited from calling layer (may sleep). + * + * RETURNS: + * 0 on success, -errno otherwise. + */ +int ata_pci_sff_activate_host(struct ata_host *host, + irq_handler_t irq_handler, + const struct scsi_host_template *sht) +{ + struct device *dev = host->dev; + struct pci_dev *pdev = to_pci_dev(dev); + const char *drv_name = dev_driver_string(host->dev); + int legacy_mode = 0, rc; + + rc = ata_host_start(host); + if (rc) + return rc; + + if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) { + u8 tmp8, mask = 0; + + /* + * ATA spec says we should use legacy mode when one + * port is in legacy mode, but disabled ports on some + * PCI hosts appear as fixed legacy ports, e.g SB600/700 + * on which the secondary port is not wired, so + * ignore ports that are marked as 'dummy' during + * this check + */ + pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8); + if (!ata_port_is_dummy(host->ports[0])) + mask |= (1 << 0); + if (!ata_port_is_dummy(host->ports[1])) + mask |= (1 << 2); + if ((tmp8 & mask) != mask) + legacy_mode = 1; + } + + if (!devres_open_group(dev, NULL, GFP_KERNEL)) + return -ENOMEM; + + if (!legacy_mode && pdev->irq) { + int i; + + rc = devm_request_irq(dev, pdev->irq, irq_handler, + IRQF_SHARED, drv_name, host); + if (rc) + goto out; + + for (i = 0; i < 2; i++) { + if (ata_port_is_dummy(host->ports[i])) + continue; + ata_port_desc(host->ports[i], "irq %d", pdev->irq); + } + } else if (legacy_mode) { + if (!ata_port_is_dummy(host->ports[0])) { + rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev), + irq_handler, IRQF_SHARED, + drv_name, host); + if (rc) + goto out; + + ata_port_desc(host->ports[0], "irq %d", + ATA_PRIMARY_IRQ(pdev)); + } + + if (!ata_port_is_dummy(host->ports[1])) { + rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev), + irq_handler, IRQF_SHARED, + drv_name, host); + if (rc) + goto out; + + ata_port_desc(host->ports[1], "irq %d", + ATA_SECONDARY_IRQ(pdev)); + } + } + + rc = ata_host_register(host, sht); +out: + if (rc == 0) + devres_remove_group(dev, NULL); + else + devres_release_group(dev, NULL); + + return rc; +} +EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host); + +static const struct ata_port_info *ata_sff_find_valid_pi( + const struct ata_port_info * const *ppi) +{ + int i; + + /* look up the first valid port_info */ + for (i = 0; i < 2 && ppi[i]; i++) + if (ppi[i]->port_ops != &ata_dummy_port_ops) + return ppi[i]; + + return NULL; +} + +static int ata_pci_init_one(struct pci_dev *pdev, + const struct ata_port_info * const *ppi, + const struct scsi_host_template *sht, void *host_priv, + int hflags, bool bmdma) +{ + struct device *dev = &pdev->dev; + const struct ata_port_info *pi; + struct ata_host *host = NULL; + int rc; + + pi = ata_sff_find_valid_pi(ppi); + if (!pi) { + dev_err(&pdev->dev, "no valid port_info specified\n"); + return -EINVAL; + } + + if (!devres_open_group(dev, NULL, GFP_KERNEL)) + return -ENOMEM; + + rc = pcim_enable_device(pdev); + if (rc) + goto out; + +#ifdef CONFIG_ATA_BMDMA + if (bmdma) + /* prepare and activate BMDMA host */ + rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host); + else +#endif + /* prepare and activate SFF host */ + rc = ata_pci_sff_prepare_host(pdev, ppi, &host); + if (rc) + goto out; + host->private_data = host_priv; + host->flags |= hflags; + +#ifdef CONFIG_ATA_BMDMA + if (bmdma) { + pci_set_master(pdev); + rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht); + } else +#endif + rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht); +out: + if (rc == 0) + devres_remove_group(&pdev->dev, NULL); + else + devres_release_group(&pdev->dev, NULL); + + return rc; +} + +/** + * ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller + * @pdev: Controller to be initialized + * @ppi: array of port_info, must be enough for two ports + * @sht: scsi_host_template to use when registering the host + * @host_priv: host private_data + * @hflag: host flags + * + * This is a helper function which can be called from a driver's + * xxx_init_one() probe function if the hardware uses traditional + * IDE taskfile registers and is PIO only. + * + * ASSUMPTION: + * Nobody makes a single channel controller that appears solely as + * the secondary legacy port on PCI. + * + * LOCKING: + * Inherited from PCI layer (may sleep). + * + * RETURNS: + * Zero on success, negative on errno-based value on error. + */ +int ata_pci_sff_init_one(struct pci_dev *pdev, + const struct ata_port_info * const *ppi, + const struct scsi_host_template *sht, void *host_priv, int hflag) +{ + return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0); +} +EXPORT_SYMBOL_GPL(ata_pci_sff_init_one); + +#endif /* CONFIG_PCI */ + +/* + * BMDMA support + */ + +#ifdef CONFIG_ATA_BMDMA + +const struct ata_port_operations ata_bmdma_port_ops = { + .inherits = &ata_sff_port_ops, + + .error_handler = ata_bmdma_error_handler, + .post_internal_cmd = ata_bmdma_post_internal_cmd, + + .qc_prep = ata_bmdma_qc_prep, + .qc_issue = ata_bmdma_qc_issue, + + .sff_irq_clear = ata_bmdma_irq_clear, + .bmdma_setup = ata_bmdma_setup, + .bmdma_start = ata_bmdma_start, + .bmdma_stop = ata_bmdma_stop, + .bmdma_status = ata_bmdma_status, + + .port_start = ata_bmdma_port_start, +}; +EXPORT_SYMBOL_GPL(ata_bmdma_port_ops); + +const struct ata_port_operations ata_bmdma32_port_ops = { + .inherits = &ata_bmdma_port_ops, + + .sff_data_xfer = ata_sff_data_xfer32, + .port_start = ata_bmdma_port_start32, +}; +EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops); + +/** + * ata_bmdma_fill_sg - Fill PCI IDE PRD table + * @qc: Metadata associated with taskfile to be transferred + * + * Fill PCI IDE PRD (scatter-gather) table with segments + * associated with the current disk command. + * + * LOCKING: + * spin_lock_irqsave(host lock) + * + */ +static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc) +{ + struct ata_port *ap = qc->ap; + struct ata_bmdma_prd *prd = ap->bmdma_prd; + struct scatterlist *sg; + unsigned int si, pi; + + pi = 0; + for_each_sg(qc->sg, sg, qc->n_elem, si) { + u32 addr, offset; + u32 sg_len, len; + + /* determine if physical DMA addr spans 64K boundary. + * Note h/w doesn't support 64-bit, so we unconditionally + * truncate dma_addr_t to u32. + */ + addr = (u32) sg_dma_address(sg); + sg_len = sg_dma_len(sg); + + while (sg_len) { + offset = addr & 0xffff; + len = sg_len; + if ((offset + sg_len) > 0x10000) + len = 0x10000 - offset; + + prd[pi].addr = cpu_to_le32(addr); + prd[pi].flags_len = cpu_to_le32(len & 0xffff); + + pi++; + sg_len -= len; + addr += len; + } + } + + prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); +} + +/** + * ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table + * @qc: Metadata associated with taskfile to be transferred + * + * Fill PCI IDE PRD (scatter-gather) table with segments + * associated with the current disk command. Perform the fill + * so that we avoid writing any length 64K records for + * controllers that don't follow the spec. + * + * LOCKING: + * spin_lock_irqsave(host lock) + * + */ +static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc) +{ + struct ata_port *ap = qc->ap; + struct ata_bmdma_prd *prd = ap->bmdma_prd; + struct scatterlist *sg; + unsigned int si, pi; + + pi = 0; + for_each_sg(qc->sg, sg, qc->n_elem, si) { + u32 addr, offset; + u32 sg_len, len, blen; + + /* determine if physical DMA addr spans 64K boundary. + * Note h/w doesn't support 64-bit, so we unconditionally + * truncate dma_addr_t to u32. + */ + addr = (u32) sg_dma_address(sg); + sg_len = sg_dma_len(sg); + + while (sg_len) { + offset = addr & 0xffff; + len = sg_len; + if ((offset + sg_len) > 0x10000) + len = 0x10000 - offset; + + blen = len & 0xffff; + prd[pi].addr = cpu_to_le32(addr); + if (blen == 0) { + /* Some PATA chipsets like the CS5530 can't + cope with 0x0000 meaning 64K as the spec + says */ + prd[pi].flags_len = cpu_to_le32(0x8000); + blen = 0x8000; + prd[++pi].addr = cpu_to_le32(addr + 0x8000); + } + prd[pi].flags_len = cpu_to_le32(blen); + + pi++; + sg_len -= len; + addr += len; + } + } + + prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); +} + +/** + * ata_bmdma_qc_prep - Prepare taskfile for submission + * @qc: Metadata associated with taskfile to be prepared + * + * Prepare ATA taskfile for submission. + * + * LOCKING: + * spin_lock_irqsave(host lock) + */ +enum ata_completion_errors ata_bmdma_qc_prep(struct ata_queued_cmd *qc) +{ + if (!(qc->flags & ATA_QCFLAG_DMAMAP)) + return AC_ERR_OK; + + ata_bmdma_fill_sg(qc); + + return AC_ERR_OK; +} +EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep); + +/** + * ata_bmdma_dumb_qc_prep - Prepare taskfile for submission + * @qc: Metadata associated with taskfile to be prepared + * + * Prepare ATA taskfile for submission. + * + * LOCKING: + * spin_lock_irqsave(host lock) + */ +enum ata_completion_errors ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc) +{ + if (!(qc->flags & ATA_QCFLAG_DMAMAP)) + return AC_ERR_OK; + + ata_bmdma_fill_sg_dumb(qc); + + return AC_ERR_OK; +} +EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep); + +/** + * ata_bmdma_qc_issue - issue taskfile to a BMDMA controller + * @qc: command to issue to device + * + * This function issues a PIO, NODATA or DMA command to a + * SFF/BMDMA controller. PIO and NODATA are handled by + * ata_sff_qc_issue(). + * + * LOCKING: + * spin_lock_irqsave(host lock) + * + * RETURNS: + * Zero on success, AC_ERR_* mask on failure + */ +unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc) +{ + struct ata_port *ap = qc->ap; + struct ata_link *link = qc->dev->link; + + /* defer PIO handling to sff_qc_issue */ + if (!ata_is_dma(qc->tf.protocol)) + return ata_sff_qc_issue(qc); + + /* select the device */ + ata_dev_select(ap, qc->dev->devno, 1, 0); + + /* start the command */ + switch (qc->tf.protocol) { + case ATA_PROT_DMA: + WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING); + + trace_ata_tf_load(ap, &qc->tf); + ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ + trace_ata_bmdma_setup(ap, &qc->tf, qc->tag); + ap->ops->bmdma_setup(qc); /* set up bmdma */ + trace_ata_bmdma_start(ap, &qc->tf, qc->tag); + ap->ops->bmdma_start(qc); /* initiate bmdma */ + ap->hsm_task_state = HSM_ST_LAST; + break; + + case ATAPI_PROT_DMA: + WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING); + + trace_ata_tf_load(ap, &qc->tf); + ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ + trace_ata_bmdma_setup(ap, &qc->tf, qc->tag); + ap->ops->bmdma_setup(qc); /* set up bmdma */ + ap->hsm_task_state = HSM_ST_FIRST; + + /* send cdb by polling if no cdb interrupt */ + if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) + ata_sff_queue_pio_task(link, 0); + break; + + default: + WARN_ON(1); + return AC_ERR_SYSTEM; + } + + return 0; +} +EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue); + +/** + * ata_bmdma_port_intr - Handle BMDMA port interrupt + * @ap: Port on which interrupt arrived (possibly...) + * @qc: Taskfile currently active in engine + * + * Handle port interrupt for given queued command. + * + * LOCKING: + * spin_lock_irqsave(host lock) + * + * RETURNS: + * One if interrupt was handled, zero if not (shared irq). + */ +unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc) +{ + struct ata_eh_info *ehi = &ap->link.eh_info; + u8 host_stat = 0; + bool bmdma_stopped = false; + unsigned int handled; + + if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) { + /* check status of DMA engine */ + host_stat = ap->ops->bmdma_status(ap); + trace_ata_bmdma_status(ap, host_stat); + + /* if it's not our irq... */ + if (!(host_stat & ATA_DMA_INTR)) + return ata_sff_idle_irq(ap); + + /* before we do anything else, clear DMA-Start bit */ + trace_ata_bmdma_stop(ap, &qc->tf, qc->tag); + ap->ops->bmdma_stop(qc); + bmdma_stopped = true; + + if (unlikely(host_stat & ATA_DMA_ERR)) { + /* error when transferring data to/from memory */ + qc->err_mask |= AC_ERR_HOST_BUS; + ap->hsm_task_state = HSM_ST_ERR; + } + } + + handled = __ata_sff_port_intr(ap, qc, bmdma_stopped); + + if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol)) + ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat); + + return handled; +} +EXPORT_SYMBOL_GPL(ata_bmdma_port_intr); + +/** + * ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler + * @irq: irq line (unused) + * @dev_instance: pointer to our ata_host information structure + * + * Default interrupt handler for PCI IDE devices. Calls + * ata_bmdma_port_intr() for each port that is not disabled. + * + * LOCKING: + * Obtains host lock during operation. + * + * RETURNS: + * IRQ_NONE or IRQ_HANDLED. + */ +irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance) +{ + return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr); +} +EXPORT_SYMBOL_GPL(ata_bmdma_interrupt); + +/** + * ata_bmdma_error_handler - Stock error handler for BMDMA controller + * @ap: port to handle error for + * + * Stock error handler for BMDMA controller. It can handle both + * PATA and SATA controllers. Most BMDMA controllers should be + * able to use this EH as-is or with some added handling before + * and after. + * + * LOCKING: + * Kernel thread context (may sleep) + */ +void ata_bmdma_error_handler(struct ata_port *ap) +{ + struct ata_queued_cmd *qc; + unsigned long flags; + bool thaw = false; + + qc = __ata_qc_from_tag(ap, ap->link.active_tag); + if (qc && !(qc->flags & ATA_QCFLAG_EH)) + qc = NULL; + + /* reset PIO HSM and stop DMA engine */ + spin_lock_irqsave(ap->lock, flags); + + if (qc && ata_is_dma(qc->tf.protocol)) { + u8 host_stat; + + host_stat = ap->ops->bmdma_status(ap); + trace_ata_bmdma_status(ap, host_stat); + + /* BMDMA controllers indicate host bus error by + * setting DMA_ERR bit and timing out. As it wasn't + * really a timeout event, adjust error mask and + * cancel frozen state. + */ + if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) { + qc->err_mask = AC_ERR_HOST_BUS; + thaw = true; + } + + trace_ata_bmdma_stop(ap, &qc->tf, qc->tag); + ap->ops->bmdma_stop(qc); + + /* if we're gonna thaw, make sure IRQ is clear */ + if (thaw) { + ap->ops->sff_check_status(ap); + if (ap->ops->sff_irq_clear) + ap->ops->sff_irq_clear(ap); + } + } + + spin_unlock_irqrestore(ap->lock, flags); + + if (thaw) + ata_eh_thaw_port(ap); + + ata_sff_error_handler(ap); +} +EXPORT_SYMBOL_GPL(ata_bmdma_error_handler); + +/** + * ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA + * @qc: internal command to clean up + * + * LOCKING: + * Kernel thread context (may sleep) + */ +void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc) +{ + struct ata_port *ap = qc->ap; + unsigned long flags; + + if (ata_is_dma(qc->tf.protocol)) { + spin_lock_irqsave(ap->lock, flags); + trace_ata_bmdma_stop(ap, &qc->tf, qc->tag); + ap->ops->bmdma_stop(qc); + spin_unlock_irqrestore(ap->lock, flags); + } +} +EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd); + +/** + * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt. + * @ap: Port associated with this ATA transaction. + * + * Clear interrupt and error flags in DMA status register. + * + * May be used as the irq_clear() entry in ata_port_operations. + * + * LOCKING: + * spin_lock_irqsave(host lock) + */ +void ata_bmdma_irq_clear(struct ata_port *ap) +{ + void __iomem *mmio = ap->ioaddr.bmdma_addr; + + if (!mmio) + return; + + iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS); +} +EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear); + +/** + * ata_bmdma_setup - Set up PCI IDE BMDMA transaction + * @qc: Info associated with this ATA transaction. + * + * LOCKING: + * spin_lock_irqsave(host lock) + */ +void ata_bmdma_setup(struct ata_queued_cmd *qc) +{ + struct ata_port *ap = qc->ap; + unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE); + u8 dmactl; + + /* load PRD table addr. */ + mb(); /* make sure PRD table writes are visible to controller */ + iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS); + + /* specify data direction, triple-check start bit is clear */ + dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); + dmactl &= ~(ATA_DMA_WR | ATA_DMA_START); + if (!rw) + dmactl |= ATA_DMA_WR; + iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); + + /* issue r/w command */ + ap->ops->sff_exec_command(ap, &qc->tf); +} +EXPORT_SYMBOL_GPL(ata_bmdma_setup); + +/** + * ata_bmdma_start - Start a PCI IDE BMDMA transaction + * @qc: Info associated with this ATA transaction. + * + * LOCKING: + * spin_lock_irqsave(host lock) + */ +void ata_bmdma_start(struct ata_queued_cmd *qc) +{ + struct ata_port *ap = qc->ap; + u8 dmactl; + + /* start host DMA transaction */ + dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); + iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); + + /* Strictly, one may wish to issue an ioread8() here, to + * flush the mmio write. However, control also passes + * to the hardware at this point, and it will interrupt + * us when we are to resume control. So, in effect, + * we don't care when the mmio write flushes. + * Further, a read of the DMA status register _immediately_ + * following the write may not be what certain flaky hardware + * is expected, so I think it is best to not add a readb() + * without first all the MMIO ATA cards/mobos. + * Or maybe I'm just being paranoid. + * + * FIXME: The posting of this write means I/O starts are + * unnecessarily delayed for MMIO + */ +} +EXPORT_SYMBOL_GPL(ata_bmdma_start); + +/** + * ata_bmdma_stop - Stop PCI IDE BMDMA transfer + * @qc: Command we are ending DMA for + * + * Clears the ATA_DMA_START flag in the dma control register + * + * May be used as the bmdma_stop() entry in ata_port_operations. + * + * LOCKING: + * spin_lock_irqsave(host lock) + */ +void ata_bmdma_stop(struct ata_queued_cmd *qc) +{ + struct ata_port *ap = qc->ap; + void __iomem *mmio = ap->ioaddr.bmdma_addr; + + /* clear start/stop bit */ + iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START, + mmio + ATA_DMA_CMD); + + /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */ + ata_sff_dma_pause(ap); +} +EXPORT_SYMBOL_GPL(ata_bmdma_stop); + +/** + * ata_bmdma_status - Read PCI IDE BMDMA status + * @ap: Port associated with this ATA transaction. + * + * Read and return BMDMA status register. + * + * May be used as the bmdma_status() entry in ata_port_operations. + * + * LOCKING: + * spin_lock_irqsave(host lock) + */ +u8 ata_bmdma_status(struct ata_port *ap) +{ + return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS); +} +EXPORT_SYMBOL_GPL(ata_bmdma_status); + + +/** + * ata_bmdma_port_start - Set port up for bmdma. + * @ap: Port to initialize + * + * Called just after data structures for each port are + * initialized. Allocates space for PRD table. + * + * May be used as the port_start() entry in ata_port_operations. + * + * LOCKING: + * Inherited from caller. + */ +int ata_bmdma_port_start(struct ata_port *ap) +{ + if (ap->mwdma_mask || ap->udma_mask) { + ap->bmdma_prd = + dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ, + &ap->bmdma_prd_dma, GFP_KERNEL); + if (!ap->bmdma_prd) + return -ENOMEM; + } + + return 0; +} +EXPORT_SYMBOL_GPL(ata_bmdma_port_start); + +/** + * ata_bmdma_port_start32 - Set port up for dma. + * @ap: Port to initialize + * + * Called just after data structures for each port are + * initialized. Enables 32bit PIO and allocates space for PRD + * table. + * + * May be used as the port_start() entry in ata_port_operations for + * devices that are capable of 32bit PIO. + * + * LOCKING: + * Inherited from caller. + */ +int ata_bmdma_port_start32(struct ata_port *ap) +{ + ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE; + return ata_bmdma_port_start(ap); +} +EXPORT_SYMBOL_GPL(ata_bmdma_port_start32); + +#ifdef CONFIG_PCI + +/** + * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex + * @pdev: PCI device + * + * Some PCI ATA devices report simplex mode but in fact can be told to + * enter non simplex mode. This implements the necessary logic to + * perform the task on such devices. Calling it on other devices will + * have -undefined- behaviour. + */ +int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev) +{ + unsigned long bmdma = pci_resource_start(pdev, 4); + u8 simplex; + + if (bmdma == 0) + return -ENOENT; + + simplex = inb(bmdma + 0x02); + outb(simplex & 0x60, bmdma + 0x02); + simplex = inb(bmdma + 0x02); + if (simplex & 0x80) + return -EOPNOTSUPP; + return 0; +} +EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex); + +static void ata_bmdma_nodma(struct ata_host *host, const char *reason) +{ + int i; + + dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason); + + for (i = 0; i < 2; i++) { + host->ports[i]->mwdma_mask = 0; + host->ports[i]->udma_mask = 0; + } +} + +/** + * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host + * @host: target ATA host + * + * Acquire PCI BMDMA resources and initialize @host accordingly. + * + * LOCKING: + * Inherited from calling layer (may sleep). + */ +void ata_pci_bmdma_init(struct ata_host *host) +{ + struct device *gdev = host->dev; + struct pci_dev *pdev = to_pci_dev(gdev); + int i, rc; + + /* No BAR4 allocation: No DMA */ + if (pci_resource_start(pdev, 4) == 0) { + ata_bmdma_nodma(host, "BAR4 is zero"); + return; + } + + /* + * Some controllers require BMDMA region to be initialized + * even if DMA is not in use to clear IRQ status via + * ->sff_irq_clear method. Try to initialize bmdma_addr + * regardless of dma masks. + */ + rc = dma_set_mask_and_coherent(&pdev->dev, ATA_DMA_MASK); + if (rc) + ata_bmdma_nodma(host, "failed to set dma mask"); + + /* request and iomap DMA region */ + rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev)); + if (rc) { + ata_bmdma_nodma(host, "failed to request/iomap BAR4"); + return; + } + host->iomap = pcim_iomap_table(pdev); + + for (i = 0; i < 2; i++) { + struct ata_port *ap = host->ports[i]; + void __iomem *bmdma = host->iomap[4] + 8 * i; + + if (ata_port_is_dummy(ap)) + continue; + + ap->ioaddr.bmdma_addr = bmdma; + if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) && + (ioread8(bmdma + 2) & 0x80)) + host->flags |= ATA_HOST_SIMPLEX; + + ata_port_desc(ap, "bmdma 0x%llx", + (unsigned long long)pci_resource_start(pdev, 4) + 8 * i); + } +} +EXPORT_SYMBOL_GPL(ata_pci_bmdma_init); + +/** + * ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host + * @pdev: target PCI device + * @ppi: array of port_info, must be enough for two ports + * @r_host: out argument for the initialized ATA host + * + * Helper to allocate BMDMA ATA host for @pdev, acquire all PCI + * resources and initialize it accordingly in one go. + * + * LOCKING: + * Inherited from calling layer (may sleep). + * + * RETURNS: + * 0 on success, -errno otherwise. + */ +int ata_pci_bmdma_prepare_host(struct pci_dev *pdev, + const struct ata_port_info * const * ppi, + struct ata_host **r_host) +{ + int rc; + + rc = ata_pci_sff_prepare_host(pdev, ppi, r_host); + if (rc) + return rc; + + ata_pci_bmdma_init(*r_host); + return 0; +} +EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host); + +/** + * ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller + * @pdev: Controller to be initialized + * @ppi: array of port_info, must be enough for two ports + * @sht: scsi_host_template to use when registering the host + * @host_priv: host private_data + * @hflags: host flags + * + * This function is similar to ata_pci_sff_init_one() but also + * takes care of BMDMA initialization. + * + * LOCKING: + * Inherited from PCI layer (may sleep). + * + * RETURNS: + * Zero on success, negative on errno-based value on error. + */ +int ata_pci_bmdma_init_one(struct pci_dev *pdev, + const struct ata_port_info * const * ppi, + const struct scsi_host_template *sht, void *host_priv, + int hflags) +{ + return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1); +} +EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one); + +#endif /* CONFIG_PCI */ +#endif /* CONFIG_ATA_BMDMA */ + +/** + * ata_sff_port_init - Initialize SFF/BMDMA ATA port + * @ap: Port to initialize + * + * Called on port allocation to initialize SFF/BMDMA specific + * fields. + * + * LOCKING: + * None. + */ +void ata_sff_port_init(struct ata_port *ap) +{ + INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task); + ap->ctl = ATA_DEVCTL_OBS; + ap->last_ctl = 0xFF; +} + +int __init ata_sff_init(void) +{ + ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE); + if (!ata_sff_wq) + return -ENOMEM; + + return 0; +} + +void ata_sff_exit(void) +{ + destroy_workqueue(ata_sff_wq); +} |