diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-11 08:27:49 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-11 08:27:49 +0000 |
commit | ace9429bb58fd418f0c81d4c2835699bddf6bde6 (patch) | |
tree | b2d64bc10158fdd5497876388cd68142ca374ed3 /drivers/edac/pnd2_edac.c | |
parent | Initial commit. (diff) | |
download | linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.tar.xz linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.zip |
Adding upstream version 6.6.15.upstream/6.6.15
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'drivers/edac/pnd2_edac.c')
-rw-r--r-- | drivers/edac/pnd2_edac.c | 1587 |
1 files changed, 1587 insertions, 0 deletions
diff --git a/drivers/edac/pnd2_edac.c b/drivers/edac/pnd2_edac.c new file mode 100644 index 0000000000..2b306f2cc6 --- /dev/null +++ b/drivers/edac/pnd2_edac.c @@ -0,0 +1,1587 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Driver for Pondicherry2 memory controller. + * + * Copyright (c) 2016, Intel Corporation. + * + * [Derived from sb_edac.c] + * + * Translation of system physical addresses to DIMM addresses + * is a two stage process: + * + * First the Pondicherry 2 memory controller handles slice and channel interleaving + * in "sys2pmi()". This is (almost) completley common between platforms. + * + * Then a platform specific dunit (DIMM unit) completes the process to provide DIMM, + * rank, bank, row and column using the appropriate "dunit_ops" functions/parameters. + */ + +#include <linux/module.h> +#include <linux/init.h> +#include <linux/pci.h> +#include <linux/pci_ids.h> +#include <linux/slab.h> +#include <linux/delay.h> +#include <linux/edac.h> +#include <linux/mmzone.h> +#include <linux/smp.h> +#include <linux/bitmap.h> +#include <linux/math64.h> +#include <linux/mod_devicetable.h> +#include <linux/platform_data/x86/p2sb.h> + +#include <asm/cpu_device_id.h> +#include <asm/intel-family.h> +#include <asm/processor.h> +#include <asm/mce.h> + +#include "edac_mc.h" +#include "edac_module.h" +#include "pnd2_edac.h" + +#define EDAC_MOD_STR "pnd2_edac" + +#define APL_NUM_CHANNELS 4 +#define DNV_NUM_CHANNELS 2 +#define DNV_MAX_DIMMS 2 /* Max DIMMs per channel */ + +enum type { + APL, + DNV, /* All requests go to PMI CH0 on each slice (CH1 disabled) */ +}; + +struct dram_addr { + int chan; + int dimm; + int rank; + int bank; + int row; + int col; +}; + +struct pnd2_pvt { + int dimm_geom[APL_NUM_CHANNELS]; + u64 tolm, tohm; +}; + +/* + * System address space is divided into multiple regions with + * different interleave rules in each. The as0/as1 regions + * have no interleaving at all. The as2 region is interleaved + * between two channels. The mot region is magic and may overlap + * other regions, with its interleave rules taking precedence. + * Addresses not in any of these regions are interleaved across + * all four channels. + */ +static struct region { + u64 base; + u64 limit; + u8 enabled; +} mot, as0, as1, as2; + +static struct dunit_ops { + char *name; + enum type type; + int pmiaddr_shift; + int pmiidx_shift; + int channels; + int dimms_per_channel; + int (*rd_reg)(int port, int off, int op, void *data, size_t sz, char *name); + int (*get_registers)(void); + int (*check_ecc)(void); + void (*mk_region)(char *name, struct region *rp, void *asym); + void (*get_dimm_config)(struct mem_ctl_info *mci); + int (*pmi2mem)(struct mem_ctl_info *mci, u64 pmiaddr, u32 pmiidx, + struct dram_addr *daddr, char *msg); +} *ops; + +static struct mem_ctl_info *pnd2_mci; + +#define PND2_MSG_SIZE 256 + +/* Debug macros */ +#define pnd2_printk(level, fmt, arg...) \ + edac_printk(level, "pnd2", fmt, ##arg) + +#define pnd2_mc_printk(mci, level, fmt, arg...) \ + edac_mc_chipset_printk(mci, level, "pnd2", fmt, ##arg) + +#define MOT_CHAN_INTLV_BIT_1SLC_2CH 12 +#define MOT_CHAN_INTLV_BIT_2SLC_2CH 13 +#define SELECTOR_DISABLED (-1) +#define _4GB (1ul << 32) + +#define PMI_ADDRESS_WIDTH 31 +#define PND_MAX_PHYS_BIT 39 + +#define APL_ASYMSHIFT 28 +#define DNV_ASYMSHIFT 31 +#define CH_HASH_MASK_LSB 6 +#define SLICE_HASH_MASK_LSB 6 +#define MOT_SLC_INTLV_BIT 12 +#define LOG2_PMI_ADDR_GRANULARITY 5 +#define MOT_SHIFT 24 + +#define GET_BITFIELD(v, lo, hi) (((v) & GENMASK_ULL(hi, lo)) >> (lo)) +#define U64_LSHIFT(val, s) ((u64)(val) << (s)) + +/* + * On Apollo Lake we access memory controller registers via a + * side-band mailbox style interface in a hidden PCI device + * configuration space. + */ +static struct pci_bus *p2sb_bus; +#define P2SB_DEVFN PCI_DEVFN(0xd, 0) +#define P2SB_ADDR_OFF 0xd0 +#define P2SB_DATA_OFF 0xd4 +#define P2SB_STAT_OFF 0xd8 +#define P2SB_ROUT_OFF 0xda +#define P2SB_EADD_OFF 0xdc +#define P2SB_HIDE_OFF 0xe1 + +#define P2SB_BUSY 1 + +#define P2SB_READ(size, off, ptr) \ + pci_bus_read_config_##size(p2sb_bus, P2SB_DEVFN, off, ptr) +#define P2SB_WRITE(size, off, val) \ + pci_bus_write_config_##size(p2sb_bus, P2SB_DEVFN, off, val) + +static bool p2sb_is_busy(u16 *status) +{ + P2SB_READ(word, P2SB_STAT_OFF, status); + + return !!(*status & P2SB_BUSY); +} + +static int _apl_rd_reg(int port, int off, int op, u32 *data) +{ + int retries = 0xff, ret; + u16 status; + u8 hidden; + + /* Unhide the P2SB device, if it's hidden */ + P2SB_READ(byte, P2SB_HIDE_OFF, &hidden); + if (hidden) + P2SB_WRITE(byte, P2SB_HIDE_OFF, 0); + + if (p2sb_is_busy(&status)) { + ret = -EAGAIN; + goto out; + } + + P2SB_WRITE(dword, P2SB_ADDR_OFF, (port << 24) | off); + P2SB_WRITE(dword, P2SB_DATA_OFF, 0); + P2SB_WRITE(dword, P2SB_EADD_OFF, 0); + P2SB_WRITE(word, P2SB_ROUT_OFF, 0); + P2SB_WRITE(word, P2SB_STAT_OFF, (op << 8) | P2SB_BUSY); + + while (p2sb_is_busy(&status)) { + if (retries-- == 0) { + ret = -EBUSY; + goto out; + } + } + + P2SB_READ(dword, P2SB_DATA_OFF, data); + ret = (status >> 1) & 0x3; +out: + /* Hide the P2SB device, if it was hidden before */ + if (hidden) + P2SB_WRITE(byte, P2SB_HIDE_OFF, hidden); + + return ret; +} + +static int apl_rd_reg(int port, int off, int op, void *data, size_t sz, char *name) +{ + int ret = 0; + + edac_dbg(2, "Read %s port=%x off=%x op=%x\n", name, port, off, op); + switch (sz) { + case 8: + ret = _apl_rd_reg(port, off + 4, op, (u32 *)(data + 4)); + fallthrough; + case 4: + ret |= _apl_rd_reg(port, off, op, (u32 *)data); + pnd2_printk(KERN_DEBUG, "%s=%x%08x ret=%d\n", name, + sz == 8 ? *((u32 *)(data + 4)) : 0, *((u32 *)data), ret); + break; + } + + return ret; +} + +static u64 get_mem_ctrl_hub_base_addr(void) +{ + struct b_cr_mchbar_lo_pci lo; + struct b_cr_mchbar_hi_pci hi; + struct pci_dev *pdev; + + pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x1980, NULL); + if (pdev) { + pci_read_config_dword(pdev, 0x48, (u32 *)&lo); + pci_read_config_dword(pdev, 0x4c, (u32 *)&hi); + pci_dev_put(pdev); + } else { + return 0; + } + + if (!lo.enable) { + edac_dbg(2, "MMIO via memory controller hub base address is disabled!\n"); + return 0; + } + + return U64_LSHIFT(hi.base, 32) | U64_LSHIFT(lo.base, 15); +} + +#define DNV_MCHBAR_SIZE 0x8000 +#define DNV_SB_PORT_SIZE 0x10000 +static int dnv_rd_reg(int port, int off, int op, void *data, size_t sz, char *name) +{ + struct pci_dev *pdev; + void __iomem *base; + struct resource r; + int ret; + + if (op == 4) { + pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x1980, NULL); + if (!pdev) + return -ENODEV; + + pci_read_config_dword(pdev, off, data); + pci_dev_put(pdev); + } else { + /* MMIO via memory controller hub base address */ + if (op == 0 && port == 0x4c) { + memset(&r, 0, sizeof(r)); + + r.start = get_mem_ctrl_hub_base_addr(); + if (!r.start) + return -ENODEV; + r.end = r.start + DNV_MCHBAR_SIZE - 1; + } else { + /* MMIO via sideband register base address */ + ret = p2sb_bar(NULL, 0, &r); + if (ret) + return ret; + + r.start += (port << 16); + r.end = r.start + DNV_SB_PORT_SIZE - 1; + } + + base = ioremap(r.start, resource_size(&r)); + if (!base) + return -ENODEV; + + if (sz == 8) + *(u64 *)data = readq(base + off); + else + *(u32 *)data = readl(base + off); + + iounmap(base); + } + + edac_dbg(2, "Read %s=%.8x_%.8x\n", name, + (sz == 8) ? *(u32 *)(data + 4) : 0, *(u32 *)data); + + return 0; +} + +#define RD_REGP(regp, regname, port) \ + ops->rd_reg(port, \ + regname##_offset, \ + regname##_r_opcode, \ + regp, sizeof(struct regname), \ + #regname) + +#define RD_REG(regp, regname) \ + ops->rd_reg(regname ## _port, \ + regname##_offset, \ + regname##_r_opcode, \ + regp, sizeof(struct regname), \ + #regname) + +static u64 top_lm, top_hm; +static bool two_slices; +static bool two_channels; /* Both PMI channels in one slice enabled */ + +static u8 sym_chan_mask; +static u8 asym_chan_mask; +static u8 chan_mask; + +static int slice_selector = -1; +static int chan_selector = -1; +static u64 slice_hash_mask; +static u64 chan_hash_mask; + +static void mk_region(char *name, struct region *rp, u64 base, u64 limit) +{ + rp->enabled = 1; + rp->base = base; + rp->limit = limit; + edac_dbg(2, "Region:%s [%llx, %llx]\n", name, base, limit); +} + +static void mk_region_mask(char *name, struct region *rp, u64 base, u64 mask) +{ + if (mask == 0) { + pr_info(FW_BUG "MOT mask cannot be zero\n"); + return; + } + if (mask != GENMASK_ULL(PND_MAX_PHYS_BIT, __ffs(mask))) { + pr_info(FW_BUG "MOT mask not power of two\n"); + return; + } + if (base & ~mask) { + pr_info(FW_BUG "MOT region base/mask alignment error\n"); + return; + } + rp->base = base; + rp->limit = (base | ~mask) & GENMASK_ULL(PND_MAX_PHYS_BIT, 0); + rp->enabled = 1; + edac_dbg(2, "Region:%s [%llx, %llx]\n", name, base, rp->limit); +} + +static bool in_region(struct region *rp, u64 addr) +{ + if (!rp->enabled) + return false; + + return rp->base <= addr && addr <= rp->limit; +} + +static int gen_sym_mask(struct b_cr_slice_channel_hash *p) +{ + int mask = 0; + + if (!p->slice_0_mem_disabled) + mask |= p->sym_slice0_channel_enabled; + + if (!p->slice_1_disabled) + mask |= p->sym_slice1_channel_enabled << 2; + + if (p->ch_1_disabled || p->enable_pmi_dual_data_mode) + mask &= 0x5; + + return mask; +} + +static int gen_asym_mask(struct b_cr_slice_channel_hash *p, + struct b_cr_asym_mem_region0_mchbar *as0, + struct b_cr_asym_mem_region1_mchbar *as1, + struct b_cr_asym_2way_mem_region_mchbar *as2way) +{ + const int intlv[] = { 0x5, 0xA, 0x3, 0xC }; + int mask = 0; + + if (as2way->asym_2way_interleave_enable) + mask = intlv[as2way->asym_2way_intlv_mode]; + if (as0->slice0_asym_enable) + mask |= (1 << as0->slice0_asym_channel_select); + if (as1->slice1_asym_enable) + mask |= (4 << as1->slice1_asym_channel_select); + if (p->slice_0_mem_disabled) + mask &= 0xc; + if (p->slice_1_disabled) + mask &= 0x3; + if (p->ch_1_disabled || p->enable_pmi_dual_data_mode) + mask &= 0x5; + + return mask; +} + +static struct b_cr_tolud_pci tolud; +static struct b_cr_touud_lo_pci touud_lo; +static struct b_cr_touud_hi_pci touud_hi; +static struct b_cr_asym_mem_region0_mchbar asym0; +static struct b_cr_asym_mem_region1_mchbar asym1; +static struct b_cr_asym_2way_mem_region_mchbar asym_2way; +static struct b_cr_mot_out_base_mchbar mot_base; +static struct b_cr_mot_out_mask_mchbar mot_mask; +static struct b_cr_slice_channel_hash chash; + +/* Apollo Lake dunit */ +/* + * Validated on board with just two DIMMs in the [0] and [2] positions + * in this array. Other port number matches documentation, but caution + * advised. + */ +static const int apl_dports[APL_NUM_CHANNELS] = { 0x18, 0x10, 0x11, 0x19 }; +static struct d_cr_drp0 drp0[APL_NUM_CHANNELS]; + +/* Denverton dunit */ +static const int dnv_dports[DNV_NUM_CHANNELS] = { 0x10, 0x12 }; +static struct d_cr_dsch dsch; +static struct d_cr_ecc_ctrl ecc_ctrl[DNV_NUM_CHANNELS]; +static struct d_cr_drp drp[DNV_NUM_CHANNELS]; +static struct d_cr_dmap dmap[DNV_NUM_CHANNELS]; +static struct d_cr_dmap1 dmap1[DNV_NUM_CHANNELS]; +static struct d_cr_dmap2 dmap2[DNV_NUM_CHANNELS]; +static struct d_cr_dmap3 dmap3[DNV_NUM_CHANNELS]; +static struct d_cr_dmap4 dmap4[DNV_NUM_CHANNELS]; +static struct d_cr_dmap5 dmap5[DNV_NUM_CHANNELS]; + +static void apl_mk_region(char *name, struct region *rp, void *asym) +{ + struct b_cr_asym_mem_region0_mchbar *a = asym; + + mk_region(name, rp, + U64_LSHIFT(a->slice0_asym_base, APL_ASYMSHIFT), + U64_LSHIFT(a->slice0_asym_limit, APL_ASYMSHIFT) + + GENMASK_ULL(APL_ASYMSHIFT - 1, 0)); +} + +static void dnv_mk_region(char *name, struct region *rp, void *asym) +{ + struct b_cr_asym_mem_region_denverton *a = asym; + + mk_region(name, rp, + U64_LSHIFT(a->slice_asym_base, DNV_ASYMSHIFT), + U64_LSHIFT(a->slice_asym_limit, DNV_ASYMSHIFT) + + GENMASK_ULL(DNV_ASYMSHIFT - 1, 0)); +} + +static int apl_get_registers(void) +{ + int ret = -ENODEV; + int i; + + if (RD_REG(&asym_2way, b_cr_asym_2way_mem_region_mchbar)) + return -ENODEV; + + /* + * RD_REGP() will fail for unpopulated or non-existent + * DIMM slots. Return success if we find at least one DIMM. + */ + for (i = 0; i < APL_NUM_CHANNELS; i++) + if (!RD_REGP(&drp0[i], d_cr_drp0, apl_dports[i])) + ret = 0; + + return ret; +} + +static int dnv_get_registers(void) +{ + int i; + + if (RD_REG(&dsch, d_cr_dsch)) + return -ENODEV; + + for (i = 0; i < DNV_NUM_CHANNELS; i++) + if (RD_REGP(&ecc_ctrl[i], d_cr_ecc_ctrl, dnv_dports[i]) || + RD_REGP(&drp[i], d_cr_drp, dnv_dports[i]) || + RD_REGP(&dmap[i], d_cr_dmap, dnv_dports[i]) || + RD_REGP(&dmap1[i], d_cr_dmap1, dnv_dports[i]) || + RD_REGP(&dmap2[i], d_cr_dmap2, dnv_dports[i]) || + RD_REGP(&dmap3[i], d_cr_dmap3, dnv_dports[i]) || + RD_REGP(&dmap4[i], d_cr_dmap4, dnv_dports[i]) || + RD_REGP(&dmap5[i], d_cr_dmap5, dnv_dports[i])) + return -ENODEV; + + return 0; +} + +/* + * Read all the h/w config registers once here (they don't + * change at run time. Figure out which address ranges have + * which interleave characteristics. + */ +static int get_registers(void) +{ + const int intlv[] = { 10, 11, 12, 12 }; + + if (RD_REG(&tolud, b_cr_tolud_pci) || + RD_REG(&touud_lo, b_cr_touud_lo_pci) || + RD_REG(&touud_hi, b_cr_touud_hi_pci) || + RD_REG(&asym0, b_cr_asym_mem_region0_mchbar) || + RD_REG(&asym1, b_cr_asym_mem_region1_mchbar) || + RD_REG(&mot_base, b_cr_mot_out_base_mchbar) || + RD_REG(&mot_mask, b_cr_mot_out_mask_mchbar) || + RD_REG(&chash, b_cr_slice_channel_hash)) + return -ENODEV; + + if (ops->get_registers()) + return -ENODEV; + + if (ops->type == DNV) { + /* PMI channel idx (always 0) for asymmetric region */ + asym0.slice0_asym_channel_select = 0; + asym1.slice1_asym_channel_select = 0; + /* PMI channel bitmap (always 1) for symmetric region */ + chash.sym_slice0_channel_enabled = 0x1; + chash.sym_slice1_channel_enabled = 0x1; + } + + if (asym0.slice0_asym_enable) + ops->mk_region("as0", &as0, &asym0); + + if (asym1.slice1_asym_enable) + ops->mk_region("as1", &as1, &asym1); + + if (asym_2way.asym_2way_interleave_enable) { + mk_region("as2way", &as2, + U64_LSHIFT(asym_2way.asym_2way_base, APL_ASYMSHIFT), + U64_LSHIFT(asym_2way.asym_2way_limit, APL_ASYMSHIFT) + + GENMASK_ULL(APL_ASYMSHIFT - 1, 0)); + } + + if (mot_base.imr_en) { + mk_region_mask("mot", &mot, + U64_LSHIFT(mot_base.mot_out_base, MOT_SHIFT), + U64_LSHIFT(mot_mask.mot_out_mask, MOT_SHIFT)); + } + + top_lm = U64_LSHIFT(tolud.tolud, 20); + top_hm = U64_LSHIFT(touud_hi.touud, 32) | U64_LSHIFT(touud_lo.touud, 20); + + two_slices = !chash.slice_1_disabled && + !chash.slice_0_mem_disabled && + (chash.sym_slice0_channel_enabled != 0) && + (chash.sym_slice1_channel_enabled != 0); + two_channels = !chash.ch_1_disabled && + !chash.enable_pmi_dual_data_mode && + ((chash.sym_slice0_channel_enabled == 3) || + (chash.sym_slice1_channel_enabled == 3)); + + sym_chan_mask = gen_sym_mask(&chash); + asym_chan_mask = gen_asym_mask(&chash, &asym0, &asym1, &asym_2way); + chan_mask = sym_chan_mask | asym_chan_mask; + + if (two_slices && !two_channels) { + if (chash.hvm_mode) + slice_selector = 29; + else + slice_selector = intlv[chash.interleave_mode]; + } else if (!two_slices && two_channels) { + if (chash.hvm_mode) + chan_selector = 29; + else + chan_selector = intlv[chash.interleave_mode]; + } else if (two_slices && two_channels) { + if (chash.hvm_mode) { + slice_selector = 29; + chan_selector = 30; + } else { + slice_selector = intlv[chash.interleave_mode]; + chan_selector = intlv[chash.interleave_mode] + 1; + } + } + + if (two_slices) { + if (!chash.hvm_mode) + slice_hash_mask = chash.slice_hash_mask << SLICE_HASH_MASK_LSB; + if (!two_channels) + slice_hash_mask |= BIT_ULL(slice_selector); + } + + if (two_channels) { + if (!chash.hvm_mode) + chan_hash_mask = chash.ch_hash_mask << CH_HASH_MASK_LSB; + if (!two_slices) + chan_hash_mask |= BIT_ULL(chan_selector); + } + + return 0; +} + +/* Get a contiguous memory address (remove the MMIO gap) */ +static u64 remove_mmio_gap(u64 sys) +{ + return (sys < _4GB) ? sys : sys - (_4GB - top_lm); +} + +/* Squeeze out one address bit, shift upper part down to fill gap */ +static void remove_addr_bit(u64 *addr, int bitidx) +{ + u64 mask; + + if (bitidx == -1) + return; + + mask = (1ull << bitidx) - 1; + *addr = ((*addr >> 1) & ~mask) | (*addr & mask); +} + +/* XOR all the bits from addr specified in mask */ +static int hash_by_mask(u64 addr, u64 mask) +{ + u64 result = addr & mask; + + result = (result >> 32) ^ result; + result = (result >> 16) ^ result; + result = (result >> 8) ^ result; + result = (result >> 4) ^ result; + result = (result >> 2) ^ result; + result = (result >> 1) ^ result; + + return (int)result & 1; +} + +/* + * First stage decode. Take the system address and figure out which + * second stage will deal with it based on interleave modes. + */ +static int sys2pmi(const u64 addr, u32 *pmiidx, u64 *pmiaddr, char *msg) +{ + u64 contig_addr, contig_base, contig_offset, contig_base_adj; + int mot_intlv_bit = two_slices ? MOT_CHAN_INTLV_BIT_2SLC_2CH : + MOT_CHAN_INTLV_BIT_1SLC_2CH; + int slice_intlv_bit_rm = SELECTOR_DISABLED; + int chan_intlv_bit_rm = SELECTOR_DISABLED; + /* Determine if address is in the MOT region. */ + bool mot_hit = in_region(&mot, addr); + /* Calculate the number of symmetric regions enabled. */ + int sym_channels = hweight8(sym_chan_mask); + + /* + * The amount we need to shift the asym base can be determined by the + * number of enabled symmetric channels. + * NOTE: This can only work because symmetric memory is not supposed + * to do a 3-way interleave. + */ + int sym_chan_shift = sym_channels >> 1; + + /* Give up if address is out of range, or in MMIO gap */ + if (addr >= (1ul << PND_MAX_PHYS_BIT) || + (addr >= top_lm && addr < _4GB) || addr >= top_hm) { + snprintf(msg, PND2_MSG_SIZE, "Error address 0x%llx is not DRAM", addr); + return -EINVAL; + } + + /* Get a contiguous memory address (remove the MMIO gap) */ + contig_addr = remove_mmio_gap(addr); + + if (in_region(&as0, addr)) { + *pmiidx = asym0.slice0_asym_channel_select; + + contig_base = remove_mmio_gap(as0.base); + contig_offset = contig_addr - contig_base; + contig_base_adj = (contig_base >> sym_chan_shift) * + ((chash.sym_slice0_channel_enabled >> (*pmiidx & 1)) & 1); + contig_addr = contig_offset + ((sym_channels > 0) ? contig_base_adj : 0ull); + } else if (in_region(&as1, addr)) { + *pmiidx = 2u + asym1.slice1_asym_channel_select; + + contig_base = remove_mmio_gap(as1.base); + contig_offset = contig_addr - contig_base; + contig_base_adj = (contig_base >> sym_chan_shift) * + ((chash.sym_slice1_channel_enabled >> (*pmiidx & 1)) & 1); + contig_addr = contig_offset + ((sym_channels > 0) ? contig_base_adj : 0ull); + } else if (in_region(&as2, addr) && (asym_2way.asym_2way_intlv_mode == 0x3ul)) { + bool channel1; + + mot_intlv_bit = MOT_CHAN_INTLV_BIT_1SLC_2CH; + *pmiidx = (asym_2way.asym_2way_intlv_mode & 1) << 1; + channel1 = mot_hit ? ((bool)((addr >> mot_intlv_bit) & 1)) : + hash_by_mask(contig_addr, chan_hash_mask); + *pmiidx |= (u32)channel1; + + contig_base = remove_mmio_gap(as2.base); + chan_intlv_bit_rm = mot_hit ? mot_intlv_bit : chan_selector; + contig_offset = contig_addr - contig_base; + remove_addr_bit(&contig_offset, chan_intlv_bit_rm); + contig_addr = (contig_base >> sym_chan_shift) + contig_offset; + } else { + /* Otherwise we're in normal, boring symmetric mode. */ + *pmiidx = 0u; + + if (two_slices) { + bool slice1; + + if (mot_hit) { + slice_intlv_bit_rm = MOT_SLC_INTLV_BIT; + slice1 = (addr >> MOT_SLC_INTLV_BIT) & 1; + } else { + slice_intlv_bit_rm = slice_selector; + slice1 = hash_by_mask(addr, slice_hash_mask); + } + + *pmiidx = (u32)slice1 << 1; + } + + if (two_channels) { + bool channel1; + + mot_intlv_bit = two_slices ? MOT_CHAN_INTLV_BIT_2SLC_2CH : + MOT_CHAN_INTLV_BIT_1SLC_2CH; + + if (mot_hit) { + chan_intlv_bit_rm = mot_intlv_bit; + channel1 = (addr >> mot_intlv_bit) & 1; + } else { + chan_intlv_bit_rm = chan_selector; + channel1 = hash_by_mask(contig_addr, chan_hash_mask); + } + + *pmiidx |= (u32)channel1; + } + } + + /* Remove the chan_selector bit first */ + remove_addr_bit(&contig_addr, chan_intlv_bit_rm); + /* Remove the slice bit (we remove it second because it must be lower */ + remove_addr_bit(&contig_addr, slice_intlv_bit_rm); + *pmiaddr = contig_addr; + + return 0; +} + +/* Translate PMI address to memory (rank, row, bank, column) */ +#define C(n) (0x10 | (n)) /* column */ +#define B(n) (0x20 | (n)) /* bank */ +#define R(n) (0x40 | (n)) /* row */ +#define RS (0x80) /* rank */ + +/* addrdec values */ +#define AMAP_1KB 0 +#define AMAP_2KB 1 +#define AMAP_4KB 2 +#define AMAP_RSVD 3 + +/* dden values */ +#define DEN_4Gb 0 +#define DEN_8Gb 2 + +/* dwid values */ +#define X8 0 +#define X16 1 + +static struct dimm_geometry { + u8 addrdec; + u8 dden; + u8 dwid; + u8 rowbits, colbits; + u16 bits[PMI_ADDRESS_WIDTH]; +} dimms[] = { + { + .addrdec = AMAP_1KB, .dden = DEN_4Gb, .dwid = X16, + .rowbits = 15, .colbits = 10, + .bits = { + C(2), C(3), C(4), C(5), C(6), B(0), B(1), B(2), R(0), + R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), R(9), + R(10), C(7), C(8), C(9), R(11), RS, R(12), R(13), R(14), + 0, 0, 0, 0 + } + }, + { + .addrdec = AMAP_1KB, .dden = DEN_4Gb, .dwid = X8, + .rowbits = 16, .colbits = 10, + .bits = { + C(2), C(3), C(4), C(5), C(6), B(0), B(1), B(2), R(0), + R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), R(9), + R(10), C(7), C(8), C(9), R(11), RS, R(12), R(13), R(14), + R(15), 0, 0, 0 + } + }, + { + .addrdec = AMAP_1KB, .dden = DEN_8Gb, .dwid = X16, + .rowbits = 16, .colbits = 10, + .bits = { + C(2), C(3), C(4), C(5), C(6), B(0), B(1), B(2), R(0), + R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), R(9), + R(10), C(7), C(8), C(9), R(11), RS, R(12), R(13), R(14), + R(15), 0, 0, 0 + } + }, + { + .addrdec = AMAP_1KB, .dden = DEN_8Gb, .dwid = X8, + .rowbits = 16, .colbits = 11, + .bits = { + C(2), C(3), C(4), C(5), C(6), B(0), B(1), B(2), R(0), + R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), R(9), + R(10), C(7), C(8), C(9), R(11), RS, C(11), R(12), R(13), + R(14), R(15), 0, 0 + } + }, + { + .addrdec = AMAP_2KB, .dden = DEN_4Gb, .dwid = X16, + .rowbits = 15, .colbits = 10, + .bits = { + C(2), C(3), C(4), C(5), C(6), C(7), B(0), B(1), B(2), + R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), + R(9), R(10), C(8), C(9), R(11), RS, R(12), R(13), R(14), + 0, 0, 0, 0 + } + }, + { + .addrdec = AMAP_2KB, .dden = DEN_4Gb, .dwid = X8, + .rowbits = 16, .colbits = 10, + .bits = { + C(2), C(3), C(4), C(5), C(6), C(7), B(0), B(1), B(2), + R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), + R(9), R(10), C(8), C(9), R(11), RS, R(12), R(13), R(14), + R(15), 0, 0, 0 + } + }, + { + .addrdec = AMAP_2KB, .dden = DEN_8Gb, .dwid = X16, + .rowbits = 16, .colbits = 10, + .bits = { + C(2), C(3), C(4), C(5), C(6), C(7), B(0), B(1), B(2), + R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), + R(9), R(10), C(8), C(9), R(11), RS, R(12), R(13), R(14), + R(15), 0, 0, 0 + } + }, + { + .addrdec = AMAP_2KB, .dden = DEN_8Gb, .dwid = X8, + .rowbits = 16, .colbits = 11, + .bits = { + C(2), C(3), C(4), C(5), C(6), C(7), B(0), B(1), B(2), + R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), + R(9), R(10), C(8), C(9), R(11), RS, C(11), R(12), R(13), + R(14), R(15), 0, 0 + } + }, + { + .addrdec = AMAP_4KB, .dden = DEN_4Gb, .dwid = X16, + .rowbits = 15, .colbits = 10, + .bits = { + C(2), C(3), C(4), C(5), C(6), C(7), C(8), B(0), B(1), + B(2), R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), + R(8), R(9), R(10), C(9), R(11), RS, R(12), R(13), R(14), + 0, 0, 0, 0 + } + }, + { + .addrdec = AMAP_4KB, .dden = DEN_4Gb, .dwid = X8, + .rowbits = 16, .colbits = 10, + .bits = { + C(2), C(3), C(4), C(5), C(6), C(7), C(8), B(0), B(1), + B(2), R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), + R(8), R(9), R(10), C(9), R(11), RS, R(12), R(13), R(14), + R(15), 0, 0, 0 + } + }, + { + .addrdec = AMAP_4KB, .dden = DEN_8Gb, .dwid = X16, + .rowbits = 16, .colbits = 10, + .bits = { + C(2), C(3), C(4), C(5), C(6), C(7), C(8), B(0), B(1), + B(2), R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), + R(8), R(9), R(10), C(9), R(11), RS, R(12), R(13), R(14), + R(15), 0, 0, 0 + } + }, + { + .addrdec = AMAP_4KB, .dden = DEN_8Gb, .dwid = X8, + .rowbits = 16, .colbits = 11, + .bits = { + C(2), C(3), C(4), C(5), C(6), C(7), C(8), B(0), B(1), + B(2), R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), + R(8), R(9), R(10), C(9), R(11), RS, C(11), R(12), R(13), + R(14), R(15), 0, 0 + } + } +}; + +static int bank_hash(u64 pmiaddr, int idx, int shft) +{ + int bhash = 0; + + switch (idx) { + case 0: + bhash ^= ((pmiaddr >> (12 + shft)) ^ (pmiaddr >> (9 + shft))) & 1; + break; + case 1: + bhash ^= (((pmiaddr >> (10 + shft)) ^ (pmiaddr >> (8 + shft))) & 1) << 1; + bhash ^= ((pmiaddr >> 22) & 1) << 1; + break; + case 2: + bhash ^= (((pmiaddr >> (13 + shft)) ^ (pmiaddr >> (11 + shft))) & 1) << 2; + break; + } + + return bhash; +} + +static int rank_hash(u64 pmiaddr) +{ + return ((pmiaddr >> 16) ^ (pmiaddr >> 10)) & 1; +} + +/* Second stage decode. Compute rank, bank, row & column. */ +static int apl_pmi2mem(struct mem_ctl_info *mci, u64 pmiaddr, u32 pmiidx, + struct dram_addr *daddr, char *msg) +{ + struct d_cr_drp0 *cr_drp0 = &drp0[pmiidx]; + struct pnd2_pvt *pvt = mci->pvt_info; + int g = pvt->dimm_geom[pmiidx]; + struct dimm_geometry *d = &dimms[g]; + int column = 0, bank = 0, row = 0, rank = 0; + int i, idx, type, skiprs = 0; + + for (i = 0; i < PMI_ADDRESS_WIDTH; i++) { + int bit = (pmiaddr >> i) & 1; + + if (i + skiprs >= PMI_ADDRESS_WIDTH) { + snprintf(msg, PND2_MSG_SIZE, "Bad dimm_geometry[] table\n"); + return -EINVAL; + } + + type = d->bits[i + skiprs] & ~0xf; + idx = d->bits[i + skiprs] & 0xf; + + /* + * On single rank DIMMs ignore the rank select bit + * and shift remainder of "bits[]" down one place. + */ + if (type == RS && (cr_drp0->rken0 + cr_drp0->rken1) == 1) { + skiprs = 1; + type = d->bits[i + skiprs] & ~0xf; + idx = d->bits[i + skiprs] & 0xf; + } + + switch (type) { + case C(0): + column |= (bit << idx); + break; + case B(0): + bank |= (bit << idx); + if (cr_drp0->bahen) + bank ^= bank_hash(pmiaddr, idx, d->addrdec); + break; + case R(0): + row |= (bit << idx); + break; + case RS: + rank = bit; + if (cr_drp0->rsien) + rank ^= rank_hash(pmiaddr); + break; + default: + if (bit) { + snprintf(msg, PND2_MSG_SIZE, "Bad translation\n"); + return -EINVAL; + } + goto done; + } + } + +done: + daddr->col = column; + daddr->bank = bank; + daddr->row = row; + daddr->rank = rank; + daddr->dimm = 0; + + return 0; +} + +/* Pluck bit "in" from pmiaddr and return value shifted to bit "out" */ +#define dnv_get_bit(pmi, in, out) ((int)(((pmi) >> (in)) & 1u) << (out)) + +static int dnv_pmi2mem(struct mem_ctl_info *mci, u64 pmiaddr, u32 pmiidx, + struct dram_addr *daddr, char *msg) +{ + /* Rank 0 or 1 */ + daddr->rank = dnv_get_bit(pmiaddr, dmap[pmiidx].rs0 + 13, 0); + /* Rank 2 or 3 */ + daddr->rank |= dnv_get_bit(pmiaddr, dmap[pmiidx].rs1 + 13, 1); + + /* + * Normally ranks 0,1 are DIMM0, and 2,3 are DIMM1, but we + * flip them if DIMM1 is larger than DIMM0. + */ + daddr->dimm = (daddr->rank >= 2) ^ drp[pmiidx].dimmflip; + + daddr->bank = dnv_get_bit(pmiaddr, dmap[pmiidx].ba0 + 6, 0); + daddr->bank |= dnv_get_bit(pmiaddr, dmap[pmiidx].ba1 + 6, 1); + daddr->bank |= dnv_get_bit(pmiaddr, dmap[pmiidx].bg0 + 6, 2); + if (dsch.ddr4en) + daddr->bank |= dnv_get_bit(pmiaddr, dmap[pmiidx].bg1 + 6, 3); + if (dmap1[pmiidx].bxor) { + if (dsch.ddr4en) { + daddr->bank ^= dnv_get_bit(pmiaddr, dmap3[pmiidx].row6 + 6, 0); + daddr->bank ^= dnv_get_bit(pmiaddr, dmap3[pmiidx].row7 + 6, 1); + if (dsch.chan_width == 0) + /* 64/72 bit dram channel width */ + daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca3 + 6, 2); + else + /* 32/40 bit dram channel width */ + daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca4 + 6, 2); + daddr->bank ^= dnv_get_bit(pmiaddr, dmap2[pmiidx].row2 + 6, 3); + } else { + daddr->bank ^= dnv_get_bit(pmiaddr, dmap2[pmiidx].row2 + 6, 0); + daddr->bank ^= dnv_get_bit(pmiaddr, dmap3[pmiidx].row6 + 6, 1); + if (dsch.chan_width == 0) + daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca3 + 6, 2); + else + daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca4 + 6, 2); + } + } + + daddr->row = dnv_get_bit(pmiaddr, dmap2[pmiidx].row0 + 6, 0); + daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row1 + 6, 1); + daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row2 + 6, 2); + daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row3 + 6, 3); + daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row4 + 6, 4); + daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row5 + 6, 5); + daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row6 + 6, 6); + daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row7 + 6, 7); + daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row8 + 6, 8); + daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row9 + 6, 9); + daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row10 + 6, 10); + daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row11 + 6, 11); + daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row12 + 6, 12); + daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row13 + 6, 13); + if (dmap4[pmiidx].row14 != 31) + daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row14 + 6, 14); + if (dmap4[pmiidx].row15 != 31) + daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row15 + 6, 15); + if (dmap4[pmiidx].row16 != 31) + daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row16 + 6, 16); + if (dmap4[pmiidx].row17 != 31) + daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row17 + 6, 17); + + daddr->col = dnv_get_bit(pmiaddr, dmap5[pmiidx].ca3 + 6, 3); + daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca4 + 6, 4); + daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca5 + 6, 5); + daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca6 + 6, 6); + daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca7 + 6, 7); + daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca8 + 6, 8); + daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca9 + 6, 9); + if (!dsch.ddr4en && dmap1[pmiidx].ca11 != 0x3f) + daddr->col |= dnv_get_bit(pmiaddr, dmap1[pmiidx].ca11 + 13, 11); + + return 0; +} + +static int check_channel(int ch) +{ + if (drp0[ch].dramtype != 0) { + pnd2_printk(KERN_INFO, "Unsupported DIMM in channel %d\n", ch); + return 1; + } else if (drp0[ch].eccen == 0) { + pnd2_printk(KERN_INFO, "ECC disabled on channel %d\n", ch); + return 1; + } + return 0; +} + +static int apl_check_ecc_active(void) +{ + int i, ret = 0; + + /* Check dramtype and ECC mode for each present DIMM */ + for (i = 0; i < APL_NUM_CHANNELS; i++) + if (chan_mask & BIT(i)) + ret += check_channel(i); + return ret ? -EINVAL : 0; +} + +#define DIMMS_PRESENT(d) ((d)->rken0 + (d)->rken1 + (d)->rken2 + (d)->rken3) + +static int check_unit(int ch) +{ + struct d_cr_drp *d = &drp[ch]; + + if (DIMMS_PRESENT(d) && !ecc_ctrl[ch].eccen) { + pnd2_printk(KERN_INFO, "ECC disabled on channel %d\n", ch); + return 1; + } + return 0; +} + +static int dnv_check_ecc_active(void) +{ + int i, ret = 0; + + for (i = 0; i < DNV_NUM_CHANNELS; i++) + ret += check_unit(i); + return ret ? -EINVAL : 0; +} + +static int get_memory_error_data(struct mem_ctl_info *mci, u64 addr, + struct dram_addr *daddr, char *msg) +{ + u64 pmiaddr; + u32 pmiidx; + int ret; + + ret = sys2pmi(addr, &pmiidx, &pmiaddr, msg); + if (ret) + return ret; + + pmiaddr >>= ops->pmiaddr_shift; + /* pmi channel idx to dimm channel idx */ + pmiidx >>= ops->pmiidx_shift; + daddr->chan = pmiidx; + + ret = ops->pmi2mem(mci, pmiaddr, pmiidx, daddr, msg); + if (ret) + return ret; + + edac_dbg(0, "SysAddr=%llx PmiAddr=%llx Channel=%d DIMM=%d Rank=%d Bank=%d Row=%d Column=%d\n", + addr, pmiaddr, daddr->chan, daddr->dimm, daddr->rank, daddr->bank, daddr->row, daddr->col); + + return 0; +} + +static void pnd2_mce_output_error(struct mem_ctl_info *mci, const struct mce *m, + struct dram_addr *daddr) +{ + enum hw_event_mc_err_type tp_event; + char *optype, msg[PND2_MSG_SIZE]; + bool ripv = m->mcgstatus & MCG_STATUS_RIPV; + bool overflow = m->status & MCI_STATUS_OVER; + bool uc_err = m->status & MCI_STATUS_UC; + bool recov = m->status & MCI_STATUS_S; + u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52); + u32 mscod = GET_BITFIELD(m->status, 16, 31); + u32 errcode = GET_BITFIELD(m->status, 0, 15); + u32 optypenum = GET_BITFIELD(m->status, 4, 6); + int rc; + + tp_event = uc_err ? (ripv ? HW_EVENT_ERR_UNCORRECTED : HW_EVENT_ERR_FATAL) : + HW_EVENT_ERR_CORRECTED; + + /* + * According with Table 15-9 of the Intel Architecture spec vol 3A, + * memory errors should fit in this mask: + * 000f 0000 1mmm cccc (binary) + * where: + * f = Correction Report Filtering Bit. If 1, subsequent errors + * won't be shown + * mmm = error type + * cccc = channel + * If the mask doesn't match, report an error to the parsing logic + */ + if (!((errcode & 0xef80) == 0x80)) { + optype = "Can't parse: it is not a mem"; + } else { + switch (optypenum) { + case 0: + optype = "generic undef request error"; + break; + case 1: + optype = "memory read error"; + break; + case 2: + optype = "memory write error"; + break; + case 3: + optype = "addr/cmd error"; + break; + case 4: + optype = "memory scrubbing error"; + break; + default: + optype = "reserved"; + break; + } + } + + /* Only decode errors with an valid address (ADDRV) */ + if (!(m->status & MCI_STATUS_ADDRV)) + return; + + rc = get_memory_error_data(mci, m->addr, daddr, msg); + if (rc) + goto address_error; + + snprintf(msg, sizeof(msg), + "%s%s err_code:%04x:%04x channel:%d DIMM:%d rank:%d row:%d bank:%d col:%d", + overflow ? " OVERFLOW" : "", (uc_err && recov) ? " recoverable" : "", mscod, + errcode, daddr->chan, daddr->dimm, daddr->rank, daddr->row, daddr->bank, daddr->col); + + edac_dbg(0, "%s\n", msg); + + /* Call the helper to output message */ + edac_mc_handle_error(tp_event, mci, core_err_cnt, m->addr >> PAGE_SHIFT, + m->addr & ~PAGE_MASK, 0, daddr->chan, daddr->dimm, -1, optype, msg); + + return; + +address_error: + edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0, -1, -1, -1, msg, ""); +} + +static void apl_get_dimm_config(struct mem_ctl_info *mci) +{ + struct pnd2_pvt *pvt = mci->pvt_info; + struct dimm_info *dimm; + struct d_cr_drp0 *d; + u64 capacity; + int i, g; + + for (i = 0; i < APL_NUM_CHANNELS; i++) { + if (!(chan_mask & BIT(i))) + continue; + + dimm = edac_get_dimm(mci, i, 0, 0); + if (!dimm) { + edac_dbg(0, "No allocated DIMM for channel %d\n", i); + continue; + } + + d = &drp0[i]; + for (g = 0; g < ARRAY_SIZE(dimms); g++) + if (dimms[g].addrdec == d->addrdec && + dimms[g].dden == d->dden && + dimms[g].dwid == d->dwid) + break; + + if (g == ARRAY_SIZE(dimms)) { + edac_dbg(0, "Channel %d: unrecognized DIMM\n", i); + continue; + } + + pvt->dimm_geom[i] = g; + capacity = (d->rken0 + d->rken1) * 8 * (1ul << dimms[g].rowbits) * + (1ul << dimms[g].colbits); + edac_dbg(0, "Channel %d: %lld MByte DIMM\n", i, capacity >> (20 - 3)); + dimm->nr_pages = MiB_TO_PAGES(capacity >> (20 - 3)); + dimm->grain = 32; + dimm->dtype = (d->dwid == 0) ? DEV_X8 : DEV_X16; + dimm->mtype = MEM_DDR3; + dimm->edac_mode = EDAC_SECDED; + snprintf(dimm->label, sizeof(dimm->label), "Slice#%d_Chan#%d", i / 2, i % 2); + } +} + +static const int dnv_dtypes[] = { + DEV_X8, DEV_X4, DEV_X16, DEV_UNKNOWN +}; + +static void dnv_get_dimm_config(struct mem_ctl_info *mci) +{ + int i, j, ranks_of_dimm[DNV_MAX_DIMMS], banks, rowbits, colbits, memtype; + struct dimm_info *dimm; + struct d_cr_drp *d; + u64 capacity; + + if (dsch.ddr4en) { + memtype = MEM_DDR4; + banks = 16; + colbits = 10; + } else { + memtype = MEM_DDR3; + banks = 8; + } + + for (i = 0; i < DNV_NUM_CHANNELS; i++) { + if (dmap4[i].row14 == 31) + rowbits = 14; + else if (dmap4[i].row15 == 31) + rowbits = 15; + else if (dmap4[i].row16 == 31) + rowbits = 16; + else if (dmap4[i].row17 == 31) + rowbits = 17; + else + rowbits = 18; + + if (memtype == MEM_DDR3) { + if (dmap1[i].ca11 != 0x3f) + colbits = 12; + else + colbits = 10; + } + + d = &drp[i]; + /* DIMM0 is present if rank0 and/or rank1 is enabled */ + ranks_of_dimm[0] = d->rken0 + d->rken1; + /* DIMM1 is present if rank2 and/or rank3 is enabled */ + ranks_of_dimm[1] = d->rken2 + d->rken3; + + for (j = 0; j < DNV_MAX_DIMMS; j++) { + if (!ranks_of_dimm[j]) + continue; + + dimm = edac_get_dimm(mci, i, j, 0); + if (!dimm) { + edac_dbg(0, "No allocated DIMM for channel %d DIMM %d\n", i, j); + continue; + } + + capacity = ranks_of_dimm[j] * banks * (1ul << rowbits) * (1ul << colbits); + edac_dbg(0, "Channel %d DIMM %d: %lld MByte DIMM\n", i, j, capacity >> (20 - 3)); + dimm->nr_pages = MiB_TO_PAGES(capacity >> (20 - 3)); + dimm->grain = 32; + dimm->dtype = dnv_dtypes[j ? d->dimmdwid0 : d->dimmdwid1]; + dimm->mtype = memtype; + dimm->edac_mode = EDAC_SECDED; + snprintf(dimm->label, sizeof(dimm->label), "Chan#%d_DIMM#%d", i, j); + } + } +} + +static int pnd2_register_mci(struct mem_ctl_info **ppmci) +{ + struct edac_mc_layer layers[2]; + struct mem_ctl_info *mci; + struct pnd2_pvt *pvt; + int rc; + + rc = ops->check_ecc(); + if (rc < 0) + return rc; + + /* Allocate a new MC control structure */ + layers[0].type = EDAC_MC_LAYER_CHANNEL; + layers[0].size = ops->channels; + layers[0].is_virt_csrow = false; + layers[1].type = EDAC_MC_LAYER_SLOT; + layers[1].size = ops->dimms_per_channel; + layers[1].is_virt_csrow = true; + mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt)); + if (!mci) + return -ENOMEM; + + pvt = mci->pvt_info; + memset(pvt, 0, sizeof(*pvt)); + + mci->mod_name = EDAC_MOD_STR; + mci->dev_name = ops->name; + mci->ctl_name = "Pondicherry2"; + + /* Get dimm basic config and the memory layout */ + ops->get_dimm_config(mci); + + if (edac_mc_add_mc(mci)) { + edac_dbg(0, "MC: failed edac_mc_add_mc()\n"); + edac_mc_free(mci); + return -EINVAL; + } + + *ppmci = mci; + + return 0; +} + +static void pnd2_unregister_mci(struct mem_ctl_info *mci) +{ + if (unlikely(!mci || !mci->pvt_info)) { + pnd2_printk(KERN_ERR, "Couldn't find mci handler\n"); + return; + } + + /* Remove MC sysfs nodes */ + edac_mc_del_mc(NULL); + edac_dbg(1, "%s: free mci struct\n", mci->ctl_name); + edac_mc_free(mci); +} + +/* + * Callback function registered with core kernel mce code. + * Called once for each logged error. + */ +static int pnd2_mce_check_error(struct notifier_block *nb, unsigned long val, void *data) +{ + struct mce *mce = (struct mce *)data; + struct mem_ctl_info *mci; + struct dram_addr daddr; + char *type; + + mci = pnd2_mci; + if (!mci || (mce->kflags & MCE_HANDLED_CEC)) + return NOTIFY_DONE; + + /* + * Just let mcelog handle it if the error is + * outside the memory controller. A memory error + * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0. + * bit 12 has an special meaning. + */ + if ((mce->status & 0xefff) >> 7 != 1) + return NOTIFY_DONE; + + if (mce->mcgstatus & MCG_STATUS_MCIP) + type = "Exception"; + else + type = "Event"; + + pnd2_mc_printk(mci, KERN_INFO, "HANDLING MCE MEMORY ERROR\n"); + pnd2_mc_printk(mci, KERN_INFO, "CPU %u: Machine Check %s: %llx Bank %u: %llx\n", + mce->extcpu, type, mce->mcgstatus, mce->bank, mce->status); + pnd2_mc_printk(mci, KERN_INFO, "TSC %llx ", mce->tsc); + pnd2_mc_printk(mci, KERN_INFO, "ADDR %llx ", mce->addr); + pnd2_mc_printk(mci, KERN_INFO, "MISC %llx ", mce->misc); + pnd2_mc_printk(mci, KERN_INFO, "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n", + mce->cpuvendor, mce->cpuid, mce->time, mce->socketid, mce->apicid); + + pnd2_mce_output_error(mci, mce, &daddr); + + /* Advice mcelog that the error were handled */ + mce->kflags |= MCE_HANDLED_EDAC; + return NOTIFY_OK; +} + +static struct notifier_block pnd2_mce_dec = { + .notifier_call = pnd2_mce_check_error, + .priority = MCE_PRIO_EDAC, +}; + +#ifdef CONFIG_EDAC_DEBUG +/* + * Write an address to this file to exercise the address decode + * logic in this driver. + */ +static u64 pnd2_fake_addr; +#define PND2_BLOB_SIZE 1024 +static char pnd2_result[PND2_BLOB_SIZE]; +static struct dentry *pnd2_test; +static struct debugfs_blob_wrapper pnd2_blob = { + .data = pnd2_result, + .size = 0 +}; + +static int debugfs_u64_set(void *data, u64 val) +{ + struct dram_addr daddr; + struct mce m; + + *(u64 *)data = val; + m.mcgstatus = 0; + /* ADDRV + MemRd + Unknown channel */ + m.status = MCI_STATUS_ADDRV + 0x9f; + m.addr = val; + pnd2_mce_output_error(pnd2_mci, &m, &daddr); + snprintf(pnd2_blob.data, PND2_BLOB_SIZE, + "SysAddr=%llx Channel=%d DIMM=%d Rank=%d Bank=%d Row=%d Column=%d\n", + m.addr, daddr.chan, daddr.dimm, daddr.rank, daddr.bank, daddr.row, daddr.col); + pnd2_blob.size = strlen(pnd2_blob.data); + + return 0; +} +DEFINE_DEBUGFS_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n"); + +static void setup_pnd2_debug(void) +{ + pnd2_test = edac_debugfs_create_dir("pnd2_test"); + edac_debugfs_create_file("pnd2_debug_addr", 0200, pnd2_test, + &pnd2_fake_addr, &fops_u64_wo); + debugfs_create_blob("pnd2_debug_results", 0400, pnd2_test, &pnd2_blob); +} + +static void teardown_pnd2_debug(void) +{ + debugfs_remove_recursive(pnd2_test); +} +#else +static void setup_pnd2_debug(void) {} +static void teardown_pnd2_debug(void) {} +#endif /* CONFIG_EDAC_DEBUG */ + + +static int pnd2_probe(void) +{ + int rc; + + edac_dbg(2, "\n"); + rc = get_registers(); + if (rc) + return rc; + + return pnd2_register_mci(&pnd2_mci); +} + +static void pnd2_remove(void) +{ + edac_dbg(0, "\n"); + pnd2_unregister_mci(pnd2_mci); +} + +static struct dunit_ops apl_ops = { + .name = "pnd2/apl", + .type = APL, + .pmiaddr_shift = LOG2_PMI_ADDR_GRANULARITY, + .pmiidx_shift = 0, + .channels = APL_NUM_CHANNELS, + .dimms_per_channel = 1, + .rd_reg = apl_rd_reg, + .get_registers = apl_get_registers, + .check_ecc = apl_check_ecc_active, + .mk_region = apl_mk_region, + .get_dimm_config = apl_get_dimm_config, + .pmi2mem = apl_pmi2mem, +}; + +static struct dunit_ops dnv_ops = { + .name = "pnd2/dnv", + .type = DNV, + .pmiaddr_shift = 0, + .pmiidx_shift = 1, + .channels = DNV_NUM_CHANNELS, + .dimms_per_channel = 2, + .rd_reg = dnv_rd_reg, + .get_registers = dnv_get_registers, + .check_ecc = dnv_check_ecc_active, + .mk_region = dnv_mk_region, + .get_dimm_config = dnv_get_dimm_config, + .pmi2mem = dnv_pmi2mem, +}; + +static const struct x86_cpu_id pnd2_cpuids[] = { + X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT, &apl_ops), + X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT_D, &dnv_ops), + { } +}; +MODULE_DEVICE_TABLE(x86cpu, pnd2_cpuids); + +static int __init pnd2_init(void) +{ + const struct x86_cpu_id *id; + const char *owner; + int rc; + + edac_dbg(2, "\n"); + + if (ghes_get_devices()) + return -EBUSY; + + owner = edac_get_owner(); + if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR))) + return -EBUSY; + + if (cpu_feature_enabled(X86_FEATURE_HYPERVISOR)) + return -ENODEV; + + id = x86_match_cpu(pnd2_cpuids); + if (!id) + return -ENODEV; + + ops = (struct dunit_ops *)id->driver_data; + + if (ops->type == APL) { + p2sb_bus = pci_find_bus(0, 0); + if (!p2sb_bus) + return -ENODEV; + } + + /* Ensure that the OPSTATE is set correctly for POLL or NMI */ + opstate_init(); + + rc = pnd2_probe(); + if (rc < 0) { + pnd2_printk(KERN_ERR, "Failed to register device with error %d.\n", rc); + return rc; + } + + if (!pnd2_mci) + return -ENODEV; + + mce_register_decode_chain(&pnd2_mce_dec); + setup_pnd2_debug(); + + return 0; +} + +static void __exit pnd2_exit(void) +{ + edac_dbg(2, "\n"); + teardown_pnd2_debug(); + mce_unregister_decode_chain(&pnd2_mce_dec); + pnd2_remove(); +} + +module_init(pnd2_init); +module_exit(pnd2_exit); + +module_param(edac_op_state, int, 0444); +MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); + +MODULE_LICENSE("GPL v2"); +MODULE_AUTHOR("Tony Luck"); +MODULE_DESCRIPTION("MC Driver for Intel SoC using Pondicherry memory controller"); |