summaryrefslogtreecommitdiffstats
path: root/drivers/gpu/drm/amd/amdkfd/kfd_events.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-11 08:27:49 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-11 08:27:49 +0000
commitace9429bb58fd418f0c81d4c2835699bddf6bde6 (patch)
treeb2d64bc10158fdd5497876388cd68142ca374ed3 /drivers/gpu/drm/amd/amdkfd/kfd_events.c
parentInitial commit. (diff)
downloadlinux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.tar.xz
linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.zip
Adding upstream version 6.6.15.upstream/6.6.15
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'drivers/gpu/drm/amd/amdkfd/kfd_events.c')
-rw-r--r--drivers/gpu/drm/amd/amdkfd/kfd_events.c1327
1 files changed, 1327 insertions, 0 deletions
diff --git a/drivers/gpu/drm/amd/amdkfd/kfd_events.c b/drivers/gpu/drm/amd/amdkfd/kfd_events.c
new file mode 100644
index 000000000..0f58be651
--- /dev/null
+++ b/drivers/gpu/drm/amd/amdkfd/kfd_events.c
@@ -0,0 +1,1327 @@
+// SPDX-License-Identifier: GPL-2.0 OR MIT
+/*
+ * Copyright 2014-2022 Advanced Micro Devices, Inc.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
+ * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
+ * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
+ * OTHER DEALINGS IN THE SOFTWARE.
+ */
+
+#include <linux/mm_types.h>
+#include <linux/slab.h>
+#include <linux/types.h>
+#include <linux/sched/signal.h>
+#include <linux/sched/mm.h>
+#include <linux/uaccess.h>
+#include <linux/mman.h>
+#include <linux/memory.h>
+#include "kfd_priv.h"
+#include "kfd_events.h"
+#include <linux/device.h>
+
+/*
+ * Wrapper around wait_queue_entry_t
+ */
+struct kfd_event_waiter {
+ wait_queue_entry_t wait;
+ struct kfd_event *event; /* Event to wait for */
+ bool activated; /* Becomes true when event is signaled */
+ bool event_age_enabled; /* set to true when last_event_age is non-zero */
+};
+
+/*
+ * Each signal event needs a 64-bit signal slot where the signaler will write
+ * a 1 before sending an interrupt. (This is needed because some interrupts
+ * do not contain enough spare data bits to identify an event.)
+ * We get whole pages and map them to the process VA.
+ * Individual signal events use their event_id as slot index.
+ */
+struct kfd_signal_page {
+ uint64_t *kernel_address;
+ uint64_t __user *user_address;
+ bool need_to_free_pages;
+};
+
+static uint64_t *page_slots(struct kfd_signal_page *page)
+{
+ return page->kernel_address;
+}
+
+static struct kfd_signal_page *allocate_signal_page(struct kfd_process *p)
+{
+ void *backing_store;
+ struct kfd_signal_page *page;
+
+ page = kzalloc(sizeof(*page), GFP_KERNEL);
+ if (!page)
+ return NULL;
+
+ backing_store = (void *) __get_free_pages(GFP_KERNEL,
+ get_order(KFD_SIGNAL_EVENT_LIMIT * 8));
+ if (!backing_store)
+ goto fail_alloc_signal_store;
+
+ /* Initialize all events to unsignaled */
+ memset(backing_store, (uint8_t) UNSIGNALED_EVENT_SLOT,
+ KFD_SIGNAL_EVENT_LIMIT * 8);
+
+ page->kernel_address = backing_store;
+ page->need_to_free_pages = true;
+ pr_debug("Allocated new event signal page at %p, for process %p\n",
+ page, p);
+
+ return page;
+
+fail_alloc_signal_store:
+ kfree(page);
+ return NULL;
+}
+
+static int allocate_event_notification_slot(struct kfd_process *p,
+ struct kfd_event *ev,
+ const int *restore_id)
+{
+ int id;
+
+ if (!p->signal_page) {
+ p->signal_page = allocate_signal_page(p);
+ if (!p->signal_page)
+ return -ENOMEM;
+ /* Oldest user mode expects 256 event slots */
+ p->signal_mapped_size = 256*8;
+ }
+
+ if (restore_id) {
+ id = idr_alloc(&p->event_idr, ev, *restore_id, *restore_id + 1,
+ GFP_KERNEL);
+ } else {
+ /*
+ * Compatibility with old user mode: Only use signal slots
+ * user mode has mapped, may be less than
+ * KFD_SIGNAL_EVENT_LIMIT. This also allows future increase
+ * of the event limit without breaking user mode.
+ */
+ id = idr_alloc(&p->event_idr, ev, 0, p->signal_mapped_size / 8,
+ GFP_KERNEL);
+ }
+ if (id < 0)
+ return id;
+
+ ev->event_id = id;
+ page_slots(p->signal_page)[id] = UNSIGNALED_EVENT_SLOT;
+
+ return 0;
+}
+
+/*
+ * Assumes that p->event_mutex or rcu_readlock is held and of course that p is
+ * not going away.
+ */
+static struct kfd_event *lookup_event_by_id(struct kfd_process *p, uint32_t id)
+{
+ return idr_find(&p->event_idr, id);
+}
+
+/**
+ * lookup_signaled_event_by_partial_id - Lookup signaled event from partial ID
+ * @p: Pointer to struct kfd_process
+ * @id: ID to look up
+ * @bits: Number of valid bits in @id
+ *
+ * Finds the first signaled event with a matching partial ID. If no
+ * matching signaled event is found, returns NULL. In that case the
+ * caller should assume that the partial ID is invalid and do an
+ * exhaustive search of all siglaned events.
+ *
+ * If multiple events with the same partial ID signal at the same
+ * time, they will be found one interrupt at a time, not necessarily
+ * in the same order the interrupts occurred. As long as the number of
+ * interrupts is correct, all signaled events will be seen by the
+ * driver.
+ */
+static struct kfd_event *lookup_signaled_event_by_partial_id(
+ struct kfd_process *p, uint32_t id, uint32_t bits)
+{
+ struct kfd_event *ev;
+
+ if (!p->signal_page || id >= KFD_SIGNAL_EVENT_LIMIT)
+ return NULL;
+
+ /* Fast path for the common case that @id is not a partial ID
+ * and we only need a single lookup.
+ */
+ if (bits > 31 || (1U << bits) >= KFD_SIGNAL_EVENT_LIMIT) {
+ if (page_slots(p->signal_page)[id] == UNSIGNALED_EVENT_SLOT)
+ return NULL;
+
+ return idr_find(&p->event_idr, id);
+ }
+
+ /* General case for partial IDs: Iterate over all matching IDs
+ * and find the first one that has signaled.
+ */
+ for (ev = NULL; id < KFD_SIGNAL_EVENT_LIMIT && !ev; id += 1U << bits) {
+ if (page_slots(p->signal_page)[id] == UNSIGNALED_EVENT_SLOT)
+ continue;
+
+ ev = idr_find(&p->event_idr, id);
+ }
+
+ return ev;
+}
+
+static int create_signal_event(struct file *devkfd, struct kfd_process *p,
+ struct kfd_event *ev, const int *restore_id)
+{
+ int ret;
+
+ if (p->signal_mapped_size &&
+ p->signal_event_count == p->signal_mapped_size / 8) {
+ if (!p->signal_event_limit_reached) {
+ pr_debug("Signal event wasn't created because limit was reached\n");
+ p->signal_event_limit_reached = true;
+ }
+ return -ENOSPC;
+ }
+
+ ret = allocate_event_notification_slot(p, ev, restore_id);
+ if (ret) {
+ pr_warn("Signal event wasn't created because out of kernel memory\n");
+ return ret;
+ }
+
+ p->signal_event_count++;
+
+ ev->user_signal_address = &p->signal_page->user_address[ev->event_id];
+ pr_debug("Signal event number %zu created with id %d, address %p\n",
+ p->signal_event_count, ev->event_id,
+ ev->user_signal_address);
+
+ return 0;
+}
+
+static int create_other_event(struct kfd_process *p, struct kfd_event *ev, const int *restore_id)
+{
+ int id;
+
+ if (restore_id)
+ id = idr_alloc(&p->event_idr, ev, *restore_id, *restore_id + 1,
+ GFP_KERNEL);
+ else
+ /* Cast KFD_LAST_NONSIGNAL_EVENT to uint32_t. This allows an
+ * intentional integer overflow to -1 without a compiler
+ * warning. idr_alloc treats a negative value as "maximum
+ * signed integer".
+ */
+ id = idr_alloc(&p->event_idr, ev, KFD_FIRST_NONSIGNAL_EVENT_ID,
+ (uint32_t)KFD_LAST_NONSIGNAL_EVENT_ID + 1,
+ GFP_KERNEL);
+
+ if (id < 0)
+ return id;
+ ev->event_id = id;
+
+ return 0;
+}
+
+int kfd_event_init_process(struct kfd_process *p)
+{
+ int id;
+
+ mutex_init(&p->event_mutex);
+ idr_init(&p->event_idr);
+ p->signal_page = NULL;
+ p->signal_event_count = 1;
+ /* Allocate event ID 0. It is used for a fast path to ignore bogus events
+ * that are sent by the CP without a context ID
+ */
+ id = idr_alloc(&p->event_idr, NULL, 0, 1, GFP_KERNEL);
+ if (id < 0) {
+ idr_destroy(&p->event_idr);
+ mutex_destroy(&p->event_mutex);
+ return id;
+ }
+ return 0;
+}
+
+static void destroy_event(struct kfd_process *p, struct kfd_event *ev)
+{
+ struct kfd_event_waiter *waiter;
+
+ /* Wake up pending waiters. They will return failure */
+ spin_lock(&ev->lock);
+ list_for_each_entry(waiter, &ev->wq.head, wait.entry)
+ WRITE_ONCE(waiter->event, NULL);
+ wake_up_all(&ev->wq);
+ spin_unlock(&ev->lock);
+
+ if (ev->type == KFD_EVENT_TYPE_SIGNAL ||
+ ev->type == KFD_EVENT_TYPE_DEBUG)
+ p->signal_event_count--;
+
+ idr_remove(&p->event_idr, ev->event_id);
+ kfree_rcu(ev, rcu);
+}
+
+static void destroy_events(struct kfd_process *p)
+{
+ struct kfd_event *ev;
+ uint32_t id;
+
+ idr_for_each_entry(&p->event_idr, ev, id)
+ if (ev)
+ destroy_event(p, ev);
+ idr_destroy(&p->event_idr);
+ mutex_destroy(&p->event_mutex);
+}
+
+/*
+ * We assume that the process is being destroyed and there is no need to
+ * unmap the pages or keep bookkeeping data in order.
+ */
+static void shutdown_signal_page(struct kfd_process *p)
+{
+ struct kfd_signal_page *page = p->signal_page;
+
+ if (page) {
+ if (page->need_to_free_pages)
+ free_pages((unsigned long)page->kernel_address,
+ get_order(KFD_SIGNAL_EVENT_LIMIT * 8));
+ kfree(page);
+ }
+}
+
+void kfd_event_free_process(struct kfd_process *p)
+{
+ destroy_events(p);
+ shutdown_signal_page(p);
+}
+
+static bool event_can_be_gpu_signaled(const struct kfd_event *ev)
+{
+ return ev->type == KFD_EVENT_TYPE_SIGNAL ||
+ ev->type == KFD_EVENT_TYPE_DEBUG;
+}
+
+static bool event_can_be_cpu_signaled(const struct kfd_event *ev)
+{
+ return ev->type == KFD_EVENT_TYPE_SIGNAL;
+}
+
+static int kfd_event_page_set(struct kfd_process *p, void *kernel_address,
+ uint64_t size, uint64_t user_handle)
+{
+ struct kfd_signal_page *page;
+
+ if (p->signal_page)
+ return -EBUSY;
+
+ page = kzalloc(sizeof(*page), GFP_KERNEL);
+ if (!page)
+ return -ENOMEM;
+
+ /* Initialize all events to unsignaled */
+ memset(kernel_address, (uint8_t) UNSIGNALED_EVENT_SLOT,
+ KFD_SIGNAL_EVENT_LIMIT * 8);
+
+ page->kernel_address = kernel_address;
+
+ p->signal_page = page;
+ p->signal_mapped_size = size;
+ p->signal_handle = user_handle;
+ return 0;
+}
+
+int kfd_kmap_event_page(struct kfd_process *p, uint64_t event_page_offset)
+{
+ struct kfd_node *kfd;
+ struct kfd_process_device *pdd;
+ void *mem, *kern_addr;
+ uint64_t size;
+ int err = 0;
+
+ if (p->signal_page) {
+ pr_err("Event page is already set\n");
+ return -EINVAL;
+ }
+
+ pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(event_page_offset));
+ if (!pdd) {
+ pr_err("Getting device by id failed in %s\n", __func__);
+ return -EINVAL;
+ }
+ kfd = pdd->dev;
+
+ pdd = kfd_bind_process_to_device(kfd, p);
+ if (IS_ERR(pdd))
+ return PTR_ERR(pdd);
+
+ mem = kfd_process_device_translate_handle(pdd,
+ GET_IDR_HANDLE(event_page_offset));
+ if (!mem) {
+ pr_err("Can't find BO, offset is 0x%llx\n", event_page_offset);
+ return -EINVAL;
+ }
+
+ err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(mem, &kern_addr, &size);
+ if (err) {
+ pr_err("Failed to map event page to kernel\n");
+ return err;
+ }
+
+ err = kfd_event_page_set(p, kern_addr, size, event_page_offset);
+ if (err) {
+ pr_err("Failed to set event page\n");
+ amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
+ return err;
+ }
+ return err;
+}
+
+int kfd_event_create(struct file *devkfd, struct kfd_process *p,
+ uint32_t event_type, bool auto_reset, uint32_t node_id,
+ uint32_t *event_id, uint32_t *event_trigger_data,
+ uint64_t *event_page_offset, uint32_t *event_slot_index)
+{
+ int ret = 0;
+ struct kfd_event *ev = kzalloc(sizeof(*ev), GFP_KERNEL);
+
+ if (!ev)
+ return -ENOMEM;
+
+ ev->type = event_type;
+ ev->auto_reset = auto_reset;
+ ev->signaled = false;
+
+ spin_lock_init(&ev->lock);
+ init_waitqueue_head(&ev->wq);
+
+ *event_page_offset = 0;
+
+ mutex_lock(&p->event_mutex);
+
+ switch (event_type) {
+ case KFD_EVENT_TYPE_SIGNAL:
+ case KFD_EVENT_TYPE_DEBUG:
+ ret = create_signal_event(devkfd, p, ev, NULL);
+ if (!ret) {
+ *event_page_offset = KFD_MMAP_TYPE_EVENTS;
+ *event_slot_index = ev->event_id;
+ }
+ break;
+ default:
+ ret = create_other_event(p, ev, NULL);
+ break;
+ }
+
+ if (!ret) {
+ *event_id = ev->event_id;
+ *event_trigger_data = ev->event_id;
+ ev->event_age = 1;
+ } else {
+ kfree(ev);
+ }
+
+ mutex_unlock(&p->event_mutex);
+
+ return ret;
+}
+
+int kfd_criu_restore_event(struct file *devkfd,
+ struct kfd_process *p,
+ uint8_t __user *user_priv_ptr,
+ uint64_t *priv_data_offset,
+ uint64_t max_priv_data_size)
+{
+ struct kfd_criu_event_priv_data *ev_priv;
+ struct kfd_event *ev = NULL;
+ int ret = 0;
+
+ ev_priv = kmalloc(sizeof(*ev_priv), GFP_KERNEL);
+ if (!ev_priv)
+ return -ENOMEM;
+
+ ev = kzalloc(sizeof(*ev), GFP_KERNEL);
+ if (!ev) {
+ ret = -ENOMEM;
+ goto exit;
+ }
+
+ if (*priv_data_offset + sizeof(*ev_priv) > max_priv_data_size) {
+ ret = -EINVAL;
+ goto exit;
+ }
+
+ ret = copy_from_user(ev_priv, user_priv_ptr + *priv_data_offset, sizeof(*ev_priv));
+ if (ret) {
+ ret = -EFAULT;
+ goto exit;
+ }
+ *priv_data_offset += sizeof(*ev_priv);
+
+ if (ev_priv->user_handle) {
+ ret = kfd_kmap_event_page(p, ev_priv->user_handle);
+ if (ret)
+ goto exit;
+ }
+
+ ev->type = ev_priv->type;
+ ev->auto_reset = ev_priv->auto_reset;
+ ev->signaled = ev_priv->signaled;
+
+ spin_lock_init(&ev->lock);
+ init_waitqueue_head(&ev->wq);
+
+ mutex_lock(&p->event_mutex);
+ switch (ev->type) {
+ case KFD_EVENT_TYPE_SIGNAL:
+ case KFD_EVENT_TYPE_DEBUG:
+ ret = create_signal_event(devkfd, p, ev, &ev_priv->event_id);
+ break;
+ case KFD_EVENT_TYPE_MEMORY:
+ memcpy(&ev->memory_exception_data,
+ &ev_priv->memory_exception_data,
+ sizeof(struct kfd_hsa_memory_exception_data));
+
+ ret = create_other_event(p, ev, &ev_priv->event_id);
+ break;
+ case KFD_EVENT_TYPE_HW_EXCEPTION:
+ memcpy(&ev->hw_exception_data,
+ &ev_priv->hw_exception_data,
+ sizeof(struct kfd_hsa_hw_exception_data));
+
+ ret = create_other_event(p, ev, &ev_priv->event_id);
+ break;
+ }
+ mutex_unlock(&p->event_mutex);
+
+exit:
+ if (ret)
+ kfree(ev);
+
+ kfree(ev_priv);
+
+ return ret;
+}
+
+int kfd_criu_checkpoint_events(struct kfd_process *p,
+ uint8_t __user *user_priv_data,
+ uint64_t *priv_data_offset)
+{
+ struct kfd_criu_event_priv_data *ev_privs;
+ int i = 0;
+ int ret = 0;
+ struct kfd_event *ev;
+ uint32_t ev_id;
+
+ uint32_t num_events = kfd_get_num_events(p);
+
+ if (!num_events)
+ return 0;
+
+ ev_privs = kvzalloc(num_events * sizeof(*ev_privs), GFP_KERNEL);
+ if (!ev_privs)
+ return -ENOMEM;
+
+
+ idr_for_each_entry(&p->event_idr, ev, ev_id) {
+ struct kfd_criu_event_priv_data *ev_priv;
+
+ /*
+ * Currently, all events have same size of private_data, but the current ioctl's
+ * and CRIU plugin supports private_data of variable sizes
+ */
+ ev_priv = &ev_privs[i];
+
+ ev_priv->object_type = KFD_CRIU_OBJECT_TYPE_EVENT;
+
+ /* We store the user_handle with the first event */
+ if (i == 0 && p->signal_page)
+ ev_priv->user_handle = p->signal_handle;
+
+ ev_priv->event_id = ev->event_id;
+ ev_priv->auto_reset = ev->auto_reset;
+ ev_priv->type = ev->type;
+ ev_priv->signaled = ev->signaled;
+
+ if (ev_priv->type == KFD_EVENT_TYPE_MEMORY)
+ memcpy(&ev_priv->memory_exception_data,
+ &ev->memory_exception_data,
+ sizeof(struct kfd_hsa_memory_exception_data));
+ else if (ev_priv->type == KFD_EVENT_TYPE_HW_EXCEPTION)
+ memcpy(&ev_priv->hw_exception_data,
+ &ev->hw_exception_data,
+ sizeof(struct kfd_hsa_hw_exception_data));
+
+ pr_debug("Checkpointed event[%d] id = 0x%08x auto_reset = %x type = %x signaled = %x\n",
+ i,
+ ev_priv->event_id,
+ ev_priv->auto_reset,
+ ev_priv->type,
+ ev_priv->signaled);
+ i++;
+ }
+
+ ret = copy_to_user(user_priv_data + *priv_data_offset,
+ ev_privs, num_events * sizeof(*ev_privs));
+ if (ret) {
+ pr_err("Failed to copy events priv to user\n");
+ ret = -EFAULT;
+ }
+
+ *priv_data_offset += num_events * sizeof(*ev_privs);
+
+ kvfree(ev_privs);
+ return ret;
+}
+
+int kfd_get_num_events(struct kfd_process *p)
+{
+ struct kfd_event *ev;
+ uint32_t id;
+ u32 num_events = 0;
+
+ idr_for_each_entry(&p->event_idr, ev, id)
+ num_events++;
+
+ return num_events;
+}
+
+/* Assumes that p is current. */
+int kfd_event_destroy(struct kfd_process *p, uint32_t event_id)
+{
+ struct kfd_event *ev;
+ int ret = 0;
+
+ mutex_lock(&p->event_mutex);
+
+ ev = lookup_event_by_id(p, event_id);
+
+ if (ev)
+ destroy_event(p, ev);
+ else
+ ret = -EINVAL;
+
+ mutex_unlock(&p->event_mutex);
+ return ret;
+}
+
+static void set_event(struct kfd_event *ev)
+{
+ struct kfd_event_waiter *waiter;
+
+ /* Auto reset if the list is non-empty and we're waking
+ * someone. waitqueue_active is safe here because we're
+ * protected by the ev->lock, which is also held when
+ * updating the wait queues in kfd_wait_on_events.
+ */
+ ev->signaled = !ev->auto_reset || !waitqueue_active(&ev->wq);
+ if (!(++ev->event_age)) {
+ /* Never wrap back to reserved/default event age 0/1 */
+ ev->event_age = 2;
+ WARN_ONCE(1, "event_age wrap back!");
+ }
+
+ list_for_each_entry(waiter, &ev->wq.head, wait.entry)
+ WRITE_ONCE(waiter->activated, true);
+
+ wake_up_all(&ev->wq);
+}
+
+/* Assumes that p is current. */
+int kfd_set_event(struct kfd_process *p, uint32_t event_id)
+{
+ int ret = 0;
+ struct kfd_event *ev;
+
+ rcu_read_lock();
+
+ ev = lookup_event_by_id(p, event_id);
+ if (!ev) {
+ ret = -EINVAL;
+ goto unlock_rcu;
+ }
+ spin_lock(&ev->lock);
+
+ if (event_can_be_cpu_signaled(ev))
+ set_event(ev);
+ else
+ ret = -EINVAL;
+
+ spin_unlock(&ev->lock);
+unlock_rcu:
+ rcu_read_unlock();
+ return ret;
+}
+
+static void reset_event(struct kfd_event *ev)
+{
+ ev->signaled = false;
+}
+
+/* Assumes that p is current. */
+int kfd_reset_event(struct kfd_process *p, uint32_t event_id)
+{
+ int ret = 0;
+ struct kfd_event *ev;
+
+ rcu_read_lock();
+
+ ev = lookup_event_by_id(p, event_id);
+ if (!ev) {
+ ret = -EINVAL;
+ goto unlock_rcu;
+ }
+ spin_lock(&ev->lock);
+
+ if (event_can_be_cpu_signaled(ev))
+ reset_event(ev);
+ else
+ ret = -EINVAL;
+
+ spin_unlock(&ev->lock);
+unlock_rcu:
+ rcu_read_unlock();
+ return ret;
+
+}
+
+static void acknowledge_signal(struct kfd_process *p, struct kfd_event *ev)
+{
+ WRITE_ONCE(page_slots(p->signal_page)[ev->event_id], UNSIGNALED_EVENT_SLOT);
+}
+
+static void set_event_from_interrupt(struct kfd_process *p,
+ struct kfd_event *ev)
+{
+ if (ev && event_can_be_gpu_signaled(ev)) {
+ acknowledge_signal(p, ev);
+ spin_lock(&ev->lock);
+ set_event(ev);
+ spin_unlock(&ev->lock);
+ }
+}
+
+void kfd_signal_event_interrupt(u32 pasid, uint32_t partial_id,
+ uint32_t valid_id_bits)
+{
+ struct kfd_event *ev = NULL;
+
+ /*
+ * Because we are called from arbitrary context (workqueue) as opposed
+ * to process context, kfd_process could attempt to exit while we are
+ * running so the lookup function increments the process ref count.
+ */
+ struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
+
+ if (!p)
+ return; /* Presumably process exited. */
+
+ rcu_read_lock();
+
+ if (valid_id_bits)
+ ev = lookup_signaled_event_by_partial_id(p, partial_id,
+ valid_id_bits);
+ if (ev) {
+ set_event_from_interrupt(p, ev);
+ } else if (p->signal_page) {
+ /*
+ * Partial ID lookup failed. Assume that the event ID
+ * in the interrupt payload was invalid and do an
+ * exhaustive search of signaled events.
+ */
+ uint64_t *slots = page_slots(p->signal_page);
+ uint32_t id;
+
+ if (valid_id_bits)
+ pr_debug_ratelimited("Partial ID invalid: %u (%u valid bits)\n",
+ partial_id, valid_id_bits);
+
+ if (p->signal_event_count < KFD_SIGNAL_EVENT_LIMIT / 64) {
+ /* With relatively few events, it's faster to
+ * iterate over the event IDR
+ */
+ idr_for_each_entry(&p->event_idr, ev, id) {
+ if (id >= KFD_SIGNAL_EVENT_LIMIT)
+ break;
+
+ if (READ_ONCE(slots[id]) != UNSIGNALED_EVENT_SLOT)
+ set_event_from_interrupt(p, ev);
+ }
+ } else {
+ /* With relatively many events, it's faster to
+ * iterate over the signal slots and lookup
+ * only signaled events from the IDR.
+ */
+ for (id = 1; id < KFD_SIGNAL_EVENT_LIMIT; id++)
+ if (READ_ONCE(slots[id]) != UNSIGNALED_EVENT_SLOT) {
+ ev = lookup_event_by_id(p, id);
+ set_event_from_interrupt(p, ev);
+ }
+ }
+ }
+
+ rcu_read_unlock();
+ kfd_unref_process(p);
+}
+
+static struct kfd_event_waiter *alloc_event_waiters(uint32_t num_events)
+{
+ struct kfd_event_waiter *event_waiters;
+ uint32_t i;
+
+ event_waiters = kcalloc(num_events, sizeof(struct kfd_event_waiter),
+ GFP_KERNEL);
+ if (!event_waiters)
+ return NULL;
+
+ for (i = 0; i < num_events; i++)
+ init_wait(&event_waiters[i].wait);
+
+ return event_waiters;
+}
+
+static int init_event_waiter(struct kfd_process *p,
+ struct kfd_event_waiter *waiter,
+ struct kfd_event_data *event_data)
+{
+ struct kfd_event *ev = lookup_event_by_id(p, event_data->event_id);
+
+ if (!ev)
+ return -EINVAL;
+
+ spin_lock(&ev->lock);
+ waiter->event = ev;
+ waiter->activated = ev->signaled;
+ ev->signaled = ev->signaled && !ev->auto_reset;
+
+ /* last_event_age = 0 reserved for backward compatible */
+ if (waiter->event->type == KFD_EVENT_TYPE_SIGNAL &&
+ event_data->signal_event_data.last_event_age) {
+ waiter->event_age_enabled = true;
+ if (ev->event_age != event_data->signal_event_data.last_event_age)
+ waiter->activated = true;
+ }
+
+ if (!waiter->activated)
+ add_wait_queue(&ev->wq, &waiter->wait);
+ spin_unlock(&ev->lock);
+
+ return 0;
+}
+
+/* test_event_condition - Test condition of events being waited for
+ * @all: Return completion only if all events have signaled
+ * @num_events: Number of events to wait for
+ * @event_waiters: Array of event waiters, one per event
+ *
+ * Returns KFD_IOC_WAIT_RESULT_COMPLETE if all (or one) event(s) have
+ * signaled. Returns KFD_IOC_WAIT_RESULT_TIMEOUT if no (or not all)
+ * events have signaled. Returns KFD_IOC_WAIT_RESULT_FAIL if any of
+ * the events have been destroyed.
+ */
+static uint32_t test_event_condition(bool all, uint32_t num_events,
+ struct kfd_event_waiter *event_waiters)
+{
+ uint32_t i;
+ uint32_t activated_count = 0;
+
+ for (i = 0; i < num_events; i++) {
+ if (!READ_ONCE(event_waiters[i].event))
+ return KFD_IOC_WAIT_RESULT_FAIL;
+
+ if (READ_ONCE(event_waiters[i].activated)) {
+ if (!all)
+ return KFD_IOC_WAIT_RESULT_COMPLETE;
+
+ activated_count++;
+ }
+ }
+
+ return activated_count == num_events ?
+ KFD_IOC_WAIT_RESULT_COMPLETE : KFD_IOC_WAIT_RESULT_TIMEOUT;
+}
+
+/*
+ * Copy event specific data, if defined.
+ * Currently only memory exception events have additional data to copy to user
+ */
+static int copy_signaled_event_data(uint32_t num_events,
+ struct kfd_event_waiter *event_waiters,
+ struct kfd_event_data __user *data)
+{
+ void *src;
+ void __user *dst;
+ struct kfd_event_waiter *waiter;
+ struct kfd_event *event;
+ uint32_t i, size = 0;
+
+ for (i = 0; i < num_events; i++) {
+ waiter = &event_waiters[i];
+ event = waiter->event;
+ if (!event)
+ return -EINVAL; /* event was destroyed */
+ if (waiter->activated) {
+ if (event->type == KFD_EVENT_TYPE_MEMORY) {
+ dst = &data[i].memory_exception_data;
+ src = &event->memory_exception_data;
+ size = sizeof(struct kfd_hsa_memory_exception_data);
+ } else if (event->type == KFD_EVENT_TYPE_SIGNAL &&
+ waiter->event_age_enabled) {
+ dst = &data[i].signal_event_data.last_event_age;
+ src = &event->event_age;
+ size = sizeof(u64);
+ }
+ if (size && copy_to_user(dst, src, size))
+ return -EFAULT;
+ }
+ }
+
+ return 0;
+}
+
+static long user_timeout_to_jiffies(uint32_t user_timeout_ms)
+{
+ if (user_timeout_ms == KFD_EVENT_TIMEOUT_IMMEDIATE)
+ return 0;
+
+ if (user_timeout_ms == KFD_EVENT_TIMEOUT_INFINITE)
+ return MAX_SCHEDULE_TIMEOUT;
+
+ /*
+ * msecs_to_jiffies interprets all values above 2^31-1 as infinite,
+ * but we consider them finite.
+ * This hack is wrong, but nobody is likely to notice.
+ */
+ user_timeout_ms = min_t(uint32_t, user_timeout_ms, 0x7FFFFFFF);
+
+ return msecs_to_jiffies(user_timeout_ms) + 1;
+}
+
+static void free_waiters(uint32_t num_events, struct kfd_event_waiter *waiters,
+ bool undo_auto_reset)
+{
+ uint32_t i;
+
+ for (i = 0; i < num_events; i++)
+ if (waiters[i].event) {
+ spin_lock(&waiters[i].event->lock);
+ remove_wait_queue(&waiters[i].event->wq,
+ &waiters[i].wait);
+ if (undo_auto_reset && waiters[i].activated &&
+ waiters[i].event && waiters[i].event->auto_reset)
+ set_event(waiters[i].event);
+ spin_unlock(&waiters[i].event->lock);
+ }
+
+ kfree(waiters);
+}
+
+int kfd_wait_on_events(struct kfd_process *p,
+ uint32_t num_events, void __user *data,
+ bool all, uint32_t *user_timeout_ms,
+ uint32_t *wait_result)
+{
+ struct kfd_event_data __user *events =
+ (struct kfd_event_data __user *) data;
+ uint32_t i;
+ int ret = 0;
+
+ struct kfd_event_waiter *event_waiters = NULL;
+ long timeout = user_timeout_to_jiffies(*user_timeout_ms);
+
+ event_waiters = alloc_event_waiters(num_events);
+ if (!event_waiters) {
+ ret = -ENOMEM;
+ goto out;
+ }
+
+ /* Use p->event_mutex here to protect against concurrent creation and
+ * destruction of events while we initialize event_waiters.
+ */
+ mutex_lock(&p->event_mutex);
+
+ for (i = 0; i < num_events; i++) {
+ struct kfd_event_data event_data;
+
+ if (copy_from_user(&event_data, &events[i],
+ sizeof(struct kfd_event_data))) {
+ ret = -EFAULT;
+ goto out_unlock;
+ }
+
+ ret = init_event_waiter(p, &event_waiters[i], &event_data);
+ if (ret)
+ goto out_unlock;
+ }
+
+ /* Check condition once. */
+ *wait_result = test_event_condition(all, num_events, event_waiters);
+ if (*wait_result == KFD_IOC_WAIT_RESULT_COMPLETE) {
+ ret = copy_signaled_event_data(num_events,
+ event_waiters, events);
+ goto out_unlock;
+ } else if (WARN_ON(*wait_result == KFD_IOC_WAIT_RESULT_FAIL)) {
+ /* This should not happen. Events shouldn't be
+ * destroyed while we're holding the event_mutex
+ */
+ goto out_unlock;
+ }
+
+ mutex_unlock(&p->event_mutex);
+
+ while (true) {
+ if (fatal_signal_pending(current)) {
+ ret = -EINTR;
+ break;
+ }
+
+ if (signal_pending(current)) {
+ ret = -ERESTARTSYS;
+ if (*user_timeout_ms != KFD_EVENT_TIMEOUT_IMMEDIATE &&
+ *user_timeout_ms != KFD_EVENT_TIMEOUT_INFINITE)
+ *user_timeout_ms = jiffies_to_msecs(
+ max(0l, timeout-1));
+ break;
+ }
+
+ /* Set task state to interruptible sleep before
+ * checking wake-up conditions. A concurrent wake-up
+ * will put the task back into runnable state. In that
+ * case schedule_timeout will not put the task to
+ * sleep and we'll get a chance to re-check the
+ * updated conditions almost immediately. Otherwise,
+ * this race condition would lead to a soft hang or a
+ * very long sleep.
+ */
+ set_current_state(TASK_INTERRUPTIBLE);
+
+ *wait_result = test_event_condition(all, num_events,
+ event_waiters);
+ if (*wait_result != KFD_IOC_WAIT_RESULT_TIMEOUT)
+ break;
+
+ if (timeout <= 0)
+ break;
+
+ timeout = schedule_timeout(timeout);
+ }
+ __set_current_state(TASK_RUNNING);
+
+ mutex_lock(&p->event_mutex);
+ /* copy_signaled_event_data may sleep. So this has to happen
+ * after the task state is set back to RUNNING.
+ *
+ * The event may also have been destroyed after signaling. So
+ * copy_signaled_event_data also must confirm that the event
+ * still exists. Therefore this must be under the p->event_mutex
+ * which is also held when events are destroyed.
+ */
+ if (!ret && *wait_result == KFD_IOC_WAIT_RESULT_COMPLETE)
+ ret = copy_signaled_event_data(num_events,
+ event_waiters, events);
+
+out_unlock:
+ free_waiters(num_events, event_waiters, ret == -ERESTARTSYS);
+ mutex_unlock(&p->event_mutex);
+out:
+ if (ret)
+ *wait_result = KFD_IOC_WAIT_RESULT_FAIL;
+ else if (*wait_result == KFD_IOC_WAIT_RESULT_FAIL)
+ ret = -EIO;
+
+ return ret;
+}
+
+int kfd_event_mmap(struct kfd_process *p, struct vm_area_struct *vma)
+{
+ unsigned long pfn;
+ struct kfd_signal_page *page;
+ int ret;
+
+ /* check required size doesn't exceed the allocated size */
+ if (get_order(KFD_SIGNAL_EVENT_LIMIT * 8) <
+ get_order(vma->vm_end - vma->vm_start)) {
+ pr_err("Event page mmap requested illegal size\n");
+ return -EINVAL;
+ }
+
+ page = p->signal_page;
+ if (!page) {
+ /* Probably KFD bug, but mmap is user-accessible. */
+ pr_debug("Signal page could not be found\n");
+ return -EINVAL;
+ }
+
+ pfn = __pa(page->kernel_address);
+ pfn >>= PAGE_SHIFT;
+
+ vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE
+ | VM_DONTDUMP | VM_PFNMAP);
+
+ pr_debug("Mapping signal page\n");
+ pr_debug(" start user address == 0x%08lx\n", vma->vm_start);
+ pr_debug(" end user address == 0x%08lx\n", vma->vm_end);
+ pr_debug(" pfn == 0x%016lX\n", pfn);
+ pr_debug(" vm_flags == 0x%08lX\n", vma->vm_flags);
+ pr_debug(" size == 0x%08lX\n",
+ vma->vm_end - vma->vm_start);
+
+ page->user_address = (uint64_t __user *)vma->vm_start;
+
+ /* mapping the page to user process */
+ ret = remap_pfn_range(vma, vma->vm_start, pfn,
+ vma->vm_end - vma->vm_start, vma->vm_page_prot);
+ if (!ret)
+ p->signal_mapped_size = vma->vm_end - vma->vm_start;
+
+ return ret;
+}
+
+/*
+ * Assumes that p is not going away.
+ */
+static void lookup_events_by_type_and_signal(struct kfd_process *p,
+ int type, void *event_data)
+{
+ struct kfd_hsa_memory_exception_data *ev_data;
+ struct kfd_event *ev;
+ uint32_t id;
+ bool send_signal = true;
+
+ ev_data = (struct kfd_hsa_memory_exception_data *) event_data;
+
+ rcu_read_lock();
+
+ id = KFD_FIRST_NONSIGNAL_EVENT_ID;
+ idr_for_each_entry_continue(&p->event_idr, ev, id)
+ if (ev->type == type) {
+ send_signal = false;
+ dev_dbg(kfd_device,
+ "Event found: id %X type %d",
+ ev->event_id, ev->type);
+ spin_lock(&ev->lock);
+ set_event(ev);
+ if (ev->type == KFD_EVENT_TYPE_MEMORY && ev_data)
+ ev->memory_exception_data = *ev_data;
+ spin_unlock(&ev->lock);
+ }
+
+ if (type == KFD_EVENT_TYPE_MEMORY) {
+ dev_warn(kfd_device,
+ "Sending SIGSEGV to process %d (pasid 0x%x)",
+ p->lead_thread->pid, p->pasid);
+ send_sig(SIGSEGV, p->lead_thread, 0);
+ }
+
+ /* Send SIGTERM no event of type "type" has been found*/
+ if (send_signal) {
+ if (send_sigterm) {
+ dev_warn(kfd_device,
+ "Sending SIGTERM to process %d (pasid 0x%x)",
+ p->lead_thread->pid, p->pasid);
+ send_sig(SIGTERM, p->lead_thread, 0);
+ } else {
+ dev_err(kfd_device,
+ "Process %d (pasid 0x%x) got unhandled exception",
+ p->lead_thread->pid, p->pasid);
+ }
+ }
+
+ rcu_read_unlock();
+}
+
+void kfd_signal_hw_exception_event(u32 pasid)
+{
+ /*
+ * Because we are called from arbitrary context (workqueue) as opposed
+ * to process context, kfd_process could attempt to exit while we are
+ * running so the lookup function increments the process ref count.
+ */
+ struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
+
+ if (!p)
+ return; /* Presumably process exited. */
+
+ lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_HW_EXCEPTION, NULL);
+ kfd_unref_process(p);
+}
+
+void kfd_signal_vm_fault_event(struct kfd_node *dev, u32 pasid,
+ struct kfd_vm_fault_info *info,
+ struct kfd_hsa_memory_exception_data *data)
+{
+ struct kfd_event *ev;
+ uint32_t id;
+ struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
+ struct kfd_hsa_memory_exception_data memory_exception_data;
+ int user_gpu_id;
+
+ if (!p)
+ return; /* Presumably process exited. */
+
+ user_gpu_id = kfd_process_get_user_gpu_id(p, dev->id);
+ if (unlikely(user_gpu_id == -EINVAL)) {
+ WARN_ONCE(1, "Could not get user_gpu_id from dev->id:%x\n", dev->id);
+ return;
+ }
+
+ /* SoC15 chips and onwards will pass in data from now on. */
+ if (!data) {
+ memset(&memory_exception_data, 0, sizeof(memory_exception_data));
+ memory_exception_data.gpu_id = user_gpu_id;
+ memory_exception_data.failure.imprecise = true;
+
+ /* Set failure reason */
+ if (info) {
+ memory_exception_data.va = (info->page_addr) <<
+ PAGE_SHIFT;
+ memory_exception_data.failure.NotPresent =
+ info->prot_valid ? 1 : 0;
+ memory_exception_data.failure.NoExecute =
+ info->prot_exec ? 1 : 0;
+ memory_exception_data.failure.ReadOnly =
+ info->prot_write ? 1 : 0;
+ memory_exception_data.failure.imprecise = 0;
+ }
+ }
+
+ rcu_read_lock();
+
+ id = KFD_FIRST_NONSIGNAL_EVENT_ID;
+ idr_for_each_entry_continue(&p->event_idr, ev, id)
+ if (ev->type == KFD_EVENT_TYPE_MEMORY) {
+ spin_lock(&ev->lock);
+ ev->memory_exception_data = data ? *data :
+ memory_exception_data;
+ set_event(ev);
+ spin_unlock(&ev->lock);
+ }
+
+ rcu_read_unlock();
+ kfd_unref_process(p);
+}
+
+void kfd_signal_reset_event(struct kfd_node *dev)
+{
+ struct kfd_hsa_hw_exception_data hw_exception_data;
+ struct kfd_hsa_memory_exception_data memory_exception_data;
+ struct kfd_process *p;
+ struct kfd_event *ev;
+ unsigned int temp;
+ uint32_t id, idx;
+ int reset_cause = atomic_read(&dev->sram_ecc_flag) ?
+ KFD_HW_EXCEPTION_ECC :
+ KFD_HW_EXCEPTION_GPU_HANG;
+
+ /* Whole gpu reset caused by GPU hang and memory is lost */
+ memset(&hw_exception_data, 0, sizeof(hw_exception_data));
+ hw_exception_data.memory_lost = 1;
+ hw_exception_data.reset_cause = reset_cause;
+
+ memset(&memory_exception_data, 0, sizeof(memory_exception_data));
+ memory_exception_data.ErrorType = KFD_MEM_ERR_SRAM_ECC;
+ memory_exception_data.failure.imprecise = true;
+
+ idx = srcu_read_lock(&kfd_processes_srcu);
+ hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
+ int user_gpu_id = kfd_process_get_user_gpu_id(p, dev->id);
+
+ if (unlikely(user_gpu_id == -EINVAL)) {
+ WARN_ONCE(1, "Could not get user_gpu_id from dev->id:%x\n", dev->id);
+ continue;
+ }
+
+ rcu_read_lock();
+
+ id = KFD_FIRST_NONSIGNAL_EVENT_ID;
+ idr_for_each_entry_continue(&p->event_idr, ev, id) {
+ if (ev->type == KFD_EVENT_TYPE_HW_EXCEPTION) {
+ spin_lock(&ev->lock);
+ ev->hw_exception_data = hw_exception_data;
+ ev->hw_exception_data.gpu_id = user_gpu_id;
+ set_event(ev);
+ spin_unlock(&ev->lock);
+ }
+ if (ev->type == KFD_EVENT_TYPE_MEMORY &&
+ reset_cause == KFD_HW_EXCEPTION_ECC) {
+ spin_lock(&ev->lock);
+ ev->memory_exception_data = memory_exception_data;
+ ev->memory_exception_data.gpu_id = user_gpu_id;
+ set_event(ev);
+ spin_unlock(&ev->lock);
+ }
+ }
+
+ rcu_read_unlock();
+ }
+ srcu_read_unlock(&kfd_processes_srcu, idx);
+}
+
+void kfd_signal_poison_consumed_event(struct kfd_node *dev, u32 pasid)
+{
+ struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
+ struct kfd_hsa_memory_exception_data memory_exception_data;
+ struct kfd_hsa_hw_exception_data hw_exception_data;
+ struct kfd_event *ev;
+ uint32_t id = KFD_FIRST_NONSIGNAL_EVENT_ID;
+ int user_gpu_id;
+
+ if (!p)
+ return; /* Presumably process exited. */
+
+ user_gpu_id = kfd_process_get_user_gpu_id(p, dev->id);
+ if (unlikely(user_gpu_id == -EINVAL)) {
+ WARN_ONCE(1, "Could not get user_gpu_id from dev->id:%x\n", dev->id);
+ return;
+ }
+
+ memset(&hw_exception_data, 0, sizeof(hw_exception_data));
+ hw_exception_data.gpu_id = user_gpu_id;
+ hw_exception_data.memory_lost = 1;
+ hw_exception_data.reset_cause = KFD_HW_EXCEPTION_ECC;
+
+ memset(&memory_exception_data, 0, sizeof(memory_exception_data));
+ memory_exception_data.ErrorType = KFD_MEM_ERR_POISON_CONSUMED;
+ memory_exception_data.gpu_id = user_gpu_id;
+ memory_exception_data.failure.imprecise = true;
+
+ rcu_read_lock();
+
+ idr_for_each_entry_continue(&p->event_idr, ev, id) {
+ if (ev->type == KFD_EVENT_TYPE_HW_EXCEPTION) {
+ spin_lock(&ev->lock);
+ ev->hw_exception_data = hw_exception_data;
+ set_event(ev);
+ spin_unlock(&ev->lock);
+ }
+
+ if (ev->type == KFD_EVENT_TYPE_MEMORY) {
+ spin_lock(&ev->lock);
+ ev->memory_exception_data = memory_exception_data;
+ set_event(ev);
+ spin_unlock(&ev->lock);
+ }
+ }
+
+ rcu_read_unlock();
+
+ /* user application will handle SIGBUS signal */
+ send_sig(SIGBUS, p->lead_thread, 0);
+
+ kfd_unref_process(p);
+}