diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-11 08:27:49 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-11 08:27:49 +0000 |
commit | ace9429bb58fd418f0c81d4c2835699bddf6bde6 (patch) | |
tree | b2d64bc10158fdd5497876388cd68142ca374ed3 /drivers/infiniband/hw/hfi1/sdma.c | |
parent | Initial commit. (diff) | |
download | linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.tar.xz linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.zip |
Adding upstream version 6.6.15.upstream/6.6.15
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'drivers/infiniband/hw/hfi1/sdma.c')
-rw-r--r-- | drivers/infiniband/hw/hfi1/sdma.c | 3381 |
1 files changed, 3381 insertions, 0 deletions
diff --git a/drivers/infiniband/hw/hfi1/sdma.c b/drivers/infiniband/hw/hfi1/sdma.c new file mode 100644 index 0000000000..26c6216275 --- /dev/null +++ b/drivers/infiniband/hw/hfi1/sdma.c @@ -0,0 +1,3381 @@ +// SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause +/* + * Copyright(c) 2015 - 2018 Intel Corporation. + */ + +#include <linux/spinlock.h> +#include <linux/seqlock.h> +#include <linux/netdevice.h> +#include <linux/moduleparam.h> +#include <linux/bitops.h> +#include <linux/timer.h> +#include <linux/vmalloc.h> +#include <linux/highmem.h> + +#include "hfi.h" +#include "common.h" +#include "qp.h" +#include "sdma.h" +#include "iowait.h" +#include "trace.h" + +/* must be a power of 2 >= 64 <= 32768 */ +#define SDMA_DESCQ_CNT 2048 +#define SDMA_DESC_INTR 64 +#define INVALID_TAIL 0xffff +#define SDMA_PAD max_t(size_t, MAX_16B_PADDING, sizeof(u32)) + +static uint sdma_descq_cnt = SDMA_DESCQ_CNT; +module_param(sdma_descq_cnt, uint, S_IRUGO); +MODULE_PARM_DESC(sdma_descq_cnt, "Number of SDMA descq entries"); + +static uint sdma_idle_cnt = 250; +module_param(sdma_idle_cnt, uint, S_IRUGO); +MODULE_PARM_DESC(sdma_idle_cnt, "sdma interrupt idle delay (ns,default 250)"); + +uint mod_num_sdma; +module_param_named(num_sdma, mod_num_sdma, uint, S_IRUGO); +MODULE_PARM_DESC(num_sdma, "Set max number SDMA engines to use"); + +static uint sdma_desct_intr = SDMA_DESC_INTR; +module_param_named(desct_intr, sdma_desct_intr, uint, S_IRUGO | S_IWUSR); +MODULE_PARM_DESC(desct_intr, "Number of SDMA descriptor before interrupt"); + +#define SDMA_WAIT_BATCH_SIZE 20 +/* max wait time for a SDMA engine to indicate it has halted */ +#define SDMA_ERR_HALT_TIMEOUT 10 /* ms */ +/* all SDMA engine errors that cause a halt */ + +#define SD(name) SEND_DMA_##name +#define ALL_SDMA_ENG_HALT_ERRS \ + (SD(ENG_ERR_STATUS_SDMA_WRONG_DW_ERR_SMASK) \ + | SD(ENG_ERR_STATUS_SDMA_GEN_MISMATCH_ERR_SMASK) \ + | SD(ENG_ERR_STATUS_SDMA_TOO_LONG_ERR_SMASK) \ + | SD(ENG_ERR_STATUS_SDMA_TAIL_OUT_OF_BOUNDS_ERR_SMASK) \ + | SD(ENG_ERR_STATUS_SDMA_FIRST_DESC_ERR_SMASK) \ + | SD(ENG_ERR_STATUS_SDMA_MEM_READ_ERR_SMASK) \ + | SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK) \ + | SD(ENG_ERR_STATUS_SDMA_LENGTH_MISMATCH_ERR_SMASK) \ + | SD(ENG_ERR_STATUS_SDMA_PACKET_DESC_OVERFLOW_ERR_SMASK) \ + | SD(ENG_ERR_STATUS_SDMA_HEADER_SELECT_ERR_SMASK) \ + | SD(ENG_ERR_STATUS_SDMA_HEADER_ADDRESS_ERR_SMASK) \ + | SD(ENG_ERR_STATUS_SDMA_HEADER_LENGTH_ERR_SMASK) \ + | SD(ENG_ERR_STATUS_SDMA_TIMEOUT_ERR_SMASK) \ + | SD(ENG_ERR_STATUS_SDMA_DESC_TABLE_UNC_ERR_SMASK) \ + | SD(ENG_ERR_STATUS_SDMA_ASSEMBLY_UNC_ERR_SMASK) \ + | SD(ENG_ERR_STATUS_SDMA_PACKET_TRACKING_UNC_ERR_SMASK) \ + | SD(ENG_ERR_STATUS_SDMA_HEADER_STORAGE_UNC_ERR_SMASK) \ + | SD(ENG_ERR_STATUS_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SMASK)) + +/* sdma_sendctrl operations */ +#define SDMA_SENDCTRL_OP_ENABLE BIT(0) +#define SDMA_SENDCTRL_OP_INTENABLE BIT(1) +#define SDMA_SENDCTRL_OP_HALT BIT(2) +#define SDMA_SENDCTRL_OP_CLEANUP BIT(3) + +/* handle long defines */ +#define SDMA_EGRESS_PACKET_OCCUPANCY_SMASK \ +SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SMASK +#define SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT \ +SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT + +static const char * const sdma_state_names[] = { + [sdma_state_s00_hw_down] = "s00_HwDown", + [sdma_state_s10_hw_start_up_halt_wait] = "s10_HwStartUpHaltWait", + [sdma_state_s15_hw_start_up_clean_wait] = "s15_HwStartUpCleanWait", + [sdma_state_s20_idle] = "s20_Idle", + [sdma_state_s30_sw_clean_up_wait] = "s30_SwCleanUpWait", + [sdma_state_s40_hw_clean_up_wait] = "s40_HwCleanUpWait", + [sdma_state_s50_hw_halt_wait] = "s50_HwHaltWait", + [sdma_state_s60_idle_halt_wait] = "s60_IdleHaltWait", + [sdma_state_s80_hw_freeze] = "s80_HwFreeze", + [sdma_state_s82_freeze_sw_clean] = "s82_FreezeSwClean", + [sdma_state_s99_running] = "s99_Running", +}; + +#ifdef CONFIG_SDMA_VERBOSITY +static const char * const sdma_event_names[] = { + [sdma_event_e00_go_hw_down] = "e00_GoHwDown", + [sdma_event_e10_go_hw_start] = "e10_GoHwStart", + [sdma_event_e15_hw_halt_done] = "e15_HwHaltDone", + [sdma_event_e25_hw_clean_up_done] = "e25_HwCleanUpDone", + [sdma_event_e30_go_running] = "e30_GoRunning", + [sdma_event_e40_sw_cleaned] = "e40_SwCleaned", + [sdma_event_e50_hw_cleaned] = "e50_HwCleaned", + [sdma_event_e60_hw_halted] = "e60_HwHalted", + [sdma_event_e70_go_idle] = "e70_GoIdle", + [sdma_event_e80_hw_freeze] = "e80_HwFreeze", + [sdma_event_e81_hw_frozen] = "e81_HwFrozen", + [sdma_event_e82_hw_unfreeze] = "e82_HwUnfreeze", + [sdma_event_e85_link_down] = "e85_LinkDown", + [sdma_event_e90_sw_halted] = "e90_SwHalted", +}; +#endif + +static const struct sdma_set_state_action sdma_action_table[] = { + [sdma_state_s00_hw_down] = { + .go_s99_running_tofalse = 1, + .op_enable = 0, + .op_intenable = 0, + .op_halt = 0, + .op_cleanup = 0, + }, + [sdma_state_s10_hw_start_up_halt_wait] = { + .op_enable = 0, + .op_intenable = 0, + .op_halt = 1, + .op_cleanup = 0, + }, + [sdma_state_s15_hw_start_up_clean_wait] = { + .op_enable = 0, + .op_intenable = 1, + .op_halt = 0, + .op_cleanup = 1, + }, + [sdma_state_s20_idle] = { + .op_enable = 0, + .op_intenable = 1, + .op_halt = 0, + .op_cleanup = 0, + }, + [sdma_state_s30_sw_clean_up_wait] = { + .op_enable = 0, + .op_intenable = 0, + .op_halt = 0, + .op_cleanup = 0, + }, + [sdma_state_s40_hw_clean_up_wait] = { + .op_enable = 0, + .op_intenable = 0, + .op_halt = 0, + .op_cleanup = 1, + }, + [sdma_state_s50_hw_halt_wait] = { + .op_enable = 0, + .op_intenable = 0, + .op_halt = 0, + .op_cleanup = 0, + }, + [sdma_state_s60_idle_halt_wait] = { + .go_s99_running_tofalse = 1, + .op_enable = 0, + .op_intenable = 0, + .op_halt = 1, + .op_cleanup = 0, + }, + [sdma_state_s80_hw_freeze] = { + .op_enable = 0, + .op_intenable = 0, + .op_halt = 0, + .op_cleanup = 0, + }, + [sdma_state_s82_freeze_sw_clean] = { + .op_enable = 0, + .op_intenable = 0, + .op_halt = 0, + .op_cleanup = 0, + }, + [sdma_state_s99_running] = { + .op_enable = 1, + .op_intenable = 1, + .op_halt = 0, + .op_cleanup = 0, + .go_s99_running_totrue = 1, + }, +}; + +#define SDMA_TAIL_UPDATE_THRESH 0x1F + +/* declare all statics here rather than keep sorting */ +static void sdma_complete(struct kref *); +static void sdma_finalput(struct sdma_state *); +static void sdma_get(struct sdma_state *); +static void sdma_hw_clean_up_task(struct tasklet_struct *); +static void sdma_put(struct sdma_state *); +static void sdma_set_state(struct sdma_engine *, enum sdma_states); +static void sdma_start_hw_clean_up(struct sdma_engine *); +static void sdma_sw_clean_up_task(struct tasklet_struct *); +static void sdma_sendctrl(struct sdma_engine *, unsigned); +static void init_sdma_regs(struct sdma_engine *, u32, uint); +static void sdma_process_event( + struct sdma_engine *sde, + enum sdma_events event); +static void __sdma_process_event( + struct sdma_engine *sde, + enum sdma_events event); +static void dump_sdma_state(struct sdma_engine *sde); +static void sdma_make_progress(struct sdma_engine *sde, u64 status); +static void sdma_desc_avail(struct sdma_engine *sde, uint avail); +static void sdma_flush_descq(struct sdma_engine *sde); + +/** + * sdma_state_name() - return state string from enum + * @state: state + */ +static const char *sdma_state_name(enum sdma_states state) +{ + return sdma_state_names[state]; +} + +static void sdma_get(struct sdma_state *ss) +{ + kref_get(&ss->kref); +} + +static void sdma_complete(struct kref *kref) +{ + struct sdma_state *ss = + container_of(kref, struct sdma_state, kref); + + complete(&ss->comp); +} + +static void sdma_put(struct sdma_state *ss) +{ + kref_put(&ss->kref, sdma_complete); +} + +static void sdma_finalput(struct sdma_state *ss) +{ + sdma_put(ss); + wait_for_completion(&ss->comp); +} + +static inline void write_sde_csr( + struct sdma_engine *sde, + u32 offset0, + u64 value) +{ + write_kctxt_csr(sde->dd, sde->this_idx, offset0, value); +} + +static inline u64 read_sde_csr( + struct sdma_engine *sde, + u32 offset0) +{ + return read_kctxt_csr(sde->dd, sde->this_idx, offset0); +} + +/* + * sdma_wait_for_packet_egress() - wait for the VL FIFO occupancy for + * sdma engine 'sde' to drop to 0. + */ +static void sdma_wait_for_packet_egress(struct sdma_engine *sde, + int pause) +{ + u64 off = 8 * sde->this_idx; + struct hfi1_devdata *dd = sde->dd; + int lcnt = 0; + u64 reg_prev; + u64 reg = 0; + + while (1) { + reg_prev = reg; + reg = read_csr(dd, off + SEND_EGRESS_SEND_DMA_STATUS); + + reg &= SDMA_EGRESS_PACKET_OCCUPANCY_SMASK; + reg >>= SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT; + if (reg == 0) + break; + /* counter is reest if accupancy count changes */ + if (reg != reg_prev) + lcnt = 0; + if (lcnt++ > 500) { + /* timed out - bounce the link */ + dd_dev_err(dd, "%s: engine %u timeout waiting for packets to egress, remaining count %u, bouncing link\n", + __func__, sde->this_idx, (u32)reg); + queue_work(dd->pport->link_wq, + &dd->pport->link_bounce_work); + break; + } + udelay(1); + } +} + +/* + * sdma_wait() - wait for packet egress to complete for all SDMA engines, + * and pause for credit return. + */ +void sdma_wait(struct hfi1_devdata *dd) +{ + int i; + + for (i = 0; i < dd->num_sdma; i++) { + struct sdma_engine *sde = &dd->per_sdma[i]; + + sdma_wait_for_packet_egress(sde, 0); + } +} + +static inline void sdma_set_desc_cnt(struct sdma_engine *sde, unsigned cnt) +{ + u64 reg; + + if (!(sde->dd->flags & HFI1_HAS_SDMA_TIMEOUT)) + return; + reg = cnt; + reg &= SD(DESC_CNT_CNT_MASK); + reg <<= SD(DESC_CNT_CNT_SHIFT); + write_sde_csr(sde, SD(DESC_CNT), reg); +} + +static inline void complete_tx(struct sdma_engine *sde, + struct sdma_txreq *tx, + int res) +{ + /* protect against complete modifying */ + struct iowait *wait = tx->wait; + callback_t complete = tx->complete; + +#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER + trace_hfi1_sdma_out_sn(sde, tx->sn); + if (WARN_ON_ONCE(sde->head_sn != tx->sn)) + dd_dev_err(sde->dd, "expected %llu got %llu\n", + sde->head_sn, tx->sn); + sde->head_sn++; +#endif + __sdma_txclean(sde->dd, tx); + if (complete) + (*complete)(tx, res); + if (iowait_sdma_dec(wait)) + iowait_drain_wakeup(wait); +} + +/* + * Complete all the sdma requests with a SDMA_TXREQ_S_ABORTED status + * + * Depending on timing there can be txreqs in two places: + * - in the descq ring + * - in the flush list + * + * To avoid ordering issues the descq ring needs to be flushed + * first followed by the flush list. + * + * This routine is called from two places + * - From a work queue item + * - Directly from the state machine just before setting the + * state to running + * + * Must be called with head_lock held + * + */ +static void sdma_flush(struct sdma_engine *sde) +{ + struct sdma_txreq *txp, *txp_next; + LIST_HEAD(flushlist); + unsigned long flags; + uint seq; + + /* flush from head to tail */ + sdma_flush_descq(sde); + spin_lock_irqsave(&sde->flushlist_lock, flags); + /* copy flush list */ + list_splice_init(&sde->flushlist, &flushlist); + spin_unlock_irqrestore(&sde->flushlist_lock, flags); + /* flush from flush list */ + list_for_each_entry_safe(txp, txp_next, &flushlist, list) + complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED); + /* wakeup QPs orphaned on the dmawait list */ + do { + struct iowait *w, *nw; + + seq = read_seqbegin(&sde->waitlock); + if (!list_empty(&sde->dmawait)) { + write_seqlock(&sde->waitlock); + list_for_each_entry_safe(w, nw, &sde->dmawait, list) { + if (w->wakeup) { + w->wakeup(w, SDMA_AVAIL_REASON); + list_del_init(&w->list); + } + } + write_sequnlock(&sde->waitlock); + } + } while (read_seqretry(&sde->waitlock, seq)); +} + +/* + * Fields a work request for flushing the descq ring + * and the flush list + * + * If the engine has been brought to running during + * the scheduling delay, the flush is ignored, assuming + * that the process of bringing the engine to running + * would have done this flush prior to going to running. + * + */ +static void sdma_field_flush(struct work_struct *work) +{ + unsigned long flags; + struct sdma_engine *sde = + container_of(work, struct sdma_engine, flush_worker); + + write_seqlock_irqsave(&sde->head_lock, flags); + if (!__sdma_running(sde)) + sdma_flush(sde); + write_sequnlock_irqrestore(&sde->head_lock, flags); +} + +static void sdma_err_halt_wait(struct work_struct *work) +{ + struct sdma_engine *sde = container_of(work, struct sdma_engine, + err_halt_worker); + u64 statuscsr; + unsigned long timeout; + + timeout = jiffies + msecs_to_jiffies(SDMA_ERR_HALT_TIMEOUT); + while (1) { + statuscsr = read_sde_csr(sde, SD(STATUS)); + statuscsr &= SD(STATUS_ENG_HALTED_SMASK); + if (statuscsr) + break; + if (time_after(jiffies, timeout)) { + dd_dev_err(sde->dd, + "SDMA engine %d - timeout waiting for engine to halt\n", + sde->this_idx); + /* + * Continue anyway. This could happen if there was + * an uncorrectable error in the wrong spot. + */ + break; + } + usleep_range(80, 120); + } + + sdma_process_event(sde, sdma_event_e15_hw_halt_done); +} + +static void sdma_err_progress_check_schedule(struct sdma_engine *sde) +{ + if (!is_bx(sde->dd) && HFI1_CAP_IS_KSET(SDMA_AHG)) { + unsigned index; + struct hfi1_devdata *dd = sde->dd; + + for (index = 0; index < dd->num_sdma; index++) { + struct sdma_engine *curr_sdma = &dd->per_sdma[index]; + + if (curr_sdma != sde) + curr_sdma->progress_check_head = + curr_sdma->descq_head; + } + dd_dev_err(sde->dd, + "SDMA engine %d - check scheduled\n", + sde->this_idx); + mod_timer(&sde->err_progress_check_timer, jiffies + 10); + } +} + +static void sdma_err_progress_check(struct timer_list *t) +{ + unsigned index; + struct sdma_engine *sde = from_timer(sde, t, err_progress_check_timer); + + dd_dev_err(sde->dd, "SDE progress check event\n"); + for (index = 0; index < sde->dd->num_sdma; index++) { + struct sdma_engine *curr_sde = &sde->dd->per_sdma[index]; + unsigned long flags; + + /* check progress on each engine except the current one */ + if (curr_sde == sde) + continue; + /* + * We must lock interrupts when acquiring sde->lock, + * to avoid a deadlock if interrupt triggers and spins on + * the same lock on same CPU + */ + spin_lock_irqsave(&curr_sde->tail_lock, flags); + write_seqlock(&curr_sde->head_lock); + + /* skip non-running queues */ + if (curr_sde->state.current_state != sdma_state_s99_running) { + write_sequnlock(&curr_sde->head_lock); + spin_unlock_irqrestore(&curr_sde->tail_lock, flags); + continue; + } + + if ((curr_sde->descq_head != curr_sde->descq_tail) && + (curr_sde->descq_head == + curr_sde->progress_check_head)) + __sdma_process_event(curr_sde, + sdma_event_e90_sw_halted); + write_sequnlock(&curr_sde->head_lock); + spin_unlock_irqrestore(&curr_sde->tail_lock, flags); + } + schedule_work(&sde->err_halt_worker); +} + +static void sdma_hw_clean_up_task(struct tasklet_struct *t) +{ + struct sdma_engine *sde = from_tasklet(sde, t, + sdma_hw_clean_up_task); + u64 statuscsr; + + while (1) { +#ifdef CONFIG_SDMA_VERBOSITY + dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", + sde->this_idx, slashstrip(__FILE__), __LINE__, + __func__); +#endif + statuscsr = read_sde_csr(sde, SD(STATUS)); + statuscsr &= SD(STATUS_ENG_CLEANED_UP_SMASK); + if (statuscsr) + break; + udelay(10); + } + + sdma_process_event(sde, sdma_event_e25_hw_clean_up_done); +} + +static inline struct sdma_txreq *get_txhead(struct sdma_engine *sde) +{ + return sde->tx_ring[sde->tx_head & sde->sdma_mask]; +} + +/* + * flush ring for recovery + */ +static void sdma_flush_descq(struct sdma_engine *sde) +{ + u16 head, tail; + int progress = 0; + struct sdma_txreq *txp = get_txhead(sde); + + /* The reason for some of the complexity of this code is that + * not all descriptors have corresponding txps. So, we have to + * be able to skip over descs until we wander into the range of + * the next txp on the list. + */ + head = sde->descq_head & sde->sdma_mask; + tail = sde->descq_tail & sde->sdma_mask; + while (head != tail) { + /* advance head, wrap if needed */ + head = ++sde->descq_head & sde->sdma_mask; + /* if now past this txp's descs, do the callback */ + if (txp && txp->next_descq_idx == head) { + /* remove from list */ + sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL; + complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED); + trace_hfi1_sdma_progress(sde, head, tail, txp); + txp = get_txhead(sde); + } + progress++; + } + if (progress) + sdma_desc_avail(sde, sdma_descq_freecnt(sde)); +} + +static void sdma_sw_clean_up_task(struct tasklet_struct *t) +{ + struct sdma_engine *sde = from_tasklet(sde, t, sdma_sw_clean_up_task); + unsigned long flags; + + spin_lock_irqsave(&sde->tail_lock, flags); + write_seqlock(&sde->head_lock); + + /* + * At this point, the following should always be true: + * - We are halted, so no more descriptors are getting retired. + * - We are not running, so no one is submitting new work. + * - Only we can send the e40_sw_cleaned, so we can't start + * running again until we say so. So, the active list and + * descq are ours to play with. + */ + + /* + * In the error clean up sequence, software clean must be called + * before the hardware clean so we can use the hardware head in + * the progress routine. A hardware clean or SPC unfreeze will + * reset the hardware head. + * + * Process all retired requests. The progress routine will use the + * latest physical hardware head - we are not running so speed does + * not matter. + */ + sdma_make_progress(sde, 0); + + sdma_flush(sde); + + /* + * Reset our notion of head and tail. + * Note that the HW registers have been reset via an earlier + * clean up. + */ + sde->descq_tail = 0; + sde->descq_head = 0; + sde->desc_avail = sdma_descq_freecnt(sde); + *sde->head_dma = 0; + + __sdma_process_event(sde, sdma_event_e40_sw_cleaned); + + write_sequnlock(&sde->head_lock); + spin_unlock_irqrestore(&sde->tail_lock, flags); +} + +static void sdma_sw_tear_down(struct sdma_engine *sde) +{ + struct sdma_state *ss = &sde->state; + + /* Releasing this reference means the state machine has stopped. */ + sdma_put(ss); + + /* stop waiting for all unfreeze events to complete */ + atomic_set(&sde->dd->sdma_unfreeze_count, -1); + wake_up_interruptible(&sde->dd->sdma_unfreeze_wq); +} + +static void sdma_start_hw_clean_up(struct sdma_engine *sde) +{ + tasklet_hi_schedule(&sde->sdma_hw_clean_up_task); +} + +static void sdma_set_state(struct sdma_engine *sde, + enum sdma_states next_state) +{ + struct sdma_state *ss = &sde->state; + const struct sdma_set_state_action *action = sdma_action_table; + unsigned op = 0; + + trace_hfi1_sdma_state( + sde, + sdma_state_names[ss->current_state], + sdma_state_names[next_state]); + + /* debugging bookkeeping */ + ss->previous_state = ss->current_state; + ss->previous_op = ss->current_op; + ss->current_state = next_state; + + if (ss->previous_state != sdma_state_s99_running && + next_state == sdma_state_s99_running) + sdma_flush(sde); + + if (action[next_state].op_enable) + op |= SDMA_SENDCTRL_OP_ENABLE; + + if (action[next_state].op_intenable) + op |= SDMA_SENDCTRL_OP_INTENABLE; + + if (action[next_state].op_halt) + op |= SDMA_SENDCTRL_OP_HALT; + + if (action[next_state].op_cleanup) + op |= SDMA_SENDCTRL_OP_CLEANUP; + + if (action[next_state].go_s99_running_tofalse) + ss->go_s99_running = 0; + + if (action[next_state].go_s99_running_totrue) + ss->go_s99_running = 1; + + ss->current_op = op; + sdma_sendctrl(sde, ss->current_op); +} + +/** + * sdma_get_descq_cnt() - called when device probed + * + * Return a validated descq count. + * + * This is currently only used in the verbs initialization to build the tx + * list. + * + * This will probably be deleted in favor of a more scalable approach to + * alloc tx's. + * + */ +u16 sdma_get_descq_cnt(void) +{ + u16 count = sdma_descq_cnt; + + if (!count) + return SDMA_DESCQ_CNT; + /* count must be a power of 2 greater than 64 and less than + * 32768. Otherwise return default. + */ + if (!is_power_of_2(count)) + return SDMA_DESCQ_CNT; + if (count < 64 || count > 32768) + return SDMA_DESCQ_CNT; + return count; +} + +/** + * sdma_engine_get_vl() - return vl for a given sdma engine + * @sde: sdma engine + * + * This function returns the vl mapped to a given engine, or an error if + * the mapping can't be found. The mapping fields are protected by RCU. + */ +int sdma_engine_get_vl(struct sdma_engine *sde) +{ + struct hfi1_devdata *dd = sde->dd; + struct sdma_vl_map *m; + u8 vl; + + if (sde->this_idx >= TXE_NUM_SDMA_ENGINES) + return -EINVAL; + + rcu_read_lock(); + m = rcu_dereference(dd->sdma_map); + if (unlikely(!m)) { + rcu_read_unlock(); + return -EINVAL; + } + vl = m->engine_to_vl[sde->this_idx]; + rcu_read_unlock(); + + return vl; +} + +/** + * sdma_select_engine_vl() - select sdma engine + * @dd: devdata + * @selector: a spreading factor + * @vl: this vl + * + * + * This function returns an engine based on the selector and a vl. The + * mapping fields are protected by RCU. + */ +struct sdma_engine *sdma_select_engine_vl( + struct hfi1_devdata *dd, + u32 selector, + u8 vl) +{ + struct sdma_vl_map *m; + struct sdma_map_elem *e; + struct sdma_engine *rval; + + /* NOTE This should only happen if SC->VL changed after the initial + * checks on the QP/AH + * Default will return engine 0 below + */ + if (vl >= num_vls) { + rval = NULL; + goto done; + } + + rcu_read_lock(); + m = rcu_dereference(dd->sdma_map); + if (unlikely(!m)) { + rcu_read_unlock(); + return &dd->per_sdma[0]; + } + e = m->map[vl & m->mask]; + rval = e->sde[selector & e->mask]; + rcu_read_unlock(); + +done: + rval = !rval ? &dd->per_sdma[0] : rval; + trace_hfi1_sdma_engine_select(dd, selector, vl, rval->this_idx); + return rval; +} + +/** + * sdma_select_engine_sc() - select sdma engine + * @dd: devdata + * @selector: a spreading factor + * @sc5: the 5 bit sc + * + * + * This function returns an engine based on the selector and an sc. + */ +struct sdma_engine *sdma_select_engine_sc( + struct hfi1_devdata *dd, + u32 selector, + u8 sc5) +{ + u8 vl = sc_to_vlt(dd, sc5); + + return sdma_select_engine_vl(dd, selector, vl); +} + +struct sdma_rht_map_elem { + u32 mask; + u8 ctr; + struct sdma_engine *sde[]; +}; + +struct sdma_rht_node { + unsigned long cpu_id; + struct sdma_rht_map_elem *map[HFI1_MAX_VLS_SUPPORTED]; + struct rhash_head node; +}; + +#define NR_CPUS_HINT 192 + +static const struct rhashtable_params sdma_rht_params = { + .nelem_hint = NR_CPUS_HINT, + .head_offset = offsetof(struct sdma_rht_node, node), + .key_offset = offsetof(struct sdma_rht_node, cpu_id), + .key_len = sizeof_field(struct sdma_rht_node, cpu_id), + .max_size = NR_CPUS, + .min_size = 8, + .automatic_shrinking = true, +}; + +/* + * sdma_select_user_engine() - select sdma engine based on user setup + * @dd: devdata + * @selector: a spreading factor + * @vl: this vl + * + * This function returns an sdma engine for a user sdma request. + * User defined sdma engine affinity setting is honored when applicable, + * otherwise system default sdma engine mapping is used. To ensure correct + * ordering, the mapping from <selector, vl> to sde must remain unchanged. + */ +struct sdma_engine *sdma_select_user_engine(struct hfi1_devdata *dd, + u32 selector, u8 vl) +{ + struct sdma_rht_node *rht_node; + struct sdma_engine *sde = NULL; + unsigned long cpu_id; + + /* + * To ensure that always the same sdma engine(s) will be + * selected make sure the process is pinned to this CPU only. + */ + if (current->nr_cpus_allowed != 1) + goto out; + + rcu_read_lock(); + cpu_id = smp_processor_id(); + rht_node = rhashtable_lookup(dd->sdma_rht, &cpu_id, + sdma_rht_params); + + if (rht_node && rht_node->map[vl]) { + struct sdma_rht_map_elem *map = rht_node->map[vl]; + + sde = map->sde[selector & map->mask]; + } + rcu_read_unlock(); + + if (sde) + return sde; + +out: + return sdma_select_engine_vl(dd, selector, vl); +} + +static void sdma_populate_sde_map(struct sdma_rht_map_elem *map) +{ + int i; + + for (i = 0; i < roundup_pow_of_two(map->ctr ? : 1) - map->ctr; i++) + map->sde[map->ctr + i] = map->sde[i]; +} + +static void sdma_cleanup_sde_map(struct sdma_rht_map_elem *map, + struct sdma_engine *sde) +{ + unsigned int i, pow; + + /* only need to check the first ctr entries for a match */ + for (i = 0; i < map->ctr; i++) { + if (map->sde[i] == sde) { + memmove(&map->sde[i], &map->sde[i + 1], + (map->ctr - i - 1) * sizeof(map->sde[0])); + map->ctr--; + pow = roundup_pow_of_two(map->ctr ? : 1); + map->mask = pow - 1; + sdma_populate_sde_map(map); + break; + } + } +} + +/* + * Prevents concurrent reads and writes of the sdma engine cpu_mask + */ +static DEFINE_MUTEX(process_to_sde_mutex); + +ssize_t sdma_set_cpu_to_sde_map(struct sdma_engine *sde, const char *buf, + size_t count) +{ + struct hfi1_devdata *dd = sde->dd; + cpumask_var_t mask, new_mask; + unsigned long cpu; + int ret, vl, sz; + struct sdma_rht_node *rht_node; + + vl = sdma_engine_get_vl(sde); + if (unlikely(vl < 0 || vl >= ARRAY_SIZE(rht_node->map))) + return -EINVAL; + + ret = zalloc_cpumask_var(&mask, GFP_KERNEL); + if (!ret) + return -ENOMEM; + + ret = zalloc_cpumask_var(&new_mask, GFP_KERNEL); + if (!ret) { + free_cpumask_var(mask); + return -ENOMEM; + } + ret = cpulist_parse(buf, mask); + if (ret) + goto out_free; + + if (!cpumask_subset(mask, cpu_online_mask)) { + dd_dev_warn(sde->dd, "Invalid CPU mask\n"); + ret = -EINVAL; + goto out_free; + } + + sz = sizeof(struct sdma_rht_map_elem) + + (TXE_NUM_SDMA_ENGINES * sizeof(struct sdma_engine *)); + + mutex_lock(&process_to_sde_mutex); + + for_each_cpu(cpu, mask) { + /* Check if we have this already mapped */ + if (cpumask_test_cpu(cpu, &sde->cpu_mask)) { + cpumask_set_cpu(cpu, new_mask); + continue; + } + + rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu, + sdma_rht_params); + if (!rht_node) { + rht_node = kzalloc(sizeof(*rht_node), GFP_KERNEL); + if (!rht_node) { + ret = -ENOMEM; + goto out; + } + + rht_node->map[vl] = kzalloc(sz, GFP_KERNEL); + if (!rht_node->map[vl]) { + kfree(rht_node); + ret = -ENOMEM; + goto out; + } + rht_node->cpu_id = cpu; + rht_node->map[vl]->mask = 0; + rht_node->map[vl]->ctr = 1; + rht_node->map[vl]->sde[0] = sde; + + ret = rhashtable_insert_fast(dd->sdma_rht, + &rht_node->node, + sdma_rht_params); + if (ret) { + kfree(rht_node->map[vl]); + kfree(rht_node); + dd_dev_err(sde->dd, "Failed to set process to sde affinity for cpu %lu\n", + cpu); + goto out; + } + + } else { + int ctr, pow; + + /* Add new user mappings */ + if (!rht_node->map[vl]) + rht_node->map[vl] = kzalloc(sz, GFP_KERNEL); + + if (!rht_node->map[vl]) { + ret = -ENOMEM; + goto out; + } + + rht_node->map[vl]->ctr++; + ctr = rht_node->map[vl]->ctr; + rht_node->map[vl]->sde[ctr - 1] = sde; + pow = roundup_pow_of_two(ctr); + rht_node->map[vl]->mask = pow - 1; + + /* Populate the sde map table */ + sdma_populate_sde_map(rht_node->map[vl]); + } + cpumask_set_cpu(cpu, new_mask); + } + + /* Clean up old mappings */ + for_each_cpu(cpu, cpu_online_mask) { + struct sdma_rht_node *rht_node; + + /* Don't cleanup sdes that are set in the new mask */ + if (cpumask_test_cpu(cpu, mask)) + continue; + + rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu, + sdma_rht_params); + if (rht_node) { + bool empty = true; + int i; + + /* Remove mappings for old sde */ + for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) + if (rht_node->map[i]) + sdma_cleanup_sde_map(rht_node->map[i], + sde); + + /* Free empty hash table entries */ + for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) { + if (!rht_node->map[i]) + continue; + + if (rht_node->map[i]->ctr) { + empty = false; + break; + } + } + + if (empty) { + ret = rhashtable_remove_fast(dd->sdma_rht, + &rht_node->node, + sdma_rht_params); + WARN_ON(ret); + + for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) + kfree(rht_node->map[i]); + + kfree(rht_node); + } + } + } + + cpumask_copy(&sde->cpu_mask, new_mask); +out: + mutex_unlock(&process_to_sde_mutex); +out_free: + free_cpumask_var(mask); + free_cpumask_var(new_mask); + return ret ? : strnlen(buf, PAGE_SIZE); +} + +ssize_t sdma_get_cpu_to_sde_map(struct sdma_engine *sde, char *buf) +{ + mutex_lock(&process_to_sde_mutex); + if (cpumask_empty(&sde->cpu_mask)) + snprintf(buf, PAGE_SIZE, "%s\n", "empty"); + else + cpumap_print_to_pagebuf(true, buf, &sde->cpu_mask); + mutex_unlock(&process_to_sde_mutex); + return strnlen(buf, PAGE_SIZE); +} + +static void sdma_rht_free(void *ptr, void *arg) +{ + struct sdma_rht_node *rht_node = ptr; + int i; + + for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) + kfree(rht_node->map[i]); + + kfree(rht_node); +} + +/** + * sdma_seqfile_dump_cpu_list() - debugfs dump the cpu to sdma mappings + * @s: seq file + * @dd: hfi1_devdata + * @cpuid: cpu id + * + * This routine dumps the process to sde mappings per cpu + */ +void sdma_seqfile_dump_cpu_list(struct seq_file *s, + struct hfi1_devdata *dd, + unsigned long cpuid) +{ + struct sdma_rht_node *rht_node; + int i, j; + + rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpuid, + sdma_rht_params); + if (!rht_node) + return; + + seq_printf(s, "cpu%3lu: ", cpuid); + for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) { + if (!rht_node->map[i] || !rht_node->map[i]->ctr) + continue; + + seq_printf(s, " vl%d: [", i); + + for (j = 0; j < rht_node->map[i]->ctr; j++) { + if (!rht_node->map[i]->sde[j]) + continue; + + if (j > 0) + seq_puts(s, ","); + + seq_printf(s, " sdma%2d", + rht_node->map[i]->sde[j]->this_idx); + } + seq_puts(s, " ]"); + } + + seq_puts(s, "\n"); +} + +/* + * Free the indicated map struct + */ +static void sdma_map_free(struct sdma_vl_map *m) +{ + int i; + + for (i = 0; m && i < m->actual_vls; i++) + kfree(m->map[i]); + kfree(m); +} + +/* + * Handle RCU callback + */ +static void sdma_map_rcu_callback(struct rcu_head *list) +{ + struct sdma_vl_map *m = container_of(list, struct sdma_vl_map, list); + + sdma_map_free(m); +} + +/** + * sdma_map_init - called when # vls change + * @dd: hfi1_devdata + * @port: port number + * @num_vls: number of vls + * @vl_engines: per vl engine mapping (optional) + * + * This routine changes the mapping based on the number of vls. + * + * vl_engines is used to specify a non-uniform vl/engine loading. NULL + * implies auto computing the loading and giving each VLs a uniform + * distribution of engines per VL. + * + * The auto algorithm computes the sde_per_vl and the number of extra + * engines. Any extra engines are added from the last VL on down. + * + * rcu locking is used here to control access to the mapping fields. + * + * If either the num_vls or num_sdma are non-power of 2, the array sizes + * in the struct sdma_vl_map and the struct sdma_map_elem are rounded + * up to the next highest power of 2 and the first entry is reused + * in a round robin fashion. + * + * If an error occurs the map change is not done and the mapping is + * not changed. + * + */ +int sdma_map_init(struct hfi1_devdata *dd, u8 port, u8 num_vls, u8 *vl_engines) +{ + int i, j; + int extra, sde_per_vl; + int engine = 0; + u8 lvl_engines[OPA_MAX_VLS]; + struct sdma_vl_map *oldmap, *newmap; + + if (!(dd->flags & HFI1_HAS_SEND_DMA)) + return 0; + + if (!vl_engines) { + /* truncate divide */ + sde_per_vl = dd->num_sdma / num_vls; + /* extras */ + extra = dd->num_sdma % num_vls; + vl_engines = lvl_engines; + /* add extras from last vl down */ + for (i = num_vls - 1; i >= 0; i--, extra--) + vl_engines[i] = sde_per_vl + (extra > 0 ? 1 : 0); + } + /* build new map */ + newmap = kzalloc( + sizeof(struct sdma_vl_map) + + roundup_pow_of_two(num_vls) * + sizeof(struct sdma_map_elem *), + GFP_KERNEL); + if (!newmap) + goto bail; + newmap->actual_vls = num_vls; + newmap->vls = roundup_pow_of_two(num_vls); + newmap->mask = (1 << ilog2(newmap->vls)) - 1; + /* initialize back-map */ + for (i = 0; i < TXE_NUM_SDMA_ENGINES; i++) + newmap->engine_to_vl[i] = -1; + for (i = 0; i < newmap->vls; i++) { + /* save for wrap around */ + int first_engine = engine; + + if (i < newmap->actual_vls) { + int sz = roundup_pow_of_two(vl_engines[i]); + + /* only allocate once */ + newmap->map[i] = kzalloc( + sizeof(struct sdma_map_elem) + + sz * sizeof(struct sdma_engine *), + GFP_KERNEL); + if (!newmap->map[i]) + goto bail; + newmap->map[i]->mask = (1 << ilog2(sz)) - 1; + /* assign engines */ + for (j = 0; j < sz; j++) { + newmap->map[i]->sde[j] = + &dd->per_sdma[engine]; + if (++engine >= first_engine + vl_engines[i]) + /* wrap back to first engine */ + engine = first_engine; + } + /* assign back-map */ + for (j = 0; j < vl_engines[i]; j++) + newmap->engine_to_vl[first_engine + j] = i; + } else { + /* just re-use entry without allocating */ + newmap->map[i] = newmap->map[i % num_vls]; + } + engine = first_engine + vl_engines[i]; + } + /* newmap in hand, save old map */ + spin_lock_irq(&dd->sde_map_lock); + oldmap = rcu_dereference_protected(dd->sdma_map, + lockdep_is_held(&dd->sde_map_lock)); + + /* publish newmap */ + rcu_assign_pointer(dd->sdma_map, newmap); + + spin_unlock_irq(&dd->sde_map_lock); + /* success, free any old map after grace period */ + if (oldmap) + call_rcu(&oldmap->list, sdma_map_rcu_callback); + return 0; +bail: + /* free any partial allocation */ + sdma_map_free(newmap); + return -ENOMEM; +} + +/** + * sdma_clean - Clean up allocated memory + * @dd: struct hfi1_devdata + * @num_engines: num sdma engines + * + * This routine can be called regardless of the success of + * sdma_init() + */ +void sdma_clean(struct hfi1_devdata *dd, size_t num_engines) +{ + size_t i; + struct sdma_engine *sde; + + if (dd->sdma_pad_dma) { + dma_free_coherent(&dd->pcidev->dev, SDMA_PAD, + (void *)dd->sdma_pad_dma, + dd->sdma_pad_phys); + dd->sdma_pad_dma = NULL; + dd->sdma_pad_phys = 0; + } + if (dd->sdma_heads_dma) { + dma_free_coherent(&dd->pcidev->dev, dd->sdma_heads_size, + (void *)dd->sdma_heads_dma, + dd->sdma_heads_phys); + dd->sdma_heads_dma = NULL; + dd->sdma_heads_phys = 0; + } + for (i = 0; dd->per_sdma && i < num_engines; ++i) { + sde = &dd->per_sdma[i]; + + sde->head_dma = NULL; + sde->head_phys = 0; + + if (sde->descq) { + dma_free_coherent( + &dd->pcidev->dev, + sde->descq_cnt * sizeof(u64[2]), + sde->descq, + sde->descq_phys + ); + sde->descq = NULL; + sde->descq_phys = 0; + } + kvfree(sde->tx_ring); + sde->tx_ring = NULL; + } + if (rcu_access_pointer(dd->sdma_map)) { + spin_lock_irq(&dd->sde_map_lock); + sdma_map_free(rcu_access_pointer(dd->sdma_map)); + RCU_INIT_POINTER(dd->sdma_map, NULL); + spin_unlock_irq(&dd->sde_map_lock); + synchronize_rcu(); + } + kfree(dd->per_sdma); + dd->per_sdma = NULL; + + if (dd->sdma_rht) { + rhashtable_free_and_destroy(dd->sdma_rht, sdma_rht_free, NULL); + kfree(dd->sdma_rht); + dd->sdma_rht = NULL; + } +} + +/** + * sdma_init() - called when device probed + * @dd: hfi1_devdata + * @port: port number (currently only zero) + * + * Initializes each sde and its csrs. + * Interrupts are not required to be enabled. + * + * Returns: + * 0 - success, -errno on failure + */ +int sdma_init(struct hfi1_devdata *dd, u8 port) +{ + unsigned this_idx; + struct sdma_engine *sde; + struct rhashtable *tmp_sdma_rht; + u16 descq_cnt; + void *curr_head; + struct hfi1_pportdata *ppd = dd->pport + port; + u32 per_sdma_credits; + uint idle_cnt = sdma_idle_cnt; + size_t num_engines = chip_sdma_engines(dd); + int ret = -ENOMEM; + + if (!HFI1_CAP_IS_KSET(SDMA)) { + HFI1_CAP_CLEAR(SDMA_AHG); + return 0; + } + if (mod_num_sdma && + /* can't exceed chip support */ + mod_num_sdma <= chip_sdma_engines(dd) && + /* count must be >= vls */ + mod_num_sdma >= num_vls) + num_engines = mod_num_sdma; + + dd_dev_info(dd, "SDMA mod_num_sdma: %u\n", mod_num_sdma); + dd_dev_info(dd, "SDMA chip_sdma_engines: %u\n", chip_sdma_engines(dd)); + dd_dev_info(dd, "SDMA chip_sdma_mem_size: %u\n", + chip_sdma_mem_size(dd)); + + per_sdma_credits = + chip_sdma_mem_size(dd) / (num_engines * SDMA_BLOCK_SIZE); + + /* set up freeze waitqueue */ + init_waitqueue_head(&dd->sdma_unfreeze_wq); + atomic_set(&dd->sdma_unfreeze_count, 0); + + descq_cnt = sdma_get_descq_cnt(); + dd_dev_info(dd, "SDMA engines %zu descq_cnt %u\n", + num_engines, descq_cnt); + + /* alloc memory for array of send engines */ + dd->per_sdma = kcalloc_node(num_engines, sizeof(*dd->per_sdma), + GFP_KERNEL, dd->node); + if (!dd->per_sdma) + return ret; + + idle_cnt = ns_to_cclock(dd, idle_cnt); + if (idle_cnt) + dd->default_desc1 = + SDMA_DESC1_HEAD_TO_HOST_FLAG; + else + dd->default_desc1 = + SDMA_DESC1_INT_REQ_FLAG; + + if (!sdma_desct_intr) + sdma_desct_intr = SDMA_DESC_INTR; + + /* Allocate memory for SendDMA descriptor FIFOs */ + for (this_idx = 0; this_idx < num_engines; ++this_idx) { + sde = &dd->per_sdma[this_idx]; + sde->dd = dd; + sde->ppd = ppd; + sde->this_idx = this_idx; + sde->descq_cnt = descq_cnt; + sde->desc_avail = sdma_descq_freecnt(sde); + sde->sdma_shift = ilog2(descq_cnt); + sde->sdma_mask = (1 << sde->sdma_shift) - 1; + + /* Create a mask specifically for each interrupt source */ + sde->int_mask = (u64)1 << (0 * TXE_NUM_SDMA_ENGINES + + this_idx); + sde->progress_mask = (u64)1 << (1 * TXE_NUM_SDMA_ENGINES + + this_idx); + sde->idle_mask = (u64)1 << (2 * TXE_NUM_SDMA_ENGINES + + this_idx); + /* Create a combined mask to cover all 3 interrupt sources */ + sde->imask = sde->int_mask | sde->progress_mask | + sde->idle_mask; + + spin_lock_init(&sde->tail_lock); + seqlock_init(&sde->head_lock); + spin_lock_init(&sde->senddmactrl_lock); + spin_lock_init(&sde->flushlist_lock); + seqlock_init(&sde->waitlock); + /* insure there is always a zero bit */ + sde->ahg_bits = 0xfffffffe00000000ULL; + + sdma_set_state(sde, sdma_state_s00_hw_down); + + /* set up reference counting */ + kref_init(&sde->state.kref); + init_completion(&sde->state.comp); + + INIT_LIST_HEAD(&sde->flushlist); + INIT_LIST_HEAD(&sde->dmawait); + + sde->tail_csr = + get_kctxt_csr_addr(dd, this_idx, SD(TAIL)); + + tasklet_setup(&sde->sdma_hw_clean_up_task, + sdma_hw_clean_up_task); + tasklet_setup(&sde->sdma_sw_clean_up_task, + sdma_sw_clean_up_task); + INIT_WORK(&sde->err_halt_worker, sdma_err_halt_wait); + INIT_WORK(&sde->flush_worker, sdma_field_flush); + + sde->progress_check_head = 0; + + timer_setup(&sde->err_progress_check_timer, + sdma_err_progress_check, 0); + + sde->descq = dma_alloc_coherent(&dd->pcidev->dev, + descq_cnt * sizeof(u64[2]), + &sde->descq_phys, GFP_KERNEL); + if (!sde->descq) + goto bail; + sde->tx_ring = + kvzalloc_node(array_size(descq_cnt, + sizeof(struct sdma_txreq *)), + GFP_KERNEL, dd->node); + if (!sde->tx_ring) + goto bail; + } + + dd->sdma_heads_size = L1_CACHE_BYTES * num_engines; + /* Allocate memory for DMA of head registers to memory */ + dd->sdma_heads_dma = dma_alloc_coherent(&dd->pcidev->dev, + dd->sdma_heads_size, + &dd->sdma_heads_phys, + GFP_KERNEL); + if (!dd->sdma_heads_dma) { + dd_dev_err(dd, "failed to allocate SendDMA head memory\n"); + goto bail; + } + + /* Allocate memory for pad */ + dd->sdma_pad_dma = dma_alloc_coherent(&dd->pcidev->dev, SDMA_PAD, + &dd->sdma_pad_phys, GFP_KERNEL); + if (!dd->sdma_pad_dma) { + dd_dev_err(dd, "failed to allocate SendDMA pad memory\n"); + goto bail; + } + + /* assign each engine to different cacheline and init registers */ + curr_head = (void *)dd->sdma_heads_dma; + for (this_idx = 0; this_idx < num_engines; ++this_idx) { + unsigned long phys_offset; + + sde = &dd->per_sdma[this_idx]; + + sde->head_dma = curr_head; + curr_head += L1_CACHE_BYTES; + phys_offset = (unsigned long)sde->head_dma - + (unsigned long)dd->sdma_heads_dma; + sde->head_phys = dd->sdma_heads_phys + phys_offset; + init_sdma_regs(sde, per_sdma_credits, idle_cnt); + } + dd->flags |= HFI1_HAS_SEND_DMA; + dd->flags |= idle_cnt ? HFI1_HAS_SDMA_TIMEOUT : 0; + dd->num_sdma = num_engines; + ret = sdma_map_init(dd, port, ppd->vls_operational, NULL); + if (ret < 0) + goto bail; + + tmp_sdma_rht = kzalloc(sizeof(*tmp_sdma_rht), GFP_KERNEL); + if (!tmp_sdma_rht) { + ret = -ENOMEM; + goto bail; + } + + ret = rhashtable_init(tmp_sdma_rht, &sdma_rht_params); + if (ret < 0) { + kfree(tmp_sdma_rht); + goto bail; + } + + dd->sdma_rht = tmp_sdma_rht; + + dd_dev_info(dd, "SDMA num_sdma: %u\n", dd->num_sdma); + return 0; + +bail: + sdma_clean(dd, num_engines); + return ret; +} + +/** + * sdma_all_running() - called when the link goes up + * @dd: hfi1_devdata + * + * This routine moves all engines to the running state. + */ +void sdma_all_running(struct hfi1_devdata *dd) +{ + struct sdma_engine *sde; + unsigned int i; + + /* move all engines to running */ + for (i = 0; i < dd->num_sdma; ++i) { + sde = &dd->per_sdma[i]; + sdma_process_event(sde, sdma_event_e30_go_running); + } +} + +/** + * sdma_all_idle() - called when the link goes down + * @dd: hfi1_devdata + * + * This routine moves all engines to the idle state. + */ +void sdma_all_idle(struct hfi1_devdata *dd) +{ + struct sdma_engine *sde; + unsigned int i; + + /* idle all engines */ + for (i = 0; i < dd->num_sdma; ++i) { + sde = &dd->per_sdma[i]; + sdma_process_event(sde, sdma_event_e70_go_idle); + } +} + +/** + * sdma_start() - called to kick off state processing for all engines + * @dd: hfi1_devdata + * + * This routine is for kicking off the state processing for all required + * sdma engines. Interrupts need to be working at this point. + * + */ +void sdma_start(struct hfi1_devdata *dd) +{ + unsigned i; + struct sdma_engine *sde; + + /* kick off the engines state processing */ + for (i = 0; i < dd->num_sdma; ++i) { + sde = &dd->per_sdma[i]; + sdma_process_event(sde, sdma_event_e10_go_hw_start); + } +} + +/** + * sdma_exit() - used when module is removed + * @dd: hfi1_devdata + */ +void sdma_exit(struct hfi1_devdata *dd) +{ + unsigned this_idx; + struct sdma_engine *sde; + + for (this_idx = 0; dd->per_sdma && this_idx < dd->num_sdma; + ++this_idx) { + sde = &dd->per_sdma[this_idx]; + if (!list_empty(&sde->dmawait)) + dd_dev_err(dd, "sde %u: dmawait list not empty!\n", + sde->this_idx); + sdma_process_event(sde, sdma_event_e00_go_hw_down); + + del_timer_sync(&sde->err_progress_check_timer); + + /* + * This waits for the state machine to exit so it is not + * necessary to kill the sdma_sw_clean_up_task to make sure + * it is not running. + */ + sdma_finalput(&sde->state); + } +} + +/* + * unmap the indicated descriptor + */ +static inline void sdma_unmap_desc( + struct hfi1_devdata *dd, + struct sdma_desc *descp) +{ + switch (sdma_mapping_type(descp)) { + case SDMA_MAP_SINGLE: + dma_unmap_single(&dd->pcidev->dev, sdma_mapping_addr(descp), + sdma_mapping_len(descp), DMA_TO_DEVICE); + break; + case SDMA_MAP_PAGE: + dma_unmap_page(&dd->pcidev->dev, sdma_mapping_addr(descp), + sdma_mapping_len(descp), DMA_TO_DEVICE); + break; + } + + if (descp->pinning_ctx && descp->ctx_put) + descp->ctx_put(descp->pinning_ctx); + descp->pinning_ctx = NULL; +} + +/* + * return the mode as indicated by the first + * descriptor in the tx. + */ +static inline u8 ahg_mode(struct sdma_txreq *tx) +{ + return (tx->descp[0].qw[1] & SDMA_DESC1_HEADER_MODE_SMASK) + >> SDMA_DESC1_HEADER_MODE_SHIFT; +} + +/** + * __sdma_txclean() - clean tx of mappings, descp *kmalloc's + * @dd: hfi1_devdata for unmapping + * @tx: tx request to clean + * + * This is used in the progress routine to clean the tx or + * by the ULP to toss an in-process tx build. + * + * The code can be called multiple times without issue. + * + */ +void __sdma_txclean( + struct hfi1_devdata *dd, + struct sdma_txreq *tx) +{ + u16 i; + + if (tx->num_desc) { + u8 skip = 0, mode = ahg_mode(tx); + + /* unmap first */ + sdma_unmap_desc(dd, &tx->descp[0]); + /* determine number of AHG descriptors to skip */ + if (mode > SDMA_AHG_APPLY_UPDATE1) + skip = mode >> 1; + for (i = 1 + skip; i < tx->num_desc; i++) + sdma_unmap_desc(dd, &tx->descp[i]); + tx->num_desc = 0; + } + kfree(tx->coalesce_buf); + tx->coalesce_buf = NULL; + /* kmalloc'ed descp */ + if (unlikely(tx->desc_limit > ARRAY_SIZE(tx->descs))) { + tx->desc_limit = ARRAY_SIZE(tx->descs); + kfree(tx->descp); + } +} + +static inline u16 sdma_gethead(struct sdma_engine *sde) +{ + struct hfi1_devdata *dd = sde->dd; + int use_dmahead; + u16 hwhead; + +#ifdef CONFIG_SDMA_VERBOSITY + dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", + sde->this_idx, slashstrip(__FILE__), __LINE__, __func__); +#endif + +retry: + use_dmahead = HFI1_CAP_IS_KSET(USE_SDMA_HEAD) && __sdma_running(sde) && + (dd->flags & HFI1_HAS_SDMA_TIMEOUT); + hwhead = use_dmahead ? + (u16)le64_to_cpu(*sde->head_dma) : + (u16)read_sde_csr(sde, SD(HEAD)); + + if (unlikely(HFI1_CAP_IS_KSET(SDMA_HEAD_CHECK))) { + u16 cnt; + u16 swtail; + u16 swhead; + int sane; + + swhead = sde->descq_head & sde->sdma_mask; + /* this code is really bad for cache line trading */ + swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask; + cnt = sde->descq_cnt; + + if (swhead < swtail) + /* not wrapped */ + sane = (hwhead >= swhead) & (hwhead <= swtail); + else if (swhead > swtail) + /* wrapped around */ + sane = ((hwhead >= swhead) && (hwhead < cnt)) || + (hwhead <= swtail); + else + /* empty */ + sane = (hwhead == swhead); + + if (unlikely(!sane)) { + dd_dev_err(dd, "SDMA(%u) bad head (%s) hwhd=%u swhd=%u swtl=%u cnt=%u\n", + sde->this_idx, + use_dmahead ? "dma" : "kreg", + hwhead, swhead, swtail, cnt); + if (use_dmahead) { + /* try one more time, using csr */ + use_dmahead = 0; + goto retry; + } + /* proceed as if no progress */ + hwhead = swhead; + } + } + return hwhead; +} + +/* + * This is called when there are send DMA descriptors that might be + * available. + * + * This is called with head_lock held. + */ +static void sdma_desc_avail(struct sdma_engine *sde, uint avail) +{ + struct iowait *wait, *nw, *twait; + struct iowait *waits[SDMA_WAIT_BATCH_SIZE]; + uint i, n = 0, seq, tidx = 0; + +#ifdef CONFIG_SDMA_VERBOSITY + dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx, + slashstrip(__FILE__), __LINE__, __func__); + dd_dev_err(sde->dd, "avail: %u\n", avail); +#endif + + do { + seq = read_seqbegin(&sde->waitlock); + if (!list_empty(&sde->dmawait)) { + /* at least one item */ + write_seqlock(&sde->waitlock); + /* Harvest waiters wanting DMA descriptors */ + list_for_each_entry_safe( + wait, + nw, + &sde->dmawait, + list) { + u32 num_desc; + + if (!wait->wakeup) + continue; + if (n == ARRAY_SIZE(waits)) + break; + iowait_init_priority(wait); + num_desc = iowait_get_all_desc(wait); + if (num_desc > avail) + break; + avail -= num_desc; + /* Find the top-priority wait memeber */ + if (n) { + twait = waits[tidx]; + tidx = + iowait_priority_update_top(wait, + twait, + n, + tidx); + } + list_del_init(&wait->list); + waits[n++] = wait; + } + write_sequnlock(&sde->waitlock); + break; + } + } while (read_seqretry(&sde->waitlock, seq)); + + /* Schedule the top-priority entry first */ + if (n) + waits[tidx]->wakeup(waits[tidx], SDMA_AVAIL_REASON); + + for (i = 0; i < n; i++) + if (i != tidx) + waits[i]->wakeup(waits[i], SDMA_AVAIL_REASON); +} + +/* head_lock must be held */ +static void sdma_make_progress(struct sdma_engine *sde, u64 status) +{ + struct sdma_txreq *txp = NULL; + int progress = 0; + u16 hwhead, swhead; + int idle_check_done = 0; + + hwhead = sdma_gethead(sde); + + /* The reason for some of the complexity of this code is that + * not all descriptors have corresponding txps. So, we have to + * be able to skip over descs until we wander into the range of + * the next txp on the list. + */ + +retry: + txp = get_txhead(sde); + swhead = sde->descq_head & sde->sdma_mask; + trace_hfi1_sdma_progress(sde, hwhead, swhead, txp); + while (swhead != hwhead) { + /* advance head, wrap if needed */ + swhead = ++sde->descq_head & sde->sdma_mask; + + /* if now past this txp's descs, do the callback */ + if (txp && txp->next_descq_idx == swhead) { + /* remove from list */ + sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL; + complete_tx(sde, txp, SDMA_TXREQ_S_OK); + /* see if there is another txp */ + txp = get_txhead(sde); + } + trace_hfi1_sdma_progress(sde, hwhead, swhead, txp); + progress++; + } + + /* + * The SDMA idle interrupt is not guaranteed to be ordered with respect + * to updates to the dma_head location in host memory. The head + * value read might not be fully up to date. If there are pending + * descriptors and the SDMA idle interrupt fired then read from the + * CSR SDMA head instead to get the latest value from the hardware. + * The hardware SDMA head should be read at most once in this invocation + * of sdma_make_progress(..) which is ensured by idle_check_done flag + */ + if ((status & sde->idle_mask) && !idle_check_done) { + u16 swtail; + + swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask; + if (swtail != hwhead) { + hwhead = (u16)read_sde_csr(sde, SD(HEAD)); + idle_check_done = 1; + goto retry; + } + } + + sde->last_status = status; + if (progress) + sdma_desc_avail(sde, sdma_descq_freecnt(sde)); +} + +/* + * sdma_engine_interrupt() - interrupt handler for engine + * @sde: sdma engine + * @status: sdma interrupt reason + * + * Status is a mask of the 3 possible interrupts for this engine. It will + * contain bits _only_ for this SDMA engine. It will contain at least one + * bit, it may contain more. + */ +void sdma_engine_interrupt(struct sdma_engine *sde, u64 status) +{ + trace_hfi1_sdma_engine_interrupt(sde, status); + write_seqlock(&sde->head_lock); + sdma_set_desc_cnt(sde, sdma_desct_intr); + if (status & sde->idle_mask) + sde->idle_int_cnt++; + else if (status & sde->progress_mask) + sde->progress_int_cnt++; + else if (status & sde->int_mask) + sde->sdma_int_cnt++; + sdma_make_progress(sde, status); + write_sequnlock(&sde->head_lock); +} + +/** + * sdma_engine_error() - error handler for engine + * @sde: sdma engine + * @status: sdma interrupt reason + */ +void sdma_engine_error(struct sdma_engine *sde, u64 status) +{ + unsigned long flags; + +#ifdef CONFIG_SDMA_VERBOSITY + dd_dev_err(sde->dd, "CONFIG SDMA(%u) error status 0x%llx state %s\n", + sde->this_idx, + (unsigned long long)status, + sdma_state_names[sde->state.current_state]); +#endif + spin_lock_irqsave(&sde->tail_lock, flags); + write_seqlock(&sde->head_lock); + if (status & ALL_SDMA_ENG_HALT_ERRS) + __sdma_process_event(sde, sdma_event_e60_hw_halted); + if (status & ~SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK)) { + dd_dev_err(sde->dd, + "SDMA (%u) engine error: 0x%llx state %s\n", + sde->this_idx, + (unsigned long long)status, + sdma_state_names[sde->state.current_state]); + dump_sdma_state(sde); + } + write_sequnlock(&sde->head_lock); + spin_unlock_irqrestore(&sde->tail_lock, flags); +} + +static void sdma_sendctrl(struct sdma_engine *sde, unsigned op) +{ + u64 set_senddmactrl = 0; + u64 clr_senddmactrl = 0; + unsigned long flags; + +#ifdef CONFIG_SDMA_VERBOSITY + dd_dev_err(sde->dd, "CONFIG SDMA(%u) senddmactrl E=%d I=%d H=%d C=%d\n", + sde->this_idx, + (op & SDMA_SENDCTRL_OP_ENABLE) ? 1 : 0, + (op & SDMA_SENDCTRL_OP_INTENABLE) ? 1 : 0, + (op & SDMA_SENDCTRL_OP_HALT) ? 1 : 0, + (op & SDMA_SENDCTRL_OP_CLEANUP) ? 1 : 0); +#endif + + if (op & SDMA_SENDCTRL_OP_ENABLE) + set_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK); + else + clr_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK); + + if (op & SDMA_SENDCTRL_OP_INTENABLE) + set_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK); + else + clr_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK); + + if (op & SDMA_SENDCTRL_OP_HALT) + set_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK); + else + clr_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK); + + spin_lock_irqsave(&sde->senddmactrl_lock, flags); + + sde->p_senddmactrl |= set_senddmactrl; + sde->p_senddmactrl &= ~clr_senddmactrl; + + if (op & SDMA_SENDCTRL_OP_CLEANUP) + write_sde_csr(sde, SD(CTRL), + sde->p_senddmactrl | + SD(CTRL_SDMA_CLEANUP_SMASK)); + else + write_sde_csr(sde, SD(CTRL), sde->p_senddmactrl); + + spin_unlock_irqrestore(&sde->senddmactrl_lock, flags); + +#ifdef CONFIG_SDMA_VERBOSITY + sdma_dumpstate(sde); +#endif +} + +static void sdma_setlengen(struct sdma_engine *sde) +{ +#ifdef CONFIG_SDMA_VERBOSITY + dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", + sde->this_idx, slashstrip(__FILE__), __LINE__, __func__); +#endif + + /* + * Set SendDmaLenGen and clear-then-set the MSB of the generation + * count to enable generation checking and load the internal + * generation counter. + */ + write_sde_csr(sde, SD(LEN_GEN), + (sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT)); + write_sde_csr(sde, SD(LEN_GEN), + ((sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT)) | + (4ULL << SD(LEN_GEN_GENERATION_SHIFT))); +} + +static inline void sdma_update_tail(struct sdma_engine *sde, u16 tail) +{ + /* Commit writes to memory and advance the tail on the chip */ + smp_wmb(); /* see get_txhead() */ + writeq(tail, sde->tail_csr); +} + +/* + * This is called when changing to state s10_hw_start_up_halt_wait as + * a result of send buffer errors or send DMA descriptor errors. + */ +static void sdma_hw_start_up(struct sdma_engine *sde) +{ + u64 reg; + +#ifdef CONFIG_SDMA_VERBOSITY + dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", + sde->this_idx, slashstrip(__FILE__), __LINE__, __func__); +#endif + + sdma_setlengen(sde); + sdma_update_tail(sde, 0); /* Set SendDmaTail */ + *sde->head_dma = 0; + + reg = SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_MASK) << + SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SHIFT); + write_sde_csr(sde, SD(ENG_ERR_CLEAR), reg); +} + +/* + * set_sdma_integrity + * + * Set the SEND_DMA_CHECK_ENABLE register for send DMA engine 'sde'. + */ +static void set_sdma_integrity(struct sdma_engine *sde) +{ + struct hfi1_devdata *dd = sde->dd; + + write_sde_csr(sde, SD(CHECK_ENABLE), + hfi1_pkt_base_sdma_integrity(dd)); +} + +static void init_sdma_regs( + struct sdma_engine *sde, + u32 credits, + uint idle_cnt) +{ + u8 opval, opmask; +#ifdef CONFIG_SDMA_VERBOSITY + struct hfi1_devdata *dd = sde->dd; + + dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", + sde->this_idx, slashstrip(__FILE__), __LINE__, __func__); +#endif + + write_sde_csr(sde, SD(BASE_ADDR), sde->descq_phys); + sdma_setlengen(sde); + sdma_update_tail(sde, 0); /* Set SendDmaTail */ + write_sde_csr(sde, SD(RELOAD_CNT), idle_cnt); + write_sde_csr(sde, SD(DESC_CNT), 0); + write_sde_csr(sde, SD(HEAD_ADDR), sde->head_phys); + write_sde_csr(sde, SD(MEMORY), + ((u64)credits << SD(MEMORY_SDMA_MEMORY_CNT_SHIFT)) | + ((u64)(credits * sde->this_idx) << + SD(MEMORY_SDMA_MEMORY_INDEX_SHIFT))); + write_sde_csr(sde, SD(ENG_ERR_MASK), ~0ull); + set_sdma_integrity(sde); + opmask = OPCODE_CHECK_MASK_DISABLED; + opval = OPCODE_CHECK_VAL_DISABLED; + write_sde_csr(sde, SD(CHECK_OPCODE), + (opmask << SEND_CTXT_CHECK_OPCODE_MASK_SHIFT) | + (opval << SEND_CTXT_CHECK_OPCODE_VALUE_SHIFT)); +} + +#ifdef CONFIG_SDMA_VERBOSITY + +#define sdma_dumpstate_helper0(reg) do { \ + csr = read_csr(sde->dd, reg); \ + dd_dev_err(sde->dd, "%36s 0x%016llx\n", #reg, csr); \ + } while (0) + +#define sdma_dumpstate_helper(reg) do { \ + csr = read_sde_csr(sde, reg); \ + dd_dev_err(sde->dd, "%36s[%02u] 0x%016llx\n", \ + #reg, sde->this_idx, csr); \ + } while (0) + +#define sdma_dumpstate_helper2(reg) do { \ + csr = read_csr(sde->dd, reg + (8 * i)); \ + dd_dev_err(sde->dd, "%33s_%02u 0x%016llx\n", \ + #reg, i, csr); \ + } while (0) + +void sdma_dumpstate(struct sdma_engine *sde) +{ + u64 csr; + unsigned i; + + sdma_dumpstate_helper(SD(CTRL)); + sdma_dumpstate_helper(SD(STATUS)); + sdma_dumpstate_helper0(SD(ERR_STATUS)); + sdma_dumpstate_helper0(SD(ERR_MASK)); + sdma_dumpstate_helper(SD(ENG_ERR_STATUS)); + sdma_dumpstate_helper(SD(ENG_ERR_MASK)); + + for (i = 0; i < CCE_NUM_INT_CSRS; ++i) { + sdma_dumpstate_helper2(CCE_INT_STATUS); + sdma_dumpstate_helper2(CCE_INT_MASK); + sdma_dumpstate_helper2(CCE_INT_BLOCKED); + } + + sdma_dumpstate_helper(SD(TAIL)); + sdma_dumpstate_helper(SD(HEAD)); + sdma_dumpstate_helper(SD(PRIORITY_THLD)); + sdma_dumpstate_helper(SD(IDLE_CNT)); + sdma_dumpstate_helper(SD(RELOAD_CNT)); + sdma_dumpstate_helper(SD(DESC_CNT)); + sdma_dumpstate_helper(SD(DESC_FETCHED_CNT)); + sdma_dumpstate_helper(SD(MEMORY)); + sdma_dumpstate_helper0(SD(ENGINES)); + sdma_dumpstate_helper0(SD(MEM_SIZE)); + /* sdma_dumpstate_helper(SEND_EGRESS_SEND_DMA_STATUS); */ + sdma_dumpstate_helper(SD(BASE_ADDR)); + sdma_dumpstate_helper(SD(LEN_GEN)); + sdma_dumpstate_helper(SD(HEAD_ADDR)); + sdma_dumpstate_helper(SD(CHECK_ENABLE)); + sdma_dumpstate_helper(SD(CHECK_VL)); + sdma_dumpstate_helper(SD(CHECK_JOB_KEY)); + sdma_dumpstate_helper(SD(CHECK_PARTITION_KEY)); + sdma_dumpstate_helper(SD(CHECK_SLID)); + sdma_dumpstate_helper(SD(CHECK_OPCODE)); +} +#endif + +static void dump_sdma_state(struct sdma_engine *sde) +{ + struct hw_sdma_desc *descqp; + u64 desc[2]; + u64 addr; + u8 gen; + u16 len; + u16 head, tail, cnt; + + head = sde->descq_head & sde->sdma_mask; + tail = sde->descq_tail & sde->sdma_mask; + cnt = sdma_descq_freecnt(sde); + + dd_dev_err(sde->dd, + "SDMA (%u) descq_head: %u descq_tail: %u freecnt: %u FLE %d\n", + sde->this_idx, head, tail, cnt, + !list_empty(&sde->flushlist)); + + /* print info for each entry in the descriptor queue */ + while (head != tail) { + char flags[6] = { 'x', 'x', 'x', 'x', 0 }; + + descqp = &sde->descq[head]; + desc[0] = le64_to_cpu(descqp->qw[0]); + desc[1] = le64_to_cpu(descqp->qw[1]); + flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-'; + flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ? + 'H' : '-'; + flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-'; + flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-'; + addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT) + & SDMA_DESC0_PHY_ADDR_MASK; + gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT) + & SDMA_DESC1_GENERATION_MASK; + len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT) + & SDMA_DESC0_BYTE_COUNT_MASK; + dd_dev_err(sde->dd, + "SDMA sdmadesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n", + head, flags, addr, gen, len); + dd_dev_err(sde->dd, + "\tdesc0:0x%016llx desc1 0x%016llx\n", + desc[0], desc[1]); + if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) + dd_dev_err(sde->dd, + "\taidx: %u amode: %u alen: %u\n", + (u8)((desc[1] & + SDMA_DESC1_HEADER_INDEX_SMASK) >> + SDMA_DESC1_HEADER_INDEX_SHIFT), + (u8)((desc[1] & + SDMA_DESC1_HEADER_MODE_SMASK) >> + SDMA_DESC1_HEADER_MODE_SHIFT), + (u8)((desc[1] & + SDMA_DESC1_HEADER_DWS_SMASK) >> + SDMA_DESC1_HEADER_DWS_SHIFT)); + head++; + head &= sde->sdma_mask; + } +} + +#define SDE_FMT \ + "SDE %u CPU %d STE %s C 0x%llx S 0x%016llx E 0x%llx T(HW) 0x%llx T(SW) 0x%x H(HW) 0x%llx H(SW) 0x%x H(D) 0x%llx DM 0x%llx GL 0x%llx R 0x%llx LIS 0x%llx AHGI 0x%llx TXT %u TXH %u DT %u DH %u FLNE %d DQF %u SLC 0x%llx\n" +/** + * sdma_seqfile_dump_sde() - debugfs dump of sde + * @s: seq file + * @sde: send dma engine to dump + * + * This routine dumps the sde to the indicated seq file. + */ +void sdma_seqfile_dump_sde(struct seq_file *s, struct sdma_engine *sde) +{ + u16 head, tail; + struct hw_sdma_desc *descqp; + u64 desc[2]; + u64 addr; + u8 gen; + u16 len; + + head = sde->descq_head & sde->sdma_mask; + tail = READ_ONCE(sde->descq_tail) & sde->sdma_mask; + seq_printf(s, SDE_FMT, sde->this_idx, + sde->cpu, + sdma_state_name(sde->state.current_state), + (unsigned long long)read_sde_csr(sde, SD(CTRL)), + (unsigned long long)read_sde_csr(sde, SD(STATUS)), + (unsigned long long)read_sde_csr(sde, SD(ENG_ERR_STATUS)), + (unsigned long long)read_sde_csr(sde, SD(TAIL)), tail, + (unsigned long long)read_sde_csr(sde, SD(HEAD)), head, + (unsigned long long)le64_to_cpu(*sde->head_dma), + (unsigned long long)read_sde_csr(sde, SD(MEMORY)), + (unsigned long long)read_sde_csr(sde, SD(LEN_GEN)), + (unsigned long long)read_sde_csr(sde, SD(RELOAD_CNT)), + (unsigned long long)sde->last_status, + (unsigned long long)sde->ahg_bits, + sde->tx_tail, + sde->tx_head, + sde->descq_tail, + sde->descq_head, + !list_empty(&sde->flushlist), + sde->descq_full_count, + (unsigned long long)read_sde_csr(sde, SEND_DMA_CHECK_SLID)); + + /* print info for each entry in the descriptor queue */ + while (head != tail) { + char flags[6] = { 'x', 'x', 'x', 'x', 0 }; + + descqp = &sde->descq[head]; + desc[0] = le64_to_cpu(descqp->qw[0]); + desc[1] = le64_to_cpu(descqp->qw[1]); + flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-'; + flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ? + 'H' : '-'; + flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-'; + flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-'; + addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT) + & SDMA_DESC0_PHY_ADDR_MASK; + gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT) + & SDMA_DESC1_GENERATION_MASK; + len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT) + & SDMA_DESC0_BYTE_COUNT_MASK; + seq_printf(s, + "\tdesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n", + head, flags, addr, gen, len); + if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) + seq_printf(s, "\t\tahgidx: %u ahgmode: %u\n", + (u8)((desc[1] & + SDMA_DESC1_HEADER_INDEX_SMASK) >> + SDMA_DESC1_HEADER_INDEX_SHIFT), + (u8)((desc[1] & + SDMA_DESC1_HEADER_MODE_SMASK) >> + SDMA_DESC1_HEADER_MODE_SHIFT)); + head = (head + 1) & sde->sdma_mask; + } +} + +/* + * add the generation number into + * the qw1 and return + */ +static inline u64 add_gen(struct sdma_engine *sde, u64 qw1) +{ + u8 generation = (sde->descq_tail >> sde->sdma_shift) & 3; + + qw1 &= ~SDMA_DESC1_GENERATION_SMASK; + qw1 |= ((u64)generation & SDMA_DESC1_GENERATION_MASK) + << SDMA_DESC1_GENERATION_SHIFT; + return qw1; +} + +/* + * This routine submits the indicated tx + * + * Space has already been guaranteed and + * tail side of ring is locked. + * + * The hardware tail update is done + * in the caller and that is facilitated + * by returning the new tail. + * + * There is special case logic for ahg + * to not add the generation number for + * up to 2 descriptors that follow the + * first descriptor. + * + */ +static inline u16 submit_tx(struct sdma_engine *sde, struct sdma_txreq *tx) +{ + int i; + u16 tail; + struct sdma_desc *descp = tx->descp; + u8 skip = 0, mode = ahg_mode(tx); + + tail = sde->descq_tail & sde->sdma_mask; + sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]); + sde->descq[tail].qw[1] = cpu_to_le64(add_gen(sde, descp->qw[1])); + trace_hfi1_sdma_descriptor(sde, descp->qw[0], descp->qw[1], + tail, &sde->descq[tail]); + tail = ++sde->descq_tail & sde->sdma_mask; + descp++; + if (mode > SDMA_AHG_APPLY_UPDATE1) + skip = mode >> 1; + for (i = 1; i < tx->num_desc; i++, descp++) { + u64 qw1; + + sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]); + if (skip) { + /* edits don't have generation */ + qw1 = descp->qw[1]; + skip--; + } else { + /* replace generation with real one for non-edits */ + qw1 = add_gen(sde, descp->qw[1]); + } + sde->descq[tail].qw[1] = cpu_to_le64(qw1); + trace_hfi1_sdma_descriptor(sde, descp->qw[0], qw1, + tail, &sde->descq[tail]); + tail = ++sde->descq_tail & sde->sdma_mask; + } + tx->next_descq_idx = tail; +#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER + tx->sn = sde->tail_sn++; + trace_hfi1_sdma_in_sn(sde, tx->sn); + WARN_ON_ONCE(sde->tx_ring[sde->tx_tail & sde->sdma_mask]); +#endif + sde->tx_ring[sde->tx_tail++ & sde->sdma_mask] = tx; + sde->desc_avail -= tx->num_desc; + return tail; +} + +/* + * Check for progress + */ +static int sdma_check_progress( + struct sdma_engine *sde, + struct iowait_work *wait, + struct sdma_txreq *tx, + bool pkts_sent) +{ + int ret; + + sde->desc_avail = sdma_descq_freecnt(sde); + if (tx->num_desc <= sde->desc_avail) + return -EAGAIN; + /* pulse the head_lock */ + if (wait && iowait_ioww_to_iow(wait)->sleep) { + unsigned seq; + + seq = raw_seqcount_begin( + (const seqcount_t *)&sde->head_lock.seqcount); + ret = wait->iow->sleep(sde, wait, tx, seq, pkts_sent); + if (ret == -EAGAIN) + sde->desc_avail = sdma_descq_freecnt(sde); + } else { + ret = -EBUSY; + } + return ret; +} + +/** + * sdma_send_txreq() - submit a tx req to ring + * @sde: sdma engine to use + * @wait: SE wait structure to use when full (may be NULL) + * @tx: sdma_txreq to submit + * @pkts_sent: has any packet been sent yet? + * + * The call submits the tx into the ring. If a iowait structure is non-NULL + * the packet will be queued to the list in wait. + * + * Return: + * 0 - Success, -EINVAL - sdma_txreq incomplete, -EBUSY - no space in + * ring (wait == NULL) + * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state + */ +int sdma_send_txreq(struct sdma_engine *sde, + struct iowait_work *wait, + struct sdma_txreq *tx, + bool pkts_sent) +{ + int ret = 0; + u16 tail; + unsigned long flags; + + /* user should have supplied entire packet */ + if (unlikely(tx->tlen)) + return -EINVAL; + tx->wait = iowait_ioww_to_iow(wait); + spin_lock_irqsave(&sde->tail_lock, flags); +retry: + if (unlikely(!__sdma_running(sde))) + goto unlock_noconn; + if (unlikely(tx->num_desc > sde->desc_avail)) + goto nodesc; + tail = submit_tx(sde, tx); + if (wait) + iowait_sdma_inc(iowait_ioww_to_iow(wait)); + sdma_update_tail(sde, tail); +unlock: + spin_unlock_irqrestore(&sde->tail_lock, flags); + return ret; +unlock_noconn: + if (wait) + iowait_sdma_inc(iowait_ioww_to_iow(wait)); + tx->next_descq_idx = 0; +#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER + tx->sn = sde->tail_sn++; + trace_hfi1_sdma_in_sn(sde, tx->sn); +#endif + spin_lock(&sde->flushlist_lock); + list_add_tail(&tx->list, &sde->flushlist); + spin_unlock(&sde->flushlist_lock); + iowait_inc_wait_count(wait, tx->num_desc); + queue_work_on(sde->cpu, system_highpri_wq, &sde->flush_worker); + ret = -ECOMM; + goto unlock; +nodesc: + ret = sdma_check_progress(sde, wait, tx, pkts_sent); + if (ret == -EAGAIN) { + ret = 0; + goto retry; + } + sde->descq_full_count++; + goto unlock; +} + +/** + * sdma_send_txlist() - submit a list of tx req to ring + * @sde: sdma engine to use + * @wait: SE wait structure to use when full (may be NULL) + * @tx_list: list of sdma_txreqs to submit + * @count_out: pointer to a u16 which, after return will contain the total number of + * sdma_txreqs removed from the tx_list. This will include sdma_txreqs + * whose SDMA descriptors are submitted to the ring and the sdma_txreqs + * which are added to SDMA engine flush list if the SDMA engine state is + * not running. + * + * The call submits the list into the ring. + * + * If the iowait structure is non-NULL and not equal to the iowait list + * the unprocessed part of the list will be appended to the list in wait. + * + * In all cases, the tx_list will be updated so the head of the tx_list is + * the list of descriptors that have yet to be transmitted. + * + * The intent of this call is to provide a more efficient + * way of submitting multiple packets to SDMA while holding the tail + * side locking. + * + * Return: + * 0 - Success, + * -EINVAL - sdma_txreq incomplete, -EBUSY - no space in ring (wait == NULL) + * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state + */ +int sdma_send_txlist(struct sdma_engine *sde, struct iowait_work *wait, + struct list_head *tx_list, u16 *count_out) +{ + struct sdma_txreq *tx, *tx_next; + int ret = 0; + unsigned long flags; + u16 tail = INVALID_TAIL; + u32 submit_count = 0, flush_count = 0, total_count; + + spin_lock_irqsave(&sde->tail_lock, flags); +retry: + list_for_each_entry_safe(tx, tx_next, tx_list, list) { + tx->wait = iowait_ioww_to_iow(wait); + if (unlikely(!__sdma_running(sde))) + goto unlock_noconn; + if (unlikely(tx->num_desc > sde->desc_avail)) + goto nodesc; + if (unlikely(tx->tlen)) { + ret = -EINVAL; + goto update_tail; + } + list_del_init(&tx->list); + tail = submit_tx(sde, tx); + submit_count++; + if (tail != INVALID_TAIL && + (submit_count & SDMA_TAIL_UPDATE_THRESH) == 0) { + sdma_update_tail(sde, tail); + tail = INVALID_TAIL; + } + } +update_tail: + total_count = submit_count + flush_count; + if (wait) { + iowait_sdma_add(iowait_ioww_to_iow(wait), total_count); + iowait_starve_clear(submit_count > 0, + iowait_ioww_to_iow(wait)); + } + if (tail != INVALID_TAIL) + sdma_update_tail(sde, tail); + spin_unlock_irqrestore(&sde->tail_lock, flags); + *count_out = total_count; + return ret; +unlock_noconn: + spin_lock(&sde->flushlist_lock); + list_for_each_entry_safe(tx, tx_next, tx_list, list) { + tx->wait = iowait_ioww_to_iow(wait); + list_del_init(&tx->list); + tx->next_descq_idx = 0; +#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER + tx->sn = sde->tail_sn++; + trace_hfi1_sdma_in_sn(sde, tx->sn); +#endif + list_add_tail(&tx->list, &sde->flushlist); + flush_count++; + iowait_inc_wait_count(wait, tx->num_desc); + } + spin_unlock(&sde->flushlist_lock); + queue_work_on(sde->cpu, system_highpri_wq, &sde->flush_worker); + ret = -ECOMM; + goto update_tail; +nodesc: + ret = sdma_check_progress(sde, wait, tx, submit_count > 0); + if (ret == -EAGAIN) { + ret = 0; + goto retry; + } + sde->descq_full_count++; + goto update_tail; +} + +static void sdma_process_event(struct sdma_engine *sde, enum sdma_events event) +{ + unsigned long flags; + + spin_lock_irqsave(&sde->tail_lock, flags); + write_seqlock(&sde->head_lock); + + __sdma_process_event(sde, event); + + if (sde->state.current_state == sdma_state_s99_running) + sdma_desc_avail(sde, sdma_descq_freecnt(sde)); + + write_sequnlock(&sde->head_lock); + spin_unlock_irqrestore(&sde->tail_lock, flags); +} + +static void __sdma_process_event(struct sdma_engine *sde, + enum sdma_events event) +{ + struct sdma_state *ss = &sde->state; + int need_progress = 0; + + /* CONFIG SDMA temporary */ +#ifdef CONFIG_SDMA_VERBOSITY + dd_dev_err(sde->dd, "CONFIG SDMA(%u) [%s] %s\n", sde->this_idx, + sdma_state_names[ss->current_state], + sdma_event_names[event]); +#endif + + switch (ss->current_state) { + case sdma_state_s00_hw_down: + switch (event) { + case sdma_event_e00_go_hw_down: + break; + case sdma_event_e30_go_running: + /* + * If down, but running requested (usually result + * of link up, then we need to start up. + * This can happen when hw down is requested while + * bringing the link up with traffic active on + * 7220, e.g. + */ + ss->go_s99_running = 1; + fallthrough; /* and start dma engine */ + case sdma_event_e10_go_hw_start: + /* This reference means the state machine is started */ + sdma_get(&sde->state); + sdma_set_state(sde, + sdma_state_s10_hw_start_up_halt_wait); + break; + case sdma_event_e15_hw_halt_done: + break; + case sdma_event_e25_hw_clean_up_done: + break; + case sdma_event_e40_sw_cleaned: + sdma_sw_tear_down(sde); + break; + case sdma_event_e50_hw_cleaned: + break; + case sdma_event_e60_hw_halted: + break; + case sdma_event_e70_go_idle: + break; + case sdma_event_e80_hw_freeze: + break; + case sdma_event_e81_hw_frozen: + break; + case sdma_event_e82_hw_unfreeze: + break; + case sdma_event_e85_link_down: + break; + case sdma_event_e90_sw_halted: + break; + } + break; + + case sdma_state_s10_hw_start_up_halt_wait: + switch (event) { + case sdma_event_e00_go_hw_down: + sdma_set_state(sde, sdma_state_s00_hw_down); + sdma_sw_tear_down(sde); + break; + case sdma_event_e10_go_hw_start: + break; + case sdma_event_e15_hw_halt_done: + sdma_set_state(sde, + sdma_state_s15_hw_start_up_clean_wait); + sdma_start_hw_clean_up(sde); + break; + case sdma_event_e25_hw_clean_up_done: + break; + case sdma_event_e30_go_running: + ss->go_s99_running = 1; + break; + case sdma_event_e40_sw_cleaned: + break; + case sdma_event_e50_hw_cleaned: + break; + case sdma_event_e60_hw_halted: + schedule_work(&sde->err_halt_worker); + break; + case sdma_event_e70_go_idle: + ss->go_s99_running = 0; + break; + case sdma_event_e80_hw_freeze: + break; + case sdma_event_e81_hw_frozen: + break; + case sdma_event_e82_hw_unfreeze: + break; + case sdma_event_e85_link_down: + break; + case sdma_event_e90_sw_halted: + break; + } + break; + + case sdma_state_s15_hw_start_up_clean_wait: + switch (event) { + case sdma_event_e00_go_hw_down: + sdma_set_state(sde, sdma_state_s00_hw_down); + sdma_sw_tear_down(sde); + break; + case sdma_event_e10_go_hw_start: + break; + case sdma_event_e15_hw_halt_done: + break; + case sdma_event_e25_hw_clean_up_done: + sdma_hw_start_up(sde); + sdma_set_state(sde, ss->go_s99_running ? + sdma_state_s99_running : + sdma_state_s20_idle); + break; + case sdma_event_e30_go_running: + ss->go_s99_running = 1; + break; + case sdma_event_e40_sw_cleaned: + break; + case sdma_event_e50_hw_cleaned: + break; + case sdma_event_e60_hw_halted: + break; + case sdma_event_e70_go_idle: + ss->go_s99_running = 0; + break; + case sdma_event_e80_hw_freeze: + break; + case sdma_event_e81_hw_frozen: + break; + case sdma_event_e82_hw_unfreeze: + break; + case sdma_event_e85_link_down: + break; + case sdma_event_e90_sw_halted: + break; + } + break; + + case sdma_state_s20_idle: + switch (event) { + case sdma_event_e00_go_hw_down: + sdma_set_state(sde, sdma_state_s00_hw_down); + sdma_sw_tear_down(sde); + break; + case sdma_event_e10_go_hw_start: + break; + case sdma_event_e15_hw_halt_done: + break; + case sdma_event_e25_hw_clean_up_done: + break; + case sdma_event_e30_go_running: + sdma_set_state(sde, sdma_state_s99_running); + ss->go_s99_running = 1; + break; + case sdma_event_e40_sw_cleaned: + break; + case sdma_event_e50_hw_cleaned: + break; + case sdma_event_e60_hw_halted: + sdma_set_state(sde, sdma_state_s50_hw_halt_wait); + schedule_work(&sde->err_halt_worker); + break; + case sdma_event_e70_go_idle: + break; + case sdma_event_e85_link_down: + case sdma_event_e80_hw_freeze: + sdma_set_state(sde, sdma_state_s80_hw_freeze); + atomic_dec(&sde->dd->sdma_unfreeze_count); + wake_up_interruptible(&sde->dd->sdma_unfreeze_wq); + break; + case sdma_event_e81_hw_frozen: + break; + case sdma_event_e82_hw_unfreeze: + break; + case sdma_event_e90_sw_halted: + break; + } + break; + + case sdma_state_s30_sw_clean_up_wait: + switch (event) { + case sdma_event_e00_go_hw_down: + sdma_set_state(sde, sdma_state_s00_hw_down); + break; + case sdma_event_e10_go_hw_start: + break; + case sdma_event_e15_hw_halt_done: + break; + case sdma_event_e25_hw_clean_up_done: + break; + case sdma_event_e30_go_running: + ss->go_s99_running = 1; + break; + case sdma_event_e40_sw_cleaned: + sdma_set_state(sde, sdma_state_s40_hw_clean_up_wait); + sdma_start_hw_clean_up(sde); + break; + case sdma_event_e50_hw_cleaned: + break; + case sdma_event_e60_hw_halted: + break; + case sdma_event_e70_go_idle: + ss->go_s99_running = 0; + break; + case sdma_event_e80_hw_freeze: + break; + case sdma_event_e81_hw_frozen: + break; + case sdma_event_e82_hw_unfreeze: + break; + case sdma_event_e85_link_down: + ss->go_s99_running = 0; + break; + case sdma_event_e90_sw_halted: + break; + } + break; + + case sdma_state_s40_hw_clean_up_wait: + switch (event) { + case sdma_event_e00_go_hw_down: + sdma_set_state(sde, sdma_state_s00_hw_down); + tasklet_hi_schedule(&sde->sdma_sw_clean_up_task); + break; + case sdma_event_e10_go_hw_start: + break; + case sdma_event_e15_hw_halt_done: + break; + case sdma_event_e25_hw_clean_up_done: + sdma_hw_start_up(sde); + sdma_set_state(sde, ss->go_s99_running ? + sdma_state_s99_running : + sdma_state_s20_idle); + break; + case sdma_event_e30_go_running: + ss->go_s99_running = 1; + break; + case sdma_event_e40_sw_cleaned: + break; + case sdma_event_e50_hw_cleaned: + break; + case sdma_event_e60_hw_halted: + break; + case sdma_event_e70_go_idle: + ss->go_s99_running = 0; + break; + case sdma_event_e80_hw_freeze: + break; + case sdma_event_e81_hw_frozen: + break; + case sdma_event_e82_hw_unfreeze: + break; + case sdma_event_e85_link_down: + ss->go_s99_running = 0; + break; + case sdma_event_e90_sw_halted: + break; + } + break; + + case sdma_state_s50_hw_halt_wait: + switch (event) { + case sdma_event_e00_go_hw_down: + sdma_set_state(sde, sdma_state_s00_hw_down); + tasklet_hi_schedule(&sde->sdma_sw_clean_up_task); + break; + case sdma_event_e10_go_hw_start: + break; + case sdma_event_e15_hw_halt_done: + sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait); + tasklet_hi_schedule(&sde->sdma_sw_clean_up_task); + break; + case sdma_event_e25_hw_clean_up_done: + break; + case sdma_event_e30_go_running: + ss->go_s99_running = 1; + break; + case sdma_event_e40_sw_cleaned: + break; + case sdma_event_e50_hw_cleaned: + break; + case sdma_event_e60_hw_halted: + schedule_work(&sde->err_halt_worker); + break; + case sdma_event_e70_go_idle: + ss->go_s99_running = 0; + break; + case sdma_event_e80_hw_freeze: + break; + case sdma_event_e81_hw_frozen: + break; + case sdma_event_e82_hw_unfreeze: + break; + case sdma_event_e85_link_down: + ss->go_s99_running = 0; + break; + case sdma_event_e90_sw_halted: + break; + } + break; + + case sdma_state_s60_idle_halt_wait: + switch (event) { + case sdma_event_e00_go_hw_down: + sdma_set_state(sde, sdma_state_s00_hw_down); + tasklet_hi_schedule(&sde->sdma_sw_clean_up_task); + break; + case sdma_event_e10_go_hw_start: + break; + case sdma_event_e15_hw_halt_done: + sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait); + tasklet_hi_schedule(&sde->sdma_sw_clean_up_task); + break; + case sdma_event_e25_hw_clean_up_done: + break; + case sdma_event_e30_go_running: + ss->go_s99_running = 1; + break; + case sdma_event_e40_sw_cleaned: + break; + case sdma_event_e50_hw_cleaned: + break; + case sdma_event_e60_hw_halted: + schedule_work(&sde->err_halt_worker); + break; + case sdma_event_e70_go_idle: + ss->go_s99_running = 0; + break; + case sdma_event_e80_hw_freeze: + break; + case sdma_event_e81_hw_frozen: + break; + case sdma_event_e82_hw_unfreeze: + break; + case sdma_event_e85_link_down: + break; + case sdma_event_e90_sw_halted: + break; + } + break; + + case sdma_state_s80_hw_freeze: + switch (event) { + case sdma_event_e00_go_hw_down: + sdma_set_state(sde, sdma_state_s00_hw_down); + tasklet_hi_schedule(&sde->sdma_sw_clean_up_task); + break; + case sdma_event_e10_go_hw_start: + break; + case sdma_event_e15_hw_halt_done: + break; + case sdma_event_e25_hw_clean_up_done: + break; + case sdma_event_e30_go_running: + ss->go_s99_running = 1; + break; + case sdma_event_e40_sw_cleaned: + break; + case sdma_event_e50_hw_cleaned: + break; + case sdma_event_e60_hw_halted: + break; + case sdma_event_e70_go_idle: + ss->go_s99_running = 0; + break; + case sdma_event_e80_hw_freeze: + break; + case sdma_event_e81_hw_frozen: + sdma_set_state(sde, sdma_state_s82_freeze_sw_clean); + tasklet_hi_schedule(&sde->sdma_sw_clean_up_task); + break; + case sdma_event_e82_hw_unfreeze: + break; + case sdma_event_e85_link_down: + break; + case sdma_event_e90_sw_halted: + break; + } + break; + + case sdma_state_s82_freeze_sw_clean: + switch (event) { + case sdma_event_e00_go_hw_down: + sdma_set_state(sde, sdma_state_s00_hw_down); + tasklet_hi_schedule(&sde->sdma_sw_clean_up_task); + break; + case sdma_event_e10_go_hw_start: + break; + case sdma_event_e15_hw_halt_done: + break; + case sdma_event_e25_hw_clean_up_done: + break; + case sdma_event_e30_go_running: + ss->go_s99_running = 1; + break; + case sdma_event_e40_sw_cleaned: + /* notify caller this engine is done cleaning */ + atomic_dec(&sde->dd->sdma_unfreeze_count); + wake_up_interruptible(&sde->dd->sdma_unfreeze_wq); + break; + case sdma_event_e50_hw_cleaned: + break; + case sdma_event_e60_hw_halted: + break; + case sdma_event_e70_go_idle: + ss->go_s99_running = 0; + break; + case sdma_event_e80_hw_freeze: + break; + case sdma_event_e81_hw_frozen: + break; + case sdma_event_e82_hw_unfreeze: + sdma_hw_start_up(sde); + sdma_set_state(sde, ss->go_s99_running ? + sdma_state_s99_running : + sdma_state_s20_idle); + break; + case sdma_event_e85_link_down: + break; + case sdma_event_e90_sw_halted: + break; + } + break; + + case sdma_state_s99_running: + switch (event) { + case sdma_event_e00_go_hw_down: + sdma_set_state(sde, sdma_state_s00_hw_down); + tasklet_hi_schedule(&sde->sdma_sw_clean_up_task); + break; + case sdma_event_e10_go_hw_start: + break; + case sdma_event_e15_hw_halt_done: + break; + case sdma_event_e25_hw_clean_up_done: + break; + case sdma_event_e30_go_running: + break; + case sdma_event_e40_sw_cleaned: + break; + case sdma_event_e50_hw_cleaned: + break; + case sdma_event_e60_hw_halted: + need_progress = 1; + sdma_err_progress_check_schedule(sde); + fallthrough; + case sdma_event_e90_sw_halted: + /* + * SW initiated halt does not perform engines + * progress check + */ + sdma_set_state(sde, sdma_state_s50_hw_halt_wait); + schedule_work(&sde->err_halt_worker); + break; + case sdma_event_e70_go_idle: + sdma_set_state(sde, sdma_state_s60_idle_halt_wait); + break; + case sdma_event_e85_link_down: + ss->go_s99_running = 0; + fallthrough; + case sdma_event_e80_hw_freeze: + sdma_set_state(sde, sdma_state_s80_hw_freeze); + atomic_dec(&sde->dd->sdma_unfreeze_count); + wake_up_interruptible(&sde->dd->sdma_unfreeze_wq); + break; + case sdma_event_e81_hw_frozen: + break; + case sdma_event_e82_hw_unfreeze: + break; + } + break; + } + + ss->last_event = event; + if (need_progress) + sdma_make_progress(sde, 0); +} + +/* + * _extend_sdma_tx_descs() - helper to extend txreq + * + * This is called once the initial nominal allocation + * of descriptors in the sdma_txreq is exhausted. + * + * The code will bump the allocation up to the max + * of MAX_DESC (64) descriptors. There doesn't seem + * much point in an interim step. The last descriptor + * is reserved for coalesce buffer in order to support + * cases where input packet has >MAX_DESC iovecs. + * + */ +static int _extend_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx) +{ + int i; + struct sdma_desc *descp; + + /* Handle last descriptor */ + if (unlikely((tx->num_desc == (MAX_DESC - 1)))) { + /* if tlen is 0, it is for padding, release last descriptor */ + if (!tx->tlen) { + tx->desc_limit = MAX_DESC; + } else if (!tx->coalesce_buf) { + /* allocate coalesce buffer with space for padding */ + tx->coalesce_buf = kmalloc(tx->tlen + sizeof(u32), + GFP_ATOMIC); + if (!tx->coalesce_buf) + goto enomem; + tx->coalesce_idx = 0; + } + return 0; + } + + if (unlikely(tx->num_desc == MAX_DESC)) + goto enomem; + + descp = kmalloc_array(MAX_DESC, sizeof(struct sdma_desc), GFP_ATOMIC); + if (!descp) + goto enomem; + tx->descp = descp; + + /* reserve last descriptor for coalescing */ + tx->desc_limit = MAX_DESC - 1; + /* copy ones already built */ + for (i = 0; i < tx->num_desc; i++) + tx->descp[i] = tx->descs[i]; + return 0; +enomem: + __sdma_txclean(dd, tx); + return -ENOMEM; +} + +/* + * ext_coal_sdma_tx_descs() - extend or coalesce sdma tx descriptors + * + * This is called once the initial nominal allocation of descriptors + * in the sdma_txreq is exhausted. + * + * This function calls _extend_sdma_tx_descs to extend or allocate + * coalesce buffer. If there is a allocated coalesce buffer, it will + * copy the input packet data into the coalesce buffer. It also adds + * coalesce buffer descriptor once when whole packet is received. + * + * Return: + * <0 - error + * 0 - coalescing, don't populate descriptor + * 1 - continue with populating descriptor + */ +int ext_coal_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx, + int type, void *kvaddr, struct page *page, + unsigned long offset, u16 len) +{ + int pad_len, rval; + dma_addr_t addr; + + rval = _extend_sdma_tx_descs(dd, tx); + if (rval) { + __sdma_txclean(dd, tx); + return rval; + } + + /* If coalesce buffer is allocated, copy data into it */ + if (tx->coalesce_buf) { + if (type == SDMA_MAP_NONE) { + __sdma_txclean(dd, tx); + return -EINVAL; + } + + if (type == SDMA_MAP_PAGE) { + kvaddr = kmap_local_page(page); + kvaddr += offset; + } else if (WARN_ON(!kvaddr)) { + __sdma_txclean(dd, tx); + return -EINVAL; + } + + memcpy(tx->coalesce_buf + tx->coalesce_idx, kvaddr, len); + tx->coalesce_idx += len; + if (type == SDMA_MAP_PAGE) + kunmap_local(kvaddr); + + /* If there is more data, return */ + if (tx->tlen - tx->coalesce_idx) + return 0; + + /* Whole packet is received; add any padding */ + pad_len = tx->packet_len & (sizeof(u32) - 1); + if (pad_len) { + pad_len = sizeof(u32) - pad_len; + memset(tx->coalesce_buf + tx->coalesce_idx, 0, pad_len); + /* padding is taken care of for coalescing case */ + tx->packet_len += pad_len; + tx->tlen += pad_len; + } + + /* dma map the coalesce buffer */ + addr = dma_map_single(&dd->pcidev->dev, + tx->coalesce_buf, + tx->tlen, + DMA_TO_DEVICE); + + if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) { + __sdma_txclean(dd, tx); + return -ENOSPC; + } + + /* Add descriptor for coalesce buffer */ + tx->desc_limit = MAX_DESC; + return _sdma_txadd_daddr(dd, SDMA_MAP_SINGLE, tx, + addr, tx->tlen, NULL, NULL, NULL); + } + + return 1; +} + +/* Update sdes when the lmc changes */ +void sdma_update_lmc(struct hfi1_devdata *dd, u64 mask, u32 lid) +{ + struct sdma_engine *sde; + int i; + u64 sreg; + + sreg = ((mask & SD(CHECK_SLID_MASK_MASK)) << + SD(CHECK_SLID_MASK_SHIFT)) | + (((lid & mask) & SD(CHECK_SLID_VALUE_MASK)) << + SD(CHECK_SLID_VALUE_SHIFT)); + + for (i = 0; i < dd->num_sdma; i++) { + hfi1_cdbg(LINKVERB, "SendDmaEngine[%d].SLID_CHECK = 0x%x", + i, (u32)sreg); + sde = &dd->per_sdma[i]; + write_sde_csr(sde, SD(CHECK_SLID), sreg); + } +} + +/* tx not dword sized - pad */ +int _pad_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx) +{ + int rval = 0; + + if ((unlikely(tx->num_desc + 1 == tx->desc_limit))) { + rval = _extend_sdma_tx_descs(dd, tx); + if (rval) { + __sdma_txclean(dd, tx); + return rval; + } + } + + /* finish the one just added */ + make_tx_sdma_desc( + tx, + SDMA_MAP_NONE, + dd->sdma_pad_phys, + sizeof(u32) - (tx->packet_len & (sizeof(u32) - 1)), + NULL, NULL, NULL); + tx->num_desc++; + _sdma_close_tx(dd, tx); + return rval; +} + +/* + * Add ahg to the sdma_txreq + * + * The logic will consume up to 3 + * descriptors at the beginning of + * sdma_txreq. + */ +void _sdma_txreq_ahgadd( + struct sdma_txreq *tx, + u8 num_ahg, + u8 ahg_entry, + u32 *ahg, + u8 ahg_hlen) +{ + u32 i, shift = 0, desc = 0; + u8 mode; + + WARN_ON_ONCE(num_ahg > 9 || (ahg_hlen & 3) || ahg_hlen == 4); + /* compute mode */ + if (num_ahg == 1) + mode = SDMA_AHG_APPLY_UPDATE1; + else if (num_ahg <= 5) + mode = SDMA_AHG_APPLY_UPDATE2; + else + mode = SDMA_AHG_APPLY_UPDATE3; + tx->num_desc++; + /* initialize to consumed descriptors to zero */ + switch (mode) { + case SDMA_AHG_APPLY_UPDATE3: + tx->num_desc++; + tx->descs[2].qw[0] = 0; + tx->descs[2].qw[1] = 0; + fallthrough; + case SDMA_AHG_APPLY_UPDATE2: + tx->num_desc++; + tx->descs[1].qw[0] = 0; + tx->descs[1].qw[1] = 0; + break; + } + ahg_hlen >>= 2; + tx->descs[0].qw[1] |= + (((u64)ahg_entry & SDMA_DESC1_HEADER_INDEX_MASK) + << SDMA_DESC1_HEADER_INDEX_SHIFT) | + (((u64)ahg_hlen & SDMA_DESC1_HEADER_DWS_MASK) + << SDMA_DESC1_HEADER_DWS_SHIFT) | + (((u64)mode & SDMA_DESC1_HEADER_MODE_MASK) + << SDMA_DESC1_HEADER_MODE_SHIFT) | + (((u64)ahg[0] & SDMA_DESC1_HEADER_UPDATE1_MASK) + << SDMA_DESC1_HEADER_UPDATE1_SHIFT); + for (i = 0; i < (num_ahg - 1); i++) { + if (!shift && !(i & 2)) + desc++; + tx->descs[desc].qw[!!(i & 2)] |= + (((u64)ahg[i + 1]) + << shift); + shift = (shift + 32) & 63; + } +} + +/** + * sdma_ahg_alloc - allocate an AHG entry + * @sde: engine to allocate from + * + * Return: + * 0-31 when successful, -EOPNOTSUPP if AHG is not enabled, + * -ENOSPC if an entry is not available + */ +int sdma_ahg_alloc(struct sdma_engine *sde) +{ + int nr; + int oldbit; + + if (!sde) { + trace_hfi1_ahg_allocate(sde, -EINVAL); + return -EINVAL; + } + while (1) { + nr = ffz(READ_ONCE(sde->ahg_bits)); + if (nr > 31) { + trace_hfi1_ahg_allocate(sde, -ENOSPC); + return -ENOSPC; + } + oldbit = test_and_set_bit(nr, &sde->ahg_bits); + if (!oldbit) + break; + cpu_relax(); + } + trace_hfi1_ahg_allocate(sde, nr); + return nr; +} + +/** + * sdma_ahg_free - free an AHG entry + * @sde: engine to return AHG entry + * @ahg_index: index to free + * + * This routine frees the indicate AHG entry. + */ +void sdma_ahg_free(struct sdma_engine *sde, int ahg_index) +{ + if (!sde) + return; + trace_hfi1_ahg_deallocate(sde, ahg_index); + if (ahg_index < 0 || ahg_index > 31) + return; + clear_bit(ahg_index, &sde->ahg_bits); +} + +/* + * SPC freeze handling for SDMA engines. Called when the driver knows + * the SPC is going into a freeze but before the freeze is fully + * settled. Generally an error interrupt. + * + * This event will pull the engine out of running so no more entries can be + * added to the engine's queue. + */ +void sdma_freeze_notify(struct hfi1_devdata *dd, int link_down) +{ + int i; + enum sdma_events event = link_down ? sdma_event_e85_link_down : + sdma_event_e80_hw_freeze; + + /* set up the wait but do not wait here */ + atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma); + + /* tell all engines to stop running and wait */ + for (i = 0; i < dd->num_sdma; i++) + sdma_process_event(&dd->per_sdma[i], event); + + /* sdma_freeze() will wait for all engines to have stopped */ +} + +/* + * SPC freeze handling for SDMA engines. Called when the driver knows + * the SPC is fully frozen. + */ +void sdma_freeze(struct hfi1_devdata *dd) +{ + int i; + int ret; + + /* + * Make sure all engines have moved out of the running state before + * continuing. + */ + ret = wait_event_interruptible(dd->sdma_unfreeze_wq, + atomic_read(&dd->sdma_unfreeze_count) <= + 0); + /* interrupted or count is negative, then unloading - just exit */ + if (ret || atomic_read(&dd->sdma_unfreeze_count) < 0) + return; + + /* set up the count for the next wait */ + atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma); + + /* tell all engines that the SPC is frozen, they can start cleaning */ + for (i = 0; i < dd->num_sdma; i++) + sdma_process_event(&dd->per_sdma[i], sdma_event_e81_hw_frozen); + + /* + * Wait for everyone to finish software clean before exiting. The + * software clean will read engine CSRs, so must be completed before + * the next step, which will clear the engine CSRs. + */ + (void)wait_event_interruptible(dd->sdma_unfreeze_wq, + atomic_read(&dd->sdma_unfreeze_count) <= 0); + /* no need to check results - done no matter what */ +} + +/* + * SPC freeze handling for the SDMA engines. Called after the SPC is unfrozen. + * + * The SPC freeze acts like a SDMA halt and a hardware clean combined. All + * that is left is a software clean. We could do it after the SPC is fully + * frozen, but then we'd have to add another state to wait for the unfreeze. + * Instead, just defer the software clean until the unfreeze step. + */ +void sdma_unfreeze(struct hfi1_devdata *dd) +{ + int i; + + /* tell all engines start freeze clean up */ + for (i = 0; i < dd->num_sdma; i++) + sdma_process_event(&dd->per_sdma[i], + sdma_event_e82_hw_unfreeze); +} + +/** + * _sdma_engine_progress_schedule() - schedule progress on engine + * @sde: sdma_engine to schedule progress + * + */ +void _sdma_engine_progress_schedule( + struct sdma_engine *sde) +{ + trace_hfi1_sdma_engine_progress(sde, sde->progress_mask); + /* assume we have selected a good cpu */ + write_csr(sde->dd, + CCE_INT_FORCE + (8 * (IS_SDMA_START / 64)), + sde->progress_mask); +} |