summaryrefslogtreecommitdiffstats
path: root/drivers/md/dm-vdo/priority-table.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-08-07 13:11:22 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-08-07 13:11:22 +0000
commitb20732900e4636a467c0183a47f7396700f5f743 (patch)
tree42f079ff82e701ebcb76829974b4caca3e5b6798 /drivers/md/dm-vdo/priority-table.c
parentAdding upstream version 6.8.12. (diff)
downloadlinux-b20732900e4636a467c0183a47f7396700f5f743.tar.xz
linux-b20732900e4636a467c0183a47f7396700f5f743.zip
Adding upstream version 6.9.7.upstream/6.9.7
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'drivers/md/dm-vdo/priority-table.c')
-rw-r--r--drivers/md/dm-vdo/priority-table.c224
1 files changed, 224 insertions, 0 deletions
diff --git a/drivers/md/dm-vdo/priority-table.c b/drivers/md/dm-vdo/priority-table.c
new file mode 100644
index 0000000000..42d3d8d0e4
--- /dev/null
+++ b/drivers/md/dm-vdo/priority-table.c
@@ -0,0 +1,224 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright 2023 Red Hat
+ */
+
+#include "priority-table.h"
+
+#include <linux/log2.h>
+
+#include "errors.h"
+#include "memory-alloc.h"
+#include "permassert.h"
+
+#include "status-codes.h"
+
+/* We use a single 64-bit search vector, so the maximum priority is 63 */
+#define MAX_PRIORITY 63
+
+/*
+ * All the entries with the same priority are queued in a circular list in a bucket for that
+ * priority. The table is essentially an array of buckets.
+ */
+struct bucket {
+ /*
+ * The head of a queue of table entries, all having the same priority
+ */
+ struct list_head queue;
+ /* The priority of all the entries in this bucket */
+ unsigned int priority;
+};
+
+/*
+ * A priority table is an array of buckets, indexed by priority. New entries are added to the end
+ * of the queue in the appropriate bucket. The dequeue operation finds the highest-priority
+ * non-empty bucket by searching a bit vector represented as a single 8-byte word, which is very
+ * fast with compiler and CPU support.
+ */
+struct priority_table {
+ /* The maximum priority of entries that may be stored in this table */
+ unsigned int max_priority;
+ /* A bit vector flagging all buckets that are currently non-empty */
+ u64 search_vector;
+ /* The array of all buckets, indexed by priority */
+ struct bucket buckets[];
+};
+
+/**
+ * vdo_make_priority_table() - Allocate and initialize a new priority_table.
+ * @max_priority: The maximum priority value for table entries.
+ * @table_ptr: A pointer to hold the new table.
+ *
+ * Return: VDO_SUCCESS or an error code.
+ */
+int vdo_make_priority_table(unsigned int max_priority, struct priority_table **table_ptr)
+{
+ struct priority_table *table;
+ int result;
+ unsigned int priority;
+
+ if (max_priority > MAX_PRIORITY)
+ return UDS_INVALID_ARGUMENT;
+
+ result = vdo_allocate_extended(struct priority_table, max_priority + 1,
+ struct bucket, __func__, &table);
+ if (result != VDO_SUCCESS)
+ return result;
+
+ for (priority = 0; priority <= max_priority; priority++) {
+ struct bucket *bucket = &table->buckets[priority];
+
+ bucket->priority = priority;
+ INIT_LIST_HEAD(&bucket->queue);
+ }
+
+ table->max_priority = max_priority;
+ table->search_vector = 0;
+
+ *table_ptr = table;
+ return VDO_SUCCESS;
+}
+
+/**
+ * vdo_free_priority_table() - Free a priority_table.
+ * @table: The table to free.
+ *
+ * The table does not own the entries stored in it and they are not freed by this call.
+ */
+void vdo_free_priority_table(struct priority_table *table)
+{
+ if (table == NULL)
+ return;
+
+ /*
+ * Unlink the buckets from any entries still in the table so the entries won't be left with
+ * dangling pointers to freed memory.
+ */
+ vdo_reset_priority_table(table);
+
+ vdo_free(table);
+}
+
+/**
+ * vdo_reset_priority_table() - Reset a priority table, leaving it in the same empty state as when
+ * newly constructed.
+ * @table: The table to reset.
+ *
+ * The table does not own the entries stored in it and they are not freed (or even unlinked from
+ * each other) by this call.
+ */
+void vdo_reset_priority_table(struct priority_table *table)
+{
+ unsigned int priority;
+
+ table->search_vector = 0;
+ for (priority = 0; priority <= table->max_priority; priority++)
+ list_del_init(&table->buckets[priority].queue);
+}
+
+/**
+ * vdo_priority_table_enqueue() - Add a new entry to the priority table, appending it to the queue
+ * for entries with the specified priority.
+ * @table: The table in which to store the entry.
+ * @priority: The priority of the entry.
+ * @entry: The list_head embedded in the entry to store in the table (the caller must have
+ * initialized it).
+ */
+void vdo_priority_table_enqueue(struct priority_table *table, unsigned int priority,
+ struct list_head *entry)
+{
+ VDO_ASSERT_LOG_ONLY((priority <= table->max_priority),
+ "entry priority must be valid for the table");
+
+ /* Append the entry to the queue in the specified bucket. */
+ list_move_tail(entry, &table->buckets[priority].queue);
+
+ /* Flag the bucket in the search vector since it must be non-empty. */
+ table->search_vector |= (1ULL << priority);
+}
+
+static inline void mark_bucket_empty(struct priority_table *table, struct bucket *bucket)
+{
+ table->search_vector &= ~(1ULL << bucket->priority);
+}
+
+/**
+ * vdo_priority_table_dequeue() - Find the highest-priority entry in the table, remove it from the
+ * table, and return it.
+ * @table: The priority table from which to remove an entry.
+ *
+ * If there are multiple entries with the same priority, the one that has been in the table with
+ * that priority the longest will be returned.
+ *
+ * Return: The dequeued entry, or NULL if the table is currently empty.
+ */
+struct list_head *vdo_priority_table_dequeue(struct priority_table *table)
+{
+ struct bucket *bucket;
+ struct list_head *entry;
+ int top_priority;
+
+ if (table->search_vector == 0) {
+ /* All buckets are empty. */
+ return NULL;
+ }
+
+ /*
+ * Find the highest priority non-empty bucket by finding the highest-order non-zero bit in
+ * the search vector.
+ */
+ top_priority = ilog2(table->search_vector);
+
+ /* Dequeue the first entry in the bucket. */
+ bucket = &table->buckets[top_priority];
+ entry = bucket->queue.next;
+ list_del_init(entry);
+
+ /* Clear the bit in the search vector if the bucket has been emptied. */
+ if (list_empty(&bucket->queue))
+ mark_bucket_empty(table, bucket);
+
+ return entry;
+}
+
+/**
+ * vdo_priority_table_remove() - Remove a specified entry from its priority table.
+ * @table: The table from which to remove the entry.
+ * @entry: The entry to remove from the table.
+ */
+void vdo_priority_table_remove(struct priority_table *table, struct list_head *entry)
+{
+ struct list_head *next_entry;
+
+ /*
+ * We can't guard against calls where the entry is on a list for a different table, but
+ * it's easy to deal with an entry not in any table or list.
+ */
+ if (list_empty(entry))
+ return;
+
+ /*
+ * Remove the entry from the bucket list, remembering a pointer to another entry in the
+ * ring.
+ */
+ next_entry = entry->next;
+ list_del_init(entry);
+
+ /*
+ * If the rest of the list is now empty, the next node must be the list head in the bucket
+ * and we can use it to update the search vector.
+ */
+ if (list_empty(next_entry))
+ mark_bucket_empty(table, list_entry(next_entry, struct bucket, queue));
+}
+
+/**
+ * vdo_is_priority_table_empty() - Return whether the priority table is empty.
+ * @table: The table to check.
+ *
+ * Return: true if the table is empty.
+ */
+bool vdo_is_priority_table_empty(struct priority_table *table)
+{
+ return (table->search_vector == 0);
+}