diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-08-07 13:11:22 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-08-07 13:11:22 +0000 |
commit | b20732900e4636a467c0183a47f7396700f5f743 (patch) | |
tree | 42f079ff82e701ebcb76829974b4caca3e5b6798 /drivers/md/dm-vdo/slab-depot.h | |
parent | Adding upstream version 6.8.12. (diff) | |
download | linux-b20732900e4636a467c0183a47f7396700f5f743.tar.xz linux-b20732900e4636a467c0183a47f7396700f5f743.zip |
Adding upstream version 6.9.7.upstream/6.9.7
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'drivers/md/dm-vdo/slab-depot.h')
-rw-r--r-- | drivers/md/dm-vdo/slab-depot.h | 601 |
1 files changed, 601 insertions, 0 deletions
diff --git a/drivers/md/dm-vdo/slab-depot.h b/drivers/md/dm-vdo/slab-depot.h new file mode 100644 index 0000000000..f234853501 --- /dev/null +++ b/drivers/md/dm-vdo/slab-depot.h @@ -0,0 +1,601 @@ +/* SPDX-License-Identifier: GPL-2.0-only */ +/* + * Copyright 2023 Red Hat + */ + +#ifndef VDO_SLAB_DEPOT_H +#define VDO_SLAB_DEPOT_H + +#include <linux/atomic.h> +#include <linux/dm-kcopyd.h> +#include <linux/list.h> + +#include "numeric.h" + +#include "admin-state.h" +#include "completion.h" +#include "data-vio.h" +#include "encodings.h" +#include "physical-zone.h" +#include "priority-table.h" +#include "recovery-journal.h" +#include "statistics.h" +#include "types.h" +#include "vio.h" +#include "wait-queue.h" + +/* + * A slab_depot is responsible for managing all of the slabs and block allocators of a VDO. It has + * a single array of slabs in order to eliminate the need for additional math in order to compute + * which physical zone a PBN is in. It also has a block_allocator per zone. + * + * Each physical zone has a single dedicated queue and thread for performing all updates to the + * slabs assigned to that zone. The concurrency guarantees of this single-threaded model allow the + * code to omit more fine-grained locking for the various slab structures. Each physical zone + * maintains a separate copy of the slab summary to remove the need for explicit locking on that + * structure as well. + * + * Load operations must be performed on the admin thread. Normal operations, such as allocations + * and reference count updates, must be performed on the appropriate physical zone thread. Requests + * from the recovery journal to commit slab journal tail blocks must be scheduled from the recovery + * journal thread to run on the appropriate physical zone thread. Save operations must be launched + * from the same admin thread as the original load operation. + */ + +enum { + /* The number of vios in the vio pool is proportional to the throughput of the VDO. */ + BLOCK_ALLOCATOR_VIO_POOL_SIZE = 128, +}; + +/* + * Represents the possible status of a block. + */ +enum reference_status { + RS_FREE, /* this block is free */ + RS_SINGLE, /* this block is singly-referenced */ + RS_SHARED, /* this block is shared */ + RS_PROVISIONAL /* this block is provisionally allocated */ +}; + +struct vdo_slab; + +struct journal_lock { + u16 count; + sequence_number_t recovery_start; +}; + +struct slab_journal { + /* A waiter object for getting a VIO pool entry */ + struct vdo_waiter resource_waiter; + /* A waiter object for updating the slab summary */ + struct vdo_waiter slab_summary_waiter; + /* A waiter object for getting a vio with which to flush */ + struct vdo_waiter flush_waiter; + /* The queue of VIOs waiting to make an entry */ + struct vdo_wait_queue entry_waiters; + /* The parent slab reference of this journal */ + struct vdo_slab *slab; + + /* Whether a tail block commit is pending */ + bool waiting_to_commit; + /* Whether the journal is updating the slab summary */ + bool updating_slab_summary; + /* Whether the journal is adding entries from the entry_waiters queue */ + bool adding_entries; + /* Whether a partial write is in progress */ + bool partial_write_in_progress; + + /* The oldest block in the journal on disk */ + sequence_number_t head; + /* The oldest block in the journal which may not be reaped */ + sequence_number_t unreapable; + /* The end of the half-open interval of the active journal */ + sequence_number_t tail; + /* The next journal block to be committed */ + sequence_number_t next_commit; + /* The tail sequence number that is written in the slab summary */ + sequence_number_t summarized; + /* The tail sequence number that was last summarized in slab summary */ + sequence_number_t last_summarized; + + /* The sequence number of the recovery journal lock */ + sequence_number_t recovery_lock; + + /* + * The number of entries which fit in a single block. Can't use the constant because unit + * tests change this number. + */ + journal_entry_count_t entries_per_block; + /* + * The number of full entries which fit in a single block. Can't use the constant because + * unit tests change this number. + */ + journal_entry_count_t full_entries_per_block; + + /* The recovery journal of the VDO (slab journal holds locks on it) */ + struct recovery_journal *recovery_journal; + + /* The statistics shared by all slab journals in our physical zone */ + struct slab_journal_statistics *events; + /* A list of the VIO pool entries for outstanding journal block writes */ + struct list_head uncommitted_blocks; + + /* + * The current tail block header state. This will be packed into the block just before it + * is written. + */ + struct slab_journal_block_header tail_header; + /* A pointer to a block-sized buffer holding the packed block data */ + struct packed_slab_journal_block *block; + + /* The number of blocks in the on-disk journal */ + block_count_t size; + /* The number of blocks at which to start pushing reference blocks */ + block_count_t flushing_threshold; + /* The number of blocks at which all reference blocks should be writing */ + block_count_t flushing_deadline; + /* The number of blocks at which to wait for reference blocks to write */ + block_count_t blocking_threshold; + /* The number of blocks at which to scrub the slab before coming online */ + block_count_t scrubbing_threshold; + + /* This list entry is for block_allocator to keep a queue of dirty journals */ + struct list_head dirty_entry; + + /* The lock for the oldest unreaped block of the journal */ + struct journal_lock *reap_lock; + /* The locks for each on disk block */ + struct journal_lock *locks; +}; + +/* + * Reference_block structure + * + * Blocks are used as a proxy, permitting saves of partial refcounts. + */ +struct reference_block { + /* This block waits on the ref_counts to tell it to write */ + struct vdo_waiter waiter; + /* The slab to which this reference_block belongs */ + struct vdo_slab *slab; + /* The number of references in this block that represent allocations */ + block_size_t allocated_count; + /* The slab journal block on which this block must hold a lock */ + sequence_number_t slab_journal_lock; + /* The slab journal block which should be released when this block is committed */ + sequence_number_t slab_journal_lock_to_release; + /* The point up to which each sector is accurate on disk */ + struct journal_point commit_points[VDO_SECTORS_PER_BLOCK]; + /* Whether this block has been modified since it was written to disk */ + bool is_dirty; + /* Whether this block is currently writing */ + bool is_writing; +}; + +/* The search_cursor represents the saved position of a free block search. */ +struct search_cursor { + /* The reference block containing the current search index */ + struct reference_block *block; + /* The position at which to start searching for the next free counter */ + slab_block_number index; + /* The position just past the last valid counter in the current block */ + slab_block_number end_index; + + /* A pointer to the first reference block in the slab */ + struct reference_block *first_block; + /* A pointer to the last reference block in the slab */ + struct reference_block *last_block; +}; + +enum slab_rebuild_status { + VDO_SLAB_REBUILT, + VDO_SLAB_REPLAYING, + VDO_SLAB_REQUIRES_SCRUBBING, + VDO_SLAB_REQUIRES_HIGH_PRIORITY_SCRUBBING, + VDO_SLAB_REBUILDING, +}; + +/* + * This is the type declaration for the vdo_slab type. A vdo_slab currently consists of a run of + * 2^23 data blocks, but that will soon change to dedicate a small number of those blocks for + * metadata storage for the reference counts and slab journal for the slab. + * + * A reference count is maintained for each physical block number. The vast majority of blocks have + * a very small reference count (usually 0 or 1). For references less than or equal to MAXIMUM_REFS + * (254) the reference count is stored in counters[pbn]. + */ +struct vdo_slab { + /* A list entry to queue this slab in a block_allocator list */ + struct list_head allocq_entry; + + /* The struct block_allocator that owns this slab */ + struct block_allocator *allocator; + + /* The journal for this slab */ + struct slab_journal journal; + + /* The slab number of this slab */ + slab_count_t slab_number; + /* The offset in the allocator partition of the first block in this slab */ + physical_block_number_t start; + /* The offset of the first block past the end of this slab */ + physical_block_number_t end; + /* The starting translated PBN of the slab journal */ + physical_block_number_t journal_origin; + /* The starting translated PBN of the reference counts */ + physical_block_number_t ref_counts_origin; + + /* The administrative state of the slab */ + struct admin_state state; + /* The status of the slab */ + enum slab_rebuild_status status; + /* Whether the slab was ever queued for scrubbing */ + bool was_queued_for_scrubbing; + + /* The priority at which this slab has been queued for allocation */ + u8 priority; + + /* Fields beyond this point are the reference counts for the data blocks in this slab. */ + /* The size of the counters array */ + u32 block_count; + /* The number of free blocks */ + u32 free_blocks; + /* The array of reference counts */ + vdo_refcount_t *counters; /* use vdo_allocate() to align data ptr */ + + /* The saved block pointer and array indexes for the free block search */ + struct search_cursor search_cursor; + + /* A list of the dirty blocks waiting to be written out */ + struct vdo_wait_queue dirty_blocks; + /* The number of blocks which are currently writing */ + size_t active_count; + + /* A waiter object for updating the slab summary */ + struct vdo_waiter summary_waiter; + + /* The latest slab journal for which there has been a reference count update */ + struct journal_point slab_journal_point; + + /* The number of reference count blocks */ + u32 reference_block_count; + /* reference count block array */ + struct reference_block *reference_blocks; +}; + +enum block_allocator_drain_step { + VDO_DRAIN_ALLOCATOR_START, + VDO_DRAIN_ALLOCATOR_STEP_SCRUBBER, + VDO_DRAIN_ALLOCATOR_STEP_SLABS, + VDO_DRAIN_ALLOCATOR_STEP_SUMMARY, + VDO_DRAIN_ALLOCATOR_STEP_FINISHED, +}; + +struct slab_scrubber { + /* The queue of slabs to scrub first */ + struct list_head high_priority_slabs; + /* The queue of slabs to scrub once there are no high_priority_slabs */ + struct list_head slabs; + /* The queue of VIOs waiting for a slab to be scrubbed */ + struct vdo_wait_queue waiters; + + /* + * The number of slabs that are unrecovered or being scrubbed. This field is modified by + * the physical zone thread, but is queried by other threads. + */ + slab_count_t slab_count; + + /* The administrative state of the scrubber */ + struct admin_state admin_state; + /* Whether to only scrub high-priority slabs */ + bool high_priority_only; + /* The slab currently being scrubbed */ + struct vdo_slab *slab; + /* The vio for loading slab journal blocks */ + struct vio vio; +}; + +/* A sub-structure for applying actions in parallel to all an allocator's slabs. */ +struct slab_actor { + /* The number of slabs performing a slab action */ + slab_count_t slab_action_count; + /* The method to call when a slab action has been completed by all slabs */ + vdo_action_fn callback; +}; + +/* A slab_iterator is a structure for iterating over a set of slabs. */ +struct slab_iterator { + struct vdo_slab **slabs; + struct vdo_slab *next; + slab_count_t end; + slab_count_t stride; +}; + +/* + * The slab_summary provides hints during load and recovery about the state of the slabs in order + * to avoid the need to read the slab journals in their entirety before a VDO can come online. + * + * The information in the summary for each slab includes the rough number of free blocks (which is + * used to prioritize scrubbing), the cleanliness of a slab (so that clean slabs containing free + * space will be used on restart), and the location of the tail block of the slab's journal. + * + * The slab_summary has its own partition at the end of the volume which is sized to allow for a + * complete copy of the summary for each of up to 16 physical zones. + * + * During resize, the slab_summary moves its backing partition and is saved once moved; the + * slab_summary is not permitted to overwrite the previous recovery journal space. + * + * The slab_summary does not have its own version information, but relies on the VDO volume version + * number. + */ + +/* + * A slab status is a very small structure for use in determining the ordering of slabs in the + * scrubbing process. + */ +struct slab_status { + slab_count_t slab_number; + bool is_clean; + u8 emptiness; +}; + +struct slab_summary_block { + /* The block_allocator to which this block belongs */ + struct block_allocator *allocator; + /* The index of this block in its zone's summary */ + block_count_t index; + /* Whether this block has a write outstanding */ + bool writing; + /* Ring of updates waiting on the outstanding write */ + struct vdo_wait_queue current_update_waiters; + /* Ring of updates waiting on the next write */ + struct vdo_wait_queue next_update_waiters; + /* The active slab_summary_entry array for this block */ + struct slab_summary_entry *entries; + /* The vio used to write this block */ + struct vio vio; + /* The packed entries, one block long, backing the vio */ + char *outgoing_entries; +}; + +/* + * The statistics for all the slab summary zones owned by this slab summary. These fields are all + * mutated only by their physical zone threads, but are read by other threads when gathering + * statistics for the entire depot. + */ +struct atomic_slab_summary_statistics { + /* Number of blocks written */ + atomic64_t blocks_written; +}; + +struct block_allocator { + struct vdo_completion completion; + /* The slab depot for this allocator */ + struct slab_depot *depot; + /* The nonce of the VDO */ + nonce_t nonce; + /* The physical zone number of this allocator */ + zone_count_t zone_number; + /* The thread ID for this allocator's physical zone */ + thread_id_t thread_id; + /* The number of slabs in this allocator */ + slab_count_t slab_count; + /* The number of the last slab owned by this allocator */ + slab_count_t last_slab; + /* The reduced priority level used to preserve unopened slabs */ + unsigned int unopened_slab_priority; + /* The state of this allocator */ + struct admin_state state; + /* The actor for applying an action to all slabs */ + struct slab_actor slab_actor; + + /* The slab from which blocks are currently being allocated */ + struct vdo_slab *open_slab; + /* A priority queue containing all slabs available for allocation */ + struct priority_table *prioritized_slabs; + /* The slab scrubber */ + struct slab_scrubber scrubber; + /* What phase of the close operation the allocator is to perform */ + enum block_allocator_drain_step drain_step; + + /* + * These statistics are all mutated only by the physical zone thread, but are read by other + * threads when gathering statistics for the entire depot. + */ + /* + * The count of allocated blocks in this zone. Not in block_allocator_statistics for + * historical reasons. + */ + u64 allocated_blocks; + /* Statistics for this block allocator */ + struct block_allocator_statistics statistics; + /* Cumulative statistics for the slab journals in this zone */ + struct slab_journal_statistics slab_journal_statistics; + /* Cumulative statistics for the reference counters in this zone */ + struct ref_counts_statistics ref_counts_statistics; + + /* + * This is the head of a queue of slab journals which have entries in their tail blocks + * which have not yet started to commit. When the recovery journal is under space pressure, + * slab journals which have uncommitted entries holding a lock on the recovery journal head + * are forced to commit their blocks early. This list is kept in order, with the tail + * containing the slab journal holding the most recent recovery journal lock. + */ + struct list_head dirty_slab_journals; + + /* The vio pool for reading and writing block allocator metadata */ + struct vio_pool *vio_pool; + /* The dm_kcopyd client for erasing slab journals */ + struct dm_kcopyd_client *eraser; + /* Iterator over the slabs to be erased */ + struct slab_iterator slabs_to_erase; + + /* The portion of the slab summary managed by this allocator */ + /* The state of the slab summary */ + struct admin_state summary_state; + /* The number of outstanding summary writes */ + block_count_t summary_write_count; + /* The array (owned by the blocks) of all entries */ + struct slab_summary_entry *summary_entries; + /* The array of slab_summary_blocks */ + struct slab_summary_block *summary_blocks; +}; + +enum slab_depot_load_type { + VDO_SLAB_DEPOT_NORMAL_LOAD, + VDO_SLAB_DEPOT_RECOVERY_LOAD, + VDO_SLAB_DEPOT_REBUILD_LOAD +}; + +struct slab_depot { + zone_count_t zone_count; + zone_count_t old_zone_count; + struct vdo *vdo; + struct slab_config slab_config; + struct action_manager *action_manager; + + physical_block_number_t first_block; + physical_block_number_t last_block; + physical_block_number_t origin; + + /* slab_size == (1 << slab_size_shift) */ + unsigned int slab_size_shift; + + /* Determines how slabs should be queued during load */ + enum slab_depot_load_type load_type; + + /* The state for notifying slab journals to release recovery journal */ + sequence_number_t active_release_request; + sequence_number_t new_release_request; + + /* State variables for scrubbing complete handling */ + atomic_t zones_to_scrub; + + /* Array of pointers to individually allocated slabs */ + struct vdo_slab **slabs; + /* The number of slabs currently allocated and stored in 'slabs' */ + slab_count_t slab_count; + + /* Array of pointers to a larger set of slabs (used during resize) */ + struct vdo_slab **new_slabs; + /* The number of slabs currently allocated and stored in 'new_slabs' */ + slab_count_t new_slab_count; + /* The size that 'new_slabs' was allocated for */ + block_count_t new_size; + + /* The last block before resize, for rollback */ + physical_block_number_t old_last_block; + /* The last block after resize, for resize */ + physical_block_number_t new_last_block; + + /* The statistics for the slab summary */ + struct atomic_slab_summary_statistics summary_statistics; + /* The start of the slab summary partition */ + physical_block_number_t summary_origin; + /* The number of bits to shift to get a 7-bit fullness hint */ + unsigned int hint_shift; + /* The slab summary entries for all of the zones the partition can hold */ + struct slab_summary_entry *summary_entries; + + /* The block allocators for this depot */ + struct block_allocator allocators[]; +}; + +struct reference_updater; + +bool __must_check vdo_attempt_replay_into_slab(struct vdo_slab *slab, + physical_block_number_t pbn, + enum journal_operation operation, + bool increment, + struct journal_point *recovery_point, + struct vdo_completion *parent); + +int __must_check vdo_adjust_reference_count_for_rebuild(struct slab_depot *depot, + physical_block_number_t pbn, + enum journal_operation operation); + +static inline struct block_allocator *vdo_as_block_allocator(struct vdo_completion *completion) +{ + vdo_assert_completion_type(completion, VDO_BLOCK_ALLOCATOR_COMPLETION); + return container_of(completion, struct block_allocator, completion); +} + +int __must_check vdo_acquire_provisional_reference(struct vdo_slab *slab, + physical_block_number_t pbn, + struct pbn_lock *lock); + +int __must_check vdo_allocate_block(struct block_allocator *allocator, + physical_block_number_t *block_number_ptr); + +int vdo_enqueue_clean_slab_waiter(struct block_allocator *allocator, + struct vdo_waiter *waiter); + +void vdo_modify_reference_count(struct vdo_completion *completion, + struct reference_updater *updater); + +int __must_check vdo_release_block_reference(struct block_allocator *allocator, + physical_block_number_t pbn); + +void vdo_notify_slab_journals_are_recovered(struct vdo_completion *completion); + +void vdo_dump_block_allocator(const struct block_allocator *allocator); + +int __must_check vdo_decode_slab_depot(struct slab_depot_state_2_0 state, + struct vdo *vdo, + struct partition *summary_partition, + struct slab_depot **depot_ptr); + +void vdo_free_slab_depot(struct slab_depot *depot); + +struct slab_depot_state_2_0 __must_check vdo_record_slab_depot(const struct slab_depot *depot); + +int __must_check vdo_allocate_reference_counters(struct slab_depot *depot); + +struct vdo_slab * __must_check vdo_get_slab(const struct slab_depot *depot, + physical_block_number_t pbn); + +u8 __must_check vdo_get_increment_limit(struct slab_depot *depot, + physical_block_number_t pbn); + +bool __must_check vdo_is_physical_data_block(const struct slab_depot *depot, + physical_block_number_t pbn); + +block_count_t __must_check vdo_get_slab_depot_allocated_blocks(const struct slab_depot *depot); + +block_count_t __must_check vdo_get_slab_depot_data_blocks(const struct slab_depot *depot); + +void vdo_get_slab_depot_statistics(const struct slab_depot *depot, + struct vdo_statistics *stats); + +void vdo_load_slab_depot(struct slab_depot *depot, + const struct admin_state_code *operation, + struct vdo_completion *parent, void *context); + +void vdo_prepare_slab_depot_to_allocate(struct slab_depot *depot, + enum slab_depot_load_type load_type, + struct vdo_completion *parent); + +void vdo_update_slab_depot_size(struct slab_depot *depot); + +int __must_check vdo_prepare_to_grow_slab_depot(struct slab_depot *depot, + const struct partition *partition); + +void vdo_use_new_slabs(struct slab_depot *depot, struct vdo_completion *parent); + +void vdo_abandon_new_slabs(struct slab_depot *depot); + +void vdo_drain_slab_depot(struct slab_depot *depot, + const struct admin_state_code *operation, + struct vdo_completion *parent); + +void vdo_resume_slab_depot(struct slab_depot *depot, struct vdo_completion *parent); + +void vdo_commit_oldest_slab_journal_tail_blocks(struct slab_depot *depot, + sequence_number_t recovery_block_number); + +void vdo_scrub_all_unrecovered_slabs(struct slab_depot *depot, + struct vdo_completion *parent); + +void vdo_dump_slab_depot(const struct slab_depot *depot); + +#endif /* VDO_SLAB_DEPOT_H */ |