diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-11 08:27:49 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-11 08:27:49 +0000 |
commit | ace9429bb58fd418f0c81d4c2835699bddf6bde6 (patch) | |
tree | b2d64bc10158fdd5497876388cd68142ca374ed3 /drivers/misc/lkdtm | |
parent | Initial commit. (diff) | |
download | linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.tar.xz linux-ace9429bb58fd418f0c81d4c2835699bddf6bde6.zip |
Adding upstream version 6.6.15.upstream/6.6.15
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'drivers/misc/lkdtm')
-rw-r--r-- | drivers/misc/lkdtm/Makefile | 29 | ||||
-rw-r--r-- | drivers/misc/lkdtm/bugs.c | 672 | ||||
-rw-r--r-- | drivers/misc/lkdtm/cfi.c | 193 | ||||
-rw-r--r-- | drivers/misc/lkdtm/core.c | 488 | ||||
-rw-r--r-- | drivers/misc/lkdtm/fortify.c | 217 | ||||
-rw-r--r-- | drivers/misc/lkdtm/heap.c | 342 | ||||
-rw-r--r-- | drivers/misc/lkdtm/lkdtm.h | 100 | ||||
-rw-r--r-- | drivers/misc/lkdtm/perms.c | 293 | ||||
-rw-r--r-- | drivers/misc/lkdtm/powerpc.c | 129 | ||||
-rw-r--r-- | drivers/misc/lkdtm/refcount.c | 419 | ||||
-rw-r--r-- | drivers/misc/lkdtm/rodata.c | 11 | ||||
-rw-r--r-- | drivers/misc/lkdtm/stackleak.c | 150 | ||||
-rw-r--r-- | drivers/misc/lkdtm/usercopy.c | 457 |
13 files changed, 3500 insertions, 0 deletions
diff --git a/drivers/misc/lkdtm/Makefile b/drivers/misc/lkdtm/Makefile new file mode 100644 index 0000000000..95ef971b5e --- /dev/null +++ b/drivers/misc/lkdtm/Makefile @@ -0,0 +1,29 @@ +# SPDX-License-Identifier: GPL-2.0 +obj-$(CONFIG_LKDTM) += lkdtm.o + +lkdtm-$(CONFIG_LKDTM) += core.o +lkdtm-$(CONFIG_LKDTM) += bugs.o +lkdtm-$(CONFIG_LKDTM) += heap.o +lkdtm-$(CONFIG_LKDTM) += perms.o +lkdtm-$(CONFIG_LKDTM) += refcount.o +lkdtm-$(CONFIG_LKDTM) += rodata_objcopy.o +lkdtm-$(CONFIG_LKDTM) += usercopy.o +lkdtm-$(CONFIG_LKDTM) += stackleak.o +lkdtm-$(CONFIG_LKDTM) += cfi.o +lkdtm-$(CONFIG_LKDTM) += fortify.o +lkdtm-$(CONFIG_PPC_64S_HASH_MMU) += powerpc.o + +KASAN_SANITIZE_stackleak.o := n + +KASAN_SANITIZE_rodata.o := n +KCSAN_SANITIZE_rodata.o := n +KCOV_INSTRUMENT_rodata.o := n +OBJECT_FILES_NON_STANDARD_rodata.o := y +CFLAGS_REMOVE_rodata.o += $(CC_FLAGS_LTO) $(RETHUNK_CFLAGS) + +OBJCOPYFLAGS := +OBJCOPYFLAGS_rodata_objcopy.o := \ + --rename-section .noinstr.text=.rodata,alloc,readonly,load,contents +targets += rodata.o rodata_objcopy.o +$(obj)/rodata_objcopy.o: $(obj)/rodata.o FORCE + $(call if_changed,objcopy) diff --git a/drivers/misc/lkdtm/bugs.c b/drivers/misc/lkdtm/bugs.c new file mode 100644 index 0000000000..c66cc05a68 --- /dev/null +++ b/drivers/misc/lkdtm/bugs.c @@ -0,0 +1,672 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * This is for all the tests related to logic bugs (e.g. bad dereferences, + * bad alignment, bad loops, bad locking, bad scheduling, deep stacks, and + * lockups) along with other things that don't fit well into existing LKDTM + * test source files. + */ +#include "lkdtm.h" +#include <linux/list.h> +#include <linux/sched.h> +#include <linux/sched/signal.h> +#include <linux/sched/task_stack.h> +#include <linux/uaccess.h> +#include <linux/slab.h> + +#if IS_ENABLED(CONFIG_X86_32) && !IS_ENABLED(CONFIG_UML) +#include <asm/desc.h> +#endif + +struct lkdtm_list { + struct list_head node; +}; + +/* + * Make sure our attempts to over run the kernel stack doesn't trigger + * a compiler warning when CONFIG_FRAME_WARN is set. Then make sure we + * recurse past the end of THREAD_SIZE by default. + */ +#if defined(CONFIG_FRAME_WARN) && (CONFIG_FRAME_WARN > 0) +#define REC_STACK_SIZE (_AC(CONFIG_FRAME_WARN, UL) / 2) +#else +#define REC_STACK_SIZE (THREAD_SIZE / 8UL) +#endif +#define REC_NUM_DEFAULT ((THREAD_SIZE / REC_STACK_SIZE) * 2) + +static int recur_count = REC_NUM_DEFAULT; + +static DEFINE_SPINLOCK(lock_me_up); + +/* + * Make sure compiler does not optimize this function or stack frame away: + * - function marked noinline + * - stack variables are marked volatile + * - stack variables are written (memset()) and read (buf[..] passed as arg) + * - function may have external effects (memzero_explicit()) + * - no tail recursion possible + */ +static int noinline recursive_loop(int remaining) +{ + volatile char buf[REC_STACK_SIZE]; + volatile int ret; + + memset((void *)buf, remaining & 0xFF, sizeof(buf)); + if (!remaining) + ret = 0; + else + ret = recursive_loop((int)buf[remaining % sizeof(buf)] - 1); + memzero_explicit((void *)buf, sizeof(buf)); + return ret; +} + +/* If the depth is negative, use the default, otherwise keep parameter. */ +void __init lkdtm_bugs_init(int *recur_param) +{ + if (*recur_param < 0) + *recur_param = recur_count; + else + recur_count = *recur_param; +} + +static void lkdtm_PANIC(void) +{ + panic("dumptest"); +} + +static void lkdtm_BUG(void) +{ + BUG(); +} + +static int warn_counter; + +static void lkdtm_WARNING(void) +{ + WARN_ON(++warn_counter); +} + +static void lkdtm_WARNING_MESSAGE(void) +{ + WARN(1, "Warning message trigger count: %d\n", ++warn_counter); +} + +static void lkdtm_EXCEPTION(void) +{ + *((volatile int *) 0) = 0; +} + +static void lkdtm_LOOP(void) +{ + for (;;) + ; +} + +static void lkdtm_EXHAUST_STACK(void) +{ + pr_info("Calling function with %lu frame size to depth %d ...\n", + REC_STACK_SIZE, recur_count); + recursive_loop(recur_count); + pr_info("FAIL: survived without exhausting stack?!\n"); +} + +static noinline void __lkdtm_CORRUPT_STACK(void *stack) +{ + memset(stack, '\xff', 64); +} + +/* This should trip the stack canary, not corrupt the return address. */ +static noinline void lkdtm_CORRUPT_STACK(void) +{ + /* Use default char array length that triggers stack protection. */ + char data[8] __aligned(sizeof(void *)); + + pr_info("Corrupting stack containing char array ...\n"); + __lkdtm_CORRUPT_STACK((void *)&data); +} + +/* Same as above but will only get a canary with -fstack-protector-strong */ +static noinline void lkdtm_CORRUPT_STACK_STRONG(void) +{ + union { + unsigned short shorts[4]; + unsigned long *ptr; + } data __aligned(sizeof(void *)); + + pr_info("Corrupting stack containing union ...\n"); + __lkdtm_CORRUPT_STACK((void *)&data); +} + +static pid_t stack_pid; +static unsigned long stack_addr; + +static void lkdtm_REPORT_STACK(void) +{ + volatile uintptr_t magic; + pid_t pid = task_pid_nr(current); + + if (pid != stack_pid) { + pr_info("Starting stack offset tracking for pid %d\n", pid); + stack_pid = pid; + stack_addr = (uintptr_t)&magic; + } + + pr_info("Stack offset: %d\n", (int)(stack_addr - (uintptr_t)&magic)); +} + +static pid_t stack_canary_pid; +static unsigned long stack_canary; +static unsigned long stack_canary_offset; + +static noinline void __lkdtm_REPORT_STACK_CANARY(void *stack) +{ + int i = 0; + pid_t pid = task_pid_nr(current); + unsigned long *canary = (unsigned long *)stack; + unsigned long current_offset = 0, init_offset = 0; + + /* Do our best to find the canary in a 16 word window ... */ + for (i = 1; i < 16; i++) { + canary = (unsigned long *)stack + i; +#ifdef CONFIG_STACKPROTECTOR + if (*canary == current->stack_canary) + current_offset = i; + if (*canary == init_task.stack_canary) + init_offset = i; +#endif + } + + if (current_offset == 0) { + /* + * If the canary doesn't match what's in the task_struct, + * we're either using a global canary or the stack frame + * layout changed. + */ + if (init_offset != 0) { + pr_err("FAIL: global stack canary found at offset %ld (canary for pid %d matches init_task's)!\n", + init_offset, pid); + } else { + pr_warn("FAIL: did not correctly locate stack canary :(\n"); + pr_expected_config(CONFIG_STACKPROTECTOR); + } + + return; + } else if (init_offset != 0) { + pr_warn("WARNING: found both current and init_task canaries nearby?!\n"); + } + + canary = (unsigned long *)stack + current_offset; + if (stack_canary_pid == 0) { + stack_canary = *canary; + stack_canary_pid = pid; + stack_canary_offset = current_offset; + pr_info("Recorded stack canary for pid %d at offset %ld\n", + stack_canary_pid, stack_canary_offset); + } else if (pid == stack_canary_pid) { + pr_warn("ERROR: saw pid %d again -- please use a new pid\n", pid); + } else { + if (current_offset != stack_canary_offset) { + pr_warn("ERROR: canary offset changed from %ld to %ld!?\n", + stack_canary_offset, current_offset); + return; + } + + if (*canary == stack_canary) { + pr_warn("FAIL: canary identical for pid %d and pid %d at offset %ld!\n", + stack_canary_pid, pid, current_offset); + } else { + pr_info("ok: stack canaries differ between pid %d and pid %d at offset %ld.\n", + stack_canary_pid, pid, current_offset); + /* Reset the test. */ + stack_canary_pid = 0; + } + } +} + +static void lkdtm_REPORT_STACK_CANARY(void) +{ + /* Use default char array length that triggers stack protection. */ + char data[8] __aligned(sizeof(void *)) = { }; + + __lkdtm_REPORT_STACK_CANARY((void *)&data); +} + +static void lkdtm_UNALIGNED_LOAD_STORE_WRITE(void) +{ + static u8 data[5] __attribute__((aligned(4))) = {1, 2, 3, 4, 5}; + u32 *p; + u32 val = 0x12345678; + + p = (u32 *)(data + 1); + if (*p == 0) + val = 0x87654321; + *p = val; + + if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) + pr_err("XFAIL: arch has CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS\n"); +} + +static void lkdtm_SOFTLOCKUP(void) +{ + preempt_disable(); + for (;;) + cpu_relax(); +} + +static void lkdtm_HARDLOCKUP(void) +{ + local_irq_disable(); + for (;;) + cpu_relax(); +} + +static void lkdtm_SPINLOCKUP(void) +{ + /* Must be called twice to trigger. */ + spin_lock(&lock_me_up); + /* Let sparse know we intended to exit holding the lock. */ + __release(&lock_me_up); +} + +static void lkdtm_HUNG_TASK(void) +{ + set_current_state(TASK_UNINTERRUPTIBLE); + schedule(); +} + +static volatile unsigned int huge = INT_MAX - 2; +static volatile unsigned int ignored; + +static void lkdtm_OVERFLOW_SIGNED(void) +{ + int value; + + value = huge; + pr_info("Normal signed addition ...\n"); + value += 1; + ignored = value; + + pr_info("Overflowing signed addition ...\n"); + value += 4; + ignored = value; +} + + +static void lkdtm_OVERFLOW_UNSIGNED(void) +{ + unsigned int value; + + value = huge; + pr_info("Normal unsigned addition ...\n"); + value += 1; + ignored = value; + + pr_info("Overflowing unsigned addition ...\n"); + value += 4; + ignored = value; +} + +/* Intentionally using unannotated flex array definition. */ +struct array_bounds_flex_array { + int one; + int two; + char data[]; +}; + +struct array_bounds { + int one; + int two; + char data[8]; + int three; +}; + +static void lkdtm_ARRAY_BOUNDS(void) +{ + struct array_bounds_flex_array *not_checked; + struct array_bounds *checked; + volatile int i; + + not_checked = kmalloc(sizeof(*not_checked) * 2, GFP_KERNEL); + checked = kmalloc(sizeof(*checked) * 2, GFP_KERNEL); + if (!not_checked || !checked) { + kfree(not_checked); + kfree(checked); + return; + } + + pr_info("Array access within bounds ...\n"); + /* For both, touch all bytes in the actual member size. */ + for (i = 0; i < sizeof(checked->data); i++) + checked->data[i] = 'A'; + /* + * For the uninstrumented flex array member, also touch 1 byte + * beyond to verify it is correctly uninstrumented. + */ + for (i = 0; i < 2; i++) + not_checked->data[i] = 'A'; + + pr_info("Array access beyond bounds ...\n"); + for (i = 0; i < sizeof(checked->data) + 1; i++) + checked->data[i] = 'B'; + + kfree(not_checked); + kfree(checked); + pr_err("FAIL: survived array bounds overflow!\n"); + if (IS_ENABLED(CONFIG_UBSAN_BOUNDS)) + pr_expected_config(CONFIG_UBSAN_TRAP); + else + pr_expected_config(CONFIG_UBSAN_BOUNDS); +} + +struct lkdtm_annotated { + unsigned long flags; + int count; + int array[] __counted_by(count); +}; + +static volatile int fam_count = 4; + +static void lkdtm_FAM_BOUNDS(void) +{ + struct lkdtm_annotated *inst; + + inst = kzalloc(struct_size(inst, array, fam_count + 1), GFP_KERNEL); + if (!inst) { + pr_err("FAIL: could not allocate test struct!\n"); + return; + } + + inst->count = fam_count; + pr_info("Array access within bounds ...\n"); + inst->array[1] = fam_count; + ignored = inst->array[1]; + + pr_info("Array access beyond bounds ...\n"); + inst->array[fam_count] = fam_count; + ignored = inst->array[fam_count]; + + kfree(inst); + + pr_err("FAIL: survived access of invalid flexible array member index!\n"); + + if (!__has_attribute(__counted_by__)) + pr_warn("This is expected since this %s was built a compiler supporting __counted_by\n", + lkdtm_kernel_info); + else if (IS_ENABLED(CONFIG_UBSAN_BOUNDS)) + pr_expected_config(CONFIG_UBSAN_TRAP); + else + pr_expected_config(CONFIG_UBSAN_BOUNDS); +} + +static void lkdtm_CORRUPT_LIST_ADD(void) +{ + /* + * Initially, an empty list via LIST_HEAD: + * test_head.next = &test_head + * test_head.prev = &test_head + */ + LIST_HEAD(test_head); + struct lkdtm_list good, bad; + void *target[2] = { }; + void *redirection = ⌖ + + pr_info("attempting good list addition\n"); + + /* + * Adding to the list performs these actions: + * test_head.next->prev = &good.node + * good.node.next = test_head.next + * good.node.prev = test_head + * test_head.next = good.node + */ + list_add(&good.node, &test_head); + + pr_info("attempting corrupted list addition\n"); + /* + * In simulating this "write what where" primitive, the "what" is + * the address of &bad.node, and the "where" is the address held + * by "redirection". + */ + test_head.next = redirection; + list_add(&bad.node, &test_head); + + if (target[0] == NULL && target[1] == NULL) + pr_err("Overwrite did not happen, but no BUG?!\n"); + else { + pr_err("list_add() corruption not detected!\n"); + pr_expected_config(CONFIG_LIST_HARDENED); + } +} + +static void lkdtm_CORRUPT_LIST_DEL(void) +{ + LIST_HEAD(test_head); + struct lkdtm_list item; + void *target[2] = { }; + void *redirection = ⌖ + + list_add(&item.node, &test_head); + + pr_info("attempting good list removal\n"); + list_del(&item.node); + + pr_info("attempting corrupted list removal\n"); + list_add(&item.node, &test_head); + + /* As with the list_add() test above, this corrupts "next". */ + item.node.next = redirection; + list_del(&item.node); + + if (target[0] == NULL && target[1] == NULL) + pr_err("Overwrite did not happen, but no BUG?!\n"); + else { + pr_err("list_del() corruption not detected!\n"); + pr_expected_config(CONFIG_LIST_HARDENED); + } +} + +/* Test that VMAP_STACK is actually allocating with a leading guard page */ +static void lkdtm_STACK_GUARD_PAGE_LEADING(void) +{ + const unsigned char *stack = task_stack_page(current); + const unsigned char *ptr = stack - 1; + volatile unsigned char byte; + + pr_info("attempting bad read from page below current stack\n"); + + byte = *ptr; + + pr_err("FAIL: accessed page before stack! (byte: %x)\n", byte); +} + +/* Test that VMAP_STACK is actually allocating with a trailing guard page */ +static void lkdtm_STACK_GUARD_PAGE_TRAILING(void) +{ + const unsigned char *stack = task_stack_page(current); + const unsigned char *ptr = stack + THREAD_SIZE; + volatile unsigned char byte; + + pr_info("attempting bad read from page above current stack\n"); + + byte = *ptr; + + pr_err("FAIL: accessed page after stack! (byte: %x)\n", byte); +} + +static void lkdtm_UNSET_SMEP(void) +{ +#if IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_UML) +#define MOV_CR4_DEPTH 64 + void (*direct_write_cr4)(unsigned long val); + unsigned char *insn; + unsigned long cr4; + int i; + + cr4 = native_read_cr4(); + + if ((cr4 & X86_CR4_SMEP) != X86_CR4_SMEP) { + pr_err("FAIL: SMEP not in use\n"); + return; + } + cr4 &= ~(X86_CR4_SMEP); + + pr_info("trying to clear SMEP normally\n"); + native_write_cr4(cr4); + if (cr4 == native_read_cr4()) { + pr_err("FAIL: pinning SMEP failed!\n"); + cr4 |= X86_CR4_SMEP; + pr_info("restoring SMEP\n"); + native_write_cr4(cr4); + return; + } + pr_info("ok: SMEP did not get cleared\n"); + + /* + * To test the post-write pinning verification we need to call + * directly into the middle of native_write_cr4() where the + * cr4 write happens, skipping any pinning. This searches for + * the cr4 writing instruction. + */ + insn = (unsigned char *)native_write_cr4; + OPTIMIZER_HIDE_VAR(insn); + for (i = 0; i < MOV_CR4_DEPTH; i++) { + /* mov %rdi, %cr4 */ + if (insn[i] == 0x0f && insn[i+1] == 0x22 && insn[i+2] == 0xe7) + break; + /* mov %rdi,%rax; mov %rax, %cr4 */ + if (insn[i] == 0x48 && insn[i+1] == 0x89 && + insn[i+2] == 0xf8 && insn[i+3] == 0x0f && + insn[i+4] == 0x22 && insn[i+5] == 0xe0) + break; + } + if (i >= MOV_CR4_DEPTH) { + pr_info("ok: cannot locate cr4 writing call gadget\n"); + return; + } + direct_write_cr4 = (void *)(insn + i); + + pr_info("trying to clear SMEP with call gadget\n"); + direct_write_cr4(cr4); + if (native_read_cr4() & X86_CR4_SMEP) { + pr_info("ok: SMEP removal was reverted\n"); + } else { + pr_err("FAIL: cleared SMEP not detected!\n"); + cr4 |= X86_CR4_SMEP; + pr_info("restoring SMEP\n"); + native_write_cr4(cr4); + } +#else + pr_err("XFAIL: this test is x86_64-only\n"); +#endif +} + +static void lkdtm_DOUBLE_FAULT(void) +{ +#if IS_ENABLED(CONFIG_X86_32) && !IS_ENABLED(CONFIG_UML) + /* + * Trigger #DF by setting the stack limit to zero. This clobbers + * a GDT TLS slot, which is okay because the current task will die + * anyway due to the double fault. + */ + struct desc_struct d = { + .type = 3, /* expand-up, writable, accessed data */ + .p = 1, /* present */ + .d = 1, /* 32-bit */ + .g = 0, /* limit in bytes */ + .s = 1, /* not system */ + }; + + local_irq_disable(); + write_gdt_entry(get_cpu_gdt_rw(smp_processor_id()), + GDT_ENTRY_TLS_MIN, &d, DESCTYPE_S); + + /* + * Put our zero-limit segment in SS and then trigger a fault. The + * 4-byte access to (%esp) will fault with #SS, and the attempt to + * deliver the fault will recursively cause #SS and result in #DF. + * This whole process happens while NMIs and MCEs are blocked by the + * MOV SS window. This is nice because an NMI with an invalid SS + * would also double-fault, resulting in the NMI or MCE being lost. + */ + asm volatile ("movw %0, %%ss; addl $0, (%%esp)" :: + "r" ((unsigned short)(GDT_ENTRY_TLS_MIN << 3))); + + pr_err("FAIL: tried to double fault but didn't die\n"); +#else + pr_err("XFAIL: this test is ia32-only\n"); +#endif +} + +#ifdef CONFIG_ARM64 +static noinline void change_pac_parameters(void) +{ + if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL)) { + /* Reset the keys of current task */ + ptrauth_thread_init_kernel(current); + ptrauth_thread_switch_kernel(current); + } +} +#endif + +static noinline void lkdtm_CORRUPT_PAC(void) +{ +#ifdef CONFIG_ARM64 +#define CORRUPT_PAC_ITERATE 10 + int i; + + if (!IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL)) + pr_err("FAIL: kernel not built with CONFIG_ARM64_PTR_AUTH_KERNEL\n"); + + if (!system_supports_address_auth()) { + pr_err("FAIL: CPU lacks pointer authentication feature\n"); + return; + } + + pr_info("changing PAC parameters to force function return failure...\n"); + /* + * PAC is a hash value computed from input keys, return address and + * stack pointer. As pac has fewer bits so there is a chance of + * collision, so iterate few times to reduce the collision probability. + */ + for (i = 0; i < CORRUPT_PAC_ITERATE; i++) + change_pac_parameters(); + + pr_err("FAIL: survived PAC changes! Kernel may be unstable from here\n"); +#else + pr_err("XFAIL: this test is arm64-only\n"); +#endif +} + +static struct crashtype crashtypes[] = { + CRASHTYPE(PANIC), + CRASHTYPE(BUG), + CRASHTYPE(WARNING), + CRASHTYPE(WARNING_MESSAGE), + CRASHTYPE(EXCEPTION), + CRASHTYPE(LOOP), + CRASHTYPE(EXHAUST_STACK), + CRASHTYPE(CORRUPT_STACK), + CRASHTYPE(CORRUPT_STACK_STRONG), + CRASHTYPE(REPORT_STACK), + CRASHTYPE(REPORT_STACK_CANARY), + CRASHTYPE(UNALIGNED_LOAD_STORE_WRITE), + CRASHTYPE(SOFTLOCKUP), + CRASHTYPE(HARDLOCKUP), + CRASHTYPE(SPINLOCKUP), + CRASHTYPE(HUNG_TASK), + CRASHTYPE(OVERFLOW_SIGNED), + CRASHTYPE(OVERFLOW_UNSIGNED), + CRASHTYPE(ARRAY_BOUNDS), + CRASHTYPE(FAM_BOUNDS), + CRASHTYPE(CORRUPT_LIST_ADD), + CRASHTYPE(CORRUPT_LIST_DEL), + CRASHTYPE(STACK_GUARD_PAGE_LEADING), + CRASHTYPE(STACK_GUARD_PAGE_TRAILING), + CRASHTYPE(UNSET_SMEP), + CRASHTYPE(DOUBLE_FAULT), + CRASHTYPE(CORRUPT_PAC), +}; + +struct crashtype_category bugs_crashtypes = { + .crashtypes = crashtypes, + .len = ARRAY_SIZE(crashtypes), +}; diff --git a/drivers/misc/lkdtm/cfi.c b/drivers/misc/lkdtm/cfi.c new file mode 100644 index 0000000000..fc28714ae3 --- /dev/null +++ b/drivers/misc/lkdtm/cfi.c @@ -0,0 +1,193 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * This is for all the tests relating directly to Control Flow Integrity. + */ +#include "lkdtm.h" +#include <asm/page.h> + +static int called_count; + +/* Function taking one argument, without a return value. */ +static noinline void lkdtm_increment_void(int *counter) +{ + (*counter)++; +} + +/* Function taking one argument, returning int. */ +static noinline int lkdtm_increment_int(int *counter) +{ + (*counter)++; + + return *counter; +} + +/* Don't allow the compiler to inline the calls. */ +static noinline void lkdtm_indirect_call(void (*func)(int *)) +{ + func(&called_count); +} + +/* + * This tries to call an indirect function with a mismatched prototype. + */ +static void lkdtm_CFI_FORWARD_PROTO(void) +{ + /* + * Matches lkdtm_increment_void()'s prototype, but not + * lkdtm_increment_int()'s prototype. + */ + pr_info("Calling matched prototype ...\n"); + lkdtm_indirect_call(lkdtm_increment_void); + + pr_info("Calling mismatched prototype ...\n"); + lkdtm_indirect_call((void *)lkdtm_increment_int); + + pr_err("FAIL: survived mismatched prototype function call!\n"); + pr_expected_config(CONFIG_CFI_CLANG); +} + +/* + * This can stay local to LKDTM, as there should not be a production reason + * to disable PAC && SCS. + */ +#ifdef CONFIG_ARM64_PTR_AUTH_KERNEL +# ifdef CONFIG_ARM64_BTI_KERNEL +# define __no_pac "branch-protection=bti" +# else +# ifdef CONFIG_CC_HAS_BRANCH_PROT_PAC_RET +# define __no_pac "branch-protection=none" +# else +# define __no_pac "sign-return-address=none" +# endif +# endif +# define __no_ret_protection __noscs __attribute__((__target__(__no_pac))) +#else +# define __no_ret_protection __noscs +#endif + +#define no_pac_addr(addr) \ + ((__force __typeof__(addr))((uintptr_t)(addr) | PAGE_OFFSET)) + +/* The ultimate ROP gadget. */ +static noinline __no_ret_protection +void set_return_addr_unchecked(unsigned long *expected, unsigned long *addr) +{ + /* Use of volatile is to make sure final write isn't seen as a dead store. */ + unsigned long * volatile *ret_addr = (unsigned long **)__builtin_frame_address(0) + 1; + + /* Make sure we've found the right place on the stack before writing it. */ + if (no_pac_addr(*ret_addr) == expected) + *ret_addr = (addr); + else + /* Check architecture, stack layout, or compiler behavior... */ + pr_warn("Eek: return address mismatch! %px != %px\n", + *ret_addr, addr); +} + +static noinline +void set_return_addr(unsigned long *expected, unsigned long *addr) +{ + /* Use of volatile is to make sure final write isn't seen as a dead store. */ + unsigned long * volatile *ret_addr = (unsigned long **)__builtin_frame_address(0) + 1; + + /* Make sure we've found the right place on the stack before writing it. */ + if (no_pac_addr(*ret_addr) == expected) + *ret_addr = (addr); + else + /* Check architecture, stack layout, or compiler behavior... */ + pr_warn("Eek: return address mismatch! %px != %px\n", + *ret_addr, addr); +} + +static volatile int force_check; + +static void lkdtm_CFI_BACKWARD(void) +{ + /* Use calculated gotos to keep labels addressable. */ + void *labels[] = { NULL, &&normal, &&redirected, &&check_normal, &&check_redirected }; + + pr_info("Attempting unchecked stack return address redirection ...\n"); + + /* Always false */ + if (force_check) { + /* + * Prepare to call with NULLs to avoid parameters being treated as + * constants in -02. + */ + set_return_addr_unchecked(NULL, NULL); + set_return_addr(NULL, NULL); + if (force_check) + goto *labels[1]; + if (force_check) + goto *labels[2]; + if (force_check) + goto *labels[3]; + if (force_check) + goto *labels[4]; + return; + } + + /* + * Use fallthrough switch case to keep basic block ordering between + * set_return_addr*() and the label after it. + */ + switch (force_check) { + case 0: + set_return_addr_unchecked(&&normal, &&redirected); + fallthrough; + case 1: +normal: + /* Always true */ + if (!force_check) { + pr_err("FAIL: stack return address manipulation failed!\n"); + /* If we can't redirect "normally", we can't test mitigations. */ + return; + } + break; + default: +redirected: + pr_info("ok: redirected stack return address.\n"); + break; + } + + pr_info("Attempting checked stack return address redirection ...\n"); + + switch (force_check) { + case 0: + set_return_addr(&&check_normal, &&check_redirected); + fallthrough; + case 1: +check_normal: + /* Always true */ + if (!force_check) { + pr_info("ok: control flow unchanged.\n"); + return; + } + +check_redirected: + pr_err("FAIL: stack return address was redirected!\n"); + break; + } + + if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL)) { + pr_expected_config(CONFIG_ARM64_PTR_AUTH_KERNEL); + return; + } + if (IS_ENABLED(CONFIG_SHADOW_CALL_STACK)) { + pr_expected_config(CONFIG_SHADOW_CALL_STACK); + return; + } + pr_warn("This is probably expected, since this %s was built *without* %s=y nor %s=y\n", + lkdtm_kernel_info, + "CONFIG_ARM64_PTR_AUTH_KERNEL", "CONFIG_SHADOW_CALL_STACK"); +} + +static struct crashtype crashtypes[] = { + CRASHTYPE(CFI_FORWARD_PROTO), + CRASHTYPE(CFI_BACKWARD), +}; + +struct crashtype_category cfi_crashtypes = { + .crashtypes = crashtypes, + .len = ARRAY_SIZE(crashtypes), +}; diff --git a/drivers/misc/lkdtm/core.c b/drivers/misc/lkdtm/core.c new file mode 100644 index 0000000000..0772e4a475 --- /dev/null +++ b/drivers/misc/lkdtm/core.c @@ -0,0 +1,488 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Linux Kernel Dump Test Module for testing kernel crashes conditions: + * induces system failures at predefined crashpoints and under predefined + * operational conditions in order to evaluate the reliability of kernel + * sanity checking and crash dumps obtained using different dumping + * solutions. + * + * Copyright (C) IBM Corporation, 2006 + * + * Author: Ankita Garg <ankita@in.ibm.com> + * + * It is adapted from the Linux Kernel Dump Test Tool by + * Fernando Luis Vazquez Cao <http://lkdtt.sourceforge.net> + * + * Debugfs support added by Simon Kagstrom <simon.kagstrom@netinsight.net> + * + * See Documentation/fault-injection/provoke-crashes.rst for instructions + */ +#include "lkdtm.h" +#include <linux/fs.h> +#include <linux/module.h> +#include <linux/buffer_head.h> +#include <linux/kprobes.h> +#include <linux/list.h> +#include <linux/init.h> +#include <linux/slab.h> +#include <linux/debugfs.h> +#include <linux/utsname.h> + +#define DEFAULT_COUNT 10 + +static int lkdtm_debugfs_open(struct inode *inode, struct file *file); +static ssize_t lkdtm_debugfs_read(struct file *f, char __user *user_buf, + size_t count, loff_t *off); +static ssize_t direct_entry(struct file *f, const char __user *user_buf, + size_t count, loff_t *off); + +#ifdef CONFIG_KPROBES +static int lkdtm_kprobe_handler(struct kprobe *kp, struct pt_regs *regs); +static ssize_t lkdtm_debugfs_entry(struct file *f, + const char __user *user_buf, + size_t count, loff_t *off); +# define CRASHPOINT_KPROBE(_symbol) \ + .kprobe = { \ + .symbol_name = (_symbol), \ + .pre_handler = lkdtm_kprobe_handler, \ + }, +# define CRASHPOINT_WRITE(_symbol) \ + (_symbol) ? lkdtm_debugfs_entry : direct_entry +#else +# define CRASHPOINT_KPROBE(_symbol) +# define CRASHPOINT_WRITE(_symbol) direct_entry +#endif + +/* Crash points */ +struct crashpoint { + const char *name; + const struct file_operations fops; + struct kprobe kprobe; +}; + +#define CRASHPOINT(_name, _symbol) \ + { \ + .name = _name, \ + .fops = { \ + .read = lkdtm_debugfs_read, \ + .llseek = generic_file_llseek, \ + .open = lkdtm_debugfs_open, \ + .write = CRASHPOINT_WRITE(_symbol) \ + }, \ + CRASHPOINT_KPROBE(_symbol) \ + } + +/* Define the possible places where we can trigger a crash point. */ +static struct crashpoint crashpoints[] = { + CRASHPOINT("DIRECT", NULL), +#ifdef CONFIG_KPROBES + CRASHPOINT("INT_HARDWARE_ENTRY", "do_IRQ"), + CRASHPOINT("INT_HW_IRQ_EN", "handle_irq_event"), + CRASHPOINT("INT_TASKLET_ENTRY", "tasklet_action"), + CRASHPOINT("FS_SUBMIT_BH", "submit_bh"), + CRASHPOINT("MEM_SWAPOUT", "shrink_inactive_list"), + CRASHPOINT("TIMERADD", "hrtimer_start"), + CRASHPOINT("SCSI_QUEUE_RQ", "scsi_queue_rq"), +#endif +}; + +/* List of possible types for crashes that can be triggered. */ +static const struct crashtype_category *crashtype_categories[] = { + &bugs_crashtypes, + &heap_crashtypes, + &perms_crashtypes, + &refcount_crashtypes, + &usercopy_crashtypes, + &stackleak_crashtypes, + &cfi_crashtypes, + &fortify_crashtypes, +#ifdef CONFIG_PPC_64S_HASH_MMU + &powerpc_crashtypes, +#endif +}; + +/* Global kprobe entry and crashtype. */ +static struct kprobe *lkdtm_kprobe; +static struct crashpoint *lkdtm_crashpoint; +static const struct crashtype *lkdtm_crashtype; + +/* Module parameters */ +static int recur_count = -1; +module_param(recur_count, int, 0644); +MODULE_PARM_DESC(recur_count, " Recursion level for the stack overflow test"); + +static char* cpoint_name; +module_param(cpoint_name, charp, 0444); +MODULE_PARM_DESC(cpoint_name, " Crash Point, where kernel is to be crashed"); + +static char* cpoint_type; +module_param(cpoint_type, charp, 0444); +MODULE_PARM_DESC(cpoint_type, " Crash Point Type, action to be taken on "\ + "hitting the crash point"); + +static int cpoint_count = DEFAULT_COUNT; +module_param(cpoint_count, int, 0644); +MODULE_PARM_DESC(cpoint_count, " Crash Point Count, number of times the "\ + "crash point is to be hit to trigger action"); + +/* + * For test debug reporting when CI systems provide terse summaries. + * TODO: Remove this once reasonable reporting exists in most CI systems: + * https://lore.kernel.org/lkml/CAHk-=wiFvfkoFixTapvvyPMN9pq5G-+Dys2eSyBa1vzDGAO5+A@mail.gmail.com + */ +char *lkdtm_kernel_info; + +/* Return the crashtype number or NULL if the name is invalid */ +static const struct crashtype *find_crashtype(const char *name) +{ + int cat, idx; + + for (cat = 0; cat < ARRAY_SIZE(crashtype_categories); cat++) { + for (idx = 0; idx < crashtype_categories[cat]->len; idx++) { + struct crashtype *crashtype; + + crashtype = &crashtype_categories[cat]->crashtypes[idx]; + if (!strcmp(name, crashtype->name)) + return crashtype; + } + } + + return NULL; +} + +/* + * This is forced noinline just so it distinctly shows up in the stackdump + * which makes validation of expected lkdtm crashes easier. + */ +static noinline void lkdtm_do_action(const struct crashtype *crashtype) +{ + if (WARN_ON(!crashtype || !crashtype->func)) + return; + crashtype->func(); +} + +static int lkdtm_register_cpoint(struct crashpoint *crashpoint, + const struct crashtype *crashtype) +{ + int ret; + + /* If this doesn't have a symbol, just call immediately. */ + if (!crashpoint->kprobe.symbol_name) { + lkdtm_do_action(crashtype); + return 0; + } + + if (lkdtm_kprobe != NULL) + unregister_kprobe(lkdtm_kprobe); + + lkdtm_crashpoint = crashpoint; + lkdtm_crashtype = crashtype; + lkdtm_kprobe = &crashpoint->kprobe; + ret = register_kprobe(lkdtm_kprobe); + if (ret < 0) { + pr_info("Couldn't register kprobe %s\n", + crashpoint->kprobe.symbol_name); + lkdtm_kprobe = NULL; + lkdtm_crashpoint = NULL; + lkdtm_crashtype = NULL; + } + + return ret; +} + +#ifdef CONFIG_KPROBES +/* Global crash counter and spinlock. */ +static int crash_count = DEFAULT_COUNT; +static DEFINE_SPINLOCK(crash_count_lock); + +/* Called by kprobe entry points. */ +static int lkdtm_kprobe_handler(struct kprobe *kp, struct pt_regs *regs) +{ + unsigned long flags; + bool do_it = false; + + if (WARN_ON(!lkdtm_crashpoint || !lkdtm_crashtype)) + return 0; + + spin_lock_irqsave(&crash_count_lock, flags); + crash_count--; + pr_info("Crash point %s of type %s hit, trigger in %d rounds\n", + lkdtm_crashpoint->name, lkdtm_crashtype->name, crash_count); + + if (crash_count == 0) { + do_it = true; + crash_count = cpoint_count; + } + spin_unlock_irqrestore(&crash_count_lock, flags); + + if (do_it) + lkdtm_do_action(lkdtm_crashtype); + + return 0; +} + +static ssize_t lkdtm_debugfs_entry(struct file *f, + const char __user *user_buf, + size_t count, loff_t *off) +{ + struct crashpoint *crashpoint = file_inode(f)->i_private; + const struct crashtype *crashtype = NULL; + char *buf; + int err; + + if (count >= PAGE_SIZE) + return -EINVAL; + + buf = (char *)__get_free_page(GFP_KERNEL); + if (!buf) + return -ENOMEM; + if (copy_from_user(buf, user_buf, count)) { + free_page((unsigned long) buf); + return -EFAULT; + } + /* NULL-terminate and remove enter */ + buf[count] = '\0'; + strim(buf); + + crashtype = find_crashtype(buf); + free_page((unsigned long)buf); + + if (!crashtype) + return -EINVAL; + + err = lkdtm_register_cpoint(crashpoint, crashtype); + if (err < 0) + return err; + + *off += count; + + return count; +} +#endif + +/* Generic read callback that just prints out the available crash types */ +static ssize_t lkdtm_debugfs_read(struct file *f, char __user *user_buf, + size_t count, loff_t *off) +{ + int n, cat, idx; + ssize_t out; + char *buf; + + buf = (char *)__get_free_page(GFP_KERNEL); + if (buf == NULL) + return -ENOMEM; + + n = scnprintf(buf, PAGE_SIZE, "Available crash types:\n"); + + for (cat = 0; cat < ARRAY_SIZE(crashtype_categories); cat++) { + for (idx = 0; idx < crashtype_categories[cat]->len; idx++) { + struct crashtype *crashtype; + + crashtype = &crashtype_categories[cat]->crashtypes[idx]; + n += scnprintf(buf + n, PAGE_SIZE - n, "%s\n", + crashtype->name); + } + } + buf[n] = '\0'; + + out = simple_read_from_buffer(user_buf, count, off, + buf, n); + free_page((unsigned long) buf); + + return out; +} + +static int lkdtm_debugfs_open(struct inode *inode, struct file *file) +{ + return 0; +} + +/* Special entry to just crash directly. Available without KPROBEs */ +static ssize_t direct_entry(struct file *f, const char __user *user_buf, + size_t count, loff_t *off) +{ + const struct crashtype *crashtype; + char *buf; + + if (count >= PAGE_SIZE) + return -EINVAL; + if (count < 1) + return -EINVAL; + + buf = (char *)__get_free_page(GFP_KERNEL); + if (!buf) + return -ENOMEM; + if (copy_from_user(buf, user_buf, count)) { + free_page((unsigned long) buf); + return -EFAULT; + } + /* NULL-terminate and remove enter */ + buf[count] = '\0'; + strim(buf); + + crashtype = find_crashtype(buf); + free_page((unsigned long) buf); + if (!crashtype) + return -EINVAL; + + pr_info("Performing direct entry %s\n", crashtype->name); + lkdtm_do_action(crashtype); + *off += count; + + return count; +} + +#ifndef MODULE +/* + * To avoid needing to export parse_args(), just don't use this code + * when LKDTM is built as a module. + */ +struct check_cmdline_args { + const char *param; + int value; +}; + +static int lkdtm_parse_one(char *param, char *val, + const char *unused, void *arg) +{ + struct check_cmdline_args *args = arg; + + /* short circuit if we already found a value. */ + if (args->value != -ESRCH) + return 0; + if (strncmp(param, args->param, strlen(args->param)) == 0) { + bool bool_result; + int ret; + + ret = kstrtobool(val, &bool_result); + if (ret == 0) + args->value = bool_result; + } + return 0; +} + +int lkdtm_check_bool_cmdline(const char *param) +{ + char *command_line; + struct check_cmdline_args args = { + .param = param, + .value = -ESRCH, + }; + + command_line = kstrdup(saved_command_line, GFP_KERNEL); + if (!command_line) + return -ENOMEM; + + parse_args("Setting sysctl args", command_line, + NULL, 0, -1, -1, &args, lkdtm_parse_one); + + kfree(command_line); + + return args.value; +} +#endif + +static struct dentry *lkdtm_debugfs_root; + +static int __init lkdtm_module_init(void) +{ + struct crashpoint *crashpoint = NULL; + const struct crashtype *crashtype = NULL; + int ret; + int i; + + /* Neither or both of these need to be set */ + if ((cpoint_type || cpoint_name) && !(cpoint_type && cpoint_name)) { + pr_err("Need both cpoint_type and cpoint_name or neither\n"); + return -EINVAL; + } + + if (cpoint_type) { + crashtype = find_crashtype(cpoint_type); + if (!crashtype) { + pr_err("Unknown crashtype '%s'\n", cpoint_type); + return -EINVAL; + } + } + + if (cpoint_name) { + for (i = 0; i < ARRAY_SIZE(crashpoints); i++) { + if (!strcmp(cpoint_name, crashpoints[i].name)) + crashpoint = &crashpoints[i]; + } + + /* Refuse unknown crashpoints. */ + if (!crashpoint) { + pr_err("Invalid crashpoint %s\n", cpoint_name); + return -EINVAL; + } + } + +#ifdef CONFIG_KPROBES + /* Set crash count. */ + crash_count = cpoint_count; +#endif + + /* Common initialization. */ + lkdtm_kernel_info = kasprintf(GFP_KERNEL, "kernel (%s %s)", + init_uts_ns.name.release, + init_uts_ns.name.machine); + + /* Handle test-specific initialization. */ + lkdtm_bugs_init(&recur_count); + lkdtm_perms_init(); + lkdtm_usercopy_init(); + lkdtm_heap_init(); + + /* Register debugfs interface */ + lkdtm_debugfs_root = debugfs_create_dir("provoke-crash", NULL); + + /* Install debugfs trigger files. */ + for (i = 0; i < ARRAY_SIZE(crashpoints); i++) { + struct crashpoint *cur = &crashpoints[i]; + + debugfs_create_file(cur->name, 0644, lkdtm_debugfs_root, cur, + &cur->fops); + } + + /* Install crashpoint if one was selected. */ + if (crashpoint) { + ret = lkdtm_register_cpoint(crashpoint, crashtype); + if (ret < 0) { + pr_info("Invalid crashpoint %s\n", crashpoint->name); + goto out_err; + } + pr_info("Crash point %s of type %s registered\n", + crashpoint->name, cpoint_type); + } else { + pr_info("No crash points registered, enable through debugfs\n"); + } + + return 0; + +out_err: + debugfs_remove_recursive(lkdtm_debugfs_root); + return ret; +} + +static void __exit lkdtm_module_exit(void) +{ + debugfs_remove_recursive(lkdtm_debugfs_root); + + /* Handle test-specific clean-up. */ + lkdtm_heap_exit(); + lkdtm_usercopy_exit(); + + if (lkdtm_kprobe != NULL) + unregister_kprobe(lkdtm_kprobe); + + kfree(lkdtm_kernel_info); + + pr_info("Crash point unregistered\n"); +} + +module_init(lkdtm_module_init); +module_exit(lkdtm_module_exit); + +MODULE_LICENSE("GPL"); +MODULE_DESCRIPTION("Kernel crash testing module"); diff --git a/drivers/misc/lkdtm/fortify.c b/drivers/misc/lkdtm/fortify.c new file mode 100644 index 0000000000..0159276656 --- /dev/null +++ b/drivers/misc/lkdtm/fortify.c @@ -0,0 +1,217 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (c) 2020 Francis Laniel <laniel_francis@privacyrequired.com> + * + * Add tests related to fortified functions in this file. + */ +#include "lkdtm.h" +#include <linux/string.h> +#include <linux/slab.h> + +static volatile int fortify_scratch_space; + +static void lkdtm_FORTIFY_STR_OBJECT(void) +{ + struct target { + char a[10]; + int foo; + } target[3] = {}; + /* + * Using volatile prevents the compiler from determining the value of + * 'size' at compile time. Without that, we would get a compile error + * rather than a runtime error. + */ + volatile int size = 20; + + pr_info("trying to strcmp() past the end of a struct\n"); + + strncpy(target[0].a, target[1].a, size); + + /* Store result to global to prevent the code from being eliminated */ + fortify_scratch_space = target[0].a[3]; + + pr_err("FAIL: fortify did not block a strncpy() object write overflow!\n"); + pr_expected_config(CONFIG_FORTIFY_SOURCE); +} + +static void lkdtm_FORTIFY_STR_MEMBER(void) +{ + struct target { + char a[10]; + char b[10]; + } target; + volatile int size = 20; + char *src; + + src = kmalloc(size, GFP_KERNEL); + strscpy(src, "over ten bytes", size); + size = strlen(src) + 1; + + pr_info("trying to strncpy() past the end of a struct member...\n"); + + /* + * strncpy(target.a, src, 20); will hit a compile error because the + * compiler knows at build time that target.a < 20 bytes. Use a + * volatile to force a runtime error. + */ + strncpy(target.a, src, size); + + /* Store result to global to prevent the code from being eliminated */ + fortify_scratch_space = target.a[3]; + + pr_err("FAIL: fortify did not block a strncpy() struct member write overflow!\n"); + pr_expected_config(CONFIG_FORTIFY_SOURCE); + + kfree(src); +} + +static void lkdtm_FORTIFY_MEM_OBJECT(void) +{ + int before[10]; + struct target { + char a[10]; + int foo; + } target = {}; + int after[10]; + /* + * Using volatile prevents the compiler from determining the value of + * 'size' at compile time. Without that, we would get a compile error + * rather than a runtime error. + */ + volatile int size = 20; + + memset(before, 0, sizeof(before)); + memset(after, 0, sizeof(after)); + fortify_scratch_space = before[5]; + fortify_scratch_space = after[5]; + + pr_info("trying to memcpy() past the end of a struct\n"); + + pr_info("0: %zu\n", __builtin_object_size(&target, 0)); + pr_info("1: %zu\n", __builtin_object_size(&target, 1)); + pr_info("s: %d\n", size); + memcpy(&target, &before, size); + + /* Store result to global to prevent the code from being eliminated */ + fortify_scratch_space = target.a[3]; + + pr_err("FAIL: fortify did not block a memcpy() object write overflow!\n"); + pr_expected_config(CONFIG_FORTIFY_SOURCE); +} + +static void lkdtm_FORTIFY_MEM_MEMBER(void) +{ + struct target { + char a[10]; + char b[10]; + } target; + volatile int size = 20; + char *src; + + src = kmalloc(size, GFP_KERNEL); + strscpy(src, "over ten bytes", size); + size = strlen(src) + 1; + + pr_info("trying to memcpy() past the end of a struct member...\n"); + + /* + * strncpy(target.a, src, 20); will hit a compile error because the + * compiler knows at build time that target.a < 20 bytes. Use a + * volatile to force a runtime error. + */ + memcpy(target.a, src, size); + + /* Store result to global to prevent the code from being eliminated */ + fortify_scratch_space = target.a[3]; + + pr_err("FAIL: fortify did not block a memcpy() struct member write overflow!\n"); + pr_expected_config(CONFIG_FORTIFY_SOURCE); + + kfree(src); +} + +/* + * Calls fortified strscpy to test that it returns the same result as vanilla + * strscpy and generate a panic because there is a write overflow (i.e. src + * length is greater than dst length). + */ +static void lkdtm_FORTIFY_STRSCPY(void) +{ + char *src; + char dst[5]; + + struct { + union { + char big[10]; + char src[5]; + }; + } weird = { .big = "hello!" }; + char weird_dst[sizeof(weird.src) + 1]; + + src = kstrdup("foobar", GFP_KERNEL); + + if (src == NULL) + return; + + /* Vanilla strscpy returns -E2BIG if size is 0. */ + if (strscpy(dst, src, 0) != -E2BIG) + pr_warn("FAIL: strscpy() of 0 length did not return -E2BIG\n"); + + /* Vanilla strscpy returns -E2BIG if src is truncated. */ + if (strscpy(dst, src, sizeof(dst)) != -E2BIG) + pr_warn("FAIL: strscpy() did not return -E2BIG while src is truncated\n"); + + /* After above call, dst must contain "foob" because src was truncated. */ + if (strncmp(dst, "foob", sizeof(dst)) != 0) + pr_warn("FAIL: after strscpy() dst does not contain \"foob\" but \"%s\"\n", + dst); + + /* Shrink src so the strscpy() below succeeds. */ + src[3] = '\0'; + + /* + * Vanilla strscpy returns number of character copied if everything goes + * well. + */ + if (strscpy(dst, src, sizeof(dst)) != 3) + pr_warn("FAIL: strscpy() did not return 3 while src was copied entirely truncated\n"); + + /* After above call, dst must contain "foo" because src was copied. */ + if (strncmp(dst, "foo", sizeof(dst)) != 0) + pr_warn("FAIL: after strscpy() dst does not contain \"foo\" but \"%s\"\n", + dst); + + /* Test when src is embedded inside a union. */ + strscpy(weird_dst, weird.src, sizeof(weird_dst)); + + if (strcmp(weird_dst, "hello") != 0) + pr_warn("FAIL: after strscpy() weird_dst does not contain \"hello\" but \"%s\"\n", + weird_dst); + + /* Restore src to its initial value. */ + src[3] = 'b'; + + /* + * Use strlen here so size cannot be known at compile time and there is + * a runtime write overflow. + */ + strscpy(dst, src, strlen(src)); + + pr_err("FAIL: strscpy() overflow not detected!\n"); + pr_expected_config(CONFIG_FORTIFY_SOURCE); + + kfree(src); +} + +static struct crashtype crashtypes[] = { + CRASHTYPE(FORTIFY_STR_OBJECT), + CRASHTYPE(FORTIFY_STR_MEMBER), + CRASHTYPE(FORTIFY_MEM_OBJECT), + CRASHTYPE(FORTIFY_MEM_MEMBER), + CRASHTYPE(FORTIFY_STRSCPY), +}; + +struct crashtype_category fortify_crashtypes = { + .crashtypes = crashtypes, + .len = ARRAY_SIZE(crashtypes), +}; diff --git a/drivers/misc/lkdtm/heap.c b/drivers/misc/lkdtm/heap.c new file mode 100644 index 0000000000..0ce4cbf6ab --- /dev/null +++ b/drivers/misc/lkdtm/heap.c @@ -0,0 +1,342 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * This is for all the tests relating directly to heap memory, including + * page allocation and slab allocations. + */ +#include "lkdtm.h" +#include <linux/slab.h> +#include <linux/vmalloc.h> +#include <linux/sched.h> + +static struct kmem_cache *double_free_cache; +static struct kmem_cache *a_cache; +static struct kmem_cache *b_cache; + +/* + * Using volatile here means the compiler cannot ever make assumptions + * about this value. This means compile-time length checks involving + * this variable cannot be performed; only run-time checks. + */ +static volatile int __offset = 1; + +/* + * If there aren't guard pages, it's likely that a consecutive allocation will + * let us overflow into the second allocation without overwriting something real. + * + * This should always be caught because there is an unconditional unmapped + * page after vmap allocations. + */ +static void lkdtm_VMALLOC_LINEAR_OVERFLOW(void) +{ + char *one, *two; + + one = vzalloc(PAGE_SIZE); + OPTIMIZER_HIDE_VAR(one); + two = vzalloc(PAGE_SIZE); + + pr_info("Attempting vmalloc linear overflow ...\n"); + memset(one, 0xAA, PAGE_SIZE + __offset); + + vfree(two); + vfree(one); +} + +/* + * This tries to stay within the next largest power-of-2 kmalloc cache + * to avoid actually overwriting anything important if it's not detected + * correctly. + * + * This should get caught by either memory tagging, KASan, or by using + * CONFIG_SLUB_DEBUG=y and slub_debug=ZF (or CONFIG_SLUB_DEBUG_ON=y). + */ +static void lkdtm_SLAB_LINEAR_OVERFLOW(void) +{ + size_t len = 1020; + u32 *data = kmalloc(len, GFP_KERNEL); + if (!data) + return; + + pr_info("Attempting slab linear overflow ...\n"); + OPTIMIZER_HIDE_VAR(data); + data[1024 / sizeof(u32)] = 0x12345678; + kfree(data); +} + +static void lkdtm_WRITE_AFTER_FREE(void) +{ + int *base, *again; + size_t len = 1024; + /* + * The slub allocator uses the first word to store the free + * pointer in some configurations. Use the middle of the + * allocation to avoid running into the freelist + */ + size_t offset = (len / sizeof(*base)) / 2; + + base = kmalloc(len, GFP_KERNEL); + if (!base) + return; + pr_info("Allocated memory %p-%p\n", base, &base[offset * 2]); + pr_info("Attempting bad write to freed memory at %p\n", + &base[offset]); + kfree(base); + base[offset] = 0x0abcdef0; + /* Attempt to notice the overwrite. */ + again = kmalloc(len, GFP_KERNEL); + kfree(again); + if (again != base) + pr_info("Hmm, didn't get the same memory range.\n"); +} + +static void lkdtm_READ_AFTER_FREE(void) +{ + int *base, *val, saw; + size_t len = 1024; + /* + * The slub allocator will use the either the first word or + * the middle of the allocation to store the free pointer, + * depending on configurations. Store in the second word to + * avoid running into the freelist. + */ + size_t offset = sizeof(*base); + + base = kmalloc(len, GFP_KERNEL); + if (!base) { + pr_info("Unable to allocate base memory.\n"); + return; + } + + val = kmalloc(len, GFP_KERNEL); + if (!val) { + pr_info("Unable to allocate val memory.\n"); + kfree(base); + return; + } + + *val = 0x12345678; + base[offset] = *val; + pr_info("Value in memory before free: %x\n", base[offset]); + + kfree(base); + + pr_info("Attempting bad read from freed memory\n"); + saw = base[offset]; + if (saw != *val) { + /* Good! Poisoning happened, so declare a win. */ + pr_info("Memory correctly poisoned (%x)\n", saw); + } else { + pr_err("FAIL: Memory was not poisoned!\n"); + pr_expected_config_param(CONFIG_INIT_ON_FREE_DEFAULT_ON, "init_on_free"); + } + + kfree(val); +} + +static void lkdtm_WRITE_BUDDY_AFTER_FREE(void) +{ + unsigned long p = __get_free_page(GFP_KERNEL); + if (!p) { + pr_info("Unable to allocate free page\n"); + return; + } + + pr_info("Writing to the buddy page before free\n"); + memset((void *)p, 0x3, PAGE_SIZE); + free_page(p); + schedule(); + pr_info("Attempting bad write to the buddy page after free\n"); + memset((void *)p, 0x78, PAGE_SIZE); + /* Attempt to notice the overwrite. */ + p = __get_free_page(GFP_KERNEL); + free_page(p); + schedule(); +} + +static void lkdtm_READ_BUDDY_AFTER_FREE(void) +{ + unsigned long p = __get_free_page(GFP_KERNEL); + int saw, *val; + int *base; + + if (!p) { + pr_info("Unable to allocate free page\n"); + return; + } + + val = kmalloc(1024, GFP_KERNEL); + if (!val) { + pr_info("Unable to allocate val memory.\n"); + free_page(p); + return; + } + + base = (int *)p; + + *val = 0x12345678; + base[0] = *val; + pr_info("Value in memory before free: %x\n", base[0]); + free_page(p); + pr_info("Attempting to read from freed memory\n"); + saw = base[0]; + if (saw != *val) { + /* Good! Poisoning happened, so declare a win. */ + pr_info("Memory correctly poisoned (%x)\n", saw); + } else { + pr_err("FAIL: Buddy page was not poisoned!\n"); + pr_expected_config_param(CONFIG_INIT_ON_FREE_DEFAULT_ON, "init_on_free"); + } + + kfree(val); +} + +static void lkdtm_SLAB_INIT_ON_ALLOC(void) +{ + u8 *first; + u8 *val; + + first = kmalloc(512, GFP_KERNEL); + if (!first) { + pr_info("Unable to allocate 512 bytes the first time.\n"); + return; + } + + memset(first, 0xAB, 512); + kfree(first); + + val = kmalloc(512, GFP_KERNEL); + if (!val) { + pr_info("Unable to allocate 512 bytes the second time.\n"); + return; + } + if (val != first) { + pr_warn("Reallocation missed clobbered memory.\n"); + } + + if (memchr(val, 0xAB, 512) == NULL) { + pr_info("Memory appears initialized (%x, no earlier values)\n", *val); + } else { + pr_err("FAIL: Slab was not initialized\n"); + pr_expected_config_param(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, "init_on_alloc"); + } + kfree(val); +} + +static void lkdtm_BUDDY_INIT_ON_ALLOC(void) +{ + u8 *first; + u8 *val; + + first = (u8 *)__get_free_page(GFP_KERNEL); + if (!first) { + pr_info("Unable to allocate first free page\n"); + return; + } + + memset(first, 0xAB, PAGE_SIZE); + free_page((unsigned long)first); + + val = (u8 *)__get_free_page(GFP_KERNEL); + if (!val) { + pr_info("Unable to allocate second free page\n"); + return; + } + + if (val != first) { + pr_warn("Reallocation missed clobbered memory.\n"); + } + + if (memchr(val, 0xAB, PAGE_SIZE) == NULL) { + pr_info("Memory appears initialized (%x, no earlier values)\n", *val); + } else { + pr_err("FAIL: Slab was not initialized\n"); + pr_expected_config_param(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, "init_on_alloc"); + } + free_page((unsigned long)val); +} + +static void lkdtm_SLAB_FREE_DOUBLE(void) +{ + int *val; + + val = kmem_cache_alloc(double_free_cache, GFP_KERNEL); + if (!val) { + pr_info("Unable to allocate double_free_cache memory.\n"); + return; + } + + /* Just make sure we got real memory. */ + *val = 0x12345678; + pr_info("Attempting double slab free ...\n"); + kmem_cache_free(double_free_cache, val); + kmem_cache_free(double_free_cache, val); +} + +static void lkdtm_SLAB_FREE_CROSS(void) +{ + int *val; + + val = kmem_cache_alloc(a_cache, GFP_KERNEL); + if (!val) { + pr_info("Unable to allocate a_cache memory.\n"); + return; + } + + /* Just make sure we got real memory. */ + *val = 0x12345679; + pr_info("Attempting cross-cache slab free ...\n"); + kmem_cache_free(b_cache, val); +} + +static void lkdtm_SLAB_FREE_PAGE(void) +{ + unsigned long p = __get_free_page(GFP_KERNEL); + + pr_info("Attempting non-Slab slab free ...\n"); + kmem_cache_free(NULL, (void *)p); + free_page(p); +} + +/* + * We have constructors to keep the caches distinctly separated without + * needing to boot with "slab_nomerge". + */ +static void ctor_double_free(void *region) +{ } +static void ctor_a(void *region) +{ } +static void ctor_b(void *region) +{ } + +void __init lkdtm_heap_init(void) +{ + double_free_cache = kmem_cache_create("lkdtm-heap-double_free", + 64, 0, 0, ctor_double_free); + a_cache = kmem_cache_create("lkdtm-heap-a", 64, 0, 0, ctor_a); + b_cache = kmem_cache_create("lkdtm-heap-b", 64, 0, 0, ctor_b); +} + +void __exit lkdtm_heap_exit(void) +{ + kmem_cache_destroy(double_free_cache); + kmem_cache_destroy(a_cache); + kmem_cache_destroy(b_cache); +} + +static struct crashtype crashtypes[] = { + CRASHTYPE(SLAB_LINEAR_OVERFLOW), + CRASHTYPE(VMALLOC_LINEAR_OVERFLOW), + CRASHTYPE(WRITE_AFTER_FREE), + CRASHTYPE(READ_AFTER_FREE), + CRASHTYPE(WRITE_BUDDY_AFTER_FREE), + CRASHTYPE(READ_BUDDY_AFTER_FREE), + CRASHTYPE(SLAB_INIT_ON_ALLOC), + CRASHTYPE(BUDDY_INIT_ON_ALLOC), + CRASHTYPE(SLAB_FREE_DOUBLE), + CRASHTYPE(SLAB_FREE_CROSS), + CRASHTYPE(SLAB_FREE_PAGE), +}; + +struct crashtype_category heap_crashtypes = { + .crashtypes = crashtypes, + .len = ARRAY_SIZE(crashtypes), +}; diff --git a/drivers/misc/lkdtm/lkdtm.h b/drivers/misc/lkdtm/lkdtm.h new file mode 100644 index 0000000000..015e048402 --- /dev/null +++ b/drivers/misc/lkdtm/lkdtm.h @@ -0,0 +1,100 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +#ifndef __LKDTM_H +#define __LKDTM_H + +#define pr_fmt(fmt) "lkdtm: " fmt + +#include <linux/kernel.h> + +extern char *lkdtm_kernel_info; + +#define pr_expected_config(kconfig) \ +do { \ + if (IS_ENABLED(kconfig)) \ + pr_err("Unexpected! This %s was built with " #kconfig "=y\n", \ + lkdtm_kernel_info); \ + else \ + pr_warn("This is probably expected, since this %s was built *without* " #kconfig "=y\n", \ + lkdtm_kernel_info); \ +} while (0) + +#ifndef MODULE +int lkdtm_check_bool_cmdline(const char *param); +#define pr_expected_config_param(kconfig, param) \ +do { \ + if (IS_ENABLED(kconfig)) { \ + switch (lkdtm_check_bool_cmdline(param)) { \ + case 0: \ + pr_warn("This is probably expected, since this %s was built with " #kconfig "=y but booted with '" param "=N'\n", \ + lkdtm_kernel_info); \ + break; \ + case 1: \ + pr_err("Unexpected! This %s was built with " #kconfig "=y and booted with '" param "=Y'\n", \ + lkdtm_kernel_info); \ + break; \ + default: \ + pr_err("Unexpected! This %s was built with " #kconfig "=y (and booted without '" param "' specified)\n", \ + lkdtm_kernel_info); \ + } \ + } else { \ + switch (lkdtm_check_bool_cmdline(param)) { \ + case 0: \ + pr_warn("This is probably expected, as this %s was built *without* " #kconfig "=y and booted with '" param "=N'\n", \ + lkdtm_kernel_info); \ + break; \ + case 1: \ + pr_err("Unexpected! This %s was built *without* " #kconfig "=y but booted with '" param "=Y'\n", \ + lkdtm_kernel_info); \ + break; \ + default: \ + pr_err("This is probably expected, since this %s was built *without* " #kconfig "=y (and booted without '" param "' specified)\n", \ + lkdtm_kernel_info); \ + break; \ + } \ + } \ +} while (0) +#else +#define pr_expected_config_param(kconfig, param) pr_expected_config(kconfig) +#endif + +/* Crash types. */ +struct crashtype { + const char *name; + void (*func)(void); +}; + +#define CRASHTYPE(_name) \ + { \ + .name = __stringify(_name), \ + .func = lkdtm_ ## _name, \ + } + +/* Category's collection of crashtypes. */ +struct crashtype_category { + struct crashtype *crashtypes; + size_t len; +}; + +/* Each category's crashtypes list. */ +extern struct crashtype_category bugs_crashtypes; +extern struct crashtype_category heap_crashtypes; +extern struct crashtype_category perms_crashtypes; +extern struct crashtype_category refcount_crashtypes; +extern struct crashtype_category usercopy_crashtypes; +extern struct crashtype_category stackleak_crashtypes; +extern struct crashtype_category cfi_crashtypes; +extern struct crashtype_category fortify_crashtypes; +extern struct crashtype_category powerpc_crashtypes; + +/* Each category's init/exit routines. */ +void __init lkdtm_bugs_init(int *recur_param); +void __init lkdtm_heap_init(void); +void __exit lkdtm_heap_exit(void); +void __init lkdtm_perms_init(void); +void __init lkdtm_usercopy_init(void); +void __exit lkdtm_usercopy_exit(void); + +/* Special declaration for function-in-rodata. */ +void lkdtm_rodata_do_nothing(void); + +#endif diff --git a/drivers/misc/lkdtm/perms.c b/drivers/misc/lkdtm/perms.c new file mode 100644 index 0000000000..b93404d656 --- /dev/null +++ b/drivers/misc/lkdtm/perms.c @@ -0,0 +1,293 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * This is for all the tests related to validating kernel memory + * permissions: non-executable regions, non-writable regions, and + * even non-readable regions. + */ +#include "lkdtm.h" +#include <linux/slab.h> +#include <linux/vmalloc.h> +#include <linux/mman.h> +#include <linux/uaccess.h> +#include <asm/cacheflush.h> +#include <asm/sections.h> + +/* Whether or not to fill the target memory area with do_nothing(). */ +#define CODE_WRITE true +#define CODE_AS_IS false + +/* How many bytes to copy to be sure we've copied enough of do_nothing(). */ +#define EXEC_SIZE 64 + +/* This is non-const, so it will end up in the .data section. */ +static u8 data_area[EXEC_SIZE]; + +/* This is const, so it will end up in the .rodata section. */ +static const unsigned long rodata = 0xAA55AA55; + +/* This is marked __ro_after_init, so it should ultimately be .rodata. */ +static unsigned long ro_after_init __ro_after_init = 0x55AA5500; + +/* + * This just returns to the caller. It is designed to be copied into + * non-executable memory regions. + */ +static noinline void do_nothing(void) +{ + return; +} + +/* Must immediately follow do_nothing for size calculuations to work out. */ +static noinline void do_overwritten(void) +{ + pr_info("do_overwritten wasn't overwritten!\n"); + return; +} + +static noinline void do_almost_nothing(void) +{ + pr_info("do_nothing was hijacked!\n"); +} + +static void *setup_function_descriptor(func_desc_t *fdesc, void *dst) +{ + if (!have_function_descriptors()) + return dst; + + memcpy(fdesc, do_nothing, sizeof(*fdesc)); + fdesc->addr = (unsigned long)dst; + barrier(); + + return fdesc; +} + +static noinline void execute_location(void *dst, bool write) +{ + void (*func)(void); + func_desc_t fdesc; + void *do_nothing_text = dereference_function_descriptor(do_nothing); + + pr_info("attempting ok execution at %px\n", do_nothing_text); + do_nothing(); + + if (write == CODE_WRITE) { + memcpy(dst, do_nothing_text, EXEC_SIZE); + flush_icache_range((unsigned long)dst, + (unsigned long)dst + EXEC_SIZE); + } + pr_info("attempting bad execution at %px\n", dst); + func = setup_function_descriptor(&fdesc, dst); + func(); + pr_err("FAIL: func returned\n"); +} + +static void execute_user_location(void *dst) +{ + int copied; + + /* Intentionally crossing kernel/user memory boundary. */ + void (*func)(void); + func_desc_t fdesc; + void *do_nothing_text = dereference_function_descriptor(do_nothing); + + pr_info("attempting ok execution at %px\n", do_nothing_text); + do_nothing(); + + copied = access_process_vm(current, (unsigned long)dst, do_nothing_text, + EXEC_SIZE, FOLL_WRITE); + if (copied < EXEC_SIZE) + return; + pr_info("attempting bad execution at %px\n", dst); + func = setup_function_descriptor(&fdesc, dst); + func(); + pr_err("FAIL: func returned\n"); +} + +static void lkdtm_WRITE_RO(void) +{ + /* Explicitly cast away "const" for the test and make volatile. */ + volatile unsigned long *ptr = (unsigned long *)&rodata; + + pr_info("attempting bad rodata write at %px\n", ptr); + *ptr ^= 0xabcd1234; + pr_err("FAIL: survived bad write\n"); +} + +static void lkdtm_WRITE_RO_AFTER_INIT(void) +{ + volatile unsigned long *ptr = &ro_after_init; + + /* + * Verify we were written to during init. Since an Oops + * is considered a "success", a failure is to just skip the + * real test. + */ + if ((*ptr & 0xAA) != 0xAA) { + pr_info("%p was NOT written during init!?\n", ptr); + return; + } + + pr_info("attempting bad ro_after_init write at %px\n", ptr); + *ptr ^= 0xabcd1234; + pr_err("FAIL: survived bad write\n"); +} + +static void lkdtm_WRITE_KERN(void) +{ + size_t size; + volatile unsigned char *ptr; + + size = (unsigned long)dereference_function_descriptor(do_overwritten) - + (unsigned long)dereference_function_descriptor(do_nothing); + ptr = dereference_function_descriptor(do_overwritten); + + pr_info("attempting bad %zu byte write at %px\n", size, ptr); + memcpy((void *)ptr, (unsigned char *)do_nothing, size); + flush_icache_range((unsigned long)ptr, (unsigned long)(ptr + size)); + pr_err("FAIL: survived bad write\n"); + + do_overwritten(); +} + +static void lkdtm_WRITE_OPD(void) +{ + size_t size = sizeof(func_desc_t); + void (*func)(void) = do_nothing; + + if (!have_function_descriptors()) { + pr_info("XFAIL: Platform doesn't use function descriptors.\n"); + return; + } + pr_info("attempting bad %zu bytes write at %px\n", size, do_nothing); + memcpy(do_nothing, do_almost_nothing, size); + pr_err("FAIL: survived bad write\n"); + + asm("" : "=m"(func)); + func(); +} + +static void lkdtm_EXEC_DATA(void) +{ + execute_location(data_area, CODE_WRITE); +} + +static void lkdtm_EXEC_STACK(void) +{ + u8 stack_area[EXEC_SIZE]; + execute_location(stack_area, CODE_WRITE); +} + +static void lkdtm_EXEC_KMALLOC(void) +{ + u32 *kmalloc_area = kmalloc(EXEC_SIZE, GFP_KERNEL); + execute_location(kmalloc_area, CODE_WRITE); + kfree(kmalloc_area); +} + +static void lkdtm_EXEC_VMALLOC(void) +{ + u32 *vmalloc_area = vmalloc(EXEC_SIZE); + execute_location(vmalloc_area, CODE_WRITE); + vfree(vmalloc_area); +} + +static void lkdtm_EXEC_RODATA(void) +{ + execute_location(dereference_function_descriptor(lkdtm_rodata_do_nothing), + CODE_AS_IS); +} + +static void lkdtm_EXEC_USERSPACE(void) +{ + unsigned long user_addr; + + user_addr = vm_mmap(NULL, 0, PAGE_SIZE, + PROT_READ | PROT_WRITE | PROT_EXEC, + MAP_ANONYMOUS | MAP_PRIVATE, 0); + if (user_addr >= TASK_SIZE) { + pr_warn("Failed to allocate user memory\n"); + return; + } + execute_user_location((void *)user_addr); + vm_munmap(user_addr, PAGE_SIZE); +} + +static void lkdtm_EXEC_NULL(void) +{ + execute_location(NULL, CODE_AS_IS); +} + +static void lkdtm_ACCESS_USERSPACE(void) +{ + unsigned long user_addr, tmp = 0; + unsigned long *ptr; + + user_addr = vm_mmap(NULL, 0, PAGE_SIZE, + PROT_READ | PROT_WRITE | PROT_EXEC, + MAP_ANONYMOUS | MAP_PRIVATE, 0); + if (user_addr >= TASK_SIZE) { + pr_warn("Failed to allocate user memory\n"); + return; + } + + if (copy_to_user((void __user *)user_addr, &tmp, sizeof(tmp))) { + pr_warn("copy_to_user failed\n"); + vm_munmap(user_addr, PAGE_SIZE); + return; + } + + ptr = (unsigned long *)user_addr; + + pr_info("attempting bad read at %px\n", ptr); + tmp = *ptr; + tmp += 0xc0dec0de; + pr_err("FAIL: survived bad read\n"); + + pr_info("attempting bad write at %px\n", ptr); + *ptr = tmp; + pr_err("FAIL: survived bad write\n"); + + vm_munmap(user_addr, PAGE_SIZE); +} + +static void lkdtm_ACCESS_NULL(void) +{ + unsigned long tmp; + volatile unsigned long *ptr = (unsigned long *)NULL; + + pr_info("attempting bad read at %px\n", ptr); + tmp = *ptr; + tmp += 0xc0dec0de; + pr_err("FAIL: survived bad read\n"); + + pr_info("attempting bad write at %px\n", ptr); + *ptr = tmp; + pr_err("FAIL: survived bad write\n"); +} + +void __init lkdtm_perms_init(void) +{ + /* Make sure we can write to __ro_after_init values during __init */ + ro_after_init |= 0xAA; +} + +static struct crashtype crashtypes[] = { + CRASHTYPE(WRITE_RO), + CRASHTYPE(WRITE_RO_AFTER_INIT), + CRASHTYPE(WRITE_KERN), + CRASHTYPE(WRITE_OPD), + CRASHTYPE(EXEC_DATA), + CRASHTYPE(EXEC_STACK), + CRASHTYPE(EXEC_KMALLOC), + CRASHTYPE(EXEC_VMALLOC), + CRASHTYPE(EXEC_RODATA), + CRASHTYPE(EXEC_USERSPACE), + CRASHTYPE(EXEC_NULL), + CRASHTYPE(ACCESS_USERSPACE), + CRASHTYPE(ACCESS_NULL), +}; + +struct crashtype_category perms_crashtypes = { + .crashtypes = crashtypes, + .len = ARRAY_SIZE(crashtypes), +}; diff --git a/drivers/misc/lkdtm/powerpc.c b/drivers/misc/lkdtm/powerpc.c new file mode 100644 index 0000000000..be38544991 --- /dev/null +++ b/drivers/misc/lkdtm/powerpc.c @@ -0,0 +1,129 @@ +// SPDX-License-Identifier: GPL-2.0 + +#include "lkdtm.h" +#include <linux/slab.h> +#include <linux/vmalloc.h> +#include <asm/mmu.h> + +/* Inserts new slb entries */ +static void insert_slb_entry(unsigned long p, int ssize, int page_size) +{ + unsigned long flags; + + flags = SLB_VSID_KERNEL | mmu_psize_defs[page_size].sllp; + preempt_disable(); + + asm volatile("slbmte %0,%1" : + : "r" (mk_vsid_data(p, ssize, flags)), + "r" (mk_esid_data(p, ssize, SLB_NUM_BOLTED)) + : "memory"); + + asm volatile("slbmte %0,%1" : + : "r" (mk_vsid_data(p, ssize, flags)), + "r" (mk_esid_data(p, ssize, SLB_NUM_BOLTED + 1)) + : "memory"); + preempt_enable(); +} + +/* Inject slb multihit on vmalloc-ed address i.e 0xD00... */ +static int inject_vmalloc_slb_multihit(void) +{ + char *p; + + p = vmalloc(PAGE_SIZE); + if (!p) + return -ENOMEM; + + insert_slb_entry((unsigned long)p, MMU_SEGSIZE_1T, mmu_vmalloc_psize); + /* + * This triggers exception, If handled correctly we must recover + * from this error. + */ + p[0] = '!'; + vfree(p); + return 0; +} + +/* Inject slb multihit on kmalloc-ed address i.e 0xC00... */ +static int inject_kmalloc_slb_multihit(void) +{ + char *p; + + p = kmalloc(2048, GFP_KERNEL); + if (!p) + return -ENOMEM; + + insert_slb_entry((unsigned long)p, MMU_SEGSIZE_1T, mmu_linear_psize); + /* + * This triggers exception, If handled correctly we must recover + * from this error. + */ + p[0] = '!'; + kfree(p); + return 0; +} + +/* + * Few initial SLB entries are bolted. Add a test to inject + * multihit in bolted entry 0. + */ +static void insert_dup_slb_entry_0(void) +{ + unsigned long test_address = PAGE_OFFSET, *test_ptr; + unsigned long esid, vsid; + unsigned long i = 0; + + test_ptr = (unsigned long *)test_address; + preempt_disable(); + + asm volatile("slbmfee %0,%1" : "=r" (esid) : "r" (i)); + asm volatile("slbmfev %0,%1" : "=r" (vsid) : "r" (i)); + + /* for i !=0 we would need to mask out the old entry number */ + asm volatile("slbmte %0,%1" : + : "r" (vsid), + "r" (esid | SLB_NUM_BOLTED) + : "memory"); + + asm volatile("slbmfee %0,%1" : "=r" (esid) : "r" (i)); + asm volatile("slbmfev %0,%1" : "=r" (vsid) : "r" (i)); + + /* for i !=0 we would need to mask out the old entry number */ + asm volatile("slbmte %0,%1" : + : "r" (vsid), + "r" (esid | (SLB_NUM_BOLTED + 1)) + : "memory"); + + pr_info("%s accessing test address 0x%lx: 0x%lx\n", + __func__, test_address, *test_ptr); + + preempt_enable(); +} + +static void lkdtm_PPC_SLB_MULTIHIT(void) +{ + if (!radix_enabled()) { + pr_info("Injecting SLB multihit errors\n"); + /* + * These need not be separate tests, And they do pretty + * much same thing. In any case we must recover from the + * errors introduced by these functions, machine would not + * survive these tests in case of failure to handle. + */ + inject_vmalloc_slb_multihit(); + inject_kmalloc_slb_multihit(); + insert_dup_slb_entry_0(); + pr_info("Recovered from SLB multihit errors\n"); + } else { + pr_err("XFAIL: This test is for ppc64 and with hash mode MMU only\n"); + } +} + +static struct crashtype crashtypes[] = { + CRASHTYPE(PPC_SLB_MULTIHIT), +}; + +struct crashtype_category powerpc_crashtypes = { + .crashtypes = crashtypes, + .len = ARRAY_SIZE(crashtypes), +}; diff --git a/drivers/misc/lkdtm/refcount.c b/drivers/misc/lkdtm/refcount.c new file mode 100644 index 0000000000..5cd488f54c --- /dev/null +++ b/drivers/misc/lkdtm/refcount.c @@ -0,0 +1,419 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * This is for all the tests related to refcount bugs (e.g. overflow, + * underflow, reaching zero untested, etc). + */ +#include "lkdtm.h" +#include <linux/refcount.h> + +static void overflow_check(refcount_t *ref) +{ + switch (refcount_read(ref)) { + case REFCOUNT_SATURATED: + pr_info("Overflow detected: saturated\n"); + break; + case REFCOUNT_MAX: + pr_warn("Overflow detected: unsafely reset to max\n"); + break; + default: + pr_err("Fail: refcount wrapped to %d\n", refcount_read(ref)); + } +} + +/* + * A refcount_inc() above the maximum value of the refcount implementation, + * should at least saturate, and at most also WARN. + */ +static void lkdtm_REFCOUNT_INC_OVERFLOW(void) +{ + refcount_t over = REFCOUNT_INIT(REFCOUNT_MAX - 1); + + pr_info("attempting good refcount_inc() without overflow\n"); + refcount_dec(&over); + refcount_inc(&over); + + pr_info("attempting bad refcount_inc() overflow\n"); + refcount_inc(&over); + refcount_inc(&over); + + overflow_check(&over); +} + +/* refcount_add() should behave just like refcount_inc() above. */ +static void lkdtm_REFCOUNT_ADD_OVERFLOW(void) +{ + refcount_t over = REFCOUNT_INIT(REFCOUNT_MAX - 1); + + pr_info("attempting good refcount_add() without overflow\n"); + refcount_dec(&over); + refcount_dec(&over); + refcount_dec(&over); + refcount_dec(&over); + refcount_add(4, &over); + + pr_info("attempting bad refcount_add() overflow\n"); + refcount_add(4, &over); + + overflow_check(&over); +} + +/* refcount_inc_not_zero() should behave just like refcount_inc() above. */ +static void lkdtm_REFCOUNT_INC_NOT_ZERO_OVERFLOW(void) +{ + refcount_t over = REFCOUNT_INIT(REFCOUNT_MAX); + + pr_info("attempting bad refcount_inc_not_zero() overflow\n"); + if (!refcount_inc_not_zero(&over)) + pr_warn("Weird: refcount_inc_not_zero() reported zero\n"); + + overflow_check(&over); +} + +/* refcount_add_not_zero() should behave just like refcount_inc() above. */ +static void lkdtm_REFCOUNT_ADD_NOT_ZERO_OVERFLOW(void) +{ + refcount_t over = REFCOUNT_INIT(REFCOUNT_MAX); + + pr_info("attempting bad refcount_add_not_zero() overflow\n"); + if (!refcount_add_not_zero(6, &over)) + pr_warn("Weird: refcount_add_not_zero() reported zero\n"); + + overflow_check(&over); +} + +static void check_zero(refcount_t *ref) +{ + switch (refcount_read(ref)) { + case REFCOUNT_SATURATED: + pr_info("Zero detected: saturated\n"); + break; + case REFCOUNT_MAX: + pr_warn("Zero detected: unsafely reset to max\n"); + break; + case 0: + pr_warn("Still at zero: refcount_inc/add() must not inc-from-0\n"); + break; + default: + pr_err("Fail: refcount went crazy: %d\n", refcount_read(ref)); + } +} + +/* + * A refcount_dec(), as opposed to a refcount_dec_and_test(), when it hits + * zero it should either saturate (when inc-from-zero isn't protected) + * or stay at zero (when inc-from-zero is protected) and should WARN for both. + */ +static void lkdtm_REFCOUNT_DEC_ZERO(void) +{ + refcount_t zero = REFCOUNT_INIT(2); + + pr_info("attempting good refcount_dec()\n"); + refcount_dec(&zero); + + pr_info("attempting bad refcount_dec() to zero\n"); + refcount_dec(&zero); + + check_zero(&zero); +} + +static void check_negative(refcount_t *ref, int start) +{ + /* + * refcount_t refuses to move a refcount at all on an + * over-sub, so we have to track our starting position instead of + * looking only at zero-pinning. + */ + if (refcount_read(ref) == start) { + pr_warn("Still at %d: refcount_inc/add() must not inc-from-0\n", + start); + return; + } + + switch (refcount_read(ref)) { + case REFCOUNT_SATURATED: + pr_info("Negative detected: saturated\n"); + break; + case REFCOUNT_MAX: + pr_warn("Negative detected: unsafely reset to max\n"); + break; + default: + pr_err("Fail: refcount went crazy: %d\n", refcount_read(ref)); + } +} + +/* A refcount_dec() going negative should saturate and may WARN. */ +static void lkdtm_REFCOUNT_DEC_NEGATIVE(void) +{ + refcount_t neg = REFCOUNT_INIT(0); + + pr_info("attempting bad refcount_dec() below zero\n"); + refcount_dec(&neg); + + check_negative(&neg, 0); +} + +/* + * A refcount_dec_and_test() should act like refcount_dec() above when + * going negative. + */ +static void lkdtm_REFCOUNT_DEC_AND_TEST_NEGATIVE(void) +{ + refcount_t neg = REFCOUNT_INIT(0); + + pr_info("attempting bad refcount_dec_and_test() below zero\n"); + if (refcount_dec_and_test(&neg)) + pr_warn("Weird: refcount_dec_and_test() reported zero\n"); + + check_negative(&neg, 0); +} + +/* + * A refcount_sub_and_test() should act like refcount_dec_and_test() + * above when going negative. + */ +static void lkdtm_REFCOUNT_SUB_AND_TEST_NEGATIVE(void) +{ + refcount_t neg = REFCOUNT_INIT(3); + + pr_info("attempting bad refcount_sub_and_test() below zero\n"); + if (refcount_sub_and_test(5, &neg)) + pr_warn("Weird: refcount_sub_and_test() reported zero\n"); + + check_negative(&neg, 3); +} + +static void check_from_zero(refcount_t *ref) +{ + switch (refcount_read(ref)) { + case 0: + pr_info("Zero detected: stayed at zero\n"); + break; + case REFCOUNT_SATURATED: + pr_info("Zero detected: saturated\n"); + break; + case REFCOUNT_MAX: + pr_warn("Zero detected: unsafely reset to max\n"); + break; + default: + pr_info("Fail: zero not detected, incremented to %d\n", + refcount_read(ref)); + } +} + +/* + * A refcount_inc() from zero should pin to zero or saturate and may WARN. + */ +static void lkdtm_REFCOUNT_INC_ZERO(void) +{ + refcount_t zero = REFCOUNT_INIT(0); + + pr_info("attempting safe refcount_inc_not_zero() from zero\n"); + if (!refcount_inc_not_zero(&zero)) { + pr_info("Good: zero detected\n"); + if (refcount_read(&zero) == 0) + pr_info("Correctly stayed at zero\n"); + else + pr_err("Fail: refcount went past zero!\n"); + } else { + pr_err("Fail: Zero not detected!?\n"); + } + + pr_info("attempting bad refcount_inc() from zero\n"); + refcount_inc(&zero); + + check_from_zero(&zero); +} + +/* + * A refcount_add() should act like refcount_inc() above when starting + * at zero. + */ +static void lkdtm_REFCOUNT_ADD_ZERO(void) +{ + refcount_t zero = REFCOUNT_INIT(0); + + pr_info("attempting safe refcount_add_not_zero() from zero\n"); + if (!refcount_add_not_zero(3, &zero)) { + pr_info("Good: zero detected\n"); + if (refcount_read(&zero) == 0) + pr_info("Correctly stayed at zero\n"); + else + pr_err("Fail: refcount went past zero\n"); + } else { + pr_err("Fail: Zero not detected!?\n"); + } + + pr_info("attempting bad refcount_add() from zero\n"); + refcount_add(3, &zero); + + check_from_zero(&zero); +} + +static void check_saturated(refcount_t *ref) +{ + switch (refcount_read(ref)) { + case REFCOUNT_SATURATED: + pr_info("Saturation detected: still saturated\n"); + break; + case REFCOUNT_MAX: + pr_warn("Saturation detected: unsafely reset to max\n"); + break; + default: + pr_err("Fail: refcount went crazy: %d\n", refcount_read(ref)); + } +} + +/* + * A refcount_inc() from a saturated value should at most warn about + * being saturated already. + */ +static void lkdtm_REFCOUNT_INC_SATURATED(void) +{ + refcount_t sat = REFCOUNT_INIT(REFCOUNT_SATURATED); + + pr_info("attempting bad refcount_inc() from saturated\n"); + refcount_inc(&sat); + + check_saturated(&sat); +} + +/* Should act like refcount_inc() above from saturated. */ +static void lkdtm_REFCOUNT_DEC_SATURATED(void) +{ + refcount_t sat = REFCOUNT_INIT(REFCOUNT_SATURATED); + + pr_info("attempting bad refcount_dec() from saturated\n"); + refcount_dec(&sat); + + check_saturated(&sat); +} + +/* Should act like refcount_inc() above from saturated. */ +static void lkdtm_REFCOUNT_ADD_SATURATED(void) +{ + refcount_t sat = REFCOUNT_INIT(REFCOUNT_SATURATED); + + pr_info("attempting bad refcount_dec() from saturated\n"); + refcount_add(8, &sat); + + check_saturated(&sat); +} + +/* Should act like refcount_inc() above from saturated. */ +static void lkdtm_REFCOUNT_INC_NOT_ZERO_SATURATED(void) +{ + refcount_t sat = REFCOUNT_INIT(REFCOUNT_SATURATED); + + pr_info("attempting bad refcount_inc_not_zero() from saturated\n"); + if (!refcount_inc_not_zero(&sat)) + pr_warn("Weird: refcount_inc_not_zero() reported zero\n"); + + check_saturated(&sat); +} + +/* Should act like refcount_inc() above from saturated. */ +static void lkdtm_REFCOUNT_ADD_NOT_ZERO_SATURATED(void) +{ + refcount_t sat = REFCOUNT_INIT(REFCOUNT_SATURATED); + + pr_info("attempting bad refcount_add_not_zero() from saturated\n"); + if (!refcount_add_not_zero(7, &sat)) + pr_warn("Weird: refcount_add_not_zero() reported zero\n"); + + check_saturated(&sat); +} + +/* Should act like refcount_inc() above from saturated. */ +static void lkdtm_REFCOUNT_DEC_AND_TEST_SATURATED(void) +{ + refcount_t sat = REFCOUNT_INIT(REFCOUNT_SATURATED); + + pr_info("attempting bad refcount_dec_and_test() from saturated\n"); + if (refcount_dec_and_test(&sat)) + pr_warn("Weird: refcount_dec_and_test() reported zero\n"); + + check_saturated(&sat); +} + +/* Should act like refcount_inc() above from saturated. */ +static void lkdtm_REFCOUNT_SUB_AND_TEST_SATURATED(void) +{ + refcount_t sat = REFCOUNT_INIT(REFCOUNT_SATURATED); + + pr_info("attempting bad refcount_sub_and_test() from saturated\n"); + if (refcount_sub_and_test(8, &sat)) + pr_warn("Weird: refcount_sub_and_test() reported zero\n"); + + check_saturated(&sat); +} + +/* Used to time the existing atomic_t when used for reference counting */ +static void lkdtm_ATOMIC_TIMING(void) +{ + unsigned int i; + atomic_t count = ATOMIC_INIT(1); + + for (i = 0; i < INT_MAX - 1; i++) + atomic_inc(&count); + + for (i = INT_MAX; i > 0; i--) + if (atomic_dec_and_test(&count)) + break; + + if (i != 1) + pr_err("atomic timing: out of sync up/down cycle: %u\n", i - 1); + else + pr_info("atomic timing: done\n"); +} + +/* + * This can be compared to ATOMIC_TIMING when implementing fast refcount + * protections. Looking at the number of CPU cycles tells the real story + * about performance. For example: + * cd /sys/kernel/debug/provoke-crash + * perf stat -B -- cat <(echo REFCOUNT_TIMING) > DIRECT + */ +static void lkdtm_REFCOUNT_TIMING(void) +{ + unsigned int i; + refcount_t count = REFCOUNT_INIT(1); + + for (i = 0; i < INT_MAX - 1; i++) + refcount_inc(&count); + + for (i = INT_MAX; i > 0; i--) + if (refcount_dec_and_test(&count)) + break; + + if (i != 1) + pr_err("refcount: out of sync up/down cycle: %u\n", i - 1); + else + pr_info("refcount timing: done\n"); +} + +static struct crashtype crashtypes[] = { + CRASHTYPE(REFCOUNT_INC_OVERFLOW), + CRASHTYPE(REFCOUNT_ADD_OVERFLOW), + CRASHTYPE(REFCOUNT_INC_NOT_ZERO_OVERFLOW), + CRASHTYPE(REFCOUNT_ADD_NOT_ZERO_OVERFLOW), + CRASHTYPE(REFCOUNT_DEC_ZERO), + CRASHTYPE(REFCOUNT_DEC_NEGATIVE), + CRASHTYPE(REFCOUNT_DEC_AND_TEST_NEGATIVE), + CRASHTYPE(REFCOUNT_SUB_AND_TEST_NEGATIVE), + CRASHTYPE(REFCOUNT_INC_ZERO), + CRASHTYPE(REFCOUNT_ADD_ZERO), + CRASHTYPE(REFCOUNT_INC_SATURATED), + CRASHTYPE(REFCOUNT_DEC_SATURATED), + CRASHTYPE(REFCOUNT_ADD_SATURATED), + CRASHTYPE(REFCOUNT_INC_NOT_ZERO_SATURATED), + CRASHTYPE(REFCOUNT_ADD_NOT_ZERO_SATURATED), + CRASHTYPE(REFCOUNT_DEC_AND_TEST_SATURATED), + CRASHTYPE(REFCOUNT_SUB_AND_TEST_SATURATED), + CRASHTYPE(ATOMIC_TIMING), + CRASHTYPE(REFCOUNT_TIMING), +}; + +struct crashtype_category refcount_crashtypes = { + .crashtypes = crashtypes, + .len = ARRAY_SIZE(crashtypes), +}; diff --git a/drivers/misc/lkdtm/rodata.c b/drivers/misc/lkdtm/rodata.c new file mode 100644 index 0000000000..baacb876d1 --- /dev/null +++ b/drivers/misc/lkdtm/rodata.c @@ -0,0 +1,11 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * This includes functions that are meant to live entirely in .rodata + * (via objcopy tricks), to validate the non-executability of .rodata. + */ +#include "lkdtm.h" + +void noinstr lkdtm_rodata_do_nothing(void) +{ + /* Does nothing. We just want an architecture agnostic "return". */ +} diff --git a/drivers/misc/lkdtm/stackleak.c b/drivers/misc/lkdtm/stackleak.c new file mode 100644 index 0000000000..f1d0221609 --- /dev/null +++ b/drivers/misc/lkdtm/stackleak.c @@ -0,0 +1,150 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * This code tests that the current task stack is properly erased (filled + * with STACKLEAK_POISON). + * + * Authors: + * Alexander Popov <alex.popov@linux.com> + * Tycho Andersen <tycho@tycho.ws> + */ + +#include "lkdtm.h" +#include <linux/stackleak.h> + +#if defined(CONFIG_GCC_PLUGIN_STACKLEAK) +/* + * Check that stackleak tracks the lowest stack pointer and erases the stack + * below this as expected. + * + * To prevent the lowest stack pointer changing during the test, IRQs are + * masked and instrumentation of this function is disabled. We assume that the + * compiler will create a fixed-size stack frame for this function. + * + * Any non-inlined function may make further use of the stack, altering the + * lowest stack pointer and/or clobbering poison values. To avoid spurious + * failures we must avoid printing until the end of the test or have already + * encountered a failure condition. + */ +static void noinstr check_stackleak_irqoff(void) +{ + const unsigned long task_stack_base = (unsigned long)task_stack_page(current); + const unsigned long task_stack_low = stackleak_task_low_bound(current); + const unsigned long task_stack_high = stackleak_task_high_bound(current); + const unsigned long current_sp = current_stack_pointer; + const unsigned long lowest_sp = current->lowest_stack; + unsigned long untracked_high; + unsigned long poison_high, poison_low; + bool test_failed = false; + + /* + * Check that the current and lowest recorded stack pointer values fall + * within the expected task stack boundaries. These tests should never + * fail unless the boundaries are incorrect or we're clobbering the + * STACK_END_MAGIC, and in either casee something is seriously wrong. + */ + if (current_sp < task_stack_low || current_sp >= task_stack_high) { + instrumentation_begin(); + pr_err("FAIL: current_stack_pointer (0x%lx) outside of task stack bounds [0x%lx..0x%lx]\n", + current_sp, task_stack_low, task_stack_high - 1); + test_failed = true; + goto out; + } + if (lowest_sp < task_stack_low || lowest_sp >= task_stack_high) { + instrumentation_begin(); + pr_err("FAIL: current->lowest_stack (0x%lx) outside of task stack bounds [0x%lx..0x%lx]\n", + lowest_sp, task_stack_low, task_stack_high - 1); + test_failed = true; + goto out; + } + + /* + * Depending on what has run prior to this test, the lowest recorded + * stack pointer could be above or below the current stack pointer. + * Start from the lowest of the two. + * + * Poison values are naturally-aligned unsigned longs. As the current + * stack pointer might not be sufficiently aligned, we must align + * downwards to find the lowest known stack pointer value. This is the + * high boundary for a portion of the stack which may have been used + * without being tracked, and has to be scanned for poison. + */ + untracked_high = min(current_sp, lowest_sp); + untracked_high = ALIGN_DOWN(untracked_high, sizeof(unsigned long)); + + /* + * Find the top of the poison in the same way as the erasing code. + */ + poison_high = stackleak_find_top_of_poison(task_stack_low, untracked_high); + + /* + * Check whether the poisoned portion of the stack (if any) consists + * entirely of poison. This verifies the entries that + * stackleak_find_top_of_poison() should have checked. + */ + poison_low = poison_high; + while (poison_low > task_stack_low) { + poison_low -= sizeof(unsigned long); + + if (*(unsigned long *)poison_low == STACKLEAK_POISON) + continue; + + instrumentation_begin(); + pr_err("FAIL: non-poison value %lu bytes below poison boundary: 0x%lx\n", + poison_high - poison_low, *(unsigned long *)poison_low); + test_failed = true; + goto out; + } + + instrumentation_begin(); + pr_info("stackleak stack usage:\n" + " high offset: %lu bytes\n" + " current: %lu bytes\n" + " lowest: %lu bytes\n" + " tracked: %lu bytes\n" + " untracked: %lu bytes\n" + " poisoned: %lu bytes\n" + " low offset: %lu bytes\n", + task_stack_base + THREAD_SIZE - task_stack_high, + task_stack_high - current_sp, + task_stack_high - lowest_sp, + task_stack_high - untracked_high, + untracked_high - poison_high, + poison_high - task_stack_low, + task_stack_low - task_stack_base); + +out: + if (test_failed) { + pr_err("FAIL: the thread stack is NOT properly erased!\n"); + } else { + pr_info("OK: the rest of the thread stack is properly erased\n"); + } + instrumentation_end(); +} + +static void lkdtm_STACKLEAK_ERASING(void) +{ + unsigned long flags; + + local_irq_save(flags); + check_stackleak_irqoff(); + local_irq_restore(flags); +} +#else /* defined(CONFIG_GCC_PLUGIN_STACKLEAK) */ +static void lkdtm_STACKLEAK_ERASING(void) +{ + if (IS_ENABLED(CONFIG_HAVE_ARCH_STACKLEAK)) { + pr_err("XFAIL: stackleak is not enabled (CONFIG_GCC_PLUGIN_STACKLEAK=n)\n"); + } else { + pr_err("XFAIL: stackleak is not supported on this arch (HAVE_ARCH_STACKLEAK=n)\n"); + } +} +#endif /* defined(CONFIG_GCC_PLUGIN_STACKLEAK) */ + +static struct crashtype crashtypes[] = { + CRASHTYPE(STACKLEAK_ERASING), +}; + +struct crashtype_category stackleak_crashtypes = { + .crashtypes = crashtypes, + .len = ARRAY_SIZE(crashtypes), +}; diff --git a/drivers/misc/lkdtm/usercopy.c b/drivers/misc/lkdtm/usercopy.c new file mode 100644 index 0000000000..67db57249a --- /dev/null +++ b/drivers/misc/lkdtm/usercopy.c @@ -0,0 +1,457 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * This is for all the tests related to copy_to_user() and copy_from_user() + * hardening. + */ +#include "lkdtm.h" +#include <linux/slab.h> +#include <linux/highmem.h> +#include <linux/vmalloc.h> +#include <linux/sched/task_stack.h> +#include <linux/mman.h> +#include <linux/uaccess.h> +#include <asm/cacheflush.h> + +/* + * Many of the tests here end up using const sizes, but those would + * normally be ignored by hardened usercopy, so force the compiler + * into choosing the non-const path to make sure we trigger the + * hardened usercopy checks by added "unconst" to all the const copies, + * and making sure "cache_size" isn't optimized into a const. + */ +static volatile size_t unconst; +static volatile size_t cache_size = 1024; +static struct kmem_cache *whitelist_cache; + +static const unsigned char test_text[] = "This is a test.\n"; + +/* + * Instead of adding -Wno-return-local-addr, just pass the stack address + * through a function to obfuscate it from the compiler. + */ +static noinline unsigned char *trick_compiler(unsigned char *stack) +{ + return stack + unconst; +} + +static noinline unsigned char *do_usercopy_stack_callee(int value) +{ + unsigned char buf[128]; + int i; + + /* Exercise stack to avoid everything living in registers. */ + for (i = 0; i < sizeof(buf); i++) { + buf[i] = value & 0xff; + } + + /* + * Put the target buffer in the middle of stack allocation + * so that we don't step on future stack users regardless + * of stack growth direction. + */ + return trick_compiler(&buf[(128/2)-32]); +} + +static noinline void do_usercopy_stack(bool to_user, bool bad_frame) +{ + unsigned long user_addr; + unsigned char good_stack[32]; + unsigned char *bad_stack; + int i; + + /* Exercise stack to avoid everything living in registers. */ + for (i = 0; i < sizeof(good_stack); i++) + good_stack[i] = test_text[i % sizeof(test_text)]; + + /* This is a pointer to outside our current stack frame. */ + if (bad_frame) { + bad_stack = do_usercopy_stack_callee((uintptr_t)&bad_stack); + } else { + /* Put start address just inside stack. */ + bad_stack = task_stack_page(current) + THREAD_SIZE; + bad_stack -= sizeof(unsigned long); + } + +#ifdef ARCH_HAS_CURRENT_STACK_POINTER + pr_info("stack : %px\n", (void *)current_stack_pointer); +#endif + pr_info("good_stack: %px-%px\n", good_stack, good_stack + sizeof(good_stack)); + pr_info("bad_stack : %px-%px\n", bad_stack, bad_stack + sizeof(good_stack)); + + user_addr = vm_mmap(NULL, 0, PAGE_SIZE, + PROT_READ | PROT_WRITE | PROT_EXEC, + MAP_ANONYMOUS | MAP_PRIVATE, 0); + if (user_addr >= TASK_SIZE) { + pr_warn("Failed to allocate user memory\n"); + return; + } + + if (to_user) { + pr_info("attempting good copy_to_user of local stack\n"); + if (copy_to_user((void __user *)user_addr, good_stack, + unconst + sizeof(good_stack))) { + pr_warn("copy_to_user failed unexpectedly?!\n"); + goto free_user; + } + + pr_info("attempting bad copy_to_user of distant stack\n"); + if (copy_to_user((void __user *)user_addr, bad_stack, + unconst + sizeof(good_stack))) { + pr_warn("copy_to_user failed, but lacked Oops\n"); + goto free_user; + } + } else { + /* + * There isn't a safe way to not be protected by usercopy + * if we're going to write to another thread's stack. + */ + if (!bad_frame) + goto free_user; + + pr_info("attempting good copy_from_user of local stack\n"); + if (copy_from_user(good_stack, (void __user *)user_addr, + unconst + sizeof(good_stack))) { + pr_warn("copy_from_user failed unexpectedly?!\n"); + goto free_user; + } + + pr_info("attempting bad copy_from_user of distant stack\n"); + if (copy_from_user(bad_stack, (void __user *)user_addr, + unconst + sizeof(good_stack))) { + pr_warn("copy_from_user failed, but lacked Oops\n"); + goto free_user; + } + } + +free_user: + vm_munmap(user_addr, PAGE_SIZE); +} + +/* + * This checks for whole-object size validation with hardened usercopy, + * with or without usercopy whitelisting. + */ +static void do_usercopy_slab_size(bool to_user) +{ + unsigned long user_addr; + unsigned char *one, *two; + void __user *test_user_addr; + void *test_kern_addr; + size_t size = unconst + 1024; + + one = kmalloc(size, GFP_KERNEL); + two = kmalloc(size, GFP_KERNEL); + if (!one || !two) { + pr_warn("Failed to allocate kernel memory\n"); + goto free_kernel; + } + + user_addr = vm_mmap(NULL, 0, PAGE_SIZE, + PROT_READ | PROT_WRITE | PROT_EXEC, + MAP_ANONYMOUS | MAP_PRIVATE, 0); + if (user_addr >= TASK_SIZE) { + pr_warn("Failed to allocate user memory\n"); + goto free_kernel; + } + + memset(one, 'A', size); + memset(two, 'B', size); + + test_user_addr = (void __user *)(user_addr + 16); + test_kern_addr = one + 16; + + if (to_user) { + pr_info("attempting good copy_to_user of correct size\n"); + if (copy_to_user(test_user_addr, test_kern_addr, size / 2)) { + pr_warn("copy_to_user failed unexpectedly?!\n"); + goto free_user; + } + + pr_info("attempting bad copy_to_user of too large size\n"); + if (copy_to_user(test_user_addr, test_kern_addr, size)) { + pr_warn("copy_to_user failed, but lacked Oops\n"); + goto free_user; + } + } else { + pr_info("attempting good copy_from_user of correct size\n"); + if (copy_from_user(test_kern_addr, test_user_addr, size / 2)) { + pr_warn("copy_from_user failed unexpectedly?!\n"); + goto free_user; + } + + pr_info("attempting bad copy_from_user of too large size\n"); + if (copy_from_user(test_kern_addr, test_user_addr, size)) { + pr_warn("copy_from_user failed, but lacked Oops\n"); + goto free_user; + } + } + pr_err("FAIL: bad usercopy not detected!\n"); + pr_expected_config_param(CONFIG_HARDENED_USERCOPY, "hardened_usercopy"); + +free_user: + vm_munmap(user_addr, PAGE_SIZE); +free_kernel: + kfree(one); + kfree(two); +} + +/* + * This checks for the specific whitelist window within an object. If this + * test passes, then do_usercopy_slab_size() tests will pass too. + */ +static void do_usercopy_slab_whitelist(bool to_user) +{ + unsigned long user_alloc; + unsigned char *buf = NULL; + unsigned char __user *user_addr; + size_t offset, size; + + /* Make sure cache was prepared. */ + if (!whitelist_cache) { + pr_warn("Failed to allocate kernel cache\n"); + return; + } + + /* + * Allocate a buffer with a whitelisted window in the buffer. + */ + buf = kmem_cache_alloc(whitelist_cache, GFP_KERNEL); + if (!buf) { + pr_warn("Failed to allocate buffer from whitelist cache\n"); + goto free_alloc; + } + + /* Allocate user memory we'll poke at. */ + user_alloc = vm_mmap(NULL, 0, PAGE_SIZE, + PROT_READ | PROT_WRITE | PROT_EXEC, + MAP_ANONYMOUS | MAP_PRIVATE, 0); + if (user_alloc >= TASK_SIZE) { + pr_warn("Failed to allocate user memory\n"); + goto free_alloc; + } + user_addr = (void __user *)user_alloc; + + memset(buf, 'B', cache_size); + + /* Whitelisted window in buffer, from kmem_cache_create_usercopy. */ + offset = (cache_size / 4) + unconst; + size = (cache_size / 16) + unconst; + + if (to_user) { + pr_info("attempting good copy_to_user inside whitelist\n"); + if (copy_to_user(user_addr, buf + offset, size)) { + pr_warn("copy_to_user failed unexpectedly?!\n"); + goto free_user; + } + + pr_info("attempting bad copy_to_user outside whitelist\n"); + if (copy_to_user(user_addr, buf + offset - 1, size)) { + pr_warn("copy_to_user failed, but lacked Oops\n"); + goto free_user; + } + } else { + pr_info("attempting good copy_from_user inside whitelist\n"); + if (copy_from_user(buf + offset, user_addr, size)) { + pr_warn("copy_from_user failed unexpectedly?!\n"); + goto free_user; + } + + pr_info("attempting bad copy_from_user outside whitelist\n"); + if (copy_from_user(buf + offset - 1, user_addr, size)) { + pr_warn("copy_from_user failed, but lacked Oops\n"); + goto free_user; + } + } + pr_err("FAIL: bad usercopy not detected!\n"); + pr_expected_config_param(CONFIG_HARDENED_USERCOPY, "hardened_usercopy"); + +free_user: + vm_munmap(user_alloc, PAGE_SIZE); +free_alloc: + if (buf) + kmem_cache_free(whitelist_cache, buf); +} + +/* Callable tests. */ +static void lkdtm_USERCOPY_SLAB_SIZE_TO(void) +{ + do_usercopy_slab_size(true); +} + +static void lkdtm_USERCOPY_SLAB_SIZE_FROM(void) +{ + do_usercopy_slab_size(false); +} + +static void lkdtm_USERCOPY_SLAB_WHITELIST_TO(void) +{ + do_usercopy_slab_whitelist(true); +} + +static void lkdtm_USERCOPY_SLAB_WHITELIST_FROM(void) +{ + do_usercopy_slab_whitelist(false); +} + +static void lkdtm_USERCOPY_STACK_FRAME_TO(void) +{ + do_usercopy_stack(true, true); +} + +static void lkdtm_USERCOPY_STACK_FRAME_FROM(void) +{ + do_usercopy_stack(false, true); +} + +static void lkdtm_USERCOPY_STACK_BEYOND(void) +{ + do_usercopy_stack(true, false); +} + +static void lkdtm_USERCOPY_KERNEL(void) +{ + unsigned long user_addr; + + user_addr = vm_mmap(NULL, 0, PAGE_SIZE, + PROT_READ | PROT_WRITE | PROT_EXEC, + MAP_ANONYMOUS | MAP_PRIVATE, 0); + if (user_addr >= TASK_SIZE) { + pr_warn("Failed to allocate user memory\n"); + return; + } + + pr_info("attempting good copy_to_user from kernel rodata: %px\n", + test_text); + if (copy_to_user((void __user *)user_addr, test_text, + unconst + sizeof(test_text))) { + pr_warn("copy_to_user failed unexpectedly?!\n"); + goto free_user; + } + + pr_info("attempting bad copy_to_user from kernel text: %px\n", + vm_mmap); + if (copy_to_user((void __user *)user_addr, vm_mmap, + unconst + PAGE_SIZE)) { + pr_warn("copy_to_user failed, but lacked Oops\n"); + goto free_user; + } + pr_err("FAIL: bad copy_to_user() not detected!\n"); + pr_expected_config_param(CONFIG_HARDENED_USERCOPY, "hardened_usercopy"); + +free_user: + vm_munmap(user_addr, PAGE_SIZE); +} + +/* + * This expects "kaddr" to point to a PAGE_SIZE allocation, which means + * a more complete test that would include copy_from_user() would risk + * memory corruption. Just test copy_to_user() here, as that exercises + * almost exactly the same code paths. + */ +static void do_usercopy_page_span(const char *name, void *kaddr) +{ + unsigned long uaddr; + + uaddr = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_WRITE, + MAP_ANONYMOUS | MAP_PRIVATE, 0); + if (uaddr >= TASK_SIZE) { + pr_warn("Failed to allocate user memory\n"); + return; + } + + /* Initialize contents. */ + memset(kaddr, 0xAA, PAGE_SIZE); + + /* Bump the kaddr forward to detect a page-spanning overflow. */ + kaddr += PAGE_SIZE / 2; + + pr_info("attempting good copy_to_user() from kernel %s: %px\n", + name, kaddr); + if (copy_to_user((void __user *)uaddr, kaddr, + unconst + (PAGE_SIZE / 2))) { + pr_err("copy_to_user() failed unexpectedly?!\n"); + goto free_user; + } + + pr_info("attempting bad copy_to_user() from kernel %s: %px\n", + name, kaddr); + if (copy_to_user((void __user *)uaddr, kaddr, unconst + PAGE_SIZE)) { + pr_warn("Good, copy_to_user() failed, but lacked Oops(?!)\n"); + goto free_user; + } + + pr_err("FAIL: bad copy_to_user() not detected!\n"); + pr_expected_config_param(CONFIG_HARDENED_USERCOPY, "hardened_usercopy"); + +free_user: + vm_munmap(uaddr, PAGE_SIZE); +} + +static void lkdtm_USERCOPY_VMALLOC(void) +{ + void *addr; + + addr = vmalloc(PAGE_SIZE); + if (!addr) { + pr_err("vmalloc() failed!?\n"); + return; + } + do_usercopy_page_span("vmalloc", addr); + vfree(addr); +} + +static void lkdtm_USERCOPY_FOLIO(void) +{ + struct folio *folio; + void *addr; + + /* + * FIXME: Folio checking currently misses 0-order allocations, so + * allocate and bump forward to the last page. + */ + folio = folio_alloc(GFP_KERNEL | __GFP_ZERO, 1); + if (!folio) { + pr_err("folio_alloc() failed!?\n"); + return; + } + addr = folio_address(folio); + if (addr) + do_usercopy_page_span("folio", addr + PAGE_SIZE); + else + pr_err("folio_address() failed?!\n"); + folio_put(folio); +} + +void __init lkdtm_usercopy_init(void) +{ + /* Prepare cache that lacks SLAB_USERCOPY flag. */ + whitelist_cache = + kmem_cache_create_usercopy("lkdtm-usercopy", cache_size, + 0, 0, + cache_size / 4, + cache_size / 16, + NULL); +} + +void __exit lkdtm_usercopy_exit(void) +{ + kmem_cache_destroy(whitelist_cache); +} + +static struct crashtype crashtypes[] = { + CRASHTYPE(USERCOPY_SLAB_SIZE_TO), + CRASHTYPE(USERCOPY_SLAB_SIZE_FROM), + CRASHTYPE(USERCOPY_SLAB_WHITELIST_TO), + CRASHTYPE(USERCOPY_SLAB_WHITELIST_FROM), + CRASHTYPE(USERCOPY_STACK_FRAME_TO), + CRASHTYPE(USERCOPY_STACK_FRAME_FROM), + CRASHTYPE(USERCOPY_STACK_BEYOND), + CRASHTYPE(USERCOPY_VMALLOC), + CRASHTYPE(USERCOPY_FOLIO), + CRASHTYPE(USERCOPY_KERNEL), +}; + +struct crashtype_category usercopy_crashtypes = { + .crashtypes = crashtypes, + .len = ARRAY_SIZE(crashtypes), +}; |